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ABSTRACT

Numerical techniques commonly used by geologists to quantitatively
ferret out relationships among variables include scattergrams, dendro-
grams, and principal components analysis. These and other analytical
methods are based on a measure of similarity, such as the Pearson
product-moment correlation ccefficient, r. The r matrix, however, may
be subject to numerical bias depending on the type of data from which
the matrix is calculated. Consequently, inferences about the geologic
significance of the between-variable relationships may be unsound and
may reflect nothing more than numerical inevitabilities.

R-mode analyses of a set of carbonate modal data, a set of
sedimentary thickness data, and a set of geochemical data show that
the interpreter of quantitative analysis must bear in mind not only the
constraints of the analytical method but also those of the data treatment.

Amongz other results, this investigation has determined that
closure can induce correlation of the rank type as well as of the
product~moment type and that principal components analysis may not be
any more efficient a reducer of data than a visual inspecticn of

variances.
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INTRODUCTION

As computers have become more accessible to researchers, investigations
incorporate
which A numerical analysis has more and more frequently appeared in
the literature. The trend is undoubtedly irreversible and geology
certainly is not unaffected by this technologic development. Quanti-
tative analysis is firmly established as an investigative tool in
geologic research, and a substantial percentage of the literature of the
discipline is essentially lost to the geologist who lacks understanding
cf the numerical tools about which he reads or, worse yet, which
he uses.
In practice, geologists commonly call upon quantitative techniques
to "sort out' relationships among variables. Correlation coefficients
(Pearson's product-moment correlation coefficient, r, if the data are
normally distributed or a nonparametric coefficient if not) may be
computed to serve this purpose. Regardless cf the technique, however,
the investigator must be able to recognize the absence of association
(randomness) among the variables so that meaningful association among
variablas can be confidently asserted. Meaningful association is conventionally
established by testing the coefficients against a parent correlation
of zero, that is, against a 'mull" correlation which represents randomly
associated variables. However, for data subject to numerical bias, a
parent correlation of zero is not an appropriate measure of randomness.
For these data, the conventional interpretation of statistical correlation
would yield erroneous conclusions about the variable relationships. It
is on this problem that the analysis and discussion in this thesis is

brought to bear.



The following section describes techniques which will be used
in the analyses in subsequent sections and provides reference

material which will be called upon in the discussion of the analyses.



ANALYTICAL METHODS

Scattergram, dendrogram, and principal components analysis

By either graphical, intuitive, or numerical methods, many
geologic investigators seek to determine relationships between pairs
of variables. The binary scattergram is probably the most common
and simplest method of illustrating the degree of linear association
between a pair of variables because the joint behavior of the two
variables is assessable by simple graphical interpretation. The
scatter of points in figure 1 shows a perfect positive linear
association (fig. 1A), a complete lack of linear association
(randomness) (fig. 1B), and a perfect negative linear association
(fig.1C). More realistic patterns of joint variation deviate from
the perfect relationships shown in figure 1, but it is these standards
of reference against which real data are compared. By simply plotting
points on a scattergram, then, the investigator may visually evaluate
the strength of pairwise association between variables.

A multivariate counterpart of the binary scattergram is the dendro-
gram, produced by cluster analysis. A dendrogram is a '"tree diagram "
showing the mutual relationships among a given set of variables. The
variables most highly intercorrelated are clustered together in a manner
such that the dendrogram has a hierarchical configuration in which each
level reflects the degree of intragroup homogeneity. Mutually related
groups are adjacent, but the groups are mutually exclusive in that any
variable can belong to only one group. McCammon (1969) stated, however,

that it is possible to examine the data in a rearranged form in which
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variables that could interchange groups can be identified.

Davis (1973) commented that cluster analysis is not a statis-
tically rigorous method of examing multivariate behavior. Rather,
he stated, "it belongs to that category of techniques...in which
utility is judged by performance and not by theoretical considerations”
(p. 501). It tends to be used insofar as its results corroborate the
investigator's intuition about the variables.

Principal components analysis (PCA) also falls into the category
of techniques in which utility is judged by performance. PCA is not,
strictly speaking, a statistical procedure. It is a mathematical
manipulation designed to make apparent the '"redundancy' in a set of
variables. The manipulation transforms the data to a new coordinate
system defined to produce uncorrelated variables. As a multivariate
technique, it could perhaps serve as a more quantitative discrimimator--

relative to cluster analysis---of the interrelationships among variables.

Measure of similarity

The binary scattergram, the dendrogram,and PCA are all tech=-
niques of R-mode analysis as long as the objective is to seek inter-
relationships among the variables. A measure of similarity, that is,
a measure of pairwise variation among the variables, is the basis for
analysis. The measure of pairwise variation that is commonly chosen
is a matrix of correlation coefficients, either the Pearson product-
moment correlation coefficient (r) if the data are normally distributed
or a rank correlation coefficient if not. The product-moment correlation
coefficient is a measure of linear association and is defined as the

ratio of the covariance (cov) of two variables (e.g., y and z) tc the

6



product of their standard deviations (s):

°y°z 1)
This measure is a convenient one because, being unitless, r's are
easily compared even though the variables may have been measured in
different units. Moreover, r is a ''standardized" measure of similarity;
that is, each variable is weighted equally. The value of r can range
from +1 to -1l(because covariance yz may equal but not exceed the
product of the standard deviations of its variables). Whereas r = +1
indicates a perfect direct relationship and r =-1 indicates a perfect
inverse relationship, r = 0 indicates complete linear randommess. Thege
interpretations of r, especially in combination with a binary scattergram
(fig. 1), conform well with what an investigator would intuitively
conclude about the pairwise association patterms.
Intuitive conclusions may be statistically corroborated by
testing the observed correlation coefficients against the null hypothesis
target population
that the correlation in thepis zero. This criterion of randomness is,
in fact, the assumption underlying most elementary correlation analysis;
one of its major advantages is the compatibility between the numerical
and graphical representations of association. If an observed correlation
differs with statistical significance from zero, the variables are
meaningfully associated. The test for significance of r is made using

Student's t (Neter and Wasserman, 1974); t is the test statistic:
calculated

HO: () = 0
H : #0
i

tcalculated B

[(n—2)/(1—r2 )]i

r
observed observed




t i en f les. is g er than
where n is the number of samples I1f tcalculated great t

ttabulated (at the given significance level and for the appropriate

degrees of freedom), then the null hypothesis H_ must be rejected, the
reason exists

implication of which 1s that no A to assume the variables are not

meaningfully associated.



DATA TREATMENT

For some types of data, the "intuitive demand" (Chayes, 1971)
that zero correlation be the measure of randomness is ill-conceived
because the matrix of correlation coefficients is wvulnerable to
substantial numerical bias. Bias alters the measure of randomness
so that meaningful association among variables is obscured. Conse-
quently, inferences about the geologic significance of the variable
relationships may be unsound and may reflect nothing more than numerical
inevitabilities. Data which are subject to induced bias are those in

percentage and ratio form.

Percentage (closed) form

Consider that on each of n samples m variables are measured and
these data are arranged in matrix form such that each row represents
one sample and each column represents one variable. From this matrix,
a deviaticn matrix can be formed by subtracting the variable mean from
each of the measured values of that variable. The data are "open' if
no constraints are imposed on the sum of the rows of the data matrix or
of the deviation matrix. The data are "closed" if the sum of each
row of the data matrix is constrained to be a constant common to all
rows. The constant sum is 100 in the case of percentage data. Moreover,
for closed data the sum of each row in the deviation matrix is constrained

Therefore

to be zero. A the sum of each row in the closed variance-covariance

matrix must be zero (no such restriction applies to the sums of the rows of

the open variance-covariance matrix) (Chayes, 1971, p. 37). This implies



that the sum of all covariances for variable x is negative and has the
same magnitude as the variance of x. Each variable, therefore, must
be negatively correlated with at least one other variable. Generally,
strong negative correlation bias is induced between variables having
relatively large variance, and positive correlation may be induced
between variables whose open variances are relatively small (Chayes, 1971,
p. 39-40).

Essentially, then, the effect of closure (percentage formation)
is that the potential independence of variances and covariances (that is,
the potential for covariances to be zero), which is the basis of correlation
theory, is destroyed; bias is introduced such that the closed data are
statistically correlated even though the open data may nct have been.

For two- and three-variable systems, the correlation bias due
to percentage formation can be exactly predicted. The binary case
is trivial; the induced correlation is -1, a perfect inverse linear
association, because the relative magnitude of one variable must decrease
as the other increases. In the ternary case, all three correlation
coefficients are fixed and predictable from the (closed) variances
{(var) of the variables (Chayes, 1971, p. 42):

var - (var + var )
X v z

r = (2)
yz 2sysz

where s is the standard deviation. (For the other coefficients in the
in equation 2

ternary system, r., and rxy’ the subscriptspcan be rotated.) It is

apparent that ry" can be positive only if var_ is greater than

(vary + varz); the implication is that positive correlation in a termary

10



variance of the
system would not be a common occurrence. Note that thepthird variable

the one excluded from r's subscripts (equation 2)) controls the sign
of r.

