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Abstract

In recent years the widespread usage of scanning device, such as GPS-enabled devices,

PDAs, and video cameras, has resulted in an abundance of spatial data. Therefore,

there is an increasing interest in mining hidden patterns in spatial data. Discovery

of co-location patterns has been a research area in association analysis for several

years.

In this thesis, we designed and implemented a user-friendly, interactive Co-

location Analysis Tool which can be used to extract co-location patterns from spatial

datasets. By using this tool, we are able to extract co-location patterns at different

levels of granularity; these results can help with business decision-making, ecology

research, and urban planning. The tool provides two approaches to analyze colloca-

tion patterns: Ripley’s K-function approach, and a novel approach called K-Nearest-

Neighbor distance approach. Both approaches compute spatial statistics for different

neighborhood sizes and compare these characteristics with spatial characteristics ob-

tained by placing objects randomly to determine the presence of collocation and

anti-collocation. The second approach uses summaries of K-nearest neighbor dis-

tances of objects in the dataset to diagnose the presence of collocation patterns. In

addition, the tool provides visualization techniques to present the data analysis ex-

perimental results. Finally, we validated the tool and compared the two collocation

analysis approaches for a building dataset.
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Chapter 1

Introduction

1.1 Overview

Data mining [18], also called “Knowledge Discovery in Databases” (KDD), is a sub-

field of computer science that aims to extract interesting and useful information from

large data [4]. In recent years, the widespread availability of spatial data [20, 40, 49]

has led to an awareness of the importance of mining spatial data. In order to provide

new understanding of certain domains, spatial data mining has become important

in the research area of data mining. One important spatial data mining task is to

discover interesting but implicit spatial patterns [19, 37, 43] that might exist in spa-

tial data. Discovering spatial patterns from spatial data is much more difficult than

discovering patterns in traditional data. Challenges include the huge amounts of

spatial data [48], and the complex data types of spatial data such as lines, polygons,

and spatial autocorrelation [38].
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Spatial data are generated by devices such as satellites, GPS, city cameras, etc.

A lot of useful and interesting information are hidden in these tons of data. For

example, ecologists might be interested in studying how American alligators and

American crocodiles are distributed in a wetland, and whether or not they co-occur

frequently in a specific region. Therefore, a task that aims to explore co-located pat-

terns in spatial data has become an important research area. Some institutions and

companies have developed spatial analysis softwares or packages to enable people

to analyze spatial data. For example, the Esri company developed ArcGIS to help

people to visualize and analyze spatial data; it also provides services including over-

lay, surface, proximity, suitability, network analysis,interpolation analysis, and other

geo-statistical modeling techniques [8]. Other popular spatial analysis softwares or

packages including Google Earth, PostGIS, ArcGIS, spatial package of R(spatstat

package), etc., all of which provide services of mining knowledge of spatial data.

In order to ease the job for people to analyze co-location patterns in spatial

data, we create a Co-location Analysis Tool in this thesis. The developed co-location

analysis tool incorporates two different methods to analyze co-location patterns for

spatial data. The first approach is called Ripley’s K-function which is a popular

approach used to analyze spatial data [35]. The second approach is called K-Nearest-

Neighbor distance (KNN distance for short) function which is used for the first time

to analyze the co-locations. In order to make sure it is easy to use, we also designed

a user-friendly graphical user interface for the tool by using QT, which merged the

spacial data analysis algorithms and experiment result visualization function under

one framework.
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1.2 Research contributions

There are some spacial data mining analysis applications such as mathlab, R, etc.,

but they only provide very generic APIs or functions which can be used for the spatial

data analysis. Users are required to be familiar with Mathlab and R programming

languages in order to develop code to do spatial data co-location analysis. In order

to do the spatial data co-location analysis, users have to learn to parse and get the

spatial data and write program to do analysis. This is a time-consuming and error-

prone process. After getting the experiment results, people either have to write codes

to show the results or use some other software.

The main contribution of this work is that we have designed and created a spatial

data co-location analysis tool which can greatly ease the work of analysis. It can

automatically handle spatial data file reading (*.kml from Google Earth) and to

do co-location analysis based on different methods users choose. This tool also

integrates a visualization module which can present the data analysis experimental

results transparently. Another advantage of this tool is that we built our tool based

on the Qt implementation framework, which can easily deploy this tool under both

Linux and Windows environment. Additionally, we also provided a module which

allows the tool to dump all the intermediate data analysis results, which can be used

by other software like Excel, etc.. Moreover, we introduce a new spatial statistic

approach called KNN distance approach to analyze spatial patterns.
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1.3 Thesis organization

The rest of the thesis is organized as follows: Chapter 2 first provides an overview

of association analysis and then introduces the related work of spatial data mining.

Specifically, it describes what is co-location pattern mining and introduces motiva-

tion for designing a tool for extracting co-location patterns from spatial data. It also

describes several popular softwares and tools for spatial data analysis. Chapter 3

describes several algorithms used for the development of the tool, which including

Ripley’s K-function and KNN distance approach, and Andrews monotone chain al-

gorithm for determining convex hull for a set of points. Chapter 4 introduces the

framework and architecture of the tool. Additionally, details of its implementation

and design are described as well. Chapter 5 shows the experimental results of several

cases and gives proper interpretation and analysis for each case. Chapter 6 provides

a conclusion and describes future work.
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Chapter 2

Related work

A frequent pattern usually refers to a pattern (sub-graph, sub-sequences, sub-structures,

etc.) which co-occurs frequently in a dataset. Problems such as what products are

frequently purchased together or what web pages are consecutively clicked are quite

common in our daily life.

Association analysis, which seeks to find frequent patterns that describe the re-

lationships among attributes (variables) of a data set, has been a research area of

data mining for a while. Companies have created a unique set of association analysis

tools that are widely employed in business and science [42]. Classical association

analysis focuses on analyzing transaction data which can help retailers to develop

marketing strategies [33] by discovering the frequent items that are always purchased

together by customers. For example, Christmas trees and Christmas tree decorations

are frequently bought together.
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Sequence pattern mining [12] is another important association analysis sub-area

with widespread applications [29]. It serves an important role for professionals work-

ing in bio-informatics, genomics, web services, and financial data analysis. [17]. For

example, it can help discover customer shopping behavior in retail stores by extract-

ing useful information from sequence databases. A sequential database is a collection

of sequences of ordered elements or events [21, 50]. Sequential pattern mining is

somewhat similar to frequent item-set mining, but with mining sequential pattern

we need to take the event order into consideration. Table 2.1 shows an example of a

sequence dataset. Here we use web sessions which actually are a consecutive series

of web page clicks as an example. An item such as BCD in this table means that a

user first visits page B, then page C, and then page D.

Table 2.1: A example of sequential dataset of web log sessions.

Session ID Session sequence

1 ABCE
2 ABEF
3 BCD
4 BCD
5 CD
6 ACF

mining is to discover subgraphs that frequently co-occur in a given set of graphs.

A subgraph is regarded as frequent if the frequency is above a given support thresh-

old.

There are several algorithms used to mine graphs [34]. Inokuchi et al. [25]

proposed an apriori-based algorithm which can discover both connected and discon-

nected frequent subgraphs. Another algorithm called FSG was then developed by
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Kuramochi and Karypis [27]; it is based on the idea of an edge-growing strategy.

