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ABSTRACT 

Introduction 

     Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) 

stand as state-of-the-art techniques for non-invasive functional neuroimaging. On a 

unimodal basis, EEG suffers from poor spatial resolution while presenting high 

temporal resolution. In contrast, fNIRS offers better spatial resolution though it is 

constrained by its poor temporal resolution. One important merit shared by the EEG and 

fNIRS is that, both modalities have favorable portability and could be integrated into a 

compatible experimental setup, providing a compelling ground for the development of 

a multimodal EEG-fNIRS integration analysis approach. The main goal of this 

dissertation is to develop and implement multimodal EEG/fNIRS integration analysis 

method for the characterization of cortical reorganization. 

Methods 

The first part of the dissertation primary focuses on the experimental validation of the 

inherent correlation between neuronal activity and hemodynamic response from views 

of fNIRS-guided and EEG-guided, respectively. After that, we develop a novel fNIRS-

informed EEG source imaging approach, by fusing the high spatial resolution of fNIRS 

and high temporal resolution of EEG, to investigate the cortical activity with good 

spatiotemporal resolution. Leveraging the high spatiotemporal resolution cortical 

activity, detailed cortical network alterations, can be subsequently estimated, providing 

a complete cortical-level characterization of the brain activity. 

Results 

     Through an fNIRS-guided hybrid EEG-fNIRS brain computer interface (BCI) study 

and an EEG-guided fNIRS analysis study, we validate that the complementary 

information offered by EEG and fNIRS is beneficial to the investigation of cortical 

activity. In addition, the novel fNIRS-informed EEG source imaging, is developed, 
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validated and applied in studying the brain network alterations induced by Alzheimer’s 

disease and stroke. 

Conclusion 

     The novel fNIRS/EEG integration methods and subsequent brain network analysis 

presented in this dissertation have provided the tools and technologies for cortical-level 

assessment of normal brain activity and characterizing cortical reorganization 

associated with brain disorders.  
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Chapter 1 ─ Basis of Brain Imaging 

1.1 Background 

     The human brain comprises billions of neurons [1]. Each of these forms a number of 

synapses, establishing a complicated network with quadrillions of connections and thus 

enabling our brains to function as they do [2]. Although there is an increasing 

understanding of neurons on a microscopic scale in recent decades, little is known about 

how these huge numbers of neurons (and synapses) work collectively to generate 

macroscopic brain signals and human behaviors as observed. 

     It is believed that human brain functions and relevant behaviors are carried out by 

complex neural activations and interactions. This internal activities generally elevate 

electrical activity (direct effects) accompanied by hemodynamic and metabolic response 

(indirect effects), which serve as the basic sources for all noninvasive neuroimaging 

techniques. Depending on the sources of the signals, these brain imaging techniques can 

be roughly divided into two categories. On one hand, the first category refers to imaging 

techniques that directly capture the neural electrical activities by detecting the induced 

electrical signal fluctuations over the scalp. The most representative method in this 

category is electroencephalography (EEG). On the other hand, the second category 

comprises indirect imaging approaches that rely on hemodynamic (cerebral blood flow, 

cerebral blood volume) anr metabolic (glucose and oxygen utilization) response induced 

by neural activity. Commonly-available techniques in this category are functional near-

infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and 

positron emission tomography (PET). 
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1.2 Electroencephalography 

     Electroencephalography (EEG), first found by Hans Berger in 1929 [3], is thought 

to result primarily from the synchronization of post-synaptic potentials at cortical 

pyramidal neurons [4]. The recorded EEG signal is not representing the single neuron 

depolarization inside the brain. Instead, it is assumed that tens of thousands of 

synchronized pyramidal neurons at cortex are firing when the brain is activated, wherein 

dendritic trunks of the neurons are coherently orientated, parallel with each other and 

perpendicular to the cortical surface so as to induce sufficient summation and 

propagation of electrical signals to the scalp (Figure 1-1) [5].  

 

Figure 1-1. Generation of EEG signal [6]. 

     Typically, EEG signals is measured through EEG electrodes (including a reference 

electrode and a ground electrode) which are placed over a person’s scalp. Voltages 

differences between the electrodes and the reference electrode are then measured and 

amplified (Figure 1-1). In general, the recorded EEG signals which represent the large-
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scale neural oscillatory activity, can be divided into various rhythms depending on 

characteristic frequency bands, including theta (4–7 Hz), alpha (8–14 Hz), beta (15–25 

Hz) and gamma (> 25 Hz) [7]. These brain rhythms contain information associated with 

the ongoing neuronal processing in specific brain areas, which allows EEG to be used 

as a non-invasive method for the characterization of cortical reorganization induced by 

various brain disorders, particularity in the diagnosis of epilepsy and stroke [7, 8].  

1.3 Functional Near-infrared Spectroscopy 

     Functional Near-infrared Spectroscopy (fNIRS), first reported by Jobsis in 1977 [9], 

is an optical imaging technique to non-invasively investigate the hemodynamics 

response in humans brain. fNIRS usually utilizes lights with distinct wavelengths 

(between 600 and 1000 nm) that can penetrate the scalp and reach the cortical surface 

to measure the concentration changes of oxygenated hemoglobin (HbO) and 

deoxygenated hemoglobin (HbR) that are coupled with the metabolic activity of neurons 

in the outer layers of the cortex. This technique is particularly useful for studying the 

functional activation within the brain due to the inherent relationship between neural 

activity and hemodynamic response in the brain [10]. Specifically, fNIRS is capable of 

measuring the regional changes of HbO and HbR concentration, which can serve as an 

indicator of hemodynamic changes associated with neural activity in the brain. 
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Figure 1-2. Absorption of light by oxygenated and deoxygenated hemoglobin (blue and red lines) 

and common NIRS light source wavelengths (730 and 850 nm) [11]. 

     Currently, the continuous wave NIRS (CW-NIRS) is extensively used in the research 

and clinical settings due to its low-cost and simplicity. The measurement of the 

hemoglobin concentration (Hbo and HbR) in CW-NIRS primary relies on the physical 

basis that chromophores inside the brain, in particular the HbO and HbR, have specific 

and sensitive absorption characteristics in the near-infrared range (between 600 and 

1000 nm, Figure 1-2). With this in mind, lights at different wavelengths can be injected 

into the brain via the sources (illuminators) placed on the scalp, and the attenuated lights 
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are detected by the optical detectors placed near the illuminators (Figure 1-3), from 

which the concentration changes of HbO and HbR can be computed based on Modified 

Beer-Lambert Law [12]. Specifically, CW-NIRS systems typically utilize laser/LED 

sources to shine two distinct wavelengths into the brain at a constant intensity and uses 

detectors to measure the intensity of diffusely reflected light continuously. 

 

Figure 1-3. Schematic demonstration of fNIRS measurement [13]. 

1.4 Multimodal Brain Imaging Approach 

     The functional activity of the cerebral cortex can be investigated using various 

imaging techniques including EEG, fNIRS and fMRI. Each of these techniques has its 

own advantages and disadvantages. Compared to fMRI, fNIRS features higher temporal 

resolution (1 cm), good portability, low-cost, good resistance to motion artifacts, which 

is applicable to various measurement scenarios including clinical setting as well as 

natural environment [12]. More importantly, fNIRS measurements have been proven to 

be similar to the blood oxygen level dependent (BOLD) response obtained by fMRI 

[14]. However, there are also several limitations of fNIRS techniques; the limited 

penetration depth, low signal-noise ratio, relatively low temporal resolution compared 
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to EEG. On the other hand, EEG presents a number of advantages over fMRI for 

exploring the dynamic brain activity: it is highly-portable, inexpensive, and features a 

very high temporal resolution (millisecond) compared to fNIRS and fMRI [15], though 

EEG is highly vulnerable to motion artifacts that would inhibit the EEG measurement 

in a practical setting [16]. 

     Single-modality imaging techniques can only capture limited information associated 

with neural activity due to their technical limitations and the complex neural processing 

within the brain. In order to comprehensively explore the functional activity of the brain, 

multimodal approaches are needed. Generally, integrated EEG-fNIRS approaches offer 

various benefits over single-modality methods by exploiting their individual strengths; 

EEG provides favorable temporal resolution, while fNIRS offers better spatial 

resolution and is robust to noise [17, 18]. Additionally, EEG and fNIRS signals are 

associated with different aspects of cortical activity, providing a built-in validation for 

identified activity. Measurements obtained from each of these two modalities thereby 

provide complementary information related to functional activity of the brain. 

1.5 Neurovascular Coupling 

     Apart from their complementary technical properties, the rationale behind the 

combination of EEG and fNIRS relies on a physiological phenomenon called 

neurovascular coupling within the brain [19]. Briefly, neural activity is inherently 

accompanied with the fluctuation of the cerebral blood flow (CBF) that carries oxygen 

and nutrients to neurons for their function. Specifically, when the neurons are activated 

within a specific brain region, blood will flow to that brain region in order to meet the 
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increased demand of glucose and oxygen, resulting in the fluctuations of the hemoglobin 

concentration (HbO and HbR) that could be pick up by the functional imaging 

techniques such as fNIRS and fMRI (Figure 1-4). The so-called neurovascular coupling 

forms the theoretical basis for multimodal-based imaging of brain activity, such as 

combined EEG-fMRI and combined EEG-fNIRS imaging approaches. It has been 

shown in recent studies that the impairment of neurovascular coupling could serve as a 

sign for several neurological diseases such as Alzheimer’s disease and stroke [19-21], 

which might provide a new prospective for evaluation and diagnosis of neurological 

diseases as well as increase our understanding of the mechanism of the neurovascular 

coupling. 

 

Figure 1-4. The schematic of neurovascular coupling [22].  
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1.6 Multimodal fNIRS-EEG Studies in Human 

     The integration of the fNIRS and EEG provides complementary information about 

electrical and metabolic-hemodynamic activity of the brain activity without causing 

electro-optical interference, which has led to increasing investigations of the benefits of 

integrated EEG and fNIRS in a number of studies [21, 23, 24]. In the last decade, 

numerous papers have been published on simultaneous recordings of fNIRS and EEG, 

mainly focusing on both nonclinical and clinical topics. 

     In terms of nonclinical applications, three main areas have been extensively explored 

using integrated fNIRS and EEG: brain computer interface (BCI), neurovascular 

coupling, and the investigation of healthy brain functions. In general, BCIs allow users 

to control computers or external devices based directly on the modulation of brain 

activity. The active investigations of the benefits of hybrid EEG-fNIRS BCI have been 

conducted and validated on healthy populations in a number of BCI studies recently 

[23-25]. Specifically, by combining features derived from two modalities, these 

multimodal fNIRS-EEG BCIs have shown enhanced classification accuracy over single 

modality in a variety of tasks, including mental arithmetic (MA), motor imagery and 

execution [26-29]. A special direction of combined fNIRS-EEG was proposed by Khan 

et al., wherein two commands (“forward” and “backward”) were decoded by EEG 

signals from the prefrontal area and other two commands (“left” and ”right”) were 

decoded by the fNIRS sigansl from the motor area [30]. High classification accuracies 

were reported for the four different control signals using the multimodal fNIRS-EEG 

features. Apart from the feature fusion, a few studies have attempted to optimize the 

computational cost and the complexity of the hybrid BCIs, mainly by reducing the 
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number of electrodes/optodes.  Previous work has suggested different approaches for 

this aim by selecting the most representative channels or signal components for 

classification, including bundled optode- based approaches [31], channel averaging 

approaches [32], and general linear model-guided [29]. 

     Regional neural activity is typically accompanied by electrical activity generation 

and concurrent metabolic variation. Simultaneous fNIRS-EEG recording are highly 

suited for neurovascular coupling investigation both in a data-driven approach or, if the 

coupling is assumed known, for better neural activity estimation. Specifically, 

neurovascular coupling can be assessed using different experimental settings, including 

resting-state and external stimulation. In terms of resting-state neurovascular coupling, 

Keles et al., collected data with a customized whole-head fNIRS-EEG cap and focused 

on the spectral-EEG effects on neurovascular coupling [33]. They found a delayed alpha 

activity (8 to 16 Hz) modulation of hemodynamic response in posterior areas and a 

strong beta activity (16 to 32 Hz) modulation of hemodynamic response that might be 

driven by the alpha-beta coupling in EEG. In addition to the resting-state analysis on 

time series, neurovascular coupling can also be explored with specific task. Li et al., 

collected concurrent EEG and fNIRS data during a motor execution task and performed 

an EEG-informed fNIRS general linear model (GLM) analysis with the assumption that 

EEG temporal variation may be highly correlated with the hemodynamic response 

induced by the motor task [34]. Their results showed that the EEG-derived information, 

particularly the alpha and beta components, could better capture the strength of neural 

activity at single trial task and thus enhance the performance of fNIRS GLM analysis 

when compared with the standalone fNIRS  method. Thus, this study demonstrates the 
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inherent correlation between two modalities, and provides new insight for investigating 

the neurovascular coupling. 

     A large part of combined fNIRS-EEG studies have focused on the characterization 

of brain functions. Within this field of application, the complementary properties of 

fNIRS and EEG have led to extensive investigations of the spatiotemporal 

hemodynamic and electrical evolution of brain activity associated with a variety of 

functions, including language, auditory response, motor intention, working memory, 

and emotions [35-38]. Ehlis et al., conducted simultaneous fNIRS-EEG measurements 

on a group of healthy subjects to assess cortical correlates of auditory sensory gating in 

humans [35]. The combination of electrophysiological information and hemodynamic 

response revealed a positive correlation between the amount of sensory gating and the 

strength of the hemodynamic response in the left prefrontal and temporal cortices, which 

strengthened the hypothesis of a possible inhibitory influence of the prefrontal cortex 

on primary auditory ones. The multimodal fNIRS-EEG integration can also be 

employed to study the brain response induced by another modality, such as electrical 

stimulation or magnetic stimulation. Takeuchi et al., investigated hemodynamic 

responses and neural activity relationships in the somatosensory cortices of healthy 

adults during electrical stimulation of the right median nerve [38]. The fNIRS signal 

showed increased HbO concentration at the contralateral primary somatosensory region 

during stimulation, followed by responses that spread to more posterior and ipsilateral 

somatosensory areas. Besides, the EEG signal indicated that positive somatosensory 

evoked potentials (SEPs) peaking at 22-ms latency (P22) were recorded from the 

contralateral somatosensory area. fNIRS and EEG topographical maps of hemodynamic 
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responses and current source density of P22 were significantly correlated. Overall, these 

findings demonstrate that the multimodal fNIRS-EEG holds excellent flexibility and 

great potential in a variety of applications. 

     Clinical studies using multimodal fNIRS-EEG can be categorized into three main 

areas: developmental disorders of newborn/child, neurorehabilitation and psychiatry. 

Due to its noninvasiveness and high portability, the multimodal fNIRS-EEG is a 

potentially suited technique for continuous monitoring of the neurological functioning 

in critically ill preterm and full-term infants. For instance, concurrent fNIRS-EEG 

recordings have been utilized to characterize brain function alterations in infants in a 

previous study. It turned out that in patients with neurological damage such as seizures, 

transient hemodynamic events can be observed accordingly [39]. Such findings 

indicates that the multimodal fNIRS-EEG approach may give new insights into the brain 

functioning in preterm infants, which could identify potentially vulnerable conditions 

after birth and better understand the required treatments. In addition, concurrent fNIRS-

EEG recordings are particularly suited for studying brain disorders in children without 

causing major restraint and discomfort. Numerous evidences have indicated that 

multimodal fNIRS-EEG can be applied to monitor and relieve the developmental 

disorders in children at preschool and primary school age. Zennifa et al., applied 

concurrent fNIRS-EEG recording to monitor the unrestrained cognitive state of children 

with mental retardation [40]. Marx et al., took a further step by employing the 

multimodal approach to the treatment of children with attention-deficit-hyperactivity 

disorder (ADHD) in a neurofeedback design. In this pilot study, HbO in the prefrontal 

cortex of children with ADHD was measured and used as feedback. FNIRS-based 
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neurofeedback was compared with the EEG (slow cortical potentials) and feedback 

from EMG signals. The author claimed that ADHD symptoms decreased significantly 

4 weeks and 6 months after the fNIRS and EEG or EMG training according to different 

metrics [41]. 

     Neurorehabilitation is a fundamental part in neurological disease such as stroke and 

Alzheimer’s disease (AD). Concurrent fNIRS-EEG monitoring of brain activity during 

post-injury recovery can be of great help in providing brain function alterations without 

restricting the patient movement. Concurrent fNIRS-EEG recording has been applied 

for rehabilitation purposes, either for monitoring functional recovery and/or providing 

advanced rehabilitation training that rely on the previously described BCIs. In terms of 

brain function monitoring, Li et al., developed a multimodal fNIRS-EEG brain imaging 

algorithm by using the spatial prior derived from the fNIRS signals to enhance the EEG 

source localization result. They then employed this technique to study the brain network 

alteration in mild AD patients and identified key brain regions that are typically altered 

by cognitive decline in mild AD stage [21]. On the other hand, concurrent fNIRS-EEG 

has also been employed as a BCI training system for post-stroke motor recovery. BCI 

for stroke motor recovery generally provides intensive training that requires patient’s 

intention to move the paretic limb with the contingent sensory feedback of the paretic 

limb movement guided by assistive devices. It has been demonstrated in previous study 

that BCI training was able to significantly improve motor performance in stroke patients 

with severe paresis compared to control group [42]. 

     The applications of utilizing multimodal fNIRS-EEG to investigate psychiatric 

disorders have increased dramatically in recent years, mainly including bipolar disorder, 
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schizophrenia, and game addiction. fNIRS studies on bipolar patients have reported 

altered fNIRS responses during cognition task compared with those of patients with 

major depressive disorder or healthy subjects. And EEG also identified altered electrical 

activities that are always related to deficits of frontal activity and frontotemporal-

parietal connectivity [43]. The combination of fNIRS and EEG could therefore reveal 

more comprehensive information associated with bipolar disorder. Following this, 

similar analysis pipeline have been widely adapted and employed to understand the 

neurophysiological mechanisms underlying different psychiatric disorders, such as 

schizophrenia [44] and game addiction [45]. Apparently, fNIRS and EEG offer distinct 

but correlated physical and physiological information, advancing their flexible and 

lightweight integration in multiple brain research fields. 

