
 
 
 
 

 
 
  
 
 

 

Emergency Evacuation Planning Problem under  

Uncertainty in Events 

 

Presented to 

the Faculty of the Department of Industrial Engineering 

University of Houston 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

in Industrial Engineering 

 

Chair of Committee: Gino J. Lim 

Committee Member: Taewoo Lee 

Committee Member: Ying Lin 

Committee Member: Cumaraswamy Vipulanandan 

Committee Member: Christoph Eick 

 

by 

Ayda Darvishan 

December 2020 

  



 
 
 
 

 
 
  
 
 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2020, Ayda Darvishan 
 

  



 
 
 
 

iii 
 
  
 
 

Dedication 

To my dear family, for all their support and love from thousands of miles away 

To my friends, whose love empowers me to achieve impossible   



 
 
 
 

iv 
 
  
 
 

Acknowledgments 

I would like to express my sincere gratitude towards Dr. Gino Lim for his continuous 

support of my research, for his patience, motivation, immense knowledge, and significant 

technical insights. He challenged me to continuously improve myself and to expand my 

knowledge. It was a great honor to work under his supervision. Many thanks to the 

dissertation committee members, Dr. Taewoo Lee, Dr. Ying Lin, Dr. Cumaraswamy 

Vipulanandan, and Dr. Christoph Eick for providing valuable comments that improved the 

quality of my work. 

 
  



 
 
 
 

v 
 
  
 
 

Abstract 

Large-scale emergency evacuations in the wake of hazardous events, such as hurricanes, 

tsunamis, volcanic disruptions, nuclear meltdowns, etc., are an important part of disaster 

management as they directly associate with protecting human lives. Due to the 

unpredictable nature of disasters, an evacuation plan can be heavily affected by the 

uncertainty of events. The resulting deviations can contribute to road congestions, 

prolonged evacuation process, unstable traffic behaviors, and lead to chaos, injuries, and 

loss of life. Two approaches can be taken to handle these uncertainties. First could be to 

develop an evacuation route plan and schedule prior to the arrival of the adversarial 

event by considering the risk of exposure to the disaster impact (pro-active planning), and 

second would be to monitor the progress of the evacuation, detect deviations, and make 

adjustments if needed (recovery strategy). Our proposed research focuses on developing 

pro-active plans and recovery strategies to handle associated uncertainties that are either 

due to the occurrence of probable incidents or randomness in data. Using the theory of 

dynamic network flow optimization, the following studies are conducted: 

First, emergency evacuation management under possible road disruptions in the 

transportation network is studied. During an evacuation, roads can be cut off due to road 

flooding, blocked because of wild-fire propagation, accidents or collapse of highway 

structures, etc. A comprehensive approach for rerouting the disturbed flow is introduced 

which can address disruptions on multiple roads occurring at different times. Two 

innovative algorithms for parameter calculation are introduced to reduce mathematical 

complexity and computational burden. Using these algorithms, a MIP formulation for 

rerouting the disturbed flow is proposed. Computational results show the validity of our 
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approach. 

Second, the effect of uncertain road closures on traffic dynamics in a system-optimal 

setting is investigated to provide a proactive evacuation plan while considering a 

recovery strategy (rerouting) to compensate for the negative effects of the disruption. 

The previously mentioned algorithms for parameter calculation are extended to be 

implemented for disruption scenarios, and a MIP two-stage stochastic program is 

introduced to solve the problem. The first stage of the two-stage program aims to find the 

proactive evacuation plan while the second stage finds the best recovery strategy in the 

face of each scenario of disruption. Comparisons are made between the plans yielded 

from existing deterministic models with the plans provided by our proposed approach 

which demonstrates the superiority of our developed stochastic program. 

Third, an evacuation planning problem under uncertainty of the number of would-be 

evacuees (demand) is investigated. It is assumed that based on the available historical 

data, accurate predictions on demand are not possible and the probability distribution 

function of demand cannot be estimated. Accordingly, a data-driven robust optimization 

approach is developed to solve the evacuation planning problem by directly 

incorporating data samples in the mathematical formulation of the problem. To build the 

uncertainty sets, an unsupervised machine learning approach (support vector clustering) 

is used which employs a piecewise linear kernel function to effectively capture the 

distributional geometry of massive demand data. Furthermore, to provide tighter 

uncertainty sets, an uncertainty set based on the intersection of the previous uncertainty 

set (SVC-based uncertainty set) and a conventional robust optimization uncertainty set 

(e.g., Box uncertainty set) is introduced. Mixed-integer programming (MIP) data-driven 

formulations for each of the introduced uncertainty sets are developed and numerical 
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experiments are conducted. Results show that by using a regularization parameter it is 

possible to adjust the level of robustness and conservatism in the optimization models. 

Fourth, a framework to provide proactive evacuation plans under the risk of 

unexpected capacity disruptions in the evacuation network is proposed. It is assumed 

that due to the uniqueness of disastrous events, enough information on the uncertain 

road disruptions is not available, the uncertainty distributions are not perfectly known, 

and only partial information on the probability distributions is accessible. The problem is 

formulated as a distributionally robust data-driven model to ensure that constraints 

affected by uncertainties are satisfied under any probability distribution consistent with 

the constructed uncertainty set. Auxiliary variables are introduced to reformulate the 

problem and build a MIP optimization framework. A heuristic algorithm is introduced to 

even more reduce the complexity of the problem and decrease its computational time. 

Numerical experiments indicate that by using the heuristic approach the computational 

time is significantly reduced. Moreover, compared to the existing deterministic models, 

the proposed distributionally robust data-driven program can reduce the percentage of 

disturbed evacuees and negative consequences of road disruptions. 
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Chapter 1      

Introduction 

1.1 Background 

Danger and risk are inevitable parts of life. Risk is defined as a process or an event 

that is potentially capable of causing loss. One of Nature’s mandates is posing risk to 

people’s health, lives, and properties. The incidents that are likely to occur have a huge 

impact on the environment, economic and social processes, and can lead to major 

casualties or financial loss are called disasters. Disasters are events with low probability 

and high impact. Every year numerous disastrous events happen all around the world 

affecting millions of people (see Figure 1.1). They can be categorized in various forms. 

Examples include biological attacks such as locust attacks, Geophysical (Geological) 

incidents like earthquakes, volcano, tsunamis, or weather-related events such as storms, 

hurricanes, droughts, and tornados. The most commonly encountered natural disasters 

include floods, hurricanes, volcanic eruptions, and earthquakes (Hooke, 2000; Newkirk, 

2001). However, disasters do not only arise from nature. Various technological failures 

and intentional malevolence such as nuclear meltdowns, hazardous-material spills, and 

terrorist attacks resulting from human deeds can also cause damages to communities. 

Despite the scientific and technological advances, it is not possible to fully dominate 

these events and their negative effects. They are still some of the greatest problems in 

societies. Table 1.1 indicates the number of losses and fatalities due to the top 10 natural 

disasters from 1980 to 2015. The significance of the destruction and damage caused by 
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hazardous events is to such an extent that in recent years many international emergency 

management centers have increased their efforts to make preparation for and carry out 

all emergency functions necessary to mitigate, prepare for, respond to, and recover from 

hazardous events.  

Vulnerability to disasters is dependent on many factors, including the level of the 

associated risk, as well as the economic and social growth of the community. Most of the 

casualties are correlate to less-developed or developing countries. Major economic losses 

can occur due to disasters. However, a direct threat to human life is considered the most 

serious and most devastating . In developing countries, due to the growing population, the 

number of people living in high-risk areas is increasing. In underdeveloped countries, 

such as Ethiopia and Bangladesh, because of settlements in endangered areas, human 

casualties are more than economic losses. Meanwhile, after a disaster, developed 

countries, such as the United States of America and Japan, mostly suffer from financial 

losses (Smith, 2003).  

When assessing the vulnerability of communities to the risks posed by nature, aside 

from the magnitude and impact of hazardous events, we also need to take into account the 

hazardous events’ frequency of occurrence. Due to climate changes, disastrous events are 

becoming more frequent. Table 1.2 lists the most recent major disasters (2018 disasters) 

defined by the Federal Emergency Management Agency (FEMA) in the United States. 
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Figure 1.1: People affected by disasters each year (Source: EM-DAT) 

One of the most important factors in reducing or mitigating the amount of damage 

and the number of human casualties is the existence or absence of a proper emergency 

management system. All states in the United States are required by the US federal 

government to have a comprehensive emergency management plan. The Comprehensive 

Emergency Management Model (National Governors’ Association, 1978) has four main 

areas: disaster mitigation, disaster preparedness, disaster response, and disaster 

recovery. Mitigation, which usually is the first phase of emergency management, refers to 

the act of reducing damaging consequences and losses due to a disaster. Preparedness 

includes developing capabilities and plans in order to effectively respond to a disaster. 

The response can begin before the strike of the disaster or when it begins and comprises 

actions that take place as a reaction to the event. Often early responses are related to the 

saving human lives. Recovery actions focus on reconstruction and restoring critical 

community functions.  

Federal and state governments, as well as local authorities (e.g. mayor, city council, 

county law enforcement, county judge, and county president), are responsible for disaster 

management. From the early 1980s, the Integrated Emergency Management System 
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(IEMS) has been used by emergency managers to integrate partnerships and coordinate 

emergency management efforts between government, key community partners, non-

governmental organizations (NGOs), and the private sector. The system aims in both 

vertical and horizontal integration. This means that emergency plans at the local level 

must be provided with respect to related activities of the government. Also, local 

government plans should be integrated and consistent with the community’s vision. 

Information on primarily responsible agencies and their roles can be found in USDOT & 

USDHS (2006).  

Table 1.1: Top 10 natural disasters ordered by losses, 1980-2015 (Source: Munich Re, NatCatSERVICE, 

2016) 

Year Event Affected Area 
Overall Losses 

in Mil. US$ 

Overall 

Losses as 

% of GDP 

Fatalities 

2011 
Earthquake, 

Tsunami 

Japan: Aomori, Chiba, Fukushima, Ibaraki, 

Iwate, Miyagi, Tochigi, Tokyo, Yamagata 
210,000 3.6 15,880 

2005 
Hurricane Katrina, 

Storm surge 
United States: LA, MS, AL, FL 125,000 1.0 1,720 

1995 Earthquake Japan: Hyogo, Kobe, Osaka, Kyoto 100,000 1.9 6,430 

2008 Earthquake 

China: Sichuan, Mianyang, Beichuan, 

Wenchuan, Shifang, Chengdu, Guangyuan, 

Ngawa,Ya’an 

85,000 1.9 84,000 

2012 
Hurricane Sandy, 

Storm surge 

Bahamas, Cuba, Dominician Republic, 

Haiti, Jamaica, Puerto Rico, United States, 

Canada 

68,500 N/A 210 

1994 Earthquake 
United States: Northridge, Los Angeles, 

San Fernando Valley, Ventura 
44,000 0.6 61 

2011 Floods, Landslides 

Thailand: Phichit, Nakhon Sawan, Phra 

Nakhon Si Ayuttaya, Phthumthani, 

Nonthaburi, Bangkok 

43,000 11.6 813 

2008 Hurricane Ike 

United States, Cuba, Haiti, Dominican 

Republic, Turks and Caicos Islands, 

Bahamas 

38,000 N/A 170 

2010 
Earthquake, 

Tsunami 

Chile: Concepcion, Metropolitana, 

Rancagua, Talca, Temuco, Valparaiso 
30,000 13.8 520 

2004 Earthquake 
Japan: Honshu, Niigata, Ojiya, Tokyo, 

Nagaoka, Yamakoshi 
28,000 0.6 46 
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Every year, billions of dollars are spent by states and municipalities for providing 

and managing emergency response and recovery actions. On the other hand, with the 

increase in land use, population growth, urbanization, development of countries, as well 

as climate change, losses from hazardous events has increased. The frequency and 

intensity of disasters as well as their complexity have an increasing trend. Hence, 

providing more efficient emergency management decisions and plans have become of 

great importance. With the advancement of knowledge and technology, we can use 

scientific innovations in order to effectively and efficiently manage and mitigate disasters. 

 Table 1.2: US Major disasters in 2018 listed by FEMA 

 

Major Disaster Incident Date 

American Samoa Tropical Storm Gita February 07, 2018 

Kentucky Severe Storms, Flooding, Landslides, And Mudslides February 09, 2018 

Ohio Severe Storms, Landslides, And Mudslides February 14, 2018 

West Virginia Severe Storms, Flooding, Landslides, And Mudslides February 14, 2018 

Indiana Severe Storms And Flooding February 14, 2018 

Maine Severe Storm And Flooding March 02, 2018 

New Hampshire Severe Storm And Flooding March 02, 2018 

Maine Severe Storm And Flooding March 02, 2018 

Massachusetts Severe Winter Storm And Flooding March 02, 2018 

New Jersey Severe Winter Storm And Snowstorm March 06, 2018 

New Jersey Severe Winter Storm And Snowstorm March 06, 2018 

New Hampshire Severe Winter Storm And Snowstorm March 13, 2018 

Alabama Severe Storms And Tornadoes March 19, 2018 

Oklahoma Wildfires April 11, 2018 

Hawaii Severe Storms, Flooding, Landslides, And Mudslides April 13, 2018 

Nebraska Severe Winter Storm and Straight-line Winds April 13, 2018 

North Carolina Tornado And Severe Storms April 15, 2018 

Hawaii Kilauea Volcanic Eruption And Earthquakes May 03, 2018 

Maryland Severe Storms And Flooding May 15, 2018 

One of the most important responses to a major disaster is evacuating citizens, as it 

directly associates with protecting lives. Evacuation is defined as the mass physical 

movements of people from endangered areas in order to get to safe shelters prior to the 



 
 
 
 

6 
 
  
 
 

onset of, or during, an emergency. It includes decisions on route planning, time and 

schedule of evacuees’ departure, resource allocation, etc. Due to variations in the 

population of states, geography characteristics, and transportation systems, evacuation 

plans provided at the state and local levels are different from each other. However, the 

federal government requires the states to provide evacuation plans using guidelines from 

the following documents: Robert T. Stafford Disaster Relief and Emergency Assistance Act 

(FEMA, 2014), and FEMA Comprehensive Planning Guide 101 (FEMA, 2010). 

According to a 2005 report by the Nuclear Regulatory Commission (U.S. Nuclear 

Regulatory Commission, 2005), about every three weeks, the need for the evacuation of 

1,000 or more Americans arises. In another report, FEMA (2008) declared that, annually, 

approximately 45 to 75 major evacuations take place in the United States. Also, a recent 

study by Sandia National Laboratories illustrates that between the years of 1990 to 2003, 

there have been 230 evacuations involving the movement of more than 1,000 people from 

their homes or places of work (Jones et al., 2008). The frequency and type of hazard 

related to these evacuations are depicted in Figure 1.2. Also, evacuation population sizes 

have been depicted in Figure 1.3. 

 
Figure 1.2: Evacuation frequency for different hazard type (Source: Jones et al., 2008) 
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Figure 1.3: Evacuation frequency based on evacuating population size (Source: Jones et al., 2008) 

Many researchers have devoted themselves to introducing frameworks that provide 

efficient evacuation plans. Both simulation and optimization techniques have been used, 

aiming to analyze and make decisions on route planning and schedule, as well as make 

predictions on the minimum amount of time required to complete the evacuation process. 

In our work, we use the theory of dynamic flow optimization in order to represent the 

highly complex dynamics of route planning in an evacuation network. The main purpose 

of our research is to provide recovery strategies as well as proactive strategies in the face 

of unexpected events. 

1.2 Evacuation Planning Methodologies 

1.2.1 Microscopic and Macroscopic Models 

Generally, traffic flow models can be categorized as microscopic or macroscopic 

models. In microscopic modeling, individual behaviors of vehicles are taken into 

consideration in the traffic flow model while macroscopic models focus on the movement 

of a stream of vehicles. Microscopic models use a system of differential equations to 
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represent stream motion, calculate the vehicle position and velocity, and gain an 

equivalent state. The intelligent driver model (IDM) and the Gipps model are examples of 

microscopic models (Gipps, 1981; Treiber et al., 2000). On the other hand, macroscopic 

models mostly use Lighthill and Whitham’s (1955) equations, as well as Richards’s 

hydrodynamic theory (Richards, 1956) to simulate traffic flow. In fact, compared to 

microscopic models, they simplify the model by representing traffic patterns as a 

continuous flow in which hydrodynamic and fluid flow formulations can be applied. Each 

vehicle is seen as a continuous fluid with a given density and, accordingly, a relationship 

between speed and density is developed. In Richards’s hydrodynamic theory, an increase 

in density leads to a decrease in the velocity of cars. Using this technique, the model can 

demonstrate flow changes due to shock waves through the stream of vehicles. 

Microscopic models are mostly used in traffic simulation models when simulating 

individual behaviors are concerned. However, the macroscopic concept is used in both 

simulation and optimization models. In the following sections, descriptions of the traffic 

flow simulation platform and optimization techniques are presented. 

1.2.2 Simulation Approaches 

One of the earliest traffic flow pattern simulators is NETVAC, a macroscopic 

simulation model (Sheffi et al., 1981, 1982). Later it was used for emergency evacuations 

to simulate flow patterns and estimate clearance times in hazardous situations caused by 

nuclear power plant accidents. Queue formation, path assignment, the intersection as well 

as lane controls were included as the evacuation planning options for customizing plan 

strategies. Interactive DYNamic Evacuation (IDYNEV) has been developed by KLD 

Associates for FEMA, providing evacuation route plans for five nuclear power stations 
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using IDYNEV as described in FEMA (1984). IDYNEV has three modules. (i) Traffic 

assignment module which analyzes traffic routes using static user-equilibrium principle, 

(ii)  Capacity module which analyzes the capacity of the roads, and (iii) Traffic simulation 

module in which user selected paths of the Traffic assignment module simulates dynamic 

traffic movements to check road congestions and make decisions on alternate roads if the 

former are overflowed. One microscopic simulation model, known as CEMPS 

(Configurable Emergency Management and Planning System) and developed by Pidd et al. 

(1996), Pidd et al. (1997), and de Silva and Eglese (2000) acts as a DSS which utilizes the 

geographic information system (GIS). The GIS platform is used to manage geographical 

and infrastructural data and results in visualization as the evacuation plan is developed 

by the simulation model.  

MASSVAC (MASS eVACuation) is a macroscopic simulation platform which is able to 

mimic flow propagation using analytical traffic flow relationships (Hobeika and Jamei, 

1985; Hobeika et al., 1994). In this model, the S-shape curve is used to present the 

demand load for evacuation in endangered areas. MASSVAC has been used as the main 

core module of another evacuation software named TEDSS (Transportation Evacuation 

Decision Support System. TEVACS (Transportation EVACuation System) is a decision 

support system including a macroscopic simulation model (similar to NETVAC) for 

evacuations using public transportation (Han, 1990). This DSS considers mixed flows, 

allowing evacuation to be put into place using different transportation options, such as 

buses, automobiles, motorcycles and bicycles, etc. OREMS (Oak Ridge Evacuation 

Modeling System) developed in Oak Ridge National Laboratory (ORNL) is a 

microcomputer-based system for comprehensive evacuation planning studies related to 

natural or man-made catastrophes. It can be used to estimate clearance times, analyzing 
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different traffic management and control strategies and evacuation routes (Rathi and 

Solanki, 1993).  

There are several other traffic flow simulators related to evacuation planning 

concepts or general traffic simulations. However, most of them focus only on strategy and 

scenario analysis rather than developing plans (Southworth and Chin, 1987; Church and 

Sexton, 2002; Chen and Zhan, 2008; Murray-Tuite and Mahmassani, 2004; Theodoulou 

and Wolshon, 2004; Kwon and Pitt 2005; Yuan et al., 2006, etc). 

Using simulation software, one can accurately imitate the behavior of an actual traffic 

flow and road congestion. However, in order to model the environment, these models 

require calibration, data collection, and data entrance for the software. Computational 

time and effort required by microscopic simulation models may lead to an inability to 

develop traffic flow plans in a limited amount of time. Especially in case of hazardous 

events in which limited historical information challenges mentioned efforts, and a quick 

decision on evacuation planning is needed. Macroscopic evacuation simulation models 

perform better than microscopic simulators when addressing large evacuation networks 

as they skip the effect of evacuee’s behavior and simplify flow movements. However, in 

general, simulation-based models are better for assessing and analyzing plans rather than 

developing plans directly. They have a trial-and-error approach for choosing and 

evaluating strategies. Hence, external efforts need to be done to provide plans on an 

aggregate level, and then the provided plans can be accurately analyzed by simulation 

techniques. Optimization models can provide such capability for directly developing 

plans.  

1.2.3 Optimization Approaches 
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While simulation-based models act as a “what if” procedure to assess a predefined 

route plan, optimization-based techniques enable us to have a “what to do” methodology 

and directly develop plans that are optimal. Problems that have been addressed by 

optimization techniques can be categorized into two categories. (i) Upper optimization 

level and (ii) Lower optimization level.  

In the upper-level network, design problems are taken into consideration and traffic 

assignment rules are defined. One of the main problems in evacuation network designs is 

the concept of contraflow operation and intersection. Contra-flow operations correspond 

to reversing one or more lanes of a highway to be able to travel in the opposite direction. 

This way capacity of the road in one direction can be increased at the time of evacuation 

(Urbina, 2002). This approach was first introduced by FEMA in the 1980s and originally 

was considered as an option during nuclear missile attacks. 

In the lower optimization level traffic, dynamics and congestion are addressed using 

dynamic Traffic assignment (DTA) models for evacuation purposes. Generally, DTA has 

evolved from the work of Merchant and Nemhauser (1978a, 1978b). DTA refers to a 

broad range of problems, with different variables and settings, trying to represent traffic 

systems. The first mathematical DTA formulation (Merchant and Nemhauser 1978a, 

1978b) was a deterministic, fixed demand, single-commodity which has been provided for 

a single-destination network considering system-optimal (SO) concept. The model which 

is also referred to as the Merchant-Nemhauser (M-N) model presents travel cost as a 

function of road volume and, to represent traffic propagation, uses a road exit function. 