Xifeng Yan and Jiawei han proposed an algorithm called gSpan which is based on

depth-first search (DFS) in frequent subgraph mining [51]. Other algorithms for

graph mining, including simple path patterns [13], generalized path patterns [32],

simple tree-like topology patterns [30], tree-like patterns [47], general graph pat-

terns [27], etc., are also used in data mining reserch area. In recent years more

and more researchers have focused on how to deal with large-scale graphs that con-

tain billions of entities [28]. In order to improve computational efficiency for graph

mining, cloud computing is frequently used to solve the problem.

2.1 Spatial data mining

Spatial data mining [37, 39] is a sub-area of data mining which aims to discover in-

teresting patterns from large spatial data. The research area of spatial data mining

serves as an important role, as it helps people discover hidden information from

spatial data and reduce the unclear of possible scientific hypotheses. With the

widespread usage of spatial data [41] and new data resources such as data from

satellite, mobile phone data, and Google Earth data, etc., the topic of spatial data

mining has become very important [22].

In the last decade, G.Kiran Kumar and P.Premchand defined “Spatial data min-

ing, or knowledge discovery in spatial database, which refers to the extraction of

implicit knowledge, spatial relations, or other patterns not explicitly stored in spa-

tial databases.” [26]. The objects of spatial patterns not only refer to points, but
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also frequently refer to lines, polygons, and other complex geometrical structures.

Mining spatial data is more difficult than the classical databases because spatial

data have some unique features. In general, spatial data have complex data types

(data could refer to points, lines, and polygons, etc.), special spatial relationships,

and spatial autocorrelation. Because of the unique features that spatial data have,

it limits the usage of classical techniques for spatial data mining.

2.1.1 Co-location patterns mining

Spatial co-location patterns mainly refer to subsets of spatial features whose in-

stances are frequently located together in a local regional spatial proximity [23] [14].

For example, if Walmart and Target supermarkets are located close to each other in

a spatial data set, they might be considered co-located; another example is that the

location of alcohol-related traffic accidents and the location of bars are frequently

located in close proximity. Mining spatial co-location patterns is quite different from

mining classical association rules. Classical association rule mining aims to discover

interesting relationships in large data [46], which takes traditional transaction-based

approach by using minimum threshold such as support, confidence to discover asso-

ciation rules, etc.. However, there is no transaction when mining spatial co-location

patterns. Consequently, it is hard to use classical approaches to generate association

rules to mine spatial data.

A lot of prior work have been focused on co-location data mining. Morimoto et

al. propose an apriori-like algorithm to mining co-location pattern, which is used

8



to discover frequent neighboring co-locations in spatial data [31]. Their method is

based on a plane partitioning approach by using a Voronoi diagram. After that,

Shekhar and Huang et al. introduced an apriori-like generate and test approach to

discover subsets of spatial features that in close proximately of each other [41]. This

method uses spatial join operation, which is very expensive to discover co-location

patterns; especially when the data set is very large, it will take a long time to analyze

the pattern. In order to speed up pattern analysis, Yoo et al. developed a joinless

algorithm which materializes spatial data [52]. In their method, join operations are

substituted by scanning operations and look-up operations, so the performance of

this method largely depends on the efficiency of the scanning operations and look-up

operations. Some other clustering analysis techniques are also explored [24] to dis-

cover co-locations; however, the resulting patterns varied when different clustering

methods are used. In most of pattern analysis methods discussed above, an appropri-

ate scale of analysis is required. For example, a distance threshold or participation

ratio is needed to analyze co-locations. Compared with their work, our tool can

summarize spatial patterns (co-located or anti-colocated) over a range of distance

without specifying the scale of the analysis.

2.1.2 Tools for spatial data mining

There are several applications that are designed for mining spatial data, each of them

has different usages. Based on their goals, we can classify them into the following

sections.
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2.1.2.1 ArcGIS

ArcGIS is a commercial product of the Esri company, and a geographic information

system (GIS) for creating, visualizing, managing, and analyzing spatial data [1]. This

tool is very powerful, as it helps users to explore interesting spatial information by

analyzing spatial data.

ArcGIS has three platforms [5]: The first platform is GIS professionals [1], which

provides services that allow users to get the solutions from the service it supports.

This platform includes:

• ArcGIS Online

• ArcGIS for Desktop

• ArcGIS for Mobile

• ArcGIS for Server

The second platform is location analytics [1], which provides services that allowing

users to visualize and analyze spatial data. This platform includes:

• Esri Maps for Office

• Esri Maps for IBM Cognos

• Esri Maps for SharePoint

• Esri Maps for Dynamics CRM
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• Esri Maps for MicroStrategy

• Esri Maps for SAP BusinessObjects

The third platform is developers [1], which provides services that allowing users to

add location to apps quickly. This platform includes:

• ArcGIS for Developers

• Esri Developer Network

Users of ArcGIS can also add software extensions to get solutions for specific prob-

lems. These software extensions include ArcGIS Spatial Analyst (advanced raster

modeling, VBA for raster analysis, etc.), ArcGIS 3D Analyst (three-dimensional

modeling tools, real-time interactive three-dimensional scenes), and Geo-statistical

Analyst (exploratory spatial data analysis tools, probability mapping, etc.) [1].

2.1.2.2 R package

Besides the commercial software that we just discussed, R also provides a package

that deals with spatial data; it is called spatstat and is a package for spatial point

patterns analysis. By using this package, users can analyze two-dimensional and

three-dimensional spatial datasets. It also provides functions that visualize spatial

data, exploratory data analysis, model-fitting, simulation, spatial sampling, model

diagnostics, and formal inference [11]. Although the spatstat package can provide

functions to analyze spatial data, using only the functions of this package cannot

11



satisfy our research goal, because we need to process the KML file first before we

can use this package. Besides, we cannot generate the boundary of a given polygon,

and categories cannot be specified either.

2.1.2.3 Google Earth

Google Earth is a virtual globe, map, and geographical information program that

was originally called EarthViewer 3D created by Keyhole, Inc, a Central Intelligence

Agency (CIA) funded company acquired by Google in 2004 [6]. This tool is able

to map the earth by the superimposition of images obtained from satellite imagery,

aerial photography, and geographic information systems (GIS) in a vivid 3D global

view, which has been widely used in our daily life. Google Earth is composed of a

couple of layers, such as: Sky, Ocean, Buildings in 3D, Weather, Places of Interest,

etc.. Google Earth supports managing three-dimensional Geo-spatial data through

Keyhole Markup Language (*.kml), an extension of *.xml file. Google Earth reads

objects’ longitude, latitude, etc. information and provides visualization for those

objects.
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Chapter 3

Algorithms

In this chapter, we are going to introduce several algorithms that were used in the

development of our tool. Based on the usage of an algorithm, they are classified

into two groups: a) algorithms used for processing spatial data, and b) algorithms

for discovering spatial patterns. Specifically, Andrew’s monotone chain algorithm

is used for wrapping the whole objects of interest data. The Ripley’s K-function

and K-Nearest-Neighbor distance (KNN distance for short) approaches are used for

analyzing the co-location patterns.

3.1 Polygon wrapping algorithm

In this work, in first step, co-location analysis approaches are used to analyze the

input spatial dataset. Andrew’s monotone chain algorithm is then used to search for

boundary points which are used to wrap points inside a polygon. After determining

13



the boundary polygon, new points are generated randomly inside the boundary. At

last, discovering spatial patterns algorithms is used again to capture the spatial

statistic of the randomly generated dataset.

