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ABSTRACT

This study investigates gas reservoirs using AVO modeling and analysis for 3D pre-stack
seismic data acquired by Turkish Petroleum Corporation in the Thrace Basin located in
the northwest part of Turkey. The Thrace Basin is Turkey’s the most productive onshore
gas province, and is the largest and thickest sedimentary basin in Turkey. The Thrace
basin is basically a vertical stack of sand-shale-silt sequences with no complex structures
or salt domes. In such sedimentary stacks, rock properties such as density and velocity to
calculate Poisson’s Ratio and preserving amplitude are very significant in order to obtain
a successful AVO result. These features can help determining reservoir locations and

increasing gas productivity.

The main objective of this thesis is to understand rock properties at the possible reservoir
zone, to do AVO (Amplitude Versus Offset) modeling, and to test the effectiveness of
AVO modeling and analysis on the pre-stack seismic reflection data acquired over the

Thrace Basin to identify new reservoirs.

In this study, several processing steps were applied to our data, including true amplitude
recovery, normal move out correction, pre-stack time migration, correlation of log and
seismic data, and well log interpretation. Synthetic data were generated and elastic
parameters obtained on synthetic and real data. Conventional AVO analysis techniques
were applied; however, the effects of the hydrocarbon saturation to the amplitude could
not be highlighted in the reservoir zone. Therefore, three different inversion techniques

were performed to obtain an accurate reservoir signature. The inversion techniques could
Vi



help to map the reservoir zone in a better way by increasing the vertical resolution.
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Introduction
A robust combination of AVO analysis techniques and the latest software packages

yields top-notch improvements to identify new reservoirs.

This study takes place in one of the most important hydrocarbon provinces of Turkey.
The Thrace Basin is Turkey’s the most productive onshore gas province, and is the
largest and thickest sedimentary basin in Turkey. There are three major units, the
Danisment Formation, Osmancik Formation, and Mezardere Formation, which
produce gas in the basin. In the early Oligocene sequence, sandstones and carbonates
show good signals in terms of reservoir properties. Stratigraphic and structural traps
exist in the Thrace Basin, and play a very significant role in gas and oil exploration.
Gas has been discovered in the Osmancik, Mezardere, Hamitabat, and Sogucak
Formations. The reservoir rock sandstones in the Osmancik, Mezardere, and

Hamitabat Formations contain clayey sandstones and sandy limestones.

The main objective of the thesis is to understand rock properties at the possible
reservoir zone, to do AVO (Amplitude Versus Offset) modeling, and to test the
effectiveness of AVO modeling and analysis on the pre-stack seismic reflection data

acquired over the Thrace Basin to identify new reservoirs.

We used conventional velocity and amplitude analysis, and we also tried to relate the
hydrocarbon saturation to the amplitude or velocity variation. We could not highlight
the reservoir zone in AVO volume attribute sections; therefore, we performed three

different inversion techniques to increase the vertical resolution and to obtain an
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accurate reservoir signature. This could help us to better find the next drilling zone.



Chapter 1: Geologic Background

1.1 Geological Setting

Turkey has seven basins onshore; the Anatolia Basin, Thrace Basin, Adana Basin,
Tuz- Golu Basin, East Anatolia Basin, Black Sea Basin, and Sinop Basin. Moreover,
there are four major basins offshore; the Black Sea Basin, Marmara Sea Basin,

Aegean Basin, and Mediterranean Sea Basin.

Figure 1.1 Thrace Basin with deployed seismic profiles.

The Thrace Basin, is a triangular shaped Tertiary basin, filled with approximately
9000 m sedimentary rocks, cumulative thickness was estimated (Turgut et al., 1991).

The basin is in the European part of Turkey; it has borders with Greece and Bulgaria
3



(Figure 1.1). The basin is surrounded with the Rhodope Massif on its west, the

crystalline Strandja Mountain Belt and western end of the Black Sea on its north, and

Marmara Sea on its south (Figure 1.2).
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Figure 1.2 Location and geological map of the Thrace Basin showing gas and oil

fields (modified from Turgut et al., 1991).

Deposition first started with an extension of the Pontid Plate that was under the

intense effects of compressional tectonism in the early Eocene. The southwest-

northeast marine transgression was caused by the early extension of the Pontid Plate.

