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Abstract 

Though research has identified several possible factors that could be considered 

precursors of math difficulties in children, including cognitive, language, and number factors, 

there is not currently a consensus as to which are most critical. The present study focused on the 

role of two types of counting (procedural skill and conceptual knowledge) in kindergarten to 

predict math fluency, computation and applied reasoning performance in grade 1, which are 

direct antecedents of formal arithmetic. Their contribution was examined individually, and in the 

context of additional number (number identification and quantity discrimination), cognitive 

(working memory and phonological awareness) and behavior (behavioral inattention) factors. A 

step-by-step model building method showed that while both types of counting were predictive of 

each outcome, in the overall models the number factors accounted for variance over and above 

the counting predictors. Further, the number variables were the best predictors for each model, 

but secondary variables included verbal working memory and conceptual counting knowledge 

for fluency, phonological awareness and procedural counting for computation, and verbal and 

visuospaital working memory, phonological awareness, and procedural counting for the applied 

reasoning model. Therefore, counting procedural skill and conceptual knowledge should be 

considered when screening for early math difficulties, but their contributions should be 

considered along with other relevant number and cognitive factors for more robust prediction. 
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Introduction 

 There is no current consensus regarding the most efficient predictors of later math 

performance, though many have been discussed. The focus of this study is on the role of the 

most proximal correlates, procedural counting skill and conceptual counting knowledge assessed 

in kindergarten, to math performance one year later, while also considering key relevant 

variables in cognitive domains. The overall goal is to improve clarity regarding the contributions 

of number and cognitive variables to math skill and their potential use in early identification. 

First, the prevalence of math difficulties and the importance of early identification will be 

discussed. Next, the language predictors of math performance will be examined. Then, other 

correlates of math performance including working memory and behavioral inattention will be 

described. Finally, number factors relevant to math development will be outlined, with a focus 

on two types of counting predictors, procedural skill and conceptual knowledge. This is a 

comprehensive review that includes factors related to math that go beyond the exact variables 

that are used in the current study, however the specific variables being utilized are explained in 

each section. 

National status of mathematics 

 Mathematics difficulties are an important concern in the United States. In 2009, the 

National Assessment of Educational Progress (NAEP) conducted a study of mathematics skills in 

a sample of over 300,000 nationally representative fourth and eighth-graders (U.S. Department 

of Education, 2009). Students were assessed on five broad mathematics areas and placed into 

four achievement levels (advanced, proficient, basic, or below basic). Nationally, only 33% of 

fourth-grade and 25% of eighth grade students perform at the proficient level. There are eight 

states in which over 25% of fourth-graders perform below the basic level and 28 states with over 
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25% of eighth graders performing below the basic level. Rates of mathematical disabilities in 

children are similar to reading disability rates with approximately 6 to 7% of the school age 

population having a mathematical disability (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 

2005; Geary, 1993). Further, 5 to 10% of students will have a learning difficulty in math before 

graduating from high school (Geary et al., 2009). The national deficit in mathematics skills is 

concerning since school-age math competence is correlated with ultimate academic achievement, 

as well as being necessary for everyday functioning later in life. For example, understanding 

spatial relations is crucial to reading maps, whole numbers and fractions are important for being 

able to manage money, and probabilities are required for proper financial planning (Mccloskey, 

2007). Additionally, with the increase in technological advancements, more jobs require 

proficiency in mathematics (Clarke & Shinn, 2004). 

This continuing concern has led to an increase in the number of research projects 

dedicated to learning more about both math development and math difficulties within the fields 

of psychology, education, and medicine. For example, Gersten, Clarke, and Mazzocco (2007) 

conducted a comparative literature search of reading disabilities and math learning disabilities 

(MLD) in the Pubmed and ERIC (Educational Resources Information Center) databases, and 

found that the amount of research on MLD is steadily increasing, even though research studies 

on RD still outpace those on MLD (a ratio of 14:1 from 1996 to 2005). Two issues are 

particularly prevalent in the research literature of MLD – a lack of universal agreement on 

identification or definition of MLD, and the search for what core cognitive processes and 

academic skills are involved in the early development of math. Even though the latter issue is 

more central to this study and will be considered in more detail, issues with identification are 

strongly linked to early cognitive and academic processes in math and will also be discussed. 
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 Current issues in MLD identification 

The concerns regarding identification and establishment of reliable precursors of 

academic difficulty are not unique to MLD; they have also arisen in the research on reading 

difficulties (RD). For example, one of the factors that led to a better understanding of the deficits 

as well as more successful interventions in this area was being able to identify, with consistency 

and at an early age, those who were going to struggle with acquiring reading skills (Hecht, 

Torgesen, Wagner, & Rashotte, 2001; Stanovich, 1988; Wagner & Torgesen, 1987). Early 

intervention in RD has been identified as one of the critical variables related to increasing 

student achievement in general (Clarke & Shinn, 2004). Additionally, specific marker variables 

and core cognitive processes, such as phonological awareness (PA) and rapid naming, have been 

successfully identified allowing for proper identification and intervention for RD (Catts, 

Gillispie, Leonard, Kail, & Miller, 2002; Fletcher, Lyon, Fuchs, & Barnes, 2007; Fletcher et al., 

1994). Several developmental precursors for math difficulties have been identified; however, 

they are not yet as well established as are those for RD. Further, as in studies of RD subtypes, 

components of math difficulty (i.e. fluency, computation or problem solving) may have different 

predictors (Fuchs et al., 2008; Geary, 1993).  

From studies of mathematics development, several factors are known to contribute to 

either an adequate or deficient performance. These factors include demographic variables, such 

as socio-economic status, gender (Jordan, Mulhern, & Wylie, 2009) and ethnic minority 

backgrounds (Strand, 1999); cognitive skills including working memory (Fuchs, 2006; reviewed 

in Raghubar, Barnes, & Hecht, 2010); and specific number precursors such as counting 

principles (Geary, 1999), magnitude comparison (Landerl, Bevan, & Butterworth, 2004) or 

subitizing (LeFevre et al., 2010). One model of relevant precursors that has been developed 
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includes linguistic, spatial attention, and quantitative pathways (Lefevre et al., 2010) which can 

be related to neural circuits in the parietal lobe important for numerical processing (Dehaene, 

Piazza, Pinel, & Cohen, 2003). Consequently, relevant factors can be grouped into three areas: 

language processes traditionally related to reading; cognitive processes not specific to number; 

and specific numeric procedural and conceptual development, discussed in turn below.  

Language factors in mathematical development and difficulty 

Language skills have been associated with math skill development. This makes sense 

because numbers are stored verbally (Gelman & Butterworth, 2005) and language is required for 

formal math learning (e.g. to transition from counting to addition; Fletcher et al., 2007). Basic 

literacy skills have been shown to be predictive not only of reading skills, but also of later 

measures of math skills (Jordan et al., 2006). As demonstrated in the pathways model by 

LeFevre et al. (2010), linguistic measures (phonological awareness and vocabulary) contributed 

uniquely to several mathematical outcomes, and in some cases more so than the quantitative and 

spatial attention pathways. Further, children with MD who are good readers show greater 

progress in math development than do those that are poor readers (Jordan, Kaplan, & Hanich, 

2002).  

Phonological processes (PP) are considered one of the most significant language 

predictors of later math performance (Savage, Carless, & Ferraro, 2007). One model of PP 

consists of three parts: phonological memory, rate of access, and phonological awareness 

(Wagner & Torgesen, 1987). Phonological memory refers to the component of working memory 

called the phonological loop in the Baddeley-Hitch (1985) model (described later). Rate of 

access is the amount of time needed to retrieve phonological information (sound based 

representations) from long term memory storage. Phonological awareness (PA) is the awareness 
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of and access to the sound structure of oral language. Tasks of phonological analysis (ability to 

identify sounds within words) and synthesis (ability to blend speech segments into syllables or 

words) are typically used to study PA. Hecht et al. (2001) found that all three of these 

phonological processes were strongly associated with the relationship of reading to calculations.  

Geary (1993) suggested that phonological processes are important for math because 

computation requires the ability to create and maintain phonological representations. It has been 

suggested that learning the Arabic numerals and linking them to the appropriate labels is similar 

to developing lexical mappings when learning to read (LeFevre et al., 2010). Further, speech 

sound processes are necessary to solve mathematic problems. For example, in order to solve a 

computation problem, a child may translate the Arabic numbers into their verbal representations. 

This process is relevant to the retrieval of a phonologically based answer or using a counting 

based strategy to solve a simple arithmetic problem or more complex math that requires such 

retrieval as one step in a procedure (e.g. long division; Hecht et al., 2001). It is also possible that 

the memory representations required for math computations are partly supported by the same 

memory systems required for decoding and reading (Geary, 1993; 2003), though the exact 

mechanism is not yet completely understood. Empirically, phonological awareness at ages 4 to 6 

has been shown to be related to differences in math computation skills at age 7 (Bryant, Maclean, 

Bradley, & Crossland, 1990). Savage et al. (2007) found that phonological awareness at age 5 

predicted math outcomes at age 11 even after controlling for early literacy skills (word reading, 

decoding and letter sound knowledge). Wise et al. (2008) found that PA accounted for a 

significant amount of variance in some math outcome variables (addition and numeration 

subtests) when a stringent cutoff was used (15th %ile).  
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Because phonological processes have been associated with math development, it would 

be expected that reading would be as well, given the well-established connection of phonological 

processes and reading skills. Further, because reading (RD) and math difficulties are highly 

comorbid, several studies have focused on comparing groups of children with both reading and 

math difficulties (MD/RD), to those with MD only or RD only (Fletcher, 2005; Fuchs, Fuchs, & 

Prentice, 2004; Geary, 1993; Gersten, Jordan, & Flojo, 2005; Jordan, Hanich, & Kaplan, 2003). 

Robinson, Menchetti and Torgessen (2002) discuss a two-factor theory of math fact learning that 

distinguishes children with MD/RD from those with MD only. In the MD/RD group, a deficit in 

phonological processing abilities leads to weak connections between number and number fact 

representations making retrieval difficult. Alternatively, children with MD only have weak 

number sense, resulting in not properly associating meaning to a number or to number fact 

connections, ultimately making retrieval difficult. Landerl et al. (2004) found no quantitative 

differences between the MD/RD and MD only groups in terms of their pattern of performance on 

numerical processing tasks with both groups performing poorly relative to controls (on measures 

of counting, number naming, number writing, and number comparison), though the MD/RD 

group usually had more errors indicative of more severe impairment.  

While both PP and reading skills are related to math performance, they are also related to 

one another, and deficits of phonological processes are considered to be of greater theoretical 

importance to math difficulties. Of these processes, PA has been consistently predictive of later 

math outcomes (Bryant et al., 1990; Savage et al., 2007) and will therefore, be included in the 

present models. 

Cognitive factors in mathematical development and difficulty 
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 Working Memory. Several domains of cognition outside of language and number have 

also been identified as precursors to later math outcomes including working memory, executive 

functions (i.e. shifting, inhibition; Epsy et al., 2004), fluid intelligence, and attention (Fuchs et 

al., 2010); because they are relevant to many outcomes beyond math, these are often referred to 

as “domain general” predictors. Research has found associations between components of 

working memory (Rasmussen & Bisanz, 2005) and a wide variety of math skills (i.e. addition 

and subtraction facts or computations) even while controlling for IQ (Geary, Hoard, Byrd-

Craven, Nugent, & Numtee, 2007). The relationship of working memory to math development is 

a complicated one because there are multiple models of working memory which operationalize 

working memory differently making parallels among models difficult to make. Three models are 

explained below in an effort to describe these similarities and differences in models and how 

these are related to various math outcomes. 

The three theoretical perspectives described are the Baddeley-Hitch model of working 

memory (Baddeley & Hitch, 1974), Engle’s model of controlled attention (Engle, Kane, & 

Tuholski, 1999), and Miyake’s executive model (Miyake, Friedman, Emerson & Witzki, 2000). 