1.7 Summary 

     This chapter introduces the basic concepts of the brain functional activation and the 

fundamental of two noninvasive brain imaging techniques -- the fNIRS and EEG.  We 

then discuss the limitations of single-modality technique, the neurovascular coupling 

phenomenon of the brain, and provide a brief literature summary of employing 

multimodal brain imaging technique to investigate the cortical activity associated with 

healthy brain as well various brain disorders. The remaining of this thesis focuses 

primarily on concurrent EEG-fNIRS studies, specifically the experimental validation of 

their complementary properties and the integration analysis between EEG and fNIRS 

data. In particular, Chapter 2 implements an fNIRS-guided EEG channel selection 

method for enhancing the classification performance of a brain computer interface (BCI) 
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system. Chapter 3 describes a novel EEG-informed fNIRS analysis to validate the 

complementary properties of EEG and fNIRS. In Chapter 4 and Chapter 5, we develop 

an fNIRS-informed EEG source localization approach to investigate the cortical activity 

with high spatiotemporal resolution and describe how this approach can be used to 

characterize the cortical reorganization associated with Alzheimer’s disease and stroke. 
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Chapter 2 ─ Enhancing Performance of a Hybrid EEG − fNIRS BCI 

System using fNIRS-Guided Channel Selection 

2.1 Abstract 

     Brain-Computer Interface (BCI) techniques hold a great promise for neuroprosthetic 

applications. A desirable BCI system should be portable, minimally invasive, and 

feature high classification accuracy and efficiency. As two commonly used noninvasive 

brain imaging modalities, Electroencephalography (EEG) and functional near-infrared 

spectroscopy (fNIRS) BCI system have often been incorporated in the development of 

hybrid BCI systems, largely due to their complimentary properties. In this chapter, we 

aim to investigate whether fNIRS-guided channel selection can be used to enhance the 

accuracy and efficiency of a hybrid EEG-fNIRS BCI system. Eleven healthy volunteers 

were recruited and underwent simultaneous EEG-fNIRS recording during a motor 

execution task that included left and right hand movements. Singular EEG and fNIRS 

channels corresponding to the motor cortices of each hemisphere were selected via 

general linear model analysis of the fNIRS signal. Early temporal information was 

extracted from the EEG channel (0-1s) along with initial hemodynamic dip information 

from fNIRS (0-2s) for classification using a support vector machine (SVM). Results 

demonstrated a lofty classification accuracy using a minimal number of channels and 

features derived from early temporal information. In conclusion, a hybrid EEG-fNIRS 

BCI system can achieve higher classification accuracy (91.02%±4.08%) and efficiency 

by integrating their complimentary properties, compared to using EEG (85.64%±7.4%) 

or fNIRS alone (85.55%±10.72%). 
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2.2 Introduction 

     Brain-Computer Interface (BCI) systems, which use cortical activity to control 

external devices, have shown promising potential for multiple applications [46]. One of 

the main focuses of current BCI-related research is increasing the efficiency of real-time 

reactions while using a convenient setup that minimizes the burden on the user. 

Considering factors like setup cost and time resolution is therefore essential when 

choosing measurement modalities for a BCI study. BCI systems can be either invasive 

or noninvasive [47-49], though noninvasive BCIs are usually preferable since they incur 

neither the expenses nor safety risks of electrode implantation. 

    Over the past few decades, different noninvasive methods, including 

Electroencephalography (EEG) [50-52], functional Near-Infrared Spectroscopy (fNIRS) 

[30, 53-55], functional Magnetic Resonance Imaging (fMRI) [56, 57], and 

Magnetoencephalography (MEG) [58], have been extensively explored. Each modality 

has its own strengths and limitations, so it falls to the experimenter to select an 

appropriate method with high efficiency and low cost. Current practice then shows that 

EEG and fNIRS are considered the leading non-invasive BCI modalities due to their 

modest costs and practicality [59-61]. 

     In recent decades, the complimentary individual properties of EEG and fNIRS have 

led to active investigations of the benefits of integrated EEG and fNIRS in a number of 

BCI studies [23-25]. In general, integrated EEG-fNIRS approaches offer various 

benefits over single-modality methods by capitalizing on their individual strengths; 

EEG provides favorable temporal resolution (about 0.05 s), while fNIRS offers better 

spatial resolution (about 5mm) and is robust to noise [17, 18]. Secondarily, EEG and 
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fNIRS signals are associated with different aspects of cortical activity, providing a built-

in validation for identified activity. Measurements obtained from each of these two 

modalities thereby provide complementary information and can be used to enhance the 

performance of BCIs. 

     In hybrid EEG-fNIRS BCI applications, the main challenge is how to improve 

the classification accuracy while reducing the complexity of system and improving 

response time [62-64]. Since Fazli et al., [24] showed that BCI performance in a binary 

motor task can be enhanced by incorporating EEG features with those derived from the 

fNIRS signals, hybrid EEG-fNIRS BCIs have become a major research focus. These 

multimodal BCIs have shown enhanced classification accuracy in a variety of tasks, 

including mental arithmetic (MA), hand rotations, and movements [26-28]. However, 

some methodological limitations remain unsolved. For example, most hybrid EEG-

fNIRS systems have relied on principle component analysis (PCA) or common spatial 

pattern (CSP) methods to transform the original data and select the components with 

largest discriminability between the two target classes [65, 66]. As a result, multiple 

channels – usually all available channels from both hemispheres – are required to 

perform feature extraction, classifier training, and classifier testing. This dramatically 

increases both computational and systemic costs and reduces the stability of the system 

setup. Furthermore, the purpose of integrating EEG and fNIRS in a BCI study should 

be to achieve a true multimodal integration that accentuates the favorable properties of 

each individual approach [67]. In particular, the spatial information of fNIRS could be 

further exploited to enhance hybrid EEG-fNIRS studies. Unfortunately, most hybrid 

BCIs simply process the signals separately and combine two groups of features for 
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classification. Finally, although high classification accuracy has been achieved [68], the 

temporally slow hemodynamic response and wide time window used for feature 

extraction remain major issues associated with the use of fNIRS for BCI applications 

[62]. 

     In this study, we aimed to perform a binary classification of left and right hand 

movements in a hybrid EEG-fNIRS BCI system using signals obtained from the motor 

cortex.  A fNIRS-guided channel selection criterion based on the general linear model 

(GLM) was proposed. The early information from the selected EEG channels was 

extracted using a short time window (0-1s) while the initial dip (0-2s) of the 

hemodynamic response was captured from the selected fNIRS channels. To our 

knowledge, this is the first hybrid EEG-fNIRS-based BCI study to take advantage of 

the spatial information of fNIRS for channel selection and apply the early temporal 

information of both modalities to enhance the transfer rate of the system while 

maintaining a decent performance. 

2.3 Materials and Methods 

2.3.1 Participants 

     Eleven healthy, right-handed subjects (n=11, male, 25.5±3.2 years) participated in 

this experiment. The experiment was approved by the local ethics committee 

(Guangdong Provincial Work Injury Rehabilitation Center, China), and performed in 

accordance with the Declaration of Helsinki. Each subject was fully informed about the 

purpose of the research and provided written, informed consent prior to the start of the 

experiment. No participants had any history of neurological or psychiatric disorders or 
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disease. No participants had any previous experience with the experimental task and all 

were naive to the BCI. 

 

Figure 2-1. The experiment setup. (A) The environment of concurrent EEG-fNIRS measurement. (B) 

The paradigm used in the experiment. 
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2.3.2 Study protocol 

     The experiment was performed in a confined room to reduce any environmental 

disturbances. During the experiment, subjects were seated in a comfortable chair and 

asked to remain still and relaxed. Subjects received visual instruction through a screen 

placed 1m in front of their eyes (Figure 2-1A). The motor execution paradigm used in 

the experiment consisted of 50 randomized trials of left and right hand grasping tasks 

(25 trials for each hand movement). Each trial started with 20 seconds of rest, indicated 

by a “+” symbol, followed by 5 seconds of motor execution, in which an arrow was 

shown pointing either left or right, as shown in Figure 2-1B. Subjects were asked to 

squeeze a rubber ball with the corresponding hand for the entire duration that the arrow 

stimulus was shown. 

     A concurrent EEG and fNIRS measurement setup was employed in this study. EEG 

signals were recorded at 500 Hz using a BrainAmp DC EEG recording system (Brain 

Products GmbH, Germany). Sixteen EEG electrodes were placed on the scalp over the 

left and right motor cortices (FFT7h, FFC5h, FFC3h, FFT8h, FFC6h, FFC4h, FTT7h, 

FCC5h, FCC3h, FTT8h, FCC6h, FCC4h, CCP5h, CCP3h, CCP4h, and CCP6h). Two 

EEG electrodes were attached on both mastoids, the average of their signals was used 

as re-reference signal in preprocessing raw EEG data. FNIRS signals were recorded 

simultaneously using a NIRScout system (NIRx Medizintechnik GmbH, Germany) with 

12 sources and 12 detectors. The inter-optode distance was 3 cm and a total of 34 fNIRS 

channels were equidistantly distributed throughout the motor cortex areas. The 

wavelengths used for HbO and HbR detection were 760 nm and 850 nm, respectively. 
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The fNIRS signals were acquired at a sampling rate of 7.81 Hz. A schematic illustration 

of the location of EEG electrodes and fNIRS channels is shown in Figure 2-2. 

 

Figure 2-2. (A) Real photo of a subject wearing the cap completely mounted with EEG electrodes, 

fNIRS sources and detectors. (B) The configuration of the EEG electrodes and fNIRS 

optodes on the cap. 

2.3.3 Data preprocessing 

     Raw EEG signals of all channels were first re-referenced by subtracting the average 

of two EEG channels on both mastoids. Since the valuable EEG information related to 

motor function is usually related to frequencies below 40 Hz [15], raw EEG signals 

were first down-sampled to 250 Hz and filtered from 1 to 45 Hz using a 3rd order 

Butterworth band-pass filter. Single-trial EEG data was segmented from 2s prior to the 

onset of movement instruction (baseline: -2-0s) to 5s after the onset (execution: 0-5s), 

resulting in 25 segmented trials for each hand movement. Baseline correction was 

performed by subtracting the mean value of individual baseline interval from its 

corresponding segmented trial.  
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     To process the fNIRS signal, the concentration changes of hemoglobin (HbO and 

HbR) were computed using the Modified Beer-Lambert Law (the differential path 

length factors for the higher (850 nm) and lower (760 nm) wavelengths were 6.38 and 

7.15, respectively) [12]. A 4th order Butterworth band-pass filter was applied from 0.01-

0.2 Hz to remove artifacts, including cardiac interference (0.8 Hz) and respiration (0.2-

0.3 Hz) [69]. In addition, spline interpolation was performed to remove any motion 

artifact contamination from the fNIRS signal [70]. Single trial fNIRS data was 

segmented from 5s prior to the onset of movement instruction (baseline: -5-0s) to 20s 

after the onset (execution: 0-20s), creating fNIRS trials that directly correspond to those 

obtained through EEG segmentation. The mean value of each baseline signal was 

subtracted from associated execution task. 

2.3.4 Channel selection and feature extraction 

     Before features can be extracted, it is essential that appropriate channels are selected 

if a BCI system is to achieve favorable accuracy with minimal complexity. Previous 

work has suggested different approaches for selecting the most representative channels 

or signal components for classification, including common spatial patterns [66], 

bundled-optode-based approaches [31], and channel-averaging approaches [32]. A main 

goal of this paper is to use the spatial information from fNIRS to identify the single 

fNIRS channel and EEG channel on each hemisphere that yields the most significant 

differences between the binary motor tasks, which will enable increased classification 

accuracy with as few channels as possible. Here, the general linear model (GLM), a 

well-known and widely used method that fits the expected hemodynamic response to 
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the measured fNIRS signal, was applied to show the channels that yield the largest 

contrast between the two classes [71].  

     Both HbO and HbR concentration changes reflect changes in the hemodynamic 

response, though it has been suggested that HbO is a more sensitive indicator in fNIRS 

studies [72]. Therefore, HbO was adopted in the GLM analysis of the present study. 

The GLM model is given by 

       𝒀 = 𝑿𝜷 + 𝜺,                                                    (2-1) 

where 𝑌 is an N × M matrix of measured data (where N denotes the number of data 

points and M denotes the number of fNIRS channels), 𝑋 is an N × L design matrix 

(where L denotes the number of the conditions, including the tasks and any term that is 

considered as a source related to the variance of the data). 𝛽 is a L × M matrix of 

regression coefficients to be estimated where L is associated with the number of the 

conditions and the value of 𝛽  reflects the magnitude of the condition-evoked brain 

response. Finally, 𝜀 is an N × M matrix of residual error. In this present study, 𝛽 is a 3 

× M matrix assigned with three conditions, where the first row indicates the left hand 

movement, the second row indicates the right hand movement, and the third row is a 

constant term on all channels.  

     The regression coefficient β and the residual error ε can be tested through a one-

sample t-test to identify the channels with t-values that represent a significant contrast 

between the two motor execution tasks. This t value is calculated by 

   𝒕 =
𝒄𝑻∗𝜷

√𝜺𝟐𝒄𝑻(𝑿𝑻𝑿)−𝟏𝒄 
，                         (2-2) 
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where 𝑐  is the contrast vector, which determines the contrast between specific 

conditions. 

     In our study, the following criterion was used to select the EEG channel and fNIRS 

channel of interest. First, the regression coefficient β of each individual fNIRS channel 

was estimated through the GLM, from which a group of channels with t-values that 

represent a significant contrast between the two motor execution tasks were selected as 

candidate channels. For each hemisphere, an fNIRS channel that yielded the highest t-

value among those candidate channels was selected. One EEG channel, which was 

adjacent to the chosen fNIRS channel, was selected for classification. Therefore, the 

two EEG channels were selected according to the two fNIRS channels with the greatest 

discriminatory potential. 

     In order to extract the features associated with early temporal information, EEG data 

from 0-1s (0s denoting the onset of the stimuli) was segmented out from the selected 

channels, resulting in a 1s-long time window of EEG data with 250 points for each trial. 

The discrete wavelet transform (DWT) was then employed to decompose the segmented 

single trial EEG data [73], DWT is a technique that decomposes time series data of each 

selected EEG channel into a number of layers. In each layer the signal is filtered with a 

quadrature mirror filter (a low-pass filter and a high-pass filter). The output of each layer 

is a series of detail coefficients (from the high-pass filter) and approximation 

coefficients (from the low-pass filter). In this study we assumed that the wavelet 

approximation coefficients from the output of the last DWT layer contained the main 

power of the event-related oscillation in brain activity [74], which can be used for the 

discrimination of left and right hand movements. Here, the segmented signals of the 
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selected EEG channels were decomposed with a 4-layer ‘Symlet’ wavelet, resulting in 

22 approximation coefficients for each trial. Then all approximation coefficients of the 

selected EEG channels were combined into a 44-dimensional EEG feature set (22-

dimensional × 2 channels) for the single trial classification of the left and right hand 

movements. 

     The peak information from the HbO and HbR signals has been widely used in many 

fNIRS-based BCI studies [62]. However, the inherent delay of the hemodynamic 

response impedes the efficiency of a real-time fNIRS-based BCI application.  

     The hemodynamic feature of interest in the current study is known as the initial dip 

– a metabolically-linked phenomenon wherein HbO concentration decreases slightly or 

HbR concentration increases slightly 0 – 2s after the presentation of stimuli[75].  This 

fluctuation is considered to be the early and rapid metabolism of blood-borne oxygen 

by the responding population of neurons, occurring before the main activity-coupled 

vascular response. Though the initial dip has a relatively low amplitude, Zafar et al., 

have shown that detecting and classifying the  initial dips is feasible with fNIRS [76]. 

As a result of their rapid evolution in the face of stimuli the initial dip information was 

extracted for classification in this study. 

     Prior to the extraction of initial dip information, principal component analysis (PCA) 

was performed to further remove any artifacts remaining in the preprocessed fNIRS 

signal. In this manner, the N-trial fNIRS data set from the selected channel was 

transformed into N linearly uncorrelated components known as principal components, 

ordered by the amount of variance of the original data that each component accounts 

for. The application of PCA to filter the multi-trial fNIRS data within a channel assumes 



26 

that the event-evoked hemodynamic response is the main component across all trials. 

This means that the hemodynamic response provides the dominant contribution to the 

variance of the fNIRS data and implies that the first several principal components will 

be similarly linked to the expected event-evoked hemodynamic response.  

     The PCA filtration is given by 

         𝒀 = 𝑬 ∗ 𝑿，                                       (2-3) 

where 𝑋 is the N × M data matrix (in which N denotes the data points of each trial and 

M denotes the number of trials), 𝐸 is the eigenvector matrix with the dimensions N × N, 

and 𝑌 is the N × M matrix consisting of the N uncorrelated principal components. By 

keeping the first R components with the largest variances and removing the remaining 

components, the original data X can be reconstructed by 

                  𝑿𝒓𝒆𝒄𝒐𝒏 = 𝒀𝒏𝒆𝒘 ∗ 𝑬𝒏𝒆𝒘
𝑻 ，                          (2-4) 

where 𝑋𝑟𝑒𝑐𝑜𝑛  is the N × M filtered data, 𝐸𝑛𝑒𝑤  is the new eigenvector matrix with 

dimension M × R, and 𝑌𝑛𝑒𝑤  is the N × R matrix consisting of the R uncorrelated 

principal components.   

     In our study, all trials of each hand movement were filtered by PCA with the first 

component accounting for approximately 70% of the variance of the data set. Then the 

mean values of the HbO and HbR fluctuations within the 0 – 2s interval were computed 

for each trial, resulting in a 4-dimensional fNIRS feature set (2 mean values (HbO + 

HbR) × 2 channels) for the single trial classification of the left and right hand 

movements. 
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2.3.5 Classification 

     Prior to the classification, we constructed three different feature sets: EEG-only 

feature set, fNIRS-only feature set, and a hybrid feature set (EEG + fNIRS). The EEG-

only feature set contained 44 approximation coefficients obtained from the selected 

EEG channels for each trial, while the fNIRS-only feature set contained 4 hemodynamic 

features (mean values of HbO and HbR of the two selected fNIRS channels) for each 

trial. Then all single trial features in both modalities were respectively normalized and 

rescaled between 0 and 1. The hybrid feature set was formed as a 48- dimensional 

feature vector for each trial, which contained the normalized EEG features (44 

dimensional) and fNIRS features (4 dimensional). In summary, the dimensions of 

hybrid feature vectors were 48 features × 25 trials for either a left or right hand 

movements. 