Deposition of the thick interbedded sandstone, conglomerate, and shale sequences

began in the Eocene and continued until the end of early Miocene. These depositions

are more than 8000m (26200 ft) thick (Huvaz et al., 2005). The central part of the
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basin became overpressured in the late Miocene, and due to this abnormal pressure
the south part, was uplifted and tilted towards north. As a result, several low angle

thrusts were created. These thrusts have been causing gravity sliding.

The Trace Basin consists of two main groups; the pre-Tertiary crystalline rocks of the
basement and overlying the Tertiary sedimentary rocks. The Tertiary rocks include
interbedded clastics, lava flows, and tuffaceous deposits. The Tertiary unit is
stratigraphically divided into three groups; the Kesan Group, Yenimuacir Group, and
Ergene Group. The Danisment, Osmancik, and Mezardere Formations contain
reservoir rocks, and they belong to the Yenimuacir Group. These formations are
buried more than 3000 m deep, and are exposed to temperatures 80-140 °C (Figure

1.4). Our seismic section and wells go through these formations.
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Figure 1.3 Generalized stratigraphy of the Thrace Basin showing the
depositional environments, formation thicknesses, petrophysical properties of
the reservoir rocks, type and average percent of total organic carbon (TOC) of

the source rocks and producing fields (modified from Huvaz et al., 2005).

1.2 Petroleum System of Thrace Basin

This study takes place in one of the most important hydrocarbon provinces of Turkey.
In the early Oligocene sequence, sandstones and carbonates show good signals in
terms of reservoir properties (Figure 1.2). Stratigraphic and structural traps exist in
the Thrace Basin, and play a very significant role in gas and oil exploration. Gas has
been discovered in the Osmancik, Mezardere, Hamitabat, and Sogucak Formations.
The reservoir sandstones in the Osmancik, Mezardere, and Hamitabat Formations

contain clayey sandstones and sandy limestones. The Sogucak Formation contains oil
6



which has been discovered by Turkish Petroleum Corporation (TPAQO). The porosity
of the sandstones in the reservoirs, which are in the Danisment and Osmancik
Formations, range from 10 to 25%. On the other hand, the Mezardere and Hamitabat
Formations gas fields porosity ranges from 5 to 15%. Our reservoir is located in the
Oligocene-aged Osmancik and Mezardere Formations. Three reservoir source rocks
from the upper Hamitabat Formation, Ceylan Formation, and lower Mezardere
Formation, with valuable organic content, were observed in the Thrace Basin. Other
formations also contain organic carbon; however, they do not have enough carbon to

become an active source of rock.
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Chapter 2: Data Set

The Umurca Field in the Thrace Basin dataset came from TPAO in order to analyze it
for my thesis study. The 3D data were gathered from east-west located receivers with
the angle of 27.28° (-62° at Crossline direction +90°). Moreover, the receiver arrays
were located apart 25m. The Vibrator points were spaced 50m apart. Four inline

Vibro-seismic trucks were used as sources.

The acquisition, bin sized 25m by 25 m, was created by 25m receiver spacings and
50m source spacings. The 3D data contain 27.3° east-west oriented 564 inlines and -

62.7 ° north-south oriented 625 crosslines (Figure 2.1).

Geometry Gria Page

Inine

s: Cross-fnes:
Number of s8¢ 625
Start Number: 5013 2000
P3
Number ncrement 1 1 )
Spacing 25.00 25.00
Set orientations by corners ...

Origin P1 (UTM): X W
v: [+s76382.90

Orientation 62712 27.288
Xine Direction T
Length Units: @ Meters (" Feet
Copy geometry from
Display Statistics..

I~ Display in new seismic window.

Figure 2.1 Inline and crossline orientation and spacing from HR screenshot.

We have 3 wells (Well A, Well B, and Well C) in the area with various logs as

explained with units and symbols in table 2.1. Well x and y locations, surface



elevations, corresponding inlines, crosslines, and CDP numbers are indicated in

(Figure 2.2).

Table 2.1 Different types of logs that were included in the dataset with their
acronym and unit of measure.

ACRONYM UNITS TYPE OF WELL
GR API Gamma Ray

SP mV Self Potential

DT us/ft Sonic Velocity
RHOB g/cc Bulk Density

LLD Ohm-m Deep Lateral Log
LLS Ohm-m Medium Lateral Log
Cal Inc Caliper

NPHI % Neutron Porosity
DRHO g/cc Density Correction
CS ms Check Shots




Figure 2.2 Well locations.