Several studies show that working memory relates to math skills in the context of models of both 

controlled attention (Colom, Escorial, Shih & Privado, 2007; Tuholski, Engle, & Baylis, 2001) 

and of executive function (Bull & Scerif, 2001; van der Sluis, de Jong, & van der Leij, 2007). 

However, most relations of working memory with math have been tested using the Baddeley 

model (Geary, 1993; McLean & Hitch, 1999; Meyer, Salimpoor, Wu, Geary, & Menon, 2009; 

Rasmussen & Bisanz, 2005). Therefore, after briefly reviewing the other models, this review will 

focus on the math relationship with Baddeley’s model.  
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 The first model of working memory is that of controlled attention, which is associated 

with capacity (Engle, Tuholski, Laughlin, & Conway, 1999). It is described as a domain-free 

(general) attentional capacity to actively maintain or suppress representations in working 

memory (Engle et al., 1999). In this system, there are considered to be two components. First is 

short term memory which refers to memory representations of visuospatial and phonological 

information that achieve temporary maintenance of information when activated (Hambrick, 

Wilhelm, & Engle, 2001). The second component is domain-free executive attention, which is 

important for maintaining task relevant information while also suppressing interfering 

information that is irrelevant to the task at hand. This component, which is also called working 

memory capacity, has similarities with the central executive in the Baddeley-Hitch model in that 

it is a domain general resource (Hambrick, Wilhelm, & Engle, 2001).  

 In terms of its relation to math processes, Tuholski and colleagues (2001) found that 

those with shorter controlled attention spans had significantly larger reaction times than those 

with longer attention spans when counting was required in an enumeration task (i.e. counting n 

number of objects) but the groups had similar reaction times when the enumeration task was in 

the subitizing range (which is considered a “preattentive” process; Tuholski et al., 2001). 

Additionally, when two types of distracters (conjunctive – lines of a different color in the same 

direction as the target; disjunctive – lines of a different color in a different direction than the 

target) were added to the task, reaction times increased significantly only in the shorter span 

group, suggesting that controlled attention is a required process for counting.  

 The next model of working memory, one suggested by Miyake and colleagues (Miyake et 

al, 2000), is discussed in the context of executive function (EF). Past research has been done 

concerning the unity, or non-unity, of different constructs within EF including inhibition, shifting 
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sets, and updating or monitoring working memory representations in typically developing 

preschoolers (Wiebe, Espy, & Charak, 2008) as well as in a variety of clinical populations 

(Duncan, Johnson, Swales, & Freer, 1997; Levin et al., 1991; Robbins et al., 1998; Welsh, 

Pennington, & Groisser, 1991). EF subfunctions in the model of Miyake et al. (2000) include 

inhibition, shifting, and updating. Inhibition refers to the ability to deliberately inhibit dominant 

or automatic responses when instructed or when necessary (Miyake et al., 2000). Shifting 

between mental sets or tasks, also called attention or task switching, has been explained as the 

disengaging of attention to an irrelevant task in order to actively engage in the relevant task 

(Miyake et al., 2000). However, another description of shifting suggests that it involves the 

ability to perform a new operation despite interference or negative priming (Allport & Wylie, 

2000). Updating involves monitoring and coding new information relevant to the current task, 

which therefore involves active manipulation rather than passive storage (Lehto, Juujarvi, 

Kooistra, & Pulkkinen, 2003; Miyake et al., 2000).  

 Research on 6 to 8 year old children with math difficulties has shown impairments on 

tasks related to inhibiting a learned strategy and switching to a new strategy, as assessed with the 

Wisconsin Card Sorting Task (WCST; Bull & Scerif, 2001). However, after accounting for 

naming skill (i.e. a non-executive factor), this relationship between poor inhibition and switching 

with math difficulty (assessed with a math fluency measure) was no longer found (in children in 

grades 4 to 5; van der sluis et al., 2007). Children with lower mathematics abilities were also 

slower on an incongruent number version of a Stroop task (inhibition), which Bull and Scerif 

(2001) suggest may be a result of reduced attention for numerical symbols or decreased 

automaticity of number identification. In a longitudinal study from preschool to grade 3, shifting 

did predict later math and reading achievement at each grade level, however did not predict 
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achievement over the course of the study (Bull, Espy, & Wiebe, 2008). Further, the shifting 

effect may change over time, or it may arise from outside factors (e.g., naming) or differ 

according to the type of outcome (Bull & Scerif, 2001). These types of results highlight the 

general need for clarification in terms of which predictors are considered as well as the target of 

prediction (i.e. type of mathematics outcome) to derive a more comprehensive picture of relevant 

factors.  

As noted, the Baddeley WM model has been the most thoroughly explored with regard to 

mathematics. According to this model, there are three primary components of working memory: 

the central executive, phonological loop, and the visuospatial sketch pad, which all interact 

(Baddeley; Baddeley & Hitch, 1974). The central executive is an attentional controlling system 

which has several regulatory roles including coordination of access and retrieval from other 

systems (Baddeley & Hitch, 1974; Gathercole, Pickering, Knight, & Stegmann, 2004; 

Rasmussen & Bisanz, 2005), and also a supervisory role over the integration of information from 

the visuospatial sketchpad and phonological loop (Wu et al., 2008). The phonological loop is a 

temporary storage mechanism for maintaining and rehearsing verbal information that is subject 

to rapid decay; the visuospatial sketch pad is responsible in a similar way for storage of 

visuospatial material (Gathercole, Pickering, Ambridge, & Wearing, 2004).  

 The central executive is related to math problem solving ability (Rasmussen & Bisanz, 

2005), though other components of this model also have demonstrated relationships with other 

types of math skill. For example, the phonological loop appears to be important for counting and 

holding information in complex calculations (Mclean & Hitch, 1999). There is also evidence of 

poor performance on phonological loop measures (digit span) being related to poor problem 

solving abilities (Rasmussen & Bisanz, 2005). These difficulties could be explained through the 
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vulnerability of the phonological loop to rate of decay, which would be related to difficulties in 

holding problem associations (Fuchs et al., 2006). Finally, visuospatial working memory is 

related to numerical estimation (Khemani & Barnes, 2005), and poor performance on 

visuospatial working memory tasks has been associated with deficits in early (preschool) 

nonverbal math achievement (Rasmussen & Bisanz, 2005). In relation to one another, verbal 

working memory (phonological loop) has been shown to be more predictive of math 

computational skills than visuospatial working memory in some studies (Keeler & Swanson, 

2001) and  in a meta-analysis by Swanson and Jerman (2006), verbal working memory had the 

largest effect size when discriminating children with math difficulty from average achieving 

children. In contrast, Holmes and Adams (2006) found that both the central executive and 

visuospatial sketchpad uniquely predicted variance in curriculum based measures of math 

computations for children ages 7 and 8, while the phonological loop did not. 

Studies have also shown that children may rely on different components of working 

memory at different stages of development, with a shift in reliance from visuospatial working 

memory to verbal working memory with age (Rasmussen & Bisanz, 2005). For example, in a 

study comparing 5 and 10 year old children, the younger children relied more heavily on visual 

working memory (visuospatial sketch pad) while the older children relied more on verbal 

working memory (Hitch, Halliday, Schaafstal, & Schraagen, 1988). In a study of 7 to 8 year olds, 

Holmes and Adams (2006) found that the central executive and the visuospatial sketchpad were 

more predictive of math outcomes than the phonological loop. Older children (9 to 10 years old) 

in this study were found to use phonological loop for easy problems while using the visuospatial 

sketchpad for more difficult problems. Similarly, working memory assessed by the counting span 

task was related to performance on simple and complex problems in grade 1, but not in grades 3 
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or 5 for children with and without MD (Geary, Hoard, Byrd-Craven, & DeSoto, 2004). However, 

there are exceptions as another study found that the central executive and phonological loop 

significantly predicted math reasoning scores in 2nd grade, while in 3rd grade the visuospatial 

sketchpad was predictive of mathematical reasoning and numerical operations (Meyer, 

Salimpoor, Wu, Geary, & Menon, 2009). 

 Each model reviewed has contributed to the understanding of how different aspects of 

working memory relate to math development. However, the wide variety of measures of working 

memory, as well as math outcomes, has made definitive conclusions about this relationship 

difficult. In general, children with math difficulties have deficits in working memory including 

difficulty holding material related to the phonological loop in memory in order to solve problems 

(Mclean & Hitch, 1999) and difficulty inhibiting and set shifting which can lead to deficits in 

solving math problems (skills associated with the central executive; Bull & Scerif, 2001; 

Rasmussen & Bisanz, 2005; Raghubar et al., 2010). Since the relation of working memory and 

math performance is complicated, it is important to examine multiple components of working 

memory and math outcomes as well as appropriately operationalize the measures and model used 

to do so. This is particularly important as many commonly used measures of working memory in 

the above studies involve numbers or counting (e.g., Digit Span, Counting Span; Raghubar et al., 

2010). The present study will focus on measures of both number and non-number based storage 

and manipulation. Baddeley and Hitch would likely classify these as phonological and 

visuospatial working memory, respectively. More basic elements of number and language are 

also considered, given that working memory measures also involve these processes. 

  Attention. Attention is another important factor associated with mathematics difficulties. 

Although there are similarities in the theoretical frameworks of attention and working memory 
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(i.e. Engle’s model of controlled attention), their combined contributions to math development 

have not yet been adequately studied (Raghubar et al., 2010). Attentional resources have been 

suggested to be necessary for children to initiate and direct their processing of information, 

comprehend, and retrieve information for different tasks (Geary, Hoard, & Hamson, 1999).  

Two rather different ways of assessing attention have been studied in children with MD: 

sustained attention or vigilance, usually assessed by continuous performance tests (Huckeba, 

Chapieski, Hiscock, & Glaze, 2008; Lindsay, Tomazic, Levine, & Accardo, 2001); and 

behavioral inattention, typically measured with parent and teacher rating scales (Cirino, Fletcher, 

Ewing-Cobbs, Barnes, & Fuchs, 2007; Fuchs et al., 2006; Raghubar et al., 2009). A study of 

children with Tourette’s Syndrome (TS) examined the relations between sustained attention 

(using the Test of Variables of Attention, TOVA; Greenberg, 1990), visuospatial ability (Beery 

Visual Motor-Integration; Beery, Buktenica, & Beery, 2006) and arithmetic achievement (K-

TEA computations and KeyMath calculations given in structured and unstructured settings; 

Huckeba et al., 2008). The results showed that while children with TS as a whole had attention 

and math difficulties, children with TS whose attention skills were within the average range did 

not differ from typically developing children on arithmetic performance. This suggests that 

inattention contributed to the arithmetic deficits beyond the effect of TS. 

Another study (Lindsay et al., 2001) looked at the relation between a continuous 

performance task (Conner’s Continuous Performance Test, (CPT; Conners, 1994) and math 

performance in two mutually exclusive groups defined on the basis of discrepancy of IQ and 

math performance: those with dyscalculia (a 15 point IQ-achievement discrepancy score only) 

and low functioning dyscalculia (15 point IQ-achievement discrepancy score with arithmetic 

score below 25th %ile). Both groups made more inattentive errors (omission errors) and were 
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inconsistent (indexed by high standard error of response time) relative to controls. The low 

functioning group was more inconsistent and prone to errors than the dyscalculia group. Further, 

measures of inconsistency and impulsivity (commission errors) were the only variables to 

significantly predict arithmetic scores over and above IQ and reading scores, suggesting that 

these variables may be more related to math in this type of assessment than the inattentive 

(omission errors) variable.  

