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ABSTRACT

Numerical techniques commonly used by geologists to quantitatively 

ferret out relationships among variables include scattergrams, dendro­

grams, and principal components analysis. These and other analytical 

methods are based on a measure of similarity, such as the Pearson 

product-moment correlation coefficient, r. The r matrix, however, may 

be subject to numerical bias depending on the type of data from which 

the matrix is calculated. Consequently, inferences about the geologic 

significance of the between-variable relationships may be unsound and 

may reflect nothing more than numerical inevitabilities.

R-mode analyses of a set of carbonate modal data, a set of 

sedimentary thickness data, and a set of geochemical data show that 

the interpreter of quantitative analysis must bear in mind not only the 

constraints of the analytical method but also those of the data treatment.

Among other results, this investigation has determined that 

closure can induce correlation of the rank type as well as of the 

product-moment type and that principal components analysis may not be 

any more efficient a reducer of data than a visual inspection of 

variances.
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INTRODUCTION

As computers have become more accessible to researchers, investigations 
incorporate 

which A numerical analysis has more and more frequently appeared in 

the literature. The trend is undoubtedly irreversible and geology 

certainly is not unaffected by this technologic development. Quanti­

tative analysis is firmly established as an investigative tool in 

geologic research, and a substantial percentage of the literature of the 

discipline is essentially lost to the geologist who lacks understanding 

of the numerical tools about which he reads or, worse yet, which 

he uses.

In practice, geologists commonly call upon quantitative techniques 

to "sort out" relationships among variables. Correlation coefficients 

(Pearson's product-moment correlation coefficient, r, if the data are 

normally distributed or a nonparametric coefficient if not) may be 

computed to serve this purpose. Regardless of the technique, however, 

the investigator must be able to recognize the absence of association 

(randomness) among the variables so that meaningful association among 

variables can be confidently asserted. Meaningful association is conventionally 

established by testing the coefficients against a parent correlation 

of zero, that is, against a "null" correlation which represents randomly 

associated variables. However, for data subject to numerical bias, a 

parent correlation of zero is not an appropriate measure of randomness. 

For these data, the conventional interpretation of statistical correlation 

would yield erroneous conclusions about the variable relationships. It 

is on this problem that the analysis and discussion in this thesis is 

brought to bear.
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The following section describes techniques which will be used 

in the analyses in subsequent sections and provides reference 

material which will be called upon in the discussion of the analyses.
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ANALYTICAL METHODS

Scattergram, dendrogram, and principal components analysis

By either graphical, intuitive, or numerical methods, many 

geologic investigators seek to determine relationships between pairs 

of variables. The binary scattergram is probably the most common 

and simplest method of illustrating the degree of linear association 

between a pair of variables because the joint behavior of the two 

variables is assessable by simple graphical interpretation. The 

scatter of points in figure 1 shows a perfect positive linear 

association (fig. 1A), a complete lack of linear association 

(randomness)(fig. IB), and a perfect negative linear association 

(fig.lC). More realistic patterns of joint variation deviate from 

the perfect relationships shown in figure 1, but it is these standards 

of reference against which real data are compared. By simply plotting 

points on a scattergram, then, the investigator may visually evaluate 

the strength of pairwise association between variables.

A multivariate counterpart of the binary scattergram is the dendro­

gram, produced by cluster analysis. A dendrogram is a "tree diagram ' 

showing the mutual relationships among a given set of variables. The 

variables most highly intercorrelated are clustered together in a manner 

such that the dendrogram has a hierarchical configuration in which each 

level reflects the degree of intragroup homogeneity. Mutually related 

groups are adjacent, but the groups are mutually exclusive in that any 

variable can belong to only one group. McCammon (1969) stated, however, 

that it is possible to examine the data in a rearranged form in which
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variables that could interchange groups can be identified.

Davis (1973) commented that cluster analysis is not a statis­

tically rigorous method of examing multivariate behavior. Rather, 

he stated, "it belongs to that category of techniques... in which 

utility is judged by performance and not by theoretical considerations" 

(p. 501). It tends to be used insofar as its results corroborate the 

investigator’s intuition about the variables.

Principal components analysis (PGA) also falls into the category 

of techniques in which utility is judged by performance. PGA is not, 

strictly speaking, a statistical procedure. It is a mathematical 

manipulation designed to make apparent the "redundancy" in a set of 

variables. The manipulation transforms the data to a new coordinate 

system defined to produce uncorrelated variables. As a multivariate 

technique, it could perhaps serve as a more quantitative discriminator— 

relative to cluster analysis-- of the interrelationships among variables.

Measure of similarity

The binary scattergram, the dendrogram,and PGA are all tech­

niques of R-mode analysis as long as the objective is to seek inter­

relationships among the variables. A measure of similarity, that is, 

a measure of pairwise variation among the variables, is the basis for 

analysis. The measure of pairwise variation that is commonly chosen 

is a matrix of correlation coefficients, either the Pearson product­

moment correlation coefficient (r) if the data are normally distributed 

or a rank correlation coefficient if not. The product-moment correlation 

coefficient is a measure of linear association and is defined as the 

ratio of the covariance (cov) of two variables (e.g., y and z) to the
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product of their standard deviations (s):

This measure is a convenient one because, being unitless, r's are 

easily compared even though the variables may have been measured in 

different units. Moreover, r is a "standardized" measure of similarity;

that is, each variable is weighted equally. The value of r can range 

from +1 to -1(because covariance yz may equal but not exceed the 

product of the standard deviations of its variables). Whereas r = +1 

indicates a perfect direct relationship and r =-l indicates a perfect 

inverse relationship, r = 0 indicates complete linear randomness. These 

interpretations of r, especially in combination with a binary scattergram 

(fig. 1), conform well with what an investigator would intuitively 

conclude about the pairwise association patterns.

Intuitive conclusions may be statistically corroborated by 

testing the observed correlation coefficients against the null hypothesis 
target population

that the correlation in the/\is zero. This criterion of randomness is, 

in fact, the assumption underlying most elementary correlation analysis; 

one of its major advantages is the compatibility between the numerical 

and graphical representations of association. If an observed correlation 

differs with statistical significance from zero, the variables are 

meaningfully associated. The test for significance of r is made using 

Student's t (Neter and Wasserman, 1974); t 5 ,  , is the test statistic:calculated

= 0H : o

^calculated
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where n is the number of samples. If t .is greater thancalculated
^tabulated ^at t^ie g^ven significance level and for the appropriate

degrees of freedom), then the null hypothesis H must be rejected, the 
reason exists °

implication of which is that no to assume the variables are not

meaningfully associated.
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DATA TREATMENT

For some types of data, the "intuitive demand" (Chayes, 1971) 

that zero correlation be the measure of randomness is ill-conceived 

because the matrix of correlation coefficients is vulnerable to 

substantial numerical bias. Bias alters the measure of randomness 

so that meaningful association among variables is obscured. Conse­

quently, inferences about the geologic significance of the variable 

relationships may be unsound and may reflect nothing more than numerical 

inevitabilities. Data which are subject to induced bias are those in 

percentage and ratio form.

Percentage (closed) form

Consider that on each of n samples m variables are measured and 

these data are arranged in matrix form such that each row represents 

one sample and each column represents one variable. From this matrix, 

a deviation matrix can be formed by subtracting the variable mean from 

each of the measured values of that variable. The data are "open" if 

no constraints are imposed on the sum of the rows of the data matrix or 

of the deviation matrix. The data are "closed" if the sum of each 

row of the data matrix is constrained to be a constant common to all 

rows. The constant sum is 100 in the case of percentage data. Moreover, 

for closed data the sum of each row in the deviation matrix is constrained
Therefore 

to be zero. /\ the sum of each row in the closed variance-covariance 

matrix must be zero (no such restriction applies to the sums of the rows of 

the open variance-covariance matrix)(Chayes, 1971, p. 37). This Implies 
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that the sum of all covariances for variable x is negative and has the 

same magnitude as the variance of x. Each variable, therefore, must 

be negatively correlated with at least one other variable. Generally, 

strong negative correlation bias is induced between variables having 

relatively large variance, and positive correlation may be induced 

between variables whose open variances are relatively small (Chayes, 1971, 

p. 39-40).

Essentially, then, the effect of closure (percentage formation) 

is that the potential independence of variances and covariances (that is, 

the potential for covariances to be zero), which is the basis of correlation 

theory, is destroyed; bias is introduced such that the closed data are 

statistically correlated even though the open data may not have been.

For two- and three-variable systems, the correlation bias due 

to percentage formation can be exactly predicted. The binary case 

association, because the relative magnitude of one variable must decrease

as the other

(closed) variancescoefficients are fixed and predictable from the

(var) of the variables (Chayes, 1971, p. 42):

yz

where s is the standard deviation.

+ var ) z

is trivial; the induced correlation is -1, a perfect inverse linear

(var^ + var^); the implication is that positive correlation in a ternary

increases. In the ternary case, all three correlation

ternarv system, r and xz

var - (var
x_______Z

2s sy z

(For the other coefficients in the 
in equation 2

r^, the subscripts/\can be rotated.) It is

apparent that r  can be positive only if var^ is greater than
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variance of the 
system would not be a common occurrence. Note that the/^third variable.

( the one excluded from r's subscripts (equation 2)) controls the sign 

of r.

For multivariate systems the correlations due to closure cannot 

be exactly predicted. Chayes (1960, 1971) has shown, however, that for 

systems having four or more variables, bias is not negligible. Moreover, 

one cannot expect to eliminate the closure effect by making the number 
unlikely

of variables (m) very large. Only in the A case in which all 

open variables are randomly distributed and have the same mean and 

variance can the effects of closure be reduced by increasing the number 

of variables. Chayes (1971, p. 40) has shown that, for m varibles sc 

defined, the closed correlation coefficient to be expected between any 

two is:

For example, suppose that

m = 3; then r =-.5 in the absence of a significant departure from 
randomness;

if m = 5; then r =-.25
m =10; r =-.11
m =15; r =-.07

This extreme case, however, is hardly realistic among geologic variables.