     A support vector machine (SVM) was applied to perform the classification of the 

two-hand motor execution for each individual subject. The goal of SVM is to construct 

a hyper-plane that maximize the margins between the classes by minimizing the cost 

function [77]. In this study a SVM toolbox named “LIBSVM” was employed to train 

the SVM classifier and perform the prediction [78]. In particular, a Radial Basis 

Function (RBF) kernel which works under both linear and nonlinear situations was 

applied with default parameters (penalty parameter C = 1, γ = 1/number of features). As 

the obtained feature set was small (25 trials in total for each motor task), the Leave-

One-Out cross-validation (LOOCV) method was utilized by randomly selecting one 

trial as a testing set and using the remaining 24 trials as the training set to train a 

classifier for prediction until all trials were tested.  The classification accuracy for each 
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subject was calculated as the ratio between the number of correct predictions and the 

total number of predictions. Classification was performed separately using three kinds 

of feature sets for comparison; an EEG-only feature set, an fNIRS-only feature set, and 

a hybrid feature set (EEG + fNIRS). A flowchart is presented in Figure 2-3 to describe 

the study design. 

 

Figure 2-3. The flow chart of the study. 

2.4 Results 

     Figure 2-4A shows a summarized mapping of the EEG and fNIRS channels selected 

from each subject for classification based on the GLM results. Each triangle indicates 

an EEG-fNIRS pair of selected channels. The number in the orange triangle represents 

the number of subjects whose selected channel is located at the given area, as shown in 

Figure 2-4B. 
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Figure 2-4. (A) Group-wise location summary of the selected EEG and fNIRS channels for all 

subjects. (B) Zoom-in view of the group-wise summarized location. 

 

 

Figure 2-5. Classification accuracies of two hand movements obtained from three feature sets 

(EEG+fNIRS, EEG-only and fNIRS-only). 

     One goal of our study was to comparatively evaluate the classification reliability of 

the features extracted from EEG, fNIRS, and EEG + fNIRS based on the results of the 

GLM. To do this, we performed a single-trial classification of the left vs. right motor 

execution task. Classification accuracies obtained from each subject by the three 

different feature sets can be seen in Table 2-1. A classification accuracy of 100% would 
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indicate that the two motor tasks are perfectly separable, while a classification accuracy 

of 50% would represent the poor performance of a random classifier in the context of 

the binary classification task. Figure 2-5 shows the histogram plot of all classification 

results, with the overall classification accuracies of all three feature sets exceeding 85%. 

Specifically, the average accuracy of the EEG-only feature set (85.64%±7.4%) slightly 

outperformed the fNIRS-only feature set (85.55%±10.72%). The best performance, 

however, was achieved from with the hybrid EEG-fNIRS feature set (91.02%±4.08%), 

providing an improvement in the classification accuracy and minimizing the standard 

deviation. To examine how significantly the hybrid feature set outperformed the single 

modality, paired t-test was applied to test the classification results obtained by the three 

different feature sets. Prior to the paired t-test, the W/S test was firstly performed to test 

the normality of the obtained classification accuracies, which is the prerequisite of 

paired t-test analysis [79]. The result revealed that all the accuracies were normally 

distributed at a significance level of 0.05 (qEEG = 3.5124, qfNIRS = 3.6365, qHybrid = 

3.4275, qcritical = [2.74 3.80]). The statistical results of paired t-test are shown in Figure 

2-6. It can be observed that the classification performance based on the hybrid feature 

set significantly improved on classification based on EEG-only features (P=0.0123) and 

classification based on fNIRS-only features (p=0.0457) as well. 
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Table 2-1. Summary of SVM classification accuracies for feature sets of NIRS-only (HbO + HbR), 

EEG-only and hybrid (EEG + fNIRS). 

Subject No. 
Accuracy (%) 

EEG fNIRS EEG+fNIRS 

1 80.0 56.0 82.0 

2 96.0 94.0 96.0 

3 92.5 82.5 95.0 

4 85.0 85.0 90.0 

5 90.0 92.5 95.0 

6 85.0 90.0 92.5 

7 87.5 90.0 90.0 

8 70.0 82.5 87.5 

9 77.5 95.0 92.5 

10 88.6 88.6 88.2 

11 90.0 85.0 92.5 

Mean (%) 85.64 85.55 91.02 

Std. (%) 7.40 10.72 4.08 

 

 

Figure 2-6. Statistical plot of the classification accuracies obtained from the three feature sets, 

respectively. 
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2.5 Discussion and Conclusion 

     Multi-modal imaging has been reported to improve classification accuracy over 

unimodal methods [24]. In this chapter, we attempted to achieve the highly accurate and 

computationally efficient classification of a binary motor execution task using a hybrid 

BCI design. This was performed through the selection of singular hemispheric EEG and 

fNIRS channels and the application of rapidly-evolving temporal features from both 

modalities. The results indicated that the multi-modal fNIRS-EEG approach 

significantly improved the performance over that of unimodal alone, yielding an average 

accuracy of 91.02%±4.08% and proving the suitability of the hybrid approach for binary 

motor execution tasks. 

     Channel selection plays a crucial role in the design and application of a BCI system, 

especially with respect to the number and the location of the selected channels. For the 

classification of motor execution tasks, it is quite common to utilize multiple channels 

from the C3 and C4 areas [23, 24]. These methods, however, might not be able to 

minimize the variation from subject to subject, as identical channels may align with 

different brain regions. Although recent studies have investigated the efficiency of 

different channel selection criteria [31, 32, 66], few efforts have been made to optimize 

the number and location of these channels. A previous fNIRS study proposed a selection 

criterion based on high t-value channels from the auditory cortex during the 

classification of four sound categories [80]. This method, however, still relied on 

multiple channels with no noticeable improvement in performance. In this study, we 

only made use of single EEG and fNIRS channels from each hemisphere with the 

highest t-value based on the GLM results, for classification. Here we attempted to 
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capitalize on the spatial information from fNIRS, a valuable advantage of fNIRS 

technology, to ensure that the most effective channels were chosen for feature extraction 

and classification. As such we might be able to reduce the complexity of a BCI system 

and minimize the burden on the user. Our results demonstrated that it is feasible to take 

advantage of the high spatial resolution offered by fNIRS to select channels for 

classification, to therefore reduce the channel number and the complexity of the BCI 

system while maintaining desirable performance.  

     In addition to the classification performance, the proposed channel selection criterion 

applied the spatial information from fNIRS to the selection of both the EEG and fNIRS 

channels, establishing a connection between the two modalities rather than performing 

the separated channel selection performed in previous studies [23, 24, 59]. The 

reliability of this proposed method was validated by the favorable classification 

performance shown in Figure 2-5, where all of the average classification accuracies 

using the three different feature sets exceeded 85%. It is noteworthy that, while all 

selected channels were located within the motor cortex, the exact channel of interest 

varied by subject (Figure 2-4). This shows that the proposed channel selection method 

was able to identify appropriate, subject-specific channels according to the GLM results, 

minimizing any error from potential variation in channel positions. The mapping results 

therefore emphasize the importance of selecting customized channels from each 

individual subject instead of simply choosing motor-related channels – like C3 or C4 – 

for motor task classification. 

     It should be noted that, while unimodal classification may have been poor in specific 

subject, the hybrid combination revealed the potential to stabilize the classification 
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performance with a higher mean accuracy and smaller standard deviation (Figure 2-6, 

Table 2-1). Apparently, the inclusion of the different information measured by EEG and 

fNIRS is beneficial to the robustness of the BCI. On the other hand, EEG-based BCIs 

have been reported to yield superior temporal results in real-time BCI applications [17]. 

Recently, fNIRS-based BCIs have also been developed that show favorable 

classification rates by using different combinations of features and various classifiers 

[62]. These fNIRS-based BCIs, however, are not yet viable as an alternative to EEG-

based BCIs; the most reliable feature of fNIRS is the HbO peak information, which 

shows a long delay in the response to stimuli [62]. In this study, we aimed to enhance 

the response efficiency of a hybrid system while maintaining favorable accuracy. This 

was performed by focusing on the initial dip of the hemodynamic response, which has 

been proven to be a potential feature for fNIRS-based BCI application[64]. Generally it 

is difficult to detect the initial dip due to its short duration and high sensitivity to low 

frequency artifact (e.g., Mayer wave). In order to obtain a clean initial dip in single-trial 

fNIRS signal, a PCA-based algorithm was employed to extract the main component, 

which was considered the true hemodynamic response associated with the motor 

execution task. In the present study, we selected the first principal component, which 

accounted for over 70% of the total variance of the original signal. Results showed that 

this was sufficient to achieve a high classification accuracy. In particular, the lofty 

classification accuracies obtained by the fNIRS-only classifier (85.55%±10.72%) as 

well as from hybrid classifier (91.02%±4.08%) demonstrated the effectiveness of the 

initial dip in discriminating the binary motor tasks. By applying a 0–2s time window to 

the fNIRS signal, it was observed that the addition of fNIRS features significantly 



35 

enhanced the performance of the EEG-based BCI without significantly increasing the 

time delay, demonstrating the advantage of a hybrid EEG-fNIRS system and showing 

that early temporal features can be used to create a faster and more stable BCI system, 

which overcomes the problem in Fazli’s study [24].        

     One limitation of our study lies in the configuration of the EEG electrodes and fNIRS 

optodes, where the EEG electrodes were surrounded by the fNIRS channels, as shown 

in Figure 2-2. Although we chose EEG electrodes that were close to the selected fNIRS 

channels, placing the EEG electrodes on the surface pathways of the fNIRS channels 

may optimize the channel configuration and enhance the physiological consistency 

between the EEG and fNIRS channels. This problem may be addressed by using a 

customized cap in the future. 

2.6 Summary 

In this chapter, an fNIRS-guided hybrid EEG-fNIRS configuration for binary motor task 

classification was proposed. Singular EEG and fNIRS channels were selected from the 

motor cortex of each hemisphere based on fNIRS-informed prior information. The high 

accuracy and efficiency of classification results are encouraging and suggest the 

integrated EEG-fNIRS strategy developed in this study as a promising approach to 

develop a high-performance BCI system. More importantly, from the view of fNIRS-

guided analysis, this chapter validate our hypothesis that there is certainly 

complementary information offered by EEG and fNIRS to study the brain activity.
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Chapter 3 ─ Enhancing fNIRS Analysis Using EEG Rhythmic 

Signatures: an EEG-informed fNIRS Analysis Study 

3.1 Abstract 

     Neurovascular coupling represents the relationship between changes in neuronal 

activity and cerebral hemodynamics. Concurrent EEG and fNIRS recording and 

integration analysis has emerged as a promising multi-modal neuroimaging approach to 

study the neurovascular coupling as it provides complementary properties with regard 

to high temporal and moderate spatial resolution of brain activity. In this chapter we 

developed an EEG-informed-fNIRS analysis framework to investigate the neuro-

correlate between neuronal activity and cerebral hemodynamics by identifying specific 

EEG rhythmic modulations which contribute to the improvement of the fNIRS-based 

general linear model (GLM) analysis. Specifically, frequency-specific regressors 

derived from EEG were used to construct design matrices to guide the GLM analysis of 

the fNIRS signals collected during a hand grasp task. Our results showed that the EEG-

informed fNIRS GLM analysis, especially the alpha and beta band, revealed 

significantly higher sensitivity and specificity in localizing the task-evoked regions 

compared to the canonical boxcar model, demonstrating the strong correlations between 

hemodynamic response and EEG rhythmic modulations. Results also indicated that 

analysis based on the deoxygenated hemoglobin (HbR) signal slightly outperformed the 

oxygenated hemoglobin (HbO)-based analysis. The findings in our study not only 

validate the feasibility of enhancing fNIRS GLM analysis using simultaneously 
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recorded EEG signals, but also provide a new perspective to study the neurovascular 

coupling of brain activity. 

3.2 Introduction 

     Neuronal activity occurs within a localized brain region is usually accompanied with 

vascular response to meet the increased demand of glucose and oxygen. This well-

regulated system in the brain is called neurovascular coupling, which can be altered by 

brain disorders [81]. To date, modern neuroimaging techniques, such as EEG and fMRI, 

have been widely used to investigate the relationship between neuronal activity and 

cerebral hemodynamics [10, 82, 83]. EEG is by far the most widely used neuroimaging 

technique to measure the neuronal electrical activity. It is well-accepted that EEG 

signals originate from the mixture of propagating electric potential fluctuations, mainly 

reflecting the postsynaptic activity of a mass of cortical pyramidal cells [84]. 

Particularly, rhythmic EEG activities can be modulated by external stimuli, such as 

cognitive, motor and visual tasks, resulting in the so-called event-related potentials 

(ERPs) [85]. On the contrary, fMRI comprises one of the primary methods to indirectly 

observe the neuronal activity by detecting Blood Oxygen Level Dependent (BOLD) 

contrast that identifies regions with significantly different concentrations of oxygenated 

blood induced [86]. This serves as an indirect measure of underlying neuronal activity—

the high metabolic demand of active brain regions requires an influx of oxygen-rich 

blood, increasing the intensity of voxels where activity can be observed [81, 87]. 

     Taking the advantages of EEG and fMRI, the relationship between neuronal activity 

and hemodynamic response has been actively investigated recently. Emerging 
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evidences have shown that BOLD fluctuations correlated positively with trial-by-trial 

fluctuations in EEG gamma band and negatively with the frequency at alpha and beta 

band during a visual attention task [88]. In addition, simultaneous EEG-fMRI recording 

during a hand grip task has revealed a strong correlation between the BOLD fluctuations 

and the task-evoked EEG oscillations, especially the alpha and beta band [89]. However, 

fMRI is typically limited by the high sensitivity to body-motion artifacts, a lack of 

portability and high costs, rendering it less compatible with EEG when investigating 

brain activity under realistic situations such as motor execution task [90]. 

     As a noninvasive optical imaging technique, fNIRS also measures the concentration 

change of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) 

associated with brain activity through a spatially distributed set of optodes (emitters and 

detectors) placed on the scalp [12]. Compared to fMRI, fNIRS offers better tolerance to 

motion artifacts, higher temporal resolution and high portability for long-term, 

noninvasive monitoring [10, 91, 92]. As they rely on similar cerebrovascular dynamics, 

the results obtained by fNIRS have been proven to be roughly analogous to those of 

fMRI while maintain moderate spatial resolution [93, 94], making this technique more 

appropriate for practical applications, such as investigating motor function and social 

communication [29, 95, 96]. 

     The good compatibility and complimentary properties of EEG and fNIRS have led 

to growing investigations of integrated EEG and fNIRS analyses in a number of studies 

on neurovascular coupling [33, 97, 98]. For instance, Croce et al., demonstrated the 

feasibility of enhancing both the electrical and hemodynamic activity reconstruction 

through combined EEG and fNIRS measurements in a simulation study [99]. In human 
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study, Khan et al., have shown the feasibility of detecting an early fNIRS response using 

EEG signal as a marker [100]. Zich et al., have shown a strong correlation between the 

EEG-evoked potential at 8-30 Hz and the modulations of hemodynamic response during 

a motor imagery task [101]. More specific evidence was reported in a recent 

simultaneous EEG-fNIRS study, wherein an increase in HbO was accompanied by a 

decrease in HbR concentration and a decrease in amplitudes of alpha and beta EEG 

rhythms during a motor task [97]. Most of the aforementioned studies, however, 

typically focused on the superficial correlation between the task-evoked EEG 

oscillations and fNIRS signals and failed to take into account the inherent relationship 

between two modalities [97, 100-103]. There is clearly a need to further explore the 

relationship between neuronal activity and the hemodynamic response.   

     In typical fMRI / fNIRS data analysis, the BOLD signal or the fNIRS signal is 

commonly regressed via a general linear model (GLM) constructed by convolving the 

canonical hemodynamic response function (HRF) with a boxcar function representing 

the temporal profile of the experimental paradigm to identify cortical regions activated 

by specific stimuli [10, 104, 105]. To explore the neurovascular coupling, several recent 

integrated EEG-fMRI analysis studies employed the EEG-derived frequency-specific 

features as a replacement of the canonical boxcar function to characterize the correlation 

between EEG and the BOLD signal [88, 89]. In light of these previous works, in this 

chapter we presented an EEG-informed-fNIRS analysis framework to investigate the 

inherent neuro-correlate between EEG and fNIRS signals by understanding how EEG 

frequency-specific oscillations selectively contribute to the hemodynamic response 

measured by fNIRS during a motor execution task.  In particular, modulations of several 
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representative EEG rhythms which are reported to be highly correlated with 

hemodynamic response, including alpha, beta and gamma band, were employed to 

construct various EEG-informed models to improve the performance of GLM analysis. 

We hypothesized that the EEG frequency-specific models are able to enhance the fNIRS 

GLM estimation compare to canonical boxcar model, providing new perspective to 

investigate the neurovascular coupling using simultaneous EEG and fNIRS 

measurement. 

3.3 Materials and Methods 

3.3.1 Participants 

     Ten healthy, right-handed subjects (n=10, male, 28.5±3.1 years) participated in this 

experiment. All participants were healthy subjects with no history of neurological or 

psychiatric disorders or disease. The experiment was approved by the local ethic 

committee, and performed in accordance with the latest Declaration of Helsinki. Each 

subject was fully informed about the purpose of the research and provided written, 

informed consent prior to the start of the experiment. No participants had any previous 

experience with the experimental task and are all were naive to the used techniques. 

3.3.2 Experiment and data acquisition 

     In this study motor execution paradigm was employed and performed in an isolated 

room to reduce environmental disturbances. During the experiment, subjects were 

seated in a comfortable chair and asked to remain still and relaxed. Subjects received 

visual instruction through a screen placed 1m in front of their eyes. The motor execution 

paradigm consisted of 40 randomized trials of left and right hand grasp tasks (20 trials 
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for each hand movement). Each trial started with a 8-second motor execution task, 

indicated by an arrow pointing either left or right, followed by 17 seconds of rest period, 

indicated by a “+” symbol in a black background (Figure 3-1A). During the motor 

execution period, subjects were asked to naturally squeeze a rubber ball with the 

corresponding hand. 