For multivariate systems the correlations due to closure cannot
be exactly predicted. Chayes (1960, 1971) has shown, however, that for
systems having four or more variables, bias is not negligible. Moreover,
one cannot expect to eliminate the closure effect by making the number

unlikely

of variables (m) very large. Only in the A case in which all
open variables are randomly distributed and have the same mean and
variance can the effects of closure be reduced by increasing the number
of variables. Chayes (1971, p. 40) has shown that, for m varibles sc

defined, the closed correlation coefficient to be expected between any

two is:

= 1
L D) (3)

For example, suppose that

m = 3; then r =-.5 in the absence of a significant departure from
randomness;

if m = 5; then r =-.25
m =10; r =-.11
m =15; r =-.07

This extreme case, however, is hardly realistic ameong geologic variables.
To illustrate the effect of closure, a data set of 75 samples, each

sample having 5 normally distributed uncorrelated variables, was simulated.

The summary statistics for the open and closed data are given in table 1.

Figure 2 shows examples of binary scattergrams of the open (figs. 2A,B)

and the closed (figs. 2C,D) data. 1t is obvious that closure has induced

linear association and has obscured the picture of randomness, thereby

obscuring meaningful association among the variables.

11



Table 1.--Statistics describing simulated set of 5 normally
distributed random variables measured on 75 observations

Stratigraphic thickness measurements {open set)

Summary statistics

R Tatal
Variable name A . B c D E thickness
Mean 147.8 149.8 100.3 48.84 298.6 745.3
Variance 222.9 24,48 94.34 118.0 5606. 5915.
Standar¢ deviation 14,93 4.946 9.713 10.85 74.88 76.91
Ccefficient of variation .10099 .03302 .096382 .22240 .25079 .10319
Maxinuz 176.6 166.2 122.1 77.60 485.1 942.3
Minimum 102.7 137.7 80.85 21.30 118.8 573.5
Range 73.97 28.53 41.20 56.30 366.3 368.8
Percent variance 1.8697 20415 .78736 .98486 46.794 49,369
Variance ~ covariance matrix
Total
A B c D E thickness
A 222.93 1.0384 4.7960 - 6.9150 -145.97 89.713
B 24.460 2.6881 6.9054 -52:066 ~16.976
c 94.335 6.3200 -2.2914 105.84
D 118.00 96.070 234.21
E 5606.5 5502.2
Total thickness 5915.0
Correlation - coefficient matrix
Total
A B c D E thickness
A 1.06000 .01406 .03307 .04264 -.13056 .07313
B 1.00000 -05596 .12854 ~.14060 -.04462
c 1.00000 .05990 ~.00315 214169
D 1.00000 .11812 .28034
E 1.00000 295547
Total thickness 1.00000
Percent of total section (closed set)
Supmary statistics
Yarizble zame A B c D E
Mean 20.03 20,32 13.58 6.583 39.49
Variance 7.527 5.267 3.185 2.107 39.96
Stardard deviation 2.743 2.295 1.785 1.452 6.321
Coefficient of variation .13698 .11296 13141 .22052 .16006
Mayizum 25.37 27.09 19.41 9.942 54.32
Min{oum 13.39 15.74 9.623 3,048 20.71
Range 11.98 11.35 9.786 6.894 33.61
Percent variance 12.968 9.0738 5.4879 3.6309 68.840
12

(continued)
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Table 1.--(continued)

Variance - covariance matrix

B

4.1102
5.2666

c

2.2314
2.7198
3.1852

.59584

.85132

.42638
2.1074

Corralation -~ coefficient matrix

B

.65283
1.00000

c

45572
. 66405
1.00000

D

.149A1
.25554
.16457
1.00000

=14.464
-12.947
~ 8.35625
- 3.9808
39.956

E

~.83405
~.80255
~.75%00
-.43382
1.00000

Ratios of closed vatiab]esl; denominator has large coefficient of variatfon

Variable name

Mean

Variance

Standard deviation
Coefficient of variation
Maximum

Minimum

Range

Percent variance

A/E
B/E
C/E
D/E

A/E
B/E
C/E
D/E

1 (equal to ratlos of open variables)

A/E

.53173
.02660
.16309
.30671
1.19175
.26007
.93168
37.74040

A/E

.02660

A/E

1.00000

Summary statistics

B/E

.53893
.02716
.16481
.30581
1.30860
.3C919
.59880
38.54042

Variance - covariance vatrix

C/E

.36016
.02187
.11344
.31497
.936S5
.17806
.75889
18.25390

B/E

.02529
.02716

C/E

.01648
.01765
.01287

D/E

J1T447
.00385
.06203
-35552
.39082
.07153
.31929
5.45928

D/E

.00753
.00E03
.00524
.00385

Correlatfon ~ coefficient matrix

B/E

.946100
1.00000

C/E

.89083
.94399
1.00000

D/C

.74391
.78514
.74438
1.00000

(continued)



Table l.--(concluded)

Ratios of clesed variables; denominator has small coefficient of variation

Surmary statistics

Variable name A/B c/B /B’ E/B

. :“;‘ . .98806 67027 .32614 1.99773
S‘" g“cj deviats .01105 . .00451 .00517 .26176
tandard devlation 10514 .06715 .07190 .51163
Coefficlent of variation 10641 10019 22045 25610
*f(ﬁ“‘i““’“‘ 1.19886 .§3700 .50812 3.23421
R;: ‘e““"‘ 70339 .53664 .14025 76453
» rgmt ari 48547 .30036 .36787 2.46968
ercent variance 3.91265 1.59624 _ 1.82995 92.66096

Variance - covariance matrix

A/B c/B D/B E/B
A/B .01105 .00077 .00027 -.00207
c/B .00451 .00025 .00243
D/B .00517 .00553
E/B .26175

Correlation - coefficient matrix

A/B C/B D/B E/B
A/B 1.00000 .10923 .03593 ~.03852
c/B 1.00000 .05233 .07081
D/B 1.00000 .15040
E/B 1.00000

12b
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FIGURE 2. - - BINARY SCATTERGRAMS OF OPEN AND CLOSED SIMULATED DATA
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Ratios having common terms

As will be shown, the closure effect can be eliminated by
However,
converting percentage data to ratios. Athe formation of ratios from
percentages essentially replaces the constraints of closure by those
inherent in ratio formation.

Suppose that X is a vector of random variables [xl, XZ""Xm]

and that P is a vector of percentages such that Pk = xk/rs where
m

rs (row sum) = E::xk and 1 £k & m. Qi is defined as the ratio of
k=1
Tae
any two Pk sS: <
P 1 X
1 — 1
Q‘=——=rs = —
i P2 - X,
X 2
rs
Similarly, let Qj be defined as:
X
3
Q=P_3____£§_=fé
T T
rs

Therefore ratios of percentages (recall that percentages are subject

to the closure effect) '"reduce" to ratios of nonpercentage variables.

Because it evidently does not matter whether the variables from which

ratios are formed are percentages or not, a discussion of the correlation
(e.g., %,, X,, etc.)

constraints of ratic formation can proceed assuming the parent variablesA

are not percentages and that they are uncorrelated. As will be shown,

correlation between simple ratios having common terms is measuring bias

as well as the degree of association between the variables. (No correlation

will be induced between two simple ratios which do not have common terms.)

14



Furthermore, it will be shown that various (depending on the ratio
form) nonzero null values can be derived to test the significance of
correlations between ratios.

Pearson (1896) showed that, even when variables are uncorrelated,
"spurious" correlation between ratios formed from the variables is a
function of the means, variances, and covariances of the variables
forming the ratios. Pearson's general formula for the correlation
(rij) between ratios Qi and Qj (as defined in table 2) is given in
equation 1 of table 2. This equation has been used by Chayes (1949, 1971)
to derive approximations (equations 2-6, table 2) for the correlation
to be expected between various common forms of ratios constructed from
uncorrelated (or correlated, as in the case of percentages) variables.

To illustrate the problem of ratio correlation, the simulated
data described in table 1 is plotted in figure 3. The ratio form
corresponding to equation 4 (table 2) was chosen for figure 3 because
ratios with common denominators are often used as a scaling mechanism.

The denominator, variable E, is the variable having the largest coefficient

of variation, C, where C_ = SE/EE’ where s is the standard deviation,

E
and where x is the mean of the variable. The figures (3A,B) show that

the ratio formation has induced remarkably high correlatiomns. It can be
shown (Chayes, 1949) that, when the variable having the largest coefficient
of variation is in the denominator for this ratio form, induced correlatiom
can be no less than rij = ,5, and this minimum applies only in the

special case when Cl = C2 = C3 (table 2, equation 4). As the data departs

from this unlikely case, induced correlation rises rapidly. For example,

15



Table 2,--"Spurious' correlation among ratios

Equation No.