To illustrate the effect of closure, a data set of 75 samples, each 

sample having 5 normally distributed uncorrelated variables, was simulated. 

The summary statistics for the open and closed data are given in table 1. 

Figure 2 shows examples of binary scattergrams of the open (figs. 2A,B) 

and the closed (figs. 2C,D) data. It is obvious that closure has induced 

linear association and has obscured the picture of randomness, thereby 

obscuring meaningful association among the variables.

11



Table 1.—Statistics describing simulated set of 5 normally
distributed random variables neasured on 75 observations

Stratigraphic thickness measurements (open set)

Summary statistics

Variable name A * B C D E
Total 

thickness

Mean 147.8 149.. 8 100.3 48.84 298.6 745.3
Variance 222.9 24.45 94.34 118.0 5606. 5915.
Standard deviation 14.93 4.946 9.713 10.86 74.88 76.91
Coefficient of variation .10099 .03302 .096S3 .22240 .25079 .10319
Maxinus 176.6 166.2 122.1 77.60 485.1 942.3
Minima 102.7 137.7 80.86 21.30 118.8 573.5
Range 73.97 28.53 41.20 56.30 366.3 368.8
Percent variance 1.S607 .20.415 .78,736 .98486 46.794 49.369

Variance - covariance matrix

A B C D E
Total 

thickness

A 222.93 1.0384 4.7960 ■ 6.9150 -145.97 89.713
B 24.460 2.6881 6.9054 -52;O66 -16.976
C 94.335 6.3200 -2.2914 105.84
0 118.00 96.070 234.21
E 5606.5 5502.2
Total thickness 5915.0

A
Correlation - coefficient matrix

B C D E
Total 

thickness

A 1.0000 .01406 .03307 .04264 -.13056 .07313
B 1.00000 .05596 .12854 -.14060 -.04463
C 1.00000 .05990 -.00315 .14169
D 1.00000 .11812 .28034
E 1.00000 .95547
Total thickness 1.00000

Percent of total section (closed set)

Variable r^me

Variance
Standard deviation
Coefficient of variation
Maxima
Minim ub

Percent variance

20.03
7.527
2.743
.13698

25.37
13.39
11.98
12.968

Summary statistics

B

20.32
5.267
2.295
.11296

27.09
15.74
11.35
9.0738

C

13.58
3.185
1.785
.13141

19.41
9.623
9.786
5.4879

D

6.583 
2.107 
1.452
.22052 

9.942 
3.048 
6.894 
3.6309

E

39.49
39.96
6.321
.16006

54.32
20.71
33.61
68.840

12 (continued)



Table 1. — (continued)

Variance - covariance matrix

A B C D E

A 7.5267 4.1102 2.2314 .59584 -14.464
B 5.2666 2.7198 .85132 -12.947
C 3.1852 .42638 - 8.5625
D 2.1074 - 3.9808
E • 39.956

A

Correlation - coefficient matrix

B C D E

A 1.0000. .65283 .45572 .14961 -.83405
B 1.00000 .66405 .25554 -.89255
C l.ooooo .16457 -.75900
D 1.00000 -.43382
E 1.00000

Ratios of closed variables^; denominator has large coefficient of variation

Summary statistics

Variable name A/E B/E C/E D/E

Mean. .53173 .53893 .36016 .17447
Variance .02660 .02716 .02187 .00385
Standard deviation .16309 .16481 .11344 .06203
Coefficient of variation .30671 .30581 .31497 .35552
Maximum 1.19175 1.308G0 .93695 .39082
Minimum .26007 .30919 .17806 .07153
Range .93168 .99880 .75889 .31929
Percent variance 37.74040 38.54042 18.25990 5.45928

Variance - covariance matrix

A/E B/E C/E D/E

A/E .02660 .02529 .01648 .00753
B/E .02716 .01765 .00803
C/E .01287 .00524
D/E .00385

A/E

Correlation - coefficient matrix

B/E C/E D/C

A/E 1.00000 .94100 .89083 .74391
B/E 1.00000 .94399 .78514
C/E 1.00000 .74438
D/E 1.00000

(equal to ratios of open variables)
12a (continued)



Table 1.—(coneluded)

Batios of closed variables; denominator has small coefficient of variation

Variable name A/^

Summary statistics

C/B D/B ' E/B

Kean .98806 .67027 .32614 1.99773Variance .01105 .00451 .00517 .26176Standard deviation .10514 .06715 .07190 .51163Coefficient of variation .10641 .16019 .22045 .25610Maximum 1.19886 .83700 .50812 3.23421Minimum .70339 .53664 .14025 .76453Range .49547 .30036 .36787 2.46968Percent variance 3.91285 1.59624 1.82995 92.66096

Variance - covariance matrix

A/B C/B D/B E/B

A/B .01105 .00077 .00027 -.00207
C/B .00451 .00025 .00243
D/B .00517 .00553
E/B .26176

Correlation - coefficient matrix

A/B C/B D/B E/B

A/B 1.00000 .10923 .03593 -.03852
C/B 1.00000 .05233 .07081
D/B 1.00000 .15040
E/B 1.00000

12b
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Ratios having common terms

As will be shown, the closure effect can be eliminated by 
However, 

converting percentage data to ratios. /\the formation of ratios from 

percentages essentially replaces the constraints of closure by those 

inherent in ratio formation.

Suppose that X is a vector of random variables [x,, x„,...x12 m
and that P is a vector of

and 1

0."i
!i
P2

any two 1s:

x2

- k - m. Q. is defined as the ratio of

percentages such that P^ = where

rs (row sum) = y : 
k7!

rs
x2
rs

Similarly, let Q. be defined as:

% P2 x2 x2 

rs

Therefore ratios of percentages (recall that percentages are subject 

to the closure effect) "reduce" to ratios of nonpercentage variables. 

Because it evidently does not matter whether the variables from which 

ratios are formed are percentages or not, a discussion of the correlation 
(e.g., x^, x2, etc.) 

constraints of ratio formation can proceed assuming the parent variables/^ 

are not percentages and that they are uncorrelated. As will be shown, 

correlation between simple ratios having common terms is measuring bias 

as well as the degree of association between the variables. (No correlation 

will be induced between two simple ratios which do not have common terms.) 

14



Furthermore, it will be shown that various (depending on the ratio 

form) nonzero null values can be derived to test the significance of 

correlations between ratios.

Pearson (1896) showed that, even when variables are uncorrelated, 

"spurious" correlation between ratios formed from the variables is a 

function of the means, variances, and covariances of the variables 

forming the ratios. Pearson's general formula for the correlation 

(r^j) between ratios and (as defined in table 2) is given in

equation 1 of table 2. This equation has been used by Chayes (1949, 1971) 

to derive approximations (equations 2-6, table 2) for the correlation 

to be expected between various common forms of ratios constructed from 

uncorrelated (or correlated, as in the case of percentages) variables.

To illustrate the problem of ratio correlation, the simulated 

data described in table 1 is plotted in figure 3. The ratio form 

corresponding to equation 4 (table 2) was chosen for figure 3 because 

ratios with common denominators are often used as a scaling mechanism. 

The denominator, variable E, is the variable having the largest coefficient 

of variation, C, where C„ = s^/x^, where s is the standard deviation,E E E 
and where x is the mean of the variable. The figures (3A,B) show that 

the ratio formation has induced remarkably high correlations. It can be 

shown (Chayes, 1949) that, when the variable having the largest coefficient 

of variation is in the denominator for this ratio form, induced correlation 

can be no less than r^ = .5, and this minimum applies only in the 

special case when (table 2, equation 4). As the data departs

from this unlikely case, induced correlation rises rapidly. For example.

15



Table 2.—•*Sptirlous H correlation among ratios

Equation No. Pearson's general formula for "spurious**  correlation

Suppose X is a vector of k random variables (X^» is a ratio formed from any two X^’s and
X1 X3 Sk

Q also is a ratio formed from two X. s. If Q. = Q ■ > C. » ~ (where C is the coef. of variation,
j . k 1 x2 j X4 k Xk

S is the standard deviation, and X is the mean) and r^j is the observed correlation coef, between and

r13C3C3 " r14ClC« " r23C2C3 + r24C2C4_____________
(Cl * c2 " 2C- C2r12>1/2 <C32 + =4 " 2C3C4r34>1/2

Approximate null correlations between ratios having common terms

Suppose X is a vector of k random variables (X^, is a ratio formed from any two X^.’s and

Qj is 

which

a ratio fronied from two X^’s, one 
Sk 

is a constant (e.g., 1); “ as defined for equation 1.

X1 C1
If Qi - X" and Qj - XV then

X1 -C2
Q1 - and Qj - X2, - 1/2

* v-l t ^2 *

X1 X3 C2
Q, - — and Q = — r. . - —-----9 /, '

1 *2 r *2
Qi X2 Qj X3 lj ((;2 + (;2) 1/2 (c2 + (.2) 1/2

16



FIGURE 3 BIHARY SCATTERGRAMS OF SIMULATED DATA IN RATIO FORM WHERE 

DENOMINATOR HAS LARGE COEFFICIENT OF VARIATION.
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if 63 is twice as large as and C^, . = .67; if is three times
j,. 

as large as and I'i times as large as C^, r„ = .79. If, on the other 

hand, the variable in the denominator of this ratio form has a very 

small C (e.g., variable B, table 1), very little correlation is induced 

(fig. 4A,B).

It is obvious that data treatment (percentage or ratio formation) 

may jeopardize an investigator's ability to recognize lack of linear 

association among variables, but he must nevertheless avoid attributing 

significance to bias (correlations) generated by the data treatment. 