Well Name | unts | XLocation Y Location Inline Xiine COoP
Well_A m 535277.59 4585812.21 5204 2452 119828
Wel_B m 536777.06  4585170.69 5209 2387 122888
wel_C m 53667347  4585290.69 5211 2393 124144

In this study, the Well C was chosen to be used in order to process the data, because it

has the deepest and the highest number of the logs among the wells. The reservoir

thickness was determined by using GR, DT, and RHOB logs.
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Chapter 3: Data Enhancement

The first process started by loading gathers into the Hampson-Russell Software for

analysis and further processing. The key point to load the data correctly is matching

inline and crossline byte locations parameters with the right corresponding values

from the header (Figure 3.1). The Thrace Basin dataset was sent from TPAQO as true

amplitude recovery process applied and NMO-corrected 3D gathers (Figure 3.2). We

decided to apply the Radon Noise Suppression and Trim Static steps to remove the

random noise and flatten the layers caused by over/under NMO corrections.

Specify SEGY format of the file:

SEG-Y Format and Header Page

um3d_cdp_gather.sgy |

[V lgnore Receiver X & Y coordinates
72 [4 538020

I77 Ib:

4579021

Data sample Format: {" IEEE * IBM " PC
Start # of Bytes Value
Inline Byte location: 189 4 [s013 Detail Specification... I
Xiine Byte location: |195 ]4 |2224
Header Dump... |
Source X Byte location: |73 |4 |538020
Source Y Byte location: |77 l4 |4579021

Apply Format to all files I

Load Format From File... I

Save format to file...

Figure 3.1. Inline and crossline parameters from header.
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Figure 3.2 True amplitude recovery process applied and NMO-corrected
gathers.

3.1 Radon Noise Suppression and Trim Static Application

After loading gathers into the Hampson-Russell software, we used the “Invest” tool to
remove the random noise from the data. The Invest tool has two options; the Multiple
Suppression and the Radon Noise Suppression. However, we only used the Radon
Noise Suppression tool to remove the random noise. We applied the radon process
several times by changing the parameters to remove the noise, by preserving the real
data, and decided the optimum radon parameters as shown in Figure 3.3. After the
radon process, the data were cleaned up from the random noise, but we were still able

to recognize the effects of miss-NMO correction at far offsets (Figure 3.4).
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Figure 3.3 Radon parameters.
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Figure 3.4 Radon noise suppression applied offset gathers.

The Trim Static process was applied to the data, which were previously cleaned of
random noise by applying the Radon Noise Suppression, to get rid of the remaining
effects of the NMO correction. In the Trim Static process, we defined a 20ms time
window to align and to shift the traces in that interval for the each trace in the gather.
After Trim Static process, we observed the enhancements at near offsets, but we were

not able to completely remove the effects at the far offsets (Figure 3.5).
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Figure 3.5 Offset gathers after trim static and radon noise suppression.

3.2 Creating Super Gathers, Angle Gathers, and CDP Stacks

3.2.1 Super Gather

We created a super gather using the shifted CDP gathers. Creating a super gather
enhances the signal to noise ratio and helps to eliminate the random noise. The super
gather was created by averaging over 5 CDP bin locations. In the each output bin, we
have 10 offsets ranging from 14 to 3558 meters. We observed that the signal to noise

ratio at the interest zone at 1400 ms was improved (Figure 3.6).
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Figure 3.6 Super gather with marked reservoir zone.
We must determine the range of the angle of incidence at the interest zone to do AVO

analysis correctly. For that reason, we displayed the incident angle in colors on the

super gather display to decide it (Figure 3.7).

3.2.2 Angle Gather



Trace Data: super_gather — Angle —
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Figure 3.7 The incident angle color display on super gather.

The maximum angle at the interest zone is around 36 degrees in the incident angle
color display. We have to use a specific velocity field to create an angle gather. In our
study, we used the sonic log as the velocity field to convert offsets to angles. We can
state that the ranges of angles change depending on the velocity input. In the angle
gather display, the angles are ended at 36 degrees (Figure 3.8). The created angle

gather volume will be used in the later processes such as the Simultaneous Inversion.
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Chapter 4: AVO Analysis and Inversion Techniques

We are ready to start the well-log editing process and then proceed to the AVO
analysis after data enhancement, producing the CDP gathers, and generating the post-
stack seismic sections. For such analysis, we have been using the Hampson-Russell

software.