3.1.1 Andrew’s monotone chain algorithm

In order to generate a polygon to wrap a set of objects in a spatial dataset, we adopt

Andrew’s monotone chain algorithm to construct a convex hull. Andrew’s monotone

chain algorithm (Andrew, 1979) is a variation of Graham scan algorithm. It uses

a linear lexicographic sort of the point set by x and y-coordinates [3] which works

better if the order of a set is already known. Some other algorithms can also be used

to construct convex hull, which are listed in Table 3.1.

Table 3.1: Algorithms used for convex hull construction.

Algorithm Name Research Year

Gift wrapping 1973
Graham scan 1972
QuickHull 1978
Divide and conquer 1977
Incremental convex hull 1984
The ultimate planar convex hull 1986
Chan’s algorithm 1996

3.1.2 Basic concepts of Andrew’s monotone chain algorithm

To understand Andrew’s monotone chain algorithm, firstly we need to figure out

the convex hull definition. In mathematics, a convex hull is defined as the smallest

14



convex set of points that contains a given series of points [2]. For example, given a set

of points P, the input data is P= {p1, p2, p3, ..., pn} ⊂ R2, n ∈ N , then output should

be a sequence set (q1, q2, ..., qn), 1 ≤ h ≤ n (counter-clockwise order). Figure 3.1

below gives an example of the convex hull of a given set of points.

In addition, the concept of chain method also needs to be understood. Suppose

we have a set of points D= {P1, P2, P3, ..., Pn}. A chain is a graph which contains a

vertex set {P1, P2, P3, ..., Pn} and an edge set {(P1, P2), (P2, P3), ..., (Pn, Pn+1)}.

Moreover, the concept of monotone chain method is an extension of the chain

method. If a line orthogonal to a straight line L intersects the chain exactly one

time, it is considered to be a monotone chain. To compute the monotone chain,

both the upper hull and lower hull of a points set of a monotone chain need to be

computed.

3.1.3 Andrew’s monotone chain algorithm

To compute a convex hull, the Andrew’s monotone chain algorithm has two steps.

First, it computes the upper hull and lower hull of a monotone chain of points, then

the convex hull is constructed by joining the upper and lower hulls. Details will be

illustrated in each step.

• Step 1, compute the upper hull and lower hull. In this step, it first sorts

the point set by increasing x and then y coordinate values, then finds the

minimum and maximum x-coordinates and the minimum and maximum y-

coordinates. Note Pminmin as the point that has the minimum x-coordinates
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and minimum y-coordinates, Pminmax as the point that has the minimum x-

coordinates, and maximum y-coordinates, Pmaxmin as the point that has the

maximum x-coordinates and minimum y-coordinates, Pmaxmax as the point that

has the maximum x-coordinates and maximum y-coordinates. Next, create a

lower bound Llower by joining two points Pminmin and Pmaxmin together and

create an upper bound Lupper by joining the two points Pminmin and Pmaxmin

together. Then create the lower hull Ωlower by processing the points that are

under the Llower and create the upper hull Ωupperby processing the points that

are above the Lupper.

• Step 2, join the lower hull Ωlower and the upper hull Ωupper together to be a

convex hull.

Figure 3.1: Example of Andrew’s monotone chain algorithm

For example, as shown in the figure 3.1, we can see that there is a set of points.

First we sort the points by increasing the value of the x-coordinate and y-coordinate.

Then Pminmin, Pminmax, Pmaxmin, and Pmaxmax are fixed. In this specific example,
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Pminmin = Pminmax, and Pmaxmin = Pmaxmax. After that the lower bound Llower

and upper bound Lupper are constructed; here the lower bound is the same as upper

bound Llower= Lupper. Then we generate the lower hull Ωlower and upper hull Ωupper,

and join them together to construct a convex hull.

3.1.4 Algorithm for judging if a point is inside a polygon

The algorithm [10] used for evaluating whether a given point is inside a polygon is a

simple but useful method. This algorithm has three steps, the detailed procedure of

which described below:

1. Check whether the y-coordinate of a test point is within the edges scope. If it

is inside then go to step 2; if not, this point is outside the polygon.

2. Check whether a test point is to the left of the line. If that’s true, draw a line

rightwards from the test point until it crosses that edge.

3. Count the number of times that the rightward line crosses the polygon. If it

crosses an odd number of times, then the test point is inside the polygon; if an

even number, the test point is outside the polygon. When introducing a new

test point, repeat the three steps above.
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3.2 Co-location data mining algorithm

3.2.1 K-Nearest-Neighbor distance approach

The K-Nearest-Neighbor distance (or the KNN distance) approach is used in this

thesis to create spatial statistics based on the observed K-nearest neighbor distance

in a spatial data set. It is used to generate K-nearest neighbor distance curves based

on similarity measure (distance function).

Figure 3.2: KNN distance algorithm example.

To illustrate this approach, an example is given in Figure 3.2. In this figure, we

can see there are a couple of green points around a red point. Assume the distances

from the red point to the rest of green points are d1, d2, d3, d4, d5, and d6 respectively.

If k is set to 1, the 1st nearest neighbor distance is d1; if k equals to 2, then d2 is

the 2nd nearest neighbor distance. The same way for calculating the kth distance

calculation is applied to all the rest green points. Note that there is only one red

point in this example for simplicity. If we have multiple red points, we then apply
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the above process to each red point and calculate the average distance for each k

value. Figure 3.3 shows the work flow of the KNN distance approach.

The pseudocode of KNN distance approach is listed as below:

FOR k=k1, ,kr DO

FOR all green objects gp DO

Compute distance rdk to k-nearest red object to g ENDDO

Compute average rdk of values observed in previous loop

Put entry (k, rdk) into the Curve

ENDDO

3.2.2 The Ripley’s K-function approach

In 1976, Ripley [36] used more points to provide an estimate of spatial dependence

over a wider range of scales based on all distances between events in the area of

interest.

The K-function defined by Ripley [36] is as follows:

K(r) = 1
λE

where E represents the number of extra events within distance d of a randomly

chosen event and λ means the intensity of events. It is usually used in the area of

ecology [44] and geographical epidemiology [15, 45].

The formula is as below:

K(r) = R
n2

∑∑ Ir(dij)

wij
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Figure 3.3: KNN distance algorithm work flow.

where n represents the number of point, R means the study area, Ir(dij) is the

dummy variable I if dij ≤ h, otherwise it counts 0, and wij represents the proportion

of circumference of circle. This formula indicates that the probability of an event at

any point in the area of R is independent of any other events that have occurred.

Figure 3.4 illustrates the main steps that are used for the co-location analysis.

In general, the Ripley’s K-function [16] is a spatial analysis method that is used

to describe how point patterns of spatial point data occur over a given study area of
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Figure 3.4: K-function diagram.

interest. It can help researchers and scientists to determine whether the phenomenon

of interest (for example, different categories of trees, different type of buildings, loca-

tions of traffic accident, bars, etc.) appears to be dispersed, clustered, or randomly

distributed throughout the region based on distance approach.

Besides, the Ripley’s K-function is generally calculated at multiple distances so

that point pattern distributions can be changed with scale. For example, when the

distances are short, the points could be clustered, and when the distances increase,

points might be randomly distributed at the same region.