This leads to non-convex non-linear mathematical formulation. The optimum solution of 

the program is achieved through solving a piecewise linear version of the model (Peeta, 
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and Ziliaskopoulos, 2001). Carey (1987) reformulated the M-N problem into a convex 

non-linear program by changing the exit function by bounding the road outflow. Since 

then, many models have extended this work, aiming to handle multiple destinations and 

commodities in a SO setting. The earliest attempt to model a user-equilibrium (UE) DTA 

was made by Johnson (1991a, 1991b). The main idea of the model is that instead of 

instantaneous travel times, it considers experienced travel times to reach an equilibrium. 

The resulting model is a non-linear mixed-integer program. The first attempt to extend 

the M-N model to a stochastic model has been made by Birge and Ho (1993). They provide 

a non-convex non-linear multi-stage stochastic program that considers a finite number of 

scenarios representing origin-destination desires.  

Ziliaskopoulos (2000) proposed a linear program reformulation for the cell 

transmission model (CTM) that was first introduced by Daganzo (1994). The wide concept 

for studying the macroscopic behavior of traffic is a hydrodynamic theory in which 

differential equations need to be solved to predict traffic evolution. Daganzo’s model 

(CTM) is a discrete approximation of the hydrodynamic model. CTM decomposes the link 

of a network into small, homogeneous  segments called cells and calculates flow at the 

links connecting the cells. The length of a cell equals the distance traveled by free-flow 

traffic in the corresponding link in a unit of time. The primary advantage of CTM is its 

ability to simulate spillback propagation of congestion. However, the main drawback of 

the original CTM is in its non-linear flow-density relationships. This motivated 

Ziliaskopoulos (2000) to provide a linear version of CTM to optimize routing and traffic 

controls.  
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The most commonly used optimization models in the literature of evacuation 

planning use the LP CTM model (literature review of this concept will be provided in 

Chapter 2). In our work, we use and extend the path-based model (PBM) introduced by 

Lim et al. (2012). Arc-based models such as CTM rely on the representation of flow on 

each arc (or segments of an arc) of the network, increasing the number of variables and 

constraints of the model and making the problem complex. Rungta et al. (2012) justified 

the use of PBM using an evacuation network in which the PBM found an optimal solution 

in only a few seconds, while the arc-based model could not find a feasible solution after 

three hours of computation. As mentioned, CTM breaks the arc of the network into several 

sections called cells, and traffic flow is provided for each yielded cell. Variables are 

defined to represent flow passing through each cell, which makes the problem even more 

complex. Moreover, as per the FEMA report prepared by DOT and DHS (2006), effective 

implementation and ease of managing routes loaded by evacuation traffic is the most 

important aspect of an evacuation plan.  

In PBM, first, a set of paths are prepared to enumerate all possible paths between 

each O-D pair. Path enumeration is possible through obtaining a solution pool of the 

shortest paths problem or applying a successive shortest-path algorithm. Next, among the 

available paths, paths that are not considered proper are omitted. Selected paths are then 

fed into a mathematical optimization model that defines flow and schedule on the paths. 

Eliminating excess paths reduces the complexity of the model and makes it scalable for 

large network evacuation networks. Also, PBM enables us to address specific desirable 

functions such as limiting the number of used paths in the plan to avoid using specific 

paths (e.g. long paths). 
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1.3 Motivation 

Traffic planning in the event of an evacuation can be a very complex problem as it 

involves dynamics of flow and road congestions, evacuee’s behavior as well as unforeseen 

events. Unless properly planned and implemented, evacuation planning can become a 

failure in saving lives and precious time. An example is the failure of evacuation efforts 

prior to and after the strike of Hurricane Katrina. Hurricane Katrina, which struck the Gulf 

Coast in August 2005, is reported as the third-worst hurricane in U.S. history. The disaster 

resulted in 1,800 deaths and $81 billion in property damage (The United States Congress, 

2006). The major cause of fatalities in the city of New Orleans has been reported by 

various investigations to be failures due to the evacuation process (Xie, 2008). Just a few 

weeks later in 2005, Hurricane Rita, the fourth-most intense Atlantic hurricane, produced 

a significant storm surge, causing about 119 fatalities (113 of those in Texas) and $9.4 

billion (Carpender et al., 2006) in damage from eastern Texas to Alabama. In an 

evacuation effort that has been recognized as the largest emergency evacuation in U.S. 

history, 2.5 million people left the Houston region. The evacuation was a disaster itself. 

While local emergency management officials were successful in preparing a plan and 

setting up evacuation routes, a huge traffic jam was created in the roadway system 

making it gridlock as a result of an enormous number of vehicles. During the process, 

many cars ran out of gas and many people left their vehicles behind, altogether, which led 

to a 100-mile traffic jam. Dozens lost their life from heatstroke, car accidents, and fires. Of 

113 people that were killed in Texas, 107 deaths were reported to be due to evacuation 

and only 6 fatalities were directly because of the storm (wind, water, surge). 

Experience from these two major disasters makes it clear that when evacuations are 

https://en.wikipedia.org/wiki/North_Atlantic_tropical_cyclone
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not effectively planned and implemented, the failure experience decreases people’s 

tendency to go through evacuation processes in future events. This can explain why 

during the hurricane Harvey, which hit the city of Houston, Houston leaders decided not 

to order mandatory evacuations. Despite the fact that Hurricane Harvey was in the 

category 4 storm level hitting southeast Texas, Houston Mayor, Sylvester Turner, said at a 

press conference that although the situation is bad, they would prefer not to call for 

mandatory evacuation, believing it could worsen the situation. Hurricane Harvey 

eventually resulted in 107 deaths and $125 billion in damage.  

One of the main reasons for evacuation failures is the inherent uncertainty involved 

in disaster natures. Disastrous events are rare events that do not happen frequently. The 

nature of each type of event is different, and because of different geographical 

characteristics and topological differences in regions, they result in different 

consequences. Hence, limited historical data about them is available which makes one-

point predictions hard to make and inevitably unreliable. Lessons learned from previous 

hazardous event planning and response show that unexpected occurrences or changes in 

our predictions may result in significant differences in road congestion and evacuation 

duration. For instance, for the case of hurricane Rita, Harris County emergency evacuation 

models had predicted 800,000 to 1.2 million people as the estimated number of people 

who would need to be evacuated, while the actual number of evacuees raised to 1,800,000 

from the Greater Houston area, leading to dramatic traffic congestion and delay (Lindell 

and Prater 2007).  

The inability of solutions to deal with deviations in settings can lead to poor results. 

Inefficient plans which ignore the possibility of interrupting incidents may add to the 
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traffic congestion and spread chaos and panic over the course of the evacuation process. 

This has motivated us to provide evacuation plans that take into account the occurrence 

of unplanned events and variation in settings such as network disruptions and/or 

uncertainty in parameters. There are various sources of uncertainties during evacuations. 

These can arise from the demand side, for instance, changes in the number of evacuees, 

their driving behavior, etc. It can also arise from the supply side, such as changes in road 

capacities, road blockage, limited network connectivity, etc. The intensity and timing of 

the hazardous event are examples corresponding to uncertainties in disaster 

characteristics. In our work, we thrive to provide managers with both response plans 

(recovery strategies) for after realization of unexpected/unplanned events as well as 

proactive plans which provide resilience under uncertainty of incidents. In the following 

sub-section, we clearly define the type of settings’ variations addressed in our work and 

our contributions. 

1.4 Contributions 

Contributions of our work are as follows: 

1.4.1 Real-time Reroute Planning under Network Disruption 

Many incidents arise during an evacuation process, disturbing the initial plan, and 

delaying the evacuation process. Examples include car accidents, bridge collapses, roads 

flooding or any other type of incident during the evacuation that disrupts the evacuation 

network. Disturbances in road capacity can either be due to infrastructure failures (e.g. 

road flooding) or due to incidents that arise from traffic flow (e.g. vehicle accidents). If the 

severity of the incident is not tremendous, it would cause a slight change in the road 
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capacity (capacity degradation). But in severe cases, it would lead to full failure of the 

capacity (capacity disruption). While the former has been the most common mode of 

capacity change studies, the latter has seldom come into account in the literature of 

evacuation planning. 

Addressing disruptions in evacuation route planning can follow two approaches. The 

first approach is to provide an initial plan based on deterministic assumptions. 

Evacuation paths, flow rates, and schedules are all defined and implemented before, or 

during a disaster. The progress of evacuation is monitored and if an incident disturbs the 

evacuation process the need arises to make proper adjustments to the initial plan and 

provide a quick recovery strategy. The rerouting method is the most often used strategy 

in response to road closures. It aims to provide alternate paths and schedules in order to 

use the residual capacity of these paths to get disturbed evacuees to safe shelters. The 

process of rerouting planning and decisions on the assignment of stocked flow to 

alternate paths should be quick so that field officers receive the new information as soon 

as it is available and implement it in a short amount of time to avoid further congestions 

in the roads.   

The second approach for dealing with incidents is to develop proactive plans 

considering the possibility of road disruptions. This type of plan tries to estimate possible 

road blockage, their probability of occurrence, and consequent damages that disruptions 

can have on the network flow. Analyzing these probabilistic consequences, this approach 

tries to propose a reliable initial plan which can perform well under most of the 

unexpected probabilistic incidents. The yielded route plan is to be provided before the 

arrival of an imminent disaster. 
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In our work described in Chapter 3, we follow the first approach and provide a 

rerouting plan in response to road incidents in the evacuation network. To the best of our 

knowledge, there has been only one research addressing road disruptions in evacuation 

networks. Lim et al. (2016) provide a methodology for real-time rerouting of the 

disturbed flow using the residual capacity of the evacuation network. The plan is provided 

to be used as a reaction to the occurrence of a road disruption, meaning that a rerouting 

mechanism that is introduced can be used after the realization of the road disruption. 

However, in their work, they have considered that disruption happens only on one road 

(arc) of the evacuation network. Here, we aim to provide a rerouting plan considering the 

possibility of disruption on multiple arcs of the network which adds to the complexity of 

the problem. Further, we assume that disruptions on arcs happen at different times. For 

better-reflecting traffic dynamics and road congestions, we present a dynamic network 

flow which, compared to the rerouting mechanism of Lim et al. (2016), is better able to 

present the traffic dynamics as well as the impact of disruption times on the flow 

dynamics. 

We introduce two preprocessing algorithms to calculate specific parameters 

associated with road disruptions and the topology of the evacuation network. The use of 

these parameters enables us to transform the original optimization model into a linear 

model to reduce the computational burden. Numerical experiments are made to show the 

performance of the proposed model. Furthermore, the effects of specific features such as 

disruption time, disturbance location, and the plan updating time on the evacuation 

process are investigated. 
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1.4.2 Evacuation Planning under Uncertainty of Network Disruption 

As described in the previous sub-section, there are two approaches that can be taken 

towards network disruptions. The first is to react to the occurrence of the incident 

(rerouting strategy) and the second is to provide a resilient proactive plan which is less 

vulnerable to possible network disturbances. The contribution of our work described in 

Chapter 4 is to propose a proactive plan considering the possible negative effects of 

disturbances on road congestion and flow. 

Referring to literature related to our work, Shahparvari et al. (2017) defined a 

vehicle routing problem for no-notice evacuations in a bushfire situation. In the same 

context, disruptions in both route and shelter were addressed by Shahparvari et al. 

(2016). Both approaches used the chance-constraint method to solve a bi-level 

optimization model that maximizes the number of rescued evacuees and minimizes 

resource utilization. However, all of these studies assumed that an incident results in the 

failure of an entire path (an avenue extending from the origin to the destination point). In 

more realistic situations, only some sections of a route are affected by incidents; in other 

words, the entire path is not deemed a complete failure. Moreover, Shahparvari et al. 

(2017 and 2016) assumed that if a route is disturbed, all the evacuees assigned to it will 

be lost. The authors did not consider the flow reassignment of the affected evacuees to 

new pathways (recovery). These underlying assumptions, again, do not mimic real-life 

situations. In reality, when a road in a route becomes impassable, two distinct courses of 

action are highly likely: real-time rescheduling would be implemented via the unraveling 

of alternate routes or evacuees directly involved in the process will naturally begin 

exploring random routes on their own accord. Thus, to summarize, in these approaches 
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the impact of the recovery after a disruption has been ignored. Another shortcoming of 

the aforementioned approaches comes from the fact that the scale of time regarding 

incidents is not considered. The time at which a disturbance may occur on a road is 

crucial. At a specific time, a disturbance may have a more destructive effect than the same 

disturbance occurring at a different time. The sensitivity of disruption times is not 

captured by these approaches. 

In our work, we try to provide an improved framework that, unlike previous studies, 

simultaneously: 

(i) Uses a dynamic traffic flow optimization approach and allows for a variation in 

flow rates over a timespan to capture traffic dynamics,  

(ii) Considers disruptions on roads (roads defined to be a section of a path) instead of 

the entirety of a path within the evacuation network,  

(iii) Considers simultaneous disruptions on multiple roads, 

(iv) Provides a proactive plan using a two-stage stochastic model. 

Two-stage programs have two distinctive components: a structural component that 

is fixed and free of any noise in its input data, and a control component that is subjected to 

noisy input data. The mathematical scheme for the program is as follows: 

          min𝑥∈𝑋    𝜎(𝑥, 𝑦1, 𝑦2 , … , 𝑦𝑠)  
 

(1.1) 

s.t:    𝐴𝑥 = 𝑏,   (1.2) 

 𝐵𝑆𝑥 + 𝐶𝑠𝑦𝑠 = 𝑒𝑆, ∀𝑠 ∈ S, (1.3) 

 𝑥, 𝑦𝑠 ≥ 0,   ∀𝑠 ∈ S. (1.4) 
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The upper level of the model only consists of structural components, such as certain 

parameters and design variables. However, the lower level consists of both structural and 

control components because of the inherent uncertainty of the problem. All possible 

uncertain outcomes of the problem are displayed in scenario set 𝑆. For instance, for our 

problem, disruption events on multiple arcs are shown by set 𝑆, and each 𝑠 ∈ 𝑆 shows a 

specific selection of arcs that are considered to be disrupted. The corresponding 

probability of this disruption is shown by 𝑃𝑠 and we have ∑ 𝑃𝑠𝑠∈𝑆 . Variable 𝑥 shows design 

variables that are not directly influenced by uncertain set 𝑆. Consequently, constraint 

(1.2) belongs to the first stage since it only includes design and is free of noise variables 

and parameters. Variable 𝑦𝑠 shows recourse variables that are actions that take place in 

response to the occurrence of an uncertain scenario 𝑠. Constraint (1.3) is the recourse 

constraint and belongs to the second stage since it comprises of recourse variables and 

uncertain parameters (such as 𝐵𝑆, 𝐶𝑆, etc). The first term of the objective function is a 

unique decision for the integrated objective function of 𝜉 = 𝑐𝑇𝑥 + 𝑑𝑇𝑦 which under 

scenario 𝑠 with probability 𝑃𝑠 is equal to 𝜉𝑠 = 𝑐
𝑇𝑥 + 𝑑𝑠

𝑇𝑦𝑠. The overall objective function is 

considered as 𝜎(. ) = ∑ 𝑃𝑠𝜉𝑠𝑠𝜖S  as it calculates the expected value of the objective function 

𝜉𝑠 under each scenario 𝑠 ∈ S. 

In our work, our design variables show an initial reliable proactive plan which is 

being defined by consequences of road disruption scenarios as well as recourse variables 

of the model. Our recourse variables illustrate reroute planning which takes place in 

response to road disruptions under a disruption scenario. In developing the mathematical 

model, two innovative algorithms are applied for calculating parameters that are 

influenced by disruption scenarios. Using these preprocessing algorithms, we succeed in 

proposing a MIP program and reducing the complexity of our model to a great extent. The 
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goal of the program is to provide an initial plan which minimizes the expected number of 

disturbed evacuees that, under different scenarios, cannot be rerouted through alternate 

paths and get to safe shelters by the end of the planning horizon. Moreover, we introduce 

two robustness measures to be used to assess the solution optimality as well as solution 

feasibility under the considered disruption scenarios. A controller is used to adjust the 

level of these measures and make a trade-off between them. 

1.4.3   A Data-Driven Robust Optimization to Handle Demand Uncertainty 

As explained in the previous section, one of the challenges to develop a successful 

evacuation plan is an accurate prediction of demand. Here, demand means the number of 

people that need to be evacuated through the transportation system. This number 

depends on the actual number of residents as well as their willingness to be evacuated. 

Demand estimations for large-scale evacuations often fail to project the actual demand. 

Also, different demographic information and unpredictability in residents’ behavior play 

an important role in this regard.  

Numerous evacuation studies have provided expected value problems considering 

estimations for the amount of demand. However, since they fail to capture the stochastic 

nature of the problem, they can lead to inferior or downright inaccurate decisions. What 

happened during Hurricane Rita is an example of how discarding the unpredictable 

nature of demand can lead to catastrophic outcomes. This has urged some researchers to 

study stochastic evacuation problems. This approach, along with robust optimization, is 

most widely used to deal with parameters’ uncertainties. In robust optimization, it is 

assumed that variations in the uncertain parameter happen in a predefined range, and the 

goal is to provide a solution that is feasible for all possible occurrences in the range. In 
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stochastic programs, the uncertain parameter is regarded as a random variable to which 

the theory of probability can be applied. The most commonly used techniques in 

stochastic programming are chance-constraint programming and two-stage or multi-

stage stochastic programming. In this context, the preference is to use chance-constraint 

programming since, considering the probability distribution of the uncertain parameter, it 

provides more accurate results. However, using chance-constraint programming is more 

challenging as it can only be applied in very special cases. 

In the era of big data, massive amounts of data are collected by industries motivating 

a shift toward data-centered decision-making processes directly from the abundant 

information. Accordingly, data-driven robust optimization attempts to use the intrinsic 

structure behind data to handle variations in data. Recently, more and more machine 

learning techniques have been employed for efficient pattern recognition for data sets. 

This has led a number of researchers to study the integration of machine learning into the 

optimization-based frameworks.  

The contribution of our work is to use support vector clustering (SVC) as an 

unsupervised machine learning technique to derive an appropriate convex uncertainty set 

for the number of people who will be evacuating from endangered locations. We develop 

a data-driven evacuation planning optimization framework by constructing an “SVC-

based” uncertainty set to find the robust evacuation route plans and flow schedules. 

Furthermore, we study the intersection of the “SVC-based” uncertainty set and a 

conventional robust optimization uncertainty set, e.g., box uncertainty set, and introduce 

the “Box+SVC-based" uncertainty set. Then, we develop a data-driven robust model 

associated with the “Box+SVC-based" uncertainty set in order to study the effect of 
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reducing superfluous coverage of demand data points on the induced evacuation plan.  

1.4.4  A Distributionally Robust Chance-Constraint to Handle Uncertain Network 

Disruptions with Unknown Probability Distributions 

Huge delays and long congestion may occur if officials fail to provide effective 

evacuation plans that perform well under the occurrence of unexpected events and 

uncertainty of a disastrous situation. The capacity span of the roads can be severely 

reduced due to the rise in water level and flooding, wild-fire propagation, sinkholes, 

collapse of highway structures, debris fallen on road surfaces, etc. Effective decisions for 

the evacuation process considering the possibility and extent of these uncertain incidents 

can help to provide a complete evacuation with reduced risk of chaos, resource waste, 

injuries and fatalities, and prolonged delays. 

In our work, we consider an evacuation planning problem subject to the risk of 

multiple road capacity failures. The purpose is to take into account the probable capacity 

disruptions during the allocation of routes and schedules in order to provide a pro-active 

evacuation plan that is less negatively affected after the actual realization of each 

probable disruption. The problem is formulated based on the dynamic network flow 

optimization to better project variations of evacuees’ flow throughout the evacuation 

process. Moreover, a path-based approach introduced by Lim et al. (2012) which 

decomposes path generation from traffic flow assignment is applied to reduce the 

computational burden and make the model scalable for large networks. The road 

capacities are considered as uncertain parameters and, due to the uniqueness of 

hazardous events, it is assumed that there is not sufficient data to properly estimate the 

probability distribution function of the uncertain parameters and only partial information 
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is obtainable. A distributionally robust data-driven optimization framework is introduced 

and is used to handle a lack of full knowledge on probability distributions. Using the mean 

and covariance (i.e., the first and the second moments) of the uncertain parameters, a 

convex uncertainty set for the unknown distributions is constructed. The constraints 

subject to uncertainties are satisfied under the uncertainty set that includes all types of 

probability distributions consistent with the assumed available partial information (e.g. 

the first two moments).  

For an uncertain constraint of the form 𝐹(𝑥. 𝜉) ≤ 0 where 𝜉 is a random vector 

demonstrating uncertain parameters, and F is a function describing a performance 

measure in a particular system, the counterpart chance-constraint with confidence 

probability (1 − 𝜖) will be 

ℙ(F(x. ξ̃) ≤ 0) ≥ 1 − ϵ. 
(1.5) 

Here, ℙ is a probability measure associated with a random vector 𝜉 and (1 − 𝜖) is the 

confidence level of which we would like the chance constraint to reach (𝜖 ∈ [0,1)). 

Meaning that the probability that the uncertain constraint 𝐹(𝑥. 𝜉) ≤ 0 holds should be 

greater than the confidence level (1 − 𝜖). 

Chance-constraint (1.5) inherently is computationally intractable for many cases. In 

some special cases, if the cumulative distribution function (CDF) of 𝜉 is known, it is 

possible to drive a deterministic reformulation of the probabilistic constraint by using the 

inverse distribution function of the uncertain parameter. However, in most cases even if 

the probability distribution function is known, researchers must come up with 

appropriate approximations of chance constraints in order to be able to solve the 
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corresponding program.  