Therefore, rather than test observed correlations against a null value 

of zero, Chayes (1971) has suggested that the "spurious" correlation 

itself (the correlation induced among the parent variables defined to 

have covariances equal to zero) serve as the measure of randomness, the 

null value. If an observed correlation differs significantly from the 

spurious correlation, the investigator may conclude that, at the given 

significance level, the variables are meaningfully associated. The point, 

of course, is that the investigator must know the correlation to be expected 

in the absence of a significant departure from randomness.

The following sections report R-mode analyses of a set of carbonate 

modal data, a set of sedimentary thickness data, and a set of geochemical 

data. The analytical (statistical) techniques and the data characteristics 

vary from set to set, but the common element is that the constraints of 

the analytical method cannot be separated from constraints of the data 

treatment; both must be brought to bear on the interpretation of an analysis.
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CARBONATE MODAL DATA

Purdy (1960) conducted an investigation "to quantitatively 

delineate calcium carbonate facies on the northwestern part of the 

Great Bahama Bank" (1960, p. 1). His work is considered a classic 

study in quantitative analysis of geologic data. In fact, according 

to Davis (1973), the use of Q-mode factor analysis was introduced into 

geology by Imbrie and Purdy (1962) using the data of Purdy (1960). 

Because the dissertation is so widely cited (e.g., McCammon, 1969; Parks, 

1966; Koch and Link, 1971; Krumbein and Graybill, 1965) and because it 

raises some interesting questions, a reexamination of Purdy's analysis 

follows.

This section describes Purdy's investigation and suggests that some 

assumptions under which he worked were not rigorously justifiable. This 

thesis attempts to identify incorrect assumptions and to insure that the 

analytical methods are appropriate to the data. In spite of the analytical 

differences, the results herein are generally comparable to Purdy's. 

Interpretive differences, however, are introduced as a result of the 

analysis in this section of the effect of closure on the data.

Purdy's investigation

Purdy collected 218 sediment samples, from each of which a representative 

subsample was selected and thin-sectioned. For each of the 218 subsamples, 

the constituent particle composition (the relative abundance of 16 

different grain types in a sample) was determined by point-count analysis 

20



of the sample fraction coarser than 1/8 mm. Another representative sub­

sample was selected to measure the weight percentage of the sample fraction 

finer than 1/8 mm (the boundary between the fine-sand and very-fine-sand 

sizes of the Wentworth scale). This weight percentage was intended to be 

a textural indicator which would reflect (although, as Purdy conceded, 

crudely) the relative intensity of current action in different areas on 

the bank.

Purdy's data formed a matrix of 17 variables measured on 218 samples, 

but not all this information was included in his statistical analysis. 

Four variables were excluded because they were not "quantitatively 

important constituents"; 15 samples were eliminated because of thin- 

section analytical error due to relatively large grain size. Therefore, 

Purdy's working matrix included 203 samples and 13 variables. His first 

objective was to determine which variables tend to react similarly to 

various environmental conditions. Such variables form what Purdy called 

a "reaction group". He stated that "the distribution of the various 

reaction groups constitutes a sedimentary facies", which he defined as 

"areally segregated parts of differing nature belonging to any genetically 

related body of sedimentary deposits" (p. 94).

To resolve his data into reaction groups, Purdy used the technique 

of cluster analysis and chose the correlation coefficient r to be the 

measure of similarity between variables. He stated that the significance 

of the resulting dendrogram "is that it documents the extent to which 

Bahamian constituents tend to occur or react together in various unspecified 

environments" (1960, p. 87). His analysis discriminated four reaction 

groups.
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The use of Pearson's r as a measure of pairwise variation 

between variables requires that each variable is normally distributed 

and that both variables together are bivariately normally distributed. 

Purdy stated that "justification for the use of this correlation 

coefficient I in his study] is found in the central-limit theorem 

which states in part that . .as sample size increases, sample means tend 

to be distributed normally even is the parent population is anormal' 

(Snedecor, 1965, p. 71). If the distribution is not markedly skewed, the 

approximation to the normal distribution will usually be sufficiently 

good if the sample size exceeds 30 (Cramer, 1955, p. 184). . .Sample 

size in the present study is 203; moreover the estimated volume abundance 

of grain types in each thin section is based on at least 500 point­

counts. Therefore it seemed fairly safe to compute product-moment 

correlation coefficients" (Purdy, 1960, p. 87).

But perhaps it is not safe. According to the central-limit theorem, 

the distribution of the means of all possible sample populations of size n 

of a nonnormal target population will approach normality if the number of 

samples (n) per sample population is sufficiently large. Even 30 samples 

is "sufficiently large" if the target population is "not badly 'nonnormal1 

(Kolstoe, 1973, p. 145). This is not the same as saying that the distri­

bution of any one sample population will approach normality if n is 

sufficiently large, which is the interpretation of the central-limit 

theorem by which Purdy justified the use of r. Moreover, Purdy's data 

are markedly skewed, and nonnormality precludes the use of r. Histograms 

of all 17 variables show that none are normally distributed; all are 

extremely skewed toward zero occurrence. The chi-square goodness-of-fit 

test (Davis, 1973, p. 116-122) for each variable corroborates what the 
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histograms suggest. Therefore a measure of similarity which assumes 

a normal distribution is dubiously applicable to Purdy’s data.
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Rank correlation coefficients and reaction groups

Nonparametric statistics are applicable regardless of the 
parameters 

of the target population from which the sample is drawn (Till, 1974); 

that is, their use is not contingent upon any assumptions about the under­

lying distribution of the data. Rank correlation coefficients, such as 

Spearman’s rgor Kendall's '7' (Demirmen, 1976) are nonparametric "order" 

statistics computed from ranks rather than from absolute scores (as Pearson's 

r is computed). They measure the degree of agreement between the ranks.

Tests for variable association which are based on these coefficients are 

nonparametric. In general, numerical values of Spearman's and Kendall's 

coefficients computed from the same data set are not identical because 

the exact form of association measured by the two coefficients is 

different. Generally the absolute value of Spearman's coefficient exceeds 

that of Kendall's, but the product-moment correlation between the two 

coefficients (for the same data set) in the null situation is high, 

approaching unity for large sample size (Demirmen, 1976, p. 223).

Because Purdy's data is not normally distributed, the rank correlation 

coefficients would be more appropriate measures of similarity for the data 
(using RANK from Demirmen, 1976) 

than the product-moment coefficient. Both rank coefficients were computed^ 

for Purdy's 203 x 13 matrix, and the results are given in table 3a. As 

expected, in every case but one (that of the correlation between grape­

stone and oolites), the absolute value of Spearman's coefficient exceeds 

that of Kendall's. Table 3b shows that both rank coefficients are very 

different from the product-moment coefficient for the same variables.
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One might expect that cluster analysis, as it is based on the measure 

of similarity, would reflect the difference between the two types of 

coefficients.

To bring information to bear on this speculation, the matrix of 

Spearman's rank correlation coefficients was clustered using the program 

CLUSTER (Davis, 1973). Spearman's coefficient was chosen over Kendall's 

because, according to Demirmen (1976), Spearman's coefficient is "in effect 

a product-moment correlation coefficient obtained by treating the ranks 

as though they were actual scores. Thus this coefficient in a sense 

measures the degree of linear relationship between the ranks of two 

variables . . . high values of (Spearman's coefficient) indicate that 

the basic form of the relation between two variables is monotone, i.e., 

an increase in one variable is accompanied by an increase or decrease 

in the other variable, although not necessarily in a linear manner" 

(p. 223). (A cluster made using Kendall's coefficient for Purdy's data, 

however, was not noticeably different from that made using Spearman's 

coefficient, except that the levels of similarity were lower for the former.)

Results of the rank clustering are shown in figure 5B and may be 

compared with Purdy's dendrogram, in figure 5A. Even the subjective 

nature of dendrogram interpretation could not interfere with the very 

obvious similarities between the two diagrams. As the summary in table 

4 shows, for all practical purposes the reaction groups of Purdy can be 

reclaimed by clustering the rank correlation coefficients of the data.

27



*. DEHO
HO

CRAM FO
R , *S

 M
EASURE O

F SIM
ILARITY

 
8. DEHO

RO
CRAM FO

R RANK C
O

R
R

ELA
TIO

N CO
EFFICIENT

(FRO
M PURDY, IM

0| 
AS M

EASURE O
F SIM

ILARITY

8Z

LEVEL OF SIMILARITY

LEVEL OF SIMILARITY

CORALLINE ALGAE

। CORALS

GRAPESTONE

■ i - i- .CRYPTOCRYSTALLINE GRAINS

............ .. -ORGANIC AGGREGATES

OOLITES

FIG
URE 5. - - DENDRO

G
RAM

S O
F O

BSERVED CARBO
NATE DATA.



Table 4.—Reaction groups for observed 
carbonate modal data

*
Using Pearson’s product- 1
moment coefficient

Using Spearman's 
rank coefficient

Group II: grapestone and crypto­
crystalline grains

— grapestone and cryptocrystalline 
grains

organic aggregates

III:

IV:

coralline algae and corals

Halimeda

organic aggregates

oolites

— coralline algae and corals

— oolites

I: Peneroplidae and sample 
fraction < l/Smm

other forams

molluscs

fecal pellets

mud aggregates

— Halimeda, molluscs, and Peneroplidae

other forams

sample fraction < 1/8 mm

fecal pellets

mud aggregates
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It should be noted, however, that the reaction groups which 

Purdy explicitly defined (1960, p. 94 ff) as in table 4 were assigned 

in a manner inconsistent with the conventional interpretation of cluster 

diagrams. Dendrograms yield groupings, although subjectively, according 

to a chosen cut-off level of similarity. No rigorous statistical method 

dictates what level an investigator must choose, but it is conventional 

that only one level be used to establish the groupings. The intent of 

this convention is to minimize the introduction of the investigator’s 

personal bias into the interpretation of the dendrogram.