The second way of assessing attention, which is strongly related to math performance, is 

measures of behavioral inattention, which is a reduced ability to maintain the focus of attention 

(Fuchs et al., 2005; 2006). Research has shown that high ratings of behavioral inattention are 

related to lower academic achievement (Merrell & Tymms, 2001). Behavioral inattention ratings 

have been shown to be predictive of arithmetic skill (adding and subtracting single digit 

numbers), algorithmic computation and arithmetic word problems in first graders (Fuchs et al., 

2006). Further, in a model relating numerical competencies (arithmetic, algorithmic computation, 

and arithmetic word problems) to various measures, Fuchs et al. (2006) found behavioral 

inattention to be the only factor to uniquely predict all three types of math competencies. 

Behavioral inattention was also a unique predictor of estimation skill in children in grade 3 

(Seethaler & Fuchs, 2005). Raghubar et al. (2009) found that higher levels of ratings of 

inattention in children in third and fourth grade were related to higher multi-digit computation 

and math fact errors. As well, children in the math learning difficulty group (MLD) were rated as 

more inattentive than a low achievement group (LA) and a control group (Cirino et al., 2007). 

Similarly in a study by Duncan et al. (2007), teacher ratings of attention were found to be a 

modest, but consistent predictor of later academic achievement across several ages (age 4 – 5 to 

age 13 – 14). Children with short attention spans will have difficulty remember instructions and 
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steps to solve problems. It has been suggested that a limited working memory capacity 

contributes to inattentive behaviors in children and these deficits will often co-occur (Gathercole 

et al., 2007). For example, children identified on the basis of having poor working memory skills 

exhibited similar behavior profiles involving primarily inattentive behaviors (i.e. difficulty 

attending in class, making careless errors, high levels of distractibility) rather than hyperactivity 

(Alloway, Gathercole, Kirkwood, & Elliot, 2009).   

In line with behavior ratings, a common way that the influence of attention with regard to 

math is studied is in the context of attention deficit hyperactivity disorder (ADHD), because 

ADHD and math difficulties show strong overlap. For instance, the incidence of MD in children 

with ADHD is about five times that of the general population (31% vs. 6-7%; Zentall, 2007). 

Similarly, about 31% of students with MD in numeric operations also had ADHD (Mayes, 

Calhoun, & Crowell, 2000). The persistent inability or difficulty to automatize basic computation 

skills seen in children with ADHD may be due to their difficulty sustaining attention long 

enough to adequately learn the information (Zentall, 2007). Interestingly, among several learned 

skills, (number computations, low and high imagery words) only number computations was not 

automatized in children with ADHD as compared to age and IQ-matched peers (Ackerman, 

Anhalt, & Dykman, 1986). Children with ADHD respond more quickly to problems than their 

typically developing peers (Banaschewski et al., 2003). Inattention and disorganization have 

been shown to be related to difficulties with math computation (Marshall & Hynd, 1997). 

Research on the influence of medication within ADHD (specifically methylphenidate variations) 

found children on medication improved in number correct on math computation measures 

(Lopez, Silva, Pestreich, & Muniz, 2003 & Muniz, 2003). Comparing children with and without 

the hyperactivity component of ADHD, researchers have reported significantly lower scores on 
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measures of mathematics computation skills for children with predominately inattentive 

problems relative to those with hyperactivity (Marshall, Schafer, O'donnell, Elliott, & Handwerk, 

1999). 

In sum, research involving children with ADHD and MD has contributed to a better 

understanding of the attention problems related to deficits in math performance, specifically 

difficulty with automatizing number facts. Both sustained attention and behavioral inattention 

have been shown to play a role in math development. However, only the two above referenced 

studies focused on sustained attention and math development. The Huckeba et al. (2008) study, 

however, utilized a specific population (e.g. TS), which limits the generalizability of the results, 

and the Lindsay et al. (2001) study did not find the inattention variable to be uniquely predictive 

of math outcomes. Because of these reasons as well as the larger representation of behavioral 

inattention in the literature, behavioral measures of inattention will be considered in this study.  

Number factors in mathematical development and difficulty 

 So far the discussion has primarily focused on the relation of domain general cognitive 

variables and language with math performance. However, as predictors increase their similarity 

with the criterion (math performance), stronger predictive relationships might be expected. This 

appears to be the case in RD as PA and decoding skills have been suggested to be the best 

predictors of later reading skills (Wagner & Torgesen, 1987). Similarly, with respect to 

interventions, it is more beneficial to teach an academic skill rather than provide training in a 

general area or core cognitive process and expect that training improve the target academic skill 

(Fletcher et al., 2007). Therefore, the following section will focus on domain specific number 

variables as predictors of math performance. 
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Number sense, or number competence, has been suggested to be as important to 

mathematics learning as phonemic awareness is to reading development (Gersten & Chard, 

1999). However, there is a lack of clarity as to how number sense is defined. According to Geary 

et al. (2009), number sense includes non-verbal and implicit understanding of both absolute and 

relative magnitude of sets of non-symbolic (i.e. objects or dots) or symbolic (i.e. Arabic 

numerals) factors. Another definition includes having the ability to add and subtract small 

quantities, compare magnitudes, and count, or more generally an understanding of numbers and 

their relationships (magnitudes, comparisons, calculations, etc.; Locuniak & Jordan, 2008). The 

development of the child’s facility and flexibility with numbers is influenced by their 

environment, which includes informal teaching by parents or other adults prior to schooling 

(Robinson et al., 2002). However, studies have shown number sense, specifically quantity 

discrimination, to be evident in infants as young as 6 months with improvements in 

discrimination of smaller ratio sets between 6 and 9 months (Lipton & Spelke, 2003). Having a 

well-developed number sense is hypothesized to lead to a better ability to solve calculations 

(Gersten & Chard, 1999; Locuniak & Jordan, 2008). Several models of precursors have included 

number related or quantitative knowledge (Aunio et al., 2006; Jordan, Kaplan, Nabors Olah, & 

Locuniak, 2006; Lefevre et al., 2010) in predicting math outcomes. For example, LeFevre and 

colleagues (2010) found quantitative knowledge (non-symbolic estimation) to be related to both 

concepts of math procedures and computations. Number sense is related to conceptual 

understanding of math procedural knowledge (ability to use algorithms to solve problems; Chong 

& Siegel, 2008), which is why it has been suggested that early interventions that involve 

improving number sense should be implemented with children who demonstrate weak number 

sense (Gersten & Chard, 1999).  
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Using a number sense battery developed to screen kindergartners at risk for learning 

difficulties, Jordan and colleagues (Jordan et al., 2006; 2008; 2009) examined the contribution of 

number sense to mathematical development in a series of studies. An exploratory factor analysis 

of the battery resulted in two dimensions, basic number skills and conventional arithmetic 

(Jordan, Kaplan, Olah, & Locuniak, 2006). The basic number skills factor included measures of 

counting (count to 10 and identify correct/incorrect counts), number identification, number 

comparison, nonverbal calculation (addition and subtraction using chips), estimating dot set 

sizes, and patterns within number and color combinations. The conventional arithmetic factor 

included measures of story problems (same addition and subtraction problems as in nonverbal 

calculation presented orally) and number combinations (same addition and subtraction problems 

as in nonverbal calculation presented orally, “How much is 3 and 2?”). Their model is consistent 

with a previously described number sense dimension of higher (secondary skills including 

conventional educational activities) and lower functions (elementary knowledge; Dehaene, 

2001).  

Jordan and colleagues (2008) found that number sense in kindergarten predicted 

calculation fluency over and above age, reading, vocabulary, working memory and spatial 

reasoning, with number combinations (e.g. How much is 2 and 1?) and number knowledge (e.g. 

Which is bigger, 4 or 5?) being uniquely predictive. The authors used the number sense battery 

to identify kindergarten students at-risk for mathematical difficulties. Performance below the 

25th%ile on both of the significant predictors in their model (number knowledge and 

combinations) was used as the screening cut off score. The authors report a true negative rate of 

84%, where children who were not identified by the screening measure were also not identified 

as having a difficulty in grade 2 on a calculation fluency measure. Further, they achieved a true 
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positive rate of 52%, where those identified by screening measure continued to have a difficulty 

in grade 2 on a calculation fluency measure. Another study by Jordan and colleagues found that 

number competence level in kindergarten, as indicated by performance on the battery as a whole, 

was predictive of a composite math measure (calculation and math problem solving) at the end 

of grade 3 (Jordan, Kaplan, Ramineni, & Locuniak, 2009). Additionally, the rate of growth from 

kindergarten to grade 3 in number competence was a significant predictor of 3rd grade math 

achievement level.  

Cirino (2011) explored the relation of number sense factors to math in kindergarten using 

a latent factor approach. Five latent number variables were found: symbolic comparison, non-

symbolic comparison, symbolic labeling, rote counting, and counting knowledge. All factors, 

with the exception of non-symbolic comparison, were strongly related to small sums addition 

(single digit addends), with counting knowledge above .60 and symbolic labeling above .70. 

When linguistic ability (PA and rapid automatized naming) and spatial working memory were 

also included, these skills were predictive of small sums addition as well, but their effect was 

mediated by measures of symbolic quantity, including counting. However, this study focused 

only within kindergarten and a single mathematical outcome. The present study utilizes a 

subsample of this work, but is focused on more and later assessed mathematical outcomes.   

Number sense is clearly important for math performance, but is assessed in numerous 

ways. An important distinction exists between symbolic and non-symbolic factors. While non-

symbolic factors are emphasized in many conceptualizations of number sense (e.g., Butterworth, 

2005), symbolic aspects of number predictors, such as counting, are more predictive of math 

outcomes than non-symbolic number based factors (Cirino, 2011). Further, research has shown 

that children with MLD are more impaired on symbolic tasks than non-symbolic tasks (De 
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Smedt & Gilmore, 2011). Therefore, it is these symbolic factors (number identification, quantity 

discrimination) that will be emphasized with regard to number in the current study. In doing so, 

the present study considers symbolic factors that do or do not involve counting per se separately 

from one another. 

Counting in mathematical development and difficulty 

 The role of counting per se is particularly important for later math skill given its explicit 

role in the transition to formal arithmetic (Geary, 2004), and given that counting is suggested to 

be a fundamental skill in relation to future mathematical achievement (Carrasumada, Vendrell, 

Ribera, & Montserrat, 2006). Counting is also considered the first formal computational system 

(i.e. with a specific set of rules and language) a child acquires (Frye, Braisby, Lowe, Maroudas, 

& Nicholls, 1989). Empirically, counting skill and knowledge have been identified as strongly 

predictive components of number sense to math skill (Geary, 1993; Stock, Desoete, & Roeyers, 

2007), but there are few studies which examine its impact separate from other measures of 

numerosity (and other constructs). Counting can be further partitioned into separate but related 

components of procedural skill and conceptual knowledge. An immature understanding of the 

counting principles and the increase in the amount of procedural errors in counting made by 

children with MD are related to poor arithmetic skills in young children (Geary, 2004). 

Similarly, an understanding of counting principles contributes to the development of addition 

skills (Geary, 2004). These two aspects of counting are further discussed below.   

Procedural counting. Procedural counting skill refers to the ability to correctly sequence 

numbers (Koponen, Aunola, Ahonen & Nurmi, 2007), and for present purposes is closely 

associated with numerical sequencing without reference to external stimuli. It is typically 

assessed with measures such as counting objects, successfully identifying the number of an 
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object in an array, oral rote counting to a specific number, or counting backward (Lefevre et al., 

2006). Geary (2004) suggests that procedural knowledge is supported by language systems. In a 

study exploring the relationship among number sense components (number identification, 

counting, quantity discrimination, and missing number – e.g., Which number comes next?), 

correlations of counting with the other number tasks were the lowest, suggesting it may 

contribute unique information about math development and performance (Clarke & Shinn, 

2004), as opposed to composite number sense batteries. LeFevre and colleagues (2006) found 

procedural counting skill to increase linearly from kindergarten to grade 1 in terms of both 

accuracy and speed.  