     A concurrent EEG and fNIRS measurement setup was employed in this study. EEG 

signals were recorded at 500 Hz using an EEG recording system (Brain Products GmbH, 

Germany). Thirty-two EEG electrodes were placed on the scalp according to the 10-20 

international EEG system. FNIRS signals were recorded simultaneously at 3.91 Hz 

using a continuous-wave NIRS imaging system (NIRScout, NIRx Medizintechnik 

GmbH, Germany). The wavelengths used for the detection of the concentration changes 

oxy- and deoxy- hemoglobin were 760 nm and 850 nm. A total of 45 fNIRS channels 

with 3 cm inter-optode distance were distributed over the entire motor area and other 

areas. A schematic illustration of the location of EEG electrodes and fNIRS channels is 

shown in Figure 3-1B. To identify the cortical regions associated with the fNIRS 

channels, a template of brain model obtained from the MNI305 space was used as a 

common brain model for all subjects. Then each fNIRS channel was normally projected 

to the cortical surface, following the method described in [106]. The DKT40 atlas was 

chosen in this study to define 68 functional regions of interest (ROIs) using automatic 

anatomical labeling [107]. The full projection of all fNIRS channels on cortical surface 

was shown in Figure 3-1C. 
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Figure 3-1. (A) The motor execution (ME) paradigm; (B) Locations of EEG electrodes and fNIRS 

optodes; (C) The cortical regions associated with the fNIRS channels. 

3.3.3 EEG and fNIRS data preprocessing 

     EEG preprocessing was performed using BrainVision Analyzer 2.0 software (Brain 

Products, Germany). The collected EEG data was first filtered from 0.5 Hz to 45 Hz by 

a 4th order Butterworth band-pass filter, with an extra 4th order Butterworth notch filter 

at 50 Hz to remove any residual powerline noise. Ocular artifact removal was then 

performed for each subject using independent component analysis (ICA) and the 

number of removed IC components was 3 and no more than 5 on average. Data was 

then re-referenced to the average of two EEG channels on both mastoids (TP9 and 

TP10). We then extracted the alpha (8 - 13 Hz), beta (14 - 25 Hz) and gamma band (26-

45 Hz) from the preprocessed EEG signals by a 4th order Butterworth band-pass filters. 

Single-trial EEG data was segmented from 2s prior to the onset of movement instruction 

(baseline: -2s–0s) to 10s after the onset (execution: 0s–8s), resulting in 20 segmented 

trials for each hand movement and each EEG frequency band (alpha, beta and gamma). 

Baseline correction was performed by subtracting the mean value of individual baseline 

interval from its corresponding segmented trial. 
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     The raw fNIRS signals were first converted to optical density data, after which the 

concentration changes of hemoglobin (HbO and HbR) were computed based on the 

Modified Beer-Lambert Law (the differential path length factors for the higher (850 nm) 

and lower (760 nm) wavelengths were 6.38 and 7.15, respectively) [12, 108]. The 

resulted time courses of HbO and HbR signals were then analyzed to identify task-

evoked cerebral regions by GLM analysis. 

3.3.4 GLM analysis based on Autoregressive- Iteratively Reweighted Least 

Squares (AR-IRLS) 

     The GLM is a well-known and widely used method that fits the expected 

hemodynamic response to the measured fNIRS signal and identifies the channels that 

highly correlate with the specific stimuli through statistical evaluation [109]. Briefly, 

for measured fNIRS signal  𝒀 in a channel, the first-level GLM model is given by 

                                    𝒀 = 𝑿𝜷 + 𝜺，                                               (3-1) 

where 𝑿 is the design matrix, 𝜷 is the regression coefficients to be estimated and 𝜺 is 

the error term. In the case of a block design experiment, 𝑿 is commonly given by a 

convolution matrix of the canonical hemodynamic response and boxcar functions 

describing the latency and duration of the stimulus. Particularly, columns of 𝑿 are 

regressors that usually represent conditions or tasks in the experiment and additional 

nuisance terms that account for the systemic physiology or motion artifacts [110].   

     The estimated regression coefficient 𝜷 and the error 𝜺 can be tested through t-test to 

identify the channels that represent a significant contrast between different tasks (e.g. 

left vs. rest or left vs. right). The t-test is calculated by 
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                                          𝒕 =
𝒄𝑻∗𝜷

√𝒄𝑻𝒄𝒐𝒗(𝜷)𝒄 
，                                                     (3-2) 

where 𝒄𝒐𝒗(𝜷) is the covariance matrix of 𝜷, 𝒄 is the contrast vector, which determines 

the contrast between specific conditions.   

     As reported in literature, however, serial correlations and motion artifacts represent 

two major sources of confounding noise in fNIRS that can reduce the performance of 

conventional GLM analysis and increase the false positive rates of detecting the true 

task-activated regions [111]. Therefore, in this study we adopted the AR-IRLS 

algorithm to enhance the performance of GLM analysis. The detail of the AR-IRLS can 

be found in reference [111]. Briefly, the first step of AR-IRLS is to significantly reduce 

the serial correlations in fNIRS signals by filtering the original channel-wise fNIRS 

signals with a series of autoregressive (AR) filters 𝑭. Equation (3-1) is rewritten as 

                                              𝑭𝒀 = 𝑭𝑿𝜷 + 𝑭𝜺.                                         (3-3) 

     After the correction of serial correlations in fNIRS measurements, the iteratively 

reweighted least squares (IRLS) is employed to deal with the outliers caused by motion 

artifacts during the experiment. In this approach, the influence of each sample point is 

weighted based on the value of the residual in Equation (3-3), which can be rewritten as 

                                                 𝑾𝑭𝒀 = 𝑾𝑭𝑿𝜷 + 𝑾𝑭𝜺,               (3-4) 

where 𝑾 is diagonal matrix of weights iteratively calculated based on the error in 

Equation (3-3) by a specific weighting function. The solution of Equation (3-4) is 

obtained using robust weighted regression and given as 

                                             𝜷 = (𝑿𝑻𝑭𝑻𝑾𝑭𝑿)−𝟏𝑿𝑻𝑭𝑻𝑾𝑭𝒚.              (3-5) 
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     After the estimation of the coefficients 𝜷, t-test can be performed to identify the 

channels that represent a significant contrast between different tasks based on Equation 

(3-2). In addition, the second-level analysis can also be performed based on the firs-

level models to obtain group-wise activation pattern using a fixed effect model, in which 

the task is treated as fixed effect. Group level t‐test can be subsequently done to obtain 

different group-level response to the motor tasks. In this study the first-level AR-IRLS-

based GLM analysis and second-level group analysis were performed using default 

parameters setting in NIRS Brain AnalyzIR Toolbox [112]. 

3.3.5 EEG-derived Regressor for fNIRS GLM Analysis 

     It is known that the amplitude oscillations of EEG signals can be modulated by 

specific stimulus, which is defined as event related potential (ERP) [85]. In this study 

we extracted the frequency-specific ERP from the EEG signals as regressors to modify 

the design matrix in the GLM analysis of fNIRS signals, as the 𝑿 shown in Equation (3-

1). At first, we selected only the channels expected to be involved in the motor execution 

task for the extraction of EEG-based regressors. Specifically, in our case channels 

located at motor area on left (FC5, FC1, C3, CP5, CP1) and right (FC2, FC6, C4, CP2, 

CP6) hemisphere were selected as representative channels for right and left hand 

movement, respectively.      

     For each movement, the representative channels were first averaged to obtain 20 

averaged trials. The time-varying power of each trial was then computed by squaring 

the amplitude of each sample point. The peak and corresponding latency were searched 

within the first 2 seconds of the time-varying power of each trial (0-2s) starting from 

the task onset since it has been shown that the motor task-evoked ERP occurs rapidly 
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after the task onset [113]. The same processing was applied to all three EEG frequency 

components (alpha, beta and gamma). The obtained peaks and latencies were then 

employed to construct EEG-derived design matrices to replace the canonical boxcar 

design for GLM analysis of fNIRS signals. Overall, we constructed three EEG-derived 

design matrices (alpha/beta/gamma) and one canonical design matrix for the first-level 

and second-level fNIRS GLM analyses for each hemoglobin type (HbO / HbR). 

EEG NIRS
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· Segmentation

· Baseline correction

Regressors extraction
· Absolution power
· Peak detection
· Normalization

· Convolution with HRF

Pre-processing
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Figure 3-2. The schematic of the EEG-informed fNIRS GLM analysis framework. 
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     In order to validate the feasibility of EEG-informed fNIRS GLM analysis during the 

motor task, we proposed two metrics to quantitatively evaluate the performance of GLM 

analyses with respect to various design matrices. The first metric was defined as the 

mean residual error (MRE) of the regression model in Equation (3-4). MRE indicated 

the goodness of fitting between the expected model and the actual measured data. A 

smaller MRE would therefore represent a better fitting of the linear model. The second 

metric was the area under the curve (AUC) of Receiver operating characteristic (ROC) 

of the model, which has been widely used to evaluate the performance of the GLM in 

previous fNIRS studies [112, 114]. In this study, we generated the ROC for each model 

and each subject by varying the p-value threshold for task-evoked activation from 0 to 

1 and calculating the true positive rate (TPR, sensitivity) and false positive rate (FPR, 

1-specificity). Specifically, the TPR was defined as the ratio between the number of the 

identified active channels at the target motor area and the total number of channels at 

target motor area. The FPR was defined as the ratio between the number of identified 

active channels at non-target motor area and the total number of all channels at non-

target motor area. Referring to previous study [89], the target motor area was defined as 

the functional regions that are well known to be involved in motor execution, including 

primary motor cortex (M1-BA4), premotor cortex (PM-BA6), primary somatosensory 

cortex (S1-BAs1, 2 and 3), and supplementary motor area (SMA-BA6). In particular, 

we defined the left motor cortex as the target area for the right hand grasp task and the 

right motor cortex as the target area for the left hand grasp task. After the ROC was 

drawn, the AUC of ROC can be calculated to quantify the overall performance of each 

model. A higher AUC (from 0 to 1) indicates that the model has higher TPR and lower 
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FPR and therefore represents a better performance of the model. To compare the 

performance of different models, one-way repeated ANOVA test was employed to 

evaluate difference in these metrics among the EEG-informed models and the canonical 

boxcar model at single subject-level. Anderson-Darling-based normality test was 

performed on all data sets prior to the ANOVA analysis. Fisher's least significant 

difference (LSD) test was used as post-hoc test to assess difference between any GLM 

model pair. A flowchart is shown in Figure 3-2 to summarize the overall design of the 

study. 
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Figure 3-3. Design matrices generated by different EEG rhythmic modulations (A-C) and the 

conventional blocks (D). 
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3.4 Results 

3.4.1 EEG-derived Design Matrix 

     The design matrices derived from different EEG frequency-specific responses and 

the canonical boxcar function are shown in Figure 3-3. Specifically, the main difference 

between the EEG-derived design matrices and the canonical design matrix lay in the 

onset and amplitude of each block, with apparent fluctuations in the EEG-derived design 

matrices compared to the canonical model. This seemed to be more realistic since it 

accounted for the inter-block variation during the experiment. 

3.4.2 First-level GLM Analyses 

     At the first-level GLM analysis (multiple comparisons were corrected by False 

Discovery Rate (FDR), we first evaluated the performance of the EEG-informed models 

by the MRE obtained from the HbO and HbR signals, respectively. The one-way 

repeated ANOVA analysis showed a significant effect of model type on the MRE values 

(F = 3.169, p = 0.006). Post-hoc test between each two models further identified such 

differences among these models. As shown in Figure 3-4, for HbO signal there was no 

significant difference between any model pair, though the EEG-informed models 

presented slightly smaller residual errors compared to the canonical model at alpha and 

gamma band (Figure 3-4A). For HbR signal, significantly smaller MREs were identified 

at the alpha (p = 0.029) and beta (p = 0.046) model compared to the boxcar model, 

indicating better fittings in the corresponding EEG-informed models (Figure 3-4B). 

Additionally, we also compared the performance between HbO and HbR model 

regarding the same design matrix. Result suggested that GLM achieved significantly 
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smaller MRE when fitting the HbR signals based on the EEG-informed design matrices, 

including alpha (p = 0.007) and beta (p = 0.029).  
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Figure 3-4. The residual errors (mean± standard error) of the GLM models fitted by different design 

matrices and hemoglobins (A: HbO; B: HbR). 

     Figure 3-5 shows the results of ROC analysis of all models. The one-way repeated 

ANOVA analysis indicated a significant effect of the model type (F = 2.601, p = 0.020) 

on the AUC values that represented the sensitivity and specificity of the model. The 

post-hoc test indicated that, in the case of HbO signal, alpha-based (p = 0.026) and beta-

based (p = 0.005) model revealed significantly higher AUC compared to boxcar model 

(Figure 3-5A). For the HbR signal, alpha-based model achieved the highest AUC that 

was significantly higher than the gamma-based (p = 0.034) and boxcar (p = 0.038) 
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model (Figure 3-5B). Finally, when fitting the model using the same design matrix, no 

significant difference in the AUC values was found between HbO and HbR signal, 

though the HbR signal tended to achieved higher AUC (Figure 3-5).  The statistical 

results of all comparisons are summarized in Table 3-1. 
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Figure 3-5. The AUC values (mean± standard error) of the GLM models fitted by different design 

matrices and hemoglobins (A: HbO; B: HbR). 
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Table 3-1. The statistical summary of the evaluation of different models at first level GLM analyses. 

Comparison 
p-values 

MRE AUC 

HbO_Alpha  --  HbO_Beta 0.178 0.326 

HbO_Alpha  --  HbO_Gamma 0.581 0.462 

HbO_Alpha  --  HbO_Boxcar 0.051 0.026* 

HbO_Beta  --  HbO_Gamma 0.179 0.346 

HbO_Beta  --  HbO_Boxcar 0.462 0.005* 

HbO_Gamma  --  HbO_Boxcar 0.105 0.061 

HbR_Alpha  --  HbR_Beta 0.175 0.170 

HbR_Alpha  --  HbR_Gamma 0.171 0.034* 

HbR_Alpha  --  HbR_Boxcar 0.029* 0.038* 

HbR_Beta  --  HbR_Gamma 0.296 0.100 

HbR_Beta  --  HbR_Boxcar 0.046* 0.061 

HbR_Gamma  --  HbR_Boxcar 0.327 0.263 

HbO_Alpha  --  HbR_Alpha 0.007* 0.104 

HbO_Beta  --  HbR_Beta 0.029* 0.141 

HbO_Gamma  -- HbR_Gamma 0.165 0.298 

HbO_Boxcar  --  HbR_Boxcar 0.147 0.077 

3.4.3 Second-level GLM analyses 

     The second-level GLM analyses were performed by a fixed effect model for all first-

level models to identify group-wise activation pattern associated with the motor task. 

Figure 3-6A shows the ROC plots of all models, wherein the models derived from 

various task-evoked EEG responses were comparable to the boxcar-fitted models for 

both HbO and HbR signal. Figure 3-6B shows the quantitative comparison between all 

models based on theirs AUC values. Specifically, all EEG-informed models, regardless 

of hemoglobin type (HbO/HbR), revealed slightly higher AUC values than the boxcar 

models in identifying the motor task-evoked activation ( AUCHbO-Alpha = 0.823, AUCHbO-

Beta = 0.824, AUCHbO-Gamma = 0.829, AUCHbO-Boxcar = 0.811, AUCHbR-Alpha = 0.812, 

AUCHbR-Beta = 0.819, AUCHbR-Gamma = 0.806, AUCHbR-Boxcar = 0.787). Further statistical 

test based on the method proposed by Hanley & McNeil indicated that there was no 

significant difference in the AUC values between any model pair [115]. 
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Figure 3-6. Performance summary of the second-level GLM analyses of all models. 

     In support to Figure 3-6, Figure 3-7 shows the group-level activation maps during 

left and right hand grasp task for different EEG-informed models and boxcar models, 

respectively. Overall, all EEG-informed models were able to identify comparable 

activation at the motor area (true positive rate) while to some extent reduce the 
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unexpected activation at non-motor area (false positive rate), demonstrating a more 

favorable performance achieved by the EEG-based models. 

 

Figure 3-7.  Group-level activation maps for the left and right hand grasp task estimated by EEG-

informed models and canonical boxcar models, respectively. 

3.5 Discussion 

     To explore the neurovascular coupling between neuronal activity and hemodynamic 

response, in this study we presented a framework to perform the EEG-informed fNIRS 

GLM analysis by incorporating the EEG rhythmic modulations in the GLM estimation 

during a motor execution task. Design matrices constructed by frequency-specific ERP 

(alpha, beta and gamma) were used for the EEG-informed fNIRS analysis as against the 
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canonical GLM analysis. Results not only supported our hypothesis that the EEG 

frequency-specific models were able to enhance the performance of fNIRS GLM 

analysis compared to the conventional boxcar model, but also provided a promising way 

to model and explore the neurovascular coupling using concurrent EEG and fNIRS 

recording. 

     Neurovascular coupling typically involves neuronal electrical activity and vascular 

interaction at the cellular level. A number of studies have employed concurrent EEG-

fNIRS systems to investigate the correlation between the electrical scalp potential and 

the hemodynamic response signals [97, 102], demonstrating the feasibility to reveal the 

neurovascular coupling using EEG and fNIRS. With this in mind, in this study we took 

a further step to explore and utilize the inherent relationship between EEG and fNIRS 

signals to enhance the performance of fNIRS GLM analysis during a motor execution 

task. At the best of our knowledge, our results showed for the first time that considering 

the task-evoked EEG response improved the ability of the fNIRS signals to capture the 

brain activation induced by the motor task. It is noteworthy that the EEG-informed 

models, as assessed by the proposed metrics, significantly outperformed the canonical 

model in localizing the motor-evoked regions (Figure 3-4 − Figure 3-7). Referring to 

the previous EEG-informed fMRI study that reported worst result relative to canonical 

model during similar motor execution task [89], our study provides preliminary 

evidence that EEG-fNIRS measurement may be more appropriate to characterize 

specific task-evoked pattern in the brain. In particular, based on the GLM results (Figure 

3-4 − Figure 3-7 and Table 3-1), models derived from the alpha and beta rhythmic 

modulations demonstrated more favorable performance including small mean residual 
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error and high sensitivity/specificity among all models, which were highly correlated 

with the hemodynamic response during the motor task and turned out to be the most 

relevant EEG rhythms in characterizing the neurovascular coupling phenomenon. This 

result aligns with the findings reported in various EEG-based motor execution studies, 

where the fluctuations of alpha and beta band stand as the robust biomarkers during 

hand movements [85, 116, 117]. 

     It is typically more preferable in most studies to perform GLM analysis based on 

HbO signal, mainly because the HbO signal generally presents a series of peaks in a 

block design experiment that could be regarded as response to the experimental task. 

