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Abstract

Let dt be a class of partially ordered algebras, T a partially 

ordered set. A family of homomorphisms ------- >P, where P, P^.e<6.,

is called a T-family provided that <#>s(x)^(y) in P, for all xePs> 

yePj., whenever s<t in T. The order-sum in dt is a universal T-fam

ily. I.e., the T-family : P^----- >P is an order-sum if, for each

Qedi and each T-family : P^----->Q, there is a unique homomorphism

ip : P----- >Q such that ^<><#>^ = for all teT.

The following existence theorem is derived: The order-sum exists 

without any restriction if dL is a quasi primitive class. Simple con

ditions on the class & are found, to ensure that the homomorphisms 

<l>t in an order-sum (f>t : P^----- >P are order-embeddings and that their

images are pairwise disjoint.

An internal characterization is given for the order-sum in the 

class of all k-join-semilattices. Also, the order-sum in the class of 

all partially ordered algebras of a given type is completely described.



Preface

Order-sums of distributive lattices have been defined and studied 

by Balbes and Horn [1]. The order-sum of lattices appears in Lakser 

[5]. There, however, it is not refered to as an order-sum, but rather 

as a partially ordered free product of lattices. [1] and [5] appar

ently are the only two sources, where order-sums occur in the litera

ture.

In this thesis, we extend the notion of an order-sum to arbi

trary classes of partially ordered algebras. The order-sum of parti

ally ordered algebras will be defined as the solution of a universal 

problem, and as a generalisation of the coproduct.

In Part I , we develop a general theory of the order-sum. In 

particular, we describe the order-sum for the class of a 1 1 parti

ally ordered algebras (with and without constant operations), and 

prove a general existence theorem. We also find conditions on a 

class of partially ordered algebras that force the order-sum to be 

an (order-) extension of the lexicographic sum. The results of our 

general theory are then applied to classes of lattices and semi

lattices .

In the second part, we study the order-sum for one particular 

class of partially ordered algebras, the class of k-join-semi- 

lattices. The main result in Part II is an internal characterisation 

of the order-sum for this class (ft .
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Part I

General theory

In this first part we define the order-sum for partially ordered 

algebras, and prove that the order-sum and lexicographic sum coincide 

for the class of all partially ordered algebras. Furthermore, we show 

that the order-sum exists without restriction in quasi-primitive 

classes (cf. Theorem 3.2). Some properties of the order-sum are in

vestigated in section 4.

1. Order-sum and lexicographic sum

We will consider classes of partially ordered algebras. The alge

bras under consideration will be partial algebras j) of arbi

trary finitary or infinitary type a = (Kj)-jei* I-e., the index-sets 

may be finite or infinite, and f. is a mapping of a subset of A 1 into 
Ki

A. If the domain of f. is all of A , for each iel, we may call

(A,(f^ j.) a complete algebra of type A. A partially ordered algebra

is a triple (A,(f.)- j,, where (A»(f^)^ j) is a partial algebra and 

(A, 57) a partially ordered set. The algebraic structure might be empty, 

1=0. In that case, the partially ordered algebra is nothing but a par

tially ordered set, and any class of partially ordered sets is an exam

ple of a class of partially ordered algebras. Since, on the other hand, 

the partial order may be total disorder, i.e. distinct elements are in

comparable, we can also interpret any class of partial algebras as a 

class of partially ordered algebras.
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For the general theory, it would be unwise to require any kind 

of compatibility postulates to hold between the algebraic structure 

and the partial order (Actually, it would be near to impossible to 

merely formulate a satisfying condition of that type in sufficient 

generality.). This does not mean, of course, that there is any ban 

on compatibility conditions in applications (as there is no ban on 

admitting other axioms for the description of the classes dE we 

want to consider). Take, for instance, a lattice L - here to be 

considered as a partially ordered algebra (L,/\ , v, ^) - as an ex

ample for the strongest feasible compatibility interrelations, inas

much as each of the three data given in L even determines the other 

two. In other examples, the determination of some parts of the 

structure by the others may only work one way. Alternatively, we 

may have, in fact, independent fundamental data still linked together 

by some reasonable compatibility axioms (e.g. partially ordered 

semigroups).

A homanorphism of the partially ordered algebra (A,(f-)- T,^-) 1 1 e 1 
into the partially ordered algebra (B,(g.). T,^) - of the same type 1 1 E 1
A - is a mapping : A------ >B that is order-preserving:

(1.1) if xsy, then ^(x) £cj>(y) ,

for all elements x,yeA, and at the same time an algebraic homomorphism:

(1-2) (j)(f.j (a^ |keK^ )) = g^ (<|)(a^) |keK^. ),

for each index iEI, for each seauence (a ) v in the domain of f.
K KEIX^ 1

(making the left side exist - it is understood that the right side 

will then exist too).
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In the sequel, (^.will always be a class of partially ordered 

algebras of the same type a. Homomorphisms between (^-algebras will, 

unless otherwise stated, always be homomorphisms as defined above.

Given a class , the order-sum we are going to define now will 

be a generalization of the coproduct in the class (category)£ . Like 

the coproduct, it will be the solution of a universal problem. However, 

whereas the coproduct can be defined in classes not involving any order, 

it takes partial orders in the objects under consideration, say 

(tel), in order to define their order-sum. It even takes a partial 

order of the index-domain T. Given, in short, a pai-t-tal/Ly ordered 

family of partially ordered algebras Pt e di , a family of homomorphisms 

<j>t : P^-------^P, where P is also supposed to be in di, is called a

T-family provided that the following condition holds true for all 

indices s,teT:

(1.3) if s<t (in T), then 4>s(x) < ^(y) (in P),

for all elements xePs, yeP^.. The order-sum is now simply a universal 

T-family. I.e., the T-family <j>t : P^------- ?P is an order-sum if, for

each partially ordered algebra Q e di and each T-family : P^------ >Q,

there is a unique homomorphism : P------ > Q such that = i|>t, for

all indices teT.

In the special case where the index-set T as well as all algebras 

Pt are totally disordered, the order-sum coincides with the coproduct. 

One may even admit, for that matter, that the algebras P^ are, in 

fact, endowed with some non-trivial partial orders, reinterpreting the 
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latter as partial binary operations, say, the maximum-operations.

Clearly, the order-sum (if it exists) will be unique up to 

unique isomorphism, and in that sense it is justified to talk about 

"the" order-sum.

Assume now that 6. is the class of a 1 1 partially ordered 

algebras of a given type a = (K-j)-jei» and assume further that the 

type a is without constants, i.e. / 0 for each ieI. The algebraic 

lexicographic sum of partially ordered algebras that we are going to 

define is a combination of the partial direct sum of partial algebras 

(cf. Schmidt [8]) and of the well-known lexicographic sum of partially 

ordered sets (cf. Birkhoff [2], Schmidt [6],[7]).

For a partially ordered family of partially ordered algebras P^., 

we define

b p‘

to be the set of all ordered pairs (t,x), where teT and xeP^., endowed 

with the lexicographic order :

(1.4) (s,x) (t,y) iff s <t or s = t and x«y.

The riatural mappings 1^. : P^.-------- > ^-^t’ de^^ned b * dy = (^.x),

are obviously order-preserving, even order-embeddings (cf.4.). On 

LPt, there exists now the "weakest" algebraic structure (fp^ j 

such that the natural mappings i^ become algebraic homomorphisms, 

i.e. the final algebraic structure for the mappings i^ (cf. Bourbaki
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[3], Schmidt [8]). For an index iel, the operation f. is explicitly 

given by

(1-5) f.((t ,xJIkeK.) = it(fti(xJkeK.)) .

Here, denotes the corresponding operation in P^. The understand

ing is that the left side of (1.5) exists if and only if the right 

side does. This means, in particular, that fi operates only on such 

sequences of pairs (tK,xK) £ LPt» all members of which have the 

same first component t = t. Thus, dom f. = VJ i.(dom fj.^).
k 1 teT 1 11

LPt with the lexicographic order 6. and this algebraic struc

ture (fj)jei " and with the natural mappings i‘t - will be called the 

algebraic lexicographic sum, briefly the lexicographic sum, of the 

partially ordered algebras (teT).

If T and all algebras are totally disordered, then the alge

braic lexicographic sum coincides with the partial direct sum of the 

algebras P^ as in the algebraic part above (cf. Schmidt [8]). On the 

other hand, if 1=0, our algebraic lexicographic sum is nothing but the 

ordinary lexicographic sum of partially ordered sets P^.

Theorem 1.1 In the class of all partially ordered algebras 

of type a, the algebraic lexicographic sum 1^. : P^.-------- > |_P^. is

the order-sum.

Proof. Since the type a is without constants, L P^. is in .

Each is a homomorphism, even an embedding (cf. 4.), and

: Pt------- > L Pt clearly is a T-family. Consider an arbitrary
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T-family 4^ : -------->Q. It is well-known that there is exactly one

algebraic homomorphism from the partial direct sum L into Q 

such that ipoi^. = for all indices teT. All that is left to show: 

ij, is also order-preserving. So let (s,x)^ (t,y). If s<t, then

Cx) <: ip^.(y), i.e. <p(s ,x) 5 *(t,y). If s=t and xsy, then we arrive 

at the same conclusion since is order-preserving.