Meanwhile, information that we have on the probability distribution function of the 

random vector 𝜉 plays a crucial role in how we can manage the chance-constraint. In all 

cases discussed above, it has been assumed that full information on the probability 

distribution function is available. However, for the case of mass evacuations, due to 

insufficient data, it can be very difficult to accurately identify this function.  

In our work, we consider road disruption uncertainty as well as the ambiguity of 

disruption distribution. Meaning that we assume only partial information (Moments) of 

the probability distribution function of disruption is available. We define a set Ƥ that 

shows all possible probability distributions consistent with the known properties of ℙ 

(the same moments). Then, in the distributionally robust chance-constrained modeling 

concept the probabilistic constraint should be satisfied for all ℙ ∈ Ƥ as 

ℙ(𝐹(𝑥. 𝜉) ≤ 0) ≥ 1 − 𝜖,      ∀ℙ ∈ Ƥ. (1.6) 

As the formulation of the produced distributionally robust chance-constrained 

program for the evacuation problem is computationally intractable, we introduce 

auxiliary variables to decompose the constraint under uncertainty and reformulate the 

problem into a MIP formulation. Next, we use Chebyshev inequality to derive a tractable 

approximation for the distributionally robust chance-constrained program. Moreover, we 

introduce a heuristic solution methodology to reduce the complexity of the model and 

speed up the solution time. 

 

 



 
 
 
 

27 
 
  
 
 

1.5 Outcomes 

Journal Publications 

 Darvishan, A., Lim, G., Fan, L. (2020). Dynamic Network Flow Optimization for 

Real-time Evacuation Reroute Planning under Multiple Road Disruptions, 

Reliability Engineering and System Safety, (minor revision). 

 Darvishan, A., Lim, G. (2020). A Two-Stage Stochastic Model for Evacuation 

Planning: Adjusting the Plan Robustness under Possible Road Disruption, 

Transportation Research Parts C: Emerging Technologies, (under review). 

 Darvishan, A., Lim, G. (2020). A Data-Driven Robust Optimization Approach for 

Evacuation Planning under Demand Uncertainty, Socio-Economic Planning 

Sciences, (under review). 

 Darvishan, A., Lim, G. (2020). A Distributionally Robust Data-Driven Model for 

Evacuation Planning under Uncertain Network Disruption, (draft completed). 

1.6 Organization 

This thesis is organized as follows. Chapter 2 provides a comprehensive literature 

review for the related research on deterministic evacuation programs, uncertain 

evacuation programs as well as most relevant researches to our work. In Chapter 3 we 

present a novel optimization framework for real-time reroute planning of disturbed flow 

under network disruption. Two different formulations are introduced for the problem. 

We conduct numerical experiments to measure the performance of the two models as 

well as sensitivity analyses on the evacuation process. Chapter 4 is devoted to describing 
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how our two-stage stochastic model is aimed at providing proactive plans in face of 

probable evacuation road disruptions. Two innovative algorithms used in the model are 

presented for calculating input parameters which, without them, developing a linear 

mathematical formulation is impossible. The performance of our stochastic solution is 

compared with solutions derived from deterministic models using different sample sets. 

In Chapter 5, we introduce two different uncertainty sets for the evacuation planning 

problem under uncertainty of demand. The “SVC-based” uncertainty set is built using 

Support Vector Clustering, and the “Box+SVC-based" uncertainty set is built by 

intersecting the “SVC-based” uncertainty set with a conventional uncertainty set used in 

robust optimization. Two MIP data-driven robust optimization models corresponding to 

the uncertainty sets are developed and their performances under different test samples 

are studies. Chapter 6 develops a distributionally robust chance-constrained model to 

account for uncertainty in road distributions in the evacuation planning model. A 

distributionally robust model is proposed assuming that only partial information on the 

probability distribution function of road disruption times is available (the first two 

moments are known). The plan feasibilities of these robust models are compared with the 

feasibility of plans derived from chance-constraint programs under different demand 

scenarios. Finally, in Chapter 7 future research direction that can be pursued is discussed. 
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Chapter 2      

Literature Review 

Interest in evacuation planning problems has been started by the nuclear power 

plant accident occurring at Three Mile Island, Pennsylvania in March 1979. In the 

following years government agencies such as FEMA, Nuclear Regulatory Commission 

(NRC) and the U.S. Army Corps of Engineers have sponsored a number of evacuation 

planning research projects. Initial research on this concept has been published by 

Chalmet et al. (1982) in which a network model has been proposed for emergency 

building evacuations. Over the years research on this problem has evolved to provide 

realistic evacuation plans. A comprehensive survey on evacuation planning can be found 

in Hamacher and Tjandra (2002), Wolshon et al. (2005), Yusoff et al. (2008), Abdelgawad 

et al. (2009), Renne et al. (2011), Murray-Tuite and Wolshon (2013), and Bayram et al. 

(2016). A brief review of simulation and OR techniques has already been provided in the 

previous chapter. In this chapter, we mainly focus on the literature of works that are most 

relevant to our work. 

2.1 Deterministic Approaches 

The vast body of the literature has focused on deterministic evacuation plans. 

Yamada (1996) proposed two models based on network flow optimization techniques 

aiming to minimize the total distance traveled by evacuees. Contra-flow strategy in which 

lanes of roads are reversed to increase the capacity of a road has been investigated by 

researches such as Cova and Johnson (2003), Kim and Shekhar (2005), Kalafatas and 
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Peeta (2009), Xie et al. (2010), Karoonsoontawong and Lin (2011), Bretschneider and 

Kimms (2011), Wang et al. (2013) and Zhao et al. (2016). The related model presented by 

Cova and Johnson (2003) and Bretschneider and Kimms (2011) uses the network flow 

concept and Kalafatas and Peeta (2009), Xie et al. (2010), Karoonsoontawong and Lin 

(2011) and Zhao et al. (2016) developed their model based on CTM DTA models. A CTM-

based system optimal (SO) model considering contra-flow has been developed by Tu ydeş 

(2005) in which applies evacuation zone planning.  

Using a static model Han et al. (2006) investigated route planning and shelter 

assignment problem. Decisions on simultaneous shelter assignment, route planning and 

departure times (schedule) have been studied by Chiu et al. (2007). Kimms and Maassen 

(2011a, 2012a, 2012b) applied CTM model on a large evacuation plan. In their work 

Kimms and Maassen (2011b) apply an optimization-based simulation method to provide 

route plan and schedule plan for a neighborhood in the city of Duisburg, Germany. 

Dynamic network flow optimization technique has been used by various researchers 

as it can better project traffic dynamics (Hamacher and Tjandra, 2001; Lu et al., 2005; Kim 

and Shekhar, 2005; Kim et al., 2007; Lim et al., 2009; Bretschneider and Kimms 2011, 

2012; Hamacher et al., 2013; Lim et al., 2012; Bretschneider, 2013; and Pillac et al., 2015, 

2016). Lu et al. (2005) used time-expanded networks to minimizes network clearance 

time assuming the roads were capacitated. As the solution approach, a heuristic algorithm 

was proposed to define route assignment and flow schedule. Kim et al. (2007) improve 

this heuristic method to decrease the computational time of the algorithm. Kim and 

Shekhar (2005) used a greedy algorithm considering a time-expanded network in which 

decisions on contra-flow can be made to increase network capacity. A heuristic binary 
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search algorithm has been provided by Lim et al. (2009) in which based on maximum 

dynamic network flow problem defines route and schedule for short notice evacuations. 

Hamacher et al. (2013) used dynamic network flows and locational analysis methods to 

provide evacuation plans. They considered both the supply and demand side of the 

evacuation, trying to find routes to be used by emergency units on the roads to get into a 

disaster zone and guide evacuees to get away from the endangered zones. 

Various researchers have developed heuristic models or approaches in order to 

handle large-scale evacuations. Aiming to minimize evacuees left behind during an 

assumed planning horizon, Lim et al. (2012) presented a new path-based model to find 

optimum evacuation paths, flows, and schedules. A Dijkstra’s algorithm was used for 

decisions on paths a greedy algorithm is utilized to find the maximum flow to be assigned 

to each path and schedule of dispatching the flow in assumed time intervals. 

Bretschneider and Kimms (2012) presented a two-stage heuristic mathematical model 

using a dynamic network flow optimization concept to capture traffic dynamics and 

provide evacuation plans for urban areas. Pillac et al. (2015) used a column-generation 

approach to jointly optimize resource mobilization and evacuation planning for large-

scale evacuations. A conflict-based path-generation approach was developed by Pillac et 

al. (2016) decomposing the problem into a master problem and a subproblem. While the 

master problem defines flow assignment to the evacuation plan, the subproblem 

generates evacuation routes lazily for evacuated areas.  

Bi-level (BL) models have been proposed by Xie and Turnquist (2009), Abdelgawad 

and Abdulhai (2009), Xie et al. (2010), Ng et al. (2010), and Karoonsoontawong and Lin 

(2011). The upper bound of the program addresses decisions on shelters considering 
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system optimal approach and having the defined shelters, the lower level tries to dispatch 

evacuees on routes using UE concept. Another bi-level program has been proposed by Liu 

and Luo (2012). In the upper level, optimal set of intersections and control strategies are 

defined for uninterrupted flow while the lower level considers traffic assignment based 

on SUE principle. 

During evacuations, congestion can be reduced either by supply or demand 

management actions. Demand-based strategies (such as staging) have been used by 

several researches in order to reduce or eliminate flow congestion. Bish and Sherali 

(2013) examined the effectiveness of aggregate-level and staged evacuation process as a 

demand-based strategy in an evacuation network. The CTM based model was used to 

compare the effects of free-flow strategies with strategies under congestion in relation to 

tractability, normative optimality, and robustness of the solution. Bish et al. (2014) 

developed a CTM-based model that applies household-level (disaggregate) demand 

strategies for different flow types. Considering a fixed planning horizon, Tu ydeş and 

Ziliaskopoulos (2014) provided a CTM-based SO DTA program applying demand 

strategies known as staggered evacuation or staging to obtain optimal zone evacuation 

scheduling. Hsu and Peeta (2014) proposed a framework to define risk-based evacuation 

subzones for stage-based evacuations. So and Daganzo (2010) proposed a simple control 

strategy decentralized evacuation management which is adaptive and based on real-time 

traffic information instead of demand estimations. Aiming to improve evacuation 

operations in both spatial and temporal dimensions, He and Peeta (2014) and He et al. 

(2015) considered the problem of dynamic allocation of movable response resources on 

large-scale transportation evacuation networks.  
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2.2 Uncertainty in Evacuation 

One of the major problems associated with the development of accurate route plans 

and schedules is the uncertainty inherent to a hazardous situation, human behavior, and 

hence the evacuation process. Deterministic assumptions on parameters can lead to poor 

results due to the inability of solutions to deal with related deviations. As found in (Lindell 

and Prater 2007), there was a large difference between the estimated number of evacuees 

(686,000) and the actual number of evacuees (1,800,000) from the Greater Houston area 

during Hurricane Rita, which led to dramatic traffic congestion, and fatalities not caused 

by the hurricane itself (O’Driscoll et al., 2005). It is also highly probable that in a 

hazardous situation evacuation network loses whole or part of its capacity (e.g. due to 

flood or debris which has been made by collapsed buildings or landslides). In 1985, the 

Mexico City earthquake resulted in the loss of nearly 70% of the central transportation 

network (Ardekani and Hobeika, 1988). If variation in these parameters is ignored, the 

resulting plan can be inefficient in face of hazards, chaos and panic can be spread over the 

course of the evacuation process, and further injuries and fatalities may occur. However, 

very limited researches have addressed uncertainties in their studies.  

Research focusing on uncertainty of parameters such as demand and capacity in 

evacuation modeling has mostly been addressed via chance-constrained programming 

and robust optimization. Waller and Ziliaskopoulos (2006) first used a chance-

constrained program for the traffic assignment problem under a uniform distribution for 

traffic demand. A two-stage stochastic program was proposed Ukkusuri and Waller 

(2008) for evacuation planning under uncertainty of demand. Their result showed that if 

the uncertainty is neglected, the quality of the solutions degrades significantly. Wang et al. 



 
 
 
 

34 
 
  
 
 

(2016) used a scenario-based stochastic program to deal with uncertain capacities and 

travel times. Three criteria are considered for evaluating traffic routing plans and crisp 

linear equivalents of the strategies are used in the solution methodology. Yao et al. (2009) 

applied a robust optimization technique to address demand uncertainty. Chung et al. 

(2011) used box uncertainty sets to provide a linear tractable robust model for a system 

optimal dynamic traffic assignment model (SO DTA) under demand uncertainty. Goergik, 

et al. (2016) considered solution ranking as well as objective ranking robustness for the 

problem of evacuation planning. In their approach, the degree of robustness of a solution 

is defined by using solution ranking procedures which include both quantitative and 

qualitative aspects. Tarhini and Bish (2016) used a cell transmission model (CTM) for a 

dynamic traffic assignment (DTA) problem considering the system optimal (SO) approach 

instead of the commonly deployed user-equilibrium based concept. This makes the model 

be relevant to regional evacuation planning problems.  

Yazici and Kaan (2007) proposed a chance constraint program to address 

uncertainties in road capacities when the distribution of the capacity of the links is 

known. Lim et al. (2015) used a chance-constrained model to analyze the reliability of an 

evacuation plan considering the uncertain capacity of road links where the uncertain 

capacity is modeled using a Weibull distribution. Lv et al. (2013) applied a joint-

probabilistic constrained (JPC) technique for the case of a nuclear emergency evacuation. 

In the proposed model, uncertainties expressed as joint probability and interval values 

are addressed by incorporating interval-parameter programming and joint-chance 

constrained techniques. In all of the above studies, a priori knowledge of the underlying 

distribution is required. 
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2.3 Most Relevant Studies  

As explained in the introduction, our studies can be summarized in four major 

categories: 

- Providing an effective rerouting plan as a recovery strategy in response to an 

unforeseen real-time event of road disruptions. Since rerouting happens after the 

realization of the disruptions we assume deterministic settings. 

- Developing a two-stage stochastic program in order to provide pro-active plans 

which mitigate negative consequences of probabilistic road disruptions. 

- Developing a data-driven robust optimization framework based on uncertainty 

sets built using SVC and intersection of SVC and Box uncertainty to handle 

uncertain evacuation demand. 

- Presenting distributionally robust chance-constrained programs which act as pro-

active plans under uncertainty of road distribution times. 

In the following subsections, the most relevant researches to our work will be 

presented. 

2.3.1 Real-Time Evacuation Reroute Planning 

In chapter 3, we propose two MIP mathematical formulations for the problem of 

rerouting the disturbed flow after the occurrence of road closures in evacuation 

networks. Few studies have reported investigations on the real-time rerouting of vehicles 

in the transportation network. Akgün et al. (2007) proposed a heuristic approach to find a 

new path for vehicles exposed to the effects of weather systems. A modified Dijkstra 
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algorithm and heuristic dynamic programming has been applied by Kok et al. (2012) to 

select new routes to reduce traffic congestion. Several traffic rerouting strategies were 

suggested by (Pan, J., Popa, I. S., Zeitouni, K., & Borcea, C., 2013) to prepare traffic 

guidance for vehicles in order to avoid congestions observed on roads and reduce travel 

time. Desai and Lim (2013) used a stochastic dynamic programming (SDP) approach to 

obtain optimal real-time modifying policies for hazmat vehicles. Dynamic rerouting 

vehicles used in agricultural operations were investigated by Seyyedhasani and Dvorak 

(2018). 

Related to the evacuation planning context, Lim et al. (2016) provided a 

preprocessing algorithm that utilizes a path-based network flow optimization approach to 

reassign paths for evacuees affected by an incident, assuming the availability of real-time 

traffic information. However, there are two limitations to their work. First, their model is 

limited to a single road incident. Second, evacuation vehicles are assumed to join the 

evacuation routes at a constant flow rate. Both assumptions are less realistic because 

multiple road disruptions can occur at any time, and the vehicle flow rate joining major 

evacuation routes can vary over the evacuation planning horizon. Therefore, the purpose 

of this paper is to provide an approach to relax both of the assumptions within the context 

of a dynamic network flow optimization, in which a variable vehicle flow rate is assigned 

to each time interval of the planning horizon, and disruptions can occur on multiple roads 

of the network. The number of evacuees leaving the intermediate nodes into new 

pathways in the network can vary in each time interval, which results in a more realistic 

representation of evacuation flow dynamics and congestion. 
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2.3.2 Two-stage Proactive Plan under Uncertain Disruptions 

In chapter 4 we address emergency evacuation management and provide proactive 

reliable evacuation plans considering possible road disruptions. Generally, disruption at 

roads can be of two types: Complete and partial disruptions. Depending on the severity of 

the incidents, different approaches can be considered. If the disturbance in the capacity of 

the network infrastructure is not intense (road capacity degradation), the capacity can be 

considered as an uncertain parameter that deviates slightly from what it has been 

expected. This uncertainty had been addressed in the literature by either considering 

capacity as an uncertain parameter that follows a probability distribution (Stochastic 

Programming) or by defining a specific set for the parameter and derive a plan that can be 

feasible for the worst-case scenario of its realization (Robust Optimization) in which 

review of them has been provided in the last sub-section. On the other hand, if the level of 

infrastructure degradation is intense, it will be regarded as a failure or disruption in the 

infrastructure (road disruption). In this case, since the link is completely blocked, 

residents need to be re-routed in order to reach the safe areas. This assignment to 

alternative routes should be with respect to the residual capacity of other roads.  

There are few studies that have presented route scheduling for short-notice 

evacuations under uncertainty of road disruptions in a bushfire situation in Australia 

(Shahparvaria et al., 2016; Shahparvaria et al., 2017). However, in these studies for 

obtaining their reliable plan it has been considered that after disruption in a specific 

route, all of the evacuees that according to the proactive plan had been assigned to the 

path will be lost. However, this robust plan cannot be accurate since the underlying 

assumptions do not mimic the real case situation. In reality, when a road in a route is 
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blocked either real-time rescheduling would be prepared and implemented in order to get 

people to safe destinations via alternate routes, or people would arbitrarily change their 

routes and inefficiently add to the congestion of other routes. Thus, the impact of the 

rerouting had been ignored in the proposed reliable plans. Rerouting the disturbed flow 

on one way reduces number of lost evacuees and on the other way adds to the congestion 

of other roads and increases total clearance time. For instance, while one route might 

have a higher number of assigned evacuees, after disruption rerouting its flow may be 

easier resulting in fewer injuries or evacuees loss. This happens when based on the 

topology of the network, the connectivity level of the disturbed link is high. Moreover, we 

also need to take into account the time at which disturbance may occur for each link. For 

example, at a specific time disturbance may have a more destructive effect since its 

connected alternative paths are highly congested (flow-based importance). A 

methodology that uses the residual network in order to manage real-time evacuation 

reroute after the case of road closure in the evacuation network is proposed by Lim et al. 

(2016). The goal of the research effort is to minimize further delays that may happen due 

to the rerouting. However, the plan only works as a recovery strategy after the realization 

of disruption and fails to consider the probability of different disruption scenarios and 

providing pro-active plans. The innovation of our work to previous related works is filing 

the gaps illustrated in Table 2.1. 

Table 2.1 summarizes the features of our proposed model in comparison to others in 

the literature. These features include consideration of the incident uncertainty, type of 

disturbed infrastructure (a road or an entire path from origin to a destination point), 

existence of a pro-active agenda or a recovery strategy, and usage of a variable or steady 

flow rates. 
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Table 2.1: Comparison between Respective Research Efforts with Current Study 

Research effort Uncertainty Infrastructure 
Pro-active 

Plan 
Recovery Flow Rate 

Lim et al. (2016)  Road    steady 

Shahparvari et al. (2017)   Path    - 

Shahparvari et al. (2016)   Path    - 

The Proposed Study   Road     Variable 

2.3.3 Data-Driven Robust Optimization Based on SVC 

In chapter 5, we address emergency evacuation management under uncertainty of 

demand and introduce data-driven robust optimization frameworks for the problem 

based on machine learning techniques. Robust optimization has extensively been studied 

in the literature on evacuation planning. A robust linear programming model under 

uncertainties of surface transportation networks has been introduced by Ben-Tal et al. 

(2009) to mitigate the loss of life or property. A linear Cell Transmission Model (CTM) 

based on an affinely Adjustable Robust Counterpart (AARC) is introduced by Yao et al. 

(2010) considering box and polyhedral uncertainty sets. Kulshrestha et al. (2011) used a 

robust approach to find optimal locations of public shelters and their required capacities 

under the uncertainty of the number of evacuees. The linear tractable robust model based 

on box uncertainty sets is used by Chung et al. (2011) to address demand variations in a 

system optimal dynamic traffic assignment model (SO DTA). Bolia (2020) studied public 

transit-based emergency evacuation and used a robust optimization approach to cope 

with external environmental uncertainties, specifically evacuation demand uncertainty, 

by providing robust solutions. Wang and Paul (2020) proposed a single-stage, adaptive 
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robust model to find the optimal evacuation time and make a trade-off between 

increasing evacuation costs and reduced uncertainty given the time-variant 

characteristics of hurricanes. Hypothesis testing has been employed by various 

researchers to identify the worst-case realization of parameters in the uncertainty sets. 

Linear regression and the t-test have been employed by Goldfarb and Iyengar (2003) to 

construct and calibrate an uncertainty set using the moment information of the 

distribution. Pearson’s χ2-test has been used in Klabjan et al. (2013) to introduce a data-

driven distributionally robust dynamic program. A comprehensive investigation on the 

connection of hypothesis testing and data-driven uncertainty set construction has been 

presented in Bertsimas et al. (2018).  