Pearson's general formula for “spurious™ correlation

Suppose X 1is a vector of k random variables (xl, xz...xm). Qi is a ratio formed from any two Xk's and

X x3 See
Q, also is a ratio formed from two X,'s. IfQ, ===, Q, = <=, C, = = (where C is the coef of variation,
3 A . k i X770 X, k e

S 1s the standard deviation, and X is the mean), and Ty is the observed correlation coef. between xk and

LA ’
r,,6,65 - r,,C.C, - r,.C,C, 4+ r,,C.C
then t . 127173 167174 237273 247274

i) 7, .2 72 2. 2 172
¥ cy- 2, e )0 e+ 'cl‘ - 40,75,)

Approximate null correlations between ratios having common terms

Suppose X is a vector of k random variables (xl, xz...xm). Qi is a ratio formed from any two X, 's and

¥

Qi is a ratio fromed from two Xk's, one of which is common teo Qi or one of which is common and one of

s
which is a constant (e.g., 1); Ck = :‘-‘ as defined for equation 1.
xk
X <
IfQ, - and Q, = X., thenr,, = ——s——
i X, 3 1 13 (Cz +c2 ) 1/2
1 2
Q -ﬁ and Q. = X r,, = . -Cz
- »
] i X2 j 2 ij (C2+ c?.) 1/2
1 2
X X C2
Qi"x_l"‘“d°3=i2 Tyt TIT 2 AT
2 2 €+ €5+ C)
. X, c2
., =~ and @, = — rT,, =
17X 5 T % 13 2. 2. 1/2 2. 2.1/2
1 3 (C2 + Cl) (C2 + C3)
2 .
X X -C
1 2 T 2
Q, =7 and Q, = — ij =
X 3% e ch /2 ©+ch /2

16
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i £ , . 1 . = .67: i ‘. , o
i C2 is twice as large as Cl and C3, rij 67; if 02 is three times

as large as Cl and l%i times as large as C3, rij = ,79. If, on the other
hand, the variable in the denominator of this ratio form has a very

small C (e.g., variable B, table 1), very little correlation is induced
(fig. 44,B).

It is obvious that data treatment (percentage or ratio formation)
may jeopardize an investigator's ability to recognize lack of linear
association among variasbles, but he must nevertheless avoid attributing
significance to bias (correlations) generated by the data treatment.
Therefore, rather than test observed correlations against a null value
of zero, Chayes (1971) has suggested that the '"spurious' correlation
itself (the correlation induced among the parent variables defined to
have covariances equal to zero) serve as the measure of randomness, the
null value. If an observed correlation differs significantly from the
spurious correlation, the investigator may conclude that, at the given
significance level, the variables are meaningfully associated. The point,

of course, is that the investigator must know the correlation to be expected

in the absence of a significant departure from randomness.

The following sections report R-mode analyses of a set of carbonate
modal data, a set of sedimentary thickness data, and a set of geochemical
data. The analytical (statistical) techniques and the data characteristics
vary from set to set, but the common element is that the constraints of
the analytical method cannot be separated from constraints of the data

treatment; both must be brought to bear on the interpretation of an analysis.

18



VARIASLE D
VARIABLE 8

€T
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CARBONATE MODAL DATA

Purdy (1960) conducted an investigation 'to quantitatively
delineate calcium carbonate facies on the northwestern part of the
Great Bahama Bank" (1960, p. 1). His work is considered a classic
study in quantitative analysis of geoclogic data. 1In fact, according
to Davis (1973), the use of Q-mode factor analysis was introduced into
geology by Imbrie and Purdy (1962) using the data of Purdy (1960).
Because the dissertation is so widely cited (e.g., McCammon, 1969; Parks,
1966; Koch and Link, 1971; Krumbein and Graybill, 19653) and because it
raises some interesting questions, a reexamination of Purdy's analysis
follows.

This section describes-Purdy's investigation and suggests that some
assumptions under which he worked were not rigorously justifiable. This
thesis attempts to identify incorrect assumptions and to insure that the
analytical methcds are appropriate to the data. In spite of the analytical
differences, the results herein are generally comparable to Purdy's.
Interpretive differences, however, are introduced as a result of the

analysis in this section of the effect of closure on the data.

Purdy's investigation

Purdy collected 218 sediment samples, from each of which a representative
subsample was selected and thin-sectioned. For each of the 218 subsamples,
the constituent particle composition (the relative abundance of 16

different grain types in a sample) was determined by point-count analysis
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of the sample fraction coarser than 1/8 mm. Another representative sub-
sample was selected to measure the weight percentage of the sample fraction
finer than 1/8 mm (the boundary between the fine-sand and very-fine-sand
sizes of the Wentworth scale). This weight percentage was intended to be

a textural indicator which would reflect (although, as Purdy conceded,
crudely) the relative intensity of current action in different areas on

the bank.

Purdy's data formed a matrix of 17 variables measured on 218 samples,
but not all this information was included in his statistical analysis.
Four variables were excluded because they were not "quantitatively
important constituents; 15 samples were eliminated because of thin-
section analytical error due to relatively large grain size. Therefore,
Purdy's working matrix included 203 samples and 13 variables. BHis first
objective was to determine which variables tend to react similarly to
various envirommental conditions. Such variables form what Purdy called
a "reaction group'. He stated that 'the distribution of the various
reaction groups constitutes a sedimentary facies', which he defined as
"areally segregated parts of differing nature belonging to any genetically
related body of sedimentary deposits" (p. 94).

To resolve his data into reaction groups, Purdy used the technique
of cluster analysis and chose the correlation coefficient r to be the
measure of similarity between variables. He stated that the significance
of the resulting dendrogram "is that it documents the extent to which
Bahamian constituents tend to occur or react together in various unspecified
environments" (1960, p. 87). His analysis discriminated four reaction

groups.
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The use of Pearson's r as a measure of pairwise variation
between variables requires that each variable is normally distributed
and that both variables together are bivariately normally distributed.
Purdy stated that "justification for the use of this correlation
coefficient [in his study] is found in the central-limit theorem
which states in part that '. . .as sample size increases, sample means tend
to be distributed normally even is the parent population is anormal’
(Snedecor, 1965, p. 71). If the distribution is not markedly skewed, the
approximation to the normal distribution will ususlly be sufficiently
good if the sample size exceeds 30 (Cramer, 1955, p. 184). . .Sample
size in the present study is 203; moreover the estimated volume abundance
of grain types in each thin section 1s based on at least 500 point-
counts. Therefore it seemed fairly safe to compute product-moment
correlation coefficients’ (Purdy, 1960, p. 87).

But perhaps it is not safe. According to the central-limit thecrem,

the distribution of the means of all possible sample populations of size n

of a nonnormal target population will approach normality if the number of
samples (n) per sample population is sufficiently large. Even 30 samples

is "sufficiently large" if the target population is "not badly 'nonnormal' "
(Kolstoe, 1973, p. 1435). This is not the same as saying that the distri-
bution of any one sample population will approach normality if n is
sufficiently large, which is the dinterpretation of the central-limit

theorem by which Purdy justified the use of r. Moreover, Purdy's data

are markedly skewed, and nonnormality precludes the use of r. Histograms

of all 17 variables show that none are normally distributed; all are
extremely skewed toward zero occurrence. The chi~square goodness-of-fit

test (Davis, 1973, p. 116-122) for each variable corroborates what the
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histograms suggest. Therefore a messure of similarity which assumes

a normal distribution is dubiously applicable to Purdy's data.
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Rank correlation coefficients and reaction groups

Nonparametric statistics are applicable regardless of the
parameters
A  ©of the target population from which the sample is drawn (Ti11, 1974);
that is, their use is not contingent upon any assumptions about the under-
lying distribution of the data. Rank correlation coefficients, such as
Spearman's r_or Kendall's 7/(Demirmen, 1976) are nonparametric "order"
statistics computed from ranks rather than from absolute scores (as Pearson's
r is computed). They measure the degree of agreement between the ranks.
Tests for variable association which are based on these coefficients are
nonparametric. In general, numerical values of Spearman’'s and Kendall's
coefficients computed from the same data set are not identical because
the exact form of asscociation measured by the two coefficients is
different. Generally the absolute value of Spearman's coefficient exceeds
that of Kendall's, but the product-moment correlation between the two
coefficients (for the same data set) in the null situation is high,
approaching unity for large sample size (Demirmen, 1976, p. 223).
Because Purdy's data is not normally distributed, the rank correlation
coefficients would be more appropriate measures of similarity for the data
(using RANK from Demirmen, 1976)
than the product-moment coefficient. Both rank coefficients were computed
for Purdy's 203 x 13 matrix, and the results are given in table 3a. As
expected, in every case but one (that of the correlation between grape-
stone and oolites), the absolute value of Spearman's coefficient exceeds

that of Kendall's. Table 3b shows that both rank coefficients are very

different from the product-moment coefficient for the same variables.
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Peneroplidae
Other forams
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Table 3b.--Pearson-product-moment- correlation-coefficient
maxtrix far observed carbonate mndal data (from
Purdy, 1960)
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One might expect that cluster analysis, as it is based on the measure
of similarity, would reflect the difference between the two types of
coefficients.

To bring information to bear on this speculation, the matrix of
Spearman's rank correlation coefficients was clustered using the program
CLUSTER (Davis, 1973). Spearman's coefficient was chosen over Kendall's
because, according to Demirmen (1976), Spearman's coefficient is "in effect
a product-moment correlation coefficient obtained by treating the ranks
as though they were actual scores. Thus this coefficient in a sense
measures the degree of linear relationship between the ranks of two
variables . . . high values of (Spearman's coefficient) indicate that
the basic form of the relation between two variables is monotone, i.e.,
an increase in one variable is accompanied by an increase or decrease
in the other variable, although not necessarily in a linear manner"

{(p. 223). (A cluster made using Kendall's coefficient for Purdy's data,
however, was not noticeably different from that made using Spearman's
coefficient, except that the levels of similarity were lower for the former.)