In particular, if no operations are involved, we have come up 

with a universal property for the ordinary lexicographic sum of 

partially ordered sets.

In the class of partially ordered topological spaces, a topo

logical lexicographic sum can be defined in a similar manner as for 

partially ordered algebras: It will be a combination of the topolo

gical sum of the spaces and the lexicographic sum of the partially 

ordered sets. An exact analogue of Theorem 1.1 holds true.

Unfortunately, we had to restrict ourselves so far to the case 

where a is a type without constants. This is to a good extent due to

Theorem 1.2. Suppose ------- > Pisa T-family of order

preserving mappings. Assume that for each teT, there is an a^eP^. such 

that = a, where a is, of course, independent of t. Suppose 

s<t in T. Then max ^S(PS) = min = a.

Proof. By virtue of (1.3), ^(x) e^(a^.) = a, for each xePs. 

Moreover, ips(as) = a by hypothesis. Hence a = max ^S(PS)« Dually, 

one obtains a = min ^^(P^).
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As an immediate consequence, we get

Corollary 1. max ^(Pg) = a if s is not maximal in T, min <PS(PS) 

= a if s is not minimal in T. ’PS(PS) collapses into {a} if s is not 

extremal in T (neither maximal nor minimal).

Corollary 2. If s is not maximal in T, and min P$ = 3$, then 

again ^S(PS) collapses into (a).

Proof, a = max <PS(PS) by Theorem 1.2. On the other hand, since 

ip is order-preserving, a = (a ) = -(min P ) = min (P ). O J o o o o 

Let us show which damage Theorem 1.2 does to the order-sum

: P^-------> P in the - explicit or implicit - presence of constants

Suppose <f>^(a^.) = a, for each teT; the elements a^ and a might, e.g. 

be explicitly listed among the constants. Suppose T contains no ex

tremal elements. By Corollary 1, ^(Pp = (a) for each teT. Suppose 

now that (a) is a subalgebra (closed subset) of P. This is, for 

instance, the case if some (if not each) of the algebras P^ are com

plete. Anyway, if (a) is a subalgebra, P collapses into (al provided 

that the class is closed with respect to taking subalgebras. This 

is due to

Theorem 1.3. Let the class be closed under taking subalgebras. 

Let : P^------- >P be an order-sum in ift. Then the union Uim <|>t

generates P.

The proof is a repetition of a standard argument.
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In more special classes (fi , things may even become worse. Let 

us talk about partially ordered groups. Compatibility assumed here 

is the isotonicity in each factor. Here it suffices for T to be 

without isolated elements to make the order-sum <j>t : > P col

lapse (t is isolated if it is not comparable with any other element). 

The elements a^. and a above are, of course, the respective identity 

elements (even if they are not listed as constants, they have got to 

be preserved under homomorphisms!). Again, 4>t(P^.) = (a). For if t is 

not minimal, min <l>t(Pt) = a by Corollary 1. But <l>t(Pt) is a subgroup 

of P, so in fact 4>t(Pt) = (a). The same happens if t is not maximal.

Here is another, in a sense more terrible example. Let be the 

class of partially ordered algebras with least and greatest elements, 

the latter explicitly listed as constants among the fundamental ope

rations. I.e. the homomorphisms in are supposed to preserve both 

least and greatest elements. We now assume only that T contains a 

pair of comparable elements set. Consider a T-family : P^-------->P.

Since s is not maximal, ^S(PS) consists of the least element of P 

only, according to Corollary 2. On the other hand, it contains the 

greatest element of P. So the latter has to coincide with the least 

element, thus squeezing P again into one element. In such a class, 

in other words, the old coproduct will be the only meaningful order

sum. If we give up insisting on the extrema, however, other order

sums become highly meaningful.

The presence of constants is not always as damaging as in the 
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examples above. For certain nice index-sets T, one may still get a 

non-trivial order-sum. Moreover, the order-sum may even be very easy 

to describe:

Suppose ifi is a class of partially ordered algebras with least 

elements, the latter explicitly listed among the constants. Assume 

furthermore that all constant mappings between ^-algebras are homo

morphisms (the latter condition will reappear in 4.).

Theorem 1.4. Suppose <fE is as described. Suppose T has a 

greatest element e. Then : Pt-------*Pe> where

Cx if t = e,
tJx) = 1 

min otherwiseL e 

is the order-sum.

Proof. Clearly, <t>^ : P^------- > Pg is a T-family of homomorphisms.

We have to show that : Pt------- ^Pg is the universal T-family. Sup

pose Q is a i^-algebra and : Pt-------->Q is a T-family of homomor

phisms. We define : Pe------>Q to be ipg. For t=e, we have

So suppose t / e. We get ^(<l>^(x)) = xp(min P ) = i^e(min P ) = min Q. 

But min Q is the only element of 4>^(P^.), by Corollary 2 of Theorem 1.2. 

Hence min Q = 'l'^.(x), for each xeP^., whence The uniqueness

of ip is clear.
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2. The algebraic lexicographic sum with constants

The examples at the end of the previous section showed us that 

in the presence of constants the notions of a T-family and of the 

order-sum in particular have a strong tendency to collapse into 

trivialities. So we are prepared to find the notion of the order

sum meaningful almost only in the case of no constants, unless the 

index-domain T happens to be an anti-chain. On the other hand, some 

part of the theory (cf. 3.) can be developed for the general case, 

disregarding the presence or absence of constants.

For that reason, we want to extend the notion of the algebraic 

lexicographic sum to the general case where the type a may now con

tain some constants, for some indices iel. This should be 

done in such a way that Theorem 1.1 remains valid. The construction 

will be similar to the construction of the partial direct sum of 

algebras (cf. Schmidt [8]), but somewhat more involved in the pre

sence of partial orders.

Throwing out those indices iel standing for constants, we 

arrive at the reduced index-domain I* = {i|/ 0} and the corre

sponding redueed type A*, without constants. Correspondingly, for

getting the constants, the partially ordered algebras P^. of type a 

are turned into partially ordered algebras P£ of type a*. We can 

consider the algebraic lexicographic sum of the latter, L_P^. In 

order to arrive at an appropriate factorization, we consider 



quasi-orders p of L which are adniss-tble in the sense that the 

following three conditions hold:

(i) p p "* is a congruence relation of the algebra L P^ ;

(ii) p contains the lexicographic order of L P£ ;

(iii) p takes care of the constants inasmuch as (s,fgi.) p (t,ft-), 

for each s.teT and for each ielvl*.

It is easy to see that there is a least admissible quasi

order, say a. The contraction L P^ /ona~^ is then a partially 

ordered algebra of type A*, and the natural projection 

p : L_ P£----------- /ana~^ 15 3 homomorphism between them. One

makes L P^ /oa'^an algebra of type a by introducing the constants 

g.j = p(t,f^1.), for each ielxl*, this definition being actually in

dependent of t. (As a dogmatical remark: We may assume, without loss 

of generality, that there is a t such that the constant ftl-EPt 

really exists.) The partially ordered algebra L.P£ /o^o"^ so en

riched may be called the algebrcL-Lc lexicographic s-um of the partial

ly ordered algebras P^ (teT) and again be denoted

Clearly, in the case without constants, I* = I, A* = a, P* = P^, 

nothing has happened at all: Condition (iii) becomes meaningless, 

making a the lexicographic order itself (note that (i) holds for 

the lexicographic order, due to its anti-symmetry). Returning to 

the general case, we introduce the mappings
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jt= p-it: pt--------- >Lpt •

which are homomorphisms by construction (in particular, they pre

serve the constants).

Theorem 2.1. In the class of all partially ordered'algebras 

of type a, the algebraic lexicographic sum : P^.----------

the order-sum.