However, it remains to be determined which type of hemoglobin is more suitable for 

measuring cortical activation [14, 118]. In this work, we evaluated the performance of 

various design matrices for both HbO and HbR signal. Interestingly, result suggested 

that GLM analysis based on HbR signal achieved smaller residual error and higher AUC 

at first-level, which slightly outperformed the results obtain from HbO signal (Figure 3-

4 − Figure 3-7 and Table 3-1). This finding is consistent with a previous EEG-fNIRS 

study that EEG-informed fNIRS analysis achieved better performance in localizing the 

seizure zones by using the HbR signal [119]. It is possible that HbR response reflects 

better the underlying neuronal phenomena than HbO response, especially since HbO is 

more prone to artifacts raised by extracerebral physiological signal that could interfere 

with the accurate estimation of the task-evoked response in the brain. More 

investigations should be done to address this concern in the future. 

     Despite the better performance achieved by the EEG-informed fNIRS GLM analysis, 

one noticeable issue is some channels at non-motor area were unexpectedly identified 



57 

as active after statistical test (Figure 3-7). This could be attributed to physiological noise 

that acts as confounders in the fNIRS measurement. As noted in previous literature, 

systemic artifacts such as blood flow in scalp composes a large portion of the measured 

fNIRS signals, leading to high false positive rate in fNIRS analysis [120]. Although in 

this work we employed the AR-IRLS algorithm to alleviate the serial correlations 

artifact, the performance of GLM may be still subject to the residual physiological noise 

that violates common statistical assumptions of the independence of repeated 

measurements over time. We expected that newly-proposed approaches, such as the 

short-separation technique [121], could be applied in future study to dramatically 

suppress such artifacts. 

     Understanding the neurovascular coupling between neuronal activity and 

hemodynamic response plays a crucial role in improving the interpretability and value 

of neuroimaging data. In this work we purely attempted to model the relationship 

between motor task-evoked EEG response and fNIRS signals by applying the ERP 

fluctuations of EEG signals at motor area as regressors to the fNIRS GLM analysis. 

This approach took the advantage of previous findings that the amplitude oscillations at 

specific EEG frequency bands are well-modulated by classical motor tasks, such as hand 

grasping and finger tapping [116, 117, 122]. Another representative study of EEG-

informed fNIRS analysis was done by Nguyen and his colleagues, where the apparent 

onsets and amplitudes of epileptic spikes were marked by EEG traces and convolved 

with the HRF for GLM analysis [119]. Despite the above typical EEG-derived features, 

however, the optimal features to model the relationship between EEG and fNIRS signals 

during uncommon motor task or other non-motor tasks, are nowadays an open topic and 
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remains to be further investigated. We expect this work to be extensively explored by 

studying other types of EEG-linked features, and other types of task-based activations.       

     While the present study provides promising results regarding the EEG-informed 

fNIRS analysis, there are several limitations that should be acknowledged. First, the 

designed locations of EEG and fNIRS channels here were configured based on a generic 

head model. Although the generic model still features a realistic anatomy, the lack of 

subject-specificity blinds the current method to identify the exact cortical area of 

channels for each individual. Considering this, it would be useful for future research to 

obtain anatomical MRI for the subjects, which can be used to customize the head model 

and optimize the GLM analysis. Second, instead of providing a whole-head coverage, 

in this study we only covered key regions of the brain due to a limited number of optodes, 

which may limit the spatial information obtained by the GLM.  It is therefore suggested 

that future research utilize a setup with full coverage when possible. 

3.6 Summary 

     In this chapter, an EEG-informed fNIRS analysis framework was developed to 

enhance the performance of fNIRS GLM estimation during a motor execution task and 

to investigate how different EEG rhythmic modulations are independently related to 

changes in the hemodynamic response. Our results demonstrated that the EEG-derived 

models, especially derived from the alpha and beta band, achieved more favorable 

performance in capturing the motor task-evoked activation in the brain compared to the 

canonical boxcar model. Taken together, through Chapter 2 and Chapter 3, we have 
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experimentally validated the inherent correlation between neuronal activity and 

hemodynamic response from views of fNIRS-guided and EEG-guided, respectively.
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Chapter 4 ─ Dynamic Cortical Connectivity Alterations Associated 

with Alzheimer’s Disease: an fNIRS-Informed EEG Source Imaging 

Study 

4.1 Abstract 

     With the neurovascular coupling being validated in our previous chapters, in this 

chapter we take a further step by presenting an integrated fNIRS-EEG analysis to 

demonstrate the feasibility of employing multimodal neuroimaging technique to 

characterize the cortical reorganization induced by brain disorders. Emerging evidence 

indicates that cognitive deficits in Alzheimer’s disease (AD) are associated with 

disruptions in brain network. Exploring alterations in the AD brain network is therefore 

of great importance for understanding and treating the disease. In this chapter, we 

develop an fNIRS – informed EEG source imaging approach to explore dynamic, 

regional alterations in the AD-linked brain network. FNIRS and EEG data were 

simultaneously recorded from 14 participants (8 healthy controls and 6 patients with 

mild AD) during a digit verbal span task (DVST). FNIRS-based spatial constraints were 

used as priors for EEG source localization. Graph-based indices were then calculated 

from the reconstructed EEG sources to assess regional differences between the groups. 

Results show that patients with mild AD revealed weaker and suppressed cortical 

connectivity in the high alpha band and in beta band to the orbitofrontal and parietal 

regions. AD-induced brain networks, compared to the networks of age-matched healthy 

controls, were mainly characterized by lower degree, clustering coefficient at the frontal 

pole and medial orbitofrontal across all frequency ranges. Additionally, the AD group 
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also consistently showed higher index values for these graph-based indices at the 

superior temporal sulcus. These findings not only validate the feasibility of utilizing the 

proposed integrated EEG-fNIRS analysis to better understand the spatiotemporal 

dynamics of brain activity, but also contribute to the development of network-based 

approaches for understanding the mechanisms that underlie the progression of AD. 

4.2 Introduction 

     Alzheimer’s disease (AD) is an irreversible, chronic neurodegenerative brain disease 

that is typically characterized by progressive impairment of cognitive functions, 

including a marked degradation of memory [123]. In recent years, AD has been 

considered the most common form of dementia, afflicting about 5.7 million people in 

United States [124]. AD is physiologically characterized by the pathological presence 

of amyloid-beta (Aβ) and hyperphosphorylated tau proteins, as well as significant 

neurodegeneration and deficits within neurotransmitter systems [125, 126]. These 

alterations often lead to abnormal cortical activity and connectivity that can be detected 

by noninvasive measurement techniques, such as EEG, fMRI, and fNIRS.  

     EEG presents a number of advantages when exploring neural activity: it is non-

invasive, inexpensive, clinically available, and features a very high temporal resolution 

(millisecond-level) [29]. By applying connectivity analyses to source-localized EEG 

signals, AD-linked alterations in regional connectivity have been identified [127-129]. 

In particular, several studies have reported abnormal functional connectivity in the alpha 

and beta band signals of AD patients [127, 128]. Separately, Kabbara et al., have showed 

that AD networks are characterized by lower global information processing and higher 
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local information processing than those of healthy, age-matched controls [128]. Results 

also revealed a significant positive correlation between global efficiency, average 

clustering coefficient and vulnerability in AD network and corresponding Mini-Mental 

State Examination (MMSE) scores, which supports the feasibility of using EEG-based 

connectivity analyses to monitor the different stages of AD, or even preclinical AD 

[130]. 

     A common technical challenge for EEG source localization is the ill-posed nature of 

the “inverse problem”; the number of variables that give rise to EEG signals vastly 

outnumbers the available measurements [84]. Conventional source imaging analysis 

typically makes use of a pseudo-inversion to alleviate this issue [131]. This solution, 

however, relies on a maximized likelihood estimation and consequently suffers from 

complex calculation and spatial imprecision. Attempts have therefore been made to 

overcome this challenge by combining EEG data with the results from other 

neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) [90]. 

In general, traditional fMRI/EEG integration approaches, based on Wiener filtration or 

Bayesian methods [132-135], use an fMRI-derived BOLD activation map as spatial 

prior information to constrain the source space for EEG localization. Mathematically, 

these constraints are imposed as a part of the source covariance matrix, wherein fMRI-

active EEG sources are maintained while fMRI-inactive EEG sources are penalized 

[136-138]. This produces source localization results with increased spatial precision and 

reduced error. Beyond this, we have also developed a Dynamic Brain Transition 

Network (DBTN) approach, which uses time-variant fMRI spatial constraints to 

optimize fMRI-EEG integration based on a hierarchical Bayesian model [90].  
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     FMRI-EEG integration approaches achieve highly specific, accurate results. 

Unfortunately, fMRI techniques face some inherent limitations; fMRI is costly to 

perform, highly sensitivity to body-motion artifacts, and requires rigorous experimental 

design [139]. These factors make fMRI data difficult to obtain and raise the potential 

for erroneous results or artifacts, limiting the clinical diagnostic potential of EEG-fMRI. 

To overcome these issues, physicians and researchers may opt to use functional near-

infrared spectroscopy (fNIRS) as supplement to EEG source localization. Functional 

near-infrared spectroscopy is a noninvasive optical imaging technique that typically 

utilizes two distinct wavelengths (between 600 and 1000 nm) to measure the changes in 

cortical oxy- and deoxy-hemoglobin concentrations that are coupled with neuronal 

metabolic activity [12]. As they rely on similar cerebrovascular dynamics, the results 

obtained by fNIRS are roughly analogous to those of fMRI [10, 91], though fNIRS 

systems are portable and more resilient to motion artifacts. Furthermore, a recent study 

has tested and validated the use of fNIRS data as a spatial constraint to guide EEG 

source localization, achieving comparable results to fMRI-constrained EEG [140].  

     In this chapter, a dynamic cortical connectivity mapping technique, based on an 

integrative analysis of concurrently recorded EEG and fNIRS signals, was developed 

and employed to identify the cortical network changes associated with AD. Specifically, 

concurrent EEG and fNIRS data were collected from both healthy controls and patients 

with mild AD (mAD) during a cognitive task. EEG source imaging was then performed 

using spatial priors derived from fNIRS information, and the reconstructed time-courses 

of cortical activity were used to generate connectivity networks for mild AD patients 

and healthy controls. Finally, the resultant networks were compared to identify AD-
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linked differences in cortical processing. It is hypothesized that the manifestation of AD, 

even at early stages, alters the neural circuitry of the brain when engaged in cognitive 

tasks, leading to “network biomarker” that can be identified using the proposed fNIRS-

constraint EEG source localization technique [128] 

4.3 Materials and Methods 

4.3.1 Participants 

     Fourteen subjects were recruited as a part of this experiment, including six right-

handed patients with mild AD (mAD, 72.5±7.34 years, 2M/4F) that were recruited from 

a local hospital and eight right-handed healthy volunteers (HC, 62.75±8.21 years, 

6M/2F) that were recruited from the local community. Subjects were matched for age 

and gender, and had no history of cerebrovascular lesions or psychiatric disorders. No 

subject had previous experience with the experimental task. The mental state of each 

subject was examined using the Mini-Mental State Examination (MMSE), which is a 

30-point questionnaire that provides a quantitative measure of cognitive status or 

impairment [141], and scores were recorded. The experiment was approved by the 

Research Ethics Board of Nanjing Ruihaibo Medical Rehabilitation Center and 

performed in accordance with the Declaration of Helsinki. Each subject was fully 

informed of the research purpose and methods, and provided written, informed consent 

prior to the start of the experiment. 

4.3.2 Study protocol 

     A digit verbal span task was employed in this study, as shown in Figure 4-1A. The 

task session consisted of 30 blocks, with each block broken down into 4× 10-second 
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sections. Subjects first underwent an 10-second encoding task, in which they were asked 

to memorize a number sequence that displayed on a computer monitor 1.5 meters in 

front of them (Figure 4-1B). After encoding task, the number disappeared from the 

screen and the subjects were asked to stay relaxed for 10-second. This was followed by 

the 10-second “retrieval” task, wherein subjects were instructed to verbally recall the 

memorized number and results were recorded. The final 10 seconds in each block were 

set aside as a rest period. To remind the subjects of the beginning of tasks, a 1000 Hz-

pure tone with 60dB SPL-intensity was presented 1-second before each encoding and 

retrieval task and lasted for 100 ms through a small speaker placed beside the monitor.  

The background of the screen was set to green to make the subjects, especially the AD 

patients feel comfortable and relaxed during the experiment [142]. Number sequences 

varied in length from 4 to 6 digits (each ranging from 1 to 9), and number lengths were 

varied every 10 blocks without replacement. All 30 sequences were unique and 

presented randomly to minimize subject-expectancy effects. Prior to the beginning of 

the experiment, subjects were seated in a comfortable chair and asked to relax for 3 

minutes with eyes closed, during which baseline fNIRS signals were collected. To help 

the participants get familiar with the experimental procedures, each participant was 

allowed to practice the task for about 10 minutes before beginning the experiment. 
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Figure 4-1. Experimental design. (A) The digit verbal span task used in this study. (B) Illustration of 

experimental environment. 

4.3.3 Data acquisition and pre-processing 

     A concurrent EEG and fNIRS measurement setup was employed in this study. EEG 

data was collected using a BrainAmp DC EEG recording system (Brain Products GmbH, 

Germany). Electrode placement followed the international 10-20 convention for a 32-

channel cap and signals were recorded at a sampling rate of 500 Hz. 

     A multi-channel NIRScout system (NIRx Medizintechnik GmbH, Germany) was 

used to measure the fNIRS signals at a sampling rate of 3.91 Hz. The inter-optode 

distance was fixed at 3 cm and a total of 46 measurement channels were distributed 
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throughout the bilateral frontal and parietal cortices, according to the international 10-

20 EEG placement system. The onset of each task was simultaneously recorded by the 

EEG amplifiers and fNIRS acquisition system, which was used for synchronizing two 

modalities during the data analysis. A schematic illustration of the EEG and fNIRS 

channel locations is provided in Figure 4-2. 

 

Figure 4-2. The configuration of EEG electrodes and fNIRS optodes. 

     In this study, considering the EEG signal would be affected by the muscle movement 

when the subject is speaking in the retrieval task [143], only the EEG and fNIRS signals 

recorded during the encoding task were used for analysis. EEG preprocessing was 

performed using BrainVision Analyzer 2.0 software (Brain Products, Germany). Data 

was first filtered from 0.5 Hz to 50 Hz, with an extra notch filter at 50 Hz to remove any 

residual powerline noise. Ocular artifact removal was then performed for each subject 
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using independent component analysis (ICA) and the number of removed IC 

components was 3 and no more than 5 on average. Data was then re-referenced to a 

common-average reference and baseline correction was performed for each trial. Next, 

EEG data was segmented to form epochs that began 2 seconds before the onset of the 

encoding stage and ended 5 seconds after. Finally, artifact removal and trial rejection 

were performed through manual inspection. On average, fewer than 10% of the total 

number of trials were rejected per subject.  

     Every fNIRS channel was manually inspected and trials with large spikes were 

considered “noisy” and excluded from further analysis. On average, fewer than 10% of 

the total trials were rejected per subject. To process the fNIRS signals, a 4th order 

Butterworth band-pass filter, with cut-off frequencies of  0.01 - 0.2 Hz, was applied to 

remove artifacts such as cardiac interference (0.8 Hz) and respiration (0.2–0.3 Hz) [69]. 

The concentration changes of oxy- and deoxy-hemoglobin ([HbO] and [HbR]) were 

computed according to the Modified Beer-Lambert Law (nirsLAB, NIRx 

Medizintechnik GmbH, Germany) [12]. For each channel, fNIRS signal was baseline-

corrected by subtracting the mean value of the resting-state signal from the signal during 

the active task. FNIRS signals from the encoding task period were then segmented from 

the onset of the task to 20 seconds afterwards. 

4.3.4 fNIRS-informed EEG Source Imaging Analysis  

a) The forward problem 

     In this study, a template brain model obtained from the MNI305 space was used as 

a common brain model for all subjects. The full segmentation and surface reconstruction 

of the MNI305 MRI volume was performed using the Freesurfer image analysis suite 
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(publicly available at: http://surfer.nmr.mgh.harvard.edu/), resulting in the generation 

of a high-definition cortical layer and the brain, skull, and scalp boundary surfaces. 

These surfaces were then used to construct a three-compartment Boundary Element 

Method (BEM) model, with appropriate conductivity values assigned to each 

compartment using the MNE software [144]. The high-density cortical layer mesh was 

downsampled to ~16,000 vertices per hemisphere and used as the source space, such 

that each vertex location corresponded to a dipole source oriented perpendicular to the 

surface. A lead-field matrix 𝐺 was then computed via a forward calculation using the 

cortical source space, the 3-layer BEM model. EEG and fNIRS electrode positions were 

digitized and co-registered to the fiducial points on the template brain. 

b) fNIRS spatial priors 

     The classical General Linear Model (GLM) [145-147] was employed for the 

statistical analysis of preprocessed fNIRS data for each individual subject, and maps of 

significantly activated channels were obtained by contrasting the encoding task and 

baseline. Correction for multiple comparisons was performed using a cluster-based 

method [148] to limit the Family-wise error rate (FWER) to a maximum of 0.05. 

Channels with values in the fNIRS map above the p-value threshold (p-corrected > 0.05) 

were deemed insignificant and omitted, ensuring that only statistically significant voxels 

were used as constraints for the subsequent source imaging routine.  

     The fNIRS scalp activation map was normally projected and interpolated onto the 

cortical layer. Briefly, this procedure began by assigning the location of each fNIRS 

channel (defined as the mid-point between the emitter and detector) on the scalp layer. 

Next, the fNIRS scalp locations were normally projected onto the cortical layer, 
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following the method described in [106]. Finally, the fNIRS activation value at each 

channel was applied and interpolated to the sources on the cortical layer using method 

described in [38].  

In this study, individual fNIRS activation maps were divided into multiple sub-maps 

based on clusters of neighboring locations and cortical functional regions, allowing for 

greater spatial flexibility when applying the fNIRS information as a constraint. 

Specifically, active voxels were grouped into multiple sub-sets using a connected-

component labeling technique (the Dulmage-Mendelsohn decomposition algorithm 

[149]). Subsequently, each cortical patch was divided into smaller patches based on a 

predefined brain atlas to ensure that individual regions did not cover multiple functional 

brain regions. The DKT40 atlas was chosen in this protocol to define 68 functional 

regions of interest (ROIs) using automatic anatomical labeling [107], which were used 

for source localization and connectivity analyses.  