A number of researchers attempted to integrated machine learning methods for 

pattern recognition into optimization-based frameworks to handle the uncertainties in 

the input data. Ning and You (2017) employed a Dirichlet process mixture model and 

used a variational inference algorithm to capture the distribution of data. The machine 

learning technique was used to build an uncertainty set to be used in a four‐level adaptive 

robust optimization framework. Shang et al. (2017) investigated the idea of using kernel 

density estimation (KDE) and support vector machines (SVM) to derive an uncertainty set 

from available data. They showed that using such an unsupervised learning approach 

enables to systematically derive an appropriate uncertainty set that is more realistic to 

actual events. Ning and You (2018) proposed a novel multi-objective, adaptive robust 

optimization for process network planning and the batch process scheduling problem that 

incorporates the minimax regret criterion into the multi-stage optimization framework. 

Shang and You (2019) used support vector clustering (SVC) to learn a polytypic high-

density region of data to propose a data-driven uncertainty set to be used in a stochastic 
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model predictive control (SMPC). 

To overcome the shortcomings of existing approaches in evacuation planning, we 

propose a data-driven robust optimization framework directly built upon demand data 

structure using an unsupervised machine learning approach. We introduce two ways to 

define the demand uncertainty set depending on the emphasis in evacuation planning. 

The first approach is to define an uncertainty set to cover evacuation demand data using 

support vector clustering (SVC), which is suitable when a systematic approach is desired. 

The second approach is a new uncertainty set by intersecting the “SVC-based” uncertainty 

set and box uncertainty set.  This can be particularly useful when it is desired to reduce 

the cost of robustness (evacuation efforts) when the level of conservatism is high.  

2.3.4 Unknown Distribution of Uncertain Road Disruptions Times 

In chapter 6, a distributionally robust approximation for an evacuation planning 

chance-constraints problem will be presented under unknown distributions of the road 

disruption times. General chance-constrained models are computationally intractable. 

Significant research efforts have focused on coming up with a safe and tractable 

approximation of chance constraints (Geletu et al. 2013). Bernstein approximation for the 

chance-constrained program has been developed by Nemirovski and Shapiro (2007). 

They showed that the yielded model is convex and tractable (can be efficiently solved). 

Few researchers (Calafiore and Campi, 2005; Erdogan and Iyengar, 2006; Luedtke and 

Ahmed, 2008) have proposed to substitute the chance-constraint with a point-wise 

constraint which is feasible under a finite number of scenarios drawn randomly from the 

distribution ℙ. The proposed approach yields a convex problem, however, the sampling 

method might be computationally intensive for the case of large problem sizes. Zymler et 
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al. (2013) developed tractable semi-definite programming base approximations for both 

individual and joint chance constraints for the case that second-order information is 

available. This approximation can only be achieved when the decision vector is a convex 

closed set. Calafiore and Ghaoui (2006) showed that when the confidence level is more 

than 0.95, an individual chance constraint can be converted a to second-order cone 

constraint if the random parameter has a radial distribution. 

Ng and Waller (2010) and Ng et al. (2011) considered unknown distributions and 

used Markov’s inequality to derive a bound on travel time reliability. However, if more 

information is available on the probability distribution function of the uncertain 

parameter this bound might not be tight enough and can be over-conservative. Ben-Tal et 

al.  (2011) extended a robust optimization approach for multi-period transportation 

problems and apply an affinely adjustable robust counterpart (AARC) approach to 

consider “wait and see” decisions for dynamic traffic assignments. They applied the 

robust optimization framework to an emergency logistics planning problem and show 

that the AARC solution provides excellent results when compared to the solutions from 

deterministic linear programming and stochastic programming based on Monte Carlo 

sampling. Lv et al. (2015) coupled chance-constrained programming with an interval 

chance-constrained integer program (EICI) in order to cope with interval uncertainties 

that cannot be addressed by any specific distribution functions. Chung et al. (2012) used 

moment information to formulate a distributionally robust chance-constrained model 

which allows them to derive a deterministic approximation of their model. Ng and Lin 

(2015) proposed an approximation of the chance-constrained cell transmission model 

(CTM) for the case that only the first and second moments of demand and capacity are 

known. Although the probability inequalities that they used for demand constraint is 
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similar to the work of Ng and Waller (2010), by using Cantelli’s inequality, they provide 

sharper equalities for approximating capacity constraints.  

In our work, we investigate emergency evacuation planning problem considering 

uncertain road capacity disruptions in the network. Unlike previous studies, we introduce 

an improved framework that: (i) Provides a pro-active plan which is less interrupted by 

the occurrence of probable road disruptions; (ii) Better projects traffic dynamics by 

employing dynamic traffic network flow optimization approach which allows for variation 

in flow rates over the planning horizon; (iii) Provides more realistic results considering 

disruptions on roads (roads defined to be a section of a path) instead of an entire path in 

the evacuation network; (iv) Assumes simultaneous disruptions on multiple roads in the 

evacuation network; (v) Makes no assumptions on the type of uncertainty distributions, 

considers that the probability distribution functions of road disruption times are not fully 

known and only partial information (the first two moments) are accessible; (vi) Provides 

a distributionally robust optimization model which ensures that the constraints subject to 

parameter randomness are satisfied under actual distributions consistent with the 

ambiguity set built upon the distributions’ moment information. To the best of our 

knowledge, there is no study in the literature of evacuation planning that has 

incorporated all of these features. 
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Chapter 3  

Real-time Evacuation Reroute Planning under Road 

Disruptions 

3.1  Introduction 

The motivation of this chapter is to provide emergency managers with a real-time 

rerouting scheme to be used in the case of network disruptions. Effective evacuation 

process includes two phases: The first phase is to develop route planning and schedule for 

the flow before the arrival of a hazard. The second phase aims to monitor the progress of 

hazards as well as the initial evacuation plan, detect deviations from the plan, and make 

adjustments to the initial plan if necessary.  

During the course of an evacuation, many unforeseen events can happen. Roads may 

become impassable due to road flooded, sinkholes in the roads, railway barriers at 

railroad crossings, debris fallen on road surfaces, accidents or collapse of highway 

structures caused by high winds, or subways submerged with stormwater, etc. These 

Real-Time Events (RTE) can disrupt the initial evacuation plan and change the flow 

congestion as well as the time required for evacuees to clear the network. Since they can 

heavily affect the safety of people being evacuated, a quick and effective decision on 

rerouting disturbed flow through alternative paths is of great importance. 

While there have been some studies on reroute planning in Vehicle Routing Problem 

(VRP) or related to dynamic traffic assignment (DTA), yet to the best of our knowledge 
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there has been only one work addressing the evacuation process. Lim et al. (2016) 

provided a preprocessing algorithm that utilizes a path-based network flow optimization 

approach to reassign paths for evacuees affected by an incident, assuming the availability 

of real-time traffic information. However, there are two limitations to their work. First, 

their model is limited to a single road incident. Second, evacuation vehicles are assumed 

to join the evacuation routes at a constant flow rate. Both assumptions are less realistic 

because multiple road disruptions can occur at any time, and the vehicle flow rate joining 

major evacuation routes can vary over the evacuation planning horizon. Therefore, the 

purpose of this paper is to provide an approach to relax both of the assumptions within 

the context of a dynamic network flow optimization, in which a variable vehicle flow rate 

is assigned to each time interval of the planning horizon, and disruptions can occur on 

multiple roads of the network. The number of evacuees leaving the intermediate nodes 

into new pathways in the network can vary in each time interval, which results in a more 

realistic representation of evacuation flow dynamics and congestion. 

3.2  Problem Statement 

Traffic flow and congestion on the evacuation network are represented through a 

dynamic network flow problem. A dynamic network is composed of multiple static 

networks in which each static network depicts the status of the network at a specific time 

(Ford Jr and Fulkerson, 2015). Let us consider a directed network 𝒢 = (𝒩,𝒜) consisting 

of a set of nodes 𝒩 and a set of arcs 𝒜 (see Figure 3.1). The nodes are categorized as 

origin nodes (𝒩𝑜), intermediate nodes, and destination nodes (𝒩𝑑). The planning horizon 

is divided into discrete time intervals represented by set 𝕋 = {0, 1, … , T}. A traffic 

assignment on this network relies upon a representation of traffic as a series of vehicle 



 
 
 
 

46 
 
  
 
 

flows at each time interval as per the topology of the network. The transit time of arc 

𝑎 ∈ 𝒜 is shown by τa, and the time it takes to reach arc 𝑎 ∈ 𝒜 from the origin of path 

𝑝 ∈ 𝓅 is denoted by 𝜃𝑝𝑎. 

 

 

Figure 3.1: A directed graph representing an evacuation network 

 

A path-based approach is followed to reduce the computational complexity of our 

evacuation rerouting problem. Consequently, all possible paths between each origin-

destination (O-D) of the evacuation network are generated and enumerated a priori which 

are defined as in set 𝓅. Parameter 𝐷𝑇𝑎 is used to denote the disruption time on each arc 

𝑎 ∈ 𝒜. The aim of the rerouting path-based model (𝑅𝑃𝐵𝑀) is to optimally utilize the 

residual capacity of the road networks to reassign the disturbed evacuees to new paths 

such that the overall evacuation reroute completion time is minimized.  

The 𝑅𝑃𝐵𝑀 assigns the disturbed flow to both unaffected paths as well as partially 

damaged paths or called affected paths. An affected path is a path involving one or more 

disrupted arcs. Although a path can be interrupted, the residual capacity of its intact arcs 

can still be used to reroute the flow and push it forward through the evacuation network. 

When the reassigned flow reaches a damaged arc of an affected path, it will gather and 

Source node 
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Destination node 
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wait behind the associated node and can be sequentially rerouted to a path at another 

time (see Figure 3.2). 

 

Figure 3.2:  Rerouting flow in 𝑅𝑃𝐵𝑀 

3.2.1 Rerouting Path-Based Model (RPBM) Formulation: 

For developing the mathematical formulation, the following notation is used: 

Sets: 

𝒩 Set of all nodes 

𝕋 Set of all time slots 

𝓅 Set of all paths 

Decision Variables: 

𝑟𝑝𝑛𝑡 
Disturbed flow of node 𝑛 ∈ 𝒩 that is rerouted and assigned to alternate 

route 𝑝 at time 𝑡 ∈ 𝕋 

ℎ𝑐𝑛𝑡 Accumulative disrupted flow on node 𝑛 ∈ 𝒩 at time 𝑡 ∈ 𝕋 

Parameters: 

𝑓𝑝𝑡 Flow that starts on path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋 (pre-disruption plan) 

𝒇𝒑𝒏𝒕
r 

𝑛 

𝒓𝒑 𝒏𝒕
r 

𝑛 

Path 𝒑 

Path 𝒑  

Disturbed arc 

Arc not used for flow transition 
  

Arc used for flow transition 

𝒓 
Rerouting flow 

𝒇 
Initial flow 
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𝐻𝑝𝑛𝑡 Disturbed flow on node 𝑛 ∈ 𝒩 of path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋 

𝜃𝑝𝑎 Transit time from the origin of path 𝑝 ∈ 𝓅 to arc 𝑎 ∈ 𝒜  

𝐶𝑎 Capacity of arc 𝑎 ∈ 𝒜 

𝐷𝑛 Demand of source node 𝑛 ∈ 𝒩 

ℓ𝑛 Capacity of destination node 𝑛 ∈ 𝒩 

𝜏𝑎 Transit time on arc 𝑎 ∈ 𝒜  

𝐿𝑝𝑛 
Takes value 1 if node 𝑛 ∈ 𝒩 is the source node of path 𝑝 ∈ 𝓅, and 

otherwise 0 

𝐾𝑝𝑛 
Takes value 1 if node 𝑛 ∈ 𝒩 is the destination node of path 𝑝 ∈ 𝓅, and 

otherwise 0 

𝜃́𝑝𝑛 Transit time from the origin of path 𝑝 ∈ 𝓅 to node 𝑛 ∈ 𝒩  

𝛿𝑝𝑎 Takes value 1 if arc 𝑎 ∈ 𝒜 belongs to path 𝑝 ∈ 𝓅, and otherwise 0 

𝛾𝑛𝑎 Takes value 1 if node 𝑛 ∈ 𝒩 is the upstream (origin) node of arc 𝑎 ∈ 𝒜, 

and otherwise 0 

𝜑𝑝𝑚𝑛 Takes value 1 if node 𝑛 ∈ 𝒩 is not behind node 𝑚 ∈ 𝒩 on path 𝑝 ∈ 𝓅, and 

otherwise 0 

𝑊𝑝𝑛𝑡 
Takes value 1 if the flow on path 𝑝 ∈ 𝓅 starting at time 𝑡 ∈ 𝕋 reaches the 

merging arc from node 𝑛 ∈ 𝒩 before the disruption time of the arc 

𝑉𝑝𝑛𝑡 
Takes value 1 if the flow on path 𝑝 ∈ 𝓅 starting at time 𝑡 ∈ 𝕋 is disturbed 

and stuck behind node 𝑛 ∈ 𝒩, and otherwise 0 

𝜂𝑝𝑡𝑚𝑛 Takes value 1 if the flow on path 𝑝 ∈ 𝓅 starting at time 𝑡 ∈ 𝕋 is not 

affected through node 𝑚 ∈ 𝒩 and also is not disturbed between node 

𝑚 ∈ 𝒩 and node 𝑛 ∈ 𝒩 (𝑚 is behind 𝑛), and otherwise 0 

𝜕𝑝𝑛 
Takes value 1 if there is no disturbed arcs on path 𝑝 ∈ 𝓅 after node 𝑛 ∈ 𝒩, 

and otherwise 0 

Mathematical properties of the PBM model do not allow the direct representation of 

flow departing from intermediate nodes. Variables denoting the flow are always related to 

the evacuees leaving the source node of a path rather than the intermediate node. 

However, a method is needed for rerouting the flow in order to reflect the flow departing 
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from an intermediate node (see Figure 3.3). To resolve the issue in the optimization 

model formulation, the rerouting variable 𝑟𝑝𝑛𝑡 is introduced to denote the amount of flow 

departing from the origin of path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋. Nevertheless, in our constraints, we 

ignore the values of 𝑟𝑝𝑛𝑡 associated with preceding nodes (or arcs) to node 𝑛 ∈ 𝒩. In this 

case, the preceding arcs are considered dummy arcs. This is done by introducing three 

sets of parameters 𝑊𝑝𝑛𝑡, 𝑉𝑝𝑛𝑡, and 𝜂𝑝𝑡𝑚𝑛 which reflect the effect of disruptions on the 

evacuation flow with respect to the arc incident times, the sequence of arcs in the set of 

paths as well as the topology of the network. Using these parameters a mathematical 

model with a linear structure can be developed. Note that a flow departing at time 𝑡 ∈ 𝕋 

takes 𝜃𝑝𝑛 time units to reach node 𝑛 ∈ 𝒩. Hence, based on the disturbed flow information 

𝑟𝑝𝑛(𝑡−𝜃𝑝𝑛), we can address the flow reassignment from node 𝑛 ∈ 𝒩 onto route 𝑝 ∈ 𝓅 

during time interval 𝑡 − 𝜃𝑝𝑛 + 𝜃𝑝𝑛 = 𝑡.  

 

Figure 3.3:  Representation of rerouting variable 𝑟𝑝𝑛𝑡   

We now describe the proposed dynamic network flow optimization model 

formulation. When an arc disruption occurs, disturbed evacuees are assumed to be 

accumulated on the tail of the affected arc (i.e., a node behind the affected road in the 

evacuation network) for the purpose of rerouting them to alternative paths. The objective 

function of 𝑅𝑃𝐵𝑀 aims to minimize the total number of disturbed evacuees remaining in 

Arc not used for flow transition 
 

Arc used for flow transition 
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the evacuation network by the end of the planning horizon 𝑇.  

Min ∑ ℎ𝑐𝑛𝑇
𝑛∈𝒩

   

Constraints are explained as follows. The planning horizon set 𝕋 = {0, 1, … , 𝑇} covers 

both the pre-disruption schedule (𝑓𝑝𝑡) as well as the post-disruption schedule (ℛ𝑝𝑛𝑡). The 

time periods at which the previous plan is updated are shown by set 𝕋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =

{𝑡𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔, … , 𝑇}. At time 𝑡 = 0, there are no disturbed evacuees in the system. Hence, the 

total amount of associated flow on all nodes is set to zero as 

 ℎ𝑐𝑛(𝑡=0) = 0, ∀ 𝑛 ∈ 𝒩. (3.1) 

The process of a plan revision can only take place during the updating time interval 

(𝕋𝑢𝑝𝑑𝑎𝑡𝑒𝑑). The flow-route assignments before 𝑡𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 are equal to zero as in the 

following constraint  

 𝑟𝑝𝑛(𝑡−𝜃́𝑝𝑛) = 0, ∀𝑝 ∈ 𝓅, ∀𝑎 ∈ 𝒜, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋/𝕋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 .  (3.2) 

When calculating the amount of disturbed flow on node 𝑛 ∈ 𝒩 at time 𝑡 ∈ 𝕋, we take 

into account both the amount of the disturbed flow from the original plan (denoted by 

𝐻𝑝𝑛𝑡) and the amount of the rerouted flow from nodes (𝑚 ∈ 𝒩) that were disturbed 

while passing through the alternative pathway (𝑊𝑝𝑛𝑡∑ 𝜂𝑝𝑡𝑚𝑛𝑟𝑝𝑚𝑡𝑚∈𝒩 ). This is stated in 

 ℎ𝑐𝑝𝑛(𝑡+𝜃́𝑝𝑛) = 𝐻𝑝𝑛(𝑡+𝜃́𝑝𝑛) +𝑊𝑝𝑛𝑡 ∑ 𝜂𝑝𝑡𝑚𝑛𝑟𝑝𝑚𝑡
𝑚∈𝒩

, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋. 
(3.3) 

Parameter 𝐻𝑝𝑛𝑡 used in Constraint (3.3) can be calculated as follows 

 𝐻𝑝𝑛(𝑡+𝜃́𝑝𝑛) = V𝑝𝑛𝑡𝑓𝑝𝑡, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋.   

When flow 𝑓𝑝𝑡 is blocked on node 𝑛 ∈ 𝒩 (denoted by 𝑉𝑝𝑛𝑡 = 1), and since the flow 

has started from the origin of the path at time 𝑡 ∈ 𝕋, the time at which it reaches and 
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accumulates on node 𝑛 ∈ 𝒩 is 𝑡 + 𝜃́𝑝𝑛. Note that 𝜃́𝑝𝑛 is the transit time from the origin of 

path 𝑝 ∈ 𝓅 to node 𝑛 ∈ 𝒩. Accordingly, 𝐻𝑝𝑛(𝑡+𝜃́𝑝𝑛) represents the number of evacuees 

accumulated on 𝑛 ∈ 𝒩 at time (𝑡 + 𝜃́𝑝𝑛). 

The total number of remaining interrupted evacuees at time (𝑡 + 1) equals its 

previous amount at time 𝑡 ∈ 𝕋, plus the newly interrupted evacuees (∑ ℎ𝑐𝑝𝑛(𝑡+1)𝑝∈𝓅 ), 

minus the amount of rerouted evacuees at time 𝑡, as expressed as 

  ℎ𝑐𝑛(𝑡+1) = ℎ𝑐nt +∑ℎ𝑐𝑝𝑛(𝑡+1)
𝑝∈𝓅

− 

∑∑ ℑ𝑝𝑛𝑎 (1 −𝑊𝑝𝑛(𝑡−𝜃𝑝𝑎)
) 𝑟𝑝𝑛(𝑡−𝜃𝑝𝑎)

𝑝∈𝓅𝑎∈𝒜

, 

∀ 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋.  (3.4) 

Parameter ℑ𝑝𝑛𝑎 in Constraint (3.4) reflects the topology of the network and can be 

calculated as 

ℑ𝑝𝑛𝑎 = 𝛿𝑝𝑎𝛾𝑛𝑎 , ∀𝑝 ∈ 𝓅, 𝑎 ∈ 𝒜, 𝑛 ∈ 𝒩.   

Considering constraints (3.2), (3.3), and (3.4), before the updating time, ℎ𝑐𝑛(𝑡+1) only 

equals the previous amount of the remaining flow plus the newly interrupted flow (i.e. 

ℎ𝑐𝑛(𝑡+1) = ℎ𝑐𝑛𝑡 + ∑ ℎ𝑐𝑝𝑛(𝑡+1)𝑝∈𝓅 ). However, when the rerouting of the disturbed flow 

begins, the assigned disturbed flow 𝑟𝑝𝑛(𝑡−𝜃𝑝𝑎) at time 𝑡 ∈ 𝕋 to alternate paths is no longer 

stalled behind node 𝑛 ∈ 𝒩 and is subtracted from the remaining disturbed flow of the 

next time interval ℎ𝑐𝑛(𝑡+1). 

∑ ∑ ∑ 𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛𝛿𝑝𝑎𝛾𝑛𝑎
𝑚∈𝒩

[(1 − 𝑉𝑝𝑛(𝑡−𝜃𝑝𝑎)) 𝐿𝑝𝑚𝑓𝑝(𝑡−𝜃𝑝𝑎)
𝑛∈𝒩𝑝∈𝓅

+ (1 −𝑊𝑝𝑛(𝑡−𝜃𝑝𝑎)
) ∅𝑝𝑚𝑛𝑟𝑝𝑚(𝑡−𝜃𝑝𝑎)] ≤ 𝐶𝑎, 

∀𝑎 ∈ 𝒜,  𝑡 ∈ 𝕋. (3.5) 

Constraint (3.5) ensures that the total flow from different paths reaching a shared arc 
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does not exceed the capacity of the arc (𝐶𝑎). This flow includes (i) the pre-disruption flow 

schedule 𝑓𝑝𝑡, and (ii) the post-disruption flow schedule 𝑟𝑝𝑛𝑡. Let us consider flow 𝑓𝑝(𝑡−𝜃𝑝𝑎) 

departing from the origin of the path at time 𝑡 − 𝜃𝑝𝑎. Two cases can occur regarding the 

share of this flow in the capacity usage of arc 𝑎 ∈ 𝒜 (see Figure 3.4). 