Proof. Clearly, jt : Pt---------> LPt is a T-family since

1^ : P£-------- > L P^ is a T-family. Consider an arbitrary T-family

<1^ : P^-------> Q. Then there is a unique order-preserving mapping

: L~ P£------- >Q*, a homomorphism between reduced algebras, such

that ^*°it = for each teT. Let p be the quasi-order in LP£ 

defined by

(s,x) p (t,y) iff <Hs,x)^*(t,y).

pn p"1 = ker ip* is a congruence relation of the algebra LP£. Let 

now (s,x)4(t,y). If s<t, then ip*(s,x) = <Ps(x) < 1pt(y) = <p*(t,y) 

since : P^------- > Q is a T-family. If s=t and x^y, we arrive at

the same conclusion since is order-preserving. In other words, 

we get (s,x) p (t,y) in either case, showing that p has property 

(ii) above. To show property (iii), let K^=0 and s,teT such that

the constants fc^EP. and ffiEPt do exist. Since ip and ipf preserve J I O v I w O U
constants, we get ip*(s,fsi) = >ks(fsj) = <Pt(fti = whence 

(s,fs1-) p (t,ftp as wanted. So p is an admissible quasi-order, so 
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oc p and oa c p/, p"l = ker ip*. So there is exactly one algebraic 

homomorphism ip from the reduced algebra ( L P^)* into Q* such that 

Ipe p = Ip*:

Slo iPt = ip*<>it = ip<>p»it = also preserves the constants, so it

is even a homomorphism between the algebras of full type A. Finally, 

ip is order-preserving. For suppose p(s ,x) 4 p(t,y) in L P^, then 

(s,x) a (t,y) in L P£, whence (s,x) p (t,y), i.e. ip*(s,x) ip*(t,y) 

or ip(p(s,x)) ^ip(p(t,y)). ip is actually the only homomorphism between 

the partially ordered algebras (of type A) L P^ and Q such that 

>P4j^ = iPt» for each teT. This is easily obtained from the uniqueness 

of <P* and ip as stated above. This completes the proof of Theorem 2.1

Note that the homomorphisms : Pt---------- > LP^ need no longer

be one-one since p can no longer be expected to be one-one. This 

throws some new light on the phenomena connected with constants. The 

examples at the end of the previous section show, indeed, that a and 

an a~1 may become the universal relation in L-P£, forcing L Pt to 

collapse into one element.

In spite of Theorem 2.1, one might not be too happy with the 

construction of L as given above since one really does not have 
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much information about a. Here is an alternative approach that one 

might occasionally find more convenient. Not wanting to factorize, 

instead of throwing the constants (t,fti) - with the same i - 

together, we leave them apart. To be precise, we enrich the alge

braic structure of L P* by listing the elements (t,fti), ielxl*, 

as new constants. The resulting modified algebraic lexicograpic sum.

r~T t teT

is, of course, no longer of type A or a* unless there are no constants.

I Pt still has a universal property similar to that of the order- 

sum. This makes |_ P^ sometimes a useful substitute for the latter.

Theorem 2.2. Suppose : P^-------> Q is a T-family of homomor

phisms. Then there is a unique order-preserving mapping 
i *t : L_ Pt------- >Q such that ip-i^ = for each teT, and each re

striction ip|it(Pt) is an algebraic homomorphism.

3. A general existence theorem

Even if one is predominantly interested in algebras with complete 

operations, the coproduct in a class (6, of such algebras will unavoid

ably lead to the consideration of partial algebras, cf., for instance 

the free products of semigroups or groups (Schmidt [10],[11]). Anal

ogously, the order-sum in any class of partially ordered algebras 

can be built up in two steps. The first one of these has been de
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scribed in sections 1 and 2. In general, of course, the algebraic 

lexicographic sum of algebras P^e will not be in . So the 

second step will consist in associating with the latter a universal 

object in . Let us make that more precise in

Theorem 3.1. Consider a T-family of homomorphisms 4>t : Pt—>P 

in and the associated homomorphism <j> : L Pt-------->P (which exists

according to Theorem 2.1). Then the following two conditions are 

equivalent:

(i) : Pt------- > P is the order-sum in ;

(ii) <|> : L Pt------- >P is the universal homomorphism of L P^

into a &-algebra.

Proof, (i)^ (ii): Suppose Q is a -algebra and

ip : L P^-------> Q is a homomorphism.

= ip°jt : Pt------- >Q is a T-family, so by hypothesis, there is a

unique homomorphism ip : P------- >Q such that ^«<|>^ = ip<»jt for each teT.

On the other hand, ip»(t>t = ip-tp-j^., thus ipo<p = ip, by Theorem 2.1. 

Using the uniqueness of ip as stated above, ip is in fact the only ho
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momorphism such that ipo(j> = ip. The proof of (ii) => (i) is similar.

If we prefer to use L Pt instead of LPt, we have to use 

an analogue of Theorem 3.1. Its proof, with minor changes, will be 

essentially the same as that of Theorem 3.1.

Theorem 3.2. Consider a T-family of homomorphisms : Pt------ >P

in ft and the associated mapping <|> : L- P^------- >P of Theorem 2.2.

The following two conditions are equivalent:

(i) : Pt-------->P is the order-sum in ;

(ii) for every -algebra Q and every order-preserving mapping 
। * .

ip : L_ Pt------- »Q such that each restriction ip|it(Pt) is a homo

morphism, there is a unique homomorphism ip : P--------»Q such that

1po<p = Ip .

It is time by now to come to the existence of the order-sum in 

reasonable classes Ji . It should be clear what the direct (carte

sian) product of partially ordered algebras ^_is: it is the direct 

product of the underlying sets, endowed with the product of the al

gebraic structures (i.e. the "strongest" algebraic structure making 

all natural projections or^ homomorphisms) and the product ("cardi

nal product") of the partial orders. In short, everything is calcu

lated componentwise. For the proof of the following existence 

theorem, we will actually reinterpret partial orders as the corre

sponding binary maximum-operations. We should hence observe that 
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this reinterpretation commutes with cartesian multiplication. As 

far as this reinterpretation is concerned, the same observation 

applies to taking subalgebras and isomorphic copies. As in univer

sal algebra without partial order, a quasi-prim-Ltive class of par

tially ordered algebras will be a class closed under the aforemen

tioned three procedures of taking cartesian products, subalgebras, 

and isomorphic images. After reinterpretation of the partial orders 

such a class will become a quasi-primitive class in the ordinary 

sense of universal algebra. It is understood, by the way, that a 

quasi-primitive class rft contains the complete algebra of one ele

ment, as the direct product of the empty family (or, if one pre

fers, by definition).

We are now ready to formulate

Theorem 3.3 (Existence of Order-sums). In a quasi-primitive 

class all order-sums exist.

Proof. Suppose (teT) are (^.-algebras, and let : P^— 

—>LPt be their algebraic lexicographic sum (cf. Theorem 2.1). By 

the general existence theorem from universal algebra (Schmidt [9], 

Theorem 2), there is a universal & -algebra P for L P^, to be more 

precise, a universal homomorphism into a -algebra,

<!> : L Pt------- > P. Defining (f>t = : P^.--------=> P, we get a T-family

of homomorphisms. <j> is then the homomorphism associated with that 

family. By Theorem 3.1, : P^-------P is the order-sum.
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Another proof of Theorem 3.3 might be based on Theorem 3.2 in- 

stead of Theorem 3.1. One then has the simple-minded U P instead 

of L Pt. Trouble comes in, however, through the poorer universal 

property (Theorem 2.2) of L* Pt.

4. When is the order-sum an extension of the lexicographic sum ?

By definition, a partially ordered algebra P is an extension of 

Q if Q is a relative algebra of P. The order-sum will interest us 

preferably if it happens to be essentially an extension of the lexi

cographic sum, i.e. if the universal mapping of Theorem 3.1 is an 

embedding or at least an order-embedding. For (|) : Q------->P to be an

embedding means, of course, to be at the same time an algebraic and 

an order-embedding. To be an order-embedding simply means that

(4.1) ql~q2 iff 4>(qi) <f>(q2).

for each q^q^eQ. Due to anti-symmetry, <j> is then one-one, and the 

inverse mapping : im ------ >Q is order-preserving too.

<|) : Q------ >P is an algebraic embedding iff it is an isomorphism of

the algebra Q onto the relative algebra (not necessarily a subalge

bra, i.e. not necessarily closed under the operations) im <|> c P. 

Note: if the algebra Q happens to be complete, it suffices that <j>, 

assumed to be a homomorphism anyway, is one-one. In addition, im c|> 

will become a subalgebra of P in this case. Hence, if the homomor
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phism <j> is an order-embedding of the complete algebra Q into P, <|>

is an algebraic embedding also, and it is onto a subalgebra of P.

Suppose now that & is a class of partially ordered algebras.

Suppose <|>. : P.-------=> P to be an order-sum in ft and i. : Pf------->L_P

the lexicographic sum. Let <f> : L P^------- >P be the universal homo

morphism of Theorem 3.1,

In order to avoid the difficulties connected with the constants 

(cf. 1. and 2.) - the latter will not occur in the applications 

below anyway - we shall assume from now on that the type a be 

without constants (f 0 for each id). This agreement plays a 

role in the following obvious

Theorem 4.1. Equivalent are:

(I) <j> : L Pt-------^P is one-one;

(Ii) the homomorphisms <j>t : P^-------> P are one-one, and their

images are pairwise disjoint;

(iii) there is a di -algebra Q and a one-one homomorphism

.p : L Pt-------> Q
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Theorem 4.2. Equivalent are:

(i) 4> : L Pt-------- >P is an order-embedding;

(ii) the homomorphisms : Pt------- >P are order-embedding, and

the indexed family of their images is not only pairwise 

disjoint, but a "lexicographic decomposition" of the par

tially ordered set l_J im <j>. (= im<t>);
teT

(iii) there is a /l-algebra Q and an order-embedding (and alge

braic homomorphism) ip : L P^------- >Q.