Procedural counting skill is associated with MLD regardless of IQ or reading difficulties 

(Geary, 2007). It has been suggested that counting contributes to success in mathematics 

development for at least two reasons. First, counting allows for the automatic use of math related 

information which would permit other cognitive resources to be devoted to more complex tasks, 

such as problem solving (Gersten & Chard, 1999; Resnick, 1989). For example, as counting is 

used to solve addition problems early in development, the correct solution becomes associated 

with a specific problem (i.e. that 2 plus 3 is always 5). Also, counting functions as a back-up 

strategy to retrieval in the learning of new arithmetic knowledge (Jordan et al., 2006).  

Conceptual counting. Conceptual knowledge refers to the child’s understanding of 

counting procedures; that is, knowledge of principles that govern how and why counting works. 

Gelman and Galistel (1978) described five counting principles which have been divided into 

essential and non-essential principles based on whether or not mastery of the principle is required 

for correct counting (Briars & Siegler, 1984; Kamawar et al., 2010; Laupa & Becker, 2004). The 

essential principles (or the how-to-count principles) include one-to-one correspondence, stable-
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order, and cardinality; the non-essential principles are abstraction and order-irrelevance. The 

developmental trajectory of these types of counting knowledge has not been fully determined. 

Some research has shown conceptual knowledge develops prior to procedural knowledge 

(Gelman & Gallistel, 1978; Gelman & Meck, 1983), while others propose it is procedural 

knowledge that develops first (Briars & Sigler, 1984; Frye, 1989). It is also possible that the 

developmental timing of these counting components depends on the type of task, or that their 

development may be iterative (Rittle-Johnson, Siegler, & Alibali, 2001).  

 The one-to-one correspondence principle involves understanding that one must tick off 

items in an array using one and only one tick for each individual item. Gelman and Galistel 

(1978) state that in order to follow this principle, a child has to coordinate partitioning (step by 

step maintenance of items that have to be counted and those that have already been counted) and 

tagging (the summoning up of distinct tags one at a time) such that these two processes both 

begin and end together. An example of a strategy that would ensure this coordination is pointing 

to the items while counting. Violations of this principle include counting an item more than once 

or skipping an item (error in the partitioning process), using the same tag twice (error in the 

tagging process), and a failure to coordinate partitioning and tagging. There is evidence of the 

ability to partition appropriately as young as 3 years old (Potter & Levy, 1968; Sophian, 1988). 

Wynn (1992) found evidence of comprehension of the one-to-one principle in children ages 2 to 

3, however, a good understanding of the principle may not be established until age 5 (Briars & 

Siegler, 1984). 

 The stable order principle requires the tags used to correspond to items in an array must 

be chosen in a repeatable (or stable) order (Gelman & Galistel, 1978). This requires a stable list 

that is as long as the number of items in the array. Further, the extent to which children are able 
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to adhere to this principle is related to set size (i.e. the larger the set size, the more difficult it is 

for children to abide by the principle). There is evidence children have established this principle 

in kindergarten (LeFevre, et al., 2006) with most children in grade 1 mastering an understanding 

at an adult level (Stock, Desoete, & Roeyers, 2009). 

 The cardinality principle reflects the understanding that the number tag applied to the 

final item in the set represents the total number of items in the set, giving the final tag a special 

significance (Gelman & Galistel, 1978). In other words, the child must be able to indicate the last 

number assigned represents the numerosity of the array. This principle has a developmental 

relationship to the one-to-one correspondence and stable order principles such that it incorporates 

the two and should develop later. There is debate surrounding when children are able to master 

this principle. Gelman and Meck (1983) suggest children master the principle by age 3 while 

other suggest it is only beginning to be understood at age 3 and half (Wynn, 1992) or even not 

until 5 years of age (Freeman, Antonucci, & Lewis, 2000). A lack of understanding of this 

principle is usually evidenced when after counting an array of objects, the last number counted 

does not equal the answer to the question “How many all together?”  

 The abstraction principle involves the understanding that the essential principles can be 

applied to any array or collection of units (i.e. blocks, animals, objects; Gelman & Galistel, 

1978). The order-irrelevance principle states that the order of enumeration is irrelevant, or in 

other words, the order in which items are tagged does not matter (Gelman & Galistel, 1978). 

Adults understand that the order in which items are partitioned and tagged (the processes 

required for one-to-one correspondence) is not important. This principle requires the 

understanding and incorporation of the previous principles in that an item is a thing not a one or 

a two (abstraction), the verbal tags are arbitrary (stable order) and the same cardinal number 
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results regardless of the order of counting (cardinality). Therefore this last principle is also 

concerned with the understanding of some of the properties of numbers, not just the ability to 

count.  

Comparing procedural and conceptual counting knowledge in math development. 

Studies using combined measures of procedural skill and conceptual knowledge show a clear 

relation with math performance. Aunola and colleagues (2004) examined growth trajectories of 

overall math competence (using a measure which includes basic arithmetic, knowledge of 

numbers, and word problems) in preschool to grade 2 and found counting ability to predict both 

initial math performance as well as growth. Procedural skill and conceptual knowledge may also 

predict math skills differentially. For example, counting ability (procedural skill) has been shown 

to predict single digit calculation fluency (Koponen et al, 2007). In a study using a combination 

of the essential counting principles (stable order, one-to-one, and cardinality) in kindergarten to 

predict grade 1 arithmetic and numerical facility (math facts), Stock and colleagues (2009) found 

conceptual knowledge to account for 14% of the variance in math computations and 5% of the 

variance in number fact knowledge. Duncan and colleagues (2007) found that cardinality as a 

measure of school readiness was one of the most predictive factors of later school achievement.    

Mathematical development progresses in a hierarchical manner such that basic skills are 

learned first in order for more complex skills to develop and allow for redistribution of attention 

(Aunola et al., 2004). In typical development of arithmetic skills (i.e. addition or subtraction 

computation), children use either finger counting strategies or verbal counting strategies. 

Regardless of the type of strategy utilized, common counting procedures have been identified, 

“counting on” (min or max) or “counting all” (or sum; Geary, 2004). Counting on involves 

stating the larger value addend and then counting a number of times equal to the value of the 
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smaller addend. For example, to add 6 + 4, the child would count 6, 7, 8, 9, 10. Counting on also 

includes stating the lower value and then counting the appropriate number equal to the larger 

value to achieve the answer. Therefore the same problem would be solved by counting 4, 5, 6, 7, 

8, 9, 10. The counting all procedure involves counting both addends starting from 1. The shift 

from more frequently using the counting all procedure to the counting on procedure suggests an 

improvement in a child’s conceptual understanding of counting (Geary, 2004). However, 

children with MLD appear to be delayed in their ability to use counting strategies to solve 

addition problems. For example, they rely on their fingers for counting longer (rather than 

developing other strategies), are delayed in adopting the counting on procedure, and have more 

errors in counting (Geary, 2004; Geary et al., 2009). 

In kindergarten, children have already begun to demonstrate an understanding of the 

essential counting principles (Geary, 1993), with the one-to-one principle possibly being the first 

to be mastered by most children (Stock et al., 2009). However, children in kindergarten also may 

believe that the non-essential counting principles are essential demonstrating a rigid and 

immature understanding of the principles that is most likely a result of observing counting 

procedures (Geary et al., 2009). Further, LeFevre et al. (2006) found that children with lower 

math skills performed better than average and high skilled children in kindergarten and grade 1 

on identifying unusual but correct counts while still performing more poorly on identifying 

incorrect counts. This suggests that the ability to separate the essential and non-essential 

principles may be a more complex task that takes more time to develop. Additionally, the way 

good versus poor math performers accept unusual counts is not the same. The authors suggested 

that the non-essential principles are used in initial development of counting ability but are 

eventually viewed as less critical, beginning around grade 2. LeFevre and colleagues (2008) 
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found that conceptual knowledge (specifically order irrelevance) was related to basic number 

concepts (KeyMath Test- Revised Numeration subtest which includes counting, sequencing 

numbers, number identification, and rounding; Connolly, 2000), though only in kindergarten and 

not in grades 2 or 4. Geary et al. (1999) found that children with MD in grade 1 were less likely 

to identify incorrect counts and to accept unusual counts as correct, which could suggest an 

incomplete conceptual understanding.  

In summary, two studies found that a combined measure of counting procedural skill and 

conceptual knowledge was related to math at the same time point (Jordan et al., 2007; Stock et 

al., 2009) and three studies showed relations across time points (Aunola et al., 2006; LeFevre et 

al., 2006; Kamawar et al., 2010). For procedural counting skill, one study found a correlation 

with math outcomes at one time point (Cirino, 2011) and four studies across time points (Geary, 

1999; Koponen et al., 2007; LeFevre et al., 2006; 2008). Four studies found conceptual counting 

knowledge to be related to math performance both at one time point as well as across time points 

(Geary, 2004; 2007; LeFevre et al., 2006; 2008).  

 Individual differences in general number sense (e.g., counting, number identification) are 

more easily detected in older children (Methe, Hintze, & Floyd, 2008; 3rd grade or above) which 

has led to more studies with older children as they have already acquired some basic knowledge 

of math (Aunola et al., 2004) and counting skills have been established (Geary, 2004; with the 

exception of LeFevre, 2006; Aunola, 2004; Geary, 2007 with preschool or kindergarten age 

children). Geary’s work shows that typically developing children in grade 1 are still using finger 

counting strategies on addition and subtraction problems on 64% of problems, suggesting that 

counting skills are an essential factor in math development at this age. Therefore, this study 

focuses on children in kindergarten to grade 1. 
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Present study 

The primary goal of this study is to evaluate counting procedural skill and conceptual 

knowledge in kindergarten as precursors to three types of mathematics achievement in grade 1: 

fluency, computation, and applied reasoning. Other number variables (number identification and 

quantity discrimination), are included to determine what contribution counting procedural skill 

and conceptual knowledge have over and above other domain-specific predictors. Additionally, 

previously discussed cognitive (spatial working memory and PA) and behavioral (behavior 

ratings of attention) predictors are included. 

To our knowledge, there are thirteen studies in the literature that involve the relation of 

counting skills to mathematics performance in children, and so it is important to situate the 

current study in this context. These studies are summarized in Table 1. While these studies 

clearly add to our cumulative knowledge, there remain several gaps in the literature that require 

further clarity. 

Of the existing studies, some assessed only conceptual counting knowledge (Geary et al., 

2004; Geary et al., 2007; Kamawar et al., 2010), and others include only one outcome measure, 

such as math reasoning (Geary et al., 2004) or computations (Aunola, Leskinen, Lerkkanen, & 

Nurmi, 2004; Koponen, Aunola, Ahonen, & Nurmi, 2007). Additionally, many studies focused 

on number (domain specific) factors only and did not test domain general factors (Jordan & 

Locuniak, 2008; Kamawar et al., 2010; LeFevre et al., 2006; Stock et al., 2009). Some studies 

use a cross-sectional, rather than longitudinal design (Kamawar et al., 2010; Lefevre et al., 

2006), or only one time point (Cirino, 2011). Jordan and colleagues’ series of studies (2006; 

2008; 2009) include a number sense battery which measures both procedural skill and conceptual 

counting knowledge; however, they did not distinguish between the effects of procedural skill 
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and conceptual knowledge in predicting level of performance and growth in mathematical skills 

over time, and looked at the impacts across different math outcomes in separate studies rather 

than together.  

 Therefore the contribution of the current study is that it is longitudinal in nature, 

interested in the relative contribution of multiple number, cognitive and behavioral predictors, as 

well as multiple mathematical outcomes (fluency, computation, and applied reasoning). 

Identifying specific skills early in development that contribute to later math difficulties (similar 

to PA and rapid naming in RD) will allow for earlier and more explicit interventions. For 

example, the field of RD has specific interventions geared toward the type of RD the child has 

(i.e. word recognition, fluency, or comprehension), which has been shown to play a large part in 

the increasing success of reading interventions (Fletcher et al., 2007). Analogously, procedural 

skill and conceptual knowledge may be associated with different kinds of math outcomes or one 

may hold more promise for identifying math difficulty later in development.  