Results of the rank clustering are shown in figure 5B and may be
compared with Purdy's dendrogram, in figure 5A. Even the subjective
nature of dendrogram interpretation could not interfere with the very
obvious similarities between the two diagrams. As the summary in table
4 shows, for all practical purposes the reaction groups of Purdy can be

reclaimed by clustering the rank correlation coefficients of the data.
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Table 4.--Reaction groups for observed
carbonate modal data

Using Pearson's product- ! Using Spearman's
moment coefficient rank coefficient
Group II: grapestone and crypto-— -- grapestone and cryptocrystalline
crystalline grains grains

organic aggregates
IIT: coralline algae and corals -- coralline algae and corals
Halimeda
organic aggregates
IV: oolites ) -- oolites

I: Peneroplidae and sample -~ Halimeda, molluscs, and Peneroplidae
fraction < 1/8mm

other forams other forams

molluscs sample fraction < 1/8 mm
fecal pellets fecal pellets

mud aggregates mud aggregates
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It should be noted, however, that the reaction groups which
Purdy explicitly defined (1960, p. 94 ff) as in table 4 were assigned
in a manner inconsistent with the conventional interpretation of cluster
diagrams. Dendrograms yield groupings, although subjectively, according
to a chosen cut-off level of similarity. No rigorous statistical method
dictates what level an investigator must choose, but it is conventional
that only one level be used to establish the groupings. The intent of
this convention is to minimize the introduction of the investigator's
personal bias into the interpretation of the dendrogram.

Inspection of figure 5A shows that Purdy's reaction groups could
not be as he defined them if only one level had been used for the
interpretation. Groups I and II, as defined, require a cut-off level
of similarity of .35 < r <«.47; group III, as defined, dictates a cut-off
of r <.32. Had r = .36, for example, been the discriminating level of
similarity across the dendrogram, organic aggregates, as well as oolites,

would have been a one-variable group.
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Closure and reaction groups

they are
Purdy's data are modal (that is,Apercentages) and are therefore subject

to the constant-sum restraint. Because of closure, negative correlation
between some of the variables has inevitably been induced. One would
reasonably expect this bias to be reflected in a cluster analysis based
on a measure of correlation. To assess the closure effect, one must
know the correlation to be expected in the absence of a significant
departure from randomness. This is the null correlation against which
an observed correlation is tested for significance. 1In the following
analysis, simulation is used to establish the null correlations.
Actually only 12 of Purdy's 13 "quantitatively important" variables
are modal; weight percentage of the sample fraction finer than 1/8 mm
is a textural indicator only and is not a variable of constituent particle
composition. The 12 quantitatively important modal variables were
recomputed to 100 percent, and the summary statistics describing the
recomputed data are given in table 5. These statistics are used in the
simulation to assign values to the parameters (means and variances) of
a hypothetical open matrix. The hypothetical open matrix allows one to
assess the effects of closure because the open variables are defined to
have zero covariances (they are uncorrelated). Closure of this matrix
yields covariances due soley to closure itself, so the correlations of
the closed hypothetical matrix can serve as null values against which

observed correlations (that is, Purdy's) can be tested.
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Table 5.--Statistics describing set of 12 modal carbonate
variables (recomputed to 100 percent)

Summary statistics

Coralline Other Fecal Mud Organic Cryptocryetalline
algae Halimeda Peneroplidae forawms Corals Molluscs pellets aggregates Grapestone aggregates Oolites grains
Mean L3174 4.749 2.962 2.369 .9848 5,488 16,56 5.107 13.24 1.245 30.63 16.35
Variance .9923 48.78 27.53 7.940 13.57 42.47  438.5 28.70 252.6 5.507 1061, 205.7
Standard deviation .9961 6.984 5.247 2,818 3.684 6.517 20.94 5.357 15.89 2.347 32.58 14.34
Coefftcient of 3.1384 1.4708 1.7711 1.1895 13,7407 1.1874 1,2647 1.0489 1.2004 1.8846 1.0636 .87718
variation - -
Maxinum 9.158 47.72 35.79 15.94 32,87 43.37 79.34 31.46 59.07 14.39 ° ° 99.10 64.19
Minimum .0000 .0000 .0000 .0000  .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
Runge 9.158 47.72 35.79 15.94 2,87 43.37 79.34 Jl.46 59.07 14.39 99.10 64.19
Percent Variance .04651 2.2862 1.2902 .37215 .63605 1.9904 20,551 1.3451 11.837 -25813 49.745 9.6420
Varlance - covariance matrix
Coralline Other TFecal Mud Organic Cryptocrystalline
« algae Halimeda Peneroplidae forams Corals HMolluscs pellets aggregates Qrapestone aggregates Oolites grains
Coralline algae .99227 2,3653 .00076 L40470 2.3745  1.0673 -3.7658 -.050709 ~.98443 .92649  -6.3063 2.9760
Halineda 48.7177 5.1807 5.7551 8.5013 18.971 3.1347 8.1967 -22.369 2.7415° ~79.844 -1.4101
Peneroplidae 27.527 9.2069 .10897 15.558  33.083 8.8887 -21.289 .97021 ~67.219 -12.016
Other forums ’ 7.9400  ,12902 8.4199 8.1578 4.8109 - 5.7921 1.5113 ~46.537 5.9931
Corals 13.571 9.3060 ~12.215 1.3964 - 5.4817 2,0831  -24.242 4.4692
Mulluscs 42.467  15.607 8.1456 -14.845 2,2440 ~108.54 1.5991
Fecal pellets 438.46 60.022 -136.90 ~9.9426 -260.78 -134.87
Hud aggregates 28.698 -28.232 .44089 -73.016 -19.300
Crapestone 252.56 8.1491 -164.79 139.97
Organic aggregates 5.5075 -25.792 11.161
Oolites 1061.4 -204.29
Cryptocrystalline grains A 205.72
Correlation coefficient matrix
Coralline Other Fecal Mud Organic Cryptocrystalline
algae Halimeda Peneroplidae forams Corals Molluscs pellets apgregates Grapestone aggregates Oolites grains
Coralline algae 1.0000 .33999 .00015 L14418 64707 16442 -,18054 -.00950 -.06219 239632 -.19433 .20830
RHalireda 1.00000 .14138 .29244 033043 41682 .02143 .21908 -.20154 .16726 -.35092 -.01408
Peneroplidae 1.00000 .62277  .C0563  ,45503 .30114 .31625 -.25532 .07879  -,39326 -.15968
Ccher forams 1.00000 ,01243  ,45853 .13826 .31871 ~.12934 .22854  ~.50694 .14829
Corals 1.00000 .38765 -~.15835 .07076 -.09363 .24095 ~.20200 .08451
Mulluscs 1.00000 .11437 +23333 -.14335 14673 -,51124 .01711
Fecal pellets 1.00000 .53508 -.41138 -.20233  -.38227 -.44907
Mud aggregates 1.00C00 -.33162 03507 -,41838 ~.25119
Grapestone 1.00000 .21850  -,31828 .61408
Organic aggregates 1.00000 -.33735 .33157
Oclites 1.00000 ~.43720
Cryptecrystalline grains 1.00000



The simplest possible model of the hypothetical open matrix is that
suggested by Chayes and Kruskall (1966). The means and variances of the
variables of the open matrix are such that closure of the open matrix
yields variables having means and variances equal to those in the
observed (closed) matrix, that is, Purdy's matrix. The concern, of
course, is to avoid attributing significance to correlations which reflect
nothing more than numerical bias.

A program (Harbaugh and Bonham-Carter, 1970) designed to generate
random numbers whose distributions are other than normal (the distributions
are referred to as "empirical''; that is, they conform to the characteristics
of the observed data rather than to a specific statistical distribution)
was used to simulate a hypothetical open matrix of 12 uncorrelated
variables measured on 1000 samples. The simulated variables are assigned
means and variances such that closure of the open matrix yields variables
having means and variances equal to those of Purdy's data. The results
of the simulation are given in table 6; the approximation to Purdy's
data is reasonably good. The r matrix for the simulated open matrix
actually has mostly nonzero elements (the range in r values is 0.000 to
0.137) because of sample size and numerical consequences of the simulation.

For purposes of assessing the closure effect, the simulated open da-
ta were clustered using Pearson's r as the measure of similarity
(fig. 6A) because this is the measure Purdy used. The dendrogram shows
essentially no structure, which would be expected when the covariances
of the variables equal zero. (The negligible structure which is apparent

is a function of sample size.) Next, the simulated closed data were
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e VARIABLE

Coralline algae
Halimeda
Pencropi idae
Other forams
Corals

Holluses

Fecal pellets
Mud apyregates
Grapestone
Organic aygregates
Oollites

Cryptocrystalline grains

QBSERVED

L HEAN

.32

.99

5.49

16.56

5.11

13.24

30.63

16.35

Table ﬁ.——Cnmnnrtsnn of means and varlances of

STMULATED
OPEN_HEAN

.75

30.60

15.52

STHULATED
CLOSED
_MEAN

.87

5.88

13.51

6.03

13.22

26.08

16.13

ORSERVED

similated and observed carhonate
data sets

48,

27.

13.

42.

418.

28.

252,

106} .

205.