Proof, (i) =^> (ii): 9) = ( im | teT } is already a decom

position of im <p by Theorem 4.1. The "pieces" im are even in one- 

one correspondence with the indices teT. That £) is a "lexicographic 

decomposition" (cf. Schmidt [6], [7]) means exactly that the elements 

of different pieces compare like the corresponding indices:

(4.2) if s/t, then 4>s(x) < <t>^.(y) iff s4t.

Since : P^—■—> P is a T-family (even the order-sum), it suffices 

to postulate only:

(4.3) if <Ps(x) 4>t(y), then s £ t.

(Note that in this formulation the pairwise disjointness of the 

images is still included) Suppose now 4>s(x) <P^.(y), for some xePs, 

yePf So <p(s ,x) 4 <p(t,y). By assumption, cp is an order-embedding, so 

(s,x)4(t,y), whence s«t, proving (4.3). The proof of (ii)=^ (i) 

is similar, and (i)=> (iii) is trivial. (iii)=^> (i) is a conse
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quence of the universality property of the order-sum.

The following two theorems, though they are obviously weaker 

than the corresponding theorems 4.1 and 4.2, do not follow directly 

from the latter. We state them without their straightforward proofs.

Theorem 4.3. Equivalent are:

(i) the homomorphisms 4>t : ------- >P are one-one;

(ii) for all indices seT and all elements x,yePs such that x/y,

there is a (ft -algebra Q and a T-family ipt : P^------- => Q sepa

rating x and y, ^s(x) / ^(y).

Theorem 4.4. Equivalent are:

(i) the homomorphisms : P^------->P are order-embeddings;

(ii) for all indices seT and all elements x,yePs such that

there is a (fl-algebra Q and a T-family : P^.------ > Q such

that ,ps(x) ’Ps(y).

Because of the completeness of the algebras to be considered 

in the applications (cf. 5.), Theorem 4.2 - assisted by Theorem 4.4 - 

will suffice for our purposes. Let us at least state, however, the 

general conditions for <f) to be an embedding.



22

Theorem 4.5. Equivalent are:

(i) <j> : is an embedding;

(ii) the homomorphisms <t>t : ------- >P are order-embeddings, the

indexed family of their images is a lexicographic decompo

sition of the partially ordered set im <t>, and the algebraic 

structure of im 4> (as a relative algebra of P) is the final 

structure for the mappings <j>t;

(iii) there is a dt-algebra Q and an embedding ip : L P^--------»Q.

Note that condition (ii) essentially repeats the description 

of the algebraic lexicographic sum as given in section 1.

Whenever the universal homomorphism <f> is an embedding, we can 

replace it by the inclusion mapping of the lexicographic sum into 

an isomorphic copy of P, due to the well-known Zermelo-van der 

Waerden replacement procedure. I.e., the order-sum can then be con

sidered as a genuine extension of the lexicographic sum. In parti

cular, the partial algebra L P^ will become a relative algebra of 

P, obtained by the total restriction of the operations of P to the 

subset LPt- In our applications, however, we will usually be con

tent with somewhat less. In fact, we will be happy to know that 

<t> : L Pt------> P is at least an order-embedding (it is, of course,

an algebraic homomorphism anyway). Using that replacement procedure 

again, L P^ becomes again a subset of P, the lexicographic order 

of i— P^ still being the restriction of the partial order of P.
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However, the inclusion of the partial algebra L_Pt into the algebra

P will only be a homomorphism, not necessarily an embedding. I.e., 

I P^ may only be a ueak relative algebra of P. We will refer to

this situation by saying that P is an order-extension of L P^ (al

gebraically, it may only be a ueak extension). This is really not 

too bad if all (fl-algebras are complete. In that case, at least the 

inclusion of the pieces it(P^.)(= 4>t(Pt)) into P are strong, i.e. 

the pieces are genuine subalgebras of the complete algebra P.

We now find convenient sufficient conditions on the class Si. to 

garantee that our mapping : L P^------- >P will certainly be an or

der-embedding. The conditions are the following:

(I) (fl. is non-trivial, i.e. contains a non-trivial algebra

Q in the sense that Q contains a pair of distinct comparable elements.

(II) All constant mappings between (fl-algebrasare homomor

phisms .

(Ill) For every <fi-algebra P and all elements x,yeP such that

x ^"y, there is a (fl-algebra Q and a homomorphism a : P------- >Q such

that a(y) = min a(P)<a(x) = max a(P) ("separability").

As it turns out, (III) may be replaced, for our purposes, by 

the following condition:

(III1 (II) (Ill)) Every dl-algebra is embeddable into a non-trivial 

(fl -algebra with least and greatest element.
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Note that in the class & of all distributive lattices, all 

four conditions hold. In the class of modular lattices, at least

(I),  (II), (III ) hold.1

Theorem 4.6. Let again : Pt-------> P be an order-sum in (ft..

Suppose that 6. fulfills the conditions (I), (II), and (III) or, 

alternatively, (III1)- Then the universal homomorphism 

4> : L Pt------- >P is an order-embedding.

Proof. We are going to show that condition (ii) of Theorem 4.2 

holds true. In order to prove (4.3), we only need (I) and (II). In 

fact, let s,teT and <t>s(a) 5 <j>t(b), for some aeP$» ^eP^. By virtue of 

condition (I), there is a (ft-algebra Q containing two comparable 

elements c<d. For each ueT, we define a mapping i|» : Pu--------»Q as

follows:

f d i f s 4 u,
(*) %(z) = V

Ic otherwise.

By virtue of (II), these mappings are homomorphisms. We are going to 

show that they form a T-family. Suppose u<v in T. We have to show 

that tu(x) < ^v(y), for each xePu, ysPy. Assuming ^(x) < <Pv(y), we 

arrive at xpv(y) = c and ipu(x) = d, whence s v, but s^u, contra

dicting u < v.

We are now ready to show s4t. By the universality property of 

the order-sum <j>^. : P^--------^P, there is a unique homomorphism

: P------ > Q such that tpu = for each ueT. We get <Ps(a)
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= ’l'(<t>s(a)) <: ip(<i>t(b)) = ipt(b). However, <Ps(a) = d by definition (*), 

therefore ^(b) = d as well. But then, again by (*), sit, complet

ing the proof of (4.3).

It remains to show that the homomorphisms : P^.-------->P are

order-embeddings. We will show that condition (ii) of Theorem 4.4 

holds. For that, it takes conditions (II) and (III) or (II) and 

(III1) respectively. Suppose seT and b in P . Assuming condi

tion (III), there is a -algebra Q and a homomorphism 

a : Ps------- >Q such that a(b) = min a(Ps) < a(a) = max «(PS). For

each teT, we define : Pt------->Q as follows:

a(b) if t < s.

*t(x) = - a(x) if t = s,

^a(a) otherwise.

These mappings are homomorphisms by conditions (II) and (III). More

over, 4>s(a) = a(a) a(b) = ipg(b). Condition (ii) of Theorem 4.4 

will therefore be fulfilled as soon as we will have proven that

: P^.-------> Q is a T-family. Suppose r<t in T. It needs to be

shown that <Pr(x) ^(y), for each xeP^, yePf Clearly, 

»r(x) = a(x)^a(a) = <pt(y) if s=r<t, and 4>r(x) = a(b) 4a(x) = <pt(y) 

if r<t=s. Assuming r f s, t / s, and <Pr(x) ^"ipt(y), we arrive at 

’lyU) = cx(a) and ^(y) = a(b), hence t<s and r^s, contradicting 

r<t. Hence k : P.------- >Q is a T-family indeed.

Alternatively, let us assume (II) and (III1). Given again seT 
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and a b in P . By virtue of (III1), there is a d?.-algebra Q and

an embedding a : Pg ■>Q, where e = max Q / o = min Q. Again, we

define : P^-------->Q as follows:

(*** j

e if s < t.

^t(x) = - a(x) if s »t.

0 otherwise

These mappings are homomorphisms by (II) and (III1). Moreover, since 

a is at least an order-embedding, ^(a) = a(a) a(b) = ^s(b). Again, 

it remains to show that : Pt------- >Q is a T-family. Suppose r<t in

T, xePr, y£Pt. We get i>r(x) = a(x)4e = ^(y) if r=s<t, and 

>Pr(x) = 04a(x) = ^t(y) if r<t=s. Assuming again r / s, t / s and 

’ly(x) ^(y), we arrive at ip (x) = e, <Pt(y) = o, which leads to a 

similar contradiction as above. This completes the proof of Theorem 4.6.

Corollary. Suppose is a class of complete algebras fulfilling 

conditions (I), (II), and one of (III) or (III1). Then the order-sum 

P (provided it exists) is an order-extension (and weak algebraic ex

tension) of the lexicographic sum L P^., and the pieces i^.(P^.) are 

subalgebras of P.