Case 1: Flow is disturbed before reaching arc 𝒂 ∈ 𝓐 

Case 1 occurs when there is at least one disruption on the preceding arcs before reaching arc 

𝑎 ∈ 𝒜 and when the disruption time of an associated arc is less than the time required for the 

flow to reach and pass through the arc. Hence, if there is at least one arc 𝑎̅ ∈ 𝒜 in which the 

following condition holds true 

(𝑡 − 𝜃𝑝𝑎̅) + 𝜃𝑝𝑎̅ + 𝜏𝑎̅ > 𝐷𝑇𝑎̅ , ∃𝑎̅ ∈ 𝒜 preceding to 𝑎 ∈ 𝒜 on 𝑝 ∈ 𝓅, 

then, parameter 𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛  equals zero and 𝑓𝑝(𝑡−𝜃𝑝𝑎) is not considered in the capacity 

Constraint (3.5). Note that 𝑚 ∈ 𝒩 represents the origin node of the path if 𝐿𝑝𝑚 = 1. Also, 

𝑛 ∈ 𝒩 represents the head of arc 𝑎 ∈ 𝒜 if 𝛾𝑛𝑎 = 1. Note that the details of calculating the 

amount of parameter 𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛 using an algorithm is explained later in the chapter. 

Case 2: Flow can pass through arc 𝒂 ∈ 𝓐 

When the flow is not disturbed on preceding arcs to arc 𝑎 ∈ 𝒜 and reaches and passes 

through arc 𝑎 ∈ 𝒜, it occupies the capacity of arc 𝑎 ∈ 𝒜 until it completely passes 

through the arc. This occurs when the following condition holds 

(𝑡 − 𝜃𝑝𝑎̅) + 𝜃𝑝𝑎̅ + 𝜏𝑎̅ ≤ 𝐷𝑇𝑎̅ , 

&     𝑉𝑝𝑛(𝑡−𝜃𝑝𝑎) = 0, 
 ∀𝑎̅ ∈ 𝒜 preceding to 𝑎 ∈ 𝒜 on 𝑝 ∈ 𝓅. 
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When the value of (𝑡 − 𝜃𝑝𝑎̅) + 𝜃𝑝𝑎̅ + 𝜏𝑎̅  is less than the disruption time (𝐷𝑇𝑎̅) of a preceding 

arc 𝑎̅ ∈ 𝒜, the flow can reach arc 𝑎 ∈ 𝒜, i.e., 𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛 = 1. At this point, if the flow is not 

disturbed on arc 𝑎 ∈ 𝒜 (i.e. 𝑉𝑝𝑛(𝑡−𝜃𝑝𝑎) = 0), it can flow through the arc, and the arc capacity is 

reduced accordingly. Note that Algorithm 2 is used to calculate the amount of parameter 

𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛  to be used in the optimization model. 

 

Figure 3.4:  Case 1 and Case 2 presentation for flow 𝑓𝑝(𝑡−𝜃𝑝𝑎) 

Now, let us consider situations that may arise regarding the post-disruption flow 

𝑟𝑝𝑚(𝑡−𝜃𝑝𝑎)(see Figure 3.5). Note that this flow is placed on path 𝑝 ∈ 𝓅 through node 

𝑚 ∈ 𝒩. 

Case 1: Reassigned flow has been added to the path from a preceding node to arc 𝒂 ∈ 𝓐 

When node 𝑚 ∈ 𝒩 comes after arc 𝑎 ∈ 𝒜 on path 𝑝 ∈ 𝓅, parameter ∅𝑝𝑚𝑛 equals zero and 

𝑟𝑝𝑚(𝑡−𝜃𝑝𝑎) is excluded in the capacity constraint. 

Case 2: Rerouted flow is interrupted before reaching arc 𝒂 ∈ 𝓐 

If node 𝑚 ∈ 𝒩 is directionally placed before arc 𝑎 ∈ 𝒜 on path 𝑝 ∈ 𝓅  (i.e. ∅𝑝𝑚𝑛 = 1), but 

the rerouted flow is disrupted before arriving at the arc (𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛 = 0), then 𝑟𝑝𝑚(𝑡−𝜃𝑝𝑎) 

is disregarded in the constraint. 

 

𝑛 

𝑛 
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Case 3: Rerouted flow can travel through arc 𝒂 ∈ 𝓐  

If node 𝑚 ∈ 𝒩 is directionally placed before arc 𝑎 ∈ 𝒜 on path 𝑝 ∈ 𝓅  (i.e. ∅𝑝𝑚𝑛 = 1), and 

the reassigned flow can reach the arc without any interruptions (𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛 = 1), then 

ℛ𝑝𝑚(𝑡−𝜃𝑝𝑎) is included in the arc capacity constraint. 

 

Figure 3.5:  Case 1, Case 2, and Case 3 presentation for rerouted flow 𝑟𝑝𝑚(𝑡−𝜃𝑝𝑎) 

Constraint (3.6) ensures that all evacuees, including those who followed the pre-

disruption plan and those that have been rerouted, are restricted by the capacity of the 

destination node (ℓ𝑛) when entering the shelter area.  

∑∑𝐾𝑝𝑛
𝑡∈𝕋

[ ∑ 𝜂𝑝𝑡𝑚𝑛 𝐿𝑝𝑚 𝑓𝑝𝑡
𝑚∈𝒩o

+ ∑ 𝜂𝑝𝑡𝑚𝑛
𝑚∈𝒩

𝑟𝑝𝑚𝑡]

𝑝∈𝓅

≤ ℓ𝑛 , ∀𝑛 ∈ 𝒩𝑑 . (3.6) 

Evacuation flow 𝑓𝑝𝑡 is considered in Constraint (3.6) only if the following condition holds 

(𝑡 − 𝜃𝑝𝑎̅) + 𝜃𝑝𝑎̅ + 𝜏𝑎̅ ≤ 𝐷𝑇𝑎̅ , 
 ∀𝑎̅ ∈ 𝒜 between the source node and 

destination node of path 𝑝 ∈ 𝓅. 

Hence, starting from the origin and moving towards the destination, if the flow of an 

evacuee is not interrupted (𝜂𝑝𝑡𝑚𝑛 = 1 where 𝑚 ∈ 𝒩𝑜 and 𝑛 ∈ 𝒩𝑑), it is counted in 

Constraint (3.6). Similarly, the rerouted flow 𝑟𝑝𝑚𝑡 is considered to use the capacity of the 

𝒓 
Case 1 

Case 2 

𝒏 
𝒎 

𝒓 𝒏 

𝒎 

𝒓 
𝒏 

𝒎 

Case 3 

Disturbed arc 

𝒓 
Rerouting flow 



 
 
 
 

55 
 
  
 
 

destination node only if no incident affects the flow from node m ∈ 𝒩 (the point it had 

been inserted on the path) to the destination node 𝑛 ∈ 𝒩𝑑 (𝜂𝑝𝑡𝑚𝑛 = 1). 

Finally, non-negativity and integrality of decision variables are reflected, 

respectively, as 

 
𝑟𝑝𝑛𝑡 ∈ ℤ

+, ℎ𝑐𝑛𝑡 ∈ ℤ
+, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋. 

(3.7) 

3.2.2 Algorithms to Calculate Key Model Parameters and Network Clearance Time 

Upon examining the problem characteristics, we realized that the computational 

efforts for solving the problem can be significantly reduced if some key parameter values 

are determined prior to solving the model. Some of these parameters are identified, and 

their values are determined using two pre-processing algorithms introduced in this 

section. If these pre-processing algorithms were not proposed, developing an 

optimization model for the described rerouting problem was computationally challenging. 

For instance, to calculate the amount of disturbed flow (𝐻𝑝𝑛t) on node 𝑛 ∈ 𝒩 of path 

𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋, instead of using equation 𝐻𝑝𝑛(𝑡+𝜃́𝑝𝑛) = V𝑝𝑛𝑡𝑓𝑝𝑡 we needed to add the 

following constraint 

 
𝐻𝑛𝑝(𝑡+𝜃́𝑝𝑛) ≥ 𝑓𝑝𝑡𝛾𝑛𝑎𝛿𝑝𝑎

|𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎|

𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎

− ( ∑ 𝛾𝑛𝑎 𝛿𝑝𝑎 
|𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎 |

𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎 
𝑛 ∈𝑁𝑝𝑛

+ |𝑁𝑝𝑛|)𝑀, 

∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋,  

where 𝑁𝑝𝑛 is the set of all preceding nodes to node 𝑛 ∈ 𝒩 of path 𝑝 ∈ 𝓅 and 𝑀 is a large 

number. The big challenge, however, was to develop constraints illustrating calculation of 

the amount of remaining disturbed flow (ℎ𝑐𝑛𝑡), arc capacity limitation, destination node 
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capacity restriction, and rerouting procedure. Hence, the following processing algorithms 

are developed and used prior to solving the proposed 𝑅𝑃𝐵𝑀 formulation to simplify the 

computation. 

(i)  Methodology to Calculate Parameters Associated with Disruptions 

Parameter 𝑉𝑝𝑛𝑡 indicates whether or not flow 𝑓𝑝𝑡 on path 𝑝 ∈ 𝓅 departing at time 

𝑡 ∈ 𝕋 would be stalled on node 𝑛 ∈ 𝒩. Algorithm 3.1 is developed to calculate the value of 

𝑉𝑝𝑛𝑡. First, we calculate 𝑊𝑝𝑛𝑡 to define whether 𝑓𝑝𝑡 is stopped on node 𝑛 ∈ 𝒩 regardless 

of any possible disturbances that may have surfaced during the flow passage up to node 

𝑛 ∈ 𝒩. Accordingly, we initialize disruption times of preceding arcs to node 𝑛 ∈ 𝒩 to be 

infinity. We disregard disturbances of the preceding arcs and only take into account the 

time of incident (𝐷𝑇𝑎) of the arc that emerges from node 𝑛 ∈ 𝒩, arc transit time (𝜏𝑎), and 

the time to transport from the origin of the route to arc 𝑎 ∈ 𝒜 (𝜃𝑝𝑎). If a flow departs on 

path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋, it reaches arc 𝑎 ∈ 𝒜 at time 𝑡 + 𝜃𝑝𝑎. Also, it takes 𝜏𝑎 unit of time 

for the flow to completely pass through the arc. Therefore, if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 is greater than 

the disruption time of the arc (𝐷𝑇𝑎), the flow is interrupted, and 𝑊𝑝𝑛𝑡 takes value 1.  

 

Figure 3.6: Defining parameters 𝑊𝑝𝑛𝑡  and 𝑉𝑝𝑛𝑡  

Next, we calculate the value of 𝑉𝑝𝑛𝑡 and subsequently, take into account incident 

parameter 𝑾𝒑𝒏𝒕: 

 

parameter 𝑽𝒑𝒏𝒕: 
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times of preceding arcs to arc 𝑎 ∈ 𝒜. The value of 𝑉𝑝𝑛𝑡 equals 1 only if the flow 𝑓𝑝𝑡 

experiences no interruption while moving toward node 𝑛 ∈ 𝒩 (i.e., ∑ 𝑊𝑝𝑚𝑡𝑚∈𝒩 = 0) and 

is disturbed on node 𝑛 ∈ 𝒩 of path 𝑝 ∈ 𝓅 (i.e., 𝑊𝑝𝑛𝑡 = 1). Else 𝑉𝑝𝑛𝑡 = 0. 

 

Algorithm 3 . 1 

Inputs: 

An evacuation network 𝒢 consisting of a set of nodes 𝒩 and a set of arcs 𝒜. 

Disruption Time of Arcs 

Calculating 𝑽𝒑𝒏𝒕: 

for all paths 𝑝 ∈ 𝓅 do 

for all time slots 𝑡 ∈ 𝕋 do 

for all arcs that belong to path 𝑝 ∈ 𝓅 do 

if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎 > 0 then 

 𝑊𝑝𝑛𝑡 = 1 (𝑛 is upstream node of arc 𝑎) 

else if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎 ≤ 0 then 

𝑊𝑝𝑛𝑡 = 0  

end if  

for all preceding nodes 𝑚 ∈ 𝒩 to arc 𝑎 on path 𝑝 do 

if ∑ 𝑊𝑝𝑚𝑡𝑚∈𝒩 = 0 and 𝑊𝑝𝑛𝑡 = 1 then 

 𝑉𝑝𝑛𝑡 = 1 (𝑛 is upstream node of arc 𝑎) 

else then 

𝑉𝑝𝑛𝑡 = 0  

end if  

end for 

end for  

end for 

end for 
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A numerical example for calculating the value of 𝑽𝒑𝒏𝒕:  

The following example is used to illustrate the calculation of parameter 𝑉𝑝𝑛𝑡. 

Consider the path, disruption times, and arc transit times shown in Figure 3.7. When an 

evacuee departs from node 𝑖 at time 𝑡 = 1, the evacuee can pass through arc (𝑖, 𝑗) because 

the disruption on arc 𝐷𝑇(𝑖,𝑗) = 4 occurs after the flow has reached node 𝑗 (i.e., time 𝑡 = 2). 

This evacuee can also pass through arc (𝑗, 𝑘) with no interruption, as the time it arrives at 

node 𝑘 (i.e., time 𝑡 = 2 + 5 = 7) is earlier than the time of the incident on arc 𝐷𝑇(𝑗,𝑘) = 8. 

Accordingly, this flow is not disturbed on either of the arcs (𝑖, 𝑗) or (𝑗, 𝑘) and 𝑉𝑝𝑖(𝑡=1) =

𝑉𝑝𝑗(𝑡=1) = 0. Now, let us consider a flow starting on the path at time 𝑡 = 3. It will arrive at 

the origin of the arc (𝑗, 𝑘) at time 𝑡 = 4 with no disturbance. The arc transit time for arc 

(𝑗, 𝑘) is 5 units of time. Thus, it cannot pass through the arc because the incident occurred 

prior to the projected arrival at the location, i.e., 4 + 5 > 8. Associated values of 𝑉𝑝𝑛𝑡 will 

be 𝑉𝑝𝑖(𝑡=3) = 0 and 𝑉𝑝𝑗(𝑡=3) = 1, as the disturbed flow is only affected on node 𝑗. Similarly, 

for the departure time 𝑡 = 5, we would have 𝑉𝑝𝑖(𝑡=5) = 1 because the flow was not 

affected as the incident occurred prior to the departure time.  

 

Figure 3.7: Example of parameter 𝑣𝑝𝑛𝑡  

Next, Algorithm 3.2 is developed to determine whether a flow can pass through a 

specific location in the network and can reach another location without any interruptions. 

 j m  i 
𝐷𝑇(𝑖,𝑗) = 4 

 
𝐷𝑇(𝑗,𝑘) = 8 

𝜏(𝑗,𝑘) = 5 
k 

𝜏(𝑖,𝑗) = 1 

𝑡 = 1 

𝑡 = 3 

𝑡 = 5 > 4 

𝑡 = 2 

𝑡 = 4 

𝑡 = 7 < 8 

4 + 5 > 8 
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For any path 𝑝 ∈ 𝓅, we first derive the sequence of nodes composing the path called 𝜑𝑝. 

Then, for any combination of node 𝑚 ∈ 𝒩 and 𝑛 ∈ 𝒩 in the set 𝜑𝑝 (when 𝑚 is a 

precedence to node 𝑛), we calculate the summation of ∑ 𝑉𝑝𝑘𝑡
𝑛−1
𝑘=𝑚 . If ∑ 𝑉𝑝𝑘𝑡

𝑛−1
𝑘=𝑚 = 0, we can 

conclude that the flow on path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋 is neither interrupted on node 𝑚 ∈ 𝒩 

nor is disturbed between node 𝑚 ∈ 𝒩 and node 𝑛 ∈ 𝒩. If this condition holds, then 

𝜂𝑝𝑡𝑚𝑛 = 1. Otherwise, 𝜂𝑝𝑡𝑚𝑛 = 0. 

Algorithm 3 . 2 

Inputs: 

An evacuation network 𝒢 consisting of a set of nodes 𝒩 and a set of arcs 𝒜, and 𝑣𝑝𝑛𝑡 . 

Calculating  𝜼𝒑𝒕𝒎𝒏: 

for all paths 𝑝 ∈ 𝓅 do 

determine set 𝜑𝑝 as a sequence of nodes in path 𝑝 

for all time slots  𝑡 ∈ 𝕋 do 

for all preceding nodes 𝑚 ∈ 𝜑𝑝 to node 𝑛 ∈ 𝜑𝑝 do 

if  ∑ 𝑣𝑝𝑘𝑡
𝑛−1
𝑘=𝑚 = 0 then 

 𝜂𝑝𝑡𝑚𝑛 = 1  

else then 

𝜂𝑝𝑡𝑚𝑛 = 0  

end if  

end for  

end for 

end for 
 

 

(ii)  Rerouted Clearance Time Calculation 

This section explains the procedure to calculate rerouted clearance time (𝑅𝐶𝑇). The 

𝑅𝐶𝑇 is the minimum time to safely evacuate people to safe destinations considering route 
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adjustments during the evacuation. A two-step procedure is developed to calculate 𝑅𝐶𝑇 to 

expedite the computation. The first step is to quickly approximate the 𝑅𝐶𝑇 for 𝑅𝑃𝐵𝑀. 

Using this value as a starting solution, Algorithm 3.3 finds the exact value of 𝑅𝐶𝑇 as the 

final step. Let 𝔇𝑛𝑡 = ∑ ∑ 𝐿𝑝𝑛 𝐻𝑝𝑚𝑡𝑚∈𝒩 𝑝∈𝓅  denote the demand (evacuees) on source node 

𝑛 ∈ 𝒩𝑜 of path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋. We aim to reroute these evacuees through the 

marginal (residual) capacity of the roads and find the shortest amount of time to reach 

safe shelters. The residual capacity of the arcs (Ϩ𝑎𝑡) and the destination nodes (ȴ𝑛) are 

calculated as follows: 

Ϩ𝑎𝑡 = 𝐶𝑎 −∑ ∑ ∑ 𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛ℑ𝑝𝑛𝑎
𝑚∈𝒩

(1 − 𝑉𝑝𝑛(𝑡−𝜃𝑝𝑎)) 𝐿𝑝𝑚𝑓𝑝(𝑡−𝜃𝑝𝑎)
𝑛∈𝒩𝑝∈𝓅

, 
∀𝑎 ∈ 𝒜,  𝑡 ∈ 𝕋 

& t< 𝐷𝑇𝑎, 
(3.8) 

ȴ𝑛 = ∑∑ ∑ 𝐾𝑝𝑛𝜂𝑝𝑡𝑚𝑛 𝐿𝑝𝑚 𝑓𝑝𝑡
𝑚∈𝒩o𝑡∈𝕋

,

𝑝∈𝓅

 ∀𝑛 ∈ 𝒩𝑑 . (3.9) 

Approximated 𝑅𝐶𝑇 can be obtained by the solution of the following optimization 

model: 

𝑀𝑖𝑛 𝑀𝑎𝑥𝑝∈𝓅,𝑡∈𝕋 (𝔲𝑝𝑡(𝑡 + 𝑑𝑝))   

S.t. ∑∑𝐿𝑝𝑛 𝒻𝑝𝑡
𝑡∈𝕋𝑝∈𝓅

≥∑𝔇𝑛𝑡

𝑡∈𝕋

, ∀𝑛 ∈ 𝒩𝑜 ,  (3.10) 

 ∑ 𝜕𝑝𝑛𝐿𝑝𝑛𝛿𝑝𝑎𝒻𝑝(𝑡−𝜃𝑝𝑎)
𝑝∈𝓅

≤ Ϩ𝑎𝑡 , ∀𝑎 ∈ 𝒜,  ∀𝑡 ∈ 𝕋, 𝑛 ∈ 𝒩, (3.11) 

 ∑∑𝐾𝑝𝑛 𝒻𝑝𝑡
𝑡∈𝕋𝑝∈𝓅

≤ ȴ𝑛 , ∀𝑛 ∈ 𝒩𝑑 , (3.12) 

 𝑀 𝔲𝑝𝑡 ≥ 𝒻𝑝𝑡 , ∀𝑝 ∈ 𝓅, ∀𝑡 ∈ 𝕋, (3.13) 

 𝒻𝑝𝑡 ∈ ℤ
+, 𝔲𝑝𝑡 ∈ {0,1}, ∀𝑝 ∈ 𝓅, ∀𝑡 ∈ 𝕋. (3.14) 

Variable 𝒻𝑝𝑡 is the amount of flow from the source node of path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋. 
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The objective function aims to minimize the maximum time in which a flow reaches its 

destination. Constraints (3.10)-(3.14) are used to reroute 𝔇𝑛𝑡 from source nodes 𝒩𝑜 

through the residual capacity of the network. According to Constraint (3.13), binary 

variable 𝔲𝑝𝑡 receives value 1 if the flow is reassigned to path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋. For 

𝔲𝑝𝑡 = 1, the associated flow reaches the destination 𝑑𝑝 unit of time later during time 

interval (𝑡 + 𝑑𝑝), where 𝑑𝑝 is the duration time of the path.  