  

c) EEG source imaging analysis 

     A spatiotemporal fNIRS-constrained EEG source imaging approach was presented 

here, wherein each EEG epoch was analyzed using a sliding-window approach. Very 

briefly, the linear mapping between sensor space and source space is described as 

 

𝑌 = 𝐺𝐽 + 𝜀, 

𝜀~𝒩(0, 𝐶),  

𝐽~𝒩(0, 𝑅), 

  (4-1) 

where 𝑌(𝑡𝑤𝑖𝑛𝑑𝑜𝑤)  ∈  ℝ𝑚×𝑑  represents the windowed EEG signals consisting of 𝑚 

channels and 𝑑 measurement samples, 𝐺 ∈  ℝ𝑚×𝑠 represents the lead field matrix, and 
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𝐽(𝑡𝑤𝑖𝑛𝑑𝑜𝑤) ∈  ℝ𝑠×𝑑 represents the unknown source activity of 𝑠 dipole sources in the 

source space for the corresponding time window. ԑ represents the noise component in 

the sensor space with its noise covariance matrix 𝐶 , and 𝑅  represents the source 

covariance matrix. The current density 𝐽 can then be reconstructed according to the 

equation 

 𝐽 = 𝑅𝐺𝑇(𝐺𝑅𝐺𝑇 + 𝜆𝐶)−1𝑌, (4-2) 

where the regularization parameter, 𝜆𝐶 , represents the trade-off between model 

accuracy and complexity, which is traditionally determined using the L-curve method 

[150]. The source covariance matrix 𝑅  represents prior knowledge about the 

distribution of 𝐽. Following the framework for spatiotemporal fMRI-constrained EEG 

source imaging, 𝑅 assumes the form of a weighted sum of multiple spatial priors, in 

which each prior is constructed as a sub-map of the fNIRS activation pattern given by 

 𝑅 = ∑ 𝜆𝑖
𝑅𝑄𝑖

𝑁

𝑖=1

. (4-3) 

𝑅  is defined as the sum of 𝑁  covariance components weighted by an unknown 

hyperparameter 𝜆𝑅. Each covariance component, 𝑄𝑖 =  𝑞𝑖𝑞𝑖
𝑇, is formed from a subset 

𝑞𝑖 of the fNIRS map as explained above. The hyperparameters 𝜆𝑅 are estimated for each 

EEG window 𝑌(𝑡𝑤𝑖𝑛𝑑𝑜𝑤) using a Restricted Maximum Likelihood algorithm (see more 

details in [90]) and the corresponding current density J (𝑡𝑤𝑖𝑛𝑑𝑜𝑤)  is determined 

(Equation 4-2). In this study, the EEG time window was selected to be 200 ms long, 

with a 50% overlap, designed to provide a temporal resolution suited to the study of 

evoked response potentials. A time-course of cortical activity for each brain ROI was 

extracted by averaging the voxel activity within the region.  
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Figure 4-3. The overall schematic for EEG source analysis guided by fNRIS spatial priors and 

subsequent brain connectivity analysis. 

4.3.5 Functional connectivity analysis 

     The interaction between any pair-wise set of brain regions can be characterized by 

the Phase Lag Index (PLI) [151]. In general, PLI measures the difference between the 

instantaneous phases of two time-series – this case, the activation time-course of the 

two ROIs. Weighted PLI extends the concept of PLI by weighting phase differences 

based on the magnitude of their lag [152]. The instantaneous phase of each time-series 

for every time point is computed by performing a Hilbert transform and isolating the 

resultant phase component. Given the instantaneous phase difference between the 

activities of two ROIs, ∆Φ, the wPLI is computed as  

 𝑤𝑃𝐿𝐼 = |<
|sin (∆Φ)|

sin (∆Φ)
>|. (4-4) 
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     In graph-theory terms, each ROI forms a “node” within the graph and the wPLI 

values calculated between each pair of nodes form the “edges”. Following this approach, 

a weighted undirected graph was constructed from the obtained wPLI interaction matrix 

[153].  

4.3.6 Graph-theory analysis 

     Based on the obtained weighted, undirected node-edge graph, several graph-theory 

measures were adopted to characterize the brain connectivity networks in healthy and 

mild AD patients. The metrics used in this study included degree, clustering coefficient, 

and centrality index. In general, the degree metric for a particular ROI reflects the 

number of connections that link the target ROI to the rest of the network. Clustering 

coefficient represents the ratio of connections that exist between a node and its nearest 

neighbors to the maximum number of possible connections. This serves as a summary 

of the local interactions between a particular ROI and its neighboring ROIs. Finally, the 

centrality index, called betweenness centrality, measures the number of “shortest paths” 

between the other node pairs that pass through a target node. Cortically, this indicates 

how influential the target region is as a hub within the brain network. Prior to the 

calculation of all graph measures, the weighted, undirected node-edge graph for each 

subject was thresholded by setting the 60% of the weakest edges as 0 to remove trivial 

connections. All graph measures were then computed using the Brain Connectivity 

Toolbox [154]. Figure 4-3 illustrates the analysis process described above. 

     Finally, to quantify the differences between healthy and AD networks in terms of 

graph-theory measures, including frequency and regional measures of degree, clustering 
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coefficient, and centrality, statistical tests were performed using the Mann Whitney U 

Test also known as Rank-Sum Wilcoxon test. 

4.4 Results 

4.4.1 Demographic, behavior and clinical rating scores 

     The demographic information for all subjects, including age, gender, education, 

MMSE scores and performance in the cognitive task, are summarized in Table 4-1. 

There were no significant difference between healthy controls and MAD patients in 

terms of age (p = 0.072), gender (p = 0.119), education (p = 0.9). However, the patient 

group showed significantly lower scores on the MMSE (p < 0.001) and performed 

poorer in the digital verbal span task (p = 0.014) relative to healthy controls. 

Table 4-1. The demographic information of all subjects. The “*” indicated a significant difference 

between two groups. The “+” indicated the result was obtained via Chi-square test. 

Characteristic HC (n=8) Mild AD (n=6) p-value 

Ages (years) 62.75±8.21 72.5±7.34 0.072 

Gender (M/F) 6M/2F 2M/4F 0.119+ 

MMSE 28.1±1.1 19.7±3.0 < 0.001* 

Education (years) 11±2.51 11.17±2.79 0.9 

Performance 30 24±5.97 0.014* 

4.4.2 EEG response to cognition task 

     The grand-averaged EEG response to the encoding task in each channel was done by 

averaging all trials over all subjects in each group and shown in Figure 4-4. Traces of 

EEG activity are presented for the frontal region (channel AFF1 and AFF2), parietal 

region (channel Pz), and the occipital region (channel O1 and O2). 
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Figure 4-4. EEG grand-average results for the HC group (red) and mAD group (blue), at the frontal 

channels (AFF1 and AFF2), parietal channel (Pz), and occipital channels (O1 and O2). 

     For both HC and mAD groups, brain responses to the auditory alert stimuli (t = 0 ms) 

were observed at around 200ms. Minimal differences were observed between the 

responses of the two groups at this stage. Drastic differences started emerged ~1100ms 

after the onset of the encoding task (t = 1100 ms), when the HC group showed a peak 

in activity at the frontal and occipital regions that was reduced in or absent from the 

mAD group. We performed two sample t-tests to assess the difference between two 

groups in terms of the mean amplitude of auditory-evoked response (0 - 400 ms) and 

mean amplitude of task-evoked response (1000-2000 ms). The results indicated that, for 

all selected channels, there was no significant difference in auditory responses (pcorrected  > 

0.05) but significant difference in task-evoked response between two groups (pcorrected  

< 0.05). 
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4.4.3 Current source analysis guided by fNIRS priors 

     Figure 4-5 shows the topographies of EEG signals and the corresponding fNIRS 

activation maps of a representative healthy subject and an AD patient obtained through 

GLM analysis and displayed on the cortical surface after undergoing the projection and 

interpolation procedure. It could be seen that the activation patterns obtained by two 

modalities were similar in healthy subject and patient. Specifically, the activation 

pattern of the HC showed an increase in activity at the frontal regions of the brain, and 

higher bilateral symmetry than that of the AD patient. Commonly activated regions 

included the bilateral premotor cortex, the orbitofrontal cortex, frontal pole, precentral 

gyrus and occipital lobe. In general, differences between the activated cortical regions 

of the healthy and AD brains pertained more to the frontal regions (frontal pole, orbital 

frontal). 

 

Figure 4-5. Representative EEG topographies (1300 ms) and fNIRS activation maps for the healthy 

subject (A) and mild AD patient (B) during the encoding task. Color scheme represents 

the t-statistic (pcorrected < 0.05). 
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Figure 4-6. Source current activity for a (A) healthy control and (B) mild AD patient associated with 

the encoding task, averaged for every 200ms time-step.  

     The spatiotemporal patterns of cortical activity associated with the memory-

encoding task are depicted in Figure 4-6. Overall, the activation pattern showed high 

similarity between the HC and AD patient groups. Major differences were observed at 

the activity of the frontal regions from 400 ms to 600 ms, 1200 ms to 1400 ms, and 1400 

ms to 1600 ms. The detailed time-courses of cortical activity at the 68 regions of interest 

were used as a basis for subsequent brain connectivity analysis. 

 

Figure 4-7. Differences in brain connectivity structure between the HC and mAD groups (puncorrected 

< 0.05), reflected by wPLI measures in the low alpha band (A), high alpha band (B) and 

beta band (C). 
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Figure 4-8. Regional graph theory measures for the connectivity networks of the HC (blue) and mAD 

groups (orange). Only regions revealed significant difference between two groups are 

shown for low alpha band (A), high alpha band (B) and beta band (C) 

4.4.4 Connectivity and graph theory analysis 

     The connectivity analysis for each subject yielded a weighted undirected graph, and 

two-tailed t-testing was performed to identify which regional connections (edges) were 

different between the HC and mAD groups. Figure 4-7 shows the significant differences 
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in connectivity structure across all frequency bands between both groups. The mAD 

group consistently showed weaker cortical connectivity to the orbitofrontal and parietal 

regions. Specifically, weaker connections in the low alpha (8-10 Hz) and high alpha 

(10-13 Hz) frequency range (Figure 4-7A and B) included: parietal  frontal-pole, 

parietal  orbital-frontal, and frontal  superior-temporal. Connectivity within the 

beta frequency range (13-30 Hz) showed greater suppression in the mAD group than in 

the HC group, particularly in the case of inter-hemispheric interactions (Figure 4-7C). 

Specific alterations in the beta range included: parietal  frontal-pole, bilateral 

occipital lobes, and bilateral orbitofrontal lobes. Noticeably, the mAD group exhibited 

a bilateral interaction between left and right temporal regions that was significantly 

stronger than that observed in the HC group. Considering the results across frequency 

bands, it appears that inter-hemispheric connections were more likely to be weakened 

in AD patients. 

     Graph theory was then applied to provide quantitative measure of the revealed 

network properties. Figure 4-8 show the degree, clustering coefficient, and centrality 

indices for the brain regions that showed statistically significant differences (puncorrected 

< 0.05) between the HC and mAD groups, particularly at frontopolar, orbitofrontal and 

temporal regions. Due to the small sample size and large number of nodes in this study, 

we didn’t perform multiple comparison correction after the Mann Whitney U Test. As 

the results indicate, the HC group showed significantly higher index values for degree 

and clustering coefficient at the frontal pole (FP), medial-orbitofrontal (MOF), and 

postcentral (PostC) cortices, which were consistent across all frequency ranges. In 

contrast, the mAD group showed higher degree and clustering coefficient at the superior 
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temporal sulcus (BSTS) across all frequency bands. Significant difference in centrality 

between two groups was only seen in alpha band, with HC group revealed higher 

centrality at medial-orbitofrontal (MOF) and pars orbitalis (pORB) in low alpha band 

and lower index values at inferior parietal (IPL), inferior temporal (ITG) and lateral 

occipital (LOG) areas in high alpha band. Interestingly, the regional differences 

regarding graph measures between two groups were more prominent in the left 

hemisphere (Figure 4-8). 

4.5 Discussion 

     Alzheimer’s disease, as a form of dementia, presents with a number of cognitive 

symptoms that disrupt daily life. AD-linked impairments can be complex in nature and 

typically show progressive deterioration over the course of the disease. While the exact 

mechanisms that give rise to AD symptoms remain largely unknown, new imaging 

approaches have advanced our ability to noninvasively detect cortical activity and 

connections. The research presented here has sought to show the feasibility of EEG-

fNIRS integrated imaging to explore cortical dynamics and potential neural biomarkers 

in AD.  By capitalizing on the temporal resolution of EEG and spatial resolution of 

fNIRS, cortical functional connectivity was investigated in the low alpha, high alpha 

and beta frequency ranges. Secondary analysis was performed based on the principles 

of graph theory, which allowed regional network properties to be numerically quantified. 

Specific interest was paid to the measures of degree, clustering coefficient, and 

centrality, and results were compared to the networks derived from healthy subjects. 

The body of results presented here then provides both insight into the functional changes 
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that accompany AD onset and evidence that regional graph-based measures are 

markedly changed in mild AD. 

     To perform a full, in-depth investigation of cortical dynamics, it was first necessary 

to simultaneously collect data from both EEG and fNIRS. Examination of the EEG 

results revealed two primary peaks of interest; one occurring at ~200-300 ms and a 

second arising at ~1100ms (Figure 4-4). Based on the experimental paradigm, it is 

believed that the first peak constitutes an auditory evoked potential, with possible P300 

components, while the late peak is believed to represent cognitive task-related potential. 

Directly comparing how these peaks manifested in the HC and mAD groups presented 

a noteworthy contrast – the amplitude of the task-based peak (1100 ms) was greatly 

reduced in AD patients, while the amplitude of the auditory evoked potential (~300 ms) 

remained largely the same. This indicates that stereotypical, stimulus-linked ERPs are 

resilient to AD-linked cognitive deficits, while signals linked to encoding stimulus are 

diminished. These findings align with previous studies that have reported significantly 

reductions in the signal amplitude of MCI/AD patients when compared to healthy 

controls in cognitive tasks [155, 156], exhibiting the functional differences that 

accompany cognition impairment. In addition to superficial EEG signals, the 

reconstructed EEG source current activity, with spatial constraint from fNIRS signals, 

further uncovered a convincing spatiotemporal patterns of cortical activity associated 

with the memory-encoding task between healthy controls and AD patients. As 

demonstrated in Figure 4-6, compared to healthy controls, AD patients revealed an 

altered distribution that featured more activity along the central sulcus and frontal area. 

The result presented here generally aligns with previous studies that identified activity 
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in the middle frontal gyrus, dorsal lateral prefrontal cortex (DLPFC) and inferior parietal 

cortex during digit verbal span task [157, 158], validating the ability of the proposed 

fNIRS-EEG integration approach to characterize the spatiotemporal dynamics of AD-

linked brain network. 

     Having effectively completed unimodal analyses, the fNIRS-informed EEG source 

imaging analysis framework was adapted and applied to investigate cortical dynamics 

and connectivity. Weighted phase lag index (wPLI) values were calculated between the 

time courses at each pair of ROIs, with results effectively indicating the different brain 

networks between groups. On the whole, the mAD group showed reduced functional 

connectivity when compared to their healthy counterparts (Figure 4-7). The most 

apparent network alterations were observed in the high alpha and beta bands, with the 

low alpha connectivity map showing relatively fewer alterations (Figure 4-7). 

Furthermore, changes showed that marked lateralization-significantly reduced 

connections were observed more often in the left hemisphere than right in high alpha 

and beta bands (Figure 4-7B, 4-7C). In particular, the left frontal pole and orbitofrontal 

cortices appeared to show major reduced connections. The importance of these cortical 

regions has been suggested by previous literature as well [159-161].  For example, 

Johnson reported a significant positive correlation between atrophy and activation in 

left frontal area in AD patients, which may account for the cognition decline of AD 

patients [161]. Reductions in the bilateral connections of AD patients, such as the 

connections between the left and right frontal cortices in the beta band (Figure 4-7C), 

provide additional evidence that hemispheric integration is reduced in AD cohort. 

Similar findings of hemispheric asymmetrical connectivity patterns were also 
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previously reported [128, 162].  Finally, results from the AD patients found a pair of 

significantly increased wPLI values in the beta band. These increases were associated 

with the right temporal lobe and connected with the left temporal and right parietal areas, 

indicating that AD-linked cognitive impairments do not simply inhibit the global 

connectivity network. The unique nature of this connection may make it a specific point 

of interest as a potential biomarker. Previous studies have further identified two marked 

patterns of cortical properties in AD; temporal lobe atrophy and a reduction in the 

temporal and occipito-temporal beta power and mean frequency [163-165]. As wPLI 

characterizes the synchronization between regions (and stability thereof), it is 

reasonable to conclude that the relatively symmetrical degradation of the temporal lobe 

and the coincident reduction of beta frequency in AD may contribute to an increase in 

apparent wPLI values. With this in mind, monitoring the wPLI values between the 

temporal lobes or temporal-parietal lobes may provide advanced warning of the 

characteristic changes in AD. Furthermore, it should the noted that the interhemispheric 

nature of these interactions minimizes the chance for crosstalk and volume conduction, 

making the potential biomarker more resilient and accurate.  

