
ALGORITHMS FOR MANIPULATING

TRIANGULATED SURFACES

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston-University Park

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Dang-Cheng Yiu

May, 1987

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to Dr. Anne L.

Simpson, the chairman of thesis committee, for her guidance and valuable

advices during the period of the research.

Special thanks are gratefully extended to Dr. Ramez A. Elmasri and

Dr. Richard Sanders, members of thesis committee, for their suggestions

and comments.

The author wants to thank the Allied Geophysical Laboratories for

the equipment and software support through the entire research.

Finally, the author deeply appreciates the strong support and

encouragement of his wife and his family throughout the study at the

University of Houston.

iii

ALGORITHMS FOR MANIPULATING

TRIANGULATED SURFACES

An Abstract of a Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston-University Park

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Dang-Cheng Yiu

May, 1987

ABSTRACT

Triangulations are powerful tools for surface modeling. They can be

used to fit any irregular boundary shapes and surface discontinuity fault

patterns. However, without the help of row and column information as in

rectangular grids, manipulating a triangulated surface interactively is not

an easy task. Efficiency is a major concern for manipulation functions.

This article will propose some algorithms to manipulate triangulated

surfaces such as: finding the path of a given route in a triangulated surface;

getting the profile of a vertex function along a given route; and partitioning

a surface domain by vertical plane(s). These algorithms have applications

to interactive graphics where the user wishes to slice multisurface folds

to obtain various views of a solid, and to dynamical problems where one

wishes to introduce fracture systems into pre-existing surfaces. Some

other useful operations such as merging of two domains, moving a vertex

with preset rules, and combined use with rectangular grids, are also

discussed.

The proposed algorithms have been implemented in a triangulation

database system developed by W.M. Smith of Cullen Image Processing

Laboratory at University of Houston. This process requires both expansion

and modification of Smith’s system. The principal modification introduced

enables the system to treat multiple surfaces in main memory rather than

only one surface at a time from a file database.

The algorithms can be applied to any multi-connected surface domain.

v

Holes and irregular boundary conditions are given careful treatment A

theoretical analysis of time complexity is not available at this stage.

Empirical results for the time required by these algorithms are given

instead.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. TRIANGULATION SYSTEM AND MANIPULATING FUNCTIONS ... 5

2.1 Terminology and notations..6
2.2 Surface domain...9

2.2.1 Functions defined on the surface domain11
2.3 Structure of triangulation database13
2.4 Manipulation functions ...21

2.4.1 Line conversion .. ,.22
2.4.2 Tile function ...24
2.4.3 Surface partitioning... 25

2.5 Other applications..27
2.5.1 Merging two domains ..28
2.5.2 Moving a vertex ...32
2.5.3 Combined application with rectangular grids . . . 33

3. ALGORITHMS...38
3.1 Line conversion ..43

3.1.1 Example of line conversion..48
3.1.2 Related subroutines ... 52
3.1.3 Empirical analysis of the time complexity . . . 55

3.2 Tile function ..57
3.2.1 Example of tile function..61
3.2.2 Related subroutines ... 61

3.3 Partition a surface domain ..62
3.3.1 Example of partitioning a surface...............................69
3.3.2 Related subroutines ... 81
3.3.3 Empirical analysis of the time complexity . . . 82

4. DISCUSSION ...86
4.1 Find Intersection points on boundary................................... 86
4.2 Location of a point In a triangulation................................... 87
4.3 Inserting a vertex..89
4.4 Finding next cutting (crossing) point................................... 91
4.5 Zipping procedure..92
4.6 Splitting a domain..95

vli

5. SUMMARY AND CONCLUSION ...98
6. APPENDICIES ...100

APPENDIX A: Introduction to new Triangulation System
inIPL..100

APPENDIX B: Titles and descriptions of new FORTRAN
subprograms.................................110

viii

1. INTRODUCTION

Triangulations are powerful tools for surface modeling. Triangulated

grids are more flexible than quadrilateral grids in many respects. (1) They

can adapt easily to arbitrarily spaced data. (2) Each triangle can be

assumed to represent a small flat plane. (3) As many functions as

necessary can be attached to each vertex, side and triangle to describe the

characteristics of the surface, and the function values of any point within

surface domain can be easily calculated by interpolation. (4) They can fit

in any irregular boundary shapes and surface discontinuity fault patterns.

Due to the flexibility of triangulations, it is very convenient to be used in

geophysical applications.

Earth is a continually changing planet. The structure of the earth's

surface is quite complicated because of the motion in the crust of the earth

and in the folded mountain belts. The 3-D interactive graphic

representation for the structure of earth's surface is difficult because of

multisurface folds, fractures, faults and irregular boundary shapes of the

surfaces. Triangulations have no problem in fitting such boundary shapes.

Fractures and faults of the earth can be represented by internal boundaries

defined in the triangulation system. Multisurface folds can be simulated by

a stack of triangulated surfaces. Each surface of the stack represents a

folded surface between layers.

2

Different layers of earth 3-D representation by different planes

(b)

Figure 1: Triangulation system in geoscience applications (a) 3-D
graphic representation (b) the profile of a solid along a
polyline (c) fracture of a solid

3

Figure 1-a shows a solid which is a sample at the surface of the

earth. To represent this solid in 3-D graphics by triangulations, various

views of the solid can be obtained by slicing multisurface folds.

Triangulate each view plane, then a stack of triangulated surface domains

based on different planes can be used to represent the depth relation of the

solid. By the stack of triangulated surface domains, display and

manipulation of the solid can be done easily. Figure 1-b shows the profile

of the solid along the black lines. If a fault or a fracture is on the solid as

shown in Figure 1-c, the results of the fracture will cause a portion of

each triangulated surface domain to be cut off.

Using triangulations to represent the complicated earth system in

3-D graphics, some manipulating functions for triangulation system are

necessary. The implemented functions of interest are (1) converting a

finite line in the x-y plane into a triangulated line in triangulated surface,

(2) getting the tile-function values (profile) along a triangulated line, and

(3) partitioning of a surface by a finite vertical plane and updating

attached functions. The basic finite cut and line conversion alogrithms can

then be used in a loop to introduce a very complex fault system into an

initially continuous surface.

There are other applications which will be discussed in this thesis

but their implementation is left for future work. Those applications

include merging two isolated surface domains into a single surface domain,

partitioning a surface by a finite tilt plane, varying vertices within preset

constraints, and combined application with rectangular grids.

4

This thesis devotes Itself to algorithms for manipulating surfaces

stored in triangulation databases. Implementations of those algorithms

were based on the I PL (The Cullen Image Processing Laboratory) T-Base,

created by [Smith]. Many I PL library routines were also used and modified

during Implementation.

Chapter two Is an introduction to the triangulation system. Included

are teminologles and notations used In this thesis, assumptions regarding

surface domains, some properties defined on surfaces, data structures in

our triangulation database, and descriptions of new manipulating functions

and different applications.

Chapter three will discuss the algorithms of the manipulation

functions along with some examples. Chapter four will discuss some

techniques used and problems faced during implementation.

An overview of the revised and expanded Smith System in I PL is given

in APPENDIX A. APPENDIX B gives the titles and descriptions of new

FORTRAN subroutines used in the new system.

2. TRIANGULATION SYSTEM AND

MANIPULATING FUNCTIONS

The triangulation system used in this thesis is basically the same as

the I PL T-Base [Smith] with both expansion and modification. The major

restriction of I PL T-Base is that it can only load one surface domain into

memory at one time. Once a surface domain is released, all data will be

dropped from memory. This is not convenient for applications which need

to access more than one surface domain during a single run, such as

merging two surface domains into a single domain, cutting a surface

domain into many separated surfaces. The new version of the [Smith]

system after expansion eliminates this restriction. The memory address

tables have been expanded so that the system can load more than one

surface domain into main memory as long as the memory space is available.

Each surface domain in memory has its own name and domain index for

identification, and the file name of the database will be used as its domain

name in the implementation. To save memory space, the storage spaces of

each surface domain are dynamically allocated upon request. When a

surface domain request a block of memory space, the database handler will

acquire the space needed from the operating system and record the address

and size of the block in memory. To access the data item in memory, the

database handler simply goes to check the address table and calculate the

exact address which is then used to perform the read/write operation on

that data item.

5

6

Assumptions and limitations of the surface domain, the database

structures, and a discussion of the manipulation functions will be given in

the following sections.

2.1 TERMINOLOGY AND NOTATION

Triangulations consist of three basic components: vertex (V), side (S),

and triangle (T). For completeness of mathematical model, it is assumed

that each vertex is a closed point; each side is an open line segment

without two endpoints and each triangle is an open area without three

sides and three endpoints. Therefore, the area of a surface domain D is

equal to the union of V, 5 and T.

Let V be the set of vertices of a triangulation and NV be the number of

vertices. V is defined as

V = [Vj = [Xj, yj] I 1 < i < NV)

where x} and y, are coordinates of on base plane XY. Two or more vertices

may have same coordinates.

Let S be the set of sides of a triangulation and NS be the number of

sides. S is defined as

S = (Sj = [Vj,, Vj2] I vj1 and vj2 are in V and 1 < j < NS)

Two or more sides may have the same endpoints. The direction of side s^ is

defined from point Vj, to point vj2. Any point p on side Sj can be expressed

7

as SjCup where

SjtU,) = (l-U^xVj, ♦ U|XVj2

Uj = (length of p to Vj,) / (length of Vj2 to v^)

and 0.0 < u1 < 1.0

Let T be the set of triangles of a triangulation and NT be the number

of triangles. T is defined as

T = (tk = [skp sk2, sk3] I |sk1l, lsk2l, and |sk3l are In S and 1 < k < NT)

Sk1 = tvjp Vj2^ Sk2 = Vj3^ and Sk3 = tVJ3' Vj J

If skl Is negative, then sk| = [Vj(i+1), VjJ

Any point p on triangle Tk can be expressed as

Tk(Up u2) = (1 -u1-u2)Vj1 + u^v^ + u2xVj3 with

0.0 < u1 < 1.0

0.0 < u2 < 1.0

and (u, ♦ u2) < 1.0

This is the representation of a traversal of a triangulation.

A line segment is usually defined by its two endpoints in x-y

coordinate system. In a triangulated surface the triangulation objects

traversed by the given line segment are more useful than the endpoints of

the line segment. Triangulated line Is defined as the complete path of

given line segment L on a triangulated surface domain. It includes all

8

triangulation objects traversed by the line segment L.

-r « i VsC7»4)Triangle 5
TftSf.Sz.Sg)

12(83/ 84,35)
13(85/86,37)

Side

V3)
%<v3< V,)
S,(V,, V4)
8^4, V,)
S6(V4, V,)
sT%, V3)

Line segment L from P1 to P2

Trlanguleted line

type Index Ul U2

2 Tj 0.16667 0.25000
2 Ti 0.00000 0.50000
1 S3 0.50000 -
•2 t2 0.50000 0.00000
2 t2 0.00000 0.25000
1 Sg 0.75000 •
2 Tg 0.25000 0.00000
2 T, 0.12500 0.50000

Figure 2: Triangulated line L^, from point P, to P2

L^, Is composed of a string of points. Each point P, on L^, can be

9

represented by four 4-byte items: type, index, and u2. Type tells whether

the current point is on a vertex, a side or inside a triangle. Type zero

means P. is on a vertex, type one means P, is on a side and type two means

P, is inside a triangle. Index identifies the vertex, side or triangle where P}

is located. Both u1 and u2 are the local coordinates of Pr If P. is on a

vertex, then both u, and u2 are equal to O.O. If P. Is on side 5, then Sfu,) = P,

and u2 is equal to 0.0. If Pj is inside triangle T, then T(up u2) = P, One point

in the x-y coordinates may have more than one point in the expression of

triangulated line to form the completeness. For a line segment L from

point P1 to point P2on surface domain D, the triangulated line of L on D

is defined as in Figure 2. L^. starts from P, on triangle Tp crosses side S3

at P3 to triangle T2, then crosses side S5 at P4 to triangle T3, and ends at

point P2. It can be seen from Figure 2 that each time when P, exits or

enters a triangle there are three different local expressions of Pj to record

where Pj came from, where Pj is now and where P. is going to.

2.2 SURFACE DOMAIN

The surface domain used in our triangulation system is a

multi-connected domain under some restrictions. There are two major

assumptions for the surface domain.

10

(b)
Figure 3: Surface domain In x-y plane (a) a surface domain with no

hole (b) a surface domain with two holes

The first assumption is that a surface domain is the projection of a

surface patch to a base plane in x-y coordinate system. Each x-y point

within the surface domain has only one corresponding point to the surface

patch. The second assumption Is that a surface domain can be any irregular

shapes bounded by a closed exterior boundary as shown in Figure 3. It Is

11

important that there can be only one exterior boundary for each surface

domain. In other words, two isolated areas (bounded by two different

exterior boundaries) represent two separated domains. Within the surface

domain there may be holes which are bounded by closed interior

boundaries. Each surface domain may have any number of interior

boundaries. Each boundary consists of a sequence of boundary sides which

are connected by consecutive pairs of boundary vertices. The domain area

is confined by its exterior boundary and interior boundaries. Each vertex

within the surface domain is either an interior vertex or a boundary vertex

located on one and only one boundary. Usually the exterior boundary will be

stored in a counterclockwise direction and the interior boundary in a

clockwise direction so that surface domain is always to the right of the

boundary.

2.2.1 FUNCTIONS DEFINED ON SURFACE DOMAIN

A surface can be divided into many discrete areas according to the

characteristics of its own. In the triangulation system each small area is

a triangle. The characteristics of the surface is described by the functions

attached to vertex, side or triangle. For example, we may attach the depth

to each vertex, or we may attach color, density and illumination to each

triangle, or attach the slope of the edge to each side. If a function value is

missing, a flag should be set to indicate the function value is undefined.

When a new vertex is inserted into a surface domain, new sides and

12

new triangles are also created by locally triangulating the area around the

new vertex. The function values of these new vertex, sides and triangles

are difficult to determine without knowing the physical meaning of

attached functions. For example, a triangle function TFk is defined as the

area of the associated triangle and another triangle function TFj is defined

as the density of the associated triangle. When a triangle T is split into

triangle T, and triangle T2, function values of TFk of T1 and T2 should be

recalculated by their areas and function values of TFj of Tt and T2 should be

the same as the function value of TFj of T. In the Implementation, system

will ask the user to fill function values for new elements by default

methods or set flags to indicate missing function values. The default

method for vertex functions is using linear interpolation according to the

location of new vertex. The default method for side functions depends on

new side snow. If new side s^ is a sub-side of an existing side S, then it

has the same function values as S. If snew is not a sub-side of any existing

side, then null values are assigned and flags are set. The default method

for triangle functions of a new triangle Tnew is to copy the values of a

existing triangle T which contains Tnew.

13

2.3 STRUCTURE OF TRIANGULATION DATABASE

Memory Address Table for each domain in memory

Domain
1

Domain
2 Domain

max.

Vertex Block
SVP Block
TSP Block
Boundary Block
VMAP(old) Block
VMAP(new)B1ock
VF 1 Value Block
Missing VF 1 Flag

•
SF m Value Block
Missing SF n Flag
TF 1 Value Block
Missing TF 1 Flag

TF m Value Block
Missing TF n Flag

Figure 4 Memory address table for each domain stored in memory

As mentioned before, memory blocks of each data entity are allocated

upon request. After memory allocation, the system will return a relative

address based on a base address for that entity. To allow more than one

14

surface domain in memory, larger memory address tables are necessary to

record the extra addresses (See Appendix A.1 for the description of address

tables which are declared in file "TDBCOMMON.FOR"). Figure 4 shows the

structure of the memory address tables. The maximum number of surface

domains which can be loaded into memory is controlled by parameter

MAXJ). MAXJ) is declared in the file HTDBCOMMON.FOR" and is currently set

to ten. Each domain in memory is identified by its domain index which is in

the range one to MAXJ). If the value of MAXJ) is changed, all subroutines,

including file "TDBCOMMON.FOR", should be recompiled. Different data

blocks have their own names with MAXJ) array elements. The index of the

data block represents the index of domain. Access a particular domain in a

data block can be done easily by giving the domain index. Variable

ACTIVE-DOMAIN (declared in the file MTDBCOMMON.FOR") Indicates the

current working domain. The value of ACTIVE-DOMAIN can be changed to

switch surface domains in memory.

The basic elements of each surface domain are vertices, sides and

triangles. Each triangle has three sides and three vertices. Each side has

two end vertices. Each vertex has its x and y coordinates. We therefore

have the following relationships:

a. Vertex determines the values of x and y coordinate.

b. Side determines two end vertices.

c. Triangle determines both three sides and three end

vertices.

The following three data blocks are used to represent the

15

relationships for each surface domain:

Vertex Block

X <c X
h>

 cc c

=»c

X

vertex 1 vertex 2 vertex n

SVP Block (Side to Vertex Pointer Block)

V V
1,1# 2,1

V VV1^' 22 V VYi,m v2,m

side 1 side 2 side m

TSP Block (Triangle to Side Pointer Block)

S1,1,S2,1,S3,1 s^,s \2 22 S1,kS2A>

triangle 1 Triangle 2 triangle k

VMAP(old) Block VMAP(new) Block

new
index

old
index

new
index Fgpe Index ui U2

1
2
3

OKI
NV

Figures: Data structure of vertex block, SVP block, TSP block and
VMAP blocks

16

(1) VERTEX BLOCK (See Figure 5) is used to store the x and y values

of each vertex. The first pair of elements are xt and y1 of the first vertex;

the second pair of elements are Xj and y2 of the second vertex, and so on.

NUM_V(i) represents the number of vertices In the domain 1. V_SLOTS(1)

represents the number of vertices can be stored In the vertex block.

Usually, a few more spaces than needed are reserved for the possible future

expansion.

(2) SVP BLOCK (See Figure 5) is used to store the end vertices of

each side. The first pair of vertex indices are end vertices of the first

side; the second pair of vertex indices are end vertices of the second side,

and so on. NUM_S(i) represents the number of sides in surface domain 1.

S_SLOTS(i) represents total number of sides can be stored by this data

block.

(3) TSP BLOCK (See Figure 5) is used to store the sides of each

triangle. The first triplet of side indices are three sides of the first

triangle; the second triplet of side indices are three sides of the second

triangle, and so on. NUM_T(i) represents the number of triangles In surface

domain 1. T_SLOTS(1) represents the number of triangles can be stored by

this data block. If we want to know the three vertices of a triangle, we can

find them indirectly by finding sides first, then vertices.

There are two data blocks: VMAP_OLD and VMAP-NEW (See Figure

5), which are only used in the cutting process to map the vertices in a new

domain back to the original domain. VMAP_OLD is used to store the

17

mapping of vertices which are existed before cutting, and VMAPJMEW Is

used to store the mapping of vertices which are new created during cutting

back to the original domain. The representation of VMAP-NEW Is the same

as the triangulated line discussed In section 2.1. In the line conversion

process (see Section 2.41), VMAP-NEW Is used to store the path of the

triangulated line. In the tile function process (see Section 2.42),

VMAP-OLD Is also used to store the data of a profile.

First Boundary Vertex Block
1 2 3 NB

Previous Boundary Vertex Block

Figure 6: Data structure for boundary vertex blocks

VB1 1 B2 1 VB4 1 VB3 1

18

To define the boundary, two data blocks are used to store the

necessary information. One is The First Boundary Vertex Block and the

other is Boundary Vertex Block as shown in Figure 6. The FIRST

BOUNDAY VERTEX BLOCK is a one dimensional array which stores the first

vertex of each boundary. Each boundary is given an index for identification

and the exterior boundary is always the boundary one. The index of this

array is the index of the boundary. Maximum number of boundaries allowed

in a surface domain is controlled by parameter MAX-BOUNDARY, declared in

the file "TDBCOMMON.FOR". The current maximum number of boundaries

within a surface domain is set to twenty. To facilitate the boundary data

retrieving, the Boundary Vertex block is divided into three data segments

having the same size as V-SLOTS (See Figure 6). The index of array of each

segment represents the index of vertex. The first segment is called "Next

Boundary Vertex Block", the second segment is called "Previous Boundary

Vertex Block" and the third segment is called "Which Boundary Block".