Inspection of figure 5A shows that Purdy's reaction groups could 

not be as he defined them if only one level had been used for the 

interpretation. Groups I and II, as defined, require a cut-off level 

of similarity of .35 <1 r <.47; group III, as defined, dictates a cut-off 

of r <.32. Had r = .36, for example, been the discriminating level of 

similarity across the dendrogram, organic aggregates, as well as oolites, 

would have been a one-variable group.
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Closure and reaction groups

they are
Purdy's data are modal (that is^percentages) and are therefore subject 

to the constant-sum restraint. Because of closure, negative correlation 

between some of the variables has inevitably been induced. One would 

reasonably expect this bias to be reflected in a cluster analysis based 

on a measure of correlation. To assess the closure effect, one must 

know the correlation to be expected in the absence of a significant 

departure from randomness. This is the null correlation against which 

an observed correlation is tested for significance. In the following 

analysis, simulation is used to establish the null correlations.

Actually only 12 of Purdy's 13 "quantitatively important” variables 

are modal; weight percentage of the sample fraction finer than 1/8 mm 

is a textural indicator only and is not a variable of constituent particle 

composition. The 12 quantitatively important modal variables were 

recomputed to 100 percent, and the summary statistics describing the 

recomputed data are given in table 5. These statistics are used in the 

simulation to assign values to the parameters (means and variances) of 

a hypothetical open matrix. The hypothetical open matrix allows one to 

assess the effects of closure because the open variables are defined to 

have zero covariances (they are uncorrelated). Closure of this matrix 

yields covariances due soley to closure itself, so the correlations of 

the closed hypothetical matrix can serve as null values against which 

observed correlations (that is, Purdy's) can be tested.
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Table 5.—-Statistics describing set of 12 modal carbonate 
variables (recomputed to 100 percent)

Summary statistics

Coralline
Halimeda Peneroplldae

Other 
foratns Corals Molluscs

Fecal 
pellets

Mud 
aggregates Grapestone

Organic 
aggregates Oolites

Cryptocrystalline 
grains

M ean .3174 4.749 2.962 2.369 .9848 5.488 16.56 5.107 13.24 1.245 30.63 16.35
Variance .9923 48.78 27.53 7.940 13.57 42.47 438.5 28.70 252.6 5.507 1061. 205.7
Standard deviation .9961 6.984 5.247 2.818 3.684 6.517 20.94 5.357 15.89 2.347 32.58 14.34
Coefficient of 
variation

3.1384 1.4705 1.7711 1.1895 3.7407 1.1874 1.2647 1.0489 1.2004 1.8846 1.0636 .87718

Maximum 9.158 47.72 35.79 15.94 32.87 43.37 79.34 31.46 59.07 14.39 * 99.10 64.19
Minimum .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
Range 9.138 47.72 35.79 15.94 32.87 43.37 79.34 31.46 59.07 14.39 99.10 64.19
Percent Variance .04651 2.2862 1.2902 .37215 .63605 1.9904 20.551 1.3451 11.837 -25813 49.745 9.6420

Variance - covariance‘matrix

Coralline Other 
forams Corals Molluscs

Fecal 
pellets

Mud 
aggregates

Organic Cryptocrystalline 
grains* algae Halimeda Peneroplldae Grapestone aggregates Oolites

Coralline algae .99227 2.3653 .00076 .40470 2.3745 1.0673 -3.7658 -.050709 -.98443 .92649 -6.3063 2.9760
Halineda 48.777 5.1807 5.7551 8.5013 18.971 3.1347 8.1967 -22.369 2.7415' -79.844 -1.4101
Poneroplidae 27.527 9.2069 .10897 15.558 33.083 8.8887 -21.289 .97021 -67.219 -12.016
Other forams 7.9400 .12902 8.4199 8.1578 4.8109 - 5.7921 1.5113 -46.537 5.9931

Corals 13.571 9.3060 -12.215 1.3964 - 5.4817 2.0831 -24.242 4.4692
Molluscs 42.467 15.607 8.1456 -14.845 2.2440 -108.54 1.5991

Fecal pellets 438.46 60.022 -136.90 -9.9426 -260.78 -134.87
Mud aggregates 28.698 -28.232 .44089 -73.016 -19.300
Grapestone 252.56 8.1491 -164.79 139.97

Organic aggregates 5.5075 -25.792 11.161
Oolites 1061.4 -204.29

Cryptocrystalline grains 205.72

Correlation coefficient matrix

Coralline Other 
forams Corals Molluscs

Fecal 
pellets

Mud 
aggregates Grapestone

Organic 
aggregates Oolites

Cryptocrystalline 
grainsalgae Halimeda Peneroplldae

Coralline algae 1.0000 .33999 .00015 .14418 .64707 .16442 -.18054 -.00950 -.06219 .39632 -.19433 .20830
Hallr.eda 1.00000 .14138 .29244 .33043 .41682 .02143 .21908 -.20154 .16726 -.35092 -.01408
Peneroplldae 1.00000 .62277 .00563 .45503 .30114 .31625 -.25532 .07879 -.39326 -.15968
Ocher forams 1.00000 .01243 .45853 .13826 .31871 -.12934 .22854 -.50694 .14829

Corals 1.00000 .38765 -.15835 .070/6 -.09363 .24095 -.20200 .08451
Molluscs 1.00000 .11437 .23333 -.14335 .14673 -.51124 .01711

Fecal pellets 1.00000 .53508 -.41138 -.20233 -.38227 -.44907
Mud aggregates l.OOCOO -.33162 .03507 -.41838 -.25119
Grapestone 1.00000 .21850 -.31828 .61408

Organic aggregates 1.00000 -.33735 .33157
Oolites 1.00000 -.43720

Cryptocrystalline grains 1.00000



The simplest possible model of the hypothetical open matrix is that 

suggested by Chayes and Kruskall (1966). The means and variances of the 

variables of the open matrix are such that closure of the open matrix 

yields variables having means and variances equal to those in the 

observed (closed) matrix, that is, Purdy’s matrix. The concern, of 

course, is to avoid attributing significance to correlations which reflect 

nothing more than numerical bias.

A program (Harbaugh and Bonham-Carter, 1970) designed to generate 

random numbers whose distributions are other than normal (the distributions 

are referred to as "empirical"; that is, they conform to the characteristics 

of the observed data rather than to a specific statistical distribution) 

was used to simulate a hypothetical open matrix of 12 uncorrelated 

variables measured on 1000 samples. The simulated variables are assigned 

means and variances such that closure of the open matrix yields variables 

having means and variances equal to those of Purdy’s data. The results 

of the simulation are given in table 6; the approximation to Purdy’s 

data is reasonably good. The r matrix for the simulated open matrix 

actually has mostly nonzero elements (the range in r values is 0.000 to 

0.137) because of sample size and numerical consequences of the simulation.

For purposes of assessing the closure effect, the simulated open da­

ta were clustered using Pearson’s r as the measure of similarity 

(fig. 6A) because this is the measure Purdy used. The dendrogram shows 

essentially no structure, which would be expected when the covariances 

of the variables equal zero. (The negligible structure which is apparent 

is a function of sample size.) Next, the simulated closed data were
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Tabje 6, —Comparison of moans nnd variances of 
simulated and observed carbonate 
data sets

_____ ____ VARIABLE__________
OBSERVED
..MEAN _

SIMliLATEi)
OPEN MEAN

SIMULATED
CLOSED
__ MEAN___

OBSERVED 
VMIANCE

SIMULATED 
OPEN 

VARIANCE-

SIMULATED 
CLOSED 

variance

CorallInc algae . J2 .75 .87 .99 1.08 1.84

4.75 4.52 5.06 48. 78 23.88 29.78

Pencroplfdae 2.96 3.15 3.42 27.53 16.65 16.37

Other forams 2.37 2.60 2.95 7.94 6.17 9.26

W Corals .99 2.37 2.56 13.57 9.80 9.26

Ho 11 uses 5.49 5.32 5.88 42.47 27.76 33.22

Fecal pellets 16. 56 14.34 13.51 438.46 297.20 182.05

Hud aggregates 5.11 5.40 6.03 28.70 28.54 37.93

Grapestone 1.3.24 13.91 13.22 252.56 253.77 188.50

Organic aggregates J .25 3.68 4.28 5.51 2.95 7.44

OolItes 30.63 30.60 26.08 1061.40 988.43 424.45

Cryptocrystalline grains 16.35 15.52 16.13 205.72 164.92 172.97
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clustered, also using Pearson's r as the measure of similarity (fig. 6C). 

The two dendrograms (figs. 6A, C) are difficult to compare because the 

sequence in which variables enter the cluster are not the same, but 

closure has imposed at least some structure upon the dendrogram. 

Because closure of the simulated data has imposed so (relatively) little 

structure, one may assume that closure has not imposed much structure 

on the observed data (as the simulated data was designed to conform to 

the observed data). Therefore, for all practical purposed, one may 
Purdy1s 

conclude that the relationships apparent in A cluster of the observed 

data are real and are not significantly affected by closure.