4.1. AVO Analysis

Seismic properties of the media result the wave propagation and eventual signature
when the wave propagates through the media. Seismic properties are P- and S-wave
velocities, bulk density, bulk modulus, shear modulus, and Lame’s parameters. The
sediments, extent of compaction, and burial history control this situation. The
geologic framework plays the key role to have successful AVO results, and it requires

good understanding.

In AVO analysis, we evaluate the reflectivity as a function of offset. The method
widely used to validate gas-sand-based seismic amplitude anomalies (Ostrander,
1984). Any bright spots in the seismic sections do not mean that they were caused by
gas-sands. Around 1970s, people drilled every bright spot in the seismic section, but
some of them were unsuccessful. Interpreters sometimes refrain to use the method
due to the pitfalls. For example, shales may have higher impedance than gas-sands,
and their reflections’ coefficients may increase with offset. The AVO analysis is a
robust tool to eliminate pitfalls. This method requires very meticulous process steps

S0 as to be done to distinguish these properties properly and to have the correct AVO

20



characteristics.

The Zoeppritz Equations can be called first AVO equations. The change in elastic
rock properties across the interface and the angle of incidence cause variations in
offset depended reflection amplitudes. The general approach for the Zoeppritz
Equations is to explain variation of these amplitudes with offset depending on
physical properties of the rocks in the interest zone. The Zoeppritz Equations were
simplified by the Aki-Richard Approximation in order to serve better for practical
purposes. This is written in three terms; P-wave, S-wave, and density. When zero
offset reflectivity is <<1, the Zoeppritz Equations and Aki-Richard’s Approximation

give very similar results (Li et al., 2007).

The Shuey’s Approximation is used very commonly to explain AVO anomalies.
According to the Shuey’s Equation, reflections occur at the boundary with an incident

angle 0. The Shuey’s Equation’s first-order approximation is:

R(O)=R, + Bsitt(0) (4.1)

where R(6) is the reflection coefficient at an incident angle 6, R, is the zero offset
reflection coefficient, and B is the gradient (slope) which produces the AVO

response.

4.1.1 AVO Reservoir Sand Classification Scheme
Gas-sands were grouped into four classes considering their shale / sand reflectivity

based on the Zoeppritz (1919) Equations. Each class is defined by its normal
21



incidence reflection coefficient. Several factors such as bed tunning, attenuation, and

propagation effects are discarded. Four classes are summarized as follows:

Class 1: High Impedance Sands

The sands impedance is higher than the surrounding shales. This class is referred to
“Dim Spot” at near offsets and “Phase or Polarity Reversals™ at large offsets. At the
shale/ sand interface, a large positive value for the zero offset reflection coefficient is
observed at the shale/ sand interface. Sands must be mature and compact to get this

effect.

Class 2: Near-zero Impedance Sands

The impedance is quite small and very small positive reflection coefficients are at the
top of the reservoir, then it converts to negative value at far offsets. Noise affects
negatively detection of this class. This type is referred as “Phase or Polarity

Reversals™.

Class 3: Low Impedance Sands with Increasing AVO

Negative reflection at the top of the reservoir is observed. The amplitudes get more
negative with increasing angles of incidence. This type is referred as “Bright Spots”.

In this situation, polarity change does not occur.

Class 4: Low Impedance Sands with Decreasing AVO

This class is similar to Class 3, but the amplitudes get slightly less negative with

increasing angles of incidence than Class 3.
22
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Figure 4.2 AVO intercept A versus gradient B crossplot showing four quadrants
(Castagna et al., 1998).

4.2 Inversion Techniques

In this section, inversion techniques can be divided into two groups; pre-stack
inversion and post-stack inversion. In this study we only deal with three AVO
inversion techniques; the Elastic Impedance Inversion, Lamda-Mu-Rho Inversion,

and Simultaneous Inversion.
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4.3 AVO Analysis and Inversion Techniques Application

4.3.1 Seismic-Well Tie Process

After enhancing the data, wells loaded into the software using “Elog” tool. The first
step is to apply the check shot correction to the sonic log. We statistically extracted
several wavelets using the modeling tool in order to perform high correlation between
the seismic and the well logs. A wavelet, extracted from the time frame 1000 to
2000ms and the offset range 0 to 2500m with a 200ms wavelength, which was used to
have a high correlation coefficient (Figure 4.3). After stretching and shifting the data

76ms, we achieved a 0.94 correlation coefficient (Figure 4.4).

dl
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Figure 4.3 The wavelet in the time domain (left) and in frequency domain
(right).
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Figure 4.4 Seismic-well tie with correlation coefficient 0.94.