Functions of the three segments are discussed below:

(1) The NEXT BOUNDARY VERTEX BLOCK is used as a pointer. The

value of each element represents the index of the next boundary vertex

following the direction of its boundary. For example, if the next boundary

vertex of vertex 1 is vertex 7, then the first element of this block will

store seven. If a vertex is not on the boundary, set the value to zero. The

last vertex of a boundary will point to the first boundary vertex so that the

whole boundary can be wrapped around.

(2) The PREVIOUS BOUNDARY VERTEX BLOCK is the same as the

19

next boundary vertex block except that each vertex points to the previous

boundary vertex of itself.

(3) WHICH BOUNDARY BLOCK represents the boundary where the

vertex lies on. For example, if the vertex 7 Iles on boundary 2, then the 7th

element of this block will store 2. If a vertex Is not a boundary vertex,

then set the value to zero. Note that the first boundary of a surface domain

always represents the exterior boundary.

As mentioned before, there are three types of functions, vertex, side

and triangle functions. The number of functions can be as many as

necessary. For example, N vertex functions, M side functions and K triangle

functions are used to describe the different properties associated with a

surface domain. Each function will need a data block to store those

function values, therefore there are N vertex function blocks, M side

function blocks and K triangle function blocks (See Figure 7). Function

values may be missing, so a missing function value flag block will be

needed for each function to Indicate missing function values. Therefore,

we have the following function data blocks:

(DA VERTEX FUNCTION VALUE BLOCK for each vertex function.

This is an array which has V_SLOTS elements. The 1th element of this block

represents the function value of I01 vertex.

(2) A MISSING VERTEX FUNCTION VALUE BLOCK for each vertex

function. This block is an array of boolean with the same length as vertex

function value block. Each element is corresponding to a vertex function

value. If the function value of I01 vertex is missing, then set Ith element of

20

this block to true. Otherwise set it to false.

(3) A SIDE FUNCTION VALUE BLOCK for each side function. This is

an array which has S_LOTS elements. The i01 element of this block

represents the function value of i01 side.

(4) A MISSING SIDE FUNCTION VALUE BLOCK for each side

function. This block is an array of boolean with the same length as side

function block. Each element is corresponding to a side function value. If

the function value of i0* side is missing, then set i01 element of this block

to true. Otherwise set it to false.

(5) A TRIANGLE FUNCTION VALUE BLOCK for each triangle

function. This is an array which has T-SLOTS elements. The i11' element of

this block represents the function value of i01 triangle.

(6) A MISSING TRIANGLE FUNCTION VALUE BLOCK for each

triangle function. This block is an array of boolean with the same length as

triangle function value block. Each element is corresponding to a triangle

function value. If the function value of i01 triangle is missing, then set 1th

element of this block to true. Otherwise set it to false.

In addition to the above data structures, there are some other control

variables and scratch areas associated with each surface domain. Details

will be shown in APPENDIX Al.

21

Vertex Function 1 Block Missing VF1 Flag

vf; vf; • *....... VF1
nv

VVF J wf;

Vertex Function n Block Missing VF n Flag

vf" vf2"VFn nv vvf" wf; v<

Side Function 1 Block Missing SF 1 Flag

vf; vf;VF1
nv vvf] vvf’

2
....... VVF1

nv

Side Function mBlock Missing SF m Flag

VF* • • VFm nv vvf”

E
C
M

Ll_
>

> v<

Triangle Function 1 Block Missing TF 1 Flag

VF] vf;VF1
nv

VVF J wf; VVF«

Triangle Function k Block Missing TF k Flag

VF*

-*
C
M

> VFk
nv

VVF* wf; VVI£

Figure 7: Vertex, side and triangle function value blocks and the missing
function value flags for each function

2.4 THE MANIPULATION FUNCTIONS

Manipulating functions of Interest In this thesis are more advanced

22

and complicated than the basic functions in the I PL database handler. The

previous functions implemented by Smith are loading database, releasing

database, writing database file, and functions to retrieve information

without changing the triangulations. New manipulating functions are

working on triangulations associated with lines, areas, or more than one

surface domain. The input of new functions is a string of points to

represent a polyline. Triangulations traversed by the polyline depends on

length and location of the polyline and the surface itself. The path of the

polyline has to be found first; then operate the function along the path. As

the targets of functions are not fixed, scannings and searchings are used a

lot. Efficiency of the algorithms is more important than before.

Functions discussed here include: line conversion, tile function

values along a triangulated line, and partitioning of a surface. Some other

applications such as merging domains, moving a vertex, and combined

application with rectangular grids are also discussed in this section.

2.4.1 LINE CONVERSION

In many cases the targets of an operation are a set of triangulation

objects associated with a given operating route (whether it is a line, a

polyline ,or a curve). An example of this is to get the cross section of a

surface domain along given route L. In this case the triangulation objects

passed by L should be found first; then retrieve the values of the function

along the path. The interesting thing here is not L itself but the set of

23

triangulation objects which are traversed by L. The function of line

conversion Is therefore developed to determine the set of triangulation

objects passed by a route. Its purpose Is to find the complete path of

route L on the triangulated surface. The path of L on the surface Is Llrj

which Is defined In section 2.1. (See Figure 1). The advantages of knowing

the path of I are:

1. It shows not only the endpoints and turning points of route L but

also a sequence of vertices, sides and triangles which were

passed by L in the triangulated surface. These vertices, sides and

triangles will be affected by the operation.

2. The x and y coordinates of each Intersection point between route

L and triangulations can be easily calculated from u1 and u2, the

coefficients of corresponding points on L^.

If the route is a curve, we can substitute It by a polyline, and operate one

line segment at a time.

Line conversion is a primary function. It can be the preliminary

process of many applications to find the targets of the operation. Once the

path of the operation Is found, a sequence of operations can be applied to

the associated triangulations within a loop. The algorithm and an example

will be given In the next chapter.

24

(b)
Figure 8: The tile function (a) line segment L and a triangulated

surface (b) Tile function (VFj) along line segment L

2.4.2 TILE FUNCTION

For any three dimensional object or surface, it is always interesting

to see the cross section or the profile of a particular function along a

25

given route L. The purpose of tile function is to get a sequence of vertex

function values at the intersection points between L and triangulation

objects along the direction of route L. The profile along L can then be

interpolated by the results of tile function.

For example, assume that the profile of j01 vertex function VFj along

a line L of Figure 8-a is wanted. To get the profile of triangulation objects

along L the first step is to find the path of L. With the help of line

conversion function, path of L which started from point P, then

intersected sides Sp S2 and Sj at points P2, P3 and P4 respectively and

ended at point PR can be found. The values of VF. at all these five points

can be calculated by interpolation according to their locations. If Pf is

inside a triangle L, VFXPJ can be interpolated by the j111 vertex function

values of three end vertices of Tk. If Pj is on a side Sm, VFjCPp can be

interpolated by the j^1 vertex function values of two end vertices of Sm.

The profile between points P. and Pi+1 can then be Interpolated by VFjfPj)

and VFj(Pj+1). The profile of j01 vertex function along line L is shown in

Figure 7(b). Each section of the profile between points P. and Pj+1 is called

a tile, and the whole profile is called tile function. The width of a tile Is

the distance between points Pj and Pj+1.

2.4.3 SURFACE PARTITIONING

26

Inserting a fault into a surface domain and decomposing a surface

with a complicated fault system into a set of new domains to provide

better visibility and workability are two of many applications which need

a partition function to achieve their purpose.

Partition of a surface domain means that a triangulated surface

domain D is cut by a route and results in a set of new domains (Dp. Each

new domain D; has its own sets of vertices, sides, triangles, boundaries

and vertex mapping tables (created while cutting). Many vertices, sides,

and triangles will be modified or created. By vertex mapping tables all

vertices in Dj can be mapped back to original surface domain D. There are

two kinds of mapping table: old vertices mapping table and new vertices

mapping table. Old vertices mapping table is used by vertices which

existed before cutting and new vertices mapping table is used by vertices

which are created during the cutting. The value of each element in old

vertices mapping table Is the index of vertex before cutting. The value of

each element in new vertices mapping table has the same format as

triangulated line to show Its location In the original domain. If a side In a

new domain Dj contains a new vertex as one of its endpoints, then this side

Is a new side or a modified side. The same scheme can be applied to a

triangle as well. If a triangle In a new domain Dj contains a new vertex as

one of its endpoints, then this triangle is a new one or a modified one.

Function values of new or modified vertices, sides and triangles can

21

then be interpolated or readjusted according to the original surface. The

completeness of a triangulation system means that the complete surface

can be reconstructed without losing necessary information. The ultimate

goal of partition of a surface domain is not only to perform the cutting

operation to a surface domain but also to keep the completeness of all new

domains as possible as we can. With the problem of filling the function

values for those new vertices, sides, and triangles (see section 2.2.1), the

second efforts by the user to fill or readjust the function values after

partitioning is always necessary.

During the partitioning, a surface domain may be split into two. The

process of splitting a domain is very expensive and it is easy to make

mistakes. Vertices of both domains are renumbered so that the contents

of SVP blocks have to be updated. Sides and triangles are renumbered so

that the TSP blocks also have to be updated. Boundary lists, function value

blocks, missing function value flag blocks, and mapping tables are all

needed to update. The updating sequence of different data blocks is very

important. Otherwise, some information will be lost.

The algorithm of partition function will be discussed in next chapter

and some technical problems faced will be discussed in chapter four.

2.5 OTHER APPLICATIONS

There are many other useful applications in triangulation system

that can be developed in the future. In the following sections, applications

28

of merging two surface domains, moving a vertex to a new location, and

combined use with rectangular grids will be discussed.

2.5.1 Merging two domains

Decomposition of a surface with a complicated fault system Into a

set of smaller surfaces is a popular application. To construct a

complicated system by a set of surfaces is also very important. The

purpose of merging function is to merge two separated domain areas into a

single and connected surface domain. Sometimes merging can be seen as

the reverse function of partition of a surface but not exactly. To merge

two domains Dj and D2 into a single domain D (See Figure 9), some

assumptions have to be made:

(1) D, and D2 have to be the same type of surfaces with the same number

of functions attached to them.

(2) No overlapping between Dj and D2. If they overlapped together,

inconsistency may occur at the overlapping area.

(3) Connecting area which is located between D, and D2 and will be a

part of D should be defined properly. New sides and new triangles will

be created after triangulating this new area and the function values of

them will be null.

29

New domain D
(0

Figure 9: Merging two domains (a) Domain D, and domain D2 (b)
Convex hulls of D1 and D2 (c) New domain D after merging

The area of new domain D is the union of areas of Dp D2, and

connecting area. If D1 and D2 are physically connected together before

30

merging, no connecting area is needed in this case. The connecting area

covered by D is determined by the convex hulls of Dt and D2. Let the area

of convex hulls of D1 and D2 be A) and respectively. If A, and are

separated without overlapping, the connecting area is confined by two

tangent lines and portions of boundaries of D1 and D2 (See Figure 9c). If

Aj and are overlapping together, the connecting area is the union of A1

and k^ minus areas of D, and D2 with some adjustments to fit existing

vertices. (See Figure 10c). The connecting area is a polygon region.

Triangulating in the connecting area can be done more efficiently by taking

advantage of the polygon region.

If a surface domain D was cut into a set of new domain (D,}, then (D,)

were merged back into a single surface domain Dnew at some time later.

Domains D and Dnew are not the same triangulations any more, because

some vertices and sides had been added into {Dp and some sides and

triangles were broken while the cutting was performed. Those new

elements won't be removed or reconnected after merging.

31

(a)

New domain D
(0

Figure 10: Merging two domains (a) D1 and D2 overlapped (b) Convex
hulls of D1 and D2 (c) New domain D after merging with
adjustment at connecting area

32

2.5.2 Moving a vertex

To observe the deflections of a surface being pulled or pushed at a

point V is common and useful in engineering designs and science

applications. The problems accompanied with the movement of V are: the

area of the surface affected by the movement of V, the relative movement

by the individual vertex in affected area and the resulting triangulations

after this movement. In mechanics the deflections of a shell structure are

functions of forces, material properties, geometrical shapes of the

surface and some other conditions. A complete analysis of the surface is

expensive and time consuming, and the long and complicated calculations

are not affordable. Some assumptions to simplify the problem should be

made:

1. The pulling or pushing of the surface can only be given at an

existing vertex V. To ensure the smoothness of the surface, any

vertex whose radius of vertex vicinity of V is less than or equal to

a given radius r will also be pushed or pulled by this movement to

some different extents. Radius r is determined by the user.

2. The affected area by the movement of V is bounded by the vertices

of vertex vicinity of V with radius (r+1). The boundary of the

affected area is called the affecting boundary. No vertex can be

moved on or outside the affecting boundary in x-y plane.

3. After the movement, triangulations of the surface domain remain

33

unchanged. No turnover of any triangle is allowed. Only the shapes

of triangle and values of attached functions can be changed.

4 Let new location of V after the movement be V. The direction

from V to V is called moving direction. All affected vertices will

be moved to a new location in moving direction by the movement of

V. The distance of each vertex Vj moved may be defined as

m, = M / (q * 1)2 where

M is the total distance moved by V

Tj is the radius of Vj within the vertex vicinity of V.

mt is the distance moved by Vj.

The advantages of above assumptions to handle the surface

movement are simplicity and efficiency. We can start the moving from the

vertices with radius r, r-1, r-2, to radius 0 (V itself). Once a triangle is

turned over, the process stops and rejects the movement of V. The

disadvantages of these assumptions are:

1. No quick way to determine the movement is acceptable or not.

2. The idea of using radius of vertex vicinity instead of distance in

the process may be good and simple but it doesn't reflect the

reality. Distance is a better candidate.

2.5.3 COMBINED APPLICATIONS WITH RECTANGULAR GRIDS

34

No matter what kind of grid used in a single grid system, some

disadvantages are inevitable. Rectangular grids used in a rectangulated

system can preserve the integrity of the surface by row and column

information and rectangle based interpolations are easy. But rectangular

grids have a problem fitting in irregular boundary shapes and complicated

fault system. Also, the errors generated by converting an arbitrarily

scattered data set to values at rectangular grid nodes may be propagated

to the final results. Triangulated grids used in a triangulation system are

more flexible than rectangular grids fitting in a surface domain with

irregular boundary shapes and it will preserve the better results of the

surface. But it lacks integrity among triangles and more calculations are

needed for triangle based interpolations. A series of rectangles traversed

by the path of an operation in a rectangulated surface can be easily

constructed through row by row. The same job to be done in a triangulated

surface is not easy and needs a lot of effort. To take advantage of

integrity of rectangular grids, combined applications of rectangular and

triangular grids for a surface can improve the efficiency of surface

manipulations while the accuracy of the surface is still preserved.

In combined applications of both rectangular and triangular grids, a

two-level hierarchy scheme is proposed. The top level of hierarchy is

based on rectangular grids with some triangular grids on the boundary to

fit irregular boundary shapes. The second level is based on triangular

grids as the children of top level grids to preserve the accuracy of rough

areas. The scattered data set of a surface domain is converted into values

35

at rectangular grid nodes (or vertices) in rows and columns except for the

areas along the boundaries (See Figure 11). Along the boundaries,

triangular grids are used to fit irregular boundary shapes. The boundary

vertices and rectangular grid nodes are vertices of top level. Boundary

triangles, and rectangles are top level triangles and rectangles.

If the patch of a rectangular grid folds, the values of top level

vertices may fail to describe the folding of the surfaces. Therefore, extra

vertices (lower level vertices) will be used to assist top level grids in

those areas to describe the folding. If a top level rectangle or a top level

triangle is assisted by some lower level vertices to reflect the folding

surface, it will be further triangulated by its endpoints and lower level

vertices. Newly created triangles after triangulation are lower level

triangles. The number of lower level vertices to assist a top level grid

depends on the complexity of the folding of that grid.

A top level grid (a rectangle or a triangle) may or may not have

children (the attached triangulations) but a lower level grid (a triangle)

does have a parent (a top level grid). Vertices are in lines (top level

vertices) or inside a grid (lower level vertices). A row map consists of

rows from top to bottom. Each row is a sequence of top level grids

(triangles and rectangles) from left to right according to their locations.

Besides row map, a line map to connect top level vertices is also

necessary. With the row map and line map, the relative position of a given

point to the surface can be easily decided.

36

Row 2

Row 3:ex

— Line 3

Row 4

— Li ne 4

Row 7

— Line 7
Row 8

— Line 8

9ROW

— Li ne 9

10

Regular rectangle

Interior
triangle

— Row

— Line 11
Boundary triangle

Figure 11: Surface representation by both rectangular grids and
triangular grids

— Row 5

— Li ne 5

— Row
— Li ne 10

Extfa
Ver

— Line 0
— Row 1

— Line 1

— Row 6
— Li ne 6

Line 2

A pointer is attached with top level grids to point to the attached

lower level triangulations or to nil (if no attached triangulations). Each

lower level triangulation is given a pointer to point back to its parent.

37

Each lower level triangulation can be treated as an independent

sub-domain under the main domain. Scanning and searching of this

database scheme will start from top level line map or row map, then down

to lower level triangulations if necessary.

The data structures of top level grids are discussed below. Vertex

block to store x and y coordinate of each top level vertex is needed. Side

to top level triangle or top level rectangle block, triangle to top level

vertex block and rectangle to top level vertex block are also needed.

Boundary lists are still important to the scheme but the attached function

values will focus on vertices to avoid the potential inconsistency between

rectangle and triangle. In addition to the above structures, a row map of

top level grids and a line map of top level vertices are needed to support

the integrity of the network. The data structures of low level

triangulations remains the same as before with an extra pointer to point

its parent.

The new scheme needs more memory space to store the extra data

structures. The overhead and updating the new database needs more work

with extra caution. Also because of the extra data structures, the new

scheme will run more efficiently after the system is initialized and will

preserve the accuracy of the surface.

3.0 ALGORITHMS FOR SURFACE MANIPULATING

Algorithms of the new manipulating functions are more complicated

than the basic ones because more triangulations are involved in the

operations of the new functions. As mentioned before, the triangulation

system lacks row and column information. Connections among triangles

have no fixed pattern and are not predictable. Searching and scanning are

necessary to find out the relative locations among triangulations. To

ensure the correctness of the algorithms and implementations, many tests

have been made in the past six months. Simplified pseudo-codes of these

algorithms and some examples will be given in the following sections. The

theoretical analysis of time complexity of functions is quite difficult.

Empirical results for time required by these algorithms will be given

instead. Some problems that had been confronted during implementations

will be discussed in chapter four. A triangulated surface domain D shown

in Figure 12 will be used for illustration throughout the entire chapter.

Figure 13 shows the database of D.

38

39

Figure 12: The triangulated surface domain D in x-y plane. Vertex, side
and triangle indices are also shown. Black thick sides
represent boundary sides.

40

Vertex Block

x and y x and y V* x and y

1 (3.00, 36.00) 11 (10.00, 26.00) 21 (3.00, 7.00)
2 (9.00, 37.50) 12 (17.00, 25.00) 22 (9.00, 7.00)
3 (16.00, 34.00) 13 (24.00, 26.00) 23 (13.00, 12.00)
4 (22.50, 37.00) 14 (7.00, 18.00) 24 (19.00, 9.00)
5 (27.00, 32.00) 15 (14.00, 20.00) 25 (6.00, 2.00)
6 (3.00, 30.00) 16 (20.00, 21.00) 26 (13.00, 3.00)
7 (9.00, 32.00) 17 (4.00, 13.00) 27 (19.00, 2.00)
8 (14.00, 27.50) 18 (10.00, 13.00) 28 (27.00, 7.00)
9 (19.00, 32.00) 19 (17.00, 15.00)

10 (4.00, 24.00) 20 (26.00, 14.00)

Vertex Function Value Block

Vf VE-value V5_.yE..value V# VE value v* VF value

1 3.000 8 8.700 15 10.500 22 10.600
2 5.800 9 7.200 16 9.000 23 10.900
3 7.800 10 5.700 17 7.500 24 9.300
4 5.000 11 7.900 18 9.900 25 6.700
5 3.500 12 9.400 19 11.000 26 9.000
6 3.000 13 6.300 20 7.800 27 7.200
7 6.700 14 8.300 21 8.300 28 4.800

Figure 13(a): The data of vertex block and vertex function value block of
surface domain D. There are total of 28 vertices and one
vertex function.