However, because the simulated data are of a nonuniform distribution, 

a nonparametric measure of similarity would be more appropriate. Therefore 

both Spearman's and Kendall's rank coefficients for the simulated open 

(table 7) and closed (table 8) data were computed. Figure 6 (B,D) shows 

the clusters formed using Spearman's coefficients. The cluster of the 

open data (fig. 6B) shows negligible structure, as expected. The cluster 

of the closed data (fig. 6D) suggests, at least within the ability 

to compare, that at least one of the observed reaction groups (coralline 
(fig. SB) 

algae and corals)/\may not be statistically justifiable, regardless of 

what one might intuitively expect. The point, however, is that closure 

can induce correlation of the rank type; previous work has examined only 

the product-moment correlation.
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TabJc^_7.—Rank-rortelatJnn-coeftidcnt matrix for simulated open 
carbonate data (Speorman's coefficient is in upper-rip,ht 
half of matrix; Kendall’s coefficient is in lower-left 
half)

3

Coralline algae 1.000 -.007 -.093 .040 -.020 .016 -.026 -.039 -.007 -.001 .013 .095

Halimeda -.006 1.000 .118 .051 .1 35 .065 -.030 -.002 -.152 -.084 -.051 .132

Penetoplldae -.087 .106 1.000 -.066 .013 .045 -.010 -.010 -.01/ -.059 .058 .079

Other forams .0)8 .066 -.061 1.000 .115 .077 .010 .090 -.057 -.046 -.040 .038

Corals -.020 .125 .012 .108 i.ooo -.097 -.068 . 028 -.019 -.021 .102 .031

Ha 11 uses .01 5 .068 .039 .069 -.089 1.000 .073 -.067 .016 -.106 -.096 .081

Feral pellets -.026 - .027 -.010 .009 -.062 .063 1 .000 -.002 .037 .006 .022 .019

Mud aggregates -.035 -.002 -. 009 .081 .026 -.058 -.001 1.000 -.010 .050 -.026 -.01 I

CrapCHtone -.006 -.131 -.032 -.050 -.016 .013 .031 -.008 1 .000 .053 .086 -.066

Organic aggregates -.001 -.0/8 -.056 -.062 -.020 -.097 .005 .046 .047 1 .000 .070 -.037

Oolites .001 -.062 .068 -.033 .089 -.079 .018 -.020 .069 .062 1.000 .036

Cryptocrystalline grains .082 . 1 10 .069 .0 30 .027 .066 .0)5 -. 008 -.052 • .033 .027 1.000



Table jJ.—Rank-corre laiion-coefficfent matrix for nimnlated closed carbonate 
data (Spearman’s coefficient is In upper-right half of matrix; 
Kendall’s coefficient Is Ln lower-left half)

60
<d
8)G 0)

"8 8
a 43

u rc A. O

Cura]line algae 1.000 .396 .339 .508

llal.titfeiia .371 1.000 .379 .332

Pcneroplidae .3M .322 J .000 .230

Other forarns .468 .287 . 223 1.000

Corals .639 .616 .396 .665

Hal fuses .327 .218 .197 .222

Fecal pellets .173 .050 .050 . 109

Mud aggregates .313 . 181 .182 .258

Grapestone .176 -.037 .022 .061

Organic aggregates .621 .321 .332 . 185

Ooli tes -.160 -.187 131 -.173

Cryptocrystalline grains .136 .123 .063 .072

N)

8
a.

u M
O

u
a 
cd
t>0

O
s

u 

p.

.631 .380 .118 .345 .118 .670 -.331 .120

.441 .256 .011 .206 -.liO .365 -.312 .144

.412 .228 -.005 .192 -.038 .355 -.241 .055

.468 .258 .076 .311 .015 .430 -.311 ,060

1.000 .239 .033 .367 .066 .608 -.273 .054

.229 1.000 .091 . 107 .02 3 .301 -.373 .051

. 113 .099 1.000 .025 -.099 . 145 -.383 -.128

.324 .102 .056 1.000 .04 3 .362 -.268 -.004

.139 .047 -.019 .055 1.000 .158 -.246 -.202

.580 .256 .180 .312 ,181 1.000 -.292 -.001

-.132 -.236 -.236 -.155 -.148 -.137 1.000 -.308

.079 .050 -.055 .010 -.119 .042 -.193 1.000



Principal components analysis 

and reaction groups

As mentioned earleir, cluster analysis is not an 

analytically rigorous technique*  Principal components 

analysis (PCA), although not a statistical procedure, is 

a mathematical manipulation by thich the "redundancy” in 
a set of variables becomes apparent*  PCA was applied to 

the carbonate data with the intent that the technique 
might be a more quantitative discriminator—relative to 

cluster analysis—of the "real" groupings of the variables*

Any set of correlated variables can be transformed 

into a set of uncorrelated variables by a linear transformation 

that can be interpreted geometrically as a (rigid) rotation 

of the coordinate system to a position that concentrates 

as much as possible of the total variability of the data 

into a single new variable*  The origin of the new co­

ordinate system coincides with the means of the variables} 
the sum of the squared distances from the data points to the 

new ordinate is a minimum and the sum of the squared 

distances to the new abscissa is a maximum*  The axis 

along which the variability is maximized is the major axis 
of an ellipsoid (hyperellipsoid in the case of multivariate 
data), which represents the new variable of maximum variance*  

The second new variable accounts for as much as possible of 

the remaining variability, is represented by the largest 
minor axis of the hyperellipsoid, and is therefore uncor­

related with the first new variable*  Other uncorrelated 
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variance-maximizing variables may be formed until almost 

all the variability is accounted for by a few new variables*  

As a multivariate technique, the objective of PCA is to 
determine which of all the original variables are 

algebraically independent—that is, how many of the 

original variables actually represent the total amount of 

information; some variables may be simply linear combinations 
of another*  (Afifi and Azen (1972) present a very thorough 
discussion of principal components analysis*)

Several PCA options were performed on three sets of 

data; Purdy’s observed data, the simulated open data, and 
the simulated closed data*  The results (table 9) show that 

PCA transformation has not been an efficient data reducer*  
Cases E, F, and H of table 9 show all the transformed 

variables have roughly equivalent values of percent variance 
(an exception is in case H wherein one variable has zero 

percent variance because the data of this analysis are 
closed)*  This implies that there are no new variables which 

can explain the total variability of the original data any 

more efficiently than the original data themselves explain 
it*  In other cases where a few new variables have "sub­

stantially positive" values of percent variance, it is 

apparent that the distribution of the variance among the 

transformed variables is no more efficient than it was among 

the original untransformed variables*  Because only a few of 
the original variables account for about 90 percent of the
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Ta.VXo. ^..--Sunimnry of principal components analysis (PGA) 
of carbonate modal data

Percent variance
Variable ol

iintranslormoj 
varlable

Percent variance of transformed variable

PCA opt'ion: PGA option:
varianre/covAtiance matrix; r matrix;
original data standardized data

Purdy's observed data (203 x 13)

PCA option:
Spearman rank correlation 
coefficlent;
_HtanilArdtzed data__________

Corailine algae 
Hjllimtlda 
PencropIIdac 
Other forams

.03Z
J.45 
.79

Fecal pellets
Ool1 ton
Sample fraction < 1/8 mm

15.26
40.97 80Z
72.16

30.5Z 38.72
21.8 23.1
13.6 11.3
7.6 5.8

Simulated open data (1000 x 12)

D F. F

Cora LIine nlgae .06% 54.42 10.52 12.0%
Halime<ia J .31 16.4 9.7 10.5
Pencruplldae .91 13.9 9.0 9.8
Other forams .34 9.0 8.8 9.3

Fecal pellets 16.32 for all remaining variables, for nil remaining variables
Grapestone 13.93 842 percent variance Is between percent variance is between
Oolites 54.27 7.0 and 8.7 6.0 and 8.9

Simulated closed data (1000 x 12)

which is 0.0

Coral 1ine algae .17% /i5.1Z 17.7% 32.85:
Ila I inieda 2.68 19.8 11.3 10.9
Peneroplidae 1.47 18.0 10.0 10.5
Other forams .83 7.5 9.5 8.6

Fecal pellets 16.36 for all remaining variables.
Grapestone 16.94 percent variance Is between
Oolites 38.13 872 6.0 and 8.5, except for the
Crytocrysta 11 inc grait.s 15. 54 last value of percent variance.

G II



total variabilityi

203x12 203x13
fecal pellets 20*6% 15*3%
grapestone 11*9 9*4
oolites 50*0 41*0
cryptocrystalline grains 
weight percent <1/8 mm

9*6 7-1 
22*2

92*1% 95-0%
perhaps the reaction groupings are actually a function of the

large variances of these few variables*  These few variables 

so dominate the total variability that perhaps groups fall 
out such that each group is defined by one of the dominant 

variables*  If so, analytical methods couldn’t help but 

reclaim these groups*  In fact, such an interpretation would 

not be generally inconsistent with the reaction groups 
defined by Purdy*  An exception would be the group 

coralline-algae-plus-corals, which has already been shown 

to be suspect because of closure*
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Summary

Although r is a dubious choice for measure of 

similarity for Purdy*s  data, it yields a dendrogram 
comparable to that produced by rank correlation coefficients*  

At least in this case, cluster analysis grouped together 

similarly behaving variables regardless of the measure of 

similarity or the distribution of the data*
Examination of the effect of closure on Purdy's 

analysis reveals that at least one of the reaction groups 

may not be statistically justifiable*  Moreover, after 

closure rank correlation coefficients are nonzero*  

Closure therefore induces correlation of the rank type 
as well as of the product-moment type*

PCA did not efficiently reduce the data and therefore 

may suggest that the reaction groups are a function of the 

large variances of a few variables*
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STRATIGRAPHIC THICKNESS DATA IN RATIO FORM

Stratigraphic studies are replete with numerical applications, 

but the stratigraphic literature shows little inquiry into potential 

numerical pitfalls. This section describes how correlation bias 

resulting from ratio formation can affect stratigraphic investigations.

Stratigraphic thickness data is used in the form in which it is 

collected to prepare isopach and isolith maps, but these maps generally 

are tools for, not the objective of, stratigraphic investigations. 

Depending on the objective of the study, facies map design will probably 

require a transformation of absolute thickness measurements to percentages 

or ratios. Krumbein (1956, p. 2163) stated that "the selection of the 

method of facies expression (percentages, ratios, et cetera) [is among] 

the primary geologic considerations in lithofacies map design".

Stratigraphic maps may be of the contour type, which is suitable 

for studying rates of change in lithologic composition and for predictive 

purposes (Krumbein and Sloss, 1963). Contour-type maps could be prepared 

from percentage data, which would show the proportional thickness of 

lithologic components relative to the total thickness of the section, or 

from ratio data, which would contrast one lithology to another and suggest 

interrelationships among the components.