4.3.2 AVO Analysis Application

After the seismic data were processed and enhanced, we were ready to use the CDP
gathers as an input of the AVO analysis. The gathers loaded into the software
considering inline/crossline locations carefully. Here are the steps that we followed in

this AVO process:

1. Loaded logs and determined possible reservoir zone at 1400ms.
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Figure 4.5 Marked possible reservoir zone.

2. Started with a single AVO model. We used Well C and continued modeling
for this well.

3. Created a super gather using the shifted CDP gathers by averaging over 5
CDP bin locations. Creating super gathers enhance the signal to noise ratio
and helps to eliminate the random noise. The CDP stack was also created to
use on the post-stack analysis.

4. Extracted a wavelet from the time frame 1000 to 2000ms and the offset
range 0 to 2500m with a 200ms wavelength also achieved a very high 0.94
correlation coefficient. We generated synthetic gathers using the Zoepritz,

Aki-Richard’s, and Elastic Wave techniques.

27



Time.

Wel_C
(x=536673.47m, y=4585290.69m) Elevation: kb=95.54m, surface=87m, SRD: 87m (same as surface)

Xiine 1 Xiine 1 Xiine 1 Xiing 1 TVD(m)

(ms) 1111111111 111111111 1111111111 1111111111 Ining 5211 from
0 111 278 444 0 111 278 444 0 111 278 444 0111 278 444 2389 surface
AVEYYY BV YR YV — —— e

wo i) i 1 il W m
3 I ) : Wi
1300
I 2 — ————— — — - ER O 1500
1350-:" — —_— — \ - 1600
—————— — — —— =24 1700
( 3 & hy-L by E 1900
= PRI
) il
) 1 1
— i i
S K T i
we.l_c_syn_zoepritz wel_c_syn_aki_richards | well_c_syn_3term_aki_richards | well_c. syn_elasﬁc

Figure 4.6 Synthetic gathers generated using the Zoepritz, Aki-Richard’s, and

5.

Elastic Wave techniques.

Determined the incident angle using super gathers after a successful seismic-
well tie process. The zone of interest’s maximum angle of incidence is 36
degrees. The angle gather is also created to be used in the elastic inversion
process.

Started the AVO analysis with the AVO Volume tool. The horizons were

picked involving the zone of interest.
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Calculated gradient A and intercept B. We plotted the AVO attribute volume

7.

based on the intercept, gradient, and scaled Poisson’s Ratio values to identi

the zone of interest for crossploting.
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Figure 4.8 AVO attribute volume color data product (A*B).
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Figure 4.9 AVO attribute volume color data scaled Poisson’s Ratio.

8. Crossplotted the intercept versus the gradient. The Class 3 type was
observed. We filtered zones with different colors; general trends are shown in
grey, top of the reservoir is in yellow, and the base of the reservoir is shown
in green. These zones plotted on the CDP stack as colored and the top and the

base of the reservoir marked clearly (Figure 4.10).
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Figure 4.10 Crossplot intercept vs gradient.

9. Performed AVO curve analysis on the synthetic data and concluded that it is

Class 4 on the crossplot; however, it was previously interpreted as Class 3.
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Figure 4.11 AVO response from the Aki-Richard’s synthetic gather.
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4.3.3 AVO Inversion Application
We performed three inversion methods for the data to enhance the vertical resolution
and to compare the results. The Hampson-Russell Strata tool was used for the

inversion processes.

4.3.3.1 The Simultaneous Pre-stack Inversion and The Lambda-Mu-Rho
Inversion
In this section, we performed a model-based Simultaneous Inversion to obtain

impedances for P- and S-wave (Zp and Zs) and density (p).

We followed the below steps to perform the simultaneous inversion process on the

Strata section:

1. Loaded the previously created angle gather and three previously picked
horizons as inputs.
2. Extracted two wavelets; a 9 degree near angle wavelet and a 27 degree far

angle wavelet (Figure 4.11).
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4. Calculated optimal values for the k and m using the actual input logs.