Recall that P does exist, if (fl is quasi-primitive.
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5. The order-sum extends the lexicographic sum

in some nice classes

All applications here will be to certain classes of partially 

ordered sets with appropriate homomorphisms. To become more speci

fic, let us consider, as the simplest example, the class (ft of all 

(join-) semilattices. For our purposes, we look at such a semilat

tice as a partially ordered algebra (A,x^, <), where (A,v) is a 

semi lattice, 4 the associated partial order. Here, as in the 

sequel, we have the remarkable fact that the algebraic structure 

dtermines the partial order and vice versa. Homomorphisms are just 

the join-preserving mappings, the latter being order-preserving.

Incidentally, the underlying partial order of a subsemilattice 

(subalgebra) is the restriction of the global partial order. Like

wise, the underlying partial order of a direct product of semilat

tices is the direct ("cardinal") product of the individual under

lying partial orders. So there is no trouble in applying our gener

al theory. In particular, the class of semilattices, in this inter

pretation, is still quasi-primitive. So each order-sum <j>^. : ------>P

exists without any restriction whatsoever (Theorem 3.2). But every 

partially ordered set can be order-embedded into a join-semi lattice, 

even a complete lattice, such that all finite joins are preserved; 

take, e.g., the ideal-completion (cf. Schmidt [12]). Applying this 
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to the algebraic lexicographic sum L we see that condition

(ii) of Theorem 4.2 holds. So the universal homomorphism

4> : L P^------- >P is an order-embedding, and we are faced with the

situation described in detail after Theorem 4.5: The semilattice P 

may be considered to be an order-extension of L P , and the pieces 

it(Pt) will be subsemilattices of P. As far as all of L P^ is con

cerned, the situation is fairly complex insofar as we should now 

distinguish three structures:

(I) the algebraic structure of L Pt which, according to con

struction (section 1), admits the operation v only in the 

pieces i't(Pt);

(Ii) the total restriction to the set L P^ of the semilattice

operation of P,

(Iii) the joins that exist in the lexicographic order of L P^.

The structure (i) may be weaker than both (ii) and (iii). The coin

cidence of (1) and (ii) would make the algebra LP^a (strong) re

lative algebra of the semi lattice P and P a full-fledged extension 

in the sense of section 4. A more detailed study of the structure 

of the order-sum of semi lattices (cf. Part II) will show that for 

the class /L of all semilattices (i) and (ii), and also (ii) and

(iii) do not coincide. Clearly, (1) and (iii) will not coincide, in 

general, unless the index-set T happens to be an anti chain. A good 

example for the latter is the following: Take T to be
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and P.| = Pg = T, P^ has just one element. Then LPt with its three 

pieces has the structure

In particular, (l,3)v(2,3) exists in the structure (iii), i.e. in 

the lexicographic order of L P^, but not in the algebraic structure 

(1). We have here the extreme case that the partially ordered set

L Pt is a join-semilattice itself. We know that the inclusion of

L P^. into the order-sum P preserves all joins of the algebraic 

structure (i). We cannot claim, however, that all existing joins of

L Pt will be preserved: the partially ordered set L P^ is not 

necessarily join-faithful in P (cf.Part II). In our example above,

L Pt will not be a subsemilattice of P (cf., however. Theorem 5.4 

below).

Let us summarize the main result of this discussion in
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Theorem 5.1. In the class of semilattices, the order-sum 

exists without restriction and is an order-extension of the lexi

cographic sum.

By appropriate interpretations, this result can be extended to 

k-(join-) semilattices, where k is an infinite regular cardinal. By 

that, we mean partially ordered sets in which all joins of non-empty 

k-small subsets exist, k-small meaning less in cardinality than k. 

The homomorphisms will then be the k-join-preserving mappings. Note 

that (in contrast to Schmidt [12]) we want to exclude the preserva

tion of zeros (= joins of the empty set) because of the problems 

discussed in section 1. In Part II, we will completely describe the 

structure of the order-sum of k-semilattices P^..

What we have said for semi lattices can be almost literally re

peated for lattices. Note that the order-embedding of a partially 

ordered set into its ideal-completion preserves not only finite 

joins, but also arbitrary meets. We get

Theorem 5.2. In the class & of lattices, the order-sum exists 

without restriction and is an order-extension of the lexicographic 

sum.

Again, the lattices P^, more precisely, their canonical images 

it(P|.), are sublattices of the order-sum. The homomorphisms we are 

talking about here are, of course, the lattice-homomorphisms.

Let us now consider classes of distributive or modular lattices 



31

respectively. Using Theorem 4.6, we get

Theorem 5.3. In the class A. of distributive (modular) lat

tices, the order-sum exists without restriction and is an order

extension of the lexicographic sum.

For distributive lattices, the existence of the order-sum has 

been proven by Balbes and Horn [1]. They only stated that the map

pings <|>t : > P are (lattice-) embeddings (which for them was

part of the very definition of the order-sum). They also considered 

the special case that T is a chain. In this case, in fact, there is 

a neat description of the order-sum. This observation made by Balbes 

and Horn for distributive lattices applies to semilattices, lattices 

and modular lattices as well, but not to k-semilattices for uncount

able k:

Theorem 5.4. In the class A. of semi lattices (lattices, dis

tributive, modular lattices), the order-sum over a chain T coincides 

with the lexicographic sum of the partially ordered sets.

Proof. Consider the -algebras P^ and their lexicographic 

sum i^ : Pt---------- > LPt. Note that L P^ endowed with its proper al

gebraic structure can still not be expected to be in dt. However, if 

T is a chain, the lexicographic order of L P^ makes, indeed, L P^ 

a dt-algebra. This can be easily checked. With the universal pro

perty of the lexicographic sum of the partially ordered sets P^ (cf. 

the comment after Theorem 1.1) - again one uses the fact that T is a 
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chain - the proof is complete.

Here is an example that Theorem 5.4 will no longer hold for 

k-semi lattices, where k = Let T = A/{«>}, = {a} for each

teT. Note that T = L P^. is a k-semilattice, but that it fails to 

be the order-sum. In fact, let 2= {0,1} and define a T-family

if t e fV

if t = °o .

Let tp : T = L Pt--------be the order-preserving mapping such that

tpoi^. = for each tel, i.e.

if t e
<p(t)

if t = 00

4) does not preserve countable joins.
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Part II

The order-sum of k-join-semi lattices

In this part we will study a special class of partially 

ordered algebras, the class of k-join-semilattices, where k is 

an infinite regular cardinal number. First (cf. section 6.), we 

apply the results of our general theory to this class In addi

tion, we succeed in obtaining a complete description of the order

sum in & . To simplify matters, we begin with a special case (cf. 

Theorem 8.3), and then proceed to the general case (cf. Theorem 9.3).

6. Order-sum and lexicographic sum of k-semilattices

We have mentioned already in section 5 what we mean by a 

k-(join-)semilattice , where k is an infinite regular cardinal: It 

is a partially ordered set in which all joins of non-empty, k-small 

subsets exist. The corresponding homomorphisms are the k-join-pre

serving mappings. Recall that we will not require that a k-join- 

preserving mapping preserve the least element (provided it exists) 

in a k-semilattice.

The class (L of k-semilattices can be considered a class of 

partially ordered algebras in the usual sense, if the algebraic
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structure of a k-semilattice P is appropriately reinterpreted:

For each cardinal i<k (i/0) one introduces an operation

: P1-------- by (x |k<1) = sup{xK|<c i}. The homomorphisms of

this structure are the k-join-preserving mappings and vice versa. 

Everything we said on p. 27 and p. 28 for semi-lattices remains true 

for k-semilattices. In particular, the class (fl of k-semilattices is 

quasi-primitive. Moreover, every partially ordered set can be order- 

embedded into a k-semilattice in such a way that all k-small joins 

are preserved; take, for instance, the k-ideal-completion (cf.

Schmidt [12]). Hence, condition (ii) of Theorem 4.2 holds for the 

algebraic lexicographic sum L Pt- Applying Theorem 3.2 and Theorem 

4.2, we get

Theorem 6.1. In the class (fl of k-semilattices, the order-sum 

exists without restriction and is an order-extension of the lexi

cographic sum.

Because of the k-join-completeness of our algebras P^, we also 

can conclude that the k-semilattices P^, or rather their images 

i^Pf.) are sub-k-semilattices of the order-sum. It should thus be 

allowed to delete in the order-sum <|>t : P^.-------->P the k-join-pre

serving mappings They cannot be anything else but the natural 

inclusions anyway.

Again, in the lexicographic sum L P^ of k-semilattices Pt> we 

have to distinguish the structures (1), (ii), and (iii) of p. 28.
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Suppose L P^. has the algebraic structure (1), i.e. k-small suprema 

are admitted only in the pieces i^Pj,). L Pt with this structure 

is not a k-semilattice, unless |T| =1. Suppose Q is a -algebra 

and : L P^-------- is an order-preserving mapping that preserves

also the algebraic structure (i). In order to avoid confusion, we 

will call such a mapping always a "homomorphism" rather than 

"k-join-preservi ng".

The following theorem is a direct consequence of Theorem 3.1 

for the class A. of k-semilattices. It is weaker than Theorem 3.1 

since we have strengthened the hypothesis somewhat. However, it is 

still strong enough to fit our purooses, and we will have to use it 

several times in the sequel.