 Hypotheses. The overall hypothesis of this study is that both procedural counting skill 

and conceptual counting knowledge are important longitudinal predictors of several math 

outcomes (fluency, computation, and applied reasoning), even in the context of other known 

relevant predictors. This general hypothesis is built up over five sub-hypotheses in order to 

assess these relations in a systematic and comprehensive manner.  

 First, the relation of procedural counting skill and conceptual counting knowledge to each 

of the three math outcome measures, fluency, computation, and applied reasoning, will be 

evaluated; each of the counting variables are expected to demonstrate a significant relation with 

each of the math outcomes, based on the literature reviewed above.  
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 Second, the relation of the number, cognitive and behavioral variables to fluency, 

computation, and applied reasoning will also be investigated, with each again expected to show 

significant relations to all three math outcomes.  

 The third hypothesis involves evaluating the unique contributions of procedural counting 

skill and conceptual counting knowledge in predicting fluency, computation, and applied 

reasoning. There is relatively little literature to guide how procedural skill and conceptual 

knowledge will predict the specific types of math outcomes; however, we expect that conceptual 

knowledge will account for variance in the math reasoning model over and above procedural 

counting skill since reasoning and problem solving involve computations as well as identifying 

what type of computation to perform. In contrast, procedural skill is expected to account for 

variance in the math fluency and computation models over above that of the conceptual 

knowledge variables, as Koponen et al. (2007) found.   

 The fourth hypothesis evaluates the contribution of the number, cognitive and behavioral 

predictors for fluency, computation, and applied reasoning. In this regard, the number variables 

are expected to account for variance over and above the cognitive predictors. While the cognitive 

and behavioral variables discussed above (PA, reading, working memory, and behavioral 

inattention) contribute to components of math development, some (Jordan et al., 2009; Locuniak 

& Jordan, 2008) have suggested that numeric variables, such as number identification, are most 

central to future math performance as they provide a foundational base for future learning. 

 Finally in a model that includes all the relevant predictors (counting, number, cognitive, 

and behavioral), it is hypothesized that the counting variables will account for variance in 

fluency, computation, and applied reasoning over and above the number, cognitive and 

behavioral predictors, as previous work has demonstrated symbolic variables to be more 
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predictive of math performance than non-symbolic ones (Koponen et al., 2007; Krajewski & 

Schneider, 2009; Lefevre et al., 2010).   

Method 

Participants 

Participants were from a larger study of math skills in kindergarten students (Cirino, 

2011). Students (N = 194; 48.45% female) from a single large urban district were evaluated in 

kindergarten (mean age = 6.16, SD = 0.32) and then again in grade 1 (N = 193; mean age = 7.16, 

SD = 0.32). Children who had data at both time points were included in this study. Students were 

from eight schools and 37 classrooms where English was the language of instruction. Participant 

characteristics comparing those who continued the study and those who did not are summarized 

in Table 2.  

Procedures 

Students were assessed in two 30-minute sessions in their schools mostly on consecutive 

days by trained examiners. Students were first assessed in Spring of their Kindergarten year and 

again in Spring of first grade. 

Measures 

Kindergarten predictors.  

Procedural Counting. Oral Counting was adapted from AIMsweb (Clarke & Shinn, 

2004) and involves asking a student to count aloud from “1” until told to stop. The total of 

correctly identified numbers in one minute and errors are recorded, which were converted to a 

numbers-per-second metric. Test-retest reliabilities range from .78 - .80 (Clarke & Shinn, 2004). 

A Counting Down measure was also used. In this measure, children counted down from 10 and 

20 as quickly as possible.  
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Conceptual Counting. In the Count out objects measure, children see pictures of boxes 

and cars randomly arrayed on a page and are told to “count out loud, all of the things on this 

page” and then immediately asked, “how many are there altogether?” The task consisted of five 

items: 9 (5 boxes, 4 cars), 13 (6 boxes, 7 cars), 15 (8 boxes, 7 cars), 14 (7 boxes, 7 cars), and 8 (4 

boxes, 4 cars). Errors in counting principles were recorded (Gelman & Gallistel, 1978). An 

abstraction error was when only one type of object (e.g., cars) was counted. A one-to-one 

correspondence error was when an object was double counted. Stable order error was when the 

child counted out of sequence. A cardinal count error was when a child responded to the “how 

many” question with a number other than the last number counted. Internal consistency from this 

sample was α = .68. Sums of the error scores were created from each trial.  

The second conceptual counting measure was a 10-item version of Puppet Counting that 

follows Geary’s procedure (Geary, Brown, & Samaranayake, 1991; Geary et. 1999; Geary et al., 

2000). The puppet counts an array of alternating red and green dots (a) correctly in typical left-to 

right fashion (3 trials); (b) correctly though by counting all the red dots and then all the green 

dots (psuedoerrors, 4 trials); or (c) incorrectly by double counting the first dot (3 trials). Double 

count error trials, which assess the one to one counting principle, were included in the analyses. 

Sample internal consistency for the error count trials was α = .80.  

 Number tasks. Number identification asks children to identify 15 numbers (4, 8, 3, 7, 6, 

84, 17, 25, 33, 12, 79, 100, 150, 264, 333). Number correct will be used in this study. This has 

been used in previous research since it is often included in curriculum (Jordan et al., 2006). 

Sample internal consistency was α = .86. Quantity discrimination is an AIMSweb measure 

(Clarke & Shinn, 2004) that consists of 28 sets of Arabic numbers where children are asked to 
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circle the greater number. Alternate form and test-retest reliability were good, range from .85 to 

.93 (Clarke & Shinn, 2004; Lembke & Foegen, 2009). Number correct was used. 

 Cognitive. Visuospatial working memory was assessed with Spatial Working Memory 

(Cirino, 2011). A series of nameable shapes, or a star, are presented one at a time in one of four 

quadrants of a page. The child is asked to first identify whether the shape is a star for each 

stimulus shown, then to recall the position of all the shapes in a series, in sequential order. There 

were two practice trials and three trials with systematically increasing series lengths (blocks) of 

2, 3, 4, and 5. The measure was discontinued if students incorrectly recalled the order of all three 

series within a block. The total raw score was used where a point is awarded for 

each correct sequence recalled. Raw scores across blocks for Trial 1, 2 and 3 had a sample 

internal consistency of α = .76.  

 Digit Span (DS) from the Test of Memory and Learning (TOMAL; Reynolds & Bigler, 

1994) was included as a measure of phonological working memory. The backwards subtest was 

used where students were read a string of numbers and asked to repeat them in reverse order 

back to the examiner. Test-retest reliability for this age group was .61 and internal consistency 

was α = .92. Number correct was used.  

 Phonological Awareness was assessed using the Phoneme Elision subtest from the 

Comprehensive Test of Phonological Processing (CTOPP; Wagner, Torgesen, & Rashotte, 

1999). The Phoneme Elision task involves hearing a whole word, and then being asked to 

remove a sound from the beginning, middle, or end of the word, and state the result, which is 

always a new word. Sample internal consistency was α = .88.  

Behavioral. The Strengths and Weaknesses of ADHD and Normal Behavior (SWAN-IV; 

Swanson et al., 2005). SWAN-IV is an 18-item teacher rating scale of inattention and 
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hyperactivity/ impulsivity rated on a 7-point Likert scale that ranges from -3 to +3. Each 

behavior corresponds to specific ADHD criteria identified in the Diagnostic and Statistical 

Manual of Mental Disorders-Fourth Edition, Text Revision (American Psychiatric Association, 

2004) which factors into two scales, inattention and hyperactivity/impulsivity. The inattention 

scale was used in this study.  

 Grade 1 Outcome Measures. 

In an effort to include a comprehensive array of outcomes, two measures were utilized 

for each outcome type. However, in order to be more efficient (i.e. reduce the number of models 

examined) measures were combined to create composite scores. While it is possible that doing so 

would decrease the differential predictions per measure, since both tasks measure the same 

construct, it is not expected that there would be much differentiation. Correlations were 

examined to determine if it was appropriate to create composite scores. 

 Computation. This is a composite measure of Woodcock-Johnson-Third Edition (WJ-III) 

Calculation, and Wide Range of Achievement Test-Third Edition (WRAT-3) Arithmetic. The WJ-

III calculation subtest consists of addition and subtraction of single and multi digit problems for 

this age range. Test-retest reliability in this age range for this task is 0.96 (McGrew, Schrank, & 

Woodcock, 2007). The WRAT-4 arithmetic subtest involves number identification, counting, 

number comparisons, and other tasks for very young children; at school age, the task is primarily 

of computations that increase in difficulty. Test-retest reliability in this age range for this task is 

0.87 (Wilkinson, 1993). 

 Fluency. Small Sums Addition and Subtraction combined score was used. Addition items 

include 55 single-digit problems that sum to 10 or less. Subtraction items include 55 single-digit 

problems. Problems were arranged in vertical format with eight rows of five problems per sheet, 
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over two sheets. Students were asked to complete as many problems as they could in two 

minutes. A composite sum of the number correct minus the number incorrect on the addition and 

subtraction tests was used.  

 Math Fluency Woodcock-Johnson - III Tests of Academic Achievement (WJ-

III;Woodcock, Mcgrew, & Mather, 2001). Participants solve as many single digit problems 

(addition, subtraction, and multiplication) as possible in 3 minutes. Standard scores were used in 

analyses for both measures. Test-retest reliability in this age range for this task is 0.90 (McGrew 

et al., 2007). 

 Math Reasoning. Woodcock-Johnson - III Tests of Academic Achievement (WJ-

III;Woodcock et al., 2001). The Applied Problems subtest consists of math word problems that 

are presented to the subject and read out loud by the examiner. The items range in difficulty and 

the use of pencil and paper is allowed. Test-retest reliability in this age range for this task is 0.88 

(McGrew et al., 2007). Single Digit Story Problems was first developed by Riley, Greeno, and 

Heller (1983) and has since been adapted (Hanich, Jordan, Kaplan, & Dick, 2001; Jordan & 

Hanich, 2003; Riley & Greeno, 1998). The measure includes items of addition and subtraction 

read out loud by the examiner that includes three categories of problems: change, combine and 

compare. A composite score was created for the Applied Problems and Single Digit Story 

problems measures. 

Analyses 

 The first two hypotheses evaluating the relationship between the predictor and outcome 

variables were tested using bivariate Pearson’s correlation. The data being tested is interval (i.e. 

continuous variable where equal intervals on the score represent equal differences; Field & 

Miles, 2010). For the sampling distribution to be considered normal, the variables being included 
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in the correlations must be normally distributed. Therefore, each variable was tested for 

appropriate skewness and kurtosis. The correlation coefficients were used to determine the 

direction and size of the relation between predictor variables.  

 Hypotheses 3, 4, and 5, which involved using the predictors to determine the amount of 

variance that can be explained for each outcome, were tested with multiple regression analyses. 

Assumptions of regression (homoscedasticity, independence and normality of residuals, and no 

multicolliearity) were tested using the regression diagnostics. A plot of the residuals was used to 

show the distribution of the variables and to test that the variance of the residuals does not differ 

by level, meaning the assumption of homoscedasticity is not violated. Assessing the level of 

skewness and kurtosis was used to test the normality of the residuals. Correlations and specific 

tests (e.g., tolerance) were used to test the multicollinearity of the predictors. 

For Hypothesis 3, which assessed the amount of variance the counting variables can 

explain in each outcome, three models were tested including all of the counting procedural skill 

and conceptual knowledge variables to predict the three types of outcomes: fluency, 

computation, and applied reasoning. In order to test the amount of variance each counting type 

predicts over and above the other, hierarchical regression was used beginning with the 

procedural counting variables and then adding the conceptual counting variables for the fluency 

and computation models. For the applied reasoning model, the conceptual variables were added 

first, followed by the procedural variables. Then the R2 change for the models were evaluated by 

calculating an observed F value based on the sum of squares of the error term for the models and 

comparing it to a critical F value with the degrees of freedom associated with the full model. For 

Hypothesis 4, three models were tested using the number, cognitive and behavioral variables to 

predict each outcome. For hypothesis 5, a model including all counting, number, cognitive and 
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behavioral variables was tested predicting each outcome. To assess the amount of variance 

accounted for by the counting variables over and above the other number, cognitive and 

behavioral variables, model comparisons were used. 