The Ripley’s K-function is used to describe the point patterns of interest. As-

sume single houses are represented by green dots and collective houses are repre-

sented by red dots, the function counts the number of neighboring collective houses
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found within a given distance of each individual single house. The average number

of observed neighboring collective houses is then compared to the average number

of collective houses one would expect to find based on a completely spatially ran-

dom point pattern. If the average number of collective houses found within a given

distance of each individual single house is greater than that for a random distribu-

tion, the distribution is considered to be clustered. Otherwise, the distribution is

dispersed.

The pseudocode of Ripley’s K-function is listed as below:

DO radi r1, . . . ,rn:

DO all green objects g:

Compute no. of red objects within radius rj of g ENDDO

Compute average roj of values observed in previous loop

Put entry (rj, (roj/total_number_of_red_objects)) into Curve

ENDDO

ENDDO
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Chapter 4

Co-location Analysis Tool Design

In this chapter, section 4.1 discusses the architecture of the tool. Section 4.2 summa-

rizes the main classes used in the development of co-location analysis tool GUI design

and data analysis. Section 4.3 introduces the basic work flow of the tool. Section 4.4

describes the KML file format and the utility that we designed for parsing *.kml files

for the input of the co-location analysis. Section 4.5 discusses the techniques that

are used for displaying spatial dataset and co-location analysis result visualization.

Evaluation and test results are presented in section 4.6.

4.1 Architecture of the co-location analysis tool

Based on functionality, this tool can be divided into 3 different modules. Those 3

modules are QT GUI visualization, co-location pattern analysis, and experimental

results visualization & saving respectively, which are presented in figure 4.1. The
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GUI visualization module is mainly used to generate the window related controls.

The co-location pattern analysis module is used to process co-location pattern anal-

ysis by using two different spatial data mining methods. The experimental results

visualization & saving module takes care of co-location pattern analysis result visu-

alization and intermediate result file saving. The generated result file can be read

by other tools directly.

Figure 4.1: Functional modules of the co-location analysis tool.

The general overview of the co-location analysis tool is listed in figure 4.2. The

input file is a *.kml file which is a spatial dataset that contains objects information.

Our co-location analysis tool will first load the *.kml file and then parse object in-

formation inside. An intermediate *.dat file will be generated, which contains object

coordinate information. After loading, the input spatial dataset can be visualized

in the left-hand board of this tool by clicking the check box “Original points plot”.

After that, a method used for analysing spatial patterns needs to be specified and

this method will be used for the input spatial dataset for spatial co-location analysis.
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Parse KML file 

Visualize 

Ripley’s k-function 
or KNN distance 

Generate 
boundary 

Random 
function 

DAT file 

Check point 
inside 

polygon 

Yes No 

csv files 

Process Output file Input file 

csv file 

Yes 

Figure 4.2: Overview of the co-location analysis tool.

In order to randomly place objects in the same area, we need to find the bound-

ary which can include all the objects of the dataset. By using Andrew’s monotone

chain algorithm, a polygon can be generated to surround all the objects. Next, we

randomly generate the same number of objects within the polygon we generated in

the previous step. In the meantime, an intermediate *.csv file is generated which

stores the new dataset coordinate information. Finally, the previously selected co-

location analysis method will be used to analyze the spatial co-location pattern for

original objects and the randomly generated objects. The final analysis result will

be visualized by this tool. Moreover, the final result will be stored into a *.csv file

for reference.
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4.2 GUI-design-related classes

The co-location analysis tool has been implemented based on the Qt application

development framework. Figure 4.3 summarizes the relationships of main classes used

for the tool GUI development and spatial data co-location analysis. Key functions

of each main functional class are listed in Table 4.1. The main function is the

program entry point, where it firstly initializes class MainWindow for the main window

generation. In the meantime, class MainWindow initializes classes Plot and Panel

which are two classes used for generating left-hand experimental result plotting board

and right-hand experimental parameters input text boxes, and down control units

respectively. Function descriptions for each class are summarized below:

• MainWindow: Creation of the main window, which creates menu, Menu-bar,

status bar, panel, and potting board. It also handles basic operations such as

*.kml file loading, saving, printing and data analysis, etc..

• Co-Location: Handles *.kml parsing, reading, random spatial data points gen-

eration within polygon and spatial data analysis and computation

• Panel: Implement spatial data analysis visualization, polygon visualization,

experimental results curve drawing, diagram zooming in and out, mouse drag,

etc..

• QwtPlot: Basic implementation which handles curve style setting, polygon

symbol settings, data sampling for visualization.

• QwtPlotCurve: Underneath implementation for drawing curves and points.
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MainWindow

CoLocation PanelPlot

DistancePicker

QwtPlotPicker

QwtPlot

QwtPlotCurve

QWidget

QwtPicker

QObject QwtEventPattern

main

Figure 4.3: Co-location analysis tool - main classes
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Figure 4.4 shows the main window that we designed for this tool. It is mainly

composed of five parts: Menu, Menu-bar, Plotting board, Parameter input panel,

Status bar. By either using Menu or Menu-bar, users can load *.kml file and analyze

spatial data. Plotting board is used to visualize the spatial dataset and boundary

polygon, as well as the experimental results. Parameter input panel enable users to

select analysis method and configure experimental parameters. Status bar is used to

update program status for users.

Figure 4.4: Welcome window of the co-location analysis tool
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4.3 Co-location analysis work flow

First let’s begin with presenting some basic concepts in this section. In a spatial

dataset, we denote O to be a set of objects, where O={o1, o2, o3,....on}, and each

object is tuple as <building type, longitude, latitude>. In this thesis, we propose

a GUI tool for spatial co-location pattern analysis. Two distance-based approaches

are used: Ripley’s K-function approach, K-Nearest-Neighbor distance approach, in

addition, Euclidean distances are used as a distance function.

Based on the main functions of the tool, we summarize spatial co-location pat-

terns mining work flow in 7 steps as follows:

Step 1: Load a KML format file and parse it into an intermediary *.dat file.

Step 2: Visualize the input spatial dataset.

Step 3: Use one of the spatial pattern analysis approaches to analyze the input spa-

tial dataset.

Step 4: Create the boundary polygon for the input spatial dataset by using Andrew’s

monotone chain algorithm.

Step 5: Randomly place the objects in the space, and check whether each object is

inside the boundary which is created in step 4. If not, re-place it again until all the

objects are inside the boundary, and a new dataset is then generated.

Step 6: Use the spatial pattern analysis approach specified in step 3 for the new

dataset that generated in step 5.

Step 7: Draw the co-location curves based on the results of step 3 and step 6.

The input and output file used and produced by the co-location analysis tool are
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summarized below: Input:

1. A *.kml file.

2. A method for spatial pattern analysis.

3. Two categories based on input dataset.

4. Start radius.

5. Step.

6. Maximum radius.

7. Maximun k value.

Output:

1. An intermediate dat file that contains information we need.

2. An intermediate csv file that contains randomly placed objects.

3. Csv files contain spatial pattern analysis results.

4.4 KML file parsing

KML is an open standard officially named the OpenGIS KML Encoding Standard

(OGC KML). It is maintained by the Open Geospatial Consortium, Inc. (OGC) [7].