Krumbein (1962) observed that several of the maps prepared during a 
stratigraphic

study resemble each other in contour pattern. This suggested to 

him that the geometric and compositional attributes of the unit being 

mapped were somehow "interlocked", that is, that an individual map was 

in part repeating the information shown in another. In citing the work 



of Chayes (1960, 1962), Krumbein noted that "data interlock" is at 

least partly dependent on the manner in which the numerical data are 

expressed, and that the "built in" numerical relationships among 

variables have direct bearing on the contour patterns of facies maps. 

Krumbein also suggested that the correlation coefficient is an indicator 

of the degree of linear data interlock and contended that it may be 

used to facilitate the most efficient selection of maps to be prepared 

in a stratigraphic study (Krumbein, 1962, p. 2233). Krumbein seems 

to be suggesting that the numerical bias in percentage and ratio 

correlation coefficients can be turned to the advantage of the stratigrapher. 

The analysis in this section should indicate that it probably cannot.

To the extent that the correlation coefficient can suggest possible 

relations among geologic variables, its use is certainly appropriate. 

"This is an empirical procedure, fully justifiable in the early stages 

of geologic analysis, and . . . may be quite effective in 'sorting out' 

the interrelationships among . . . variables" (Krumbein and Graybill, 

1965, p. 236). For example, in some stratigraphic models, such as the 

clastic wedge, "the sand thickness commonly shows a moderate degree of 

positive correlation with total unit thickness. In other basin models, 

in which carbonates or evaporites are dominant, the sand thins as the unit 

thickens toward the basin center, giving rise to negative correlation" 

(Krumbein and Graybill, 1965, p. 236). Depositional models described by 

Krumbein and Sloss (1963) corroborate these observations and suggest others 

(for example, a positive correlation between shale thickness and total unit 
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thickness at the crationic border of marginal basins or at the hinge lines 

of interior basins).

The extent to which these and similar observations may be biased by 

the data treatment which produces them will be analyzed using an example 

from the literature. The data is Imbrie's (1963) and has been cited by 

Krumbein (1962) and by Krumbein and Graybill (1965) for various analytical 
from 31 wells, 

purposes. The data(table 10, taken from Krumbein and Graybill, 1965)are/ 

in western Kansas and southeastern Colorado, drilled in Upper Permian rocks 

including sandstone, shale, evaporites, and carbonates (the variable 

"clastics" as used in this thesis is the sum of sand and shale; "non­

clastics" is the sum of carbonate and evaporite). The wells were chosen 

in an area where the lithologic components thicken toward a center, as is 

characteristic of sedimentary basins (Krumbein, 1962, p. 2235). Imbrie's 

data are used in this section to examine correlation bias resulting from 

ratio formation.

Some ratios which commonly appear in stratigraphic studies are: 

sand/shale 

clastics/nonclastics (the classic ratio)

evaporites/carbonates (the evaporite ratio)

nonclastics/sand 

nonclastics/shale

The literature (e.g., Krumbein, 1962; Krumbein and Graybill, 1965; 

Krumbein and Sloss, 1963) shows that these ratios and the lithologic 

variables which form them have been correlated in stratigraphic work as
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Table 10.—Scracigraphlc thickness data 
(from Kr-jmbspin and C'raybill, 

1965, p. 372)

Total 
thickness Sand Shale Nc-nclascics Carbonates* Evaoorites

335 266 350 229 24 205
906 3 3 • 432 137 60 7 "

344 1 3 1 3 11 32 42 40
447 293 115 33 1 _ 26

1,301 54S 4 50 2^3 x . 136
935 21 -135 2-3 41 182
374 2 4.) 110 24 24 )
5uS 36 5 148 9 5 20
540 224 304 112 14 98
0 14 -3D ■? - -> S 7 ’ S 59
915 29 5 3 3 0 2 6 5 4 3 7 "7 ?

1,139 64 3 317 20 297
792 2 5 < 341 124 39 35
464 104 242 113 18 100

1,113 130 563 570 0 570
1,224 20* 753 259 11 248
1,2J4 •> ■ 610 317 10 30 7
1,144 310 529 3 1 ** i_ 2 302
1,043 56 2 510 176 12 164
1,162 130 659 3 ' J 15 360
1 . 3 (? -■) 224 542 2T7 21 215

*21 229 400 92 12 30
775 2 2 3 47? 7 5 23 47

1,025 29 5 501 22* 18 209
1,114 246 523 540 308

9 55 26* 502 186 24 162
3 3 4, 1 D 238 137 0 157
562 120 316 126 0 126

1,005 o -1 637 9? 3 39
3 3 U 30 461 59 0 59

1,125 270 558 298 63 230

entries equal to 0 were changed to 1 to avoid division by 0 when 
forming the evaporite ratio.
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shown in table 11. The pairs indicated by 0 in table 11 fall into 

the category of "part-whole correlation" (Chayes, 1971, p. 25-26).

Part-whole correlation can be defined as follows. Suppose

X is a vector of random variables [x^, x^] and that is defined:

+ X2 (the whole);

Q. is defined: 
J

Qj = (the part)

The part-whole correlation, r„, to be expected between and Q^.

when x^ and x^ are random variables is equal to the ratio of the standard

deviation (s) of the part to the standard deviation of the whole:

r. .
s
X1

s ,X1 + x2

This equation and equations 2-6 in table 2 show that part-whole 

correlation and ratio correlation applied to stratigraphic data will be 

biased; the null value of r will not be zero. Analysis of Imbrie's data 

with respect to some of the correlated pairs of variables specified in 

table 11 will attempt to assess the magnitude of the bias and account for 

it in subsequent data interpretation.

Simulation (Harbaugh and Bonham-Carter, 1970) is used to establish 

the null correlations for the stratigraphic data. The data of Imbrie 

(as given by Krumbein and Graybill, 1965) and some derivative variables 

(computed for this thesis) are described by the summary statistics and 

the correlation coefficient matrix in table 12. (According to a 

chi-square goodness-of-fit test, all of Imbrie's variables fit a normal
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TabX<^Jl---Strat:Lgraphic ratio correlations (X) 
an<l parr-whole correlations (0)

Total thickness

Shale 0

Clastics 0

Carhonates

Evaporites 0

None lastics 0

Sand/shale

Clastic ratio 

livaporite rat io 

None!astics/sand 

None I as Iics/shale

-rj
S

nJ

X

X

X

X

No
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§ V?

0)
e y

C(tiH co V) z.

Total Thickness 1.00

Sand .24 3 1 .00

Shal e .«R7 - .123 1 .00

None hist Les .844 -.035 .690 1.00
Carbonates .141 .454 -.055 .058

F.vapor ites .818 -. 108 .697 .987
Ln
O Clastics .948 ..372 .875 .629

Sand/sha1e -.517 . 506 -.748 -.500

Clastic ratio -.570 .036 -.403 -.787

FvaporIte ratio .082 -.335 .113 .29 7
None lastles/sand .508 -.556 . 595 .767

None lastics/sba1e .351 .087 -.048 . 714

Mean 860.6 24 7.3 428.8 184.4

Standard deviation 254.2 85.6 1 64.1 104.1

Coefficient of variation .295 .346 .383 .565

Vat lance 64610.0 7322.0 26940.0 10840.0

Percent variance 42.2 4.7 17.2 6.9

Table 12.—Corrvlatlon-coeftic lent malltx and summary statisllra 
fni observed stratigraphic tlilclmcss data

<v

"u
£ u

•O 3
ii

3

5

'u 
c o

1.00

-.101 i j>o

.170 .599 1 .00

. 124 -.519 -.453 1.00

-.066 -.774 -.359 .488 1.00

-.432 .366 -.058 -.228 -.242 1.00

-.233 .802 .281 -.603 -.552 .4 17 1.00

-. 099 .696 .088 -.035 -.796 .276 .462 1 .00

21.8 162.8 676.2 . 745 5.08 29. 74 .859 .42 7

16.4 104.5 1.75.5 . 60 7 3.29 70.67 .602 . 167

.753 .642 .260 .814 .648 2.38 .700 .392

269.0 10910.0 3G79O.O .368 10.8 4994.0 .362 .028

.2 7.0 10.7 .0002 .007 3.19 .0002 .00002



distribution*)  These summary statistics (table!2) are used 

to assign values to the parameters (means and variances) of 

a simulated data set*  The simulated matrix has 1000 samplesj 

the variables are the same as those in table 12 and have 
the same means and variances, but the covariances of the 

simulated data are defined to be zero*  Because the covar­

iances of the simulated data are zero, any correlations 
apparent in the simulated data (table 13) are due solely to 

the data treatment and are not inherent in the variables*  
The simulated correlation coefficients, therefore, serve as 

the null values for the data in ratio or part-whole form*

Looking only at observed values of r which are 
significant and referring to the variable pairs specified in 

table 11, one may make some interesting observations (table 
14)*  In all but a few cases, what appear to be highly 

significant correlations actually approximate the corresponding 

null correlations*  The implication is, of course, that, at 
least in this case, these ratio correlations cannot be useful 
in inferring geologic relationships among the variables*  

One's use of them, for example, as criteria for selecting 

maps to be incorporated into a stratigraphic study is ill- 
conceived on the basis of these results*

On the other hand, what appears to be a relatively 
weak association (-*359),  which might likely be ignored, 

is actually significantly departing from randomness (null 

value = *315)•
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Tab If 13.—Null cnrrclal Ion rorff !«• ii*ni  <lcrlve<1 bv sJnnilat l<*n.
for Rtrat Ifiraphlr thlrknuas fl.ila

u w v) o a) rt o•H ft) I) -H r-< M 0) -HW U U « JC <fl 1J U•n <tt -h u u .c u -a <nrt C M tfl -H M nJ