Several covariates were considered such as demographic variables since these have been 

previously documented as having specific relevance for math (Cirino, 2011; Jordan et al., 2006). 

Since lower socioeconomic status (SES) is a risk factor for learning difficulties (Duncan et al, 

2007), the effect of socio-economic status (whether the student receives free lunch; RFL) was 

included in the analyses. Additionally, gender differences were tested; however significant 

effects were not expected as gender differences do not become apparent until later in academic 

development (Rosselli, Ardila, Matute, & Inozemtseva, 2009). Age at baseline was also 

considered, though the age variance is relatively small so an effect was not expected (Swanson & 

Jerman, 2006). First, correlations between RFL, gender, race and age to the math outcomes were 

tested. When significant relations were found between a demographic variable and the math 

outcome measure, the variable was added to the appropriate regression models.  

Results 

Preliminary results. Descriptive statistics for the predictor and outcome variables are 

reported in Table 3. There were two procedural counting skill variables (oral counting and 

speeded counting down), five conceptual counting knowledge variables (one to one, stable order, 

abstraction, cardinal and double count errors), two number variables (number identification and 

quantity discrimination), three cognitive variables (spatial working memory, digit span and 

phonological awareness), and one behavioral factor (behavioral inattention). The procedural skill 

variables had a normal distribution as evidenced by skewness and kurtosis that are less than 1, 

and there was no evidence of outliers or heterogeneity of variance (no trends in residuals). For 
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the conceptual knowledge variables, one to one and double count error were normally distributed 

with skewness and kurtosis around 1. Even though the cardinal error variable had a skewness and 

kurtosis greater than one, there was still enough variance in order to interpret the results. 

However, the stable order and abstraction error variables were very skewed as well as 

leptokurtotic. Therefore, these two variables were not included in the final analyses. None of the 

number, cognitive or behavioral variables were skewed or kurtotic as evidenced by statistics less 

than 1. Further, residual plots showed no evidence of heterogeneity of variance for the variables, 

with the exception of number identification.  

 Composites were used to create the outcome variables. Fluency was a summed variable 

of small sums addition and subtraction. The correlation for the addition and subtraction variables 

was r = .50, p <.0001. This composite was significantly correlated with the WJ-III Math Fluency 

subtest (r = .63). The computation variable was created using a composite of the raw score from 

the WJ Calculation subtest and the written arithmetic items from the WRAT-3 Arithmetic 

subtest. Because the early items on the WRAT-3 involved mostly counting, it was expected that 

these items would inflate the relation of the counting variables to the computation outcome score 

so these items were taken out of the composite. The correlation of the complete WRAT-3 

Arithmetic subtest with the WJ-III Calculation subtest was r = .82, p <.0001, which was similar 

to the correlation without the early items r = .80, p <.0001. This computation outcome was 

significantly correlated with standardized test scores (Stanford Procedures test; r = .71) and Total 

Math test; r = .73). The applied reasoning outcome was a composite of WJ Applied Problems 

and Story Problems (which was first standardized with a mean of 100 and standard deviation of 

15). This variable was significantly correlated with the Stanford Problem Solving test (r = .78) 

and the Total Math test (r = .80), which had an intercorrelation of r = .94. All of the outcome 
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variables were normally distributed with skewness and kurtosis less than 1 and had no evidence 

of outliers or heterogeneity of variance.   

Hypothesis 1: The relation of procedural counting skill and conceptual counting knowledge 

to Fluency, Computation, and Applied Reasoning. Correlations between all the predictor and 

outcome variables are presented in Table 4. All measures of procedural counting skill (oral 

counting and counting down) and conceptual counting knowledge (one to one, cardinal and 

double count error) were significantly related to each math outcome (fluency, computation, and 

applied reasoning). The procedural counting skill variables correlations with the outcomes 

ranged from .33 to .52. The conceptual counting knowledge variables correlations ranged from -

.21 to -.48. The double count error variable had a positive correlation with the outcomes because 

the higher scores corresponded to fewer errors; the correlations ranged from .32 - .36. 

Hypothesis 2: The relation of the number, cognitive and behavioral variables to Fluency, 

Computation, and Applied Reasoning. All the number variables (number identification and 

quantity discrimination), cognitive (SWM, DS and PA), and behavioral (behavioral inattention) 

variables were significantly related to each math outcome. The number variables were highly 

related to each outcome, all with correlations of .58 or greater at p < .0001. The other cognitive 

and behavioral predictors were also significantly related to each outcome. 

Hypothesis 3: Variance explained by procedural skill and conceptual knowledge counting 

variables for Fluency, Computation, and Applied Reasoning. The results of these regression 

models are summarized in the top portions of Table 5. For each outcome, model comparisons 

were used to test the amount of variance attributable to each type of counting predicting over and 

above the other. Even though specific hypotheses were made for each outcome, comparisons 

were tested both ways (i.e. procedural over conceptual and conceptual over procedural) since the 
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information on this in the literature is sparse. In the fluency model, procedural skill and 

conceptual knowledge accounted for similar amounts of variance, 25.08% and 30.38%, 

respectively. A model including both types of counting variables was significant [F(5,179) = 

23.61; p <.0001, R2 = .40] with counting down, cardinal and double count error being uniquely 

predictive. Using model comparisons, the procedural variables did add a significant amount of 

explained variance over and above the conceptual variables, as hypothesized [F(4,179) = 6.34; p 

= .01, R2 change = .08]. Additionally, the conceptual knowledge variables added a significant 

amount of variance over and above the procedural counting skills [F(5,179) = 8.95; p = .01, R2 

change = .15].  

 In the computation model, conceptual knowledge accounted for 25.84% of the variance 

and procedural skill accounted for 17.40%. A model including all counting variables was also 

significant for computation [F(5,181) = 16.21; p <.0001, R2 = .31] with counting down, cardinal 

and double count error being uniquely predictive. In comparing these two models, both types of 

counting added significant variance over and above the other type.  

 Procedural counting skill accounted for 28.74% of the variance in the applied reasoning 

model and conceptual counting knowledge accounted for 21.93%. A model including all 

counting variables was significant for applied reasoning [F(5,181) = 20.03; p <.0001, R2 = .36] 

with counting down, cardinal and double count error contributing unique amounts of variance. In 

comparing these two models, both types of counting added significant variance over and above 

the other type. 

Hypothesis 4: The contribution of the number, cognitive, and behavioral predictors for 

Fluency, Computation, and Applied Reasoning. The number variables accounted for a 

significant amount of the variance in the fluency, computation, and applied reasoning models 
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(54.50%, 49.08% and, 51.71%, respectively), with both variables being unique contributors. 

Similarly, the cognitive and behavioral variables accounted for significant amount of variance in 

the models (44.25%, 37.64% and 53.17%), with each variable contributing uniquely (with the 

exception of digit span for the computation model). When the number, cognitive, and behavioral 

variables were combined into the same models, the significance of the individual variables was 

affected. In the fluency model, the number and working memory variables were significant [F 

(6,171) = 43.62; p <.0001, R2 = .60]. In the computation model, the number variables, spatial 

working memory, and PA were uniquely predictive [F (6,173) = 31.87; p <.0001, R2 = .53]. In 

the applied reasoning model, the number variables, verbal and spatial working memory, and PA 

were uniquely predictive [F (6,173) = 50.42; p <.0001, R2 = .64].  

Hypothesis 5: Both procedural skill and conceptual knowledge are important longitudinal 

predictors of a variety of math outcomes, even in the context of several other relevant 

predictors. The results of the regression models are summarized in the lower portion of Table 5. 

First, a correlation between the covariates (age, gender, free lunch status, and race) and the 

outcome variables was conducted. Free lunch status was significant for all models. Additionally, 

age was significantly related to fluency and race was significantly related to applied reasoning. 

Therefore the appropriate covariates were added to the models. However, none of the covariates 

were significant in the overall models, so they are were removed from the final models and not 

reported in Table 5.  

Some of the procedural skill and conceptual knowledge variables remained predictive in 

the context of other relevant predictors for each model. In the fluency model, cardinal and double 

count error remained unique predictors (β = -0.187, p = .005; β = 0.106, p = .045, respectively). 

The number variables were strongly uniquely predictive. Of the cognitive variables, only digit 
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span was a unique predictor. The overall model accounted for 64.93% of the variance in fluency. 

Comparing the full model to the number, cognitive, and behavioral model showed that counting 

added a significant amount of variance over and above the other factors [F (9,162) = 1.93; p 

=.05, R2 change = .04]. For computation, the overall model accounted for 56.01% of the 

variance. Oral counting down was the only uniquely predictive counting variable (β = -0.184, p = 

.010). The number variables again were uniquely predictive. PA was the only uniquely predictive 

cognitive or behavioral variable. Comparing the full model to the counting variables only model 

showed that counting did not add a significant amount of variance over and above the other 

factors. However, when adding only the unique counting predictors to the model, the amount of 

variance added was significant over and above the other factors [F (2,171) = 3.04; p =.05, R2 

change = .03]. For applied reasoning, the overall model accounted for 65.77% of the variance. 

The procedural skill counting variables (oral counting and counting down) significantly 

contributed to the model (β = -0.119, p = .058; β = 0.149, p = .023; respectively). The number 

variables were unique contributors, as well as both measures of working memory and PA. 

Comparing the full model to the number, cognitive and behavioral model showed that counting 

did not add a significant amount of variance over and above the other factors, even when only 

the significant variables were added. 

Follow up analyses. Not all of the counting variables uniquely predicted the outcomes in each 

model as expected, and so some follow-up analyses were conducted. Given the strong 

relationship of number and counting, the degree of shared variance among these variables was 

evaluated with multiple regressions to test if the counting variables were predictive of the two 

number variables. For number identification, the counting variables together accounted for 

40.46% of the variance. Both procedural skill variables and cardinal errors were unique 
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predictors. For quantity discrimination, 34.93% of the variance was accounted for with oral 

counting, cardinal and double count error contributing significantly. The impact of these shared 

relations was further evaluated with regression analyses predicting the outcomes but including 

only the counting and number variables. For fluency, 59.07% of the variance was accounted for 

by the counting and number variables as compared to 54.51% with only the number variables, 

with the contribution of counting over and above the number variables being significant 

[F(9,162) = 1.93; p = .05, R2 change = .05]. The cardinal and double count error variables were 

unique contributors (β = -0.158, p = .019; β = 0.122, p = .024; respectively). In the computation 

model, 54.88% of the variance was accounted for by the counting and number variables as 

compared to 52.26% by the number variables alone. Therefore, the R2 change for the models was 

2.62%, which was not significant. Oral counting and cardinal error contributed significantly to 

the model (β = -0.167, p = .017; β = -0.142, p = .045; respectively). In the applied reasoning 

model, 55.92% of the variance was accounted for by the counting and number variables as 

compared to 51.71% by the number variables alone. Counting variables did show an R2 increase 

of 4.21%, which was significant (p = .05). Counting down was a unique predictor (β = 0.239, p = 

.0006). 

Discussion 

 The goal of the present study was to determine the contribution of procedural counting 

skill and conceptual counting knowledge to three different math outcomes in the context of other 

relevant variables. Since many studies consider each type of predictor separately (i.e. focusing 

separately on number based, cognitive, or behavioral predictors), this study was unique in 

combining these variables into one model to better understand the relation to several types of 

math outcomes, and doing so in a fairly large sample and also over time.  
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What is the role of counting variables to math outcomes? 