.49

78

53

.94

57

47

46

70

56

.91

72

STMULATED
OPEN

VARIAUCE
1.08
23.88
16.65
6.7
9.80
27.76
297.20
28.54
253.77
2.95
988.43

164.92

SIMULATED
GLOSED

VARLANGE _
1.84
29.78
16.37
9.26
9.26
33.22
182.05
37.93
188.50
7.404
424 .45

172.97
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clustered, also using Pearson's r as the measure of similarity (fig. 6C).
The two dendrograms (figs. 6A, C) are difficult to compare because the
sequence in which variables enter the cluster are not the same, but
closure has imposed at least some structure upon the dendrogram.
Because closure of the simulated data has imposed so (relatively) little
structure, one may assume that closure has not imposed much structure
on the observed data (as the simulated data was designed to conform to
the observed data). Therefore, for all practical purposed, one may
Purdy's
conclude that the relationships apparent in A cluster of the observed
data are real and are not significantly affected by closure.
However, because the simulated data are of a nonuniform distribution,
a nonparametric measure of similarity would be more appropriate. Therefore
both Spearman's and Kendall's rank coefficients for the simulated open
(table 7) and closed (table 8) data were computed. Figure 6 (B,D) shows
the clusters formed using Spearman's coefficients. The cluster of the
open data (fig. 6B) shows negligible structure, as expected. The cluster
of the closed data (fig. 6D) suggests, at least within the ability
to compare, that at least one of the observed reaction groups (coralline
(fig. 5B)
algae and corals)smay not be statistically justifiable, regardless of
what one might intuitively expect. The point, however, is that closure

can induce correlation of the rank type; previous work has examined only

the product-moment correlation.
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Table 7.--Rank-correlatinn-coefficient matrix for simulated open
carbonate data (Spearman's cocfficlent is in upper-ripht
half of matrix; Kendall'’s coefficicnt s in lower-left
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Table 8.--Rauvk-correlation-coefficfent matrix for simulated closed carbonate
data (Speatman's coefiiclent s In upper-right hall of matrix;
Kendall's coefficlent Is In lower-left half)
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Principal components analysis

and reaction groups

As mentioned earleir, cluster analysis is not an
analytically rigorous technique. Principal components
analysis (PCA), although not a statistical procedure, is
a mathematical manipulation by thich the "redundancy®" in
a set of variables becomes apparents PCA was applied to
the carbonate data with the intent that the technique
might be a more quantitative discriminator--relative to
cluster analysis--of the "real" groupings of the variabless

Any set of correlated variables can be transformed
into a set of uncorrelated variables by a linear transformation
that can be interpreted geometrically as a (rigid) rotation
of the coordinate system to a position that concentrates
as much as possible of the total variability of the data
into a single new variablee The origin of the new co-
ordinate system coincides with the means of the variables;
the sum of the squared distances from the data points to the
new ordinate is a minimum and the sum of the squared
distances to the new abscissa is a maximume The axis
along which the variability is maximized is the major axis
of an ellipsoid (hyperellipsoid in the case of multivariate
data), which represents the new variable of maximum variance.
The second new variable accounts for as much as possible of
the remaining variability, is represented by the largest
minor axis c¢f the hyperellipsoid, and is therefore uncor-

related with the first new variable. Other uncorrelated
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variance-maximizing variables may be formed until almost

all the variability is accounted for by a few new variabless
As a multivariate technique, the objective of PCA is to
determine which of all the original variables are
algebraically independent--that is, how many of the

original variables actually represent the total amount of
information; some variables may be simply linear combinations
of anothere. (Afifi and Azen (1972) present a very thorough
discussion of principal components analysise.)

Several PCA options were performed on three sets of
datas Purdy's observed data, the simulated oren data, and
the simulated closed data« The results (table 9).show that
PCA transformation has not been an efficient data reducer.
Cases E, F, and H of table 9 show all the transformed
variables have roughly equivalent values of percent variance
(an exception is in case H wherein one variable has zero
percent variance because the data of this analysis are
closed)e This implies that there are no new variables which
can explain the total variability of the original data any
more efficiently than the original data themselves explain
its 1In other cases where a few new variables have “sub-
stantially positive" values of percent variance, it is

apparent that the distritution of the variance among the

transformed variables is nc more efficient than it was among
the original untransformed variablese Because only a few of

the original variables account for about $0 percent of the
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Table 9.--Summary of principal components analysis (PCA)
of carbonate modal data

. . Percent varfance of transformed variahle
Percent variance . i . i —
Variable ot
untransformed TCA optlon: PCA optlon: PCA option:
var lable . var iance/covarfance matrix; r matrix; Spearman rank correlation
origtnal data standardlzed data coeffirient;

_standardized data

Iy

Purdy's observed data (203 x 13)

Coralline algae 037 54.2% 30.5% 38.72
lalimeda 1.45 30.6 71.8 23.1
Peneroplidae .79 6.5 13.6 1.3
Other forams .24 4.2 7.6 5.8
Fecal pellets 15.26
Golites 40.97 80X
Sample fraction < 1/8 mm 22.16 A B C
Simulated open data (1000 x 12)
Coralline algae 06X 5h.4% 10.5% §2.0%
Halimeda 1.3 16.4 9.7 10.5
Pencruplidae .91 t3.9 9.0 9.8
Other forams .34 9.0 B.8 9.1
Fecal pellets 16.32 for all remaining variables, for all remaining vaciables,
Grapestone 13.91 84% . percent variance Is hetween percent varilance Is between
Oolites 54.27 7.0 and 8.7 6.0 and 8.9
D E F
Stmlated closed data (1000 x 12)
Coralline algae A 45.1% 17.7% 32.8%
Nalimeda 2.68 19.8 1.3 10.9
Peneroplidae 1.47 18.0 10.0 10.5
Other forams .B) 7.5 9.5 8.6
Fecal pellets 16.36 for all remalofug variakles,
Grapestone 16.94 pereent variance Is between
Oolites 38.13 87% 6.0 and 8.5, cxcept for the
Crytocrystalline graius 15.94 Jast value of percent varlance,

which is 0.0
G n )



total variability:

203x12 203x13
fecal pellets 20+.6% 15.3%
grapestone 11.9 9.4
oolites 5040 41.0
cryptocrystalline grains 946 7.1
weight percent<1/8 mm 2242

92.1% 95+0%

perhaps the reaction groupings are actually a function of the
large variances of these few variables. These few variables
so dominate the total variability that perhaps groups fall
out such that each group is defined by one of the dominant
variablese If so, analytical methods couldn't help but
reclaim these groupss In fact, such an interpretation would
not be generally inconsistent with the reaction groups
defined by Purdye An exception would te the group
coralline-algae~plus-corals, which has already been shown

to be suspect because of closure.
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Summary

Although r is a dubious choice for measure of
similarity for Purdy's data, it yields a dendrogram
comparable to that produced by rank correlation coefficients.
‘At least in this case, cluster analysis grouped together
similarly btehaving variables regardless of the measure of
similarity or the distribution of the data.

EZxamination of the effect of closure on Purdy's
analysis reveals that at least one of the reaction groups
may not be statistically justifiables Moreover, after
closure rank correlation coefficients are nonzero.

Closure therefore induces correlation of the rank type
as well as of the product-moment type.

PCA did not efficiently reduce the data and therefore
may suggest that the reaction groups are a function of the

large variances of a few variables.
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STRATIGRAPHIC THICKNESS DATA IN RATIO FORM

Stratigraphic studies are replete with numerical applications,
but the stratigraphic literature shows little inquiry into potential
numerical pitfalls. This section describes how correlation bias
resulting from ratio formation can affect stratigraphic investigations.
Stratigraphic thickness data is used in the form in which it is
collected to prepare isopach and isolith maps, but these maps generally
are tools for, not the objective of, stratigraphic investigations.
Depending on the objective of the study, facies map design will probably
require a transformation of absolute thickness measurements to percentages
or ratios. Krumbein (1956, p. 2163) stated that 'the selection of the
method of facies expression (percentages, ratios, et cetera) [is among]
the primary geologic considerations in lithofacies map design'.
Stratigraphic maps may be of the contour type, which is suitable
for studying rates of change in lithologic composition and for predictive
purposes (Krumbein and Sloss, 1963). Contour-type maps could be prepared
from percentage data, which would show the proportional thickness of
lithologic components relative to the total thickness of the section, or
from ratio data, which would contrast one lithology to another and suggest
interrelationships among the components.
Krumbein (1962) observed that several of the maps prepared during a
stratigraphic
A study resemble each other in contour pattern. This suggested to
him that the geometric and compositional attributes of the unit being
mapped were somehow "interlocked'", that is, that an individual map was

in part repeating the information shown in another. 1In citing the work
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of Chayes (1960, 1962), Krumbein noted that 'data interlock" is at

least partly dependent on the manner in which the numerical data are
expressed, and that the "built in'" numerical relationships among
variables have direct bearing on the contour patterns of facies maps.
Krumbein also suggested that the correlation coefficient is an indicator
of the degree of linear data interlock and contended that it may be

used to facilitate the most efficient selection of maps to be prepared
in a stratigraphic study (Krumbein, 1962, p. 2233). Krumbein seems

to be suggesting that the numerical bias in percentage and ratio
correlation coefficients can be turned to the advantage of the stratigrapher.
The analysis in this section should indicate that it probably cannot.