     The direct measurement of wPLI provides a very detailed perspective of which 

cortical regions interact during the cognitive task and how these interactions vary in 

patients with AD. Unfortunately, the large amount of data from pure connectivity results 

makes it difficult to identify specific, meaningful differences between HC and the AD 

group. As a result, we applied graph theoretical measures to the identified connectivity 

structures and generated descriptive summary statistics for the identified networks, 

easing discrimination and highlighting potential biomarkers for diagnosis of AD. It 
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should be noticed that small-worldness, computed from clustering coefficient and 

shortest path length of the network, is recently proposed to characterize global 

properties (high segregation and integration) of a brain network [166-168] and has been 

well-explored by previous AD studies using multiple neuroimaging techniques, such as 

fMRI and EEG [169, 170]. However, this fNIRS-EEG integration study solely focused 

on regional analysis using node-based measures to identify regional alterations in 

particular regions associated with AD, providing more regional information of the brain 

network compared to the global property conveyed by small-worldness. Node-based 

measures, including degree, clustering coefficient, and centrality were used as a part of 

this study, and each exhibited significant differences between the HC and AD groups 

across frequency ranges, as indicated in Figure 4-8. Degree, which indicates the number 

of connections within a region, showed significant differences in a number of regions, 

particularly in the right superior temporal sulcus (BSTS-R, low alpha, high alpha and 

beta bands), left medial orbitofrontal (MOF-L, low alpha and beta bands),  and left 

frontal pole (FP-L, low alpha, high alpha and beta bands) regions. Clustering coefficient 

showed a greater number of significant differences in all frequency ranges, particularly 

in the bilateral frontal pole (FP-L and FP-R) and right superior temporal sulcus (BSTS-

R). Frequency-specific differences in clustering coefficient were found in the left medial 

orbitofrontal (MOF-L, low alpha and high alpha), right postcentral (PostC-R) and left 

pars orbitalis (pORB-L, beta) regions. Finally, centrality showed the most lateralized 

significance, including differences in the left inferior parietal, medial orbitofrontal, pars 

orbitalis, inferior temporal and lateral occipital areas within alpha band. Notably, 

centrality in the low and high alpha bands appeared to be increased in parietal, occipital, 
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and temporal locations, areas that did not show significance in any other comparisons. 

These results indicate the potential of EEG-fNIRS-based neural biomarkers for the early 

characterization of AD, with regional indices appearing to be particularly impacted by 

cognitive decline. In particular, the left frontopolar regions showed significant decreases 

for degree and clustering coefficient in each frequency band, highlighting it as a 

particular region with discriminatory potential. On the contrary, the right superior 

temporal sulcus showed significant increases for these two measures in the each 

frequency band, making them potential markers of interest as well. These results 

reinforce the findings that can be observed from synchronization index (such as wPLI) 

measurements alone [171, 172] and evidence a fundamental shift in network structure 

as hubs of activity transition from frontal to temporal locations over the course of AD 

onset. While these studies have focused largely on AD-linked changes within the default 

mode network, the present feasibility study has focused on cortical networks activated 

during a memory-based task. Considering that memory deficit is a defining 

characteristic of AD and that the prefrontal cortices are heavily implicated in memory 

processing, the regional alterations observed here are considered reasonable and evince 

the capability of integrated EEG-fNIRS approach in the detection of task-induced 

network changes. 

     Though this research has effectively used EEG-fNIRS to uncover potentially 

impactful dynamics of activity, there are several limitations that should be 

acknowledged. First, the source localization here was performed using a generic head 

template with default electrode locations. Although the generic model still features a 

realistic anatomy, the lack of subject-specificity blinds the current method to individual 
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differences in anatomy or cap setup. Considering this, it would be useful for future 

research to obtain anatomical MRI for the subject, which can be used to customize the 

model and forward calculation. Second, the fNIRS setup for this study was not able to 

provide full coverage due to a limited number of optodes. To minimize the effect of 

insufficient coverage, the cap setup here was designed to cover key regions of interest, 

and the proposed fNIRS-EEG integration approach was previously demonstrated to be 

highly robust against “false-positive prior” (i.e. active regions in fNIRS but not in EEG) 

and “missing prior” (i.e. missing regions from fNIRS activation map but active in EEG) 

as described in detailed in [140]. However, we acknowledge that gaps in coverage may 

still limit the prior information of fNIRS and reduce source localization accuracy, it is 

therefore suggested that future research utilize a setup with full coverage when possible. 

Finally, this study focused solely on evaluating the feasibility of utilizing fNIRS-EEG 

integration approach to explore dynamic alterations in the AD-linked brain network 

compared to healthy population. The preliminary results, though achieved based on the 

limited sample size, are believed to have provided sufficient evidence to support our 

feasibility evaluation. When attempting early detection of AD, however, it will be 

important to differentiate between each of these pathological conditions, including MCI 

or preclinical stage of AD that contribute to the development of AD. It will then be 

necessary to expand subject base and population in the future if true, defining neural 

biomarkers are to be obtained. 
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4.6 Summary 

     The complimentary properties and easy application of EEG and fNIRS has led to a 

significant research focus on their multimodal combination. In this chapter we presents 

a feasibility study for the integration of EEG and fNIRS, using a spatiotemporally 

accurate integration method to explore the alterations of AD networks compared to 

healthy controls. Following this approach, variations in regional connectivity were 

assessed and used to uncover frequency-linked differences between healthy controls and 

mild AD patients. Graph theory measures were then applied and a number of regional 

and frequency-specific features were identified. While more verifications will be 

necessary, this study has shown the potential for the inexpensive and portable 

assessment of possible AD neural biomarkers that are associated with brain connectivity 

network. With further research and definition, technique proposed in this study may 

advance the detection and treatment of AD, improving outcomes and reducing costs for 

both individuals and healthcare providers.
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Chapter 5 ─ Longitudinally Assessing Brain Plasticity during Post-

stroke Recovery using Concurrent fNIRS-EEG Recordings 

5.1 Abstract 

     Persistent motor deficits are very common in post-stroke survivors and often lead to 

disability. Current clinical measures for profiling motor impairment and assessing post-

stroke recovery are largely subjective and lack precision. Biomarkers indicating 

alterations in motor functions present as an essential tool for assessing and predicting 

post-stroke motor recovery and as such are of great clinical value. In this chapter, we 

apply multimodal neuroimaging technique to characterize the brain plasticity during 

post-stroke rehabilitation. EEG and fNIRS data were simultaneously recorded from nine 

healthy controls and eighteen stroke patients during a motor execution task. The 

proposed fNIRS-informed EEG source imaging technique was employed to estimate 

cortical neural activity and functional connectivity. Subsequently, graph theory analysis 

was performed to identify network features for monitoring and predicting motor 

function recovery during a four-week intervention. Results showed that the task-evoked 

strength at ipsilesional primary somatosensory cortex (S1) was significantly lower in 

stroke patients compared to healthy controls (p < 0.001). In addition, across the four-

week course of rehabilitation intervention, the task-evoked strength at ipsilesional 

premotor cortex (PMC) (R = 0.895, p = 0.006) and the connectivity between bilateral 

primary motor cortices (M1) (R = 0.9, p = 0.007) increased in parallel with the 

improvement of motor function. Furthermore, a higher baseline (pre-intervention) 

strength at ipsilesional PMC was found associated with a better motor function recovery 
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(R = 0.768, p = 0.007), while a higher baseline connectivity between ipsilesional 

supplementary motor cortex (SMA)-M1 implied a worse motor function recovery (R = 

-0.745, p = 0.009). In conclusion, the established multimodal EEG/fNIRS neuroimaging 

technique demonstrates a great potential for monitoring and predicting post-stroke 

motor recovery in a longitudinal manner. 

5.2 Introduction 

     Stroke is the major cause of motor impairment, leading to motor deficits at acute 

stage and most stroke survivors are left with residual motor deficits throughout their life 

[173]. Over the past decades, effort has been taken to understand the neural mechanisms 

of motor recovery following stroke and enhance the efficacy of rehabilitation therapy. 

Emerging evidences have shown that cortical reorganization accompanies the 

restoration of motor function after stroke [174, 175], yet how well post-stroke 

rehabilitation can benefit from this functional alteration has not been completely 

determined. Therefore, it is important to identify biomarkers that could precisely 

characterize the pattern of motor recovery and maximize the therapeutic effect during 

post-stroke therapy. 

     Cortical reorganization during post-stroke therapy is generally associated with 

altered regional excitability as well as aberrant connection between relevant function 

areas [175-178]. Advanced non-invasive neuroimaging techniques, including EEG and 

fMRI, have been widely applied to explore the dynamic alteration of cortical excitability 

and connectivity after stroke and shown great potential for understanding the 

relationship between dysfunctional brain network and motor deficit [8, 179-181]. For 
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example, resting-state fMRI studies have shown that interhemispheric connectivity 

between bilateral primary motor cortex is positively correlated with the motor 

improvement of stroke patients and can predict better upper limb motor gains across 

longitudinal rehabilitation [177, 182-184]. Additionally, Cheng et al., explored the task-

evoked brain network property using graph theory analysis during a motor task and 

found that network-derived indices are capable of predicting motor function restoration 

[179]. In contrast to fMRI, EEG presents a number of advantages over fMRI for 

exploring the stroke-linked neuronal activity: it is highly-portable, inexpensive, and 

features a very high temporal resolution[15]. By applying connectivity analyses to EEG 

signals, the modulations of regional connectivity following stroke have been identified 

in previous studies [8, 181]. Overall, these findings suggest that measures of cortical 

motor excitability and connectivity may serve as good biomarkers for characterizing the 

cortical reorganization after stroke.  

     However, one challenge of EEG is the volume conduction problem; a single 

electrode on the scalp picks up activity from multitude sources (cortical activity, 

subcortical activity, external noise, etc.), which results in a difficulty in accurately 

localizing the source activity and spuriously affects phase-synchronization indices used 

in EEG connectivity analyses [152, 185]. EEG source localization has therefore been 

developed to overcome the limitation of surface EEG in characterizing the brain activity 

[186]. Typically, this approach relies on the surface EEG signals and the anatomical 

structure and physiological properties of the brain to estimate sources within the brain, 

which allows us to more accurately localize the regions associated with specific function 

[187, 188]. A common challenge for EEG source localization is the ill-posed “inverse 
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problem”; the number of sources that give rise to EEG signals vastly outnumbers the 

available measurements, making it impossible to localize the measured scalp EEG 

activity to the actual current-generating source within the brain with absolute certainty 

[189, 190]. Therefore, attempts have been made to overcome this challenge by 

combining EEG data with the results from other neuroimaging modalities, such as fMRI. 

Prior studies have shown that, using high spatial prior information acquired by fMRI, 

people are able to estimate brain activity with high spatiotemporal resolution in both 

computer simulations and real experiments involving visual and motor tasks [90, 191-

193]. However, fMRI is typically limited by the high sensitivity to motion artifacts, poor 

portability, and high costs, rendering it less appropriate for investigating brain activity 

related to human motor control in realistic situations (e.g., in sitting or standing positions) 

[139].  

     One alternative solution for overcoming this limitation is to use the portable fNIRS 

as a supplement to EEG source localization. Our previous study has demonstrated the 

possibility of utilizing the fNIRS constrained-EEG source localization to investigate the 

dynamic cortical connectivity associated with Alzheimer's disease [21]. These 

evidences support that connectivity analysis based on integrated fNIRS-EEG source 

localization could be applied to characterize the stroke-linked cortical reorganization 

for the longitudinal assessment of post-stroke motor recovery. 

     With this in mind, this chapter aims to characterize the cortical reorganization during 

post-stroke rehabilitation using our novel fNIRS-informed EEG source imaging 

algorithm. Specifically, fNIRS and EEG data were simultaneously collected from 

healthy controls and stroke patients during a motor task. Spatial priors related to the 
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motor task were extracted from the fNIRS signals to enhance the performance of the 

EEG source imaging, from which the time-courses of cortical activity were 

reconstructed and used for the functional connectivity analysis for all subjects. We 

hypothesized that brain network within motor regions would be associated with 

individual motor function. It was expected that network-based biomarkers were able to 

assess and predict motor improvement after rehabilitation intervention. 

5.3 Materials and Methods 

5.3.1 Participants 

     Eighteen stroke patients with hemiparesis (11 Males/ 7 Females, age: 58.67 ± 10.26 

years) were recruited from Guangdong Provincial Work Injury Rehabilitation Center, 

and nine age-matched, healthy subjects (HC, 6 Males / 3 Females, age: 44.44 ± 16.63 

years) were recruited as a control group in this study. All participants are right-handed, 

age and gender-matched. The experimental protocol was approved by the ethics 

committee of the Guangdong Provincial Work Injury Rehabilitation Center. Participants 

gave written informed consent according to the Declaration of Helsinki. 

      The inclusion criteria for stroke patients were as follows: (1) stroke that occurred 1–

6 months prior to the first assessment; (2) age between 18-70 years; and (3) able to 

follow instructions and to consent (Mini Mental State Exam score > 27). The exclusion 

criteria included: (1) deficits in communication or attention that would interfere with 

the experiment participation; (2) contraindication to magnetic resonance imaging (MRI) 

scanning; and (3) other diseases that would substantially affect the function of upper  

extremity. 
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5.3.2 Study protocol 

     All patients underwent a 4-week conventional rehabilitation intervention in the 

hospital. The intervention included standard physical training, occupational therapy and 

massage for 6 hours per day, 5 days per week. Prior to the beginning of intervention, all 

patients underwent a baseline assessment of upper extremity function by Fugl-Meyer 

 

Figure 5-1.  Experimental design. (A) The experimental motor execution (ME) task used in the study. 

“+” symbol indicated the resting period. (B) The channel locations of EEG and fNIRS. 
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Assessment rating scale (FM-UL, normal = 66) and participated in a concurrent EEG-

fNIRS recording (pre-intervention). At the end of the rehabilitation intervention, 7 of 

the 18 patients participated in the second concurrent EEG-fNIRS recording and 

assessment of motor function (post-intervention). All motor function assessments were 

performed by an experienced therapist from the Department of Rehabilitation Medicine 

in the participating hospital. 

     During the experiment, Subjects received visual instruction through a monitor placed 

in front of them. A motor execution (ME) paradigm consisted of 40 randomized trials 

of left and right hand clench task (20 trials for each hand) was adopted. Each trial started 

with a 8-second ME task, indicated by an short video showing a left/right open-close 

hand, followed by 17 seconds of a resting period, indicated by a “+” symbol in a black 

background (Figure 5-1A). During the ME period, subjects were asked to naturally 

squeeze a sponge ball with the corresponding hand. In particular, patients were required 

to try their best to squeeze the rubber without causing any shaking of their bodies when 

performing hand clenching using their affected hands. 

     A concurrent EEG and fNIRS measurement setup was employed to collect the EEG 

signal and hemodynamic response signal (Figure 5-1B). Specifically, thirty-two EEG 

electrodes were placed on the scalp, and EEG signals were measured using an EEG 

recording system (Brain Products GmbH, Germany) at 500 Hz sampling rate. At the 

same time, a total of 40 fNIRS channels were positioned over the main brain regions, 

including the motor cortex, frontal cortex, temporal cortex and occipital cortex. FNIRS 

signals were recorded simultaneously using a continuous-wave NIRS imaging system 

(NIRScout, NIRx Medizintechnik GmbH, Germany) at 3.91 Hz sampling rate. 
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5.3.3 Data preprocessing 

     The raw EEG signals were first filtered by a notch filter at 50 Hz to remove powerline 

noise and then a 4th order Butterworth bandpass filter (0.5 Hz--45 Hz). Eye movement 

artifact was then removed using independent component analysis. Data were re-

referenced by subtracting the average of all channels from each channel. After that, EEG 

data were segmented to multiple trials that began 2000ms before the task onset and 

ended 8000ms after, and baseline correction was performed for each trial. Finally, we 

manually inspected and excluded any trial with artifact. 

      For the fNIRS signals, a 4th order Butterworth band-pass filter (0.01--0.5 Hz) was 

applied first to eliminate artifacts such as cardiac interference (0.8 Hz). After that, 

motion artifacts were removed from the fNIRS signals using a wavelet-based method 

[194]. The concentration changes of the HbO and HbR were then computed according 

to the Modified Beer-Lambert Law [10]. The obtained signals were manually inspected 

for every channel, wherein noisy trials were excluded from further analysis. Similar to 

the method in our previous study [21], the General Linear Model (GLM) was employed 

to obtain the activated channels significantly induced by each hand movement, which 

would be used as spatial priors for the EEG source imaging. 

     Following the method described in Chapter 4, fNIRS-informed EEG source imaging 

was perform. A time-course of cortical activity for each brain ROI was reconstructed 

and extracted from each region, yielding 68 regional current source estimates for each 

subject. 
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5.3.4 Functional connectivity and graph theory analysis 

     To accurately characterize the brain plasticity after stroke, in this study we employed 

weighted phase lag index (wPLI) to assess the FC between brain regions and graph 

theory analysis to identify aberrant regional excitability caused by stroke. It should be 

noted that 𝑤𝑃𝐿𝐼 is between 0 and 1, where 0 indicates no synchronization between two 

time series and 1 indicates a strong synchronization between two time series.   

     In this study, the reconstructed time series of each brain ROI was first filtered into 

different frequency bands, including theta (4-8 Hz), low alpha (8-10 Hz), high alpha 

(10-13 Hz) and beta (13-30 Hz). The wPLI between the time series of any ROI pair was 

then computed for each frequency band.  

     Graph theory was employed in this study to identify brain region with abnormal 

excitability after stroke. Specifically, we defined each ROI as a “node” and the wPLI 

between two nodes as the “edge” in a graph [154]. As such, based on the wPLI 

interaction matrix, a weighted undirected graph can be constructed for each frequency 

band and each subject [21]. Furthermore, a graph metric, termed as node strength, was 

applied to assess the excitability of each brain region. Specifically, the strength of a 

particular ROI is defined as the sum of weights of all edges connected to this ROI, which 

indicates the importance of ROI in the network [154]. In this study, we computed the 

strength of each ROI at all pre-defined frequency bands. 

5.3.5 Multiple linear regression and statistical analysis 

     To identify the association between the FC indices and motor function of subjects, 

we performed bivariate analysis and multiple linear regression analysis in this study. 

Specifically, we focused on the strength of eight key brain regions that are essentially 
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involved in motor control system, including the primary motor cortex (M1), premotor 

cortex (PMC), primary somatosensory cortex (S1) and supplementary motor area (SMA) 

on both hemispheres. In addition, the connectivity between all eight regions, including 

4 symmetrical connection between two hemispheres, 3 connections between M1 and 

other brain regions in the ipsilesional hemisphere, and 3 connections between M1 and 

other brain regions in the contralesional hemisphere, were also evaluated by testing the 

corresponding wPLI values. Overall there were 32 regional excitability index (assessed 

by strength, 8 regions × 4 bands) and 40 connectivity index (assessed by wPLI, 10 

connections × 4 bands) to be analyzed. Note that the left hemisphere was defined as 

lesion side based on the motor deficit of patient group (Table 5-1), and the 

corresponding right hand task was analyzed. FC indices from patients with lesion in the 

right hemisphere were flipped across the midline for subsequent analyses [8]. 