Sand 1.00

Sha 1 c .0 <5 1 .00

Nonclastics -.063 .009 1 .00

Carbonates -.013 .052 .01,2 1 .00

Evaporttos -.OK) .025 .025 .042 1.00

Clast Les .499 .884 -.01 < .039 .017 1 .00

Total thickness .357 .60 3 .4 39 .121 .4 76 . 768 1.00

Sand/shnle . 502 -.605 -.003 -.034 -.021 -. 368 -.294 1.00

Clastic ratio .175 .269 -.753 .025 -.066 .315 -.107 -.112 i. no

Evaporite ratio -.005 -.027 -.007 .495 .631 . 141 .019 -.005 1 .00

None 1asttca/snnd 564 -.0 39 .4 64 -.012 -.025 -.298 -.037 -.271 -. 39R .005 1 .00

Nouriast ics/shnIe -.039 5R7 .651 -.026 -.023 -.523 -.127 .539 -.596 .010 .318 1 .00
_ _ _

Menn 24 7. R 44 3.3 186.9 23.0 161.5 691.0 1060.4 .67 5.6 14.1 .97 .50

Standard deviation R2.4 152.6 JOO.6 15.6 103.6 175.9 230.5 .46 4.5 21.0 1.2 .62

CoelfIrient of variation . 33 .34 . 54 .68 .64 .25 . 22 .67 .81 1.5 1.25 .84

Vat Lance 6789.R :23286.R 1OI2O.4 243.1 IO7OO.5 3O940.fi 53130.3 . 19 20.3 44 1.0 1.46 .18

Percent variance 5.0 17.2 7.5 .1R 7.9 22. R 39.2 0.0 .02 .003 0.0 0.0
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cs
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Table 16.—Matrix of ^ibseivc^l p)r sLrn|•igrnphic thickness data 

r mil L

3 o
Ji cnaj th f*  jtf
S u nj *H  u) •£*  oC ti nJ v) •» 1O 0 Htd 
o u

jD a. u wM « d ti Ti
u Lj •?. ‘A u

Total thickness .2/fJ .H87 .94R .818 .84A■ __.. « ■- ■ ee -*?357 . 768 .476 .439

Sand .372 . 506— .._ _ ■*  ■
.699 . 502

Sim J c .875 -.748
BBA -.695

Clast its -.359
Ln 7315CO

Carbonates

Evapor 11es

None last les

SaruJ/sha 1 e -J87
-. 753

Clastic ratio

Eva|iortte ratio

None 1 astica/«and

.A6A .65'f

None last ics/shalo



Simulated vs*  approximated null values

In the foregoing analysis simulation was used to 

derive the null values for the ratio and part-whole 
correlations because the coefficients of variation (C) 

of the variables were too large to permit the use of 

Chayes*  (1971) approximations (table 2)• According to 

Chayes, for C larger than 0»15 the differences between 

the approximated and the simulated null



correlations may be large, but for C 0.15 the differences are negli­

gible and the approximations are adequate. "Before the development of 

numerical simulation, this inadequacy [of the approximations] was of 

course critical . . . but it is now a simple matter to run a simulation 

experiment on variables characterized by any set of means, variances 

and covariances" (equal to zero for simulation of null correlations) 

(Chayes, 1971, p. 15, 17).

All the stratigraphic variables in table 12 have C larger than 

0.15. The correspondence between the simulated null values and those 

obtained by Chayes' approximations is of some academic, if not 

practical,interest.

Table 15 shows the same correlated variables that were examined 

in the foregoing analysis, but the values in the table represent two 

null correlations, that obtained by simulation and that obtained by 

Chayes' approximation formulas. As expected, where the C's of the 

variables being correlated are both "relatively small", the correspondence 

between the nulls is good (differing only in the second or third decimal 

place). Good correspondence, however, occurs even when one C is very 

large. No meaningful relationship could be discerned between the magnitude 

of the difference between the nulls and the magnitude of the C's of the 

variables being correlated. It is apparent, though, that the part-whole 

correlations show consistently good agreement regardless of the C's, 

whereas the ratio correlations show consistently bad agreement. This 

reflects the fact that the part-whole correlation is simply the ratio of 

the standard deviations of the variables, and the standard deviations of the 

observed and simulated variables are approximately equal.
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„ . . ., , - Bimuiacea nuxi , . . xTable 15.—Matrix of  (upper-right half of matrix)
r approximated null 

and the difference between the two nulla (lower-left half 
of matrix; difference is positive (+) if r81mi rapprox. 
and difference Is negative (-) If ralm, < rapprox )

6

Total thickness .357
.357'

.693

.662
.768
.763

Sand .000 .499■»*
.469

Shale .031

Clastics .005 .030 .017

Carbonates

Evaporites .027

Nonclastics .022

Sand/shale -.195 -.023

Clastic ratio -.105

.476 .439
'"449 .437

.502-

.697

-.695
-.718

.315

.420

-.753
-.907

.464 .651

.853 .828

-.154

Evaporite ratio

Nonclastics/sand

Nonclastics/shale

Coefficient of 
variation 
(observed) .295 .346 .383 .260 .753 .642 .565 .814 .648 2.38 .700 .392

No
ne
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s/
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Summary

Because the r matrix reflects the numerical bias induced by 

ratio formation (data treatment which is common in stratigraphic 

studies), what appear to be highly significant correlations actually 

approximate the corresponding null correlations. Consequently, it is 

conceivable that depositional models may be misinterpreted and that use 

of the observed correlations as criteria for selecting maps to be incor­

porated into a stratigraphic investigation is not statistically justi­

fiable.

Correspondence between simulated null values and those obtained by 

Chayes’ (1971) approximations is erratic, and the relationship between 

this correspondence and the C's of the variables being correlated could 

not be determined—and is probably not of practical import due to 

readily available simulation experiments.
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GEOCHEMICAL DATA

Standardized vs. nonstandardized 

principal-components-analysis scores

PCA scores may be correlated or uncorrelated depending on 

whether standardized or nonstandardized data is used to compute 

them. How, numerically, the matrices of scores differ should provide 

insight into why, given the same eigenvalues, scores produced from 

one kind of data are correlated and those produced from another kind 

are not. This problem is examined using a set of geochemical analyses.

The summary statistics for chemical analyses (weight percents) of 

the oxides of 28 volcanic rocks from Gough Island are given in table 

16. These 28 analyses were included in a larger data set analyzed 

(LeMaitre, 1968) by PCA for the purpose of determining differentiation 

trends. PCA is a mathematical manipulation whereby data is trans­

formed to a new coordinate system; by definition the transformation 

produces uncorrelated variables. The objective of PCA is "to define 

a new reference system in which the total variance of the original 

data is preserved but the covariance is eliminated" (Trochimezyak and 

Chayes, in press). One should not, therefore, expect "trends" to be 

apparent in plots of scores derived from PCA.

This suggests that the use of PCA may be counterproductive—that 

is, will produce correlated new variables (scores) — under some 

circumstances. Trochimezyak and Chayes (in press) have shown under 

which circumstances (data treatment) the transformed variables 

are correlated.
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T.tble _16.—Sumnhnry stat Ir,tics describing rh.^nlr.ul analyses 
of Gough Island vuJcanic rocks

U1
VD

SiO, Tin, Ai 2II3 ^_2°_3 l:e0 -nl MgO C.aO Ma20 ^°_5

Mean 5-1. 2 2.0 17.4 3.0 5.2 . 1 4 . 1 5.4 4 .4 4.0 . 3

Variante 29. 1 I .3 4 . 7 2 . 4 5.5 .003 18.3 9 . 1 2.2 3.3 .02

Standard deviation 5.4 1.2 2.2 1 .6 2.3 .056 4.3 3.0 I . 5 1.8 .14

Coefficient of variation . i . 6 . 1 . 5 . 5 . 4 1 . 1 . 6 . 3 . 5 .6

Percent variance 34.3 1 . s 6.2 3.2 7.2 .004 24.1 12.0 2.8 4.4 .02

Rani*  v 1 5.8 5.3 11.3 6.7 8.2 . 3 19.7 6.4 6.0 5.5 . 5



Of the several options which extract principal components and 

then transform the original data into scores, some which are compatible 

with the objective of PGA are:

1) the use of the r matrix to extract principal components and 

the use of standardized data (Z-scores of original data) to 

compute scores;

2) the use of the variance-covariance matrix to extract principal 

components and the use of the original data to compute scores.

Other options, such as

3) a combination of the r matrix and the original data, or

4) a combination of the variance-covariance matrix and Z-scores

are unsatisfactory methods of PGA because they result in correlated scores.

All four of these PGA options were computed for the Gough Island 

data in order to examine the results with respect to those which PGA, 

by definition, should produce. The PC analyses are available in the 

geology department of the University of Houston. The Gough Island 

results from options 1 and 3 (and options 2 and 4) differ only by the 

new variables; therefore plots of the scores differ. All other analytical 

results are the same for each pair of options.

The plots of the scores are consistent with the results about 

correlation that Trochimczyak and Chayes (in press) predict. Furthermore, 

whenever standardized data is used to compute scores, the plot of the 

scores centers around zero for both variables. This is to be expected, 

as Z-scores measure the "distance" of x from x, so the mean of the 

Z-scores is zero.
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The numerical difference (correlated vs. uncorrelated variables) 

which the various PCA options have produced cannot be explained simply 

by inspection of the plots. It is apparent, however, that when standard­

ized data are used to compute scores (regardless of the matrix used to 

extract principal components), the scatter of points is noticeably 

compressed. Another observation is that, again regardless of the matrix 

used, absolutely no overlap of points occurs between plots of scores 

from standardized vs. original data.

Although inspection failed to yield any substantive insight into 

why, numerically, the plots differ, a more systematic analysis might 

succeed. As the matrices of the Gough Island PC analyses are too 

unwieldy to manipulate, a 5 x 3 data matrix was "simulated" such that 

the first variable has a mean many times larger than the second variable 

and not as many times larger than the third variable. The eigenvectors 

(in the working model, a 3 x 3 subset from the Gough Island r-matrix 

PC analyses) used to compute the scores are the same for both original 

and standardized data.