Theorem 6.2. Suopose P is an order-extension of the algebraic 

lexicographic sum L P^. Then the following two conditions are 

equivalent:

(i) P is the order-sum of the k-semilattices P^;

(ii) for every k-semilattice Q and every homomorphism

ip : L Pt------>Q, there is a unique k-join-preserving map

ping ijj : P------- >Q such that the restriction ip| L_ P^ =
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7. Lower ends and lexicographic k-ideals

A non-empty subset E of a partially ordered set Q is a Zower

end, provided that for each x.yeQ:

(7.1) if yeE and x^y, then xeE.

Note that the set € (Q) = £e|e lower end of Q} of all lower ends of

Q contains all principal louer ends

(7.2) (x] = {y|y4- x},

for xeQ. The empty set, however, is not in € (Q). The latter is a 

necessary exclusion due to the freauently mentioned difficulties 

with the constants (cf. Part I). Consequently, ^(Q), with set- 

theoretical inclusion as partial order, is not necessarily a complete 

lattice. But all the joins of non-empty subsets still exist. In fact, 

the join in -^(Q) is simply set-theoretical union.

Suppose QcP. P will be called a k-;ioin-completion of Q, provid

ed that P is a k-semi1attice, and each xeP is the join of a k-small, 

non-empty subset of Q. I.e., for each xeP,

(7.3) x = suppS, where ScQ, S / 0, |S|< k.

Q will be called k-Join-faithful in P, provided that the inclusion 

mapping is k-join-preserving. I.e., for each xeQ and all non-empty 

k-small subsets Sc 0
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(7.4) if x = supgS, then x = suppS.

With a partially ordered set Pd Q we associate the canon-tea'l 

mapping Kp : P--------> €(Q)» defined by

(7.5) <p(x) = Qn(x]p.

Kp always is order-preserving, and it is an order-embedding if each 

xeP is the join of some subset of P (cf. Schmidt [13]). In particu

lar, Kp is in the latter case an order-isomorphism onto the canon

ical image P = im Kp of P in €(Q)-

A lower end E of a partially ordered set Q is called k-small- 

generated, if there is a k-small subset Sc E such that

(7.6) xeE iff there is seS such that xgs.

Clearly, all principal lower ends are k-small generated. The set of 

all k-small generated lower ends of Q will be denoted by ^(Q).

In introducing the above notions, we have tried to be as brief 

as possible. For more information and a more general setting, one 

should consult Schmidt [13]. Arbitrary (order-Extensions rather 

than k-join-completions are discussed there. But note that in 

Schmidt [13], 0 always is a lower end, which changes the situation 

enough so that some of the results become false when translated into 

our setting (e.g.. Theorem 2.4 in [13]; ^^(Q) - Q is, in general, 

not k-join-distributive if 0 i ^k^^
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Anyway, the following theorem, also contained in Schmidt [13], 

is still true.

Theorem 7.1.  Suppose Q is a partially ordered set. ^(Q) is 

the canonical image of a k-join-completion P of Q.

Proof. A lower end E of Q is k-small generated if it is the 

set-theoretical union of a non-empty, k-small set of principal lower 

ends. This is an immediate consequence of the definition (7.6). More

over, €k(Q)c ^(0) with set-theoretical union as join, is k-join- 

complete because of the inaccessibility of k. Thus, €k(Q) is a 

k-join-completion of Q. In other words, there is a k-join-completion 

P of Q, where P = € k(Q).

From now on, a k-small set is always supposed to be non-empty.

Suppose now that Q is the algebraic lexicographic sum of the 

k-semilattices P^. A lower end E<Q is a le.'c-i.cogpaphi-c k-ideal if 

supgS e E, for each k-small subset ScE such that suPqS exists. For

tunately, we know exactly which k-small joins exist in the algebraic 

lexicographic sum 0: sup^S exists iff Scit(Pt) for some tcT. Lexi

cographic k-ideals can consequently also be characterized in the 

following way. A lower end Ec Q is a lexicographic k-ideal, provided 

the following condition holds for each k-small subset E:

(7.7) if Scit(Pt), for some LeT, then supgS e E.

Note that Q itself as well as all principal lower ends of Q are 
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lexicographic k-ideals. The empty set is again not a lexicographic 

k-ideal. In fact, 0 is by our convention not even a lower end.

L
Let X (Q) be the set of all lexicographic k-ideals in Q. By 

definition, is a subset of €(Q), partially ordered by set- 

theoretical inclusion. For {|iel}c X (Q), the set-theoretical 

intersection L =Cl{L. |iel} is again a lexicographic k-ideal, pro

vided that L / 0. Hence, the smallest lexicographic k-ideal U con

taining { |i el} exists. In fact, L = /~) {L|Ld L.j, for all iel, L e 

X^(Q)} = sup . {L.|iel} - note that L^UlL.liel} / 0, thus L/0.
Xk(Q) ’ 1

By the previous remarks, arbitrary joins exist in X (Q). But 

clearly, the join in X^Q) is, in general, not the set-theoretical 

union; i.e., is not join-faithful in €(Q). As an example for 

that, take T to be

and P-] = P2 = T, P3 has just one element. Then Q = L has the

structure

o (2,3)

o

(1,1) o o (2,1) o o (2,2)
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All principal lower ends are lexicographic k-ideals. But while the 

union of ((1,1)] and ((2,1)] is a lexicographic k-ideal, the union 

of ((2,1)] and ((2,2)] is not. Actually, sup k {((2,1)] ,((2,2)]}
Xk(Q)

= ((2,3)], and sup . {((1,1 )],((2,1)],((2,2)]} = ((1,1)]u((2,3)].
Xk(Q)

Thus, the join in Xk(Q) and the join in €(Q) may coincide, but 

will not, in general.

For Q = L Pt we consider now in ^(Q) the set of all those 

lower ends that are lexicographic k-ideals. We denote this set by 
Xk(Q). Hence, Xk(Q) = Xk(Q)n -^^(Q), or equivalently:

(7.8) EeXk(Q) iff E £ oek(Q) and E = U{(u]|ueU},

where U is a k-small subset of Q.

For a subset UcQ = L P^, let U(t) = { xeP^I (t,x)eU}. U(t) is a 

subset of P^, consequently a partially ordered set, and |U(t)|< k, 

whenever |U|< k. Note that U(t) may be empty for some teT. Let 

T(U) = {teT[U(t) / 0 }. Again, |T(U)|< k, whenever |U|< k. Moreover, 

U(t) + 0, for each tET(U), and T(U) = 0 if and only if U = 0.

Theorem 7.2.  Suppose E = U{(u]|UeU} - where Uc Q is k-smal1 - 

is a k-small generated lower end of Q. Then the following two condi

tions are equivalent:

(i) E is a lexicographic k-ideal;

(ii) if t is maximal in T(U), then U(t) has a greatest element.
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Proof. (i)===>(ii): By hypothesis, UcE = U{(u]|u£U}.

Hence U(t)cE(t), for all teT, and supn( (t,x) |xeU(t)} = (t,supp U(t)) 
u t

exists in Q if tET(U), i.e. U(t) / 0. Moreover, supg{(t,x)|xeU(t)} 

is an element of E, since E is a lexicographic k-ideal. Thus

(t,supp U(t)) e U {(u]|ueU}, i.e. there is u eU such that
Mt 0

(t,supp U(t)) u . Suppose now that t is maximal in T(U). Then 
rt 0

uo e 1‘t^t^’ hence uQ = (t,xQ), where xQ e U(t). In addition, since

(t,supp U(t)) $ (t,x ), we get supp U(t) < x 5 supp U(t), proving 
rt t t

xQ = max U(t).

(ii)=> (1) is similarly straightforward and is left to the 

reader.

L
Theorem 7.3. Suppose { EJiel) is a k-small subset ofZ|<(Q). 

Suppose for each IeI, E^ = U { (u^] Ju^eU^ }, where U^<cQ is k-small. 

Let U = U U. c Q. Then E = U {((t,supp U(t))]|teT(U)} is in 
1k uXjjQ) and is the least lexicographic k-ideal containing all E..

I.e., E = sup . { E. | id}.
X^(Q) '

Proof. We should mention that every E^ can be represented as 

Ej = U {(u^][u^eU^} by (7.8). The inaccessibility of k makes U a 

k-small set, hence T(U) is k-small, and for each tET(U), supp U(t) 

exists in P.. So E = U{ ((t,suDp U(t))] |teT(U)} is a k-small gene-
1 rt

rated lower end in Q. For isl and u^eU^ , we have u^ell, hence u^ = 

(t,x), for some tsT(U) and XEU(t). Thus x supp U(t) and
Kt 
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u. = (t,x) < (t.supp U(t)), i.e. u.eE. This proves E.cE, for 

each iel.