To the extent that the correlation coefficient can suggest possible
relations among geologic variables, its use is certainly appropriate.
"This is an empirical procedure, fully justifiable in the early stages
of geologic analysis, and . . . may be quite effective in 'sorting out'
the interrelationships among . . . variables" (Krumbein and Graybill,
1965, p. 236). For example, in some stratigraphic models, such as the
clastic wedge, ''the sand thickness commonly shows a moderate degree of
positive correlation with total unit thickness. In other basin models,
in which carbonates or evaporites are dominant, the sand thins as the unit
thickens toward the basin center, giving rise to negative correlation"
(Krumbein and Graybill, 1965, p. 236). Depositional models described by
Krumbein and Sloss (1963) corroborate these observations and suggest others

(for example, a positive correlation between shale thickness and total unit
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thickness at the crationic border of marginal basins or at the hinge lines
of interior basins).

The extent to which thes and similar observations may be biased by
the data treatment which produces them will be analyzed using an example
from the literature. The data is Imbrie's (1963) and has been cited by
Krumbein (1962) and by Krumbein and Graybill (1965) for various analytical

from 31 wells,

purposes. The data(table 10, taken from Krumbein and Graybill, 1965)are/
in western Kansas and southeastern Colorado, drilled in Upper Permian rocks
including sandstone, shale, evaporites, and carbonates (the variable
"clastics'" as used in this thesis is the sum of sand and shale; '"mon-
clastics” is the sum of carbonaté and evaporite). The wells were chosen
in an area where the lithologic components thicken toward a center, as is
characteristic of sedimentary basins (Krumbein, 1962, p. 2235). Imbrie's
data are used in this section to examine correlation bias resulting from

ratio formation.

Some ratios which commonly appear in stratigraphic studies are:

sand/shale

clastics/nonclastics (the classic ratio)
evaporites/carbonates (the evaporite ratio)
nonclastics/sand

nonclastics/shale

The literature (e.g., Krumbein, 1962; Krumbein and Graybill, 1965;
Krumbein and Sloss, 1963) shows that these ratios and the lithologic

variables which form them have been correlated in stratigraphic work as
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Table 10.--Stratigraphic thickness data
{from Krumbsgin and Craybill,
1965, p. 372)

otal
hickness Sand Shale Nenelastics Carbonates® Evaporiteas
815 2688 350 229 24 205
206 337 132 137 60 T
344 151 511 32 1z 1
147 293 1.3 33 12 26
1,301 318 139 03 i” 136
335 273 i35 23 11 182
374 14 112 2 24 )
508 368 148 35 20 73
a0 224 304 112 i 58
513 133 e 37 28 50
21 223 3355 265 43 22z
1,133 7o 943 317 29 297
702 341 124 39 35
164 242 113 13 199
1,113 568 370 0 370
1,224 738 253 11 248
1,304 610 317 10 337
1,144 520 3514 12 302
1,948 319 176 12 164
1,182 659 373 13 380
1,203 542 237 21 215
Tl 00 32 12 30
77 177 73 28 7
1,923 501 27 18 209
1,114 528 340 32 308
953 302 186 24 162
332 238 137 0 137
562 316 126 0 125
1,903 637 97 3 849
5336 461 33 0 33
1,126 5358 198 63 230

* Entries =gual to 0 were changed to 1 to avoid division by O when
forming the evaporite ratio.
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shown in table 11. The pairs indicated by 0 in table 11 fall into
the category of '"part-whole correlation'" (Chayes, 1971, p. 25-26).
Part-whole correlation can be defined as follows. Suppose
X is a vector of random variables {xl, XZ] and that Qi is defined:
Qi =% + X, (the whole);

Qj is defined:

Q x (the part)

i 1

The part-whole correlation, rij’ to be expected between Qi and Qj

when Xy and x, are random variables is equal to the ratio of the standard
deviation (s) of the part to the standard deviation of the whole:

1
Ti5 7 s
x1 + x2

This equation and equations 2-6 in table 2 show that part-whole
correlation and ratio correlation applied to stratigraphic data will be
biased; the null value of r will not be zero. Analysis of Imbrie's data
with respect to some of the correlated pairs of variables specified in
table 11 will attempt to assess the magnitude of the bias and account for
it in subsequent data interpretation.

Simulation (Harbaugh and Bonham-Carter, 1970) is used to establish
the null correlations for the stratigraphic data. The data of Imbrie
(as given by Krumbein and Graybill, 1965) and some derivative variables
(computed for this thesis) are described by the summary statistics and
the correlation coefficient matrix in table 12, (According to a

chi-square goodness-of-fit test, all of Imbrie's variables fit a normal
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Total Thickness
Sand

Shale
Nonclasties
Carbonates
Fvaporites
Clastics
Sand/shale
Clastic ratio
Fvaporlite ratio
Nanclastics/sand

Nonclastics/shale

Mean

Standard deviation
éoe[flclenr of variation
Varlance

Percent varlance

Toral Thickness

_
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N
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.887
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distribution.) These summary statistics (tablel2) are used
to assign values to the parameters (means and variances) of
a simulated data set. The simulated matrix has 1000 samples;
the variables are the same as those in table 12 and have
the same means and variances, but the covariances of the
simulated data are defined to be zeroe. Because the covar-
iances of the simulated data are zero, any correlations
apparent in the simulated data (table 13) are due solely to
the data treatment and are not inherent in the variabless
The simulated ccrrelation coefficients, therefore, serve as
the null values for the data in ratio or part-whole form.

Looking only at observed values of r which are
significant and referring to the variable pairs specified in
table 11, one may make some interesting observations (table
14)s In all but a few cases, what appear to be highly
significant correlations actually approximate the corresponding
null correlations. The implication is, of course, that, at
least in this case, these ratio correlations cannot be useful
in inferring geologic relationships among the variables.
One's use of them, for example, as criteria for selecting
maps to be incorporated into a stratigraphic study is ill-
conceived on the basis of these resultse.

On the other hand, what appears to be a relatively
weak association (-+359), which might 1ikely be ignored,
is actually significantly departing from randomness (null

value = +315).
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Sand

Shalce
Nonelastics
Carbonates
Evaporites
Clastics

Total thickness
Sand/shale
Ctastlc ratio
Fvaporite ratio
Nonclastics/sand

Nonclastics/shale

Mean

Standard deviation

Coetficient of variation

Varlance

Percent variance
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~.043
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Simulated vse approximated null values

In the foregoing analysis simulation was used to
derive the null values for the ratio and part-whole
correlations because the coefficients of variation (C)
of the variables were too large to permit the use of
Chayes® (1971) approximations (table 2)e¢ According to
Chayes, for C larger than 0¢15 the differences between

the approximated and the simulated null



correlations may be large, but for C £ 0.15 the differences are negli-
gible and the approximations are adequate. ‘''Before the development of
numerical simulation, this inadequacy [of the approximations] was of
course critical . . . but it is now a simple matter to run a simulation
experiment on variables characterized by any set of means, variances
and covariances" (equal to zero for simulation of null correlations)
(Chayes, 1971, p. 15, 17).

All the stratigraphic variables in table 12 have C larger than
0.15. The correspondence between the simulated null values and those
obtained by Chayes' approximations is of some academic, if not
practical, interest.

Table 15 shows the same correlated variables that were examined
in the foregoing analysis, but the values in the table represent two
null correlations, that obtained by simulation and that obtained by
Chayes' approximation formulas. As expected, where the C's of the
variables being correlated are both "relatively small', the correspondence
between the nulls is good (differing only in the second or third decimal
place). Good correspondence, however, occurs even when one C is very
large. No meaningful relationship could be discerned between the magnitude
of the difference between the nulls and the magnitude of the C's of the
variables being correlated. It is apparent, though, that the part-whole
correlations show consistently good agreement regardless of the C's,
whereas the ratio correlations show consistently bad agreement. This
reflects the fact that the part-whole correlation is simply the ratio of
the standard deviations of the variables, and the standard deviations of the

observed and simulated variables are approximately equal.

55



95

T gipulated null

Table 15.--Matrix of (upper-right half of matrix)

r approximated null
and the difference between the two nulls (lower-left half

of matrix; difference is posleive (+) if Toim. > tnpprox.
and difference i1s negative (=) if Foim. ¢ Tapprox.
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Total thickness 2357 693 .768 476 4439
.357 .662 .763 449 L437 )
Sand .000 L4699 4502
L469 697
Shale .031 -, 695
-.718
Clastics .005 .030 .017 .315
.420
\
Carbonates
Evaporites .027
-.753 L4684 .651
. -.907 .853 .828
Nonclastics .022
Sand/shale -.195 -.023
Clastic ratio . -.105 -, 154
Evaporite ratio
Nonclastics/sand
Nonclastics/shale
Ceefficient of
variation
(observed) .295 .346 .383 .260 .753 .642 .565 .814 .648 2,38 .700 .392



Summary

Because the r matrix reflects the numerical bias induced by
ratio formation (data treatment which is common in stratigraphic
studies), what appear to be highly significant correlations actually
approximate the corresponding null correlations. Consequently, it is
conceivable that depositional models may be misinterpreted and that use
of the observed correlations as criteria for selecting maps to be incor-
porated into a stratigraphic investigation is not statistically justi-
fiable.

Correspondence between simulated null values and those obtained by
Chayes' (1971) approximations is erratic, and the relationship between
this correspondence and the C's of the variables being correlated could
not be determined-— and is probably not of practical import due to

readily available simulation experiments.

57



GEOCHEMICAL DATA

Standardized vs. nonstandardized

principal-components—-analysis scores

PCA scores may be correlated or uncorrelated depending on
whether standardized or nonstandardized data is used to compute
them. How, numerically, the matrices of scores differ should provide
insight into why, given the same eigenvalues, scores produced from
one kind of data are correlated and those produced from another kind
are not. This problem is examined using a set of geochemical analyses.