Let 𝔛 represent the solution of the above optimization model. Time value of 𝔛 is used 

in Algorithm 3.3 to expedite the 𝑅𝐶𝑇 calculation process. The algorithm has two main 

steps: 𝑅𝐶𝑇 bound generation and value calculation. In bound generation, if 

∑ ∑ 𝐼𝑛𝑡𝑡∈𝕋𝑛∈𝒩 > 0, it means there still remains some disturbed evacuees in the network, 

and the system is not cleared; hence, it provides a lower bound to 𝑅𝐶𝑇. If ∑ ∑ 𝐼𝑛𝑡𝑡∈𝕋𝑛∈𝒩 ≤

0, it means the system has been cleared. However, we are aiming to find the minimum 

amount of time required to clear the system; hence, we consider 𝔛 as a lower bound to 

RCT. In the second part of the algorithm to calculate RCT, the RPBM is solved considering 

𝑇 and 𝑇 − 1 as the planning horizon, where 𝑇 = (LBRCT + UBRCT) 2⁄ . If the objective value 

at T − 1 is positive (i.e., the system is not cleared) and becomes zero at time T (i.e., the 

system is cleared), the minimum time to clear the network is achieved at T; 𝑅𝐶𝑇 = 𝑇. If 

both objective values are positive, the system cannot be cleared at time 𝑇. Hence, we 

update the lower bound of 𝑅𝐶𝑇 to 𝐿𝐵𝑅𝐶𝑇 = 𝑇 if 𝑇 > 𝐿𝐵𝑅𝐶𝑇 . If both objective values equal 

zero, it means that the system has been cleared at T − 1. This triggers updating the upper 

bound to 𝑈𝐵𝑅𝐶𝑇 = 𝑇 − 1 if 𝑇 − 1 < 𝑈𝐵𝑅𝐶𝑇. The algorithm continues until 𝑅𝐶𝑇 value is 

found. 
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Algorithm 3 . 3: Calculating Clearance time of the reroute plan 

Inputs: 

𝑅𝑃𝐵𝑀 and 𝔛. 

put 𝐶𝑇 of the evacuation network with no disruption as 𝐿𝐵𝑅𝐶𝑇 

put 𝑈𝐵𝑅𝐶𝑇 = 2 𝐿𝐵𝑅𝐶𝑇 

Calculating a tight bound for RC𝑻: 

put 𝕋 = {0, 1, … , 𝔛} as the planning horizon 

solve 𝑅𝑃𝐵𝑀 

if ∑ ∑ 𝐼𝑛𝑡𝑡∈𝕋𝑛∈𝒩 > 0 then 

         𝐿𝐵𝑅𝐶𝑇 = 𝔛 

else then 

         𝑈𝐵𝑅𝐶𝑇 = 𝔛 

end if  

Calculating RC𝑻 Value: 

put 𝕋 = {0, 1, … , 𝑇} as the planning horizon 

While 𝜓 ≠ 1 do 

put 𝑇 = (𝐿𝐵𝑅𝐶𝑇 + 𝑈𝐵𝑅𝐶𝑇) 2⁄  

Solve 𝑅𝑃𝐵𝑀 for 𝕋 = {0, 1, … , 𝑇} and 𝕋 = {0, 1, … , 𝑇 − 1} 

           if one objective value is a positive value and the other is equal to zero then 

 put  𝑅𝐶𝑇 = 𝑇 and 

𝜓 = 1 

else if  both objective values are positive and 𝑇 > 𝐿𝐵𝑅𝐶𝑇  then 

 put  𝐿𝐵𝑅𝐶𝑇 = 𝑇 

else if  both objective values are equal to zero and 𝑇 − 1 < 𝑈𝐵𝑅𝐶𝑇 then 

 put  𝑈𝐵𝑅𝐶𝑇 = 𝑇 − 1 

end if 

end while 
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3.3  Computational Results 

The computational experiments presented in this study focus on the impact of 

network arc disruptions on evacuation plans and the performance of the proposed 

recovery strategy. First, the performance of 𝑅𝑃𝐵𝑀 is investigated on a small sample 

network in generating alternative routes. Then, the same experiment is conducted on a 

real evacuation network involving a large metropolitan area. The optimization models are 

solved using CPLEX 12.5.1, while experiments are performed on a PC with a 3.07 GHz 

Intel Core i7 processor having 24GB RAM and running Ubuntu 10.04.3. 

3.3.1   Numerical experiments to illustrate the proposed approach  

Experimental studies are conducted on the sample network shown in Figure 3.8 (Lim 

et al., 2012). The test network includes three source nodes (𝒩1, 𝒩2, and 𝒩3), five 

intermediate nodes (𝒩4 ,…, 𝒩8) and two destination nodes (𝒩9 and 𝒩10). These nodes are 

connected through 22 arcs. Arc transit times (𝜏𝑎) as well as arc capacities (𝐶𝑎) are shown 

above each arc of the network.  

Demand on the source nodes (number of evacuees that are present at the source 

nodes) are assumed to be 𝐷1 = 110, 𝐷2 = 120, and 𝐷3 = 167, and the capacity of each of 

the destination nodes are assumed to be 750. First, all possible paths between all origin 

and destination (O-D) pairs are enumerated using the solution pool feature of CPLEX for 

the shortest path problem. Next, a total of 42 shortest paths are selected as the candidate 

paths with 13 paths originating from source node 𝒩1, while 14 paths (𝑃14-𝑃27) originate 

from the second node, and 15 paths (𝑃28-𝑃42) originate from the third node. For instance, 

𝑃12 follows the sequence of 𝒩1 →𝒩5 →𝒩6 → 𝒩8 →𝒩10. These candidate paths are used 
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as input data to the path-based evacuation model for the purpose of generating an initial 

evacuation plan. 

 

Figure 3.8: Evacuation test network 

The path-based evacuation optimization model provides both the optimal pre-

disruption route assignment and flow schedule 𝑓𝑝𝑡 for the test case as in Table 3.1. For 

example, as shown in the first row of the Table, five evacuees (𝑓𝑃9,𝑡2 = 5) commence the 

evacuation by leaving node 1 following path 𝑃9 at time 𝑡 = 2. The evacuation rate varies 

during time 𝑡 = 3, 𝑡 = 4, and 𝑡 = 8: 𝑓𝑃9,𝑡3 = 2, 𝑓𝑃9,𝑡4 = 5, and 𝑓𝑃9,𝑡8 = 5. The 

corresponding clearance time is 22 time units. 

Suppose that three incidents occurred on different roads during the evacuation. The 

disturbed roads (i.e., arcs) are labeled as 𝐴𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 = {(2,5), (4,5), (4,7)}. Incidents are 

assumed to occur at different times: 𝐷𝑇𝑎(2,5) = 4, 𝐷𝑇𝑎(4,5) = 6, and 𝐷𝑇𝑎(4,7) = 8. While 

monitoring the progress of the disaster, emergency management agencies received data 

on the network condition and attempted to develop revised plans accordingly. As the 

process of collecting information and rerouting plan generation takes time, it is assumed 

that agencies can implement the revised schedule immediately after the plan updating 
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time 𝑡𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 = 10. Hence, before 𝑡 = 10, no rerouting itinerary is planned and the 

corresponding variable (ℛ𝑝𝑛𝑡) remains at zero. 

Disruptions on arcs (2,5), (4,5), and (4,7) partially affect several paths {𝑃17, 

𝑃18, 𝑃19, 𝑃21, 𝑃22, 𝑃23, 𝑃27, 𝑃31, 𝑃41, 𝑃42}. For example, flow 𝑓𝑝23,𝑡2 = 2 was scheduled to 

arrive at arc (4,7) at time 𝑡 + 𝜃𝑝23,𝑎(4,7) = 2 + 1 = 3.  It takes 𝜏𝑎(4,7) = 2 time units for the 

flow to pass through this arc. Since the arc is supposed to fail at time 𝐷𝑇𝑎(4,7) = 8, the flow 

𝑓𝑝23,𝑡2 = 2 is not affected. Now, flow 𝑓𝑝23,𝑡9 = 5 is scheduled to reach arc (4,7) at time 

𝑡 + 𝜃𝑝23,𝑎(4,7) = 9 + 1 = 10, but the arc is already blocked at time 𝑡 = 8. So, there will be a 

flow accumulation on node 2 at time 𝑡 = 10, and it is denoted by 𝐻𝑝23,𝑛4,𝑡10 = 5. 

Table 3.1:  An initial evacuation plan for the sample network (𝑓𝑝𝑡) 

  Time Slots 
 

 
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 

P
a

th
s 

P9 
 

5 2 5 
   

5 
          

P10 5 5 
 

5 
 

5 5 5 5 5 5 5 
 

5 
 

5 5 
 

P11 5 
     

5 3 
 

5 5 
    

5 
  

P16 
                 

5 

P17 
            

5 5 
    

P18 
     

5 
            

P19 
 

2 
 

5 
           

5 
  

P21 
 

3 
                

P22 
    

5 
 

5 
   

5 5 5 
  

5 5 
 

P23 
 

2 2 5 
   

5 5 5 
   

5 5 
   

P24 5 
 

3 
  

5 
            

P27 
 

3 
                

P28 
                 

5 

P30 
 

3 
                

P31 3 
    

5 
   

5 
    

5 5 5 
 

P33 
   

5 
      

5 5 
      

P35 
              

5 
   

P36 
     

5 
 

5 5 5 
  

5 5 
 

5 
  

P37 
 

2 5 5 5 
 

5 
    

5 
    

5 
 

P39 5 
                 

P40 
          

5 
       

P41 2 5 5 
 

5 
 

2 5 
    

5 
     

P42 
             

5 
    

The magnitude, location, and interruption time of the disturbed flow 𝐻𝑝𝑛𝑡 are 

demonstrated in Table 3.2. 

 



 
 
 
 

66 
 
  
 
 

Table 3.2:  Amount of disturbed flow (𝐻𝑝𝑛𝑡) 

   Time Slots  

 
  

4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total 

P
a

th
s 

P17 n2 

        

5 5 

     25 P18 n2 

 

5 

             P19 n2 5 

          

5 

   P22 n4 

 

5 

 

5 

   

5 5 5 

  

5 5 

 

107 
P23 n4 

    

5 5 5 

   

5 5 

   P31 n4 

   

5 

   

5 

    

5 5 5 

P41 n4 

  

5 

 

2 5 

    

5 

    P42 n4 

           

5 

   

According to Table 3.2, 132 evacuees out of 392 are constrained at different locations 

of the transportation network between time periods 𝑡 = 4 and 𝑡 = 19. Hence, the 

proposed RPBM model is used to generate new paths to accommodate the disturbed flow. 

Table 3.3 shows the rerouting schedule for the disturbed flow 𝑟𝑝𝑛𝑡 provided by 

𝑅𝑃𝐵𝑀. The first row of the table shows the flow that should be reassigned to 𝑃21 from 

node 2. The remaining rows show route assignments from node 4 onto alternative paths 

{𝑃2, 𝑃8, 𝑃9, 𝑃10, 𝑃15, 𝑃16, 𝑃25, 𝑃26, 𝑃33}. This plan was able to reroute all interrupted flow and 

redirect them to safe shelters within 35 time intervals. Therefore, the rerouted clearance 

time (𝑅𝐶𝑇) is equal to 35 time units. During this time period, a total of 25 evacuees are 

evacuated from node 2, and 132 evacuees are rerouted from node 4. 

Table 3.3:  Rerouting plan (𝑟𝑝𝑛𝑡) 

    Time Slots     
Total 

 

 

 

 
13 15 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

 P21  n2               5 5   5 5     5  25 

P2 

n4 

         2       

132 

P8           5      

P9               5  

P10 5 

 

5 5 5 5 

    

5 

 

5  5  

P15 

           

5 5   5 

P16       5          

P25    5 5 5  5         

P26  5     5 5 5 5  5  5   

P33 

       
5 

    
    

Earlier, Table 3.2 showed that only 107 evacuees experience congestion on node 4 as 

a result of the incidents. However, the plan provided by 𝑅𝑃𝐵𝑀 assigns 132 evacuees from 
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this node onto new pathways. This is due to the fact that, in 𝑅𝑃𝐵𝑀, disrupted flow could 

still reach disrupted arcs after its reroute assignment and thus add to the accumulated 

flow behind the failed arcs. Consequently, the overall amount of disturbances calculated 

in 𝑅𝑃𝐵𝑀 shown in Table 3.4 could be higher than that of the associated amount shown in 

Table 3.2. 

According to Table 3.4, 132 disturbed evacuees are associated with the pre-

disruption flow (𝐻𝑝𝑛(𝑡+𝜃́𝑝𝑛)), and 25 disturbed evacuees highlighted in the table (from 

time 𝑡 = 24 to 𝑡 = 31) belong to the disrupted rerouted flow (𝑊𝑝𝑛𝑡∑ 𝜂𝑝𝑡𝑚𝑛𝑟𝑝𝑚𝑡𝑚∈𝒩 ). The 

disruptions on the rerouted flow happened on Path 21 and created traffic congestion 

behind Node 4 during time slots 24, 25, 27, 28, and 31. As shown in Table 3.3, these 

disturbed flows have been previously rerouted onto Path 21 (through node 2) at time 

slots 23, 24, 26, 27, 30. Note that the node sequence of Path 21 is 2-4-5-6-8-10. Hence, the 

starting flow from Node 2 reached Node 4 within one unit of time. Since it could not pass 

through arc (4,5), the flow is stalled behind Node 4 one time unit later at times 24, 25, 27, 

28, and 31. 

Table 3.4:  Total amount of disturbed flow (ℎ𝑐𝑝𝑛𝑡) 

   Time Slots      

 
  4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 25 27 28 31 

P
a

th
s 

P17 n2 
        

5 5 
     

     

P18 n2 
 

5 
             

     

P19 n2 5 
          

5 
   

     

P21 n4 
               

5 5 5 5 5 

P22 n4 
 

5 

 

5 

   

5 5 5 

  

5 5 

 

     

P23 n4 
    

5 5 5 

   

5 5 

   

     

P31 n4 
   

5 

   

5 

    

5 5 5      

P41 n4   5  2 5     5          

P42 n4 
           

5 
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The performance of the proposed model is further investigated using four different 

test instances. Table 3.5 shows the input data for these instances and includes 

information regarding the set of disrupted arcs, corresponding disruption times, and 

updating times for the rerouting strategy. 

Table 3.5:  Test problems 

 
C1 C2 C3 C4 

Disrupted arcs 
(2,5),(4,5), 

(4,7),(6,7)   

(5,4),(5,7), 

(6,8),(7,10) 

(2,5),(4,5), 

(5,7),(8,7) 

(2,5),(4,5),(4,6), 

(5,6),(8,7),(7,10) 
     

Disruption time {9,16,14,8} {17,8,10,19} {12,15,14,7} {15,6,8,10,9,12} 
     

Updating time 16 19 15 15 

Figure 3.9 highlights the total amount of disturbed flow, the accumulated disturbed 

flow on the nodes, and the rerouted flow for both models as the time progresses.  

   

                 

Figure 3.9:  Rerouted, disturbed and accumulated remaining flow of sample problems 
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The accumulated disturbed flow gradually increases at early stages of the planning 

horizon. When the rerouting process begins, this flow is gradually decreased until there 

remains no disturbed flow to be rerouted. Once all evacuees reach the destination nodes, 

the system is cleared. The rerouted clearance time (RCT) for test problems C1, C2 , C3, and 

C4 are 34, 32, 25, and 29, respectively. The rerouted clearance times are different for each 

problem instance because the input data for the four cases are different in terms of the 

disrupted arcs, the arc disruption times, and the updating times. All of these factors have 

an influence on the amount of clearance time of the network. In the following, we provide 

a sensitivity analysis of the evacuation plans under different problem settings for these 

factors. 

Effect of the network topology (disruption on arcs):  

The effect of disruption on each arc is analyzed to determine which arc makes the 

network evacuation plan the most vulnerable by fixing the values of the other two factors. 

The clearance times of the rerouting plans, accounting for the disruption of each of the 22 

arcs, are shown in Figure 3.10. 

 

Figure 3.10:  Effect of arc disruption on evacuation process 

20

22

24

26

28

30

32

34

R
C

T
 

Arc 

Effect of Arcs 



 
 
 
 

70 
 
  
 
 

As shown, the most vulnerable arcs affecting the pre-disruption plan are (6,7) and 

(6,8). This is due to the fact that for these two arcs, it takes the longest time (𝑅𝐶𝑇 =34 

time units) to reroute the disturbed flow and clear the network following their 

disruptions. The second most vulnerable arcs are (3,4), (3,5), (7,9) and (8,10) with a 

corresponding 𝑅𝐶𝑇 ranging from 30 to 32. Finally, the least vulnerable arcs are (5,4), 

(8,7), (7,8), (7,10), and (8,9). Disruption on these arcs disturbs part of the flow; However, 

these disruptions do not change the 𝑅𝐶𝑇 of the plan. The rerouting plan was able to use 

the residual capacity of the evacuation network to accommodate the disturbed flow onto 

alternate paths and redirect them to safe shelters within the same clearance time of the 

pre-disruption plan (𝐶𝑇=22 units of time). The amount of disturbed flow, the time range 

of flow disturbance as well as the rerouting time intervals, are shown in Table 3.6. 

Table 3.6:  Analysis of Less Vulnerable Arcs 

Arc (5,4) (8,7) (7,8) (7,10) (8,9) 

Total disrupted 35 10 30 0 0 

Flow disruption time [9,17] [11,14] [9,18] 0 0 

Arc capacity 5 15 15 15 15 

Rerouting node n5 n8 n7 - - 

Rerouting time [11,17] [11,17] [11,20] 0 0 

Note that the amount of disrupted flow is equal to the amount of rerouted flow. The 

rerouting node represents the upstream node of the disrupted arc from which the 

disturbed flow is rerouted. When arc (5,4) experiences a disturbance at time 9, it causes 

the disruption of 35 evacuees during the time intervals between 9 and 17. This amount of 

flow is gathered behind Node 5 and, consequently, is rerouted from the same node 

between time 11 and 17. Hence, the rerouting process ends before time 22, which also 

happens to be the 𝐶𝑇 of the pre-disruption plan. Cases for arcs (8,7) and (7,8) are similar. 

However, disruptions of arc (7,10) and (8,9) have no effect on the pre-disruption plan and 
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no evacuees are disturbed. This is because the affected arcs are not associated with the 

paths used in the pre-disruption plan.  

Effect of disruption times: 

Next, the effect of arc disruption times on the evacuation process is studied. For this 

purpose, a set of disturbed arcs are chosen as 𝐴𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 = {(2,4), (4,8)}. The disruption 

times of the arcs are changed in the interval [1, 21], and an update will be triggered by 

one unit after arc disruption times. Figure 3.11 (a) shows the 𝑅𝐶𝑇s when the disruption 

time of the arcs changes between time 1 and time 21. As can be seen, the rerouting CT is 

higher when the disruption time occurs earlier in the planning horizon. This is not 

surprising because as a disruption happens earlier on the road, more evacuees are 

affected, and more time is required to reroute them and clear the system. 

 

Figure 3.11:  Effect of disruption time and updating time on the evacuation process 

Effect of information (updating time): 

When disruption happens within the network, it takes some time for the interruption 

to be noticed in addition to the extraneous time required to (1) analyze the situation, (2) 
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approach, we assume that the rerouting process takes place after updating time 𝑡𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔. 

The effect of 𝑡𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 on the evacuation process is shown in Figure 3.11 (b). The more 

delay there is in receiving updated information on the network situation, the longer the 

clearance time of the network after disturbed flow reassignments. Note that the 

computational times of all experiments on the small network of Figure 3.8 are less than a 

second. 

3.3.2   Numerical Experiments on a Large-Scale Network 

We continue the experiments on an evacuation network of the Greater Houston area 

(Lim et al., 2012). Houston, Texas, the fourth largest city in the U.S., is known to be one of 

the most vulnerable metropolitan cities situated on the Gulf Coast and has been severely 

affected by hurricanes and floods for several decades. The Houston network (Figure 3.12) 

comprises a total of 42 nodes and 107 arcs. The first thirteen nodes represent source 

nodes (𝒩1 -𝒩13), and the last four nodes (𝒩39 -𝒩42) represent safe destination nodes. For 

the purpose of demonstrating our proposed evacuation rerouting approach, we used the 

same input data for this network as it was reported in Lim et al., 2012. Hence, the total 

number of evacuees (i.e., evacuation vehicles) on the source nodes are assumed to be 

56,600, in which each of source nodes 1-6 has 100 evacuees, 3,500 for each of nodes 7-10, 

and 14,000 evacuees each for nodes 11-13. The transit times are defined to be multiplies 

of  𝜏 = 30 minute intervals. Using the PBM model, we first generate the pre-disruption 

evacuation plan using 140 candidate paths to be selected in the optimization model. The 

resulting pre-disruption plan distributed the evacuation flow over 52 selected paths, and 

it took 129τ to clear the network.  

https://www.scientificamerican.com/article/boomtown-flood-town/
https://www.scientificamerican.com/article/boomtown-flood-town/
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Figure 3.12: City of Houston transportation network 

Disruptions are triggered on arcs (22,42), (20,32), (11,27), and (35,34) at times 56, 

69, 67 and 48, respectively. These road disruptions affect flows on 11 paths and result in 

10,966 evacuees being stranded behind nodes 11, 20, 22, and 35. Among these evacuees, 

600 are on node 11, 1,675 on node 20, 7,331 on node 22, and 1,360 on node 35. The 

𝑅𝑃𝐵𝑀 is used to provide a reroute plan for the disturbed flow. The total combined 

computation time of running both Algorithm 3.1 and Algorithm 3.2 was 67.91 seconds, 

while it took 52.41 seconds to solve the 𝑅𝑃𝐵𝑀. The corresponding reroute plan is shown 

in Figure 3.13. In the figure, the amount of rerouted flow from each node during different 

time intervals are illustrated. The total time taken to move all disturbed flow to safe 
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shelters was 162τ. This means that our model required approximately 16 hours to adjust 

the plan and rearrange 251,850 disturbed evacuees to safe shelters through the residual 

capacity of the Houston network after disruption. 