In(Zs) In(Zp ) vs In( Zs ) cross plot In{ Density ) In( Zp ) vs In( Density ) cross plot
95 — - = 1V 4
EEE” s 110 e g
90 1.00 8
0.90
85
0.80
80 = fmar s man
75 0.60 -1
g 0.50 -+
704 T
040
in
6.5 T T T T T T T T T T T T T T
825 850 875 9.00 925 950 975 8.25 850 875 9.00 925 950 975
v Show Zs Regression Line Data: all wells and logs are selected by the initial model.
Regression Coefficients : In(Zs) = k * In(Zp) + kc
o S = - Redraw
k= [1430%6  ke= [4sserr <<auto fi Domain fom: |Begining v to: [End v
Sampled at: 02 m
[V Show Density Regression Line
Regression Coefficients : In(Density) = m*In(Zp) +mc Color key: lVerticat Depth from Surface ﬂ
m= |o.47o112 mec= |-3.38087 << auto fit I Wells used: | <Al |
Info: Average Vs/Vp in range = 0.5537
Sigma Lp = 0.2136
Sigma Delta Ls = 0.0272
Sigma Delta Ld = 0.0604
1

Figure 4.14 Regression line fitting and calculation of regression coefficient (k, kc,
m, and mc).

5. Calculated the final values of Zp, Zs, and p.
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Figure 4.15 Simultaneous inversion result color data P-wave impedance (Zp).
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Figure 4.16 Simultaneous inversion result color data S-wave impedance (Zs).
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Piot Data: simutaneous_inversion_Dn Densty
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Figure 4.17 Simultaneous inversion result color data density (p).
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Figure 4.18 Simultaneous inversion result color Vp/Vs.
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Figure 4.19 Comparison between real data and calculated data.

In this case, the initial model is shown in blue lines and the inverted result is shown in

red lines.

Ones we have estimated the Zp and Zs parameters from the Simultaneous Inversion,
we performed the Lambda-Mu-Rho Inversion. The obtained parameters were used in
the inversion to produce our Lambda-Rho and the Mu-Rho volumes. This inversion is
very beneficial to remove the effect of density from the seismic data. In this section,
we simply took the estimates from the inversion and transfer them into the Lambda-

Rho and Mu-Rho volumes using the Hampson-Russell software’s Strata tool.
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Piot Data: Imr_LR LMR
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Figure 4.20 LMR inversion result LR volumes.
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Figure 4.21 LMR inversion result MR volumes.
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4.3.3.2 Elastic Impedance Inversion
The Elastic Impedance Inversion is a post-stack inversion technique performed using

both the AVO and the Strata tools in the Hampson-Russell software.

We followed these steps to perform the Elastic Impedance Inversion process using the

AVO tool:

1.Calculated near and far elastic impedance values with well logs using the

Transform tool.

2.Created two range-limited stacks from the super gather volume using a 9 degree

near angle and a 27 degree far angle.

Inserted Curve Data: P-wave

"*13411515‘%1!1‘{!!% i 111513!“‘2“!5 o
e
i ” %ﬁ? S "ﬁzjé }%’% 11

W e EL ‘!!Hi%iiﬁ!l}%ifﬁiﬁi! ‘

. R e "W
SR ‘1‘1!2‘;1!2 i ‘1!1?‘1\1!11 L Il »lil “‘333’*55’ i
e i
T

e =
e
e e

I
i

g} it !éé !1811

- ‘umm,;zzn.unzmmaAglggggggggg,ium*}%{ fg%ﬁ!%%’,ﬁ%ai: o -

I
ol ) T b
el AN iﬁiﬂni it 552&232 i zamzan.a«m aitiz%iiiiﬂﬂih L
B gi«éeiz -
e LAY fjf!"ii!ll‘ﬁil!‘ii%%’i’f’% GG ﬂlvanWﬂ e ﬁlils ) |
R %?fé%%é% il Wliﬁ%}lﬁﬁilﬂﬂl=Hiill G
Ilﬁdﬂmlilﬂ‘Ill‘%H||H'Ill|'lIiIl!HHi’iﬁiﬁﬂiﬂiéﬁiﬁﬁﬂﬁ‘ﬁﬁnz!l R |H{iIliiﬂ%iibniﬂlllll{IIIIHH{!M||I{nilIlﬁiilIIs!iI!!slﬂildll|"IIIIIIIIIII IR
o lllll'llIll'II!Illlllihlill'illﬂ'ﬁl R R
e |||||||II||:IIIIIIIIIh||IIMIH|uIIIIIIIIIh||llid|!llulllli|lllﬂ IIIh||l||I|||I|||||I|uII|||l|i

“
Time (ms) CDP: 124117 Time (ms): 1238 Trace: -1 ||088-e~005

Figure 4.22 Range-limited near angle (9 degree) stack.
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Figure 4.23 Range limited far angle (27 degree) stack.