The summary statistics for chemical analyses (weight percents) of
the oxides of 28 volcanic rocks from Gough Island are given in table
16. These 28 analyses were included in a larger data set analyzed
(LeMaitre, 1968) by PCA for the purpose of determining differentiation
trends. PCA is a mathematical manipulation whereby data is trans-
formed to a new coordinate system; by definition the transformation
produces uncorrelated variables. The objective of PCA is '"to define
a new reference system in which the total variance of the original
data is preserved but the covariance is eliminated" (Trochimezyak and
Chayes, in press). One should not, therefore, expect "trends' to be
apparent in plots of scores derived from PCA.

This suggests that the use of PCA may be counterproductive -—that
is, will produce correlated new variables (scores)—under some
circumstances. Trochimczyak and Chayes (in press) have shown under
which circumstances (data treatment) the transformed variables

are correlated.
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6S

Table 1§, --Summary statlstlcs describing chemfcal analyses
of Gough Tsland volcanie roeks

SH)Z 'l'iﬂ! /\lzllK I"ezﬂ:‘ Fel ML0 Mp Cat N.’lzl) KZﬂ PZOS
Mcan 64.2 2.0 17.4 3.0 5.2 .t 4.1 5.4 4.4 4.0 3
Variauce 20.1 1.3 4.7 2.4 5.5 003 18.3 9.1 2.2 3.3 .02
Standard deviation 5.4 1.2 2.2 1.6 2.3 .056 4.3 3.0 t.h 1.8 .14
Coefficient of variation i .6 .1 .5 .5 A 1.1 .0 .3 .5 .6
Percont varlance 3R.3 b.8 6.2 3.2 7.2 Long 241 12.0 2.8 4.4 02
Range 15.8 5.3 11.3 6.7 8.2 3 19.7 5.4 6.0 5.5 .5



0f the several options which extract principal components and
then transform the original data into scores, some which are compatible
with the objective of PCA are:

1) the use of the r matrix to extract principal components and

the use of standardized data (Z-scores of original data) to
compute scores;

2) the use of the variance-covariance matrix to extract principal

components and the use of the original data to compute scores,
Other options, such as

3) a combination of the r matrix and the original data, or

4) a combination of the variance-covariance matrix and Z-scores
are unsatisfactory methods of PCA because they result in correlated scores.

All four of these PCA options were computed for the Gough Island
data in order to examine the results with respect to those which PCA,
by definition, should produce. The PC analyses are available in the
geology department of the University of Houston. The Gough Island
results from options 1 and 3 (and options 2 and 4) differ only by the
new variables; therefore plots of the scores differ. All other analytical
results are the same for each pair of optious.

The plots of the scores are consistent with the results about
correlation that Trochimczyak and Chayes (in press) predict. Furthermore,
whenever standardized data is used to compute scores, the plot of the
scores centers around zero for both variables. This is to be expected,
as Z-scores measure the "distance'" of x from x, so the mean of the

Z-scores 1is zero.
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The numerical difference (correlated vs. uncorrelated variables)
which the various PCA options have produced cannot be explained simply
by inspection of the plots. It is apparent, however, that when standard-
ized data are used to compute scores (regardless of the matrix used to
extract principal components), the scatter of points is noticeably
compressed. Another observation is that, again regardless of the matrix
used, absolutely no overlap of points occurs between plots of scores
from standardized vs. original data.

Although inspection failed to yield any substantive insight into
why, numerically, the plots differ, a more systematic analysis might
succeed. As the matrices of the Gough Island PC analyses are too
unwieldy to manipulate, a 5 x 3 data matrix was "simulated" such that
the first variable has a mean many times larger than the second variable
and not as many times larger than the third variable. The eigenvectors
(in the working model, a 3 x 3 subset from the Gough Island r-matrix
PC analyses) used to compute the scores are the same for both original
and standardized data.

The appendix contains the matrix manipulations which were intended
to reveal how, numerically, the matrices of PCA scores, derived from
standardized vs. original data, differed; this, then, might provide a
clue as to why, given the same eigenvectors, scores produced from omne
kind of data were correlated and those produced from another kind were

not.
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To define a term used in the following discussion, the product of
two matrices is a matrix whose element in the ith row and jth column is
the sum of what will be referred to as the '"cross products" of elements
in the ith row and jth column of the factors.

Inspection of any data matrix of chemical analyses and the corresponding
matrix of Z-scores reveals an obvious difference between the two:
about 50 percent of the elements in the matrix of Z-scores are negative.
The negative elements represent the original values of the variable which
are less than the mean of the variable. This difference carries through
to the matrix of cross products (appendix, p. 1-~3, circled elements). Where
the value of the original data is less than the mean of the variable, the
sign of the cross product will change when the data is standardized. No
sign change occurs when the value of the original data is greater than
x. This suggests that the values of x are affecting the numerical aspect
of the matrix of PCA scores, and page 4 of the appendix shows how. If
A is the sum of the cross products (that is, if A is the matrix of PCA
scores) when original data are used (appendix, p. 2) and if B is the
sum of the cross products when Z~scores are used (appendix, p. 3), and if
C is the row vector whose components are the sums of cross products between

the row vector of means of the original variables [x §2, §3] and the

l’
matrix of eigenvectors (appendix, p. 4), then the sum of the ith column of
B and the ith component of C is the ith column of A.

This observation can be refined somewhat (appendix, p. 5) to see that

for every element in the jth column of the matrix of PCA scores, the ¢

cross products (where q = the number of variables) which are summed to
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compute the element differ (with respect to Z-score factor vs. original-
data factor) by the amount:

(eigenvector matrix component,.) x (El) for the first cross product

1]
( componentzj) X (§2) second
( component3j) X (§3) third
- th
component ,) x (x
( p qJ) ( q) q

The value of x's, then, rather than of (x-x) seems to be making the
numerical difference in the matrices of PCA scores. How this information
may be brought to bear on the correlation of scores is a subject for

further investigation.

Summary

Under some circumstances (data treatment) PCA will produce correlated
variables which, by definition, is indicative of analytical error. Matrix
manipulation lent some insight into how, numerically, the matrices of
PCA scores, derived from standardized vs. original data, differed.
Apparently the value of the ;'s, rather than of (x-x), seems to be making

the numerical difference in the matrices of PCA scores.
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CONCLUSIONS

This investigation has determined that some ramifications of
data treatment in combination with quantitative analytical methods are:

--Closure can induce correlation of the rank type as well

as of the product-moment type

--Dendrograms produced by the use of r can be generally
reproduced‘by the use of rank correlation coefficients; at least in
the caggjslgfﬁster analysis will group together similarly
behaving variables regardless of the measure of similarity

or the distribution of the data

--PCA may not be any more efficient a reducer of data than

a visual inspection of variances

and part-whole correlations,
--Ratio correlations Asuch as those used in stratigraphic

studies, may be substantially biased and should not be
used to infer geologic relationships among the variables;
their use, for example, as criteria for selecting maps to

be incorporated into a stratigraphic study may be ill-conceived

~~The numerical difference between matrices of PCA scores
derived from standardized vs. original data should provide
a clue as to why, given the same eigenvectors, scores
produced from one kind of data were correlated and those
produced from another were not; apparently the value of the
x's, rather than that of (x-x), seems to be making the

numerical difference.

64



REFERENCES CITED

Afifi, A.A+, and Azen, S.P., 1972, Statistical analysis,
a computer oriented approachs New York, Academic

Press,; 366 pe.

65



Chayes, F., 1949, On ratio correlation in petrography: Jour.
Geology, v. 57, p. 239-254.
, 1960, On correlation between variables of constant sum:
Jour. Geophysical Research, v. 65, p. 4185-4193.
, 1962, Numerical correlation and petrographic variation:
Jour. Geology, v. 70, p. 440-452,
» 1971, Ratio correlation: Chicago, Chicago Univ. Press, 99 p.
and Kruskall, W., 1966, An approximate statistical test for
correlations between proportions: Jour. Geology, v. 74, pt. 2,
p. 692~702.

Cramer, H., 1955, The elements of probability theory: New York,
John Wiley and Sons.

Davis, J.C., 1973, Statistics and data analysis in geology: New York
John Wiley and Sons, 550 p.

Demirmen, F., 1976, RANK -~ A FORTRAN IV program for computation of
rank correlations: Computers and geosciences, v. 1, p. 221-229,

Harbaugh, J.W., and Honham-Carter, G., 1970, Computer simulation in
geology: New York, John Wiley and Somns, 575 p.

Imbrie, J., 1963, Factor and vector analysis programs for analyzing
geologic data: Office Naval Res., Geography Branch, Tech. Rept. 6,
ONR Task No. 389-135.

and Purdy, E.G., 1962, Classification of modern Bahamian carbonate

sediments, p. 253-272 in Classification of carbonate rocks - a

symposium: Am. Assoc. Petroleum Geologists Mem. 1, 279 p.

66



Koch, G.S., Jr., and Link, R.F., 1971, Statistical analysis of geologic
data, v. 2: New York, John Wiley and Sons, 438 p.

Kolstoe, R.H., 1973, Introduction to statistics for the behavioral
sciences: Homewood, Illinois, The Dorsey Press, 383 p.