In order to show that E is a lexicographic k-ideal, we consider 

M = {(t.supp U(t))|teT(U)}. M is a k-small subset of Q, and 
t

|M(t)|$l, for all teT. Moreover, E is of the form E =U{(m]|meM}. 

Now, if tET(M), then M(t) / 0, i.e. |M(t)| = 1, which trivially 

implies that max M(t) exists, for all tsT(M). We have now verified 

condition (ii) of Theorem 7.2. Consequently, E is a lexicographic 

k-ideal.

It remains to show that E is the least lexicographic k-ideal 

containing all Ep isl. So let E* be a lexicographic k-ideal con

taining all Ep and let teT(U). For each XEll(t), we have xsll^(t), 

for some iel, i.e. (t,x)Ell^<::Ep for some iel. But then (t,x)s UE^ 

c E1, for all XEU(t). So supgl (t,x) |XEll(t)} = (t,supp U(t)) e E1, 

since E1 was assumed to be a lexicographic k-ideal. We proved 

(t,supp U(t)) e E1, for all tET(U), hence ((t,supp U(t))] c E1, for 
t t

L
For a lexicographic k-ideal E e ^(Q) with the representation 

E = U {(u]|ueU}, U k-small, we obtain as an immediate consequence 

of Theorem 7.3 that E can also be represented as

E = U{((t,supp U(t))J |tET(U)}. The latter representation will, in 
t

general, be strictly "shorter" than the first, but there may, of 

course, still be a lot of redundant elements in the representation.

Nevertheless, Theorem 7.3 completely describes the joins in

all tET(U). Thus EcE1, completing the proof of Theorem 7.3.
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They obviously do not always coincide with the set-theoretical 

union of principal lower ends.

Let us explain what happens, in more detail, at least for the 

case k = & . Then we are talking about semi lattices, and ^(Q) 

is the semi lattice of finitely generated lower ends of Q. Suppose 

x-|,...,xn e Q, and let E = VJ {(x.] | i=1,... ,n}. Assume now that no 

two different elements x^/Xj are in the same piece it(Pt). Then 

condition (ii) of Theorem 7.2 holds true, and E is a lexicographic 

k-ideal. Hence E = sup . {(x.]|iel}. In case there are different
Zk(Q) 

elements in the same piece, we get a partition of {Xp...,xn) into 

subsets, say Sp...,Sm, where for some teT (j=l,...,m).

For the lower end E1 = (supgS^] u ... u (suPqSm] condition (ii) of 

Theorem 7.2 is again fullfilled, and by Theorem 7.3 we have

E' = sup r, {(x.]|iEl} = U{ (supnS.]|j=L... ,mJ.
^(Q) 1 Qj

We are now ready to state an analogue to Theorem 7.1:

Theorem 7.4.  Suopose 0 is the lexicographic sum of the k-semi- 
L

lattices P^. <^(0) is the canonical image of a k-join-completion P 

of Q. Moreover, it(P^) is k-join-faithful in P, for every teT.

L
Proof. Every element inZ^Q) is the join of a k-small set 

of principal lower ends. In fact, it is even the set-theoretical 

union of a k-small set of principal lower ends. By Theorem 7.3, 

X£(Q) is itself k-join-complete. Hence Xj^Q) is a k-join-comple-cicn 
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8. The order-sum of one-element k-semilattices, a special case

that is k-join-fai’thful in P.

of Q. I.e., there is a k-join-completion P of Q, where P =X^(Q)« 

Assume now teT and Scit(Pt), S k-small. Then x = sup^ exists 

and x = supqS. Hence, the least lexicographic k-ideal containing 

{(s]|seS} is nothing but the principal lower end (x]. This implies 

It should be no secret by now that of ^(Q), where Q = L P^, 

will turn out to be the order-sum of the k-semilattices P^.

A careful inspection of Theorem 7.4 reveals immediately that 

Theorem 7.1 is nothing but a special case of Theorem 7.4. This is 

due to the fact that every partially ordered set 0 can be considered 

a lexicographic sum of one-element k-semilattices : Q = L P^. where 

T = Q and P^ = [tl, for teT. In this interpretation, every k-small 

generated lower end of Q is a lexicographic k-ideal, in fact, 

€k(Q) ^k(Q) with set-theoretical union as join. Clearly, 

i^(P|.) = 11) is k-join-faithful in every k-join-completion P of Q. 

On the other hand, the algebraic lexicographic sum of one-element 

k-semilattices is just the partially ordered set T, without any 

additional structure. I.e., all joins in T that might possibly exist, 

are disregarded.
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Our goal in this section is, to give an internal characteriza

tion of the order-sum P of one-element k-semilattices P^,. To do this, 

we refer to Theorem 6.2. First of all, the remarks above make clear 

that P will have to be an order-extension of the partially ordered 

set T. Condition (ii) of Theorem 6.2, in this special case, reads 

as follows:

for every k-semilattice Q and every isotonic mapping 

(*) : T------- there is a unique k-join-preserving mapping

: P-------->Q such that ip|T = ip.

So, in order to characterize the order-sum, all we have to do is to 

characterize the order-extension P of T (P necessarily is a k-join- 

completion of T) having the property (*). For the class of k-semi

lattices with least elements this has been done already in 

Schmidt [13], and there are no difficulties in extending the charac

terization to the class of k-semilattices. We will, however, briefly 

discuss the sequence of steps leading to the characterization. This 

will turn out to be helpful for section 9, where we have to deal 

with the general case of arbitrary k-semilattices.

An element x in a partially ordered set Q is k-.join-primitive, 

provided the following condition holds for each k-small subset ScQ:

(8.1) ii x ^suPqS, then x<s, for some seS.

Note that in contrast to Schmidt [13], the least element of Q, if it 
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exists, is k-join-primitive.

Suppose now Q = L Pt, where |P^.| = 1, for all teT. I.e., Q is 

(up to order-isomorphism) just the partially ordered set T.

Theorem 8.1.  tlie canon‘’ca^ image of a k-join-com-

pletion P of Q, and every element of Q is k-join-primitive in P.

Proof. The first part is a repetition of Theorem 7.1, or, if 

one prefers, of Theorem 7.4. For the second part, see Schmidt [13], 

Theorem 1.1.

Theorem 8.2.  Suppose P is a k-join-completion of Q. Suppose 

further that each element of Q is k-join-primitive in P. Then P is 

the order-sum of the one-element semi lattices P^.

Proof. It suffices to verify condition (*) of the previous 

page for the k-join-completion P. This can be done as in Schmidt [13], 

Theorem 1.2 "(i)—(11)". The k-join-primitivity of the elements of 

Q is only needed for the proof that the k-join-oreserving mapping 

v : P------->Q' extending ip : Q------->Q' is well-defined. Since this is

a crucial point as far as the general case in section 9 is concerned, 

we will show here in detail, in what way k-join-primitivity enters 

the proof:

Suppose that x£P has the representation x = suppS where S is a 

k-small subset of Q. ip : P------- >Q' is defined by ip(x) = supq,ip(S).

Let now x£P have two such representations, s = suppS = suppR, where 
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R and S are k-small subsets of Q. We have to show: supqi^(S) = 

supgi^(R). But for all seS, sssuppR, thus s$r, for some reR, since 

s is k-join-primitive in P. Isotonicity of implies ip(s)^ip(r), 

hence ip(s)4 supqlip(R), for each seS. But then supqlip(S)-6 supq.ip(R), 

and the other inequality can be shown in the same way.

Theorem 8.3 (Internal Characterization).

Let P be an order-extension of Q = L P^, where |Pt| = 1, for each 

teT. Then the following statements are equivalent:

(i) P is a k-join-completion of Q and each element of Q is 

k-join-primitive in P;

(ii) P is the order-sum of the k-semilattices P^.;

(ill) P is a k-join-completion of Q and P = ^(Q).

Proof. (i)=^ (ii) by Theorem 8.2. (ii)=^(iii): P is a 

k-join-completion by Theorem 1.3. By Theorem 8.1, there is a k-join- 

completion P1 of Q such that P' = ^^(0), and every element of Q is 

k-join-primitive in P1. Now we use Theorem 8.2 to conclude that P‘ 

is the order-sum of the k-semilattices P^. Thus P1 and P are iso

morphic (as algebras and as partially ordered sets), in particular, 

P' = P = €^(0). (ill)- ) (i) by Theorem 8.1.

Let us take another look at the example at the end of section 5. 

It is clear now, why the index-set T fails to be the order-sum. The 

order-sum is the set of all k-small generated lower ends of



48

The lower end A/ itself, however, is k-small generated, if k = 

Thus the order-sum P is {(nJ |ne A/'luMuT with the appropriate total 

order.

9. Internal characterization of the order-sum, the general case

In the previous section, the notion of k-join-primitivity served 

our purposes for the characterization of an extremely special order

sum. For the internal characterization of the general order-sum, 

k-join-primitivity will have to be replaced by a more general prop

erty. This new property should be defined in such a way that it con

tains k-join-primitivity as a special case.

We will say that a subset R of a partially ordered set P is 

covered, by a subset S of P, if for every reR, there is some seS, such 

that r s.