41

SVP Block

S* V!1 V2 S* V1 V2 5- v, v2 5* v, v2 S* v, v2

1 (1, 2) 13 (7, 8) 25 (10,14) 37 (16,19) 49 (20,28)
2 (2, 3) 14 (8, 9) 26 (11,14) 38 (16,20) 50 (21,22)
3 (3, 4) 15 (9, 5) 27 (11,15) 39 (17,18) 51 (22,24)
4 (1, 6) 16 (6,10) 28 (12,15) 40 (18,19) 52 (24,28)
5 (1, 7) 17 (6,11) 29 (12,16) 41 (19,20) 53 (21,25)
6 (2, 7) 18 (7,11) 30 (13,16) 42 (17,21) 54 (22,25)
7 (3, 7) 19 (9,12) 31 (14,15) 43 (17,22) 55 (22,26)
8 (3, 8) 20 (9,13) 32 (15,16) 44 (18,22) 56 (24,26)
9 (3, 9) 21 (5,13) 33 (14,17) 45 (22,23) 57 (24,27)

10 (4, 9) 22 (10,11) 34 (14,18) 46 (23,24) 58 (27,28)
11 (4, 5) 23 (11,12) 35 (15,18) 47 (19,24) 59 (25,26)
12 (6, 7) 24 (12,13) 36 (15,19) 48 (20,24) 60 (26,27)

First Boundary Vertex

Boundary 1 Boundary 2 Boundary 3
First Vertex 1 7 18

Boundary Lists

Boundary 1: 1 -> 2 -> 3 -> 4 -> 5 -> 13 -> 16 -> 20 -> 28 -> 27 -> 26 -> 25
->21 -> 17-> 14-> 10 -> 6 -> 1 (First vertex)

Boundary 2: 7 -> 11 -> 12 -> 9 -> 8 -> 7 (First vertex)

Boundary 3: 18 -> 22 -> 23 -> 24 -> 19 -> 18 (First vertex)

Figure 13(b): The data of SVP block. First Boundary Vertex block and
boundary lists. Surface domain D has 60 sides, three
boundaries and no side function.

42

TSP Block

to
coCM
C
O

co” to
coCM
CO

co”

N_ to
coCM
C
O

co" T* S1 S2 S3

1 (4,12, 5) 9 (19,24,20) 17 (31,34,35) 25 (45,51,46)
2 (1, 5, 6) 10 (24,29,30) 18 (35,40,36) 26 (51,55,56)
3 (2, 6, 7) 11 (28,32,29) 19 (32,36,37) 27 (54,59,55)
4 (7,13, 8) 12 (23,27,28) 20 (37,41,38) 28 (50,53,54)
5 (8,14, 9) 13 (26,31,27) 21 (41,47,48) 29 (42,50,43)
6 (3, 9,10) 14 (22,25,26) 22 (48,52,49) 30 (39,43,44)
7 (10,15,11)
8 (15,20,21)

15 (16,22,17)
16 (12,17,18)

23 (52,57,58)
24 (56,60,57)

31 (33,39,34)

Triangle Function Value Block

T* TF value T# TF value T* TF value T* TF value

1 1.000 9 9.000 17 17.000 25 25.000
2 2.000 10 10.000 18 18.000 26 26.000
3 3.000 11 11.000 19 19.000 27 27.000
4 4.000 12 12.000 20 20.000 28 28.000
5 5.000 13 13.000 21 21.000 29 29.000
6 6.000 14 14.000 22 22.000 30 30.000
7 7.000 15 15.000 23 23.000 31 31.000
8 8.000 16 16.000 24 24.000

Figure 13(c): The data of TSP block and triangle function value block of
surface domain D. There are total 31 triangles and one
triangle function.

43

3.1 LINE CONVERSION

The line conversion function will convert a polyline (or a line) in the

x-y coordinate system into a triangulated line in the triangulation system.

To convert a polyline, the function will only take care of one line segment

at a time. The conversion direction for each line segment Lj is from the

endpoint with larger x coordinate to the other end. If Lj is vertical, the

direction is from the endpoint with larger y coordinate to the other end.

Three major subroutines of line conversion function are: finding the

location of a point in triangulations (see subroutine Pt_in_2DTDB), finding

intersection points between the exterior boundary and line segment Lj (see

subroutine Get-Intersections) and searching for the next crossing point by

Lj in triangulations (see subroutine Get_Next_Point). The main flow of the

algorithm (see subroutine XYCRV-TRICRV) is guiding the conversion line to

the correct direction during entering or exiting the boundary. Due to the

irregularity of the boundaries, Lj may enter and exit the domain quite

often. Therefore, the sequence of intersection points between Lj and the

working boundary is very important. It shows where the line segment

enters and exits the surface domain.

Input:

44

1. ACTIVE: The index of active domain where polyline PL is on.

2. NPT: number of endpoints on polyline PL.

3. XY: x and y coordinates of each endpoint.

4. TFS: true if first line segment of PL extends to infinite.

5. TFE: true if the last line segment of PL extends to infinite.

Output:

The outputs of this function are PL^. which will be stored in the

VMAP-NEW block with starting address NV_ORG(active). Variable

NV-LEN(active) is used to indicate number of points in PL^.. Each points

consists of four 4-byte data. (See section 2.1.1) Before the termination of

the process, system will ask you to save PL^ to a file. If answer is "yes",

a subroutine called “Write_Profile" will create a ".PRF" file with the same

file name and version number as the surface domain to save the

triangulated line. The database of the surface domain remains unchanged.

Method: (a brief pseudo code, see subroutine XYCRV_TRICRV)

NV_LEN(active) = 0

Allocate space to store PL^.

Do i = 1, N /* N line segments */

Done = .false.

45

Bnew = 0 z* new boundary met by line segment P1P2 */

Find corresponding locations of P1 and P2 In triangulations

/* see subroutine "PT_IN_2DTDB" to locate a point in triangulations */

If (P1 is inside of boundary) then

Bwork= 0 Bwork1s the current working boundary */

Else If (P1 is outside of exterior boundary) then

Bwork = 1

Else If (Pj is inside of a hole surrounded by interior boundary b) then

B „ = b
work

Endif

If (Bwork ,ne. 0) then

Find all Intersection points between L, and boundary Bwork

/* See subroutine Get-Intersections */

P1 = intersection point with largest x value

Pc = Pj (the current intersection point)

Pn = the next intersection point of P, along the direction of Bwork

Pp = the previous intersection point of Pt along the direction of Bwork

Endif

Calculate local coordinates of P, and save data of Pj

Increase NV-LEN(active) by 1

46

Do while (.not. Done)

If (P, and P2 are the same coordinates) then

Done = .true.

Else if (B .gt. 0) and (B ,ne. B .) then itWv trotr “Vt r

B . =Bwork new

B =0
new

Find all Intersection points between P1P2 and Bwork

/* See subroutine Get_lntersections */

If no intersection point found then

Done = .true.

Else

Pj = intersection point with largest x value

Pc = P, (the current intersection point)

Pn = the next intersection point of P1 along Bwork

Pp = the previous intersection point of P, along Bwork

Calculate local coordinates of P, and save data of Pj

Increase NV-LEN(active) by 1

Endif

Else ,f (Bnew '9t. 0) and (.eq. Bwori.) then

If (Pn .eq. Pp) then

Done = .true.

47

Else If (P1 .eq. Pn) then

P1 = the next intersection point of Pn in Bwork

pc-p,

Pn = the next Intersection point of P, in Bwork

Else

P1 = the previous intersection point of Pp in Bwork

pc-p,

Pp = the previous intersection point of P, in Bwork

Endif

Calculate local coordinates of P, and save data of P,

Increase NV_LEN(active) by 1

Endif

If (.not. Done) then

Find the next crossing point Pnext of P1P2

/* See subroutine Get_Next_Point */

Set P, = Pn6vt just found

Calculate local coordinates of Pj and save the data of P,

Increase NVJ_EN(act1ve) by I

If (P1 and P2 are the same location) then

Done = .true.

Else

48

If (P1 is on the boundary) then

Bnew = B<)undary where P, is on

Else

B =0new

Endif

Endif

Endif

Enddo

Enddo

3.1.1 Example (Function of line conversion)

Given a triangulated surface domain D (see Figure 12) and a polyline

PL (see Figure 14) find the triangulated line PL^.. PL has five endpoints

and both end line segments are finite. Coordinates of the five points are

(15,39), (12,35), (25,22), (17,12) and (17,1). The line conversion will

start from the first line segment Lp Pf(15,39) to P2(12,35).

P1 is outside the exterior boundary and P2 is inside triangle *3.

Working boundary Bwork is pointing to the exterior boundary. There is only

one intersection point between L, and Bwork at side *2. Set P? to the

intersection point where L, enters the surface domain, then express P, in

49

terms of side *2, S2(u1)=P1, as the first point of triangulated line. Along

Lp Pt leaves side *2 and enters triangle *3. To show L1 enters triangle

*3 at point Pp P1 Is also expressed In the terms of triangle #3,

T3(UpU2)=Pp as the next point in triangulated line. Finally, L1 will end in

triangle *3 at point P2. Express P2 In terms of triangle *3, then go back

for the next line segment.

The next line segment Is from Pt(25,22) to P2(12,35) because P,

has a larger x coordinate. Pj is outside the exterior boundary and P2 Is

inside triangle *3. Let Bwork point to the exterior boundary. Again, we

only have one Intersection point between line segment L2 and Bwork at side

*30. Set P, to the intersection point. Along line segment L^, P, enters

and leaves triangle *18 and crosses side *24. Record the track of P, and

set P, to the intersection point on side *24. After passing through the

triangle *9, an Interior boundary pointed by Bnew is met at side * 19. Now,

set Bwork to point the same boundary as the boundary pointed by Bnew. One

intersection point (excluding P, itself) at side *14 has been found

between line L and Bwork. Set Pj to this new point and keep on going until

it meets P2 In triangle *3. Reverse the the path of L2 to fit the original

direction of the polyline.

50

Figure 14 A polyline starts from top down to the bottom was shown on
surface domain D.

C
n
I o

j
o

j
04

 o
j
ro

 ro
 ro

 ro
 ro

 ro
 ro

ro
N

iro

--
--

--

cn

jx
ou

ro
—

‘O
'O

C
o-

^J
a'

Ln
jx

oi
ro

 —
 o

^o
o-

xj
C

M
jij^

oj
ro

—
‘O

so
oo

'^j
os

cn
jit

oj
ro

51

Result of triangulated line PLlri

Point list Tyne

1 1
2
2
2
1
2
2
1
2
2
1
1
2
2
1
2
2
1
1
2
2
1
2
2
1
1
2
2
1
2
2
1
2
2
1

Index Ujl U2

2 0.506493 0.000000
3 0.493506 0.000000
3 0.389610 0.181818
3 0.000000 0.333334
7 0.333333 0.000000
4 0.333333 0.000000
4 0.000000 0.352941
8 0.352941 0.000000
5 0.352941 0.000000
5 0.421052 0.578948

14 0.578947 0.000000
19 0.444444 0.000000
9 0.444444 0.000000
9 0.375000 0.625000

24 0.625000 0.000000
10 0.375000 0.000000
10 0.000000 0.333333
30 0.333333 0.000000
38 0.362069 0.000000
20 0.000000 0.362069
20 0.755102 0.244898
41 0.244898 0.000000
21 0.755102 0.000000
21 0.647059 0.352941
47 0.352941 0.000000
46 0.666667 0.000000
25 0.000000 0.666667
25 0.200000 0.800000
51 0.800000 0.000000
26 0.200000 0.000000
26 0.000000 0.333333
56 0.333333 0.000000
24 0.333333 0.000000
24 0.333333 0.666667
60 0.666667 0.000000

Figure 15: Result of a polyline PL being converted In D. The original
polyline have 5 points, (15,39), (12,35), (25,22), (17,12) and
(17,1), and both ends are finite line segment. There are total of
35 points in PLtr|.

52

The same procedure is applied to the third and fourth line segments.

After that, the process of line conversion is then completed. Figure 15

shows the complete listing of triangulated line PL^. If we convert the

triangulated line PL^ back to the line in the x-y coordinate system PLxy,

we found that there were nine points in the new polyline PLxy which is not

the original polyline PL. The reason for this difference is that PL^ only

shows portions of the polyline PL which are inside surface domain D and

clips out the rest. These nine points of PLVU tell the discontinuities of

line PL in surface domain D.

3.1.2 RELATED SUBROUTINES

The related subroutines in implementation are:

1. Subroutine “XYXRV_TRICRV": This is the main routine of the

function to find the path of the given route.

2. Subroutine “Get_Profile“: This routine will find the path of a

single line segment.

3. Subroutine "PT_IN_2DTDB": This routine is used to find the

location of a given point P in a triangulated surface. Two

variables. Position! and Position^ are returned to indicate the

location of P.

Position 1 Description

0 P is outside exterior boundary

53

1 P is inside a hole

2 P is on a vertex

3 P is on a boundary side

4 P is on a non-boundary side

5 P is inside a triangle

Position 1 => Position?

0 index of the exterior boundary (it is 1)

1 index of a interior boundary

2 index of a vertex

3, 4 index of a side

5 index of a triangle

4. Subroutine "GET-INTERSECTIONS": This routine will find all

intersection points between a given line segment and a given

boundary.

5. Subroutine "GET_NEXT_POINT": this routine will find the next

crossing point between a given line segment and triangulations

from the current point.

6. Subroutine “XYPT-SIDEPT": this routine will convert a point P(x,y),

locating on a given side S, to the side coordinates S(u1)= P.

7. Subroutine "XYPT-TRIPT": this routine will convert a point P(x,y),

locating inside of a given triangle T, to the triangle coordinates

T(up u2)= P.

54

Some other basic routines are also called by above subroutines. They

are either in I PL Library or in Appendix B.

Figure 16: The surface domain used in experiment of time requirements
analysis

55

3.1.3 EMPIRICAL ANALYSIS OF TIME COMLEXITY

The time complexity of this algorithm depends on many factors such

as the size of the database, number of sides passed by the given line. In

order to estimate the required time for the algorithm, an empirical

analysis was made. The surface domain used for experiment is a square

surface with 36 vertices, 85 sides and 50 triangles (see Figure 16). A

single line segment, from P1 to P2, is going to be converted by the

subroutine HXYCRV_TRICRV". P1 is fixed at a point outside the boundary

and P2 is moveable along the same line many times. The number of sides

crossed by line segment P1P2 each time will be increased by one until P2 is

out of the boundary. Required time is dominated by two major parts: time

to locate points Pt and P2 in the triangulated surface and time to trace the

path of line segment P^^ Time to locate the points P1 and P2 in the

triangulated surface is propotional to the number of sides in the surface

domain. Time to trace the path is propotional to the number of sides

crossed by the line segment. Let T be the time required, Ns be the number

of sides in the surface domain, and S._.„ be the number of sides crossed by

the line segment. T is assumed of the form

T = t, +12

56

t1 = aNs (time to locate point)

to = bSrrftCC (time to convert line) 2 cross

Do the same experiment a few times with different location of Pr

The resulting time requirements are listed below:

s t. tocross 1 2

(10"2sec.) (10"2sec.)

1 3 1

2 4 1

3 4 2

4 4 3

5 5 3

6 4 3

7 5 4

8 5 4

9 4 5

10 4 5

11 6 6

The average time to locate points P, and P2 In the triangulated

surface is about 0.045 second. The total number of sides in the domain is

85. Coefficient a is equal to 0.053 (a = t,/^). The average time for line

conversion for each crossed side is 0.005 second. Coefficient b is equal to

57

0.5. The empirical time requirements T is

T (10"2 sec) = 0.053Ns + O.5Scross

3.2 TILE FUNCTION

Tile function will calculate values of a particular vertex function

along a given polyline (or a line) in a surface domain (see subroutine

■’TileF_Profile”). This function has two major steps. The first step is line

conversion and the second step is using the triangulated line, output from

the first step, to calculate the function values along the line. The number

of points after the process of tile function will be less than the number of

points in PL^ because three points are used to describe the intersection in

PL^: leaving a triangle, crossing a side, and entering a new triangle.

While In tile function, only one point is used. The algorithm of the second

step Is giving below.

Input:

The index of vertex function IVF to be projected should be known by

the tile function and the triangulated line PLlri is already stored in

VMAP_NEW block with starting address NV_ORG(active_domain). The

number of points in PLtrj is indicated by variable NV_LEN(active_domain).

58

Where active-domain, a global variable known by the system, indicates the

surface domain to work with.

Output:

The output of this function will be stored in the VMAP-OLD block

with the starting address OV_ORG(active_domain). Number of points after

this operation will be indicated by OV_LEN(active_domain). Each point has

four 4-byte data. The first two are x and y coordinates of the point. The

third one is the desired vertex function value. The fourth one is the

distance between this point and the previous point along the line. If a

point is a boundary entry point, the distance is equal to zero.

Method: (See subroutine TILEF-PROFILE)

OV_LEN(active_domain) = 0

addr2 = V_FVAL_ORG(IVF, active-domain) /* Address of VF block */

i = 1

enter = .true. /* indicate PL^ just entered surface domain */

Do While (i ,le. NV_LEN(active_domain))

addr = OV_ORG(active_domain) + 4 * OV_ORG(active_domain)

/* Output address */

addrl = NV_ORG(active_domain) ♦ 4* (i-1) /* address of PL^*/

59

Increase OV_OR6(active_domain) by 1

Get the current point from address “addrl"

If (type of current .eq. 0) then

Get x and y coordinates of current point

Get the function value of the current point

Else if (type .eq. 1) then

Get information on side s where the current point is located

Convert x and y of the current point by u^nd side s.

Get the function value of the current point by linear interpolation

Else if (type .eq. 2) then

Get information on triangle t where the current point is located

Convert x and y of the current point by u, and u2 and triangle t

Get the function value of the current point by linear interpolation

Endif

If(enter) then

enter = .false.

distance of current = 0.0

Else

Calculate the distance between the current point and previous point

Endif

Find the next point in PLtrj with different x and y coordinates

Point i to the next point.

Enddo

60

Profile of Vertex Function 1 Along
Triangulated line PLlrj

Point List x y. VF value Distance

1 12.54545 35.72727 6.812987 0.000000
2 12.00000 35.00000 6.820779 0.909090
3 13.66667 33.33333 7.433333 2.357024
4 15.29412 31.70588 8.117647 2.301562
5 16.89474 30.10526 7.831579 2.263618

6 18.11111 28.88889 8.177777 0.000000
7 21.37500 25.62500 7.462500 4.615837
8 22.66667 24.33333 7.200000 1.826692

9 22.17241 18.46552 8.565517 0,000000
10 19.20408 14.75510 10.216327 4.751650
11 17.70588 12.88236 10.400001 2.398288

12 17.00000 10.00000 9.833333 0.000000
13 17.00000 8.60000 9.560000 1.400000
14 17.00000 7.00000 9.200000 1.600000
15 17.00000 2.33333 7.800000 4.666667

Figure 17: The profile of vertex function 1 along the triangulated line
PLtrl. PL entered and exited the surface D four times. The
underlined data indicates the entry points.

61

3.2.1 Example (Tile Function)

The data of profile along the triangulated line PL^ (in Figure 15) is

shown in Figure 17. The PL^ has entered and exited the boundary of

surface domain D four times. The distance of point i is the distance

between points (i-1) and point i. The distance of each boundary entry point

is equal to zero. So the first section of the profile is from point 1 to point

5 (see Figure 16), the second section of the profile is from point 6 to point

8, the third section of the profile is from point 9 to point 11, and the

fourth section of profile is from point 12 to point 15.

3.2.2 RELATED SUBROUTINES

The related subroutines in implementation includes:

1. Subroutine “TILEF_PROFILE“: This routine will use the results of

subroutine "XYCRV_TRICRV" to find the tile function values along

the given route.

2. Subroutine "WRITE_TILE": this routine will save the result of tile

function values to a file. The file type will be “.TLF".

3. Subroutine "SIDEPT-XYPT”: this routine will convert a point P,

locating on a given side S with coordinates up back to the x and y

coordinates.

4. Subroutine "TRIPT-XYPT": this routine will convert a point P,

62

locating on a given triangle T with coordinates u^nd u2, back to

the x and y coordinates.

Note that, before the subroutine "TIFEF-PROFILE" is called,

subroutine "XYCRV-TRICRV has to be called first to generate the path of

the given route.

3.3 PARTITION A SURFACE DOMAIN (CUTTING)

This function will partition a surface domain into a set of new

domain(s). The process of cutting is quite expensive in searching points,

inserting new points, updating the database, and splitting the database of

the surface domain. After database of the surface domain split, indices of

vertex, side and triangle are all renumbered. Vertex mapping tables should

be created to keep track of the relationships between the new domains and

the original domain.