The appendix contains the matrix manipulations which were intended 

to reveal how, numerically, the matrices of PCA scores, derived from 

standardized vs. original data, differed; this, then, might provide a 

clue as to why, given the same eigenvectors, scores produced from one 

kind of data were correlated and those produced from another kind were 

not.
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To define a term used in the following discussion, the product of 
two matrices is a matrix whose element in the i^ row and column is 

the sum of what will be referred to as the "cross products" of elements 
. th , . th  . , m the i row and j column of the factors.

Inspection of any data matrix of chemical analyses and the corresponding 

matrix of Z-scores reveals an obvious difference between the two: 

about 50 percent of the elements in the matrix of Z-scores are negative. 

The negative elements represent the original values of the variable which 

are less than the mean of the variable. This difference carries through 

to the matrix of cross products (appendix, p. 1-3, circled elements). Where 

the value of the original data is less than the mean of the variable, the 

sign of the cross product will change when the data is standardized. No 

sign change occurs when the value of the original data is greater than 

x. This suggests that the values of x are affecting the numerical aspect 

of the matrix of PCA scores, and page 4 of the appendix shows how. If

A is the sum of the cross products (that is, if A is the matrix of PCA 

scores) when original data are used (appendix, p. 2) and if B is the

sum of the cross products when Z-scores are used (appendix, p. 3), and if 

C is the row vector whose components are the sums of cross products between 

the row vector of means of the original variables [x^, x^] and the
matrix of eigenvectors (appendix, p. 4), then the sum of the i^ column of

B and the i^ component of C is the i^ column of A.

This observation can be refined somewhat (appendix, p. 5) to see that 

for every element in the column of the matrix of PCA scores, the q 

cross products (where q = the number of variables) which are summed to
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compute the element differ (with respect to Z-score factor vs. original­

data factor) by the amount:

(eigenvector matrix component^) X (x1) for the first cross product

( component-.) X (x2) second

( component^j) X (x3) third

( component ,) X (^) th q

The value of x’s, then, rather than of (x-x) seems to be making the 

numerical difference in the matrices of PCA scores. How this information 

may be brought to bear on the correlation of scores is a subject for 

further investigation.

Summary

Under some circumstances (data treatment) PCA will produce correlated 

variables which, by definition, is indicative of analytical error. Matrix 

manipulation lent some insight into how, numerically, the matrices of 

PCA scores, derived from standardized vs. original data, differed. 

Apparently the value of the x's, rather than of (x-x), seems to be making 

the numerical difference in the matrices of PCA scores.
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CONCLUSIONS

This investigation has determined that some ramifications of 

data treatment in combination with quantitative analytical methods are:

—Closure can induce correlation of the rank type as well 
as of the product-moment type

—Dendrograms produced by the use of r can be generally 
reproduced by the use of rank correlation coefficients; at least in 

studied, 
the case^ cluster analysis will group together similarly 
behaving variables regardless of the measure of similarity 
or the distribution of the data

—PCA may not be any more efficient a reducer of data than 
a visual inspection of variances

and part-whole correlations,
—Ratio correlations y^such as those used in stratigraphic 

studies, may be substantially biased and should not be 
used to infer geologic relationships among the variables; 
their use, for example, as criteria for selecting maps to 
be incorporated into a stratigraphic study may be ill-conceived

—The numerical difference between matrices of PCA scores 
derived from standardized vs. original data should provide 
a clue as to why, given the same eigenvectors, scores 
produced from one kind of data were correlated and those 
produced from another were not; apparently the value of the 
x's, rather than that of (x-x), seems to be making the 
numerical difference.
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APPENDIX

Examinacion or matrices or PCA scores derived 

from standardised and nonstandardized data
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ORIGINAL DATA EIGENVECTORS
(5 x 3) (3 x 3)

*20 1 5" *E11
-Eu -E13"

22 2 8 X ■E21 E22 E23

24 5 6 E31 E32 *E33

26 3 4

J8 4 7

^4 3 6" •

Ell<->-E21<-’+E3/->-E12(-)+E22<->+E32(->-E13<-’+E23(->-E33(-’

1 Ell<-)-E21(-)+E31(+>-E12<-)+'E22<-)+E32(+:l|-E13(->+E23<->-E33<+)

8 E11(0)-E21(+)+E31(0)-E12(0)+E22(+)+E32(0)|-E13(0)+E23(+)-E33(0)

STANDARDIZED DATA 
(Z-scores of orig- 
inal data)

20-24 1-3 5-6'

22-24 2-3 8-6

24-24 5-3 6-6

26-24 3-3 4-6

28-24 4-3 7-6,

- +
+ OX
0

EIGENVECTORS

above

CROSS PRODUCTS
<5 x 3),

E11(20)-E21(1)+E31(5X-E12(20)+E22(1)+E32(5)I'-E13(20)+E23(1).E33(5)
E11(22)-E21(2)+E31(8)LE12(22)+E22(2)+E32(8)i-E13(22)«23(2).E33(8)

E11(24)-E21(5)+E31(6)|-E12(24)+E22(5)+E32(6)!-E13(24)+E23(5)-E33(6)

E11(26).E2i(3)+E31(4)(.e12(26)+E22(3)+E32(4)Iei3(26)+E23(3).E33(4)

Ell(28)’E21W+E31(7)!-E12(28)+E22(4)+E32(7)|’E13(28)+£23(4)-E33<7)

Ell(+)'E21(0>+E31(’7’E12<+)+E22(0)+E32(")i‘E13(+)+E23(0)'E33(’)

.Appendix, p. 1



CROSS PRODUCTS 
<5 x 3)

.37(20)-.34(l)4-.28(5)(-.10(20)+.22(l)+.39(5)f-.12(20)4-.08(l)-.06(5j" 

.37 (22)-.34(2)+. 28(8)'-. 10(22)+. 22(2)+.39(8)'-. 12 (22)+. 08 (2)-, 06(8) 

.37 (24)-. 34(5)+. 28(6)1-. 10(24)+. 22(5)+. 39(6)|-. 12 (24)+. 08(5)-. 06(6) 

.37(26)-.34(3)+.28(4)-.10(26)+.22(3)+.39(4)-.12(26)+.08(3)-.06(4) 

.37 (28)-.34(4)+. 28(7)|-. 10(28)+.22(4)+.39(7)-. 12(28)+.08(4)- .06(7)

10.4 - 1.4 + 1.96- 2.8+ .83 + 2.731- 3.4 + .32 - .42

^2 ^3

8.5

9.6

.2

1.4

-2.6

-2.9

SUM OF THE CROSS PRODUCTS ■= A * 8.9 1.04 -2.9 - PCA SCORES

9.7 -.4 -3.1

11.0 .8 -3.5
—
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STANDARDIZED DATA 
(5 x 3)

EIGENVECTORS (3 x 3)
■
-4 -2 -1 .37 -.10 -.12

-2 -1 2 X -.34 .22 .08

0 2 0 .28 .39 -.06

2 0 -2

_ 4 1 1_

CROSS PRODUCTS 
<5 * 3)

”.37 (-4)-.34(-2)+.2S(-l^-.10(-4)+.22(-2)+.39(-l)|-.12(-4)+.08(-2)-.06(.l)

.37(-2)-.34(-l)+.28(2) . 10(-2)+.22(-l)+.39(2) .12 (-2)+. 08 (-1)-.06(2)
1 I I

- S .37(0) -.34(2) +.28(0) 10(0) +.22(2) +.39(0) . 12(0) +.08(2) -.06(0)

.37(2) -.34(0) +.28(-2)-.10(2) +.22(0) +.39(-2)-. 12(2) +.08(0) -,06(-2) 
i I

.37(4) -.34(1) +.28(1),-.10(4) +.22(1) +.39(1) -.12(4) +.08(1) -.06(1)
<- I | -

D -

-.3

+ .8 I .2

-1.1 -.4 +.36~

.2 + .8 -.02
. 1

SUH OF CROSS PRODUCTS - B - S -.7 .4 + .20

.1 -1.0 -.08

1.5 .2 -.46

• PCA SCORES

Appendix, p» 3



MEANS CE 
ORIGINAL DATA 

(1 x 3)
EIGENVECTORS 

(3 x 3)
C 

(1 x 3)

'.37 -.10 -.12*

*Line 1 differs from line 7 by line 6; lines 2-5 differ from lines 9-12 by line 6.

**(DV) - (Data Value)

-.34 .22 .08

.28 .39 -.06
[^24 (.37)+3(-.34)+6(.28) 24(-.10)+3(.22)+6(.39) 24(-.12)+3(.08)+6(-.06)]

^8.88 - 1.02 + 1.68 -2.4 + .66 + 2.34

P 9.54 .6

-2.88 + .24 - .36

-3.0

.37(4) - ,34(-2> + .28(-l)' - .10(-4) + .22(42) + .39(-l), - -12(-4) + .08(-2) - ,06(-l)" LINE 1

Matrix of cress ,37(-2) . . . LINE 2
products from ].
page 3 ■ S .37(0) . . . 1 LINE 3

.37(2) . . . | 1
LINE 4

.37(4) . . . ' ! LINE 5

.37(24)- .34(3) +.28(6) -.10(24) + .22(3) +.39(6)'- .12(24) +.08(3) - .06(6) LINE 6
c -

j^(xj) —E2^(Xj) + ^12^1^ +^22^x2^ *̂32^ x3^ ~ ^13^xl^ 822(^2) —

".37(20) - .34(1) + .28(5)!- .10(20) + .22(1) + .39(5) |-.12(2O) + .08(1) - .06(5) LINE 7

E11(DV)**-E2 1(DV)+E31(DV) - E12(DV) + E22(DV) + £32(09),- E13(DV)+ E23(DV) - £33(09)

Matrix of cross .37(22) . . . | I LINE 9
products from
page 2 » .37(24) . . . LINE 10

.37(26) . . . I LINE 11

.37(28) . . . | LINE 12
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