 We found that as expected, procedural skills significantly accounted for variance over 

and above the conceptual knowledge variables for fluency and computation. Also, conceptual 

counting knowledge accounted for significant unique variance over and above the procedural 

skill model for applied reasoning. These results are consistent with previous literature indicating 

the relevance of these counting skills independently (Koponen et al., 2007). However, further 

analyses showed that each type of counting explained a significant amount of variance over and 

above the other type for all outcomes (fluency, computation, and applied reasoning). Therefore, 

distinguishing between these types of counting may not significantly add to the ability to 

differentially predict in which area of math a child might struggle. However, this also suggests 

that assessing both types of counting is relevant, and would contribute significantly to predict 

math performance, and therefore which to emphasize in an instructional context. For example, 

ensuring children know the correct counting sequence as well as using explicit instruction of the 

counting principles (i.e. focusing on both the oral sequences to solidify the number-word 

sequences, as well as the means by which those number words are associated with objects) will 

give children a strong foundation to learn more complex math concepts and computation. 

Whether or not students specifically at-risk for mathematics difficulty would benefit 

differentially from exposure to varying amounts of these types of instruction could benefit from 

future research.  

What is the role of number, cognitive and behavioral variables to math outcomes? 

 As expected, the number variables alone were significant predictors in each model 

accounting for over half the variance in each of the math outcomes. Further, with the exception 

of digit span in the computation model, each number, cognitive, and behavioral predictor 
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contributed uniquely to each outcome, when considered separately. These models are consistent 

with previous literature showing a role for number (Cirino, 2011; Gersten & Chard, 1999; Geary, 

2009; Jordan et al., 2006; 2009; Locuniak & Jordan, 2008), working memory (Mclean & Hitch, 

1999; Raghubar et al., 2010; Rasmussen & Bisanz, 2005; Swanson & Jerman, 2006), and 

behavioral inattention (Fuchs, Fuchs & Compton et al., 2006; Merrell & Tymms, 2001; Seethaler 

& Fuchs, 2005) to be significant predictors of complex math outcomes.  

 In the models with number, cognitive and behavior variables together, both number 

measures remained unique predictors in each model, but the contribution of the other predictors 

was more variable. In the fluency model, both of the working memory variables were unique 

additional predictors. Verbal working memory (DS) may be important because in order to 

quickly and accurately answer addition and subtraction problems, it is necessary to know the 

correct sequence without counting. Children using counting on their fingers as a strategy for 

computing addition and subtraction problems will be slower and possibly less accurate than the 

children who have committed these to memory (Geary, 2004). Also of note is that PA was not a 

unique predictor of fluency. It is possible this is related to our measure of fluency. While this 

was a timed measure, it was a pencil and paper task rather than and aurally presented one which 

would rely more heavily on retrieval.  

 In the computation model, number variables, spatial working memory and phonological 

awareness were unique predictors. This is consistent with the literature that has found younger 

children tend to use visual working memory in math computation (Hitch et al., 1988; Holmes & 

Adams, 2006; Rasmussen & Bisanz, 2005). It is possible children at this age have a mental 

number line which enables them to assess magnitudes and distance between numbers in a visual 

manner to help them successfully compute problems. Language systems have been shown to 
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support math computation as the first step in solving a problem is having the ability to read the 

number. Further, math facts are commonly taught by oral repetition in order to memorize them, 

which can be considered learning the oral phonological representations of the number words 

(Robinson et al., 2002). It is suggested that children with math difficulties struggle with tasks 

that involve making connections between phonological representations of numbers, rather than a 

general memory deficit (Robinson et al., 2002). 

 For the applied problems model, both types of working memory and PA remained unique 

predictors. This is consistent with the literature that linguistic factors are related to performance 

on math problem solving (Hecht et al., 2001; LeFevre et al., 2010; Savage et al., 2007) as well as 

the ability to hold and manipulate information in order to solve the problem. In general, applied 

problems had predictors from all domains except behavioral inattention, and more of the 

variables had unique contributions here than in the fluency and computational model, which is 

consistent with the array of skills and concepts assessed with such a measure. 

 Surprisingly, behavioral inattention did not remain uniquely significant in any of the 

above models. This may be because much of the literature that supports the relation of behavioral 

inattention and math skills has been with older children (Duncan et al., 2007; Fuchs et al., 2006; 

Raghubar et al., 2009; Seethaler & Fuchs, 2005). In the age range of this study (6 – 7 years old), 

the math problems on these measures are not as susceptible to inattentive errors. For example, 

the problems involve only one type of operation at a time rather than having to switch between 

four operations and do not require properly aligning numbers or decimal points to solve the 

problems. Another possibility is that past research has not taken into account other relevant 

factors to the same extent as the current study has longitudinally. For example, the meta-analysis 

by Duncan et al., (2007) included early math and reading achievement, hyperactivity and social 
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skills ratings and verbal measures, but did not include PA or working memory. It has also been 

suggested that difficulties with attention and working memory overlap in children with math 

difficulties (Alloway et al, 2009; Gathercole et al., 2007).  However, in this study, behavioral 

inattention was a unique predictor in the presence of the working memory variables, but not 

when the number and counting variables were included which suggests that a relationship exists 

between behavioral inattention and the domain specific variables.  

Why were the number variables more important than the counting variables?  

 When the above models were expanded to also include procedural and conceptual 

counting, both number variables remained relevant for all three outcomes, whereas the 

contribution of the counting variables were more variable. There are several potential reasons 

why number variables were consistently unique predictors in the final models, more so than the 

counting factors. First, it is possible that the number tasks measured skills that are antecedent to 

the counting skills necessary to solve a math problem. For example, in order for a child to 

compute 1 + 3, they must first recognize the number (number identification), and then, 

depending on the counting strategy used (i.e. max vs. min), determine which is greater (quantity 

discrimination). While it is not necessary to use quantity discrimination, it would be more 

efficient. Only after they have figured this out can they then use counting strategies to determine 

the answer. Therefore even though counting is the more proximal skill to the outcome, the task 

cannot be completed without the more elemental number skills. Another possibility is that the 

counting measures used were aurally presented as opposed to the visually presented number 

measures and math outcomes which both involve Arabic numerals, therefore making the 

counting measures less proximal to the outcome. It would be interesting to assess the math 

outcomes with an aural task instead of a visual task and see if the results are similar. 
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Current findings in the context of previous models   

 Even though the overall goal of this study was to determine the role that different 

counting types have in the prediction of several math outcomes, the use of a step-by-step design 

in the analyses helped us evaluate in detail the role of relevant factors for math. While some 

individual predictors overlapped for each outcome (i.e. number variables significant for each 

model), we did have distinct trends of predictors. Additionally, as might be expected, more 

predictors were significant as the outcomes became more broad and complex.  

 The findings from this study can be discussed in terms of previously proposed models. 

Cirino (2011) found five latent factors in kindergarten (symbolic and non-symbolic comparison, 

symbolic labeling, rote counting, and counting knowledge). While these distinctions are 

important for theories of math development and understanding, when these variables are used 

practically to predict later outcomes, differentiating between them may be less important. 

However, Koponen et al. (2007) did find that procedural counting skill was predictive of fluency 

(single digit calculation) in grade 4, while conceptual counting knowledge was predictive of 

more complex computation. Further, in that study, procedural counting skill mediated the effect 

conceptual counting had on fluency. This was not the case in our fluency or computation models, 

as it was actually the conceptual variables which were significant and not the procedural 

counting variables for fluency and just the opposite for computation. Also, there is the possibility 

that the distinctions in counting types may manifest themselves at later time points, particularly 

if more robust counting variables were utilized. 

LeFevre and colleagues (2010) suggest three separate pathways exist when predicting 

math performance: quantitative, linguistic, and spatial attention. The quantitative factors in the 

present study (counting and number variables) did appear to represent a separate pathway to all 
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three types of math outcomes. While the cognitive tasks differed in this study, the SWM, 

behavioral inattention, and PA factors did not appear to represent separate pathways to math 

outcomes, but rather were possibly mediated by the counting and number variables. This is 

similar to Krajewski and colleagues’ (2009) suggestion that PA and visual-spatial WM directly 

influence more basic number skills (described as number words not linked with quantities - 

similar to the number variables) that then indirectly affect later more complex math skills and 

competency. Further, in our follow up regressions of counting variables predicting the number 

variables, the results showed that PA and SWM were significant predictors of number 

identification and quantity discrimination. However, our results found PA was predictive of 

computation and applied reasoning and SWM was directly predictive of applied reasoning, 

which differs from their work (Krajewski & Schneider, 2009) which found neither PA nor SWM 

to be directly related to math competency in school. The authors refer to PA as a “necessary but 

not sufficient” prerequisite for understanding math concepts due its indirect impact on later math 

achievement via early skills. Our findings are partially consistent with that conclusion as PA and 

SWM demonstrated indirect effects on fluency and were predictive of each number variable, 

however direct effects were also found. 

 The findings in this study support the importance of specific number factors, including 

both counting types, in predicting math outcomes, which is similar to results from Jordan’s 

studies (Jordan et al., 2002; Jordan et al., 2006; Jordan et al., 2009; Jordan et al., 2010; Locuniak 

& Jordan, 2008). The contributions of the cognitive factors are less straightforward. It is possible 

the counting variables partially mediate the effect of working memory on fluency and 

computation since working memory is required to monitor place while counting (Swanson & 

Jerman, 2006). However, verbal and visual working memory had direct effects on the fluency 
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and applied reasoning outcomes. This has been found in research using cognitive factors to 

predict placement in low achieving or math learning difficulty groups (Geary et al., 2009). PA, 

or other linguistic factors, may represent a separate pathway as suggested by LeFevre et al. 

(2010). 

 Given their strength in prediction across the range of ability as demonstrated here, the 

results of this study suggest that exposure to both counting procedures and knowledge of 

counting principles, in conjunction with Arabic numerals would be useful in helping to identify 

children who are likely to struggle with math skills. Curricula vary in the extent that they 

emphasize conceptual relationships such as manipulables, versus emphasize number recognition, 

sequencing, and number combinations, though the present results suggest that the latter may be 

more related to the kinds of paper and pencil math outcomes assessed here, though clearly both 

play a role. For students who struggle in academic areas, an explicit and systematic focus on core 

skills that are most closely related to the desired outcome (i.e., words in reading, Arabic 

numerals in math) may be even more important. The contribution of the cognitive variables were 

found to be relevant, though the present results highlight the need to further understand their 

direct versus indirect impact, particularly to the extent that they are implicated in the 

performance of the more proximal numeric and counting variables examined here. In this way, 

such skills (or behaviors) can still exert influence on children’s classroom performance, 

particularly as math skills become more differentiated and involve more problem solving or 

extended algorithmic procedures. Therefore, assessment of these factors (working memory, PA 

and behavioral inattention) can still be beneficial in guiding interventions by identifying skills 

that may compound or otherwise interfere with the more direct elements of the intervention.  

Limitations 
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Even though the number variables were more predictive, counting measures still 

explained about 30 – 40% of the variance in each model. This is still a significant amount 

considering how quickly you can assess these variables and how much they are able to explain 

complex math. However, there are some limitations. Since the test battery was time limited, it 

made it difficult to include more measures of counting. It may have been beneficial to include 

more trials of the conceptual counting tasks as well as possibly including another procedural 

counting measure such as starting to count from a given number (i.e. count to 20 beginning at 

number 5). It is possible that the nature of the counting measures that were used limited their 

impact. For example, the one to one error variable ranges from 0 to 5 with almost half of the 

children making no errors, and the stable order and abstraction variables could not be utilized. 

While a composite measure across error types might have improved the technical qualities of this 

predictor, for this study, keeping separate counting variables in the model made it possible to 

observe more specific relationships with the outcomes.  

Additionally, the number variables were both symbolic. Since symbolic and non-

symbolic tasks are both included in number sense, using a non-symbolic measure may have 

added some more information to the models. Including both would likely help to differentiate 

between a magnitude effect and a symbolic effect. However, several recent studies have found 

symbolic factors to be more significant than non-symbolic factors (De Smedt & Gilmore, 2011). 