There are two approaches to perform this function. The first

approach divides the process in two steps: finding the path of cutting

route then cutting the surface along the path. The second approach is

cutting the surface immediately once a cut point is found. The advantages

and disadvantages of two approaches are compared below:

1. In the first approach, the path of cutting route can be obtained

while cutting. But if the path of cutting route is not wanted, the

extra cost for this unnecessary information is a waste.

63

2. Path of cutting route is based on the original database. If no

surface splitting occurs, the first approach is good and clear.

Once the surface is split, indices of vertex, side and triangle are

all renumbered in the new domains. Extra cost is needed to map

the points on the path to the new domains in the first approach.

3. The scanning and searching of the second approach is always based

on the current working domain. After the surface is split, the new

working domain is smaller than the original one. Scanning and

searching for the next cutting point in the new working domain for

the second approach will be faster than the first approach.

The implementation of this function in I PL system is based on the

second approach because of its efficiency. The cutting procedure can be

imagined as zipping down a zipper. All vertices, sides and triangles along

the cut line are split into two, until the cutting is finished. The algorithm

of second approach (see subroutine LineSu_Cut) will be showed below.

Some major components such as inserting a vertex (see subroutine

Insert-Vertex), the zipping procedure (see subroutine Zip) and splitting of

the surface domain (see subroutine Create_New_Domain), will be

discussed in the next chapter.

Input:

1. ORGD: Index of surface domain to be cut.

2. NPT: number of points in the given cutting line. The cutting line is

supposed to be given as a polyline (PL).

64

3. XY: x and y coordinates of each point of the polyline.

4. TFSINF: true if first line segment of PL which extends to infinite

5. TFEINF: true if last line segment of PL which extends to infinite

6. SWAP: Perform side-swapping when the value is true.

7. FILL: true if all function values of new vertices, new sides and

new triangles are filled by default methods. The default method

for vertex function values is linear interpolation; for side function

values and triangle function values, default methods are copying.

Output:

1. N_D: number of new domain(s) created after cutting.

2. LIST: a list of new domain indices.

All new domains have already been assigned a domain index and a

domain name in memory. The default domain name of each new domain is

the same as the name of original domain except the version number. If the

version number of the original domain is n and there are m new domains,

the version number of new domains will start from n+1 to n+m. If no

version number shows in the name of original domain, version numbers of

new domains will start from 101 to 100+m.

Method: (subroutine Lines_Cut)

Increase number of domain in memory, N_DB, by one

65

Duplicate domain, OR6D, In memory

N_D= 1

LIST(N_D) = N_DB

active-domain = LIST(N_D)

AD = active-domain

Do I = 1, N /* N line segments, L(means current line segment */

Done = .false.

Bnew = 0 /* new boundary met by line segment P1P2 */

Find corresponding locations of P, and P2 in triangulations

/* See subroutine Pt_ln_2DTDB */

If (P1 is Inside of boundary) then

Bwork= 0 Bwork1s the current working boundary */

Else If (P1 is outside of exterior boundary) then

Bwork = 1 ** ,ndex of exter,or boundary is one */

Else If (P1 is inside of a hole surrounded by Interior boundary b) then

B = b
work

Endif

If (Bwork ,ne. 0) then

Find and insert intersection points between L, and boundary Bwork

/* See subroutine Find-Intersections */

vnext = intersection point with largest x value

66

P. = vMV, (the current intersection point)c next

Pn = the next intersection point of P1 on the boundary Bwork

Pp = the previous intersection point of P1 on the boundary Bwork

Else

Insert point P, into database

Find the next cutting points vnext of Pp and Insert It to database

/* See subroutines “Find_Next_Cut_Point” and "Insert-Vertex" */

If (v2 is not on boundary) then

Form a new interior boundary b by P1 and vnexl

B „ = b work

Else if (v2 is on boundary bTOXt) then

Zip the side sCv^^pp /* see subroutine Zip */

B =b . new next

Endif

Endif

cutit = .false. /* split domain when it is true */

Do while (.not. Done)

If (v^ and P2 are the same coordinates) then

Done = .true.

Create the new domain and increase N_DB and N_D by 1

/* See subroutine "Create_New_Domain" */

67

LIST(N_D) = N_DB

Else if ((Brow .gt. 0) and (.not. cutit) then

B . = B work new

“ Vnext

Find and insert intersection points between P1P2 and Bwork

/* See subroutines "Find-Intersections" */

If no intersection point found then

Done = .true.

Else

B =0 new

vnext = intersection point with largest x value

Pc = vnext (the current intersection point)

P„ = the next intersection point of P, along .

Pp = the previous intersection point of P, along Bwork

Endif

= Vnext

Else if (Bnew .gt. 0) and (cutit) then

Create the new domain and Increase N_DB and N_D by I

/* See subroutines "Create_New_Domain" */

LIST(N_D) = N_DB

If (Pn .eq. Pp) then

68

Done = .true.

Else If (P1 .eq. Pn) then

= the next Intersection point of Pn In
»i“Xv n wofr

“ vnext

P. = the next Intersection point of P. in Bwftrlr
II I TV VI n

Else

Vn»vt = the previous intersection point of P„ In Bwnrl, hcaL p WOFr

p = v
c next

Pp = the previous intersection point of Pf in Bwork

Endif

If (.not. Done) then

- Vnext

Bnew ’ 0

Endif

Endif

If (.not. Done) then

Find and insert the next cutting point vnext of line segment PjP2

/* See subroutines "Find_Next_Cut_Point" and "Insert-Vertex" */

Zip the surface domain from P1 to vnext

/* See subroutines "Zip" */

lf (vnext is on boundary bwxl) then

69

B = b . new next

Endif

End if

Enddo

Enddo

3.3.1 EXAMPLE OF PARTITIONING

Figure 21 shows the results of surface domain D which is cut by the

same polyline in example 3.1.1. There are three new domains created after

partitioning. Figure 18 shows the database of new domain Dp Figure 19

shows the database of new domain D2, and Figure 20 shows the database of

new domain D3. All function values were filled in by the default methods.

In Figure 21, domains D1 and D3 were translated to the right for a better

view on the new boundaries.

No side-swapping is performed in this example. The reason for not

side-swapping is because function values were defined according to their

geometric shapes or local properties. If geometric shapes have been

changed, those function values may be not valid any longer. For the same

reason, the system cannot perceive the physical meaning of those

functions so that filling function values of new elements is an option left

for the user to decide.

70

Vertex Block (13 vertices)

V* x and y V* x and y V* x and y

1 (16.000,34000)
2 (22.500,37.000)
3 (27.000,32.000)
4 (19.000,32.000)
5 (24.000,26.000)

6 (12.000,35.000)
7 (12.545,35.727)
8 (22.667,24.333)
9 (21.375,25.625)

10 (18.111,13.667)

11 (16.895,30.105)
12 (15.294,31.706)
13 (13.667,33.333)

Vertex Function Value Block

V5....VF value V# VF value V* VF value V* VF value

1 7.800 5 6.300 9 7.463 13 7.433
2 5.000 6 6.821 10 8.178
3 3.500 7 6.813 11 7.831
4 7.200 8 7.200 12 8.118

SVP Block (23 sides)

S* V1 V2 S* vi V2 5* V1 V2 S* V1 V2 S* V1 V2

1 (1, 2) 6 (2, 3) 1 1 (7, 1) 16 (8, 9) 21 (11,12)
2 (1,13) 7 (4, 3) 12 (7, 6) 17 (4,10) 22 (6,13)
3 (1,12) 8 (4, 5) 13 (5, 8) 18 (9,10) 23 (12,13)
4 (1, 4) 9 (3, 5) 14 (5, 9) 19 (4,11)
5 (2, 4) 10 (L 6) 15 (4,10) 20 (1,11)

Figure 18(a): Data of vertex block, vertex function value block and SVP
block of new surface domain Dr Total of 13 vertices and 23
sides and one vertex function. No side function exists.

71

TSP Block (11 triangles)

T* S1 S2 S3 T* S1 s2 S3 T* s1 s2 s3

1 (3, 2,23) 5 (7, 8, 9) 9 (13,16,14)
2 (20,21, 3) 6 (10,22, 2) 10 (15,17,18)
3 (1, 4, 5) 7 (12,10,11) 11 (4,19,20)
4 (5, 7, 6) 8 (8,14,15)

Triangle Function Value Block

T* TF value T* TF value T* TF value

1 4.000 5 8.000 9 10.000
2 5.000 6 3.000 10 9.000
3 6.000 7 3.000] 1 5.000
4 7.000 8 9.000

Boundary List

Boundary 1: 13 -> 6 -> 7 -> 1 -> 2 -> 3 -> 5 -> 8 -> 9 -> 10 -> 4 -> 11 -> 12
-> 13 (first boundary vertex)

Figure 18(b): Data of TSP block and triangle function value block and
boundary list of new domain Dr There are total of 11
triangles and one triangle function. Only one boundary
exists in Dr

72

VMAP-OLD Block

Vertex Index

1

2

Original Vertex Index

3

4

5

9

13

3

4

5

VMAP-NEW Block

Vertex Index Type Index ui u2

6 2 3 0.3896104 0.1818182

7 1 2 0.5064934 0.0000000

8 1 30 0.3333333 0.0000000

9 1 24 0.6250000 0.0000000

10 1 19 0.4444449 0.0000000

11 1 14 0.5789474 0.0000000

12 1 8 0.3529411 0.0000000

13 1 7 0.3333332 0.0000000

Figure 18(c): The mapping tables of new domain Dt . VMAP-OLD block

stores all old existing vertices. VMAPJMEW block stores all

new created vertices after cutting.

73

Vertex Block (34 vertices)

v* x and y V* x and y x and y

1 (3.000,36.000) 13 (10.000,13.000) 25 (15.294,31.706)
2 (9.000,37.500) 14 (17.000,15.000) 26 (13.667,33.333)
3 (3.000,30.000) 15 (3.000, 7.000) 27 (12.000,35.000)
4 (9.000,32.000) 16 (9.000, 7.000) 28 (22.172,18.466)
5 (14.000,27.500) 17 (13.000,12.000) 29 (19.204,14.755)
6 (4.000,24.000) 18 (6.000, 2.000) 30 (17.706,12.882)
7 (10.000,26.000) 19 (13.000, 3.000) 31 (17.000,10.000)
8 (17.000,25.000) 20 (12.545,35.727) 32 (17.000, 2.333)
9 (7.000,18.000) 21 (22.667,24.333) 33 (17.000, 8.600)

10 (14.000,20.000) 22 (21.375,25.625) 34 (17.000, 7.000)
11 (20.000,21.000) 23 (18.111,28.889)
12 (4.000,13.000) 24 (16.895,30.105)

Vertex Function Value Block

V» VF value V* VF value V* VF value V» VF value

1 3.000 10 10.500 19 9.000 28 8.566
2 5.800 11 9.000 20 6.813 29 10.216
3 3.000 12 7.500 21 7.200 30 10.400
4 6.700 13 9.900 22 7.463 31 9.833
5 8.700 14 11.000 23 8.178 32 7.800
6 5.700 15 8.300 24 7.832 33 9.560
7 7.900 16 10.600 25 8.118 34 9.200
8 9.400 17 10.900 26 7.433
9 8.300 18 6.700 27 6.821

Figure 19(a): Data of vertex block and vertex function value block of new
surface domain D2. There are total of 34 vertices and one
vertex function.

74

SVP Block (66 sides)

s* V1 V2 S* V1 V2 S* V1 V2 S* V1 V2 S* V1 v2

1 (1, 2) 15 (22. 8) 29 (12,13) 43 (27, 2) 57 (28,29)
2 (2,20) 16 (6, 9) 30 (13,14) 44 (27, 4) 58 (14,30)
3 (1, 3) 17 (7, 9) 31 (14,29) 45 (27,20) 59 (29,30)
4 (1> 4) 18 (7,10) 32 (12,15) 46 (21, 8) 60 (17,31)
5 (2. 4) 19 (8,10) 33 (12,16) 47 (22,21) 61 (16,31)
6 (3, 4) 20 (8,11) 34 (13,16) 48 (22,23) 62 (31,33)
7 (4, 5) 21 (21,11) 35 (16,17) 49 (25, 5) 63 (19,33)
8 (24, 5) 22 (9,10) 36 (15,16) 50 (25, 4) 64 (19,34)
9 (3, 6) 23 (10,11) 37 (16,33) 51 (25,24) 65 (32,34)

10 (3, 7) 24 (9,12) 38 (15,18) 52 (26, 4) 66 (33,34)
11 (4, 7) 25 (9,13) 39 (16,18) 53 (26,25)
12 (23, 8) 26 (10,13) 40 (16,19) 54 (26,27)
13 (6, 7) 27 (10,14) 41 (18,19) 55 (11,28)
14 (7, 8) 28 (11,14) 42 (19,32) 56 (14,28)

Boundary List

Boundary 1: 34 -> 32 -> 19 -> 18 -> 15 -> 12 -> 9 -> 6 -> 3 -> 1 -> 2 -> 20
-> 27 -> 26 -> 25 -> 24 -> 5 -> 4 -> 7 -> 8 -> 23 -> 22 -> 21 ->
11 -> 28-> 29 -> 30-> 14-> 13-> 16-> 17 -> 31 -> 33 -> 34
(first boundary vertex)

Figure 19(b): Data of SVP block and boundary list of new domain D2. There
are total of 66 sides and no side function. Only one boundary
exists in D2.

75

TSP Block (33 triangles)

T* e e e u2 ^3 T* S1 s2 S3 T* S1 s2 S3

J (3, 6, 4) 12 (22,25,26) 23 (5,43,44)
2 (1, 4, 5) 13 (26,30,27) 24 (47,15,46)
3 (43, 2,45) 14 (23,27,28) 25 (51,49, 8)
4 (48,12,15) 15 (56,57,31) 26 (7,50,49)
5 (20,21,46) 16 (61,62,37) 27 (54,44,52)
6 (19,23,20) 17 (40,37,63) 28 (53,52,50)
7 (14,18,19) 18 (39,41,40) 29 (28,55,56)
8 (17,22,18) 19 (36,38,39) 30 (31,58,59)
9 (13,16,17) 20 (32,36,33) 31 (35,60,61)

10 (9,13,10) 21 (29,33,34) 32 (42,64,65)
11 (6,10,11) 22 (24,29,25) 33 (63,66,64)

Triangle Function Value Block

T* _J£.yaiue PL . TF value T* TF value

1 1.000 12 17.000 23 3.000
2 2.000 13 18.000 24 10.000
3 3.000 14 19.000 25 5.000
4 9.000 15 20.000 26 4.000
5 10.000 16 25.000 27 3.000
6 11.000 17 26.000 28 4.000
7 12.000 18 27.000 29 20.000
8 13.000 19 28.000 30 21.000
9 14.000 20 29.000 31 25.000

10 15.000 21 30.000 32 24.000
1 1 16.000 22 31.000 33 26.000

Figure 19(c): Data of TSP block and triangle function value block of new
domain D2. There are total of 33 triangles and one triangle
function.

IS

VMAP-OLD Block
Vertex Index Original Vertex Index

2 2
3 6
4 7
5 8
6 10
7 11
8 12
9 14

10 15
11 16
12 17
13 18
14 19
15 21
16 22
17 23
18 25
19 26

VMAP-NEW Block
Vertex Index Type Index U1 U2

20 1 2 0.5064934 0.0000000
21 1 30 0.3333333 0.0000000
22 1 24 0.6250000 0.0000000
23 1 19 0.4444449 0.0000000
24 1 14 0.5789474 0.0000000
25 1 8 0.3529411 0.0000000
26 1 7 0.3333332 0.0000000
27 2 3 0.3896104 0.1818182
28 1 38 0.3620689 0.0000000
29 1 41 0.2448978 0.0000000
30 1 47 0.3529409 0.0000000
31 1 46 0.6666667 0.0000000
32 1 60 0.6666666 0.0000000
33 1 51 0.8000000 0.0000000
34 1 56 0.3333333 0.0000000

Figure 19(d): The mapping tables of new domain D2. VMAP-OLD block

stores all old existing vertices. VMAP_NEW block stores all
new created vertices after cutting.

77

Vertex Block (11 vertices)

___ x. ancL.y

1 (26.000,14000) 6 (19.204,14755) 11 (17.000, 2.333)
2 (19.000, 9.000) 7 (17.706,12.882)
3 (19.000, 2.000) 8 (17.000,10.000)
4 (27.000, 7.000) 9 (17.000, 8.600)
5 (22.172,18.466) 10 (17.000, 7.000)

Vertex Function Value Block

v# VF value V» VF value V» VF value V* VF value

1 7.800
2 9.300
3 7.200

4 4.800
5 8.566
6 10.216

7 10.400
8 9.833
9 9.560

10 9.200
11 7.800

SVP Block (19 sides)

S* vt v2 S* vt v2 S# vt v2 S* v, v2 S# v, v2

1 (5, 1) 5 (1, 4) 9 (3, 4) 13 (6, 7) 17 (9, 8)
2 (8, 2) 6 (2, 4) 10 (6, 1) 14 (11, 3) 18 (10, 9)
3 (7, 2) 7 (10, 2) 11 (6, 2) 15 (11, 2) 19 (10,11)
4(1,2) 8 (2, 3) 12 (6, 5) 16 (9, 2)

Figure 20(a): Data of vertex block, vertex function value block and SVP
block of new surface domain D3. Total of 11 vertices and 19
sides and one vertex function. No side function exists.

78

TSP Block (9 triangles)

T* s1 s2 s3

1 (13,3,11)
2 (4, 6, 5)
3 (6, 8, 9)

T» s, s2 s3

4 (19,15, 7)
5 (12,10, 1)
6 (4,11,10)

T* st s2 s3

7 (8,14,15)
8 (17,16, 2)
9 (18,7,16)

Triangle Function Value Block

T* TF value T* TF value -TE.yalue

1 21.000
2 22.000
3 23.000

4 24.000
5 20.000
6 21.000

7 24.000
8 25.000
9 26.000

Boundary List

Boundary 1: 11 -> 10 -> 9 -> 8 -> 2 -> 7 -> 6 -> 5 -> 1 -> 4 -> 3 -> 11 (first
boundary vertex)

Figure 20(b): Data of TSP block and triangle function value block and
boundary list of new domain D3. There are total of 9
triangles and one triangle function. Only one boundary
exists in D3.

79

VMAP.OLD Block

Vertex Index Original Vertex Index

1 20

2 24

3 27

4 28

VMAP-NEW Block

stores all old existing vertices. VMAP-NEW block stores all

new created vertices after cutting.

Vertex Index Type Index ui U2

5 1 38 0.3620689 0.0000000

6 1 41 0.2448978 0.0000000

7 1 47 0.3529409 0.0000000

8 1 46 0.6666667 0.0000000

9 1 51 0.8000000 0.0000000

10 1 56 0.3333333 0.0000000

11 1 60 0.6666666 0.0000000

Figure 20(c): The mapping tables of new domain D3. VMAP-OLD block

80

Figure 21: Three new domains Dp D2 and D3 were created after the
surface domain D was cut by the polyline shown in Figure 13.

81

In Figure 21, two interior boundaries were broken and they turned out

to be part of exterior boundaries. Because no side-swapping was done,

shapes of some triangles are long and narrow. Upgrading the quality of the

triangle will be left to the user. Along the cut line, all boundary vertices

and sides are paired. Two components in each pair have the same physical

location but are located in different domains.

3.3.2 RELATED SUBROUTINES

The related subroutines in implementation includes:

1. Subroutine "LINES-CUT": This is the main routine of the function to

partition a surface domain along the given route.

2. Subroutine "CUT-DOMAIN": This routine will cut the surface domain

along a single line segment.

3. Subroutine "PT_IN_2DTDB": This routine is used to find the

location of a given point P in a triangulated surface. Two

variables, Position 1 and Position2, are returned to indicate the

location of P.

Position 1 Description

0 P is outside exterior boundary

1 P is inside a hole

2 P is on a vertex

3 P is on a boundary side

4 P is on a non-boundary side

82

5 P is inside a triangle

Position 1 => Position?

0 index of the exterior boundary (it is 1)

1 index of an interior boundary

2 index of a vertex

3, 4 index of a side

5 index of a triangle

4. Subroutine "FIND-INTERSECTIONS": This routine will find and

insert all intersection points between a given line segment and a

given boundary.