3. Inverted values using the Strata tool.
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Plot Data: EI_near_inv Color Key
Inserted Curve Data: P-wave | ((mis)*(g/ec

coP 124100 124104 124108 124112 124116 124120 124124 124128 124132 124136 124140 124144 124148 124152 124156 124160 124164 124168 124172 124176 124180 124184 124188 124192 124196 I 2560
Wel el B wn C
(s, A Wit RIS Vil W] Lot SoRPao It R Vel C FITETA BAITSH) It IPPHr ) Friorie DA T EVRUN DR BOo! EP s Broir el KrsoWrsd TR 2500
(04 I Ll ko ) ciwny TSI 1L, )
A )} CCer /N «” ! 1 . 2441
............ {1 | EHASLLULLLE BN LU 144 ;
! Ol SRRAN 3 RERESADRASHRNER) 222

jangle gather horizons_2!

1100

Vi L LLLLL
3350000 112 12 LECTLTAT 2 2203

s
~

)
=

BHRQSS
LTI
%i:.u‘ z

— R
i
ST

§

angle gather horzons_1} || 1607
1400

..... angle gather horizons 1429

Time (ms) CDP: 124102 Time (ms): 1280 Color: 7775.51

Figure 4.24 Elastic Impedance Inversion result for near degrees.
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Figure 4.25 Elastic Impedance Inversion result for far degrees.
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4. Calculated the elastic impedance values as outputs of the inversion process. We
crossplotted those values to identify the zone of interest.
5.Filtered zones with different colors; general trends are shown in grey, and the

top of the reservoir is shown in red.
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Chapter 5: Results
In this chapter, we will discuss all the results obtained from the different stages of our
investigations. We will show the crossplot displays which were filtered and colored

zones from all processes.

Conventional AVO analysis and inversion results will be discussed in this section.

5.1 Conventional AVO Analysis Result

The zone of interest was determined between 1400 and 1426 ms depending on low
GR, Vp, Vs, and RHOB log values. After stretching and shifting data 76ms we
achieved a 0.94 correlation coefficient in the seismic-well tie menu. We used super
gathers to determine the incident angle after the successful seismic-well tie process.

We decided the zone of interest’s maximum angle of incidence is 36 degrees.

We calculated intercept and gradient values, and crossplotted them using the AVO

tool. We observed the AVO type Class 3.

Moreover, we performed extensional AVO curve analysis to satisfy the current class
with the Aki-Richard’s synthetic gather. We observed the Class 4 type. We concluded
that a very large value of intercept A and a small change in Poisson’s Ratio caused a

reversal which is termed a Class 4 anomally (Castagna et al., 1995).

We filtered zones with different colors; general trends are shown in grey, top of the
reservoir is shown in yellow, and the base of the reservoir is shown in green. These

zones plotted on the CDP stack as colored. The top and the base of the reservoir
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marked clearly; therefore, we could be able to display the reservoir zone visibly.

Attribute Cross Section
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Figure 5.1 Filtered reservoir zone cross section.

In Figure 5.1, we observed that the top of the reservoir is starting at 1400ms in yellow

color filtered, and the base of the reservoir is around 1445 ms in green color filtered.

We also made a crossplot calculated P-impedance from logs versus depth to observe

the impedance change in the reservoir zone (Figure 5.2).
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Figure 5.2 P-impedance vs depth.

In the crossplot (Figure 5.2), we observed that the lowest lined impedance values at

1700-1750 meters corresponding at 1400 ms in time which is our reservoir zone.

Another crossplot made between P-reflectivity and the depth was to observe the

reflections at the top and the base of the reservoir (Figure 5.3).
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Figure 5.3 P-reflectivity vs depth.

We observed a very robust linear trend between -0.05 and 0.05 reflectivity values. We

also observed strong negative and positive P-reflectivity values at the reservoir zone

that produce the bright spot (Figure 5.3).

5.2 AVO Inversion Analysis Results

We could not display reservoir zone in the AVO volume attribute sections; therefore,

we performed three different inversion methods to increase the vertical resolution.