Let Q, P be partially ordered sets, Q a subset of P. If RCQ<P, 

and if we write x4suppR e Q, then this shall always mean that suppR 

exists, that suppR e Q, and that x^suppR. An element xeP will be 

called (Q, kj-join-pr-im-Ltive provided the following condition holds 

for every k-small subset Sg P:

(9.1) if x<suppS, then Q contains a k-small subset R, covered by 

S, such that x 4suppR e Q.
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Obviously, every xeP is (P,k)-join-primitive in P, and no 

element of P is (0,k)-join-primitive in P.

For a non-trivial example of a (Q,k)-join-primitive element, 

let P have the following structure:

Suppose Q = [a,b,c}cp. Then ceP is (Q,k)-join-primitive in P. To 

show this, we have to verify (9.1). So suppose ScP and c <=suPpS.

(9.1) is trivially fulfilled, if ceS or if ScQ. If we eliminate 

these cases, then c^suppS implies suppS = e, and either (f.glcS 

or {f,b}cS or {a,g)cS. In all three cases RcQ can be chosen 

as R = {a,b}.

The following example shows that for Qcp, not every qeQ is 

(Q,k)-join-primitive in P. Suppose P has the structure

and let Q = {a,b,c}cP. c is not (Q,k)-join-primitive, since
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supp{ x,y}, but there is no RcQ such that suppR and r^x or 

r4y, for all reR.

Our first theorem establishes the relationship between k-join- 

primitivity and (Q,k)-join-primitivity.

Theorem 9.0. Suppose Q and P are partially ordered sets, 

Qc P. The following statements are equivalent:

(i) xeQ is k-join-primitive in P;

(ii) xeQ is ({q},k)-join-primitive in P, for some qsQ.

Proof. (i)=^(ii); Assume x^suppS, where Sep and S 

k-small. Then x$s, for some seS, and (9.1) is fulfilled for 

R = {x}cQ. (ii)==^ (i): Let x^suppS, where S<P and S k-small. 

By hypothesis, x4q, for some qsQ, where {q} is covered by S. Hence 

x 4 q 4 s, for some seS.

The following three theorems, 9.1, 9.2, and 9.3 are extensions 

of theorems 8.1, 8.2, and 8.3, respectively.

Let Q be the algebraic lexicographic sum of the k-semilattices 

pf

Theorem 9.1.  ^(Q) is the canonical image of a k-join-com-

pletion P of 0. Each piece it(Pt) is k-join-faithful in P. Moreover, 

every element of Q is (i't(Pt),k)-join-primitive in P, for some tsT.
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Proof. The first part is a repetition of Theorem 7.4. For 

notational simplification, let us introduce the mapping

t : Q-------->Z^(Q), defined by t(x) = (xj. To prove the second part 

of our theorem, we are going to show that every principal lower end 

(x] of Q is (t1 . (Pt) ,k)-join-primitive inJ^^(Q), for some teT. So

assume (x] c sup , {E.h'el}, where I is k-small, and letZ^(Q) 1

Ej e<Zr(Q). For each id, E. = U {(u-] lu.cll.}, where U.*c Q and LL
IK 1 111 1 I

k-small. Let U = U . Then U<0 and U k-small, and by Theorem 7.3.

sup v {E.|iel} = VJ {((t,supD U(t))]|teT(U)}. Now,
Zk(Q) 1 Pt

(x]c U{((t,supp U(t))] | teT(U)}, hence there is teT(U) such that

(t.supp U(t)) = supqi^.(U(t)). Moreover, U(t) f 0 since teT(U). 

Let now R = it(U(t)). Then R^it(Pt), and R is k-small. Also, for 

every reR, r e U = U , i.e., r e , for some IeI. Hence rsEp 

for some IeI, thus (r]cE., for some isl. So, r(R) is covered by 

{E^lisll, t(R)c T(i't(Pt)), and t(R) is k-small. It remains to show: 

(x] c sup .
oq(Q)

I(r][reRT e T(it(Pt)). But T(it(Pt)) is k-join-faith-

ful in c£u(Q) by Theorem 7.4. hence (sunnR] = sun . {(rJIreR).
k Q c^(Q)

In addition, (supnR] = ((t,suoD U(t))] e i(it(Pt)), and

(x] c ((t.suop U(t))], since x^(t,supp U(t)) as we have seen 
rt Kt

earlier. t(R) has therefore all the required properties, and the 

proof is completed.
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Theorem 9.2.  Suppose P is a k-join-completion of Q = L P^, 

such that all the pieces are k-join-faithful in P. Suppose 

further that each element of Q is (it(Pt),k)-join-primitive in P, 

for some teT. Then P is the order-sum of the k-semilattices P^.

Proof. It is sufficient to verify condition (ii) of

Theorem 6.2. So let Q1 be a k-semilattice, and suppose : Q------- >Q'

is a homomorphism. P is, by assumption, a k-join-completion of Q. 

Hence, every xeP is representable in the form x = suppS, for some 

k-small set S^Q. We nov/ define ip : P------- >0' by ip(x) = supqiip(S).

Clearly, ip|Q = ip, and the unicity of ip follows from the fact that P 

is a k-join-completion of Q.

In order to prove that the definition of ip is independent of 

the representation of x, let x = suppS = suPpS1, where S and S' are 

k-small subsets of Q. We have to show: suDqiip(S) = suPqiip(S'). For 

each SeS, we have s^suDpS', and each seS is, by hypothesis, 

(it(Pt),k)-join-primitive, for some tcT. I.e., there is teT and a 

k-small set Rci.(P.), such that s^suppR e i. (P. ), and R is covered 

by S'. Now all pieces it(pt) are k-semilattices and k-join-faithful 

in P, by hypothesis. Thus s suppR = suo^ (p ^R e i^CP^.). Conse

quently, ip(s) 4. ip(sup^ (p ^R) = supqiiP'(R), since <P was assumed to 

be a homomorphism. In addition, R is covered by S', so for every 

rsR there is s'eS1, such that r^s', hence ip(r) ip(s'), by isotoni

city of ip. But then ip(s) ^supgiip(R) supqi’P(S'), for all seS. Hence, 
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supqiip(S)< suPqii|)(S' ), and the other inequality, supg.^S1)^ 

supn,ip(S), can obviously be shown in the same manner.

It still remains to show that ii> is k-join-preserving. That, 

however, is a straightforward consequence of the inaccessibility of 

k and the associativity of the supremum-operation. This completes 

the proof of Theorem 9.2.

In the following theorem, we finally come to our internal 

characterization of the order-sum of k-semilattices. We know already 

that if P is the order-sum of the k-semilattices P^., then the 

pieces i^(Pt) have to be k-join-faithful in P. Thus, it suffices to 

consider only those order-extensions of L Pt that contain the 

k-semilattices as sub-k-semilattices.

Theorem 9.3 (Internal Characterization)

Let P be an order-extension of Q = LP^., such that all the pieces 

ij.(Pt) are k-join-faithful in P. Then the following statements are 

equivalent:

(i) P is a k-join-completion of Q, and each element of Q is 

(it(Pt),k)-join-primitive in P, for some teT;

(ii) P is the order-sum of the k-semilattices P^;

(iii) P is a k-join-faithful completion of Q and P = X^(Q).

Proof. (i)==^(ii) by Theorem 9.2. (ii )=■-- >(iii) is a repe-
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u9 ktition of (ii)==^(iii) in Theorem 8.3, just substitute ^^(Q) for 

k(Q) and (it(Pt),k) -join-primitivity for k-join-primitivity.

(iii)==^(i)  by Theorem 9.1.

Clearly, the previous three theorems contain their counterparts 

in section 8 as special cases. This is due to the fact that in 

section 8 the k-small generated lexicographic k-ideals coincide 

with the k-small generated lower ends of Q. In addition, (i^.(Pt),k)- 

join-primitivity coincides with k-join-primitivity in this case 

(cf. Theorem 9.0).

We now give an example for the order-sum P of k-semilattices

P., where k = ^ . Take T to be 
t o

and ?£ = T; P^ and Pg have just one element. Then L P^ has the 

structure

and is itself a semi lattice. To determine the order-sum of the 
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k-semilattices P^, we have to find all finitely generated lexico

graphic k-ideals of L P^. This is not hard to do in this case: 

All principal lower ends are lexicographic k-ideals and the only 

non-principal ones are the lower ends ((1,1)]v((2 ,j)], for

j=l ,2,3. P is now the semilattice with the following structure:

(3,1)
o

(2,2)

(2,3)

Obviously, L Pt considered as the lexicographic sum of the par

tially ordered sets Pt (structure (iii) on p. 28), is not k-join- 

faithful in P. Also, (l,l)v(3,l) exists in P, but not in the alge

braic lexicographic sum L Pt (structure (i)). This shows that the 

three structures discussed on p. 28 can all be different from each 

other. In particular, the inclusion mapping i : L P^------- >P -

where L Pt has structure (i) - is, in general, not an algebraic 

embedding.
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