5. Subroutine "GET_NEXT_CUT_POINT": this routine will find and

insert the next cutting point between a given line segment and

triangulations from the current point.

6. Subroutine :INSERT-VERTEX": This routine will insert a new vertex

into the surface domain.

7. Subroutine "ZIP": This routine will split the surface from the

current point to the next point.

8. Subroutine "CREATE_NEW_DOMAIN": This routine will split the

surface into two new surface domains.

Some other basic routines are also called by the above subroutines.

They are either in I PL Library or in Appendix B.

3.3.3 ANALYSIS OF TIME COMPLEXITY

83

The time complexity of this algorithm depends on different factors

at different stages such as initial time is proportional to the size of the

database, zipping time is proportional to number of sides passed by the

cutting line. In order to estimate the time required for the algorithm, an

empirical analysis was made. The surface domain and the method used for

this experiment is the same surface (see Figure 16) and the same method

as used in the experiment for the function of line conversion. The only

difference is that the surface is going to be split by the subroutine

"LINES-CUT". The total time required for this algorithm has four major

parts: time to initialize the process, time to locate points P, and P2 in the

surface, time to find the cutting points and zip the surface, and time to

split the database of the working domain. Time to initialize process is

proportional to the size of the database; time to locate points P, and P2 is

proportional to the total number of sides in the domain; time to zip the

surface is proportional to the number of sides crossed by cutting line, and

time to split the database is also proportional to the size of the database.

Let T be the time required, N be the number of sides in the domain,

be the number of sides crossed by the line segment P^^ and Nsjze be the

size of the database. We use the sum of number of vertices, number of

sides, and number of triangles in the surface domain to replace the real

size of the database. Assume that T is of the form

T = t|4t2 + t3+t4

84

= aNgize (time to initialize the process)

t2 = bNs (time to locate point)

t3 = cScrogs (time to zip the surface)

t4 = dNsjze (time to split the database)

If no surface splitting occurs, t4 can be omitted. Do the same experiment

a few times with different location of Pr The resulting time requirements

are listed below:

^cross aN .
size bNs ^cross dN -

size

1 5 3 4 -

2 5 4 6 -

3 4 4 9 -

4 4 3 1 1 -

5 4 3 13 -

6 4 4 16 -

7 5 3 18 -

8 5 4 20 -

9 5 4 22 -

10 4 4 24 -

11 6 6 26 62

All time listed above is based on 10"2 second.

The total number of vertices, sides, and triangles in the domain are

36, 85 and 50 respectively. The average time to initialize the process is

85

0.05 second so we get a = 0.03. The average time to locate points P, and

P2 in the triangulated surface is about 0.045 second. The total number of

sides in the domain is 85. We get b = 0.053. The time for zipping the

surface is proportional to the number of crossed side. We get c is equal to

0.022 second for zipping each crossed side. The time for surface splitting

is proportional to the size of the domain and we get d = 0.36.

The empirical time requirements T for function of partitioning is

T (10"2 sec) = 0.03N. „ + 0.053N + 2.2Srpft„ + 0.36N .size s cross size

The main flow of a partition algorithm is very similar to the flow of

line conversion algorithm. Both of them are guiding the process to follow

the given route across the triangulations with different purposes.

Algorithms described in this chapter were simplified to brief pseudo

codes. The real implementations are much more complicated than the

pseudo codes. Inserting a vertex, finding the next points, finding

intersection points along boundary, and zipping procedure, splitting the

domain (creating a new domain) and some numerical problems faced in

implementation will be discussed in the next chapter.

4.0 DISCUSSION

The pseudo codes given In the previous chapter include some pseudo

instructions such as inserting a vertex, finding next cutting point and

splitting the domain. They are key roles to execute the functions. If they

can be handled properly, the manipulation functions will run more

efficiently. In the following sections, details of those key roles will be

discussed.

4.1 FINDING INTERSECTION POINTS ON BOUNDARY

Given line segment L, it may enter and exit boundary B many times.

To find a sequence of intersection points between L and B, all boundary

sides on B will be checked one by one following the boundary direction. If

boundary vertex v is on L and the pair of consecutive boundary sides on B

containing v as an endpoint are in the same side of L, then vertex v will

not be included in the sequence. Let endpoints of L be P, and P2. Suppose

the direction of L is from Pf to P2 and P, is outside of the boundary, then

the closest intersection point to P, is the first domain entry point of L.

Pairs of domain entry and exit points can then be found by tracing through

the sequence from the first entry point.

Given two arbitrary line segments, they may intersect each other or

be completely separate. To determine the relative position between them,

86

87

it is necessary to calculate four cross-products. If there are N boundary

sides on a boundary, 4N cross products will be calculated to check all

intersection points between line segment L and the boundary. To reduce

unnecessary calculations, a rectangular window will be set to skip

boundary sides which obviously have no intersection with L. The

rectangular window, which is parallel to both x and y axes, can be defined

by endpoints of L. If both endpoints of a boundary side are above, below,

right or left to the window, no intersection will occur between this side

and line segment L. If a boundary side is known to be intersected by line

segment L, then the intersection point will be calculated.

4.2 LOCATION OF A POINT IN TRIANGULATIONS

For any given point P, it may be outside the exterior boundary, in a

hole or inside the boundary. If P is inside the boundary, then whether P is

on a vertex, on a side or inside a triangle is interesting to know. To

determine that point P is inside or outside a boundary, an arbitrary point

Po outside the boundary will be used. If line segment P0P intersects the

boundary even times, then point P is outside the boundary. Otherwise, P is

inside the boundary. If boundary vertex v is touched by line segment P0P

and the pair of consecutive boundary sides containing v as an endpoint are

in the same side of line segment PQP, then boundary vertex v is not counted

as an intersection point.

88

To determine whether point P is inside triangle T,, three cross

products will be calculated between P and each of the three sides of Tj. P

may be on an end vertex of Tr If one of the three cross products is equal

to zero, then P is on that side. If all three cross products are non-zero and

have the same direction, then P is inside of T.. Otherwise, P is outside of

Ti-

Determining the location of point P in triangulations is very

expensive. The complete search and comparison through the entire

database will be executed until the location of P is found. The search can

be done by either checking whether P is outside the boundaries first or

checking whether P is inside a triangle first. If point P is inside the

domain, checking the boundaries is a waste for point P. But if point P is

outside the domain, checking triangles will also be a waste. Without any

further information about P except x and y coordinates, the best way to

minimize the waste is to minimize the number of calculatiuon. If a

surface domain D has a total of Ns sides and boundary sides, 4f^s cross

products will be needed for checking the boundaries, while Ns cross

products will be needed for checking the triangles. If 4Nbs is less than Ns,

boundaries will be checked first. Otherwise, triangles will be checked

first. Once the location of P has been found, two arguments will be

returned to tell the type and the index of location P.

Type Type Description Index

89

0 outside the exterior boundary 1 (exterior boundary)

1 in a hole

2 on a vertex

3 on a boundary side

4 on a non-boundary side

5 inside a triangle

index of the boundary

index of the vertex

index of the side

index of the side

index of the triangle

4.3 INSERTION OF A VERTEX

To insert a new vertex into a surface domain, the location of the new

vertex in triangulations has to be found first. After that triangulations in

the neighborhood of the new vertex will be retriangulated. Some sides and

triangles will be modified and created. The number of new sides and new

triangles created depends on the location of new vertex. Figure 22 shows

the insertion of new vertex P in different locations. If the new vertex is

on the boundary, it also needs to be inserted into the boundary list.

The function values associated with new vertices, sides and

triangles calculated by predefined methods is an option up to the user. If

user does not want the function values of new elements to be calculated

automatically, flags will be set to indicate missing function values.

Side-swapping is another option. If user requests it, local side-swapping

will be performed around the neighborhood of the new triangles. After

side-swapping, some function values may be not valid any more. Due to

the fact that the function values may be missing, the mapping between the

90

new vertex and the original surface domain is recorded so that user can

refer the location of the new vertex to calculate or readjust the function

values of those new elements at some time later.

Figure 23: Insertion of point p into a triangulated surface (a) p is on
a boundary side (b) p is on an interior side (c) p is inside
a triangle. Snj and Tni represent new sides and new
triangles created by the insertion

91

4.4 FINDING THE NEXT CUTTING (CROSSING) POINT

To find the next point on the path of line segment L, the vicinity of

the current point on the path should be searched. Let P, and P2 be the

endpoints of L and Pcur be the current point on the path of L. The direction

of path is from Pt to P2. Pcur may be on a vertex, a side, or inside a

triangle. To find the next point Pnext on the path in the direction of L,

different location of Pcur will be treated separately.

If Pcur is on vertex V, all three vertices, side and triangle vicinity of

V with radius one will be retrieved. Line segment L may be ended inside

the boundary of vicinity one. If this is the case, then Pnext has the same

location as P2. Otherwise, line segment L will exit the boundary of

vicinity one from a vertex, or a side. Then Pnext is the the intersection

point between L and the exit side.

If Pcur is on boundary side Sb, there is only one triangle containing Sb.

This is the triangle where L is going. If Pcur is on an interior side Sp there

are two triangles containing side S.. One is the triangle where line L came

from, and the other one is the triangle where line L is going. Let T be the

triangle where line L Is going. Pnext is on one of the other two sides of T

unless line segment L is end inside the triangle T.

92

If Pcur is inside of triangle T, this could only happen when Pcur is one

of the endpoints of L. Pnext is on one of the three sides of T unless the

other endpoint of L is also in T.

In the cutting process, once Pnext is found it will be inserted into the

current working domain immediately if it is not an existing vertex. At the

next turn, new Pcur has been set to Pnext so that Pcur is always on a vertex.

But in the line conversion process, no vertex will be inserted into the

surface so that Pcur can be on a vertex, on a side or inside a triangle.

4.5 ZIPPING PROCEDURE

The surface splitting is done by the zipping process. When zipping

down the zipper, we have to know where to start and where to end.

Assume that the zipping starts from vertex V, down to vertex V2, i.e., a

slit will be cut from Vt to V2. Note that zipping always starts from a

boundary vertex. Even if both V1 and V2 are not on the boundary, an

interior boundary, which is from V, to V2 and then back to Vp will be

created. Therefore, V1 is always on a boundary.

Assume V, is on the boundary Br If V2 is an interior vertex, vertex

V1c will be added to the same location as Vr Vjc is created as the counter

vertex of V, on the zipper. A new side connecting V1c and V2 will be added.

93

Boundary B, will be extended from V, via V2 and V1c then back to boundary

6,. Sides and triangles containing V, as one of the endpoints should be

reconnected to V1c instead of V1 if they are in the same side of V1c. See

Figure 23(a).

If V2 is on boundary B2, vertices V1c and V2c will be added as the

counter vertex of V1 and v2 on the zipper respectively and a new side

connecting Vk and V2c will be added. V1c and V2c will also be inserted into

the boundary. If B1 and B2 are the same boundary, boundary B1 is actually

separated into two parts except that V2 and V2c have the same location to

connect the boundary as a whole. Boundary B1 will be split from V1c to V2c

to form two separated boundaries. See Figure 23(b). If B1 and B2 are

different boundaries, V.„ Vo and Vo, will be inserted into the boundaries.

At this point, B1 and 62 are actually connected together at V2 and V2c.

Boundary B1 and B2 will be merged from Vp via V2, boundary B2, V2c, Vlc,

then back to boundary Br See Figure 23(c). Sides and triangles that

contain V, as one of the endpoints should be reconnected to V1c instead of

Vp if they are in the same side of V1c. Also, Sides and triangles contain

V2 as one of the endpoints should be reconnected to V2c instead of V2, if

they are in the same side of V2c.

94

Figure 23: Zip down the surface from vertex Vj to v2. Vertex v. Is on
the boundary B1 and v2 Is (a) an Interior vertex (b) also on
the boundary B1 (c) on another boundary B2

If the boundary Is split, a cutting flag should be set to Inform the

process to create a new domain. Index of the new boundary, the exterior

95

boundary of new domain, should also be returned. Caution must be taken

during reconnecting the boundary.

4.6 Split domain

Since the cutting flag was set and the index of the exterior boundary

of the new domain has been returned. A new domain will be split from the

current working domain. First, we have to separate vertices, sides and

triangles by their own boundaries, then renumber the indices and update

the entire databases.

Assume that part of surface domain D, will be split out to form a

new domain D2 which is surrounded by boundary Be2. The remaining part of

D] is surrounded by boundary Be). All vertices of D, are either Inside Bel

or inside Ba9. To check that, we will use Btt1 or Bo0 whichever has fewer

vertices. Vertices, on boundary Be) and Be2, are In the domain D, and D2

respectively. For vertices on interior boundaries, we only need to check

one vertex for each Interior boundary. If the vertex on an interior boundary

is Inside of Be1, then all vertices on that boundary are In domain Dr

Otherwise they are in domain D2. For Interior vertices, we have to check

them one by one.

Suppose that boundary Be2 has fewer vertices. Usually, there are

fewer interior vertices, sides and triangles are Inside shorter boundary.

96

Find all vertices either Inside or on the boundary Be2, l.e. they belong to

domain D2. Sort the vertex list of D2 by vertex index in ascending order so

that the first part of the vertex list is all old vertices existing in the

original domain and the second part of list is all new vertices created

during cutting. New vertex index of D2 is given by the order of this list.

Allocate memory space and copy x-y coordinates for the vertices of D2.

Boundary lists of D2 will be reconstructed according to new vertex index.

Mapping tables and vertex function values of D2 are also copied. All

information related to those vertices should be removed from Dp then

re-number the vertex index of Dr Note that a mapping between new and

old vertex index of D1 should be recorded for later use.

Next, pick out all sides which belong to D2 to form SVP block of D2.

All vertex indices of SVP of D2 should be updated to new vertex index of D2

and side function values of D2 copied. Remove sides of D2 from SVP of D1

and re-number the side vertex. Update the vertex Indices of SVP of D1 to

new vertex indices. A mapping table between new and old side indices

should be recorded.

Do the same process for triangles. Finally, we will update the

boundary list and first boundary vertex of D1 according to the new vertex

index of Dr Now, domain D1 and D2 are seperated completely.

This is the most expensive part of the entire cutting process. In I PL

T-Base, arrays are basic structures. Array structure is convenient in

direct access but weak in insertion or deletion of an element from a list.

In conventional database systems, they never load everything into the

memory because records in the same entity are independent. In

triangulation database, the entire surface is connected as a whole. The

entire database has to be loaded into memory so that the integrity of the

surface can then be perceived. Dynamic array structures allow the

database to be stored in less memory space with fast data retrieving, but

difficult for updating.

5.0 CONCLUSION

The idea of surface representation by triangulation is simple and

easy to understand, but to manipulate a digital triangulation system is

quite difficult and time consuming. Throughout the applications, we must

battle for the current location, affected triangulations, updating the

database. Regardless of the problems faced during manipulations, digital

representation of a surface domain by triangulations is a systematic way

to save, reconstruct and manipulate a surface.

The algorithm to convert a line segment in the x-y coordinate system

to its path in the triangulation system was discussed. With the help of

this algorithm, the path of an operation along a given route can be easily

found. Getting the profile of a particular vertex function along a given

route is a very useful tool in taking a look into the surface. Partitioning

of a surface by vertical plane(s) is also a very useful tool in classifying or

trimming the surface to fit our needs. The current partition algorithm can

only be used to cut a surface domain by vertical planes. This is a major

limitation of the function. Partitioning a surface by a tilt plane is the

more general and powerful case in reality.

In the future development, merging two surface domains, and setting

the rules for moving a vertex are also very useful functions in

manipulating the surface. The merging of two domains can be used to

construct a more complicated surface. Rules of moving a vertex can free

the contradictions between modifying the location of a vertex and the

98

99

original structure of triangulations.

The combined use of triangular grids and rectangular grids may be a

very good idea in the future. Rectangular grids are easy to work with

because of the rows and columns but are difficult to fit into irregular

boundary shapes and preserve the accuracy of the surface. Triangular

grids has no problem to fit into irregular boundary shapes and preserve the

accuracy but are harder to work with (compared with rectangular grids).

By combined use of both grids as proposed in this thesis, the surface

domain can be handled more efficiently without losing its accuracy.

APPENDIX A

INTRODUCTION OF NEW SMITH/YIU SYSTEM

This is an introduction of SMITH/YIU triangulation database system

which is revised and expanded from the SMITH triangulation system. Many

new subroutines have been written and some subroutines of I PL Library

have been modified. We will discuss and list all subroutines related to this

work in the following paragraphs.

A.1 INTRODUCTION

To have a better idea of how to access and use this new system, it is

worth reading "Triangulation Databases and Algorithms", Master thesis of

W.M. Smith, first. This revised system still holds the same philosophy as

the Smith's system except that

1. It allows more than one surface domain loaded in memory

2. Some new functions were added into the system.

To allow more than one surface domain loaded in memory, a new

included file named “TDBCOMMON.FOR" has been created. In this file, there

are five common areas declared. They are used to store the status and the

starting addresses of data blocks of all domains. The five common blocks

include:

1.Blank Common Area: lnteger*4 IMEM(1)

Real*4 RMEM(1)

100

101

Logical

Byte

COMMON

LMEM(1)

BMEM(1)

IMEM(1)

Equivalence (IMEM, RMEM)

Equivalence (IMEM, LMEM)

Equivalence (IMEM, BMEM)

We use dynamic array IMEM(l) as the base address of database

system. With those equivalence statements, elements of any kind

of data type can be stored and retrieved from this giant array. The

starting address of each data block is a memory offset relative to

IMEM. For example, to retrieve n01 element of an integer data block

with starting address IB, we can write a statement

IDATA = IMEMOB + n-1)

to assign the value to IDATA. Note that IB points to the first

element of that data block.

2. TDB_Status common area: Many system status variables are

stored in this common block.

1. Parameter MAX_DB = 10

MAXJDB is the maximum number of domains allowed in memory.

It can be changed to allow more domains.

2. Integers N_DB

N_DB is number of domains currently in memory.

3. Integer*4 Active-domain

102

Active-Domain points to the current working domain.

4. Character Dbfname(MAX-DB)* 120

Dbfname is name of each domain.

5. Integers Num_V(MAX_DB), Num_5(MAX_DB), Num_T(MAX_DB)

They are number of vertices, sides and triangles of each domain

respectively.

6. Integer*4 V_lots(MAX_DB), S_lots(MAX_DB), T_lots(MAX_DB)

They are a number of 4-byte-word memory that have been

allocated to vertex, SVP and TSP block of each domain

respectively.

7. Integer*4 Ov_len(Max_DB), Ov_slots(MAX_DB)

They are a number of data stored in VMAP-OLD block and a

number of 4-byte words that have been allocated to VMAP-OLD

block of each domain respectively.

8. Integer*4 Nv_len(Max_DB), Nv_slots(MAX_DB)

They are a number of data stored in VMAP-NEW block and a

number of four 4-byte words that have been allocated to

VMAP-NEW block of each domain respectively.

9. Integer*4 Num_V_Func(MAX_DB), Num_T_Func(MAX_DB),

Num_V_Func(MAX_DB)

They are number of vertex functions, side functions and

triangle functions of each domain respectively.

10. Integer*4 N_Boundaries(MAX_DB)

N_Boundaries is number of boundaries of each domain.

103

3. ADDR-INFO Common Area: stores the starting addresses of all

data blocks in dynamic memory.

1. Integer*4 V_org(MAX_DB), SVP_org(MAX_DB),

TSP_org(MAX_DB), BV_org(MAX_DB)

They are the starting addresses of Vertex blocks, SVP blocks,

TSP blocks and Boundary blocks of each domain respectively.

2. Integer*4 Ov_org (MAX-DB), Nv_org (MAX_DB)

They are the starting addresses of VAMP_OLD blocks and

VMAP-NEW blocks of each domain respectively.

3. PARAMETER Max_N_Vfvals = 24

PARAMETER Max_N_Sfvals = 4

PARAMETER Max_N_Tfvals = 30

They are the maximum number of vertex, side and triangle

functions allowed in each domain. Each of them is changeable.

4. Integer*4 V_Fval_org(Max_N_Vfvals,Max_DB),

MVFV_Flag_org (Max_N_Vfvals,Max_DB)

They are the starting addresses of Vertex Function Value

blocks and Missing Vertex Function Value Flag blocks of each

domain respectively.