The *kml file is readable by the GoogleEarth [6] for easy visualization. Figure 5.1
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shows the effects of input file that we have for later spatial data analsysis. The *.kml

file looks like an XML file extension; Although structurally they are very similar,

Google Earth 5.0 has provided a number of new features for KML extensions. These

extensions use the gx prefix and the following namespace URI:

xmlns:gx="http :// www.google.com/kml/ext /2.2"

This namespace URI must be added to the <kml> element in any KML file using

gx-prefixed elements:

<kml xmlns="http ://www.opengis.net/kml /2.2"

xmlns:gx="http :// www.google.com/kml/ext /2.2">

Although the *.kml file is different from the *.xml file, we can pre-process the KML

file directly like the XML file. There are a bunch of libraries that have been provided

to parse the XML files. In our implementation, we first convert a KML to an XML

file and then use those available libraries to parse the converted XML files. Minimal

DOM implementation is a minimal implementation of the Document Object Model

interface, with an API similar to that in other languages [9], we use the provided

APIs together with Python programming language to help us extract information as

input for the co-location analysis tool. Note that some redundant gx prefixes might

exist in the provided *.kml file, so we need to remove redundant files during the

parsing process.
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Figure 4.5: Qwt classes used to store points coordinate information.

4.5 Spatial data analysis and visualization

After parsing, building type and coordinate information for each object are kept for

further visualization and analysis. To ease the process of visualization, we adopted a

third-party library for spatial data points and experimental result visualization. Fig-

ure 4.5 shows the relationship of the classes which are used to store sampling data

for the Qwt control visualization. Since we only need to keep x and y coordinate

information, we naturally used the QPointF data type to store the coordinate infor-

mation. Before we invoke the Qwt provided API QwtSetSample() to draw diagrams,

also we are required to set up the data points visualization symbols, point color,

and drawing style (e.g. lines, curves, points, etc.). Figure 4.6 lists the relationship

bwtween drawing classes.

4.6 Evaluation and verification

After introducing key modules and functions used in the development of our tool,

next we need to verify our tool and demonstrate how to use this tool to analyze
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Figure 4.6: Qwt classes used for points and curves drawing.

co-location patterns. In order to verify the tool, we wrote a python script to inten-

tionally create 100 objects placed into two circles. Each circle includes a red object

surrounded by 49 green objects points with an radius less than 1. The coordinate of

two red points are (1, 1) and (4, 1) respectively, which is shown in figure 4.7.

Figure 4.4 is the welcome window after running this tool. By default, it will select

Ripley’s K-function approach to analyze spatial patterns. Users can also change to

a different method by selecting the drop-down list on the right configuration panel.

Figure 4.8 shows the process that co-location analysis tool loads the data file which

we created for verification. After loading the file, by clicking scatter-plot button

on the menu bar, the tool will visualize the input spatial dataset. From figure 4.7,

we can see that purple points represents the original input dataset. Based on the

algorithm described in section 3.1, we can get the boundary points and then draw the

polygon that incorporates all the scatter points. The red line in figure 4.10 shows the

boundary polygon for the input dataset. After getting the boundary, next comes the

step of generating randomly distributed points within the polygon. Green points in

figure 4.11 shows the randomly generated points which are evenly distribute within

this area incorporated by the red polygon lines. By enabling the “random point
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Figure 4.7: Visualization of verification points.

plot” check box on the right panel box, we can call random function and visualize

the boundary polygon. Figure 4.12 shows the visualization of the original input

dataset and randomly generated dataset together within the boundary polygon. The

category drop-down lists in the right panel will automatically initialize the category

types according to the input dataset. Therefore, users can specify the data analysis

method and category types, start value, step size, etc. to do further co-location

analysis.

To evaluate the tool, we use a dataset that only has two categories: red objects

and green objects; there are 100 objects in total. The test dataset we use looks like

two circles; each circle has 50 objects (including one red object and 49 green objects)

and the radius of each circle is less than 1. The two red objects are located in (1, 1)

and (4, 1). Note that there are no points between 2 and 3 in the x axis direction.
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Figure 4.8: Visualization of spatial data from KML files.
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Figure 4.9: Visualization of spatial data from KML files.

Therefore, if we use Ripley’s K-function approach to analyze co-location patterns,

the purple curve, which represents the original input dataset patterns, is expected to

increase by the same increment as the radius until the radius reaches 1. When the

radius is equal to 1, the average percentage of green objects is expected to be 50%.

Then before the radius reaches 2, the average percentage of green objects is expected

remain 50%, because there is no green objects between the 2 and 3 in the x axis.

After that, the purple curve is expected to increase as the radius increases. However,

if the KNN distance approach is specified as the method to analyze input dataset, the

purple curve is expected to increase little by little as the k value increments. When

k equals 50, a big jump is expected in the curve, since the 50th object is located in

the other circle. After that the curve is expected to increase as the k values increase
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Figure 4.10: Visualization of polygon based on the input spatial data.

again.

Firstly, we evaluate the Ripley’s K-function approach. We specify the start value

to be 0.1, step size to be 0.1, end value to be 3.0, category A to be red, and category

B to be green; we can then get the results of co-location analysis. Figure 4.13 shows

the experimental of the test dataset. As we can see from the figure the purple curve,

which represents the original input dataset, is increased as the radius increases; when

the radius reached 1, it stopped increasing. Meanwhile the y axis value equals to

50. The purple curve is parallel to the x axis when the radius is from 1 to 2. It

increases again after the radius reaches 2. Based on the observation above, the

experimental result of the test dataset exactly agrees with the prediction, as we
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Figure 4.11: Visualization of randomly generated spatial points within polygon.

discussed previously.

Next, we are going to evaluate KNN distance approach. we specify the largest k

to be 70. From figure 4.14 we can observe that the purple curve increases little by

little as the k value increases. However, the curve has a big jump when k equals 50.

After that, it increases slowly as the k value increases. This result is in agreement

with the prediction as well.
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Figure 4.12: Visualization of randomly generated spatial points together with the
original spatial points within polygon.
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Table 4.1: Summarization of class functions.

Class Key Functions

CreateStatusBar()
Create toolbar

MainWindow Print()
Help()
Save()
LoadKML()
Read points()
Get convex hull()
Is point in polygon()
Get distance()

CoLocation KNN Calculate old ratio()
KNN Calculate new ratio()
Calculate old ratio()
Calculate new ratio()
DumpPointsInfo()
Generate points()
Plot()
setPolygonSymbol()

Plot setPolygonSamples()
setSymbol()
setNewSamples()
setOldRatioSamples()
setNewRatioSamples()
setSamples()
Q SIGNALS:
void dot selected();
void boundary selected();
void new dot selected();
void curve selected();

Panel void method selected();
void edited();
void cate A edited();
void cate B edited();
void generate points();
void do analysis();
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Figure 4.13: Verification of co-location analysis by using the K-function algorithm.
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Figure 4.14: Verification of co-location analysis by using the KNN algorithm.
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Chapter 5

Experiment Results

The goal of this chapter is to demonstrate the co-location analysis tool, which displays

the experiment results for several different cases, and compares the accuracy and

efficiency of two co-location analysis approaches.

5.1 Summary of experiment dataset

In our experiments, a dataset which contains different types of buildings in a neigh-

borhood of the city of Strasbourg in France is used. The dataset is a KML file which

contains building location (longitude, latitude) information, building types, building

area, etc..

In our analysis, we particularly focus on the analysis of co-location patterns for

the following six major types of buildings from the city of Strasbourg:
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• Single houses, represented by the green color.

• Garages, represented by the red color.

• Commercial buildings, represented by the yellow color.

• Light buildings, represented by the blue color.

• Collective houses, represented by the pink color.

• Schools, represented by the cyan color.