In future studies it may be beneficial to include measures in the subitizing versus non-subitizing 

range. In regards to the working memory variables, it may also have been interesting to use an 

additional verbal working memory task that did not involve numbers (digit span) such as word 

span.  

 Since the focus of this study was on kindergarten precursors, identification and 
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classification of children as having a difficulty or disability in math was beyond the scope of the 

present study. As mentioned in the Introduction, there is no consensus of the best way to identify 

children with MLD. Further, using cut off scores will arbitrarily demarcate a continuous 

distribution and there is a lack of evidence that differential prediction is possible along a 

continuum. There would also be the concern of restriction of range as it is likely there would be 

few children at the extremes of the distribution. Nonetheless, identification of risk status is an 

important goal, particularly from a practical perspective, and is an area that needs further study.  

Conclusion 

 In sum, this study found that: (1) while counting procedural skill and conceptual 

knowledge are both strong predictors of several types of math outcomes, patterns of counting do 

not convincingly distinguish between different math outcomes, but both are important predictors; 

(2) number variables account for much of the variance in math outcomes over and above 

counting types, and (3) the influence of counting variables on math outcomes is effected by 

cognitive factors. Further, each outcome did have distinct predictors such that the more 

comprehensive outcome (applied reasoning) had a larger range of predictors. The counting 

variables did account for about 30 – 40% of the variance in each model, which is more than has 

been reported previously (Stock et al., 2009), and should be considered when screening for early 

math difficulties and when considering the most appropriate interventions. However, their 

contributions should be considered along with other number factors for more robust prediction.  
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Table 1. Summary of Studies with Counting Variables  

Authors  Age 
group 

Time Points Predictors Math Outcomes  

PRESENT 
STUDY 

K – G1 2 – 
longitudinal  

1. Counting: 
procedural & 
conceptual 
2. Number: # ID 
& Quant Comp 
3. Cognitive: 
SWM, Beh Inattn, 
PA 
Other: Demo 
(SES, gender) 

1. Fluency (MF & 
small sums +/-) 
2. Computation 
(Calc & arithmetic) 
3.  Applied 
Reasoning 
(Applied Probs & 
Single-digit story 
prob) 

Cirino (in 
press) 

K One time point 1.Both 
2.symbolic/nonsym 
comp; # ID, 
missing # 
3.VSWM, PA, 
RAN 

1.small sums 
2. 
3. 
Note: all at Time 1 

Geary, Hoard, 
Byrd-Craven, 
DeSoto  (2004) 

G1, 3, 5  cross sectional 
& longitudinal 
(each G tested 
in fall – exp. 
tasks & spring 
–IQ & 
achievement) 

1. Conceptual only 
(puppet) 
2.  
3. WM (counting 
span) 
Other:  

1.  
2. Simple/complex 
math (strategy) 
3. Math reasoning 

Geary, Hoard, 
Byrd-Craven, 
Nugent, & 
Numtee (2007) 

K-G1  longitudinal 1. Conceptual only 
(puppet) 
2.  
3. WMTB-C 
(Baddeley) 
Other: PS 

1.  
2. Simple/complex 
math (strategy) 
3. 

Jordan, Kaplan, 
Nabors Olah, & 
Locuniak 
(2006)  

K-G2 longitudinal 1. Within battery 
2. Number sense 
battery 
3. 
Other: Gender, 
SES, K start age 

1.  
2.  
3. 
Note: Trajectories 
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Jordan & 
Locuniak, 2008 

K-G2 
 

longitudinal – 
4 times for 
predictors 

1. Within battery 
2. Number sense 
battery 
3. WM (DS), MR 
Other:  

1. Math fact 
fluency 
2.  
3. 

Jordan, Kaplan, 
Ramieni, & 
Locuniak, 2009 

K – G3  longitudinal – 
4 times for 
predictors, 5 
times for 
outcomes 

1. Within battery 
2. Number sense 
battery 
3.  
Other: Demo 

1.  
2. WJ Calc 
3. Applied 
Problems 

Aunola, 
Leskinen, 
Lerkkanen, & 
Nurmi (2006) 

Preschool 
– G2  

6 - 
longitudinal 

1. Procedural & 
conceptual 
Combined into 
Counting Ability 
(1 to 1, stable, 
cardinality) T1 
2. Number ID 
3. Metacognitive 
knowledge – T1 
Other: Visual Attn 
– T1 

1.  
2. Basic arithmetic 
3. Word problems 
Note: Growth curve 
model with Math 
competence 
outcome combined 

Koponen, 
Aunola, 
Ahonen, Nurmi 
(2007) 

K– G4 2 - 
longitudinal 

1. Conceptual 
(stable, cardinality) 
2.  
3. PA, gen cog 
ability 
Other: SES 

1.  
2. Single digit & 
multi digit addition 
& multiplication 
3. 

LeFevre et al.  
(2006); 
Kamawar, 
LeFevre  et al. 
(2010) (also 
reported in 
2008 
conference 
proceedings 
paper) 

K-2; 5-11 
(K, 2, 3, 
4, 5) 

cross sectional 1. Procedural 
(count objects) & 
conceptual 
(puppet) 
2.  
3. 

1.  
2.Skill groups – 
numeration, 
addition/subtraction  
3. 
Note: ANOVA 
(count type X grade 
X skill group)  

Stock et al 
(2009) 

K-G1 longitudinal 1. Conceptual 
(stable, 1 to 1, 
cardinality 

1. Fluency 
2. Mental 
arithmetic & 
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2.  
3. 

number knowledge 
3. 
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Table 2. Demographic Characteristics Comparing Included and Dropped Samples 
 
Variable  Category/Scale Included (n = 194) Dropped (n = 93) 
Age in Kinder Years Mean (SD) 6.16 (0.32) 6.06 (0.33) 
Gender Female (%) 48.45% 48.39% 
Ethnicity African American 

Caucasian 
Hispanic 

Other 

43.30% 
24.23% 
22.68% 
9.8% 

63.44% 
10.75% 
18.28% 
7.53% 

SES Free/Reduced Lunch (%) 58.25% 66.67 % 
K-BIT Verbal Standard Score 98.80 (12.63)  
Small Sums Addition  4.73 (13.77) 2.93 (14.79) 
Note. SES = Socioeconomic status measured by receiving a free or reduced lunch; K-BIT Verbal 
= Verbal IQ index from Kaufman Brief Intelligence Test given in grade 1 
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Table 3. Descriptive Statistics for Predictor and Outcome Variables 

 

Note. N = number of participants; Std Dev = standard deviation. 

 

 

 

 

Variable  Category/Scale N Mean  Std Dev Kurtosis Skewness 
Procedural Counting  
      Oral Counting 
      Counting Down 

 
#s per second 

seconds 

 
191 
190 

 
1.24 
2.42 

 
0.36 
1.59 

 
0.19 
0.91 

 
-0.04 
0.91 

Conceptual Counting 
      One to One Error 
      Stable Order Error 
      Abstraction Error 
      Cardinal Error 
      Double Count Error 

 
0 – 5 
0 – 3 
0 – 5 
0 – 9 
0 – 3 

 
193 
193 
193 
192 
191 

 
0.82 
0.06 
0.21 
1.52 
1.98 

 
0.99 
0.31 
0.87 
1.93 
1.20 

 
1.05 
52.12 
22.84 
2.72 
-1.15 

 
1.18 
6.72 
4.76 
1.68 
-0.68 

Number  
     Number Identification 
     Quantity Discrimination 

 
1 – 15 
-8 – 42 

 
193 
192 

 
11.30 
18.59 

 
3.02 
11.18 

 
0.01 
-0.60 

 
-0.73 
-048 

Cognitive and Behavioral 
     Digit Span 
     Spatial Working Memory 
     Behavioral Inattention 
     Phonological Awareness 

 
3 – 19 
0 – 10 

-27 – 27 
4 – 19 

 
189 
192 
193 
185 

 
9.98 
2.96 
6.51 
10.04 

 
3.47 
2.32 
11.98 
2.95 

 
-0.21 
0.32 
-0.47 
-0.00 

 
-0.21 
0.86 
-0.14 
0.05 

Outcomes 
     Fluency 
     Computation 
     Applied Reasoning 

 
-47 – 74 
0 – 25 

74 – 137 

 
189 
193 
193 

 
17.88 
14.55 
104.83 

 
23.85 
4.72 
13.38 

 
-0.14 
0.26 
-0.84 

 
-0.25 
-0.59 
-0.04 
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Table 4. Correlations between Kindergarten Predictors and Grade 1 Math Outcomes 

 Counting Predictors  Number and Cognitive Predictors 
 OC  CD OOE CE DCE NI QD BI SWM DS PA 
Outcomes            
Fluency 0.407 0.481 -0.310 -0.481 0.362 0.654 0.597 0.471 0.414 0.550 0.493 
Computation 0.330 0.404 -0.280 -0.439 0.323 0.630 0.600 0.465 0.384 0.445 0.512 
Applied 
Reasoning 

0.401 0.522 -0.214 -0.365 0.350 0.617 0.606 0.513 0.456 0.554 0.638 

Note. OC = Oral Counting; CD = Counting Down; OOE = One to One Error; CE = Cardinal 
Error; DCE = Double Count Error; NI = Number Identification; QD = Quantity Discrimination; 
BI = Behavioral Inattention; SWM = Spatial Working Memory; DS = Digit Span; PA = 
Phonological Awareness; All correlations p <.0001. 
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Table 5. Regression Statistics for Each Math Outcome Model 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Note. Numbers reported are standardized beta estimates. Hypothesis 3 estimates reported are 
from the total counting model. ** = <.01 * = <.05; Proc = Procedural counting skills; Conc = 
Conceptual Counting Knowledge 
 

 

Predictor  Fluency Computation Applied Reasoning 
Hypothesis 3 
     Oral Counting 
     Counting Down 
R2 Procedural Model 

 
0.071 
0.259** 
0.251** 

 
0.026 
0.218** 
0.174** 

 
0.065 
0.359** 
0.282** 

     One to One Error 
     Cardinal Error 
     Double Count Error 
R2 Conceptual Model 
R2 Change Proc > Conc 
R2 Change Conc > Proc 
Total Model R2 

0.004 
-0.332** 
0.227** 
0.315** 
0.082** 
0.146** 
0.397** 

0.002 
-0.337** 
0.197** 
0.258** 
0.051** 
0.135** 
0.309** 

0.043 
-0.228** 
0.196** 
0.219** 
0.137** 
0.074** 
0.356** 

Hypothesis 4 
     Number Identification 
     Quantity Discrimination 

 
0.377** 
0.324** 

 
0.325** 
0.337** 

 
0.177** 
0.271** 

     Digit Span 
     Spatial Working Memory 
     Behavioral Inattention 
     Phonological Awareness 
Total Model R2 

0.228** 
0.111* 
-0.036 
0.034 
0.605** 

0.064 
0.112* 
-0.037 
0.160** 
0.525** 

0.158** 
0.175** 
0.0349 
0.293** 
0.636** 

Hypothesis 5 
     Number Identification 
     Quantity Discrimination 
     Digit Span 
     Spatial Working Memory 
     Behavioral Inattention 
     Phonological Awareness 
         Oral Counting 
         Counting Down 
         One to One Error 
         Cardinal Error 
         Double Count Error 
R2 Change Counting 
Total Model R2 

 
0.335** 
0.285** 
0.225** 
0.044 
-0.064 
0.035 
-0.109 
0.090 
-0.001 
-0.187** 
0.106* 
0.044* 
0.649** 

 
0.339** 
0.345** 
0.072 
0.077 
-0.065 
0.190** 
-0.184** 
0.013 
-0.030 
-0.128 
0.038 
0.035 
0.560** 

 
0.159* 
0.289** 
0.150** 
0.141** 
0.027 
0.280** 
-0.119* 
0.149** 
0.023 
-0.025 
0.043 
0.022 
0.658** 

    