5. Integer*4 S_Fval_org(Max_N_Sfvals,Max_DB),

MSFV_Flag_org (Max_N_Sfvals,Max_DB)

They are the starting addresses of Side Function Value blocks

and Missing Side Function Value Flag blocks of each domain

respectively.

104

6. Integer*4 T_Fval_org(Max_N_Tfvals,MaxJDB),

MTFV_Flag_org (Max_N_Tfvals,Max_DB)

They are the starting addresses of Triangle Function Value

blocks and Missing Triangle Function Value Flag blocks of each

domain respectively.

4.Boundary_lnfo Common area: stores boundary information.

1. PARAMETER Max_N_Boundaries = 20

Max_N_Boundaries is the maximum number of boundaries allowed

in each domain. It is changeable.

2. Integer*4 First_Point_in_Boundary(Max_N_Boundaries,MAX_DB)

It stores the first vertex of each boundary of each domain.

5. MGR_STATUS Common area. Information associated with VVP,

VTP and STP managers.

1. Logical*4 VVP_Present(MAX_DB)

It is the flag to indicate VVP list of each domain has been

created or not.

2. Integer*4 VVPorg_org(MAX_DB)

It is the starting address of VVP list of each domain

3. Logical*4 VTP-Present(MAXJDB)

It is the flag to indicate VTP list of each domain has been

created or not.

4. Integer*4 VTPorg_org(MAX_DB)

105

It is the starting address of VTP list of each domain.

5. Logical*4 5TP_Present(MAX_DB)

It is the flag to indicate 5TP list of each domain have been

created or not.

6. Integer*4 STPorg_org(MAX_DB)

It is the starting address of 5TP list of each domain.

An local VAX/VMS logical name "TDBCOM" under [IPLDCY] has been

assigned to have the same meaning as the sub-directory [IPLDCY.DBASE].

To include this file by a new subroutine, a statement

INCLUDE •TDBCOrkTDBCOMMON.FOR’

should be included in that subroutine.

Another included file is included by VVP, VTP and 5TP managers

named "TDBPARAMS.FOR" have added a new parameter to indicate deletion

of an existing vertex. To Include this file, a statement

INCLUDE TDBCOMzTDBPARAMSJOR*

should be included in subroutine.

The new functions that have been added to the systems are: Insertion

of a vertex, deletion of vertex, line conversion, tile function values, cutting

function, and plotting the surface domain(s).

Function File-name Subroutine name

Insertion of a vertex

Deletion of a vertex

INSERTPT.FOR

DELETEPT.FOR

INSERT-VERTEX

DELETE-VERTEX

106

Line Conversion PROFILE.FOR XYCRV.TRICRV

Tile Function Value TILEF.FOR TILEF-PROFILE

Cutting Function CUT.FOR LINES-CUT

Plotting Surface Domain(s) PLTTRI.FOR PLTTRI

See APPENDIX B for the details of these routines.

A.2. Routines have been modified

The reasons to modify a routine are:

a. Include file "TDBPARAMS.FOR" have been changed, so all those

routines which include this file have to be recompiled. The parameters

declared in this file are used by those VVP, SVP and TVP MANAGER and

related routines. Now, one more parameter has been added into the file

to allow deletion of a vertex. Those routines are listed below. The

default subdirectory is [IPLDCY.DBASE]

File-name Subroutine name

1. ATSTP.FOR ADD_TRI_TO_STP

2. ATVTP.FOR ADD_TRI_TO_VTP

3. CRESTP.FOR CREATE-STP

4. CREVTP.FOR CREATE-VTP

5. CREVVP.FOR CREVVP

107

6. DELBS.FOR DEL-BSIDES

7. GVVFDS.FOR GVVFDS

8. GVVFDV.FOR GVVFDV

9. RPVVP.FOR REMOVE_PAIR_FROM_VVP

10. RTSTP.FOR REM0VE_TRI_FR0M_5TP

11. RTVTP.FOR REMOVE_TRI_FROM_VTP

b. Inculde file "TDBCOMMON.FOR" has been changed. The old

program only allows one database to be loaded into memory at a single

run. The modified file has changed all necessary variables of a database

into arrays so that more than one database can be stored in memory at

any time. The maximum number of surface domains stored in memory is

controlled by a parameter MAX_DB which is currently set to ten. Those

routines include both "TDBCOMMON.FOR" AND "TDBPARAM5.F0R" are listed

below. The default sub-directory is [IPLDCY.DBA5E]

Subroutine nameFile-name

1. STPMAN.FOR STPJ1ANAGER

2. VTPMAN.FOR VTP-MANAGER

3. VVPMAN.FOR VVP-MANAGER

c. Two routines are modified from Dr. Simpson's routines for

adding epsilon to eliminate the round-off errors.

108

File-name Subroutine name

1. PTLSE6.F0R LSEG_VS_PT

Same as Simpson's LPTRDL

2. PTLSEG.FOR RLSEGLSEG

Same as Simpson's LSEGSJNTERSECT

d. Two main routines have been modified to fit Into the new frame

of the system.

File-name Subroutine name

1. T1MANIP.F0R This is the main program

2. MANIP.FOR MANIPULATE_2DTDB

The main program now Includes all new functions In main menu.

A.3 LINKING THE SYSTEM

To link the system, a library, MANIP.OLB, with 42 files should be

created first. By a VAX/VMS command file "TDBCOM:CRLIB.COM", MANIP.OLB

will be generated automatically. The command is

$L1baray/Create MANIP ATSTP, ATVTP, CRESTP, CREVTP, CREVVP,-

DBMS, DELBS, DELETEPT, GETTV, GVVFDS, GVVFDV, -

INSERTPT, MANIP, PINTDB, REMXS, RPVVP, RTSTP, -

SRCHLS, RTVTP, STPMAN, VTPMAN, VVPMAN, -

STRSORT, LOCALTRI, 2DCR0SS, LSWAP, CUT, -

109

CUTLIB, CUTNEWD, REMS, PTLSE6, PLTTRI, THKDOT, -

VMAP, PROFILE, PROFLIB, PMAP, TRIPT, XYCRV, -

PLANE-3PT, TILEF

A link command file "TDBCOM:T 1TDB" will link the testing program

"T1MANIP.0BJ" with all necessary libraries. The command is

$Link/Debug TDBC0M:T1MANIP,-

TDBCOM:MANIP/LIB, -

IPL_LIB:IPLSUBS1/LIB,ALS/LIB, -

DCI_LIB:PLTLIB/LIB,-

TEKLIB/LIB,-

HSRLIB/LIB,-

UTLLIB/LIB

After linking, a testing program named T1MANIP.EXE is ready to run.

There is a program named MAKEFILE.EXE in TDBCOM. It will allow the user

to generate a testing surface domain datafile interactively.

APPENDIX B

TITLES AND DESCRIPTIONS OF FORTRAN PROGRAM

The titles and descriptions of new FORTRAN programs will give in the
following paragraphs.

B.1 TITLE OF SUBROUTINES

Source. File-name Entry Title

BDY 2DCR0SS.F0R Cross_Product2 Perform 2-D cross product
BDY 2DCR0SS.F0R CompReal Compare the values of two

real numbers
WMS/BDY ATSTP.FOR Add_Tri_To_STP Add a triangle to STP list
WMS/BDY ATVTP.FOR Add_Tri_To_VTP Add a triangle to VTP list
WMS/BDY CRESTP.FOR Create_STP Create STP list for T-Base
WMS/BDY CREVTP.FOR Create_VTP Create VTP list for T-Base
WMS/BDY CREVVP.FOR Create_VVP Create vertex to vertex

pointers for T-Base
BDY CUT.FOR L1nes_Cut Main routine to cut a surface

domain by a polyline
BDY CUT.FOR Cut-Domain Cut a surface domain by a

single line segment
BDY CUTLIB.FOR Find-Intersections Find and Insert the

intersection points between
a boundary and a line
segment

BDY CUTLIB.FOR Find_Next_Cut_Point
Find and insert the next
cutting point along the
cutting line

BDY CUTLIB.FOR Zip Split the surface domain
from vertex 1 to vertex 2

BDY CUTNEWD.FOR Create_New_Domain
Split the working domain to

110

Ill

form two new doamins
BDY DBMS.FOR AddLTrlangle Add a new triangle to a

surface domain
BDY — AdcLFunctlon Add a new function to a

surface domain
BDY — F1nd_S1de_G1ven_Vertex

Find a side by given one of
its endpoints

BDY F1nd_Tr1angle_G1ven_2sides
Find a triangle by given two
of Its three sides

BDY — Find_Vertex_G1ven_XY
Find a vertex by given x and
y coordinates

BDY Remove_Boundary_Vertex
Remove a list of consecutive
vertices from boundary list

BDY Remove_Tr1angle_Entry
Remove a triangle entry
from TSP list

BDY — Remove_Vertex_Entry
Remove a vertex entry from
vertex list

BDY — Swap_Tr1angle Swap diagonal of a convex
quadrilateral

WMS/BDY DELBS.FOR Del_Bsides Delete boundary sides
BDY DELETEPT.FOR Delete_Vertex Delete a vertex from a

surface domain
BDY DELETEPT.FOR VST_Vcn1_V Find vertex, side and

triangle vicinity of radius 1
WMS/BDY GVVFDS.FOR GVVFDS Get vertex vicinity In

function domain of a side
WMS/BDY GVVFDV.FOR GVVFDV Get vertex vicinity in

function domain of a vertex
BDY INSERTPT.FOR Insert-Vertex Insert a vertex Into a

surface domain

112

Get the previous vertex on
the boundary

BDY

BDY

INSERTPT.FOR

LOCALTRI.FOR

Add_V_Outside_BD Connect an out-boundary
point to a surface domain

Loca1_Tri Triangulate a polygon in a
surface domain

BDY LSWAP.FOR Local_Side_Swap Perform local side swapping
for triangles

BDY LSWAP.FOR Distance Compute distance between
two points in x-y space

BDY MANIP.FOR Set_Working_Domain
Select a surface domain to
work with

BDY — Rename_Domain Rename the name of a
surface domain

WMS/BDY — Read-Database Transfer database to virtual
memory

WMS/BDY — How_Many How many vertices, sides,
triangles, etc..

WMS/BDY — Xfer_XYF_Array Transafer all x-y plus the
specified function values

WMS/BDY — Release-Database Release the database from
virtual memory

WMS/BDY — Write_2DTDB Write database to a file
WMS/BDY - Add_Vertex Add a new vertex
WMS/BDY — 6et_Vertex Retrieve x and y values of a

given vertex
WMS/BDY — Put_Vertex Assign x and y values of a

given vertex
WMS/BDY Get_First_Bounday_Vertex

Get the first vertex of a
given boundary

WMS/BDY Get_Next_Boundary_Vertex
Get the next vertex on the
boundary

WMS/BDY — Get_Prev_Boundary_Vertex

113

WMS/BDY - 1 nsert _boundary_Vertex
Make the given vertex be
part of a boundary

WM5/BDY — On_Boundary Determine If a given vertex
Is on a boundary

WMS/BDY — Wh1ch_Boundary Determine which boundary a
vertex Is part of

WMS/BDY — Orient-Boundaries Force orientation of all
boundaries

WMS/BDY - Join-Boundaries Join two boundaries
WMS/BDY - Split-Boundary Split a boundary Into two
WMS/BDY - Add_Boundary Define a new boundary
WMS/BDY — Get-V_VCN_V Get vertex vicinity of a

vertex
WMS/BDY — Get_V_VCNFD_V Get vertex vicinity In a

function's domain of a
vertex

WMS/BDY - Get_S_VCN_V Get side vicinity of a vertex
WMS/BDY — Get-T_VCN_V Get triangle vicinity of a

vertex
WMS/BDY — Get_S1de Return coordinates of a

given side
WMS/BDY - F1nd_S1de_Given_Endpo1nts

Find a side with the given
endpoints

WMS/BDY - F1nd_S1des_G1ven_Endpo1nts
Find two sides with the
given two endpoints

WMS/BDY — Get_V_VCNFD_S Get vertex vicinity In a
function's domain of a side

WMS/BDY — Put_S1de Replace vertices of a given
side

WMS/BDY - Add-Side Add a side
WMS/BDY - Delete_S1de Delete a side
WMS/BDY - F1nd_Tr1angle_Given_S1de

Find a triangle with the

114

given side
WMS/BDY - F1nd_Tr1ang1es_Given_S1de

WMS/BDY — Put_Triangle

Find two triangle with the
given side
Replace sides of a triangle

WMS/BDY - 6et_V-Fval Retrieve a function value of

WMS/BDY — Get_Fval
a given vertex
Earlier version of

WMS/BDY - Put_V_Fva1
Get_V_Fval
Assign a function value of a

WMS/BDY - Put_Fval
given vertex
Earlier version of

WMS/BDY - Add_V_Func
Put_V_Fval
Add a vertex function

WMS/BDY - Set_MVFV_Flag Set missing vertex function

WMS/BDY - C1r_MVFV_Flag
value flag
Clear missing vertex

WMS/BDY - Missing_VFV
function value flag
Get missing vertex function

WMS/BDY - Get_S_Fval
value flag
Retrieve a function value of

WMS/BDY - Put-S_Fval
a given side
Assign a function value to a

WMS/BDY — Add_S_Func
given side
Add a side function

WMS/BDY - Set-MSFV_Flag Set missing side function

WMS/BDY - C1rJ1SFV_Flag
value flag
Clear missing side function

WMS/BDY - Missing_SFV
value flag
Get missing side function

WMS/BDY - Get_T_Fval
value flag
Retrieve a function value of

WMS/BDY - Put_T_Fval
a given triangle
Assign a function value to a

WMS/BDY - Add_T_Func
given triangle
Adda triangle function

115

Remove an entry from SVP

WMS/BDY — Set_MTFV_F1ag Set missing triangle
function value flag

WMS/BDY — C1r_MTFV_F1ag Clear missing triangle
function value flag

WMS/BDY — M1ss1ng_TFV Get missing triangle
function value flag

BDY PINTDB.FOR F1nd_PT_ln_2DTDB Find point related to a 2-D
triangulated surface

BDY PLTTRI.FOR PLTTRI Create a HSR file to plot a
triangulation (Modified from
IPL's "PLOTTRI")

BDY PMAP.FOR Wr1te_Prof11e Create a "PRF" file to write
a triangulated curve

BDY PROFILE.FOR XYCRV.TRICRV Convert a x-y curve to
triangulated curve in a
given surface domain

BDY PROFILE.FOR Get_Profile Convert a single line
segment in x-y space to
triangulated space

BDY PROFLIB.FOR Get_lntersect1ons Find intersections between
boundary and a line

BDY PROFLIB.FOR Get_Next_Point Find the next crossing point
along a line in triangulated
space

BDY PTLSEG.FOR Lseg_VS_PT Location of point related to
a directed line segment
(modified from IPL’s
"LPTRDL”)

BDY PTLSEG.FOR RLseglseg Relationship of a line
segment to a line segment
(This one is modified from
IPL'S "LSEGS-INTERSECT”)

BDY REMS.FOR Boundary-Side Check a given side is on a
boundary or not

BDY REMS.FOR Remove_Side_Entry

116

list of a surface domain
BDY REMS.FOR Copy_Domain Duplicate a given domain in

memory
WMS/BDY RPVVP.FOR Remove_Pair_From_VVP

Record in VVP lists that a
pair are disconnected

WMS/BDY RTSTP.FOR Remove.T ri_From_STP
Remove a triangle from STP
list

WMS/BDY RTSTP.FOR Remove_T ri_From_VTP
Remove a triangle from VTP
list

WMS/BDY STPMAN.FOR STP_Manager Handle STP lists for
triangulation database

BDY STRSORT.FOR Str_Sort_lnt Sort a list of integers by
straight sort algorithm

BDY STRSORT.FOR Bin-Search A binary search routine for a
list of integers

BDY STRSORT.FOR Set_Domain_Name Set surface domain name
BDY TILEF.FOR TIleF—Profile Get the profile along a

triangulated curve
BDY TILEF.FOR Write—Tile Create a "TIP" file to write

the profile of a curve
BDY TRIPT.FOR XYPT_S1dePT Convert a x-y point to side

coordinate Sfup
BDY TRIPT.FOR S1depT_XYPT Given side coordinate S(ut)

of a point to find its x, y
values

BDY TRIPT.FOR XYPT_Tr1PT Convert a x-y point to
triangle coordinate T(u1,u2)

BDY TRIPT.FOR TriPT_XYPT Given triangle coordinate
T(UpU2) of a point to find its
x, y values

WMS/BDY VTPMAN.FOR VTPJIanager Handles VTP lists in
triangulation database

117

BDY VMAP.FOR Write_Vertex_Map Create a "VMP" file to write
the vertex mapping tables

WMS/BDY VVPMAN.FOR VVPJIanager Handle VVP list in
triangulation database

BDY XYCRV.FOR TriCrv_XYCrv Convert a triangulated curve
to x-y curve

BDY XYCRV.FOR Convert_Po1nt Convert a triangulated point
to its x-y coordinate

B.3 Descriptions of New Routines

1. File-name: 2DCR0SS.F0R
c---

C CR0SS-PR0DUCT2: Perform 2-D cross product.
C
C Given three vertex Vo, V1 and V2, cross product is equal to
C Product = (V1-V0)x(V2-V1)
c---

C Usage
C
C Call CROS5_PRODUCT2(XO, YO, XI, Y1, X2, Y2, PRODUCT)
C
C INPUT
C R*4 XO, YO are x and y values of vertex Vo.
C R*4X1,Y1 are x and y values of vertex Vr
C R*4 X2, Y2 are x and y values of vertex V2.
C
C OUTPUT
C R*4 PRODUCT is the result of cross product
c---

2. File-name: 2DCR0SS.F0R
c---

C COMPREAL: Compare two real numbers

118

C
C Compare two real numbers and return the difference
C between the first number and the second number. Epsilon is used to
C eliminate round off error.
c---
C Usage
C
C Call COMPREAKR1, R2, EPS, DIFF)
C
C INPUT
C R*4 R1, R2 are the real numbers to be compared
C R*4 EPS is the epsilon to be used during comparison.
C
C OUTPUT
C R*4 DIFF is the result of (R1 - R2)
c---

3. File-name: CUT.FOR
c---
C LINES-CUT: To cut a surface domain by a polyline
C
C This routine allow user to cut the surface domain by a polyline.
C Either or both ends of line may be extended to infinite. It will call
C subroutine “CUT-DOMAIN" to cut the polyline one line segment by one
C line segment. Before cutting, we will duplicate the original domain
C in memory under a new domain name, and the real operation will be
C executed on the duplicated one so that we can always refer and keep
C track of the mapping between the new domain(s) and original domain.
c---
C Usage
C
C Call LINES_CUT([*SNER,] ORGD, NPT, PT, TFSINF, TFEINF, SWAP,
C FILL, N_D, LIST)
C
C Where SNER is statement number for error return

119

C
C INPUT
C 1*4 ORGD is the index of the original domain to be cut
C 1*4 NPT is the number of points in polyline. It should be equal or
C greater than 2
C R*4 PT is a list of x and y values of each point of the polyline.
C L TFSINF indicates the first line segment extended to infinite if
C the value is true
C L TFEINF indicates the last line segment extended to infinite if
C the value is true
C L SWAP indicates the local side-swapping is performed during
C the process if the value is true
C L FILL fill the function values of new vertices, sides and triangles
C if value is true.
C
C OUTPUT
C 1*4 N_D is number of new domains created after operation
C 1*4 LIST(i) (i= 1, N_D) is a list of domain indices of all new
C domains
c---

4. File-name: CUT.FOR
c---
C CUT-DOMAIN: Cut the surface domain by a single line segment.
C
C In this routine, the surface domain will be cut by one line
C segment from the endpoint with larger x-value to the point with less
C x-value. The cutting algorithm is quite complicated and we will skip
C here. All new domains have their own domain names, domain indices
C and memory locations.
c---
C Usage
C
C Call CUT_DOMAIN([*SNER,J ORIGIN-D, XI, Y1, X2, Y2, SWAP, Fill, EPS,
C N_D, LIST)
C

120

C Where 5NER is the statement number for error return
C
C INPUT
C 1*4 ORIGIN—D is the index of the original domain to be cut
C R*4 X1, Y1 are the x and y value of one end point
C R*4 X2, Y2 are the x and y value of the other end point
C L SWAP indicates the local side-swapping is performed during
C the process if the value is true
C L FILL fill the function values of new vertices, sides and triangles
C if value is true.
C R*4 EPS is the epsilon used in this cutting
C
C OUTPUT
C 1*4 N_D is total number of new surface domains created
C 1*4 LIST(i) (1=1, N_D) is a list of domain indices of new domains
c---