The neighborhood of Strasbourg in the dataset is visualized in Figure 5.1:

Figure 5.1: A neighborhood of city of Strasbourg visualized by Google Earth
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5.2 Experiment result

In our experiments, we conduct spatial analyses based on Ripley’s K-function ap-

proach and K-Nearest-Neighbor distance approach with respect to different types of

buildings in a data set. The number of each type of building is shown in Table 5.1.

Table 5.1: Building numbers of different building types

Building type Number

single house 1598
garage 81
commercial building 133
light building 56
collective house 157
school 14
sport building 2
church 2

When using the co-location analysis tool, users first need to select a co-location

analysis method that they want to use. If users choose to use the Ripley’s K-function

approach, they need to further specify other parameters, including a starting distance

(the distance unit is based on each case), a distance increment, and an ending dis-

tance. Users also need to specify the two categories they want to evaluate. These two

categories represent two types of objects that users are going to analyze. There are

six major building types in our experimental dataset; we could select any two of the

building types to analyze their co-location patterns based on Ripley’s K-function.

K-Nearest-Neighbor distance (KNN for short) approach is an alternative ap-

proach which is used for the first time to analyze co-locations patterns. To use the

KNN distance approach, users need to specify the largest k values, and two categories
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they want to analyze: category A and category B. These two categories represent two

types of objects that users are going to analyze their co-location patterns.

If the method is specified as Ripley’s K-function, then the x-coordinate repre-

sents the radius and the y-coordinate represents the average percentage of objects in

category B.

If the method is specified to be the KNN distance approach, then the x-coordinate

represents the k value and the y-coordinate represents the average distance of Kth

nearest object in category B. By using these two approaches, the co-location analysis

tool can summarize spatial patterns (co-located or anti-co-located) over a range of

distances.

In our experiments, five different cases are analyzed, which are listed below:

• Case one: garage, single house

• Case two: garage, collective house

• Case three: commercial building, light building

• Case four: commercial building, school

• Case five: collective house, garage

For each case, two different co-location analysis approaches are used. Please note

that the all radii unit that I used in the experiments is mired (micro-reciprocal-

degree). For the plot part in our tool, note that the unit of x-axis is mired and the

unit of y-axis is percentage.
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5.2.1 Case one

In case one, we analyze co-locations between garages and single houses. The distri-

bution of original input dataset of these two types is displayed by figure 5.2. We can

see that on the left-bottom section of the figure,there are some red points surrounded

by few green points. Figure 5.3 shows scatter plot of garages and single houses after

they are randomly placed in the same region, we can observe that both of these two

types of buildings are uniformly distributed in this figure.

Figure 5.2: Distribution of garages and single houses in original input dataset
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Figure 5.3: Random distribution of garages and single houses

5.2.1.1 Using Ripley’s K-function approach for case one

Garage and single house are specified to be category A and category B respectively

in this experiment. First, Ripley’s K-function is selected as the method to analyze

spatial patterns. Before using this method, the starting radius is specified to 0,

the distance increment is set to 0.001, and the ending radius is set to 0.032. The

figure 5.4 below shows the result of using the Ripley’s K-function.

In figure 5.4, the purple curve represents the observed spatial pattern, and the

green curve represents the expected random spatial pattern. From figure 5.4 below,

we can see that the purple curve is slightly above the green curve over the range 0 to

0.006, which means the observed spatial pattern is slightly larger than the expected

spatial pattern in this scale of distance. Where the radius ranges from 0.006 to 0.03,
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Figure 5.4: Ripley’s K-function case 1: garages vs single houses

the purple curve is below the green one. These two curves overlap and reach 100%

after the radius reaches to 0.03. Therefore, we can reach a conclusion that when

the radius ranges from 0 to 0.006, the distribution of garages and single houses are

considered very slightly co-located. These two types of buildings are more anti-co-

located than a random distributed spatial pattern with radius of 0.006 to 0.03.

5.2.1.2 Using KNN distance approach for case one

As with the Ripley’s K-function, the two categories are specified to be garage and

single house; thus, by using this approach we will discover the 1th, 2th, 3th,......,

Kth nearest single house for each garage and compute the average distance between
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them. In case one, in order to get the overview result of all instances of single house,

k value is specified to be 1598, which is the total number of single houses in the

input data set. If users choose a k value larger than the total number of the input

dataset, it will not influence the result, because the tool will automatically stop when

k reaches to the total number of the instances. Figure 5.5 below shows the result of

using KNN distance approach on case 1.

Figure 5.5: KNN distance approach on case 1: garages vs single houses

Table 5.2: Statistical data of KNN distance approach for case one

K value 10 240 580 713 918 1322

Observed
average
distance

0.000205 0.001079 0.001728 0.001904 0.002155 0.002633

Expected
average
distance

0.000227 0.001142 0.001781 0.001982 0.002262 0.002769

In figure 5.5, the purple curve represents the observed spatial pattern and the

50



Figure 5.6: Zoomming in result of KNN distance approach on case 1

green curve represents the expected random spatial curve. When the purple curve

is below the green one, it means the average distance of the observed distribution

is smaller than the average distance of the expected random distribution; therefore,

the two categories are considered co-located. On the other hand, when the purple

curve is above the green one, then the average distance of the observed distribution

is larger than the average distance of the expected random distribution.

Figure 5.5 shows the result of the KNN distance approach, but these two curves

are not clearly displayed. In order to clearly observe the result, we zoom in on the

figure 5.6, where we can tell the green curve is everywhere above the purple one.

This result indicates that garages are slightly co-located with single houses with this
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approach. Due to a large range of k values, only a few of the k values and their

corresponding observed, and expected average distances are listed in Table 5.2.

5.2.1.3 Comparing the two approaches in case one

As we discussed above, when using the Ripley’s K-function approach on case one,

we get the conclusion that garages and single houses are slightly co-located over

the range 0 to 0.006, but from 0.006 to 0.03, these two types of buildings are anti-

co-located with each other. If we use KNN distance approach, the results indicate

that these two types of buildings are slightly co-located with each other over the

range 0 to 0.03. Based on the experiment results, these two approaches partially

agree with each other. The possible reason why they disagree with each other for

larger distance is that KNN distance approach only considers the shortest range

of distance among objects, whereas Ripley’s K-function approach considers a wider

range of radius based on all distances between objects in the area of interest. In

order to compare the efficiency of these two approaches, we also list the wall clock

time of each approach in Table 5.3.

Table 5.3: Average execution time of both approaches

Approach Ripley’s K-function KNN distance

Execution time 1.394 seconds 2674.23 seconds

From the table, we can observe that Ripley’s K-function approach is much more

efficient than KNN distance approach in case one.
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5.2.2 Case two

The building types of garage and collective house are analyzed in case two. The

distribution of the original input dataset of these two types is displayed in figure 5.7.

We can observe that on the left-bottom section of the figure, the blue points are

somehow frequently located with red points . Figure 5.8 shows the scatter plot of

garages and collective houses after they are randomly placed in the same region.

Both of these two types of buildings are uniformly distributed in this figure.

Figure 5.7: Distribution of garages and collective houses in original input dataset
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Figure 5.8: Random distribution of garages and collective houses

5.2.2.1 Using Ripley’s K-function approach for case two

Garage and collective house are specified to be category A and category B respectively

in this case. We first use Ripley’s K-function to analyze spatial patterns for case

two. Before using this method, the begining radius is specified to be 0, a distance

increment is set to be 0.001 and ending radius is 0.032. Figure 5.9 below shows the

result of using Ripley’s K-function approach.