   

 

Figure 3.13: Rerouting Evacuation plan for Houston transportation network 

3.4 Conclusion 

During the course of an evacuation, real-time incidents occur and can disrupt the 

initial evacuation plan process. Providing an efficient recovery strategy to quickly 

respond to these unforeseen events and minimize the risk of evacuees stranded on 

transportation roads in the system cannot be overemphasized. Therefore, this paper 

introduced a real-time rerouting evacuation strategy that can be applied to post network 

disruption networks to minimize evacuation clearance time in response to the occurrence 

of real-time incidents. For this purpose, a dynamic network flow optimization model 

formulation (𝑅𝑃𝐵𝑀) was introduced, in which variable evacuation flow rates are allowed 
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for the alternative paths to achieve more practical, effective evacuation plans. We have 

developed a rerouting clearance time calculation algorithm to efficiently calculate the 

minimum amount of time required to mobilize disturbed evacuees to safe shelters.   

Numerical experiments were thoroughly conducted to study the performance of the 

proposed 𝑅𝑃𝐵𝑀 under different problem configurations. Three incident-related factors 

(location, time of occurrence, and plan updating time) have been investigated to better 

understand their effects on the rerouting process. As expected, more flow is disturbed as 

the incident occurs earlier during the evacuation, this leads to a greater amount of time to 

reroute the affected flow and clear the system. When the time for plan updates was 

delayed (i.e., the rerouting process takes place later), the clearance time of the network 

would increase accordingly. This emphasizes the importance of making quick decisions 

for fast response to incidents as it is crucial in an efficient evacuation rerouting plan. The 

proposed approach has also been tested on a large-scale evacuation network, and the 

results showed that it is capable of making rerouting decisions in a timely manner.   
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Chapter 4 

Two-Stage Stochastic Model: Adjusting the Plan 

Robustness under Possible Road Disruptions 

4.1  Introduction 

To the best of our knowledge, there is no study that presents a proactive plan for 

short-notice evacuation which considers evacuees’ rerouting as an option in response to 

the uncertainty of road disruption. This work is devoted to bridging the gap by 

investigating the effects of uncertain road closures on traffic dynamics in a system-

optimal setting in order to provide a resilient pro-active evacuation plan while 

considering a recovery strategy (rerouting) to compensate negative effects of the 

disruption. We develop a mathematical framework that would address the following 

questions: What optimal real-time rerouting and rescheduling can be adopted in each 

disruption scenario so as to avoid chaos and further delay in clearance time? (Here 

disruption scenarios represent the simultaneous possibility of different road closures at 

various times). How do we prepare a pro-active plan to minimize disturbed evacuees and 

clearance time while reducing the possible degree of rerouting and rescheduling in the 

case of disruption? 

In our proposed two-stage stochastic model, potential road disruptions are defined 

to be uncertain incidents that can disturb the evacuation plan. An evacuation plan is 

designed in the first stage of the model and the reroute plan as a mitigation strategy in the 

second stage of the model. The two-stage stochastic program only minimizes the expected 
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value of the loss function, is a risk neutral-approach and has no control over any potential 

large deviations from the expected value under specific scenarios. To resolve the issue by 

using a risk-averse approach, an additional risk measure is added to the objective 

function of the model to control and minimize the large deviation in the disruption 

consequences. We further note that the solution obtained by the two-stage stochastic 

model with worst-case scenarios can be too conservative. In practice, there may be 

certain cases where the decision-maker is willing to add more resources under 

occurrences of specific scenarios. For instance, emergency managers might consider road 

capacity extension approaches such as contra-flow to add to the available capacity of 

certain roads during specific times if it can significantly improve the evacuation process. 

Conversely, the decision-maker may be willing to take a risk and to allow deviations from 

constraints under specific low probability worst-case scenarios. In all of these cases, the 

level of solution conservatism is reduced in order to achieve more desirable solutions in 

terms of optimality. This comes from the fact that, although optimal solutions are 

mathematically the best possible feasible solutions, if feasibility violations are allowed to 

a certain extent for specific scenarios, far better solutions can be achieved. To facilitate 

this concept, Mulvey et al. (1995) introduced the following two definitions: 

Solution robustness:  The optimal solution of a two-stage stochastic program will be 

robust with respect to optimality if it remains "close" to optimal for any realization of a 

scenario in the scenario set 

Model robustness: The solution is also robust with respect to feasibility if it remains 

"almost" feasible for any realization of a scenario in the scenario set 
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These two concepts are used to assess solution optimality and solution feasibility 

deviations under the disruption scenario set and provide the decision-maker with a 

controller to make a trade-off between the solution robustness and model robustness.  

In the following subsections, a mathematical formulation of the two-stage stochastic 

program for the evacuation planning problem under uncertainty of network disruption is 

presented. Algorithms to compute disruption-related parameters are introduced and 

numerical analysis to study the efficiency of our model is conducted. Finally, a detailed 

conclusion of our study is presented in Section 4.4. 

4.2  Problem Description 

The problem on the other hand addresses evacuation planning in an evacuation 

network that is susceptible to road disruptions. 

An evacuation network is presented as a directed weighted graph 𝒢 = (𝒩,𝒜), where 

a set of nodes 𝒩 correspond to intersections, a set of arcs 𝒜 presents road segments, and 

weights 𝜏𝑎 are estimated arc travel times. Node set 𝒩 is composed of a set of origin nodes 

(𝒩𝑜), a set of intermediate nodes, and a set of destination nodes (𝒩𝑑). To better capture 

traffic flow evolution and its changes due to disturbances, a dynamic network flow 

optimization model is proposed. This model allows variable flow rates to be assigned to 

paths throughout the evacuation process. Set 𝕋 = {0, 1, … , 𝑇 − 1} is defined as time slots 

showing equal intervals of the time horizon. 

 In general, simultaneous decisions on evacuation route selection and flow schedule 

might be computationally intractable for large scale evacuation problems (Bretschneider 

and Kimms 2011, Kim et al. 2008, Lim et al. 2012). Moreover, in a short-notice emergency 
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evacuation, authorities often define evacuation paths a priori. The concern would then 

shift to route assignment and schedule of the traffic flow to evacuate the area. The path-

based approach (Lim et al., 2012) is applied to reduce the computational burden. In this 

approach, path formation is separated from the flow assignment by generating possible 

paths between origin-destination (O-D) pairs and using it as an input parameter to the 

model. Also, PBM is able to address specific desirable functions that can help managers in 

traffic control. For instance, it can impose limitations on the number of used routes for the 

evacuation, erase the negative effects of traffic hold-back in each road, or eliminate high 

duration pathways in the plan. 

Two assumptions on the uncertain road disturbances are considered: (i) disruptions 

can happen on multiple roads, and (ii) the disruption time of each road can be different 

from each other. The set of disruption scenarios is denoted as 𝑆 and contains possible 

combinations of arc closures. Given the number of evacuees/demand at the source nodes 

(𝐷𝑛), the goal is to select a set of evacuation paths from the existing path pool (𝓅) and 

assign variable flow rates (𝑓𝑝𝑡) to each selected path in order to obtain a pro-active 

evacuation plan. The following mathematical notation is used throughout the paper: 

Sets: 

𝒩 Set of all nodes in the evacuation network 

𝒩o Set of all origin nodes 

𝒩d Set of all destination nodes 

𝕋 Set of all time slots 

𝓅 Set of all paths 

𝓅n
+ Set of paths originating from source node 𝑛 

𝓅n
− Set of paths terminated at destination node 𝑛 

𝑆 Set of all disruption scenarios 
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Decision Variables: 

Design variables (First Stage) 

𝑓𝑝𝑡 Flow on path 𝑝 that is dispatched from the source at time 𝑡 

𝛽𝑛 Undispatched demand from source node 𝑛 

Recourse variables (Second Stage) 

𝑟𝑝𝑛𝑡𝑠 

Rerouted flow of scenario 𝑠 from node 𝑛 to alternate route 𝑝 which is 

assumed to start on this path at time 𝑡 (behind node 𝑛, its amount is 

considered as a dummy) 

ℎ𝑝𝑛𝑡𝑠 Disturbed flow on node 𝑛 of path 𝑝 at time 𝑡 at scenario 𝑠  

ℎ𝑐𝑛𝑡𝑠 
Total disrupted flow at time 𝑡 which has accumulated behind node 𝑛 at 

scenario 𝑠 

Parameters: 

Free of noise parameters 

𝜃𝑝𝑎 Transit time from the origin of path 𝑝 to reach arc 𝑎  

𝐶𝑎 Capacity of arc 𝑎 

𝐷𝑛 Demand of source node 𝑛 

𝜏𝑎 Transit time on arc 𝑎  

𝐿𝑝𝑛 Takes value 1 if node 𝑛 is the source node of path 𝑝, otherwise 0 

𝜃́𝑝𝑛 Transit time from origin of path 𝑝 to reach node 𝑛  

𝛿𝑝𝑎 Takes value 1 if arc 𝑎 belongs to path 𝑝, otherwise 0 

𝛾𝑛𝑎 Take value 1 if node 𝑛 is the upstream (origin) node of arc 𝑎, otherwise 0 

Auxiliary parameters (noise relevant) 

𝑊𝑝𝑛𝑡𝑠 

Takes value 1 if flow that starts at time 𝑡 on path 𝑝 regardless of disruption 

times of its preceding arcs is disturbed and gets stuck behind node 𝑛 in 

scenario 𝑠, otherwise 0 

𝜂𝑝𝑡𝑚𝑛𝑠 Takes value 1 if starting flow on path 𝑝 at time 𝑡 does not get stuck on node 𝑚 

and also is not disturbed between node 𝑚 and node 𝑛 (𝑚 is behind 𝑛) in 

scenario 𝑠, otherwise 0 
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4.2.1  Two-Stage Stochastic Optimization for Evacuation Planning 

Our mathematical framework has two distinctive components: a structural 

component and a control component. The structural component is fixed and free of any 

variation (noise). The control component is subject to variations due to the uncertainty of 

incidents.  

Design variables 𝑓𝑝𝑡 and 𝛽𝑛 are free of noise variables that are used to develop a pro-

active evacuation plan that works well under disruption scenarios 𝑆. The recourse 

variables respond and react to uncertain incidents (variations). These variables take a 

value after the realization of each disruption scenario 𝑠 ∈ 𝑆 and represent (i) the number 

of disturbed evacuees at each node during each time interval (ℎ𝑝𝑛𝑡𝑠), (ii) the remaining 

number of disturbed evacuees on each node (ℎ𝑐𝑛𝑡𝑠), and (iii) a reroute strategy for the 

incident-affected evacuees (𝑟𝑝𝑛𝑡𝑠) under each scenario s ∈ S. 

The parameters related to disruptions are 𝑊𝑝𝑛𝑡𝑠 , 𝑉𝑝𝑛𝑡𝑠, and 𝜂𝑝𝑡𝑛𝑛𝑠. These parameters 

play a crucial role in developing mathematical formulation with a linear structure. For the 

calculation of these parameters, two distinctive algorithms are proposed and will be 

explained later in the paper.  

A loss function 𝜉𝑠 is defined that showcase evacuees that are left behind and stranded 

on roads due to incidents defined for each scenario 𝑠 ∈ 𝑆. This function is illustrated as  

𝜉𝑠 = ∑ 𝛽𝑛
𝑛∈𝒩𝑜

+ ∑ ℎ𝑐𝑛𝑇𝑠
𝑛∈𝒩

, ∀ 𝑠 ∈ 𝑆. (4.1) 

V𝑝𝑛𝑡𝑠 
Takes value 1 if flow that starts at time 𝑡 on path 𝑝 is disturbed and gets stuck 

behind node 𝑛 in scenario 𝑠, otherwise 0 
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The variable (𝜉𝑠) represents the addition of the total number of evacuees (𝛽𝑛) that 

have not been evacuated from the source nodes (𝒩𝑜) and the disturbed flow (ℎ𝑐𝑛𝑇𝑠) 

under scenarios 𝑠 ∈ 𝑆 that have not been rerouted due to high congestion in alternative 

pathways. In other words, 𝜉𝑠 is the flow that has not reached the destination by the end of 

the planning horizon (𝑇𝐹), given that incidents depicted in scenario 𝑠 ∈ 𝑆 have occurred. 

Hence, a two-stage stochastic framework for the path-based model (TSPBM) is 

proposed as follows: 

Min ∑𝑃𝑠𝜉𝑠
𝑠𝜖𝑆

 TSPBM 

 First Stage (Design Stage) 

 ∑ ∑𝑓𝑝𝑡
𝑡∈𝕋𝑝∈𝓅𝑛

+

+ 𝛽𝑛 ≥ 𝐷𝑛 , ∀𝑛 ∈ 𝒩𝑜 , (4.2) 

 ∑ 𝛿𝑝𝑎𝑓𝑝(𝑡−𝜃𝑝𝑎)
𝑝∈𝓅

≤ 𝐶𝑎, ∀𝑎 ∈ 𝒜,  ∀𝑡 ∈ 𝕋, (4.3) 

 Second Stage (Recourse Stage) 

 ℎ𝑝n(𝑡+𝜃́𝑝𝑛)𝑠 = V𝑝𝑛𝑡𝑠𝑓𝑝𝑡 +𝑊𝑝𝑛𝑡𝑠 ∑ 𝜂𝑝𝑡𝑚𝑛𝑠𝑟𝑝𝑚𝑡𝑠
𝑚∈𝒩

, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝑆, (4.4) 

 ℎ𝑐𝑛(𝑡=1)𝑠 = ∑ℎ𝑝𝑛(𝑡=1)𝑠
𝑝∈𝓅

, ∀ 𝑛 ∈ 𝒩, 𝑠 ∈ 𝑆, (4.5) 

 
ℎ𝑐n(t+1)𝑠 = ℎ𝑐nt𝑠 +∑ℎ𝑝n(𝑡+1)𝑠

𝑝∈𝓅

 

−∑ ∑ 𝛿𝑝𝑎𝛾𝑛𝑎(1 −𝑊𝑝𝑛(𝑡−𝜃𝑝𝑎)𝑠
)𝑟𝑝n(𝑡−𝜃𝑝𝑎)𝑠𝑝∈𝓅𝑎∈𝒜 , 

∀ 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋/{1}, 𝑠 ∈ 𝑆, (4.6) 

 ∑ ∑ ∑ 𝛿𝑝𝑎𝛾𝑛𝑎
𝑚∈𝒩

𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛𝑠 [(1 − V𝑝𝑛(𝑡−𝜃𝑝𝑎)𝑠)𝐿𝑝𝑚𝑓𝑝(𝑡−𝜃𝑝𝑎)
𝑛∈𝒩𝑝∈𝓅

+ (1 −𝑊𝑝𝑛(𝑡−𝜃𝑝𝑎)𝑠
)𝑟𝑝𝑚(𝑡−𝜃𝑝𝑎)] ≤ 𝐶𝑎, 

∀𝑎 ∈ 𝒜,   

𝑡 ∈ 𝕋, 𝑠 ∈ 𝑆, 
(4.7) 

 𝑓𝑝𝑡 ∈ ℤ
+, 𝛽𝑛 ∈ ℤ

+, ∀𝑝 ∈ 𝓅, 𝑡 ∈ 𝕋, 𝑛 ∈ 𝒩𝑜 , (4.8) 
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𝑟𝑝𝑛𝑡𝑠 ∈ ℤ

+, ℎ𝑝𝑛𝑡𝑠 ∈ ℤ
+, ℎ𝑐𝑛𝑡𝑠 ∈ ℤ

+,   𝛽𝑛 ∈ ℤ
+, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝑆. 

(4.9) 

The objective function of the model aims to minimize the expected value of the 

number of evacuees that are left behind in the system at the end of the planning horizon. 

Constraints (4.2) and (4.3), being first-stage specific constraints, are free of noise and 

include the design variables to define the pro-active evacuation plan. Constraint (4.2) 

states that the total amount of flow that has left source node 𝑛 ∈ 𝒩𝑜 plus the unmet 

demand of the node (𝛽𝑛) should be equal to the initial number of evacuees on the node 

(𝐷𝑛). The unmet demand of a source node represents the number of evacuees left behind 

on that node. Constraint (4.3) guarantees that the capacity of the arc restricts the total 

flow that reaches arc 𝑎 ∈ 𝒜. 

The remainder of the constraints presented here belongs to the second stage of the 

program, containing both the design and recourse variables. In constraints (12), the 

amount of disturbed flow on path 𝑝 ∈ 𝓅 congested on node 𝑛 ∈ 𝒩 at time 𝑡 ∈ 𝕋 is 

calculated under scenario 𝑠 ∈ 𝑆. This amount is equal to the sum of: (i) the total flow 

interrupted by an incident and is stuck on the node (𝑉𝑛𝑝𝑡𝑠𝑓𝑝𝑡), and (ii) the total rerouted 

flow which again becomes disturbed and is idled on the node (𝑊𝑝𝑛𝑡𝑠 ∑ 𝜂𝑝𝑡𝑚𝑛𝑠𝑟𝑝𝑚𝑡𝑠𝑚∈𝒩 ). 

Remember that 𝑟𝑝𝑚𝑡𝑠 shows the reassigned flow on path 𝑝 ∈ 𝓅 from node 𝑛 ∈ 𝒩. In 

constraints (4.4), parameter 𝜂𝑚𝑛𝑝𝑡𝑠 is used to guarantee that 𝑟𝑝𝑚𝑡𝑠 is being considered in 

the calculations only if (i) node 𝑛 ∈ 𝒩 comes after node 𝑚 ∈ 𝒩 on the path, and (ii) the 

rerouted flow does not receive any disturbances on intermediate arcs connecting node 

m ∈ 𝒩 to n ∈ 𝒩. 

The remaining amount of flow to be rerouted at time 𝑡 ∈ 𝕋 on node 𝑛 ∈ 𝒩 is defined 

by constraints (4.5) and (4.6) under each scenario 𝑠 ∈ 𝑆. Constraints (4.5) show that the 
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remaining amount of affected flow during time interval 𝑡 = 1 is equal to the amount 

disturbed during the exact same time interval. Constraints (4.6) show the remaining 

amount of affected flow when 𝑡 > 1. Accordingly, ℎ𝑐𝑛(𝑡+1)𝑠 is equal to: (i) the remaining 

affected flow in the previous period (ℎ𝑐𝑛𝑡𝑠), plus (ii) the currently disturbed flow 

(∑ ℎ𝑝𝑛(𝑡+1)𝑠𝑝∈𝓅 ), minus (iii) the rerouted flow during the previous time interval 

(∑ ∑ 𝛿𝑝𝑎𝛾𝑛𝑎(1 −𝑊𝑝𝑛(𝑡−𝜃𝑝𝑎)𝑠
)𝑟𝑝𝑛(𝑡−𝜃𝑝𝑎)𝑠𝑝∈𝓅𝑎∈𝒜 ). 

Constraints (4.7) ensure that the total flow simultaneously passing through arc 

𝑎 ∈ 𝒜 does not exceed the capacity of the arc. The passing flow is equal to the amount of 

flow 𝑓𝑝(𝑡−𝜃𝑝𝑎) that has not been disrupted on the way to arc 𝑎 ∈ 𝒜, plus the rerouted flow 

𝑟𝑝𝑚(𝑡−𝜃𝑝𝑎) which safely passes from node 𝑚 ∈ 𝒩 to node 𝑛 ∈ 𝒩 and reaches arc 𝑎 ∈ 𝒜. 

Finally, constraints (4.8) and (4.9) reflect the non-negativity and integrality of our design 

and recourse variables, respectively.  

4.2.2 Solution and Model Robustness Measures 

The loss function ξs is used in order to develop solution robustness and model 

robustness terms. Mulvey et al. suggested solution robustness σ(. ) as 

where the first term is the expected value of ξs, and the second term is λ multiplied by the 

variance of the loss function. The quadratic structure of the second term requires 

substantial computational efforts (Yu and Li, 2000). Therefore, Yu and Li (2000) 

suggested the use of an absolute loss function deviation from its expected value. 

 

𝜎(. ) =∑𝑃𝑠𝜉𝑠
𝑠𝜖𝑆

+ 𝜆∑𝑃𝑠 (𝜉𝑠 −∑𝑃𝑠𝜉𝑠
𝑠𝜖S

)

2

𝑠𝜖𝑆

.  (4.10) 
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Solution robustness measure:  Solution robustness function is as 

𝜎(. ) = ∑𝑃𝑠𝜉𝑠
𝑠𝜖𝑆

+ 𝜆∑𝑃𝑠 |𝜉𝑠 −∑𝑃𝑠𝜉𝑠
𝑠𝜖S

|

𝑠𝜖𝑆

. (4.11) 

This function measures whether a solution of our model remains “close” to optimal for 

any realization of the disruption scenario 𝑠 ∈ 𝑆. The first term ∑ 𝑃𝑠𝜉𝑠𝑠𝜖𝑆  represents the 

expected value of the loss function (4.1) and calculates the expected number of evacuees that 

are left behind in the evacuation network due to the inability to reach a destination by the end 

of the planning horizon. The second term ∑ 𝑃𝑠|𝜉𝑠 − ∑ 𝑃𝑠𝜉𝑠𝑠𝜖𝑆 |𝑠𝜖𝑆  is the variability in the loss 

function (4.1), and 𝜆 is used as a weight parameter to control this variability.  

Model robustness measure: Model robustness measure aims to check if a solution 

remains "almost" feasible for any realization of scenario 𝑠 ∈ 𝑆. Among our set of constraints, 

constraints (4.2) and (4.3) are related to the design stage and include no noise. Constraints 

(4.4)-(4.6) belong to the second stage. They include the resource variables and are under the 

influence of disruption. However, these constraints exist mainly for calculation purposes and 

do not impose resource restrictions on the variables. Hence, deviations in these constraints 

will not be considered within the interest of this problem. Constraints (4.7) place an arc 

capacity limitation on the amount of both initial and rerouted flow (recourse) reaching an arc. 