We first investigated whether there was a significant difference in the FC indices 

between healthy controls and stroke patients using Wilcoxon rank sum test. Multiple 

linear regression was employed to document the linear relationship between the selected 

FC indices and the degree of motor impairment (FM-UL scores). Specifically, in the 

regression model, the independent variables were the selected FC indices among target 

regions, while the dependent variable was the FM-UL scores of all subjects. 

The second analysis was to exam how the changes in FC (ΔFC) performed as a 

biomarker of improvement in motor function (ΔFM-UL) over the 4-week intervention 

in patients. The ΔFC of all 7 patients underwent two assessments were defined as the 

independent variables in the linear regression model, while the changes of  FM-UL 
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scores between pre-intervention and post-intervention (ΔFM-UL) were defined as the 

dependent variable. 

Table 5-1. The demographic information and clinical characters of all subjects. 

Subject Age 

(Years) 

Gender Affected 

hand 

Days 

after 

stroke 

Lesion location FM-UL 

Pre Post 

01 55 M R 45 Left basal ganglia 12 / 

02 66 F R 89 Left pons 18 33 

03 56 M L 62 Right basal ganglia 56 60 

04 36 M R 75 Left basal ganglia 30 / 

05 46 M R 40 Left thalamus 53 / 

06 37 M R 84 Left coronal radiate 32 / 

07 23 F R 36 Left fronto-

temporo-parietal 

44 58 

08 55 F R 32 Left pons 56 / 

09 51 F L 44 Right basal ganglia 43 49 

10 61 F R 42 Left basal ganglia 14 / 

11 47 M R 72 Left basal ganglia 20 / 

12 50 M L 32 Right basal ganglia 11 13 

13 36 M R 99 Left basal ganglia 17 / 

14 43 M R 101 Left basal ganglia 18 20 

15 63 F R 52 Left pons 16 / 

16 43 M L 110 Right basal ganglia 22 27 

17 54 F R 43 Left basal ganglia 25 / 

18 40 M R 56 Left basal ganglia 61 / 

      

     Another analysis was to assess how well the baseline FC (pre-intervention) can 

predict the motor function gains (ΔFM-UL) after the 4-week intervention. We defined 

the baseline FC indices obtained from all 7 patients as the independent variables and the 

improvement of motor function (ΔFM-UL) after rehabilitation as the dependent variable.  

Importantly, prior to each individual multiple linear regression analysis, bivariate 

analysis was performed to test the correlation between each independent variable and 

dependent variable using Pearson’s correlation. Similar to a previous study [8], a 

threshold relative to the absolute value of the maximal correlation coefficient (>0.8 Rmax) 

was required for the corresponding independent variables to be included in the 

regression model. 
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5.4 Results 

5.4.1 Demographic and clinical behavioral data 

     Table 5-1 summarizes the demographic information and clinical behavioral scores 

of all patient subjects, including age, gender, site of the lesion, time of post-stroke and 

clinical assessment scores. Statistical analysis showed that there were no significant 

differences between healthy controls and stroke patients in terms of age (p = 0.515) and 

gender (p = 0.609). In addition, a significant improvement in the motor function 

(assessed by FM-UL scores) after the 4-week rehabilitation intervention was observed 

from seven patients who participated in the second evaluation (post-intervention vs. pre-

intervention, p = 0.017). 

5.4.2 Difference in functional connectivity between healthy and patient groups 

     The Wilcoxon rank sum test revealed that the baseline (pre-intervention) strength of 

ipsilesional S1 at theta band was significantly lower in stroke patients (n = 18) compared 

to healthy controls (n = 9) (pcorrected < 0.001, Figure 5-2A). We further examined the 

relationship between the significant FC index and the FM-UL scores of all patients. The 

linear regression analysis indicated that, when considering both pre- and post-

intervention, there was only a mild positive but not significant correlation between the 

theta strength at the affected S1 and the degree of motor impairment of patients (R = 

0.254, p = 0.221), as shown in Figure 5-2B. 
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Figure 5-2. (A) Significant difference in theta strength (mean ± std) at ipsilesional S1 between healthy 

and patients at pre-intervention (p < 0.001). (B) Positive but not significant correlation 

between the strength of ipsilesional S1 at theta band and the degree 

5.4.3 Correlation between changes of functional connectivity and improvement of 

motor impairment 

     A separate linear regression analysis was performed to evaluate the sensitivity of the 

change of FC (Δ FC) in monitoring the recovery of motor function (ΔFM-UL) in all 

seven patients who participated in the post-intervention evaluation. Results showed that 

there was a significantly positive correlation between the change in the high alpha 

connectivity of bilateral M1 areas and the improvement of motor impairment after the 

4-week rehabilitation (R = 0.900, p = 0.007, Figure 5-3A). We also found that the 
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change in the task-evoked strength at ipsilesional PMC was positively correlated with 

the improvement of motor impairment at beta band (R = 0.895, p = 0.006, Figure 5-3B). 
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Figure 5-3. Correlation between the motor gains and changes of FC indices (A: change of 

connectivity between bilateral M1; B: change of the strength at ipsilesional PMC). 

5.4.4 Baseline functional connectivity predicts motor improvement after 

intervention 

     To assess the feasibility of using FC indices as biomarkers to predict the motor gains 

after rehabilitation intervention, a linear regression model was fitted to correlate the 

baseline (pre-intervention) FC indices with the motor gains (ΔFM-UL) after the 

rehabilitation. The results showed that the higher baseline SMA-M1 connectivity at the 

affected hemisphere related to the worse motor gains after the training (R = -0.745, p = 
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0.009, Figure 5-4A), while greater motor gains were also predicted by higher baseline 

strength of the ipsilesional PMC at low alpha band (R = 0.768, p = 0.007, Figure 5-4B). 

Δ
 F

M
-U

L 
(P

o
st

 –
 P

re
)

Δ
 F

M
-U

L 
(P

o
st

 –
 P

re
)

Pre-intervention  low alpha 

strength at ipsilesional PMC 

R = 0.768
P = 0.007

 R = -0.745
P = 0.009

A

B

PMC

L R

L R

SMA

M1

Pre-intervention high alpha connection 
between ipsilesional SMA-M1

 

Figure 5-4. Correlation between the motor gains and the baseline (pre-intervention) functional 

connectivity measures (A: baseline connectivity between ipsilesional SMA-M1; B: 

baseline strength at ipsilesional PMC).  

5.5 Discussion 

     The assessment and monitoring of motor function after stroke primarily rely on the 

inspection performed by physicians and therapists, which requires exhaustive testing 

sessions and introduces subjectivity and variability of the outcome. In addition, routine 

clinical examination lacks direct evidence that reflects the functional recovery of motor-

related regions in the brain. Therefore, it is of great importance to explore useful 

biomarkers for insightful assessments of changes in brain motor function across a period 
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of therapy and an effective management of a rehabilitation program. Emerging evidence 

has suggested that a number of brain FC indices could serve as such potential 

biomarkers [8, 183, 184, 195]. However, the dominant technique to investigate brain 

network property, such as fMRI, is subject to multiple limitations, such as rigorous 

measurement restriction and high cost. While previous studies have demonstrated the 

feasibility of using surface EEG signal to characterize the alteration of FC following 

stroke, this approach suffers from the inherent volume conduction problem, making it 

difficult to localize the regional changes of the motor cortex during rehabilitation 

intervention.  To address this challenge, this study presented an fNIRS-informed EEG 

source imaging approach to investigate the brain network alterations caused by stroke 

during a hand clenching task. The findings validated the feasibility of using the novel 

fNIRS-informed EEG source imaging approach to characterize the altered cortical 

excitability and connectivity caused by stroke, as well as to derive biomarkers for the 

assessment and prediction of motor function recovery in post-stroke rehabilitation. 

     Recent findings have suggested that there is a close association between the cortical 

excitability and upper extremity function in stroke patients [8, 196]. In the current study, 

using the cortical activation strength as an excitability measure, the ipsilesional PMC 

was identified as key region associated with the motor recovery. Specifically, the 

increment of beta strength at ipsilesional PMC was highly correlated with the motor 

function improvement across the 4-week intervention (R = 0.895, Figure 5-3B). 

Furthermore, the baseline (pre-intervention) strength of this region at low alpha band 

was also highly correlated with the motor improvement (R = 0.768, Figure 5-4B), 

accounting for a majority of the rehabilitation outcome after stroke. These results are 
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consistent with evidences reported in previous studies that better motor recovery is 

associated with increased task-evoked activation in ipsilesional PMC [197-199]. Similar 

findings were also reported in recent studies involved in resting state connectivity 

analysis [8]. Functionally, the role of PMC is critical in motor control and learning as it 

receives direct inputs from the dorsolateral prefrontal cortex and posterior parietal 

cortex, processes this information, and projects the output to M1 for movement 

execution [199]. In particular, emerging evidences have indicated that PMC is a vital 

part in grasping task, wherein mirror neurons within the PMC may play a potentially 

significant role in motor learning such as observational learning and imitation learning 

in our clenching task [200]. Furthermore, the predominant pattern of cortical 

reorganization following stroke rehabilitation, which mainly involved the increased 

activation of ipsilesional PMC, is also well-documented in a variety of studies [174, 

199]. Taken together, these evidences support the findings in our study that the baseline 

and the change of activation strength at ipsilesional PMC were highly responsible for 

the major improvement of motor function across the intervention, demonstrating its 

important role in the post-stroke motor recovery. 

     Motor recovery was associated with the cortical reorganization that redistributes 

regional interactions throughout the whole motor network rather than a single region. 

Therefore, in this study, in addition to the investigation of the association between 

cortical excitability and motor function, we also attempted to identify biomarkers 

associated with cortical connectivity that can be used to characterize motor recovery 

after stroke. Interestingly, in this study we found that greater motor improvement after 

the intervention was predicted by lower baseline ipsilesional SMA-M1 connectivity 
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(Figure 5-4A), which could convey meaningful information. It has been demonstrated 

that, regardless of cortical or subcortical stroke, motor recovery could manifest brain 

plasticity at the cortical level, including M1, PMC and SMA [201]. According to 

previous studies, both M1 and secondary motor areas such as SMA have direct 

connections to the entire corticospinal tract (CST) that significantly correlated with the 

motor impairment after stroke [202]. It is possible that such a pathway from SMA to the 

spinal cord may at least strengthen to the motor recovery during post-stroke training. 

More specifically, the more disconnected between SMA and M1, the stronger the SMA 

can be recruited to compensate for the SMA-M1 deficiency. As such, it is possible that, 

when the functional connection between ipsilesional SMA and M1is heavily affected 

due to brain lesion, secondary motor areas such as SMA may contribute to post-stroke 

recovery by a stronger direct projection to the CST and partially taking over the 

functionality from the ipsilesional area, leading to better recovery of motor function 

after intervention (Figure 5-4A). However, it remains underdetermined whether the 

functional connectivity between SMA and CST is s more beneficial to the post-stroke 

recovery when connection between SMA and M1 is heavily affected after stroke. More 

evidence should be given to validate this hypothesis and the feasibility of employing 

such biomarkers to predict the motor recovery outcome before enrolling in an 

intervention program. 

     Another finding in the current study was that the change in the bilateral M1 

connection at high alpha rhythm was positively correlated with the motor gains across 

the 4-week intervention (Figure 5-3A). Surprisingly, a larger increment of bilateral M1 

connection was significantly associated with greater motor gains, whereas decreased 
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bilateral M1 connectivity was also correlated with mild motor gains after the 

intervention (Figure 5-3A). In fact, according to findings in our study and previous 

studies, the role of this particular connection during post-stroke motor recovery remains 

unknown. While some studies have found increased functional connectivity between 

bilateral M1 regions after intervention [184, 203], contradictory or non-significant 

results were also reported [8]. This discrepancy could be attributed to multiple reasons. 

For example, the clinical characteristics of patients recruited in these studies may vary 

sharply in terms of time after stroke-onset, stroke type and severity, which might induce 

a large variance in the bilateral M1 connectivity results. In addition, the contribution of 

the contralesional M1 to the motor recovery remains controversial. While activated 

contralesional M1 was reported to be more evidently correlated with a poorer outcome 

in the long-term stroke patients [204], recent studies have also argued that increased 

activation of contralesional M1 after stroke may be beneficial in some aspects of 

effectively recovered motor behavior [205, 206]. Taken these together, more evidences 

will be needed to determine the role of bilateral M1 connectivity in assessing the motor 

function recovery during post-stroke rehabilitation. Beyond this uncertainty of bilateral 

M1 connectivity, one particularly noteworthy finding in our study is that we were able 

to identify such discrepancy in explaining the motor recovery outcome (Figure 5-3A), 

demonstrating the high sensitivity of the proposed brain network analysis strategy and 

its potential value in investigating the brain plasticity after stroke. 

     While we found a significant difference in theta strength at the ipsilesional S1 

between stroke and healthy group at pre-intervention, there was no significant linear 

correlation between this FC index and the FM-UL scores of patients (Figure 5-2). In 
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support of this finding, previous studies have demonstrated that significant FC indices 

found between healthy and patient groups were not deemed to act as effective 

biomarkers to characterize the motor function in the patient group [176, 203]. In fact, 

instead of simply focusing on the difference between healthy and patient groups, 

biomarkers associated with cortical excitability and connectivity among the patient 

group are more attractive and are expected to be capable of characterizing the motor 

recovery pattern of patients during rehabilitation intervention [196, 207]. As such, in 

current study, we not only presented consistent and strong correlations between the 

identified FC indices and motor gains (Figure 5-3), but also demonstrated the great 

potential of these biomarkers in predicting the motor recovery spanning the 4 weeks of 

intervention (Figure 5-4), which provided reliable and sensitive biomarkers for the 

investigation of cortical reorganization after stroke. 

     The current study has some limitations that raise consideration. First, the sample size 

is relatively small in this study. Also, patients recruited for only two visits may not be 

sufficient to draw a solid conclusion for a longitudinal study. In addition, the clinical 

characteristics of patients, such as lesion size, location and stroke subtype, are rather 

heterogeneous, which could have differential effects on behavioral and neurological 

outcomes. Finally, the EEG source imaging performed in this study relied on a general 

brain template, which might induce mild bias when estimating the cortical activity. It is 

expected that in future work MRI could be used to collect the anatomical information 

for each subject to optimize the proposed approach. 
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5.6 Summary 

     In this chapter we presented a high spatiotemporal fNIRS-informed EEG source 

imaging framework to characterize the alterations of cortical excitability and function 

connectivity following stroke. In summary, the results of functional connectivity and 

graph-based analyses suggested that the bilateral M1 connection and task-evoked 

strength of ipsilesional PMC have significant potential in assessing the motor recovery 

outcome across a 4-week intervention. In addition, we also found that the ipsilesional 

SMA-M1 connection and the task-evoked strength of ipsilesional PMC at the pre-

intervention stage, were highly capable of predicting the motor recovery outcome. 

Therefore, the biomarkers derived from the proposed method may hold great potential 

in post-stroke rehabilitation assessment and expanding our understanding of cortical 

reorganization after stroke. 
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Chapter 6 ─ Conclusions and Suggestions for Future Research 

6.1 Summary of this Dissertation 

     This dissertation provides a grand overview of noninvasive multimodal functional 

neuroimaging techniques including Electroencephalography (EEG) and functional 

Near-infrared Spectroscopy (fNIRS), as well as a validation of utilizing the multimodal 

neuroimaging approach to characterize the cortical reorganization associated with 

various brain disorders. In Chapter 1, we briefly introduces the basic concepts of the 

fundamental of two noninvasive brain imaging techniques. We then elaborate the 

benefit and the theoretical basis of using the multimodal brain imaging technique in 

comparison with single-modality technique.  

     The neurovascular coupling of the human brain that stands as the basis of combining 

EEG-fNIRS are experimentally validated in Chapter 2 and Chapter 3. In particular, 

Chapter 2 implements an fNIRS-guided EEG channel selection method for enhancing 

the classification performance of a brain computer interface (BCI) system. This study, 

from the view of fNIRS-guided analysis, validates our hypothesis that there is certainly 

complementary information offered by EEG and fNIRS to study the brain activity. 

Subsequently, Chapter 3 introduces a novel EEG-informed fNIRS analysis to 

investigate the physiological correlation between the EEG and fNIRS signals. This 

study, from the view of EEG-guided, experimentally validates the inherent correlation 

between neuronal activity and hemodynamic response.  

     Leveraging the high spatial resolution of fNIRS and high temporal resolution of EEG, 

we then explore feasible approaches to study the human brain dynamics related to 
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various clinically-seen brain disorders. In Chapter 4, we develop an fNIRS-informed 

EEG source localization approach to investigate the brain network alterations induced 

by Alzheimer’s disease. In Chapter 5 we also demonstrate how the proposed fNIRS-

informed EEG source localization approach can be used to characterize the brain 

plasticity during longitudinal post-stroke rehabilitation. The obtained results and 

findings presented in Chapter 4 and 5 further highlight the versatility and usefulness of 

this powerful multimodal EEG/fNIRS integration method in uncovering the functional 

activity within the brain. 

6.2 Suggestions for Future Research 

     The underlying network interactions of the brain is of a highly dynamic nature, in 

both resting state and task-engaging state. While the fNIRS-informed EEG source 

imaging approach presented in this dissertation allow for the imaging and investigation 

of cortical activity with good spatiotemporal resolution and accuracy, the brain 

connectivity analysis is still relying on the static reconstructed source current traces. 

More specifically, the cortical activity of the brain when engaging in a task is dynamic 

across the whole task duration and thus requires a more dynamic analysis on the signals. 

In this dissertation, however, the entire reconstructed time-courses of cortical activity 

of the brain engaging in a certain cognitive task are utilized for connectivity analysis, 

which result in a static connectivity map that only represents a single brain network 

associated with the entire task. Therefore, it is of great importance to look into the 

dynamic cortical activity during the task by constructing multiple brain networks in a 

time-varying manner. 
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     Furthermore, apart from the fNIRS-informed EEG source imaging approach 

presented in this dissertation, there is a critical need to explore the feasibility of using 

EEG-informed fNIRS analysis to study brain activations related to multiple clinical 

scenarios. As we presented in Chapter 3, the time-sensitive property of the EEG signal 

provides rich information for the fNIRS GLM analysis as compared to the traditional 

block/event-related analysis methods. Specifically, we hypothesize that the EEG-

informed fNIRS analysis could be beneficial to the bedside monitoring and localization 

of seizure by performing a time-varying GLM analysis on a portable EEG/fNIRS 

multimodal system. Such investigation could offer new options for those applications 

that are constrained by the limitations of fMRI.  
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