5. CUTLIB.FOR
c---

C FIND-INTERSECTIONS: Find and insert all intersection points between
C boundary and a line segment.
C
C This is a special routine called by subroutine "CUT-DOMAIN" to
C find and insert all intersection points between a boundary of a
C surface domain and a line segment.
c---

C Usage
C Call FIND.INTERSECT10NS([*SNER,] POINT, SWAP, FILL, WB, ORGD,
C NUM-SEC, B_SEC-XY, START, CLOCKWISE, COUNT-CLOCK)
C
C Where SNER is statement number of error return
C
C INPUT
C R*4 P0INT(2,2) are x and y values of end points of given line segment
C L SWAP indicates local side-swapping is performed during the
C process if value is true

121

C L FILL fill the function values of new vertices, sides and triangles
C if value is true.
C 1*4 WB is the index of working boundary
C 1*4 ORGD is index of the original domain to be cut
C
C OUTPUT
C 1*4 NUM_SEC is total number of intersection points found
C R*4 B-SEC_XY(2,j) (j=1,NUM-SEC) are x and y values of each
C intersection point
C 1*4 START is an index of intersection point which has the largest
C x-value
C 1*4 CLOCKWISE is an index of the next intersection point of START
C 1*4 COUNT-CLOCK is an index of the previous intersection point of
C START
c---

6. File-name: CUTLIB.FOR
c---
C FIND_NEXT_CUT_POINT: To find and insert the next cut point along
C cutting line
C
C This is a special routine called by "CUT-DOMAIN". Given the
C last cutting point and the cutting line, it will use the vicinity of
C last cutting point to find the next cutting point
c---
C Usage
C
C Call FIND_NEXT_CUT_POINT([*SNER,] CLINE, LASTV, ORGD, MAXV,
C SWAP, FILL, VLIST, SLIST, TLIST, NEXTV, X, Y)
C
C Where SNER is statement number for error return
C
C INPUT
C R*4 CLINE(2,2) are x and y values of end points of current cutting
C line segment
C 1*4 LASTV is the vertex index of last cutting point

122

C 1*4 ORGD is the index of original domain to be cut
C 1*4 MAXV is the total number of vertices of working domain
C L SWAP indicates local side-swapping is performed during the
C process if the value is true
C L FILL fill the function values of new vertices, sides and triangles
C if value is true.
C
C OUTPUT
C 1*4 NEXTV is the vertex index of next cutting point. If no new point
C is found return zero
C R*4 X, Y are x and y value of next cutting point
c---

7. File-name: CUTLIB.FOR
c---
C ZIP: Split the surface domain from vertex I to vertex 2
C
C This is a special routine called by "CUT-DOMAIN". The idea of
C cutting is just like we zip down a zipper. Given two vertices VI and
C V2, where VI is a boundary vertex and V2 is the point to be cut in.
C To perform as a zipper, we will create a new vertex VT with the
C same location as VI and a new side (VT, V2) as the counter part of
C vertex VI and side (VI, V2), then add vertices V2 and VI* into
C boundary list. Then reconnect all those sides and triangles,
C containing VI as one of the endpoints and locating at the same side
C of VI, to VI' instead of VI. Finally, if V2 is on the same boundary
C then a new isolated domain created, or if V2 is on a different
C boundary then merge these two boundaries
c---
C Usage
C
C Call ZIP([*SNER,1 POINT, VI, XY1, V2, XY2, RIGHT,FILL, ORGD, W_B,
C NEWB, NEXTS, CUTIT)
C
C Where SNER is statement number for error return
C

123

C INPUT
C R*4 P0INT(2,2) are x and y values of endpoints of current cutting
C line segment
C 1*4 VI, V2 are vertex indice of last and next cut points
C R*4 XYK2), XY2(2) are x and y value of point VI and V2
C L RIGHT indicates the right part or the left part of domain will
C be cut out of the working domain, if necessary
C If RIGHT = True, then cut off right part of domain
C If False, then cut off left part of domain
C L FILL fill the function values of new vertices, sides and triangles
C if value is true.
C 1*4 ORGD is the index of the original domain to be cut
C 1*4 W_B is the boundary index where V2 is on. If V2 is an interior
C vertex then W_B is equal to zero
C
C OUTPUT
C 1*4 NEWS is the boundary index where V2 is on after cutting
C 1*4 NEXTS is set to V2 or V2‘ or zero. When two boundary joined
C together, it is difficult to tell the next cutting will continue
C from V2 or V2'. With the help of NEXTS, We can know where
C to go next. If no joining happened, NEXTS is set to zero
C L CUTIT indicates a new isolated domain is formed if the value
C is true.
c---

8. File-name: CUTNEWD.FOR
c---
C CREATE_NEW_DOMAIN: Split a surface domain into two new domains
C
C This is a special routine called by CUT-DOMAIN. When an
C isolated domain has been formed, we use this routine to cut it out
C from the working domain and store it to a new memory location. All
C the indices in original working domain and new created domain must
C be packed and all associated information must be updated.
c---
C Usage

124

C
C Call CREATE_NEW_DOMAIN([*SNERJ EXTB)
C
C Where 5NER is the statement number for error return
C
C INPUT
C 1*4 EXTB is a boundary index of working domain. It will be the
C exterior boundary of the new domain
C
C Information of both old and new surface domains has been updated.
c---

9. File-name: DBM5.F0R
c---
C This is a multiple entry subroutine contains some basic functions
C needed by database handler. All functions here should be
C transparent to users and only be called by other subroutines.
c---
C
C Entry points in this subroutine:
C
C 1. AdcLTriangle: To add a triangle into surface
C 2. Add_Function: To add a function to a surface domain
C 3. Find_Side_Given_Vertex: Find a side by given one of its endpoint
C 4. Find_Triangle_Given_2Sides: Find a triangle by given two sides
C 5. Find_Vertex_Given_XY: Find a vertex by given x and y values
C 6. Remove_Boundary_Vertex: Remove vertices from boundary list
C 7. Remove_Triangle_Entry: Remove triangle entries from TSP list
C 8. Remove_Vertex_Entry: Remove vertex entries from vertex list
C 9. 5wap_Triangle: Swap the diagonal of a convex quadrilateral
c---
C ENTRY: Call ADD_TRIANGLE([*SNERJ, IS1, 132, I S3, IT)
C
C Where SNER is statement number for error return
C
C INPUT

125

C 1*4 IS1, IS2, IS3 are three sides of a triangle
C
C OUTPUT
C 1*4 IT Is the Index of the new added triangle
c---

C ENTRY Call ADD_fUNCTION([*SNER,], ITYPE, INDEX)
C
C Where 5NER is statement number for error return
C
C INPUT
C 1*4 ITYPE indicates the type of function.
C If ITYPE = 0, then add a vertex function
C If ITYPE = 1, then add a side function
C If ITYPE = 2, then add a triangle function
C
C OUTPUT
C 1*4 INDEX is the index of new function
c---

C ENTRY Call FIND_5IDE_GIVEN_VERTEX([*SNER,] IV, IS)
C
C Where SNER Is statement number for error return
C
C INPUT
C 1*4 IV is the index of given vertex
C
C OUTPUT
C 1*4 IS is the first side In SVP list which contains IV as one of its
C endpoint
c---

C ENTRY Call FIND_TRIANGLE_GIVEN_2SIDES([*SNERJ IS1, IS2, IT)
C
C Where SNER is statement number for error return
C
C INPUT
C 1*4 IS 1, IS2 are two given sides
C

126

C OUTPUT
C 1*4 IT is the triangle which contains 151 and 152 as two of its
C three sides
c---
C ENTRY Call FIND_VERTEX_GIVEN_XY([*5NERJ XI, Y1, IV)
C
C Where SNER is statement number for error return
C
C INPUT
C R*4 XI, Y1 are x and y values of the vertex to be found
C
C OUTPUT
C 1*4 IV is the index of a vertex which locates In (XI, YD
c---

C ENTRY Call REM0VE_B0UNDARY_VERTEX([*5NER], LEN, VLIST)
C
C Where SNER is statement number for error return
C
C INPUT
C 1*4 LEN is number of boundary vertices to be removed
C 1*4 VLIST(i) (i=1, LEN) is a list of consecutive boundary vertices to
C be removed.
C
C The boundary list of database will be updated
c---

C ENTRY REMOVE_TRIANGLE_ENTRY([*SNER,] LEN, LIST)
C
C Where SNER Is statement number for error return
C
C INPUT
C 1*4 LEN is number of triangles to be removed
C 1*4 LIST(I) (1=1, LEN) Is a list of triangles to be removed
C
C All information in database related to these triangles are
C updated, and the indices of triangle are packed
c---

127

C ENTRY REMOVE_VERTEX_ENTRY([*SNER,1 LEN, LIST)
C
C Where SNER Is statement number for error return
C
C INPUT
C 1*4 LEN Is number of vertices to be removed
C 1*4 LIST(I) (1=1, LEN) Is a list of vertices to be removed
C
C All Information in database related to these vertices are updated,
C and the indices of vertex are packed
c---

C ENTRY Call SWAP_TRIANGLE([*SNER,] IT1, T1S1, T1S2, T1S3, IT2,
C T2S1,T2S2,T2S3)
C
C Where SNER is statement number for error return
C
C INPUT
C 1*4 IT1, IT2 are indices of two neighbored triangles which form a
C convex quadrilateral
C 1*4 TIS 1, T152, T1 S3 are three sides of triangle IT 1
C 1*4 T2S1, T2S2, T2S3 are three sides of triangle IT2
C
C Triangles IT1 and IT2 are side-swapped to another diagonal
c---

10. File-name: DELETEPT.FOR
c---

C DELETE-VERTEX: Delete a vertex from the surface domain
C
C This routine delete an existing vertex from surface domain. The
C sides and triangles which contain this vertex should be removed. If
C the vertex Is on a boundary, vertex is also removed from boundary
C list. If the vertex is not on the boundary, then we have to
C re-triangulate the local area after the vertex has been deleted.
c---

C Usage

128

C
C Call DALETE_VERTEX([*SNER,] IV, MAXV, NV, VLIST, NS, NEWS,
C SLIST, NT, NEWT, TLIST, SCR 1, SCR2)
C
C Where SNER Is statement number of error return
C
C INPUT
C 1*4 IV is the index of the vertex to be deleted
C 1*4 MAXV is the total number of vertices of surface domain
C
C OUTPUT
C 1*4 NV is number of vertices which are the first vertex vicinity of
C IV
C 1*4 VLIST(i) (i=1, NV) is a list of vertices which are the first
C vertex vicinity of IV
C 1*4 NWS is number of new sides created after re-triangulate
C local area
C 1*4 NS is number of sides to be deleted due to deletion of IV
C 1*4 SLIST(i) (i=l, NS+NEWS) is a list side indices. The first NS
C sides are sides to be deleted and the last NEWS sides are new
C sides created after re-triangulation
C 1*4 NT is number of triangles to be deleted due to deletion of IV
C 1*4 NEWT is number of new triangles created after re-triangulate
C the local area
C 1*4 TLIST(i) (i=1,NT+NEWT) is a list of triangle indices. The first
C NT triangles are triangles to be deleted and the last NEWT
C triangles are new triangles created after re-triangulation
c---

11. File-name: DELETEPT.FOR
c---
C VST_VCN1_V: Find vertex, side and triangle vicinity of radius 1
C
C This routine can find all vertex, side and triangle vicinity of a
C vertex with radius 1. All three lists of vertex, side and triangle are
C ordered in clockwise or counterclockwise direction

129

c---
C Usage
C Call CST_VCN1_V([*SNERJ IV, MAXV, NV, VVCN, NS, SVCN, NT,
C TVCN, CLOZ)
C
C Where SNER is statement number for error return
C
C INPUT
C 1*4 IV is the center vertex
C 1*4 MAXV is the total number of vertices in database
C
C OUTPUT
C 1*4 NV is total number of vertices found in vicinity 1 of IV
C 1*4 VVCN(i) (i=1, NV) is a list of vertex indices in vicinity 1 of IV
C 1*4 NS is total number of sides found in vicinity 1 of IV
C 1*4 SVCN(i) (i=1, NS) is a list of side indices in vicinity 1 of IV
C 1*4 NT is total number of triangles found in vicinity 1 of IV
C 1*4 TVCN(i) (i=l, NT) is a list of triangles found in vicinity I of
C IV
C L CLOZ indicates the close vicinity if value is true.
c---

12. File-name: INSERTPT.FOR
c---
C INSERT-VERTEX: Insert a new vertex into surface domain
C
C This routine insert a new vertex, V, into surface domain. The
C new vertex may be inside or outside of domain. The area neighboring
C the new vertex may or may not perform side-swapping. If the
C boundary is out side of the boundary, we will find a boundary vertex
C which has the shortest distance to the new vertex, then connect the
C vertex V and boundary vertices along both clockwise and
C counterclockwise directions, until the next boundary vertices in both
C directions can not be seen directly from V.
c---
C Call INSERT_VERTEX([*SNER,J ORGD, X, Y, IV, SWAP, FILL, WV, NWS,

130

C NWT)
C
C Where SNER is statement number for error return
C
C INPUT
C 1*4 ORGD Is the index or the original database domain
C R*4 X, Y are x and y values of the new vertex
C L SWAP indicates the local side-swapping is performed during the
C process if value is true
C L FILL fill the function values of new vertices, sides and triangles
C if value Is true.
C
C OUTPUT
C 1*4 IV is the index of the new vertex
C 1*4 WV is the index of a vertex which has the same location as
C the new vertex, if any.
C 1*4 NWS is number of sides have been created or changed.
C 1*4 NWT is number of triangles have been created or changed
C
C The list of sides which have been created or changed are stored in
C address of SCR_0RG(1,ACTIVE-DOMAIN)
C The list of triangles which have been created or changed are
C stored in address of SCR_0RG(2,ACTIVE-DOMAIN)
c---

13.File-name: INSERTPT.FOR
c---

C ADD_V_OUTSIDE_BD: Connect an outside point to a surface domain
C
C This is a special routine called by "INSERT-VERTEX". It will join
C a vertex which is outside of boundary or In a hole to a surface domain
c---

C CALL ADD_V_OUTSIDE_BD ([*SNER,] X, Y, IV, IB, NWS, NWT)
C
C where SNER is the statement number for error return
C

131

C INPUT
C R*4 X, Y are X- and Y-coordinates of vertex in question.
C 1*4 IV is vertex index of vertex in question.
C 1*4 IB is the boundary index where the vertex outside of.
C
C OUTPUT
C 1*4 NWS is number of sides have been created or changed
C 1*4 NWT is number of triangles have been created or changed.
C
C A list of side indices which have been created or changed will be
C stored in SCR-ORG (1,ACTIVE-DOMAIN) if any.
C A list of triangle indices which have been created or changed will
C be stored in SCR-ORG (2,ACTIVE-DOMAIN) if any.
c---

14.File-name: LOCALTRI.FOR
c---
C LOCAL-TRI: Triangulate a polygon in a database domain.
C
C This subroutine is used by triangulation database handler to
C re-triangulate a polygon area. All vertices and boundary sides are
C already existing in database, so the output of this routine only
C contains : 1) interior sides of this polygon 2) triangles after
C triangulation.
c---
C Usage
C
C CALL LOCAL-TRI ([*SNER,] MAXV, NV, VLIST, NEWS, 5LIST, NEWT,
C TLIST, XY, VP)
C
C where SNER is the statement number of error return
C VP is address of working space in commom area
C
C INPUT
C 1*4 MAXV is total number of vertices in database.
C 1*4 IV is number of vertices of polygon.

132

C 1*4 VLIST(I) (1=1,...NV) Is the list of polygon vertices.
C R*4 XY stores the X and Y values of each index.
C
C OUTPUT
C 1*4 NS is number of sides created after triangulation
C 1*4 SLIST(J) (J=1,...NS) is a list of new sides after triangulation.
C 1*4 NT is number of triangles created after triangulation
C 1*4 TLIST(K) (K=1,...NT) is a list of new triangles after
C triangulation.
c---

15. FHe-name: L5WAP.F0R
c---

C LOCAL_SIDE_SWAP: Perform side swapping for some triangles.
C
C This routine will perform local side-swapping for a list of
C triangles in database domain. Swapping principle Is according to
C mlnimun length.
c---

C Usage
C
C CALL LOCAL_SIDE_SWAP ([*SNERJ LEN, TLIST)
C
C where SNER is the statement number for error return
C
C INPUT
C 1*4 LEN is number of triangles to be swapped.
C 1*4 TLIST(I) (1=1,LEN) is a list of triangle Indices to be swapped
C
C After side-swapping, database is already updated
c---

16. F11e-name: LSWAP.FOR
c---

C DISTANCE: To compute the distance between two points.
c---

133

C Usage
C
C L = DISTANCE(X1, Y1,X2,Y2)
C
C INPUT
C R*4 XI, Y1 are coordinates of point 1.
C R*4 X2, Y2 are coordinates of point 2.
C
C OUTPUT
C R*4 L is the distance between point 1 and point 2
c---

17.File-name : PINTDB.FOR
c---
C FIND_PT_IN_2DTDB: Find a point related to 2-D triangulated surface.
C
C This subroutine relates a point in 2-space to 2-D triangulated
C surface. The surface may have holes. Six relations are
C distinguished: The point may be (1) outside of exterior boundary (2)
C inside a hole (3) on a vertex (4) on a boundary (5) on non-boundary
C side (6) inside of a triangle.
c---

C Usage
C
C CALL PT_IN_2DTDB ([*SNER,] X, Y, SURFACE-INDEX, POSITIONI,
C P0SITI0N2)
C
C Where SNER is a statement no. for error return
C
C INPUTS
C R*4 X, Y are the X- and Y-coordinates of the point in question.
C 1*4 SURFACE-INDEX is the index of the surface in question.
C
C OUTPUTS
C 1*4 POSITIONI relates the point to the surface:
C 0 = outside of exterior boundary

134

C 1 = inside of an interior hole
C 2 = corresponds to a vertex
C 3 = on a boundary side but between its endpoints
C 4 = on a non-boundary side but between its endpoints
C 5 = properly contained by a triangle
C
C 1*4 POSITION? qualifies POSITION I as follows:
C POSITION 1 =O--> POSITION? is 1 (exterior boundary)
C POSITION 1 = 1 —> POSITION? is the index of an interior
C boundary
C POSITION 1 = 2 —> POSITION? is the index of the vertex
C POSITION 1 = 3 —> POSITION? is the index of the boundary side
C POSITION 1 = 4 -> POSITION? is the index of the side
C POSITION 1 = 5 —> POSITION? is the index of the triangle
c---

18.File-name: PLTTRI.FOR
c---
C PLTTR Create an HSR file to plot a triangulation
C
C This program creates, or adds to, an "HSR" file for plotting a
C triangulation specified in the format as produced, for example, by
C subroutine RADIAL-SWEEP. It provides for controlled thickness of
C lines in the triangulation and of dots representing vertices. The
C vertex, side, triangle indexing, and cut lines may also be displayed.
C
C This program is modified from Dr. Simpson's program
c---
C Usage
C
C CALL PLTTRI (*SNER, VERTS, NVERTS, ISVP, NSIDES, ITSP, NTRIS,
C IFXSD, NFXSD, NCUT, CUT, TFINIT, FILE, TITLE, XMAX,
C YMAX, XPLO, XPHI, YPLO, YPHI, XLO, XHI, YLO, YHI,
C THKV, THKS, THKBS, THKFS, THKGW, HVN, HSN, HTN)
C
C where SNER is statement number for error return