In the first inversion method, we performed the Simultaneous Pre-stack Inversion and

obtained P- and S-wave acoustic impedances (Zp and Zs) and density (p). The

inversion results were crossplotted and filtered with different colors for the Vp/Vs

ratio and the S-wave acoustic impedance (Zs); general trends are in grey, and the
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reservoir zone is shown in red (Figure 5.4 and 5.5).
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Figure 5.4 Filtered crossplot display for inverted Vp/Vs.
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Figure 5.5 Filtered crossplot display for inverted Zs.
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We displayed the zone clearly at 1400 ms in the S-wave acoustic impedance
crossplot; though, we could not obtain a strong reservoir signature in the Vp/Vs and

Vp crossplots.

In the second inversion method, we performed the LMR Inversion and obtained LR
and MR values using the previously calculated Zp and Zs values. The LR and MR
inversion results crossplotted and filtered with different colors; general trends are

shown in grey, and the reservoir zone is shown in red.

Trace Data: Imr_LR Cross Plot
Color Data: Cross Plot (zone)
Inserted Curve Data: P-wave
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Figure 5.6 Filtered crossplot display for LR and MR from the LMR Inversion.

We marked the reservoir zone at 1400ms successfully; yet, we still have captured
another zone around1350 ms (figure 5.6). We believe that this inaccuracy could be an

inversion error caused by inaccurate parameters or noise effects.
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The last inversion method we performed is the Elastic Impedance Inversion

technique. We created range-limited stacks as inversion inputs (Figure 5.7).
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Figure 5.7 The near angle (left) and far angle (right) stacks.

Here are the near angle (9°-18°) and far angle (18°-27°) stacks from the data. We
noticed that the “bright-spot” event at about 1400ms is stronger on the far-angle stack,
than it is on the near-angle stack. This is a common signature of a gas-sand-induced

bright spot.

After performing the Elastic Impedance Inversion, we traditionally crossplotted the

results and filtered with different colors; general trends are presented in grey, the
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reservoir zone is displayed in red.
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Figure 5.8 Filtered crossplot display from elastic impedance inversion results.
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Conclusion:

Despite various assumptions and limitations associated with the different models and
approaches employed within the context of this thesis study, the following

conclusions can be made:

e Well log interpretations and the crossplots from the logs helped us to have

valuable information about the reservoir location.

e We followed the conventional analysis methods to investigate the gas reservoir
at 1700m. The reservoir characteristic could not be observed in the
conventional AVO analysis due to the reasons; the reservoir thickness was

below the tuning thickness and the noisy data.

e Applying the Radon Noise Suppression and the Trim Statics steps increased the
data quality, but they could not help to observe the reservoir characteristic in

the conventional data.

e The Class 3 AVO was determined from the crossplotted intercept and the
gradient values. We performed an extensional AVO curve analysis to satisfy
the current class with the AKki-Richard’s synthetic gathers and then we
observed the class 4. We concluded that a very large value of intercept A and
a small change in Poisson’s Ratio caused a reversal which is termed a Class 4

anomaly (Castagna et al., 1995).
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e We performed three different inversion methods to enhance the vertical
resolution; consequently, we were able to image the reservoir signature at

1400 ms from the inversion results.

e In the Elastic Impedance Inversion results, we clearly observed that the
“bright-spot” event at about 1400 ms which is stronger on the far-angle stack

than it is on the near-angle stack.

At the end of our project, we can conclude that the AVO inversion analysis methods
can help the seismic interpreter to better understand physical properties of the interest
zone and the structural features of the area; however, the conventional AVO inversion
analysis fails to identify the reservoir. Furthermore, the inversion techniques can help
to map the reservoir zone in a better way by increasing the vertical resolution.
Additionally, noise suppression methods by preserving amplitude are very crucial to
obtain valuable results. The best way to be certain about the results is to validate them

with synthetics.
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Appendix A:

The seismic data in the ED50 Coordinate system were processed through the
Kirchhoff Pre-stack Time Migration. The necessary steps were applied by Turkish

Petroleum Corporation to the dataset as follows;

e Field Static Correction: Reference datum elevation 100m.

e Surface Consistent True Amplitude Correction: Shots and receivers.
e Gain Correction: 7°.

e Predictive Deconvolution: 24 usec gap, 200 usec filter length.

e CDP Binning: 25m x 25m.

e Wavelet Processing: 8-60 Hz Butterworth.

e Velocity analysis.

e NMO.

e Surface consistent residual statics.

e Pre-stack Kirchhoff Time Migration.

55