From figure 5.9 below, we can easily find that the purple curve is above the

green curve when radius ranges from 0 to 0.009, which indicates the observed spatial

pattern is more co-located than the expected spatial pattern in this scale of distance.

But when radius ranges from 0.009 to 0.03, the purple curve is below the green one,

and they reach 100% after radius comes to 0.03. Thus, we can get the conclusion
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Figure 5.9: Ripley’s K-function case 2: garages vs collective houses

that when distance ranges from 0 to 0.009, the distribution of garages and collective

houses are co-located, but they are anti-co-located where the radius ranges from

0.009 to 0.03.

5.2.2.2 Using KNN distance approach for case two

In case two, the k value is specified to be 157 because there are 157 collective houses

in the input dataset. Figure 5.10 below shows the result of using the KNN distance

approach for case 2.

From figure 5.10, we can observe that the purple curve is below the green one.

This result indicates that garages are co-located with collective houses where distance
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Figure 5.10: KNN distance approach case 2: garages vs collective houses

ranges from 0 to 0.03. Selected k values and their corresponding observed, and

expected average distances are listed in Table 5.4.

5.2.2.3 Comparing the two approaches in case two

As we discussed above, when using Ripley’s K-function approach for case two, we can

get the conclusion that garages and collective houses are co-located in the distance

range 0 to 0.009, and anti-co-located with each other with distance from 0.006 to

0.03. If we use the KNN distance approach, the results indicate that these two types

of buildings are co-located with each other within the 0 to 0.03 distance range. Based

on the experiment results, these two approaches disagree with each other most of the
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Table 5.4: Statistical data of KNN distance approach for case two

K value 12 36 76 98 125 152

Observed
average
distance

0.000403 0.000777 0.001259 0.001518 0.001816 0.002167

Expected
average
distance

0.000708 0.001269 0.001920 0.002220 0.002568 0.002903

time. Therefore, these two approaches only agree with each other in part. Where

larger distances are considered, they disagree with each other in this case. We also

list the execution time of each approach in Table 5.5.

Table 5.5: Average execution time of both approach of case two

Approach Ripley’s K-function KNN distance

Execution time 1.145 seconds 30.861 seconds

In this case Ripley’s K-function approach is much more efficient than KNN dis-

tance approach.

5.2.3 Case three

The building types of commercial building and light building are analyzed in case

three. The distribution of the original input dataset of these two types is displayed

in figure 5.11. It is easy to find that if we draw circles for each red points, there

are only very few blue pints inside each circle. The figure 5.12 shows scatter plot of

commercial buildings and light buildings after they are randomly placed in the same

region. It shows that these two types of buildings are uniformly distributed in this
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figure.

Figure 5.11: Distribution of commercial buildings and light buildings in original
input dataset

5.2.3.1 Using Ripley’s K-function approach for case three

Commercial buildings and light buildings are specified to be category A and cate-

gory B respectively in this case. We first use Ripley’s K-function to analyze spatial

patterns for case three. Before using this method, the starting radius is specified to

be 0, a distance increment is set to be 0.001, the ending radius is 0.032. The result

is illustrated in the figure 5.13.

From the figure 5.13 below, we can see that the purple curve is below the green
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Figure 5.12: Random distribution of commercial buildings and light buildings

curve where the radius ranges from 0 to 0.025, which means these two types of build-

ings are anti-co-located in this scale of distance. Where the radius ranges from 0.025

to 0.03, the purple curve is slightly above the green one. These two curves overlap

and reach 100% where the radius reaches 0.03. So, we can reach the conclusion that

where distance range from 0 to 0.025, the distribution of commercial buildings and

light buildings are anti-co-located, but they are considered very slightly co-located

where distance ranges from 0.025 to 0.03.

5.2.3.2 Using KNN distance approach for case three

In case three, k value is specified to be 56, becasuse the total number of light buildings

in original input dataset is 56. Figure 5.14 below shows the result of using the KNN
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Figure 5.13: Ripley’s K-function case 3: commercial buildings vs light buildings

distance approach on case three.

Figure 5.14 shows the result of the KNN distance approach, where we can observe

that the purple curve is above the green one. This result indicates that commercial

buildings are anti-co-located with light buildings in the distance range of 0 to 0.025,

and they are very slightly co-located in the distance range of 0.025 to 0.03. Table 5.6

lists selected of k values and their corresponding observed, and expected average

distances for case three.
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Figure 5.14: KNN distance approach case 3: commercial buildings vs light buildings

5.2.3.3 Comparing the two approaches in case three

As we discussed above, when using Ripley’s K-function approach on case two, we get

the conclusion that commercial buildings and light buildings are considered anti-co-

located over the distance of 0 to 0.025, and slightly co-located with each other with

distance from 0.025 to 0.03. If the KNN distance approach is used in this case, the

results show that these two types of buildings are anti-co-located with each other

throughout all distance from 0 to 0.03. Based on the experiment results, these two

approaches mostly agree with each other. In order to compare the efficiency of these

two approaches, we also list the average wall clock time of each approach in Table 5.5.

From the table, we can observe that Ripley’s K-function approach is much more
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Table 5.6: Statistical data of KNN distance approach for case three

K value 3 18 25 34 47 52

Observed
average
distance

0.000657 0.001604 0.001937 0.002291 0.002715 0.002872

Expected
average
distance

0.000390 0.001019 0.001212 0.001411 0.001711 0.001828

Table 5.7: Average execution time of both approach of case three

Approach Ripley’s K-function KNN distance

Execution time 1.706 seconds 16.376 seconds

efficient than KNN distance approach in case three.

5.2.4 Case four

In case four, the building types of commercial building and school are analyzed. The

distribution of the original input dataset of these two types is displayed in figure 5.15.

Obviously there are very few blue points located with red points. Figure 5.16 shows

a scatter plot of commercial buildings and schools after they are randomly placed in

the same region; both types of buildings are uniformly distributed in this figure.

5.2.4.1 Using Ripley’s K-function approach for case four

Commercial buildings and schools are specified to be category A and category B

respectively in this case. We first use Ripley’s K-function to analyze spatial patterns

for case three. Before using this method, the starting radius is specified to be 0, a
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Figure 5.15: Distribution of commercial buildings and school in original input dataset

distance increment is set to be 0.001 and ending radius is 0.032. Figure 5.17 below

shows the result of using Ripley’s K-function approach in case four.

From figure 5.17 below, we can see that the purple curve is below the green curve

where radius ranges from 0 to 0.03, which means the observed spatial patterns are

anti-co-located in this range of distances. These two curves overlap and reach 100%

where the radius approaches 0.03. Therefore, commercial buildings and schools are

considered anti-co-located in the range 0.025 to 0.03 by referring to figure 5.17.
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Figure 5.16: Random distribution of commercial buildings and schools

5.2.4.2 Using KNN distance approach on case four

In case four, the k value is specified to be 14, as the total number of schools in the

original input dataset is 14. Figure 5.18 below shows the result of using the KNN

distance approach on case four.

Table 5.8: Statistical data of the KNN distance approach for case four

K value 2 5 6 9 11 14

Observed
average
distance

0.004938 0.005391 0.005455 0.006083 0.006859 0.007092

Expected
average
distance

0.000948 0.001375 0.001516 0.001854 0.002087 0.002418

Figure 5.18 shows the result of the KNN distance approach. From the figure we
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Figure 5.17: Ripley’s K-function case 4: commercial buildings vs schools

can observe that the purple curve is above the green one, indicating that commercial

buildings are anti-co-located with schools over the range 0 to 0.03. Experimental

results for selected k values and their corresponding observed, and expected average

distance are also provided in Table 5.8.