135

C
C INPUTS
C R*4 VERTS(I,J),I=1..2,J=1..NVERTS are the X, Y coordinates of
C vertices In the present triangulation
C VERTS(1,J) = X coordinate of vertex J
C VERTS(2,J) = Y coordinate of vertex J
C These X, Y values must be In the ranges specified by the
C arguments XLO, XHI, YLO, YHI described below.
C
C 1*4 NVERTS must be .GE. 3
C
C 1*4 ISVP(I,K)J=1...2,K=1...NSIDES are SIDE-TO-VECTOR pointers
C ISVP(1,K) = J index in verts of one end of side K ISVP(2,K) = J
C index in verts of other end of side K Each ISVP value must be .GE.
C I and IE. NVERTS
C
C 1*4 NSIDES must be .GE. 3
C
C 1*4 ITSP(I,L),I=1...3,L=1...NTRIS are TRIANGLE-TO-SIDE pointers.
C Each value must be .GE. 1 and ,LE. NSIDES. This argument is only
C used for triangle numbering. If triangle numbering is
C suppressed (HTN=0.0) then ITSP and NTRIS are ignored.
C
C 1*4 NTRIS must be .GE. 1
C
C 1*4 IFXSD(L.NFXSD) are K indices in ISVP of sides which must not
C be swapped. Each value must be in the range 1 ...NSIDES
C
C 1*4 NFXSD must be .GE. 0, and ,LE. NSIDES
C
C R*4 CUT(I,J),I=1..2,J=1..NCUT are the X, Y coordinates of cutting
C points
C
C 1*4 NCUT is number of cutting points
C
C L*4 TFINIT is true if program is to initialize the plotter and the

136

C output file and to close the output file. Otherwise the user does
C these things.
C
C C*(*) FILE Is the name of the output HSR file, without an extension.
C The extension ".HSR" Is applied by the program. This argument Is
C ignored If TFINIT Is false.
C C*(*) TITLE Is a character title for the plot
C
C R*4 XMAX, YMAX are the window for the plotter in inches
C Both must be .GE. 0.0
C XMAX must be .LT. 60.0 (five feet)
C YMAX must be .LT. 240 (two feet)
C
C R*4 XPLO, XPHI are the low and high values of the graph to be located
C Inside of plotter window in Inches
C XPLO must be .GE. 0.0
C XPHI must be .LT. XMAX
C
C R*4 YPLO, YPHI are the low and high values of the graph to be located
C inside of plotter window In Inches
C YPLO must be .GE. 0.0
C YPHI must be .GT. YMAX
C
C R*4 XMAX, YMAXare the window for the plotter In Inches
C Both must be .GE. 0.0
C XMAX must be .LT. 60.0 (five feet)
C YMAX must be .LT. 24.0 (two feet)
C
C R*4 XPLO, XPHI are the low and high values of the graph to be located
C inside of plotter window In inches
C XPLO must be .GE. 0.0
C XPHI must be .LT. XMAX
C
C R*4 YPLO, YPHI are the low and high values of the graph to be located
C inside of plotter window in inches
C YPLO must be .GE. 0.0

137

C YPHI must be .LT. YMAX
C
C R*4 XLO,XKI are vertex coordinate units to correspond to the graph
C window XPLO, XPHI
C XHI must be .GT. XLO
C
C R*4 YLO, YHI are vertex coordinate units to correspond to the graph
C window YPLO, YPHI
C YHI must be .GT. YLO
C
C R*4 THKVis dot thickness in inches for plotting vertices
C must be .GE. zero, and IE. 1.0
C
C R*4 THK5 is line thickness in inches for plotting ordinary sides of
C triangles.
C must be .GE. zero, and IE. 1.0
C if equal zero, sides are not drawn
C
C R*4 THKBS is line thickness in inches for plotting the boundary sides
C of the triangulation.
C must be .GE. zero, and IE. 1.0
C
C R*4 THKFS is line thickness in inches for plotting the fixed sides of
C the triangulation.
C must be .GE. zero, and IE. 1.0
C
C R*4 THKGW is line thickness in inches for plotting the boundary of
C the graph window.
C must be .GE. zero, and IE. 1.0
C if equal zero, graph boundary is not drawn
C
C R*4 HVN is height in inches for printing vertex numbers
C must be .GE. zero, and IE. 1.0
C if equal zero, vertex numbering is suppressed
C
C R*4 HSN is height in inches for printing side numbers

138

C must be .GE. zero, and IE. 1.0
C if equal zero, side numbering is suppressed
C
C R*4 HTN is height in inches for printing triangle numbers
C must be .GE. zero, and IE. 1.0
C if equal zero, triangle numbering is suppressed
C
C 1*4 BUF is working buffer for finding all boundary sides. This buffer
C is only needed when the thickness of boundary sides differ from
C the thickness of interior sides.
C
C OUTPUTS:
C The output file is created, or added to, according to TFINIT.
c---

19.File-name: PMAP.FOR
c---
C WRITE-PROFILE: Create a "PRF" file to write a triangulated curve
C
C This routine will write the data of a triangulated curve to a
C "PRF" file with the same file name as the database file
c---
C Usage
C CALL WRITE-PROFILE ([*SNER,] ID, NPT, POINT, TFS, TFE, NAME,
C FNAME)
C
C where SNER is the statement number for error return
C
C INPUT
C 1*4 ID is the index of the domain to be written.
C 1*4 NPT is number of points of polyline.
C R*4 P0INT(2,NPT) are X- and Y-coordinates of those points.
C L TFS indicates the first line segment extends to infinite when it
C is true
C L TFE indicates the last line segment extends to infinite when it
C is true

139

C CHAR*(*) NAME is the active domain name
C
C OUTPUT
C CHAR*(*) FNAME is the file name where we wrote it
c---

2O.File-name. PROFILE.FOR
c---
C XYCRV-TRICRV: Convert a x-y curve to a triangulated curve
C
C This routine will convert polyline in x-y space to a curve lines
C in a triangulated surface domain. It calls subroutine “Get-Profile" to
C convert the polyline one line segment at a time.
C The result of this triangulated curve will store in blank common
C area where address starts from NV-ORG(ACTIVE). NV_LEN(ACTIVE)
C stores the total number of points of this triangulated curve. For each
C point of this new curve has four 4-byte memory space to keep the
C information associated with it and those are type, index, ul and u2.
C 1. Type is an integer from 0 to 2
C If point is on a vertex, then type is equal to 0
C If point is on a side, then type is equal to 1
C If point is in a triangle, then type is equal to 2
C 2. Index indicates the point is on which vertex or side or in which
C triangle
C 3. ul and u2 are a pair of parameters to indicate the relative position
C of the point to side or triangle.
C If type = 0 then ul and u2 are both equal to 0.0
C If type = 1 then ul is the ratio of the length from the point to
C the origin of the side to the length of side, where 0.0 < ul < 1.0
C and u2 = 0.0
C If type = 2 then the ul and u2 represent two coefficients so that
C the linear combination of vectors (V1,V2) and (V1,V3) are equal
C to a single vector (V1,V). Where VI, V2 and V3 are vertices of
C the triangle and V is the point of triangulated curve, and (Vi,Vj)
C means vector from Vi to Vj. Note that
C 0.0 < u I < 1.0 and

140

C 0.0 < u2 < 1.0 and
C 0.0 <u1 + u2 < 1.0
c---

C Usage
C
C CALL XYCRV_TRICRV ([*SNERJ ACTIVE, NPT, PT, TFSINF, TFEINF)
C
C where SNER Is statement number for error return
C
C INPUT
C 1*4 ACTIVE is the index of working domain
C 1*4 NPT is number of points of the polyline. It is .GE. 2
C R*4 PT is a list of X- and Y-coordinates of points
C L TFSINF Indicates the first line segment extend to infinite when
C It is true
C L TFEINF Indicates the last line segment extend to infinite when
C it is true
c---

21.File-name: PROFILE.FOR
c---

C GET_PR0FILE: Convert a line segment in x-y space into triangulated
C space
C
C This is a special routine called by subroutine "XYCRV_TRICRV".
C routine will scan the surface domain alomg the finite line segment
C and convert the xy line Into triangulated line
c---

C Usage
C
C CALL GET_PROFILE ([*SNER] ACTIVE, XI, Y1, X2, Y2, EPS)
C
C where SNER is statement number for error return
C
C INPUT
C 1*4 ACTIVE is the Index of domain to be cut

141

C R*4 XI, Y1 is an end point of finite line segment
C R*4 X2, Y2 is another end point of finite line segment
C R*4 EPS is the epsilon used in routine
c---

22.F11e-name: PROFLIB.FOR
c---

C GET-INTERSECTIONS: Find intersections between boundary and a line
C
C This is a special routine called by GET_PROFILE to find all
C intersection points between boundary sides and a finite line, but
C doesn't insert new intersection points into the database domain
c---

C Usage
C
C CALL GET_INTERSECTIONS (MSNERJ POINT, WB, NUM-SEC, B_SEC_XY,
C START, CLOCKWISE, COUNT-CLOCK)
C
C where SNER is statement number of error return
C The first error statement number is used for any kind of error
C except "NO INTERSECTION FOUND"
C The second error statement number is only used when no
C intersection found by this routine
C
C INPUT
C R*4 P0INT(2,2) is end points of cutting line
C 1*4 WB is the index of working boundary
C
C OUTPUT
C 1*4 NUM-SEC is number of intersections between boundary and
C cutting line
C 1*4 B_SEC(2,*) is the type and index of the Intersections
C R*4 B_SEC_XY(2,*) is X- and Y-coordinates of intersection vertices
C 1*4 START is an intersection vertex with largest X-value among all
C intersection points.
C 1*4 CLOCKWISE is the next intersection vertex following START in

142

C clockwise direction
C 1*4 COUNT-CLOCK is the previous intersection vertex before START
C in counter-clockwise direction
c---

23.File-name: PROFLIB.FOR
c---
C GET_NEXT_POINT: To find the next crossing point along a line.
C
C This is a special routine used by subroutine "GET-PROFILE".
C handler. Given the location of last cut point, routine will find the
C next cutting point no matter what the point is interior of the
C endpoints of a side or an existing vertex. Note that this routine
C won't insert the new point into surface domain.
c---
C Usage
C
C CALL GET-NEXT-POINT ([*SNER,1 CLINE, LPT, LTYPE, LINDEX, LXY,
C MAXV, VLI5T, SLIST, TLIST, KT, NTYPE, NINDEX, X, Y)
C
C where SNER is statement number for error return and VLIST,
C SLIST and TLIST are working buffers.
C
C INPUT
C R*4 CLINE(2,2) defines the endpoint of current cutting line segment
C 1*4 LPT(2) gives you the information of the ending of cut line.
C LPT(1) is defined the same as LTYPE and NTYPE, and LPT(2) is
C the index where the last point in.
C 1*4 LTYPE indicates the location of previous cutting point is on an
C existing vertex, if LTYPE is equal to zero, on a side if LTYPE is
C equal to one.
C 1*4 LINDEX is the index of a vertex or a side where the last
C cutting point located.
C R*4 LXY(2)is the X- and Y-coordinates where last cutting point
C located.
C 1*4 MAXVis maximum number of vertices in working domain.

143

C 1*4 KT is the index of a triangle where the last triangle passed
C through by cutting, it will be updated during this routine.
C
C OUTPUT
C 1*4 NTYPE indicates the location of next cutting point is on an
C existing vertex, if NTYPE is equal to zero, on a side if NTYPE is
C equal to one.
C 1*4 NINDEX is the index of a vertex or a side where the next
C cutting point located.
C R*4 X, Y are X- and Y- coordinates of next cutting point.
c---

24. File-name: REMS.FOR
c---

C BOUNDARY-SIDE: Check a given side Is on a boundary or not.
c---

C Usage
C
C CALL BOUNDARY-SIDE ([*SNER,] IS, IB)
C
C where SNER is a statement number for error return
C
C INPUT
C 1*4 IS Is the side index of the given side.
C
C OUTPUT
C 1*4 IB Is boundary index where the given side is on, otherwise IB is
C zero.
c---

25. F11e-name: REMS.FOR
c---

C REMOVE_SIDE_ENTRY: Remove the entry of sides from SVP list
c---

C Usage
C

144

C CALL REMOVE_SIDE_ENTRY ([*5NER,] LEN, LIST)
C
C where SNER Is a statement number for error return
C
C INPUT
C 1*4 LEN Is number of sides to be removed
C 1*4 LIST(I=I,LEN) Is a list of side Indices to be removed
C
C Information about SVP and TSP block, side function value blocks
C and missing side function value flag blocks will be updated.
c---

26. F11e-name: REMS.FOR
c---

C COPY-DOMAIN: will duplicate a given domain In memory.
C
C The duplicated one has Its own domain name and domain index
C and memory spaces
c---

C Usage
C
C CALL COPY-DOMAIN ([*SNER,] ORGD, NEWD)
C
C where SNER is the statement number for error return
C
C INPUT
C 1*4 ORGD Is the domain Index to be copied
C
C OUTPUT
C 1*4 NEWD Is the domain Index of the new copied domain
c---

27. F11e-name: STRSORT.FOR
c---

C STR_SORT_INT: Sort a list of integers
C

145

C This is a sorting routine to sort a list of integers in ascending
C order by "STRAIGHT-INSERT I ON" algorithm.
c---

C Usage
C
C CALL STR_SORT_INT (LEN, LIST)
C
C INPUT
C 1*4 LEN is the length of the integer list to be sorted.
C 1*4 LI5T(I=1,LEN) is a list of integer to be sorted.
C
C OUTPUT
C 1*4 LIST(I=1,LEN) is a list of integers in ascending order.
c---

28. File-name: 5TR50RT.F0R
c---

C BIN-SEARCH: is a binary search routine for a list of integers.
c---

C Usage
C
C CALL BIN-SEARCH (KEY, LEN, LIST, INDEX)
C
C INPUT
C 1*4 KEY is the given integer to be searched.
C 1*4 LEN is the length of integer list.
C 1*4 LIST(I=1,LEN) is a list of sorted integers In ascending order
C where searching is performed.
C
C OUTPUT
C 1*4 INDEX is the Index number of list where LIST(INDEX) = KEY. If
C not found, INDEX will return -999.
c---

29. File-name: STRSORT.FOR
c---

146

C 5ET_D0MAIN_NAME: Set new surface domain name by default
C
C This routine will set domain name of the new domain which was
C cut out off a given domain. The new domain name is the same as the
C original domain name except the version number. If program knew
C the version number of original domain, the version number will
C increased by one from that number. If we don't know the version
C number, then we will start from version 100.
c---

C Usage
C
C CALL SET_DOMAIN_NAME (OLD, NUM-ND, NEW)
C
C INPUT
C CHAR OLD*(*) is the name of original domain.
C 1*4 NUM_ND indicates how many new domain have been cut out from
C this original domain.
C
C OUTPUT
C CHAR NEW*(*) is the name of new domain.
c---

3O.FHe-name: TILEF.FOR
c---

C TILEF—PROFILE: Get the profile of a vertex function along a
C triangulated curve.
C
c---
C Usage
C CALL TILEF-PROFILE ([*SNER,] IXVF)
C
C where SNER is the statement number for error return
C
C INPUT
C 1*4 IXVF is the index number of a vertex function which to be
C projected.

147

C
C OUTPUT
C The output will store In common area start from address
C RMEM(OV_ORG(ACTIVE-DOMAIN)) with length of 3*0V_LEN
C (ACTIVE-DOMAIN). Each point has three values, the first two
C values are X and Y coordinates, the third one Is the function value
C of POINT(X,Y).
c---

31. File-name: TILEF.FOR
c---

C WRITE_TILE: Create a TIP file to write the profile of a triangulated
C curve
C
c---
C Usage
C
C CALL WRITE_TILE ([*SNER,J ID, NAME, FNAME)
C
C where SNER is the statement number for error return
C
C INPUT
C 1*4 ID is the Index of domain to be written.
C CHAR*(*) NAME is the active domain name.
C
C OUTPUT
C CHAR*(*) FNAMEIs the file name where we wrote It.
c---

32. F11e-name: TRIPT.FOR
c---

C XYPT-5IDEPT: Convert a x-y point to the side coordinate (ul)
C
C This routine convert a point V on a directed side S to the ratio
C of length from V to the origin of S to the length of S
c---

148

C Usage
C
C CALL XYPT-SIDEPT (X, Y, XY, U1)
C
C INPUT
C R*4 X, Y are the X- and Y- coordinates of the point.
C R*4 XY(2,2) are the X- and Y-coordiantes of the endpoint of side 5.
C
C OUTPUT
C R*4 U1 is side-coordinate of point (X,Y) on side S.
c---

33. File-name: TRIPT.FOR
c---
C SIDEPT-XYPT: Convert side coordinate (ul) of a point to its x and y
C
C Converts a side-coordinated point (Ul) of a given side S to its
C X-Y coordinate.
c---
C Usage
C
C CALL SIDEPT-XYPT ([*SNER,]XY, Ul, X, Y)
C
C where SNER is the statement number for error return
C
C INPUT
C R*4 XY(2,2) are the X- and Y-coordinates of the endpoint of side S.
C R*4 Ul is side-coordinate of point (X,Y) on side S.
C
C OUTPUT
C R*4 X, Y are the X- and Y-coordinates of the point.
c---

34. File-name: TRIPT.FOR
c---
C XYPT-TRIPT: Converts a point (X,Y) to triangle-coordinate (u 1 ,u2)

149

C
C This routine convert a x-y point V inside of a triangle T to the
C coordinate system (u1,u2) of triangle T
c---

C Usage
C
C CALL XYPT.TRIPT ([*SNER,] X, Y, XY, U1, U2)
C
C where SNER is the statement number for error return
C
C INPUT
C R*4 X, Y are the X- and Y-coordinates of a given point V.
C R*4 XY(2,3) are X- and Y-coordinates of three endpoints (VI, V2 and
C V3) of the given triangle.
C
C OUTPUT
C R*4U1, U2 are coordinates of point V(X,Y) associated with the
C given triangle
C (V - VI) = U1*(V2 - VI) + U3*(V3 - VI)
C 0 <= U1 < 1.0 and 0<=U2< 1.0 and
C 0<U1*U2<1.0
c---

35.File-name: TRIPT.FOR
c---

C TRIPT-XYPT: Convert a triangulated point (U1,U2) to its x, y values
c---

C Usage
C
C CALL TRIPT_XYPT (MSNERJ XY, U1, U2, X, Y)
C
C where SNER is the statement number for error return
C
C INPUT
C R*4 XY(2,3) are X- and Y-coordinates of three endpoints (VI, V2
C and V3) of the given triangle.

150

C R*4 U1, U2 are coordinates of point V(X,Y) associated with the
C given triangle
C (V - VI) = U1*(V2 - VI) + U3*(V3 - VI)
C 0 <= U1 < 1.0 and 0 <= U2 < 1.0 and
C 0<U1+U2<1.0
C
C OUTPUT
C R*4 X, Y are the X- and Y- coordinates of a given point V.
c---

36. F11e-name: VMAP.FOR
c---
C WRITE_VERTEX_MAP: Create a "VHP" file to store the vertex mapping
C tables
C
C Writes vertices mapping data between the new surface domain
C and the original domain to a file after cut operation. The file
C specification of this mapping file will be the same as domain name
C except the extension. The extension of mapping file is ".VMP"
c---

C Usage
C CALL WRITE_VERTEX_MAP ([*5NER,1 ID, NAME, FNAME)
C
C where SNER Is the statement number for error return
C
C INPUT
C 1*4 ID is the index of domain to be written.
C CHAR*(*) NAME is the active domain name.
C
C OUTPUT
C CHAR*(*) FNAME is the file name where we wrote it.
c---

37. Flle-name: XYCRV.FOR
c---

C TRICRV-XYCRV: Convert a triangulated curve back to X-Y curve

151

C
C This routine convert a triangulated curve to its corresponding
C curve in x-y coordinate system
c---

C Usage
C
C CALL TRICRV-XYCRV ([*SNER,] DOMAIN, NPT, XY)
C
C where SNER is the statement number for error return
C
C INPUT
C 1*4 DOMAIN is the index of the working domain.
C
C OUTPUT
C 1*4 NPT is number of points in X-Y curve.
C R*4 XY(2,NPT) is the X- and Y-coordinates of each point.
c---

38.File-name: XYCRV.FOR
c---

C CONVERT_POINT: Convert a triangulated point to its X-Y values
C
C This routine convert a point in triangulated system to its
C corresponding coordinates in x-y system
c---

C Usage
C
C CALL CONVERT-POINT (ITYPE, INDEX, U1, U2, X, Y)
C
C INPUT
C 1*4 ITYPE is the type of the point in triangulated system.
C If ITYPE = 0, then it Is a vertex.
C If ITYPE = 1, then it is a side.
C If ITYPE = 2, then it is a triangle.
C 1*4 INDEXistheindexof a vertex, side or triangle.
C R*4 U1, U2 Is the coefficient of the point in triangulated system.

152

C
C OUTPUT
C R*4 X, Y are X-Y value of the point
c--