Krumbein, W.C., 1956, Regional and local components in facies maps:
Am. Assoc. Petroleum Geologists Bull., v. 40, p. 2163-2194.
, 1962, Open and closed number systems in stratigraphic mapping:
Am. Assoc. Petroleum Geologists Bull., v. 46, p. 2229-2245,
and Sloss, L.L., 1963, Stratigraphy and sedimentation (2nd ed.):
San Francisco: W.H. Freeman and Co., 660 p.
and Graybill, F.A., 1965, An introduction to statistical models
in geology: New York, McGraw-Hill Book Co., 475 p.

LeMaitre, R.W., 1962, Petrology of volcanic rocks, Gough Island, South
Atlantic: Geol. Soc. America Bull., v. 73, p. 1339-1340.
, 1968, Chemical variation within and between volcanic rock series -
a statistical approach: Jour. Petrology, v. 9, p. 220-252.

McCammon, R.B., 1969, Aspects of classification, in Models of geologic
processes — an introduction to mathematical geology, AGI/CEGS short
course, 7-9 November 1969, Philadelphia: Washington, D.C., Am.
Geologic Institute, p. RM-C-1 to RM-F-6.

Neter, J. and Wasserman, W., 1974, Applied linear statistical models:
Homewood, Illinois, Richard D. Irwin, Inc., 842 p.

Parks, J.M., 1966, Cluster analysis applied to multivariate geologic

problems: Jour. Geology, v. 74, pt. 2, p. 703-715.

67



Pearson, K., 1896, On a form of spurious correlation which may arise
when indices are used in the measurement of organs: Proc. Roy.
Soc. (London), v. 60, p. 489-502.

Purdy, E.G., 1960, Recent calcium carbonate facies of the Great
Bahama Bank: Ph.D. dissertation, Columbia Univ., 174 p.

Snedecor, G., 1956, Statistical methods: Ames, Iowa, Iowa State
College Press.

Till, R., 1974, Statistical methcds for the earth scientist: New York,
John Wiley and Sons, 154 p.

Trochimczyak, J., and Chayes, F., in press, Some properties of

principal component scores: Math. geology.

68



APPENDIX

Examination of matrices of PCA scores derivad

from standardized and noastandardized data
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ORIGINAL DATA EIGENVECTORS CROSS PRODUCTS

__(5x3) (3 x 1) G x 3)
20 1 5 By, By, <Epy su(zo)-zu(x)ﬂ:n(5):-512(20)+222(1)+532(5x-ﬁU(20)+523(1)-:33(5ﬂ
22 2 8 x -EZI. E22 523 - 211(22)-E21(2)+E31(8)|-El2(22)+E22(2)+E32(8)-E13(22)+E23(2)-E33(8)
24 5 6 531 E32 -533 Ell(210)-E21(5)+E31(6)‘-512(24)+522(5)+532(6)-513(24)+523(5)-E33(6)
2% 3 4 zl1(26)-221(3)+s31(:.)(-5:12(26)+522(3)+E32(4)|-513(26)+£23(3)-s33 @)
28 4 7

1-:u(28)-521(A)+t~:31(71-312(28)+£22(4)+£32 (7)-2 13(28)+Ez3(‘o)-533(7)

. 0
0 OO

+

+®

|90

o+
+ o+

+

[
|
!
I
i

+
+

STANDARDIZED DATA
(2-scores of orig~
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.Appendix, p. 1

inal data)
(20-24  1-3 56
22-24 2.3 8-6 L
24-26 5.3 6.6
26-26  3-3  4-6
28-26  4-3  7-6]
i.
- - . zxc:x:vscma zn(-)-gn(-)wn(-x-zlz(-)+E22(-)+332(-x-513<-)+323(-)-233(-)'
S : above 1 E11<-)-521(->+E31<+);-512(-)+azz(-)+EJZ<+1‘-E13(-)+EZS(-)-533&)
s . -
. 0 i ! Bpy (0)-E ) (0485 (00-Byy (O)+E ) (#H)4E 5 (0)-E) 3 (O1HE 5 (+)-Ey3 (O)
i + + +_ Eu(+)-521(0)+531(-)-E12(+)+Ezz(0)+532(-)'-513(+)+E23(0)-E33(-)
11(+) E,1(+)+E31(+) E12(+)+E22(+)+E32(+) Byg (RHE 3 ()-E55 () |
r ; )T
/-\ + O I /- O ' * (- @
1 {- + + +
‘E \ ~ |
0 - 0 + ( | \ o
4 lo - : @ ! +
\_) | - | \~’/
+ - + + + | - + -



ORIGINAL DATA . EIGENVECTORS CROSS PRODUCTS
5 x 3) (3 x 3)

(5 % 3)
20 1 S W37 =10 -.12 +37(20)= .34 (1)+. 28(5%- . 10(20)4. 22 (1 )+. 39 (5)- . 12(20)+. 08 (1)- . 06 (5)
22 2 8 * |- .22 .08 .37 (22)~ .36 (2)4. 25 (83~ . 10(22)+. 22(2)+.39(8)- . 12 (22)+. 08 (2) - , 06 (8)
2% 5 6 .28 .39 -,08f = | .37 (24)-.34(5)+.28(6)L.10(24)+.22(5)+.39(6J-.12(24)4-.03(5)-.06(6)
26 3 4 .37(26)-.34(3)+.28(4)!-.10(26)+.22(3)+.39(4)-.12(26)4-.08(3)-.06(6)
% 4 7 .37(23)-.34(4)+.25(7):- <10(28)+.22(4)+.39(7 )= . 12(28)+.08 ()~ .06(7)

/ﬂ
\1'5/-4?—2?4-195 24‘+ 08¢ .3]

- .68/+ 2,21|- 2. 44+312-26 - .5

E L7{ 170k 2,40 11(% 2,341 2,97+ .4

9= 1. -7 )pi- . r\
9.6 ¢ 1.0t 1.1- 2.@+156-31+ 241 .2

1104 - 1.4 + 1.96;- 2.8+ .83 + 2.73/- 3.4 + .32 - .42
8.5 2 -2.6
9.6 1.4 -2.9

SUM OF THE CROSS PRODUCTS = A = 8.9 1,064 -2.9 =  PCA SCORES

9.7 -6 3.1

11.0 8 =35
Al AZ A.3
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STANDARDIZED DAT.

(5x3)
-4 -2 -1
-2 -1 2
0 2 [
2 0 -2
4 1 1

EI%N‘QE%I)‘ORS
W37 =100 -.12
x -.34 .22 .08
.28 W39 -.06

SUM OF CROSS PRODUCTS =

B =

CROSS PRODUCTS
—(5x3)

37 (-4)~.34(-2)+.28 (- q- .10(-4)+.22(-2)+.39(-11— J12(-4)4.08(~2)-.06(~1)

237 (-2)- .36 (- 1)+.28(2) I 10(-2)4.22(-1)4.39(2) ,-.12(-2)+.08(-1)-.06(2)

% L37(0) -.34(2) +,28(0) I .10(0) +.22(2) +.39(0) :-.1z(o> +.08(2) -.06(0)
.37(2) -.34(0) +. 28(-2)-.10(2) +.22(0) +. 39(-2)-.12(2) +.08(0) -.06(-2)
L37(4) -.36(1) +. zs(1)l L10(4) +.22(1) +. 39(1)I-.1z(4) +.08(1) -.06(1) |
- /\ +.7 @ [f.4

]- i 1 +.3 | .2
\y/ -7 , 0
.7 @ i-.z
1.5 -.3 .3 |-.a
21,1 A +.36
.2 +.8 -.02
% -7 4 +.20 = PCA SCORES
.1 -1.0 -.08
1.5 .2 - .46

Appendix, p. 3




MEAXNS CF
ORIGINAL DATA
A x3)

X
[24 3 6]
Matrix of cress
products from 1
page 3 = 5

Matrix of cross
products from
page 2 -

EIGENVECTORS ¢
3 x3) (1 x3)
37 =10 12 [ ¢, c, c3J

~.34 .22 08| = [_ * ]- [’9.54 .6 —3.0]

.28 39 -.06 N . — N

* = [24 (.37)43(~.34)+6(.28) 24(~-.10)+3(.22)+6(.39) 26(-.12)+3(.08)+6(-.06)]

= [ 9.54 .6

W37(4) ~ L34(-2) + .28(-13 = .10(=4) + .22(22) + .39(-1), - .12(~4) + .08(-2) - .06(~1)
| i

W37¢-2) . ..

370 ... !

237() ...

L37(4) :

[..37(24)- L34(3) +.28(6)  =10(28) + .22(3) +.39(6)':— .12(24) +.08(3) ~ .06(6)

[511(;1)‘521(;2) By (xy) = Epp(x)) By (xy) + Epp(xy)l = Epaxp) + Bpy(xy) = Eyy(xy)

".35(20) - .36(1) + .28(5)!- .10€20) + .22(1) + .39(5) }=12(20) + .08(1) - .06(S)
Eyp (DV)**-Ey) (DV)+Eq (DV) ~ E15(DV) + Epp(DV) + E3p(DV), = Ej3(DV)+ Ep3(DV) - E33(DV)
37¢22) ... | |

37(28) . .

L37(26) . . . l

37(28) . . . : Ty

*Line 1 differs from line 7 by line 6; lines 2-5 differ from lines 9-12 by line 6.

**(DV) - (Data Value)
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