5.2.4.3 Comparing the two approaches in case four

As we discussed above, when using Ripley’s K-function approach on case two, com-

mercial buildings and schools are anti-co-located in the distance range of 0 to 0.03.

If we use the KNN distance approach, the results indicate that these two types of
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Figure 5.18: KNN distance approach case 4: commercial buildings vs schools

buildings are anti-co-located with each other from 0 to 0.03 distance range as well.

Based on the experiment results, these two approaches agree with each other for

case four. In order to compare the efficiency of these two approaches, we also list

the average wall clock time of both approaches in Table 5.9.

Table 5.9: Average execution time of both approach of case four

Approach Ripley’s K-function KNN distance

Execution time 1.692 seconds 1.126 seconds

From the table, we can see that Ripley’s K-function approach is a little bit less

efficient than KNN distance approach in case four.

66



5.2.5 Case five

The building types of collective house and garage are analyzed in case five. The

distribution of the original input dataset of these two types is displayed in figure 5.19;

collective houses are represented by red points and garages are represented by blue

points. Figure 5.20 shows a scatter plot of garages and collective houses after they

are randomly placed in the same region; we can observe that both of these two types

of buildings are uniformly distributed in this figure.

Figure 5.19: Distribution of garages and collective houses in original input dataset
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Figure 5.20: Random distribution of garages and collective houses

5.2.5.1 Using Ripley’s K-function approach for case five

Garage and collective house are specified to be category A and category B respectively

in this case. We first use Ripley’s K-function to analyze spatial patterns for case two.

Before using this method, the starting radius is specified to be 0, a distance increment

is set to be 0.001, and the ending radius is specified to be 0.032. Figure 5.21 below

shows the result of using Ripley’s K-function approach.

From figure 5.21 below, we can see that the purple curve is above the green curve

when radius ranges from 0 to 0.009, so the observed spatial patterns are co-located

over this range. Then when radius ranges from 0.009 to 0.03, the purple curve is

below the green one; these two curves overlap and reach 100% after the radius comes

to 0.03. Thus, when distance ranges from 0 to 0.009, the distribution of garages and
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Figure 5.21: Ripley’s K-function case 5: garges vs collective houses

collective houses are considered co-located, however, these two types of buildings are

anti-co-located with each other over the range of 0.009 to 0.03.

5.2.5.2 Using KNN distance approach for case five

In case three, the k value is specified to be 81 became the total number of garages

in original input dataset is 81. Figure 5.22 below shows the result of using the KNN

distance approach on case five.

In figure 5.22, the purple curve represents the observed spatial pattern and the
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Figure 5.22: KNN distance approach case 5: collective houses vs garages

green curve represents the expected random spatial curve. Figure 5.22 shows the

result of KNN distance approach. From the figure we can observe that the purple

curve is below the green one, which indicates that collective houses are co-located

with garages in the distance range of 0 to 0.0015. Table 5.10 shows selected k values

and their corresponding observed, and expected average distances.

5.2.5.3 Comparing the two approaches in case five

As we discussed above, when using Ripley’s K-function approach on case two, we get

the conclusion that garages and collective houses are co-located in the distance range

of 0 to 0.009, and are anti-co-located with each other for distances from 0.006 to 0.03.

70



Table 5.10: Statistical data of KNN distance approach for case five

K value 12 32 44 51 63 79

Observed
average
distance

0.000531 0.000850 0.001022 0.001129 0.001269 0.001482

Expected
average
distance

0.000876 0.001300 0.001520 0.001629 0.001812 0.002056

If we use the KNN distance approach, the results indicate that these two types of

buildings are co-located with each other from 0 to 0.0015 distance range. Based on

the experiment results, these two approaches partially agree with each other in case

five. In order to compare the efficiency of these two approaches, we also list the

execution time of each approach in Table 5.11.

Table 5.11: Average execution time of both approach of case five

Approach Ripley’s K-function KNN distance

Execution time 2.012 seconds 32.064 seconds

From the table, we can see that Ripley’s K-function approach is a little bit less

efficient than KNN distance approach in case five.

5.2.6 Summary

Based on the experiment results described in previous sections, we found that in

case one, two, and three, the Ripley’s K-function approach, and the KNN distance

approach agree to each other when the radius is small and disagree when the radius

is large. However, the two approaches agree with each other in cases three and
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four. Therefore, we can reach the conclusion that by using the building data set, the

experiment results show that these two approaches agree to each other most of the

time. This might be because the KNN distance approach only considers the shortest

scales of variation, whereas Ripley’s K-function approach provides an estimate of

spatial dependence over a wider radii of scales based on all distances between objects

in the area of interest. In addition, from the experiment using the KNN distance

approach, we can observe that there is always a gap between the green curve and

purple curve. This might because that there is a hole in the middle of the study

region, but we still need to figure out the reasons which contributes to these kinds

of results. Moreover, as we measure the wall clock time of the two approaches, it is

easy to get the conclusion that the performance of Ripley’s K-function approach is

more computation efficient than the KNN distance approach.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Although there are some co-location analysis tools available for co-location analysis

which are able to help users to do analysis to some extent, none of them can directly

provide functions to do spatial data co-location analysis without any need for pro-

gramming. Users need to be familiar with APIs or the languages provided by those

tools to write code to do the analysis. Obviously, there is a need for an integrated

environment to ease the co-location analysis process. The main contribution of this

research is that we have created a user friendly tool for co-location analysis by in-

corporating two popular algorithms called Ripley’s K-function and KNN distance

approaches. Moreover, the KNN distance approach is used for co-location mining

for the first time. It uses summaries of k-nearest neighbor distances of objects in the

dataset to diagnose the presence of collocation patterns.
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By using our tool, users can select the co-location analysis algorithm and set

up experimental parameters based on their needs; then the tool is able to do the

co-location analysis. Once the analysis is done, an experimental result will be au-

tomatically displayed. To ease future analysis work, the points coordinates and

analysis results will be automatically dumped into a form of *.csv, which is readable

any third party visualization tool for verification. In our implementation, we use

the Qt framework to develop our tool, which makes our tool very portable for both

Windows and Unix/Linux systems.

In addition, the tool is able to read and parse the *.kml file directly, and visualize

those spatial datasets automatically without using any third-party tools or utilities

to parse the file. Besides, this tool provide functions to visualize point objects and

randomly generated points within the boundary polygon.

Finally, we use an artificial dataset and a real world building dataset to verify

the correctness of our tool, and then make a comparison by using two clustering

methods. The real-world building dataset has more than 2,000 building objects, our

tool is able to process those spatial data analysis correctly.

6.2 Future Work

In future work, we are going to incorporate more co-location analysis algorithms

into our tool, which can provide more choices for users to match their co-location

analysis needs. For our current version of this tool, users need to manually specify

two co-related objects to do analysis. We will provide that function in our next tool
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release. We have also noticed that there is an intensive computing involved in the

co-location data analysis for the KNN distance approach when the input spatial data

has a large volume, which contains thousands of objects. In order to shorten analysis

time, we are planning to use some parallel computation models, such as pThreads,

Open MP, MPI, CUDA, etc. to parallelize our codes to make it time-efficient to

process the co-location analysis on the KNN distance approach for a large volume of

spatial data sets.
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