The purpose is to study violations in these constraints. Our model robustness term is defined 

as in equation 

𝑝(. ) = ∑ ∑∑𝑃𝑠ɀ𝑎𝑡𝑠
𝑠∈𝑆 𝑡∈𝕋𝑎∈𝒜

, (4.12) 

where ɀ𝑎𝑡𝑠 ≥ 0, to assess positive violations of the capacity constraints. This specific equation 

serves to present the expected value of arc capacity violations. Variable ɀ𝑎𝑡𝑠  represents 

violations from the capacity constraints (4.7) under each disruption scenario 𝑠 ∈ 𝑆 on arc 
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𝑎 ∈ 𝒜 during time interval 𝑡 ∈ 𝕋. 

Using these measures in the objective function of the two-stage stochastic program 

(TSRPBM), solution robustness and model robustness can be assessed, and their levels 

pertaining to the problem can be adjusted. TSRPBM is formulated as following: 

Min ∑𝑃𝑠𝜉𝑠
𝑠𝜖𝑆

+ 𝜆∑𝑃𝑠 |𝜉𝑠 −∑𝑃𝑠𝜉𝑠
𝑠𝜖S

|

𝑠𝜖𝑆

+  𝜔 ∑∑∑𝑃𝑠ɀ𝑎𝑡𝑠
𝑠∈𝑆 𝑡∈𝕋𝑎∈𝒜

 TSRPBM (4.13) 

s.t. (10) − (14), (16) − (17),  (4.14) 

 ∑ ∑ ∑ 𝛿𝑝𝑎𝛾𝑛𝑎𝜂𝑝(𝑡−𝜃𝑝𝑎)𝑚𝑛𝑠
𝑛 ∈𝒩

[(1 − v𝑝𝑛(𝑡−𝜃𝑝𝑎)𝑠)𝐿𝑝𝑛 𝑓𝑝(𝑡−𝜃𝑝𝑎)
𝑛∈𝒩𝑝∈𝓅

+ (1 −𝑊𝑝𝑛(𝑡−𝜃𝑝𝑎)𝑠
)𝑟𝑝𝑚(𝑡−𝜃𝑝𝑎)] − ɀ𝑎𝑡𝑠 ≤ 𝐶𝑎, 

∀𝑎 ∈ 𝒜,   

𝑡 ∈ 𝕋, 𝑠 ∈ 𝑆, 

(4.15) 

 ɀ𝑎𝑡𝑠 ≥ 0, ∀𝑎 ∈ 𝒜,  𝑡 ∈ 𝕋, 𝑠 ∈ 𝑆. (4.16) 

In this formulation, controller omega (ω) is used to adjust the importance level of the 

solution robustness and model robustness in the objective function and make a trade-off 

between these measures. In order to capture the deviations of capacity constraints, 

variable ɀ𝑎𝑡𝑠 is introduced to capacity constraints (4.7) to form constraints (4.15). 

Constraints (4.16) show the non-negativity condition of these variables. 

Note that the objective function is not linear because of the term |𝜉𝑠 −∑ 𝑃𝑠𝜉𝑠𝑠𝜖S |. To 

make it easier to solve, the term can be converted into linear by applying a goal 

programming approach in which two types of positive decision variables and a set of 

constraints are added to the model. However, this approach adds an undesirable amount 

of decision variables to the model. To reduce the number of variables resulting from 

linearization and remain efficient in terms of computational complexity, an approach 
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proposed by Li (1996) and developed by Yu and Li (2000) is utilized as described below. 

Model Linearization 

The objective function (4.13) can be substituted by the objective function and the 

constraints as follows: 

Min    𝑍 = ∑𝑃𝑠𝜉𝑠
𝑠𝜖𝑆

+ 𝜆∑𝑃𝑠[(𝜉𝑠 −∑𝑃𝑠𝜉𝑠
𝑠𝜖S

) + 2ϑ𝑠]

𝑠𝜖𝑆

+  𝜔 ∑∑∑𝑃𝑠ɀ𝑎𝑡𝑠
𝑠∈𝑆 𝑡∈𝕋𝑎∈𝒜

 

(4.17) 

S.t: ξs −∑Psξs
sϵS

+ ϑs ≥ 0, ∀s ∈ S, (4.18) 

 ϑs ≥ 0, ∀s ∈ S. (4.19) 

Proof. Suppose that 𝜉𝑠 − ∑ 𝑃𝑠𝜉𝑠𝑠𝜖S ≥ 0. Hence, ϑ𝑠 = 0 and Z will be 

Z =∑Psξs
sϵS

+ λ∑Ps (ξs −∑Psξs
sϵS

)

sϵS

+  𝜔 ∑∑∑𝑃𝑠ɀ𝑎𝑡𝑠
𝑠∈𝑆 𝑡∈𝕋𝑎∈𝒜

.     (4.20) 

On the other hand, if 𝜉𝑠 − ∑ 𝑃𝑠𝜉𝑠𝑠𝜖S < 0, then ϑ𝑠 = ∑ 𝑃𝑠𝜉𝑠𝑠𝜖S − 𝜉𝑠 and Z will be equal to 

Z =∑Psξs
sϵS

+ λ∑Ps (∑Psξs
sϵS

− ξs)

sϵS

+  𝜔 ∑∑∑𝑃𝑠ɀ𝑎𝑡𝑠
𝑠∈𝑆 𝑡∈𝕋𝑎∈𝒜

. (4.21) 

Thus, the non-linear robust model can efficiently be converted into a linear robust 

model with fewer auxiliary variables and constraints. 

4.2.3 Methodology to Calculate Noise Related Parameters  

Parameters (𝑊𝑝𝑛𝑡𝑠 , 𝑉𝑝𝑛𝑡𝑠, 𝜂𝑝𝑡𝑚𝑛𝑠) reflect the effect of each disruption scenario 𝑠 ∈ 𝑆 

on the evacuation road and on the flow (based on the topology of the network and 

disruption time). These parameters are calculated prior to solve TSPBM/TSRPBM. 
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Algorithm 4.1 is introduced to calculate values of parameters 𝑊𝑝𝑛𝑡𝑠 and 𝑉𝑝𝑛𝑡𝑠. First, 

the value of 𝑊𝑝𝑛𝑡𝑠  is calculated to determine if the flow that leaves the origin of route 

𝑝 ∈ 𝓅 at time interval 𝑡 ∈ 𝕋 would be affected by the incident associated with node 𝑛 ∈ 𝒩 

regardless of the possibility of its disturbance on the preceding arcs. In the process of 

calculating 𝑊𝑝𝑛𝑡𝑠 , disruption times of the preceding arcs to node 𝑛 ∈ 𝒩 are neglected and 

only the effect of disruption time of the arc originating from node 𝑛 ∈ 𝒩 on the flow is 

investigated. When evacuees start moving along path 𝑝 ∈ 𝓅 during time interval 𝑡 ∈ 𝕋, 

they arrive at arc 𝑎 ∈ 𝒜 at time 𝑡 + 𝜃𝑝𝑎. It takes 𝜏𝑎 unit of time for the flow to completely 

pass through the arc. Therefore, if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 is greater than the incident time on arc 

𝑎 ∈ 𝒜 (denoted by 𝐷𝑇𝑎𝑠), the flow is affected by the incident and 𝑊𝑝𝑛𝑡𝑠  takes value 1. 

Else, it takes the value 0. 

Parameter 𝑣𝑝𝑛𝑡𝑠̂ shows whether the starting flow on path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋 would 

be disturbed and trapped on node 𝑛 ∈ 𝒩. Unlike 𝑊𝑝𝑛𝑡𝑠 , the disruption time of the 

preceding arcs is taken into account to calculate this value. This is due to the fact that if 

the flow is disturbed on another arc before reaching node 𝑛 ∈ 𝒩, it will not get stuck on 

node 𝑛 ∈ 𝒩 regardless of the disruption time 𝐷𝑇𝑎𝑠. Hence, the flow will be stuck on node 

𝑛 ∈ 𝒩 (𝑉𝑝𝑛𝑡𝑠 = 1) only when (i) the flow is not troubled during its journey to arc 𝑎 ∈ 𝒜 

(∑ 𝑊𝑝𝑚𝑡𝑠𝑚∈𝒩 = 0), and when (ii) the required time to pass arc 𝑎 ∈ 𝒜 is greater than its 

total time of disruption (𝑊𝑝𝑛𝑡𝑠 = 1). Else, 𝑉𝑝𝑛𝑡𝑠 = 0. 

Also, it is important to know if a flow on a path can pass from a specific node and 

reach another node without being affected by any disturbances. Parameter 𝜂𝑝𝑡𝑚𝑛𝑠 

demonstrates whether the flow that is leaving path 𝑝 ∈ 𝓅 at time 𝑡 ∈ 𝕋 would experience 

a disturbance on one of the arcs connecting node 𝑚 ∈ 𝒩 to 𝑛 ∈ 𝒩. Algorithm 4.2 is 
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introduced to calculate this parameter. 

Algorithm 4.1 

Inputs: 

An evacuation network 𝒢 consisting of a set of nodes 𝒩 and a set of arcs 𝒜. 

Disruption scenarios 𝑆. 

Calculating 𝑽𝒑𝒏𝒕𝒔: 

for all paths 𝑝 ∈ 𝓅 do 

for all time slots  𝑡 ∈ 𝕋 do 

for all scenarios 𝑠 ∈ 𝑆 do 

for all arcs that belong to path  𝑝 ∈ 𝓅 do 

if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎𝑠 > 0 then 

 𝑊𝑝𝑛𝑡𝑠 = 1 (𝑛 is upstream node of arc 𝑎) 

else if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎𝑠 ≤ 0 then 

𝑊𝑝𝑛𝑡𝑠 = 0  

end if  

for all preceding nodes 𝑚 ∈ 𝒩 to arc 𝑎 on path 𝑝 do 

if ∑ 𝑊𝑝𝑛𝑡𝑠𝑚∈𝒩 = 0 and 𝑊𝑝𝑛𝑡𝑠 = 1 then 

 𝑉𝑝𝑛𝑡𝑠 = 1 (𝑛 is upstream node of arc 𝑎) 

else then 

𝑉𝑝𝑛𝑡𝑠 = 0  

end if  

end for 

end for  

end for 

end for 

end for 
 

 

First, for each path 𝑝 ∈ 𝓅, the sequence of nodes belonging to the path is derived, 

which is denoted by 𝜑𝑝. Then for any combination of node 𝑚 ∈ 𝒩 and 𝑛 ∈ 𝒩 in set 𝜑𝑝, 
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where 𝑚 ∈ 𝒩 takes precedence over node 𝑛 ∈ 𝒩, the summation ∑ 𝑉𝑝𝑘𝑡𝑠
𝑛−1
𝑘=𝑚  is 

calculated. If ∑ 𝑉𝑝𝑘𝑡𝑠
𝑛−1
𝑘=𝑚 = 0, the flow is not interrupted when traveling from node 𝑚 ∈ 𝒩 

to node 𝑛 ∈ 𝒩 (𝜂𝑝𝑡𝑚𝑛𝑠 = 1). Otherwise, 𝜂𝑝𝑡𝑚𝑛𝑠 = 0. 

 

Algorithm 4.2 

Inputs: 

An evacuation network 𝒢 consisting of a set of nodes 𝒩 and a set of arcs 𝒜, and 

parameter 𝑉𝑝𝑛𝑡𝑠 . 

Calculating  𝜼𝒑𝒕𝒎𝒏𝒔: 

for all scenarios 𝑠 ∈ 𝑆 do 

for all paths 𝑝 ∈ 𝓅 do 

determine set 𝜑𝑝 as a sequence of nodes in path 𝑝 

for all time slots  𝑡 ∈ 𝕋 do 

for all preceding nodes 𝑚 ∈ 𝜑𝑝 to node 𝑛 ∈ 𝜑𝑝 do 

if  ∑ 𝑉𝑝𝑘𝑡𝑠
𝑛−1
𝑘=𝑚 = 0 then 

 𝜂𝑝𝑡𝑚𝑛𝑠 = 1  

else then 

𝜂𝑝𝑡𝑚𝑛𝑠 = 0  

end if  

end for  

end for 

end for 

end for 
 

 _ 

4.3  Computational Results 

In this section, the performance of our two-stage stochastic evacuation planning 

model under various disruption scenarios is illustrated. The model is solved using CPLEX 
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12.5 and all experiments are made on a PC with 3.07 GHz Intel Core i7 processor having 

24GB RAM and running Ubuntu 10.04.3. The test evacuation network shown in Figure 3.8 

is used for the computational experiments. This network contains three source nodes (𝒩1, 

𝒩2, and 𝒩3) and two destination nodes (𝒩9 and 𝒩10). Arc transmit times (𝜏𝑎) as well as 

arc capacities (𝐶𝑎) are shown for each arc. 

First, all paths between origin-destination (O-D) nodes of the network are 

enumerated by using the CPLEX pool feature to solve the shortest path problem. Some 

undesired paths with long durations are discarded and candidate paths are selected to 

form the set of paths 𝓅. Following Procedure 4.1, experiments are made to compare the 

performance of TSPBM with the performance of a well-known path-based deterministic 

model (Rungta et al., 2012).  First, disruption scenarios and their probability of 

occurrence are defined. The disruption scenarios are assumed to follow an exponential 

distribution since the road disruption probability increases as time passes. For disruption 

scenarios 𝑆, parameters 𝑊𝑝𝑛𝑡𝑠, 𝑉𝑝𝑛𝑡𝑠, and 𝜂𝑝𝑡𝑚𝑛𝑠 are calculated using Algorithm 4.1 and 

Algorithm 4.2. Various demand cases examined in this study are tabulated in each row of 

Table 4.1. For each demand case, DPBM is solved, and its resulting plan is used as a 

benchmark for model performance comparisons. The flow rate and schedule 𝑓𝑝𝑡
𝐷𝑃𝐵𝑀 

provided by DPBM is considered as an input parameter and is inserted into TSPBM to 

calculate the expected value of the loss function (∑ 𝛽𝑛𝑛∈𝒩𝑠 +∑ [𝑃𝑠 ×∑ ℎ𝑐𝑛𝑇𝐶𝑇𝑠𝑛∈𝒩 ]𝑠∈𝑆 ). 

This amount represents the expected value of the number of evacuees that were left 

behind in the system at the end of the planning horizon when the DPBM plan is used.  
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Procedure 4 . 1: Output generation for model comparison 

Inputs: 

An evacuation network 𝒢 consisting of a set of nodes 𝒩 and a set of arcs 𝒜. 

Disruption scenarios 𝑠 ∈ 𝑆 and their occurrence probabilities 𝑃𝑠  

Calculated parameters 𝑊𝑝𝑛𝑡𝑠 , 𝑉𝑝𝑛𝑡𝑠  and 𝜂𝑝𝑡𝑚𝑛𝑠 . 

Step 1: Initialization 

Randomly generate demand distribution on source nodes, 𝐷𝑛, ∀𝑛 ∈ 𝒩𝑜. 

Step 2: Obtain the expected value of loss function under the deterministic plan 

Step 2.a: Obtain the deterministic plan 

Solve the deterministic model (DPBM) introduced by Rungta et al. (2012) to obtain 

deterministic evacuation plan 𝑓𝑝𝑡
𝐷𝑃𝐵𝑀  

Step 2.b: Calculate the expected value of loss function 

Feed deterministic plan 𝑓𝑝𝑡
𝐷𝑃𝐵𝑀  as an input parameter to the TSPBM 

Calculate ∑ 𝛽𝑛𝑛∈𝒩𝑠 +∑ [𝑃𝑠 ×∑ ℎ𝑐𝑛𝑇𝐶𝑇𝑠𝑛∈𝒩 ]𝑠∈𝑆  for this plan 

Step 3: Obtain the expected value of loss function under the stochastic plan 

Solve TSPBM to obtain stochastic evacuation plan 𝑓𝑝𝑡
𝑇𝑆𝑃𝐵𝑀  

Calculate ∑ 𝛽𝑛𝑛∈𝒩𝑠 +∑ [𝑃𝑠 ×∑ ℎ𝑐𝑛𝑇𝐶𝑇𝑠𝑛∈𝒩 ]𝑠∈𝑆  for this plan 

Step 4: Comparison 

Compare the expected value and computation time of deterministic program 

(DPBM) with introduced TSPBM 

 

Next, we solved TSPBM for the same data and measured the number of evacuees 

remaining in the system. In order to make a fair and clear comparison between the 
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deterministic approach (DPBM) and our approach (TSPBM), we only compared the 

expected value of the loss function and ignored the variability and infeasibility penalty 

functions. These functions were investigated separately using TSRPBM to solve a sample 

test problem and study their effects on the evacuation plan, to be described later in this 

section. 

In Table 1, the results of applying Procedure 4.1 under different demand cases are 

tabulated. Each row of the table represents a demand case. The amount of demand for the 

three source nodes, the clearance time (CT) of the deterministic plan, the expected value 

of the loss function (Obj), the solution times for DPBM and TSPBM, and the amount of Obj 

improvement under TSPBM are shown in each column of the table. As indicated in the 

first row (Case 1), when the demand on the source nodes 𝒩1, 𝒩2, and 𝒩3 were equal to 75, 

76, and 65, the expected value of the loss function for DPBM was 11.66. For this plan, 

∑ 𝛽𝑛𝑛∈𝒩𝑠  was equal to zero; this indicates that all the evacuees on the source nodes had 

been evacuated. Hence, the planning horizon, equaling 12, also serves as the clearance 

time (CT) of the deterministic plan. The clearance time for an evacuation plan is defined 

by the time at which all evacuees have safely evacuated from dangerous areas or have 

reached safe shelters. The CT of DPBM under all demand cases are shown in the column 

“CT”. Using this time as the planning horizon duration, TSPBM is solved, and the expected 

value of the loss function is recorded. CT of DPBM is used as the planning horizon for 

TSPBM in order to fix the factor of competition time for the pro-active plan according to 

the completion time of the benchmark plan (provided by DPBM). Thus, the comparisons 

of the model results would be fair. For Case 1, the expected value for TSPBM was 9.2, or in 

other words, a 21.10% improvement over DPBM. As is clear, TSPBM outperformed DPBM 

in all cases tested in Table 4.1 in terms of reducing the expected value of the loss function. 
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Moreover, in the pro-active plans provided by TSPBM under each demand scenario,  

∑ 𝛽𝑛𝑛∈𝒩𝑠  was equal to zero; hence, CT of TSPBM was the same as CT of the DPBM plan. 

This means that after the disruptions, a fewer number of disrupted evacuees are expected 

to remain in the system while the clearance time of the proposed pro-active plan does not 

face any increase. 

Table 4.1:  Objective Value Comparison of DPBM and TSPBM under CT of DPBM 

 
Demand 

  
DPBM 

 
TSPBM 

Obj 
Improvement 

 N1 N2 N3 CT  obj time  obj time 
 

Case1 75 76 65 12  11.66 0  9.2 2.81 21.10% 

Case2 72 71 94 14  12.1 0.02  5.83 3.16 51.82% 

Case3 91 99 74 14  15.77 0.02  10.43 3.39 33.86% 

Case4 124 137 137 19  32.66 0  20.37 3.22 37.63% 

Case5 136 107 121 17  26.8 0.01  22.13 2.81 17.43% 

Case6 116 102 142 19  23.67 0  11.37 3.41 51.96% 

*TF: Time Frame,          *obj: Expected value of loss function         *time: computation time (seconds) 
 

Detailed information on the plan provided by DPBM and TSPBM under the CT of 

DPBM can be found in Table 4.2. In this table, the number for disturbed flow represents 

the amount of flow from the plan that experienced a disturbance after the realization of 

disruption scenarios. Note that this amount is different from the amount given from the 

loss function. Our defined loss function shows the amount of disturbed flow that remains 

in the system after all possible rerouting and recovery actions are taken.  

Table 4.2: Detailed Comparison of DPBM and TSPBM under CT of DPBM 

 
 Case1 Case2 Case3 Case4 Case5 Case6 

D
P

B
M

 #disturbed flow (EX, Max) (21,110) (22.1,129) (29.3,158) (50.3,225) (42.9,231) (50.5,205) 

#effective scenario 12 12 13 18 17 17 

rerouting CT (EX, Max) (14.3, 20) (16, 23) (17.1, 24) (25.1, 32) (22.07,30) (23.3, 29) 

T
S

P
B

M
 #disturbed flow (EX, Max) (12.2,110) (13.7,117) (15.5,126) (45.3,197) (30.8,179) (34.9,186) 

#effective scenario 6 8 8 15 14 15 

rerouting CT (EX, Max) (13, 19) (15.4, 21) (15, 23) (23.8, 31) (21.1, 30) (22.8, 29) 

*EX: Expected value of disturbed flow          *Max: Maximum value of disturbed flow  
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Contrarily, the values shown in Table 4.2 demonstrate how many people were 

initially affected by the incidents (before implementing a recovery strategy). Additionally, 

the number of effective scenarios in Table 4.2 showcases the number of scenarios in 

which the occurrence of the scenario affected the plan and disturbed its flow. Finally, the 

rerouting CT stands for the clearance time of the rerouted flow occurring after the 

disruptions. Rerouting CT shows the amount of time needed to reroute the disturbed 

evacuees and clear the network. 

As seen in Table 4.2, for Case 1 using DPBM, the expected value of the disturbed flow 

and the maximum value pertaining to the worst-case scenario is 21 and 110 evacuees, 

respectively. Contrarily, the expected value of 21 is reduced to the expected value of 12.2 

disturbed evacuees when TSPBM is used. After rerouting strategies are implemented, the 

expected number of evacuees to remain in the system based on the DPBM solution is 

11.66 out of 21, while TSPBM reduces the number to 9.21 (see Table 4.1)—a 21.1% 

improvement over DPBM. Furthermore, TSPBM plans performed well under various 

disruption scenarios. The number of disruption scenarios that affected the DPBM 

evacuation plan is 12, and this number is reduced to 6 under TSPBM. Moreover, in 

TSPBM, the expected value of the rerouting CT is 13. In comparison to the corresponding 

value of 14.33 in DPBM, the TSPBM outcome demonstrates a reduction in the expected 

rerouting process time. This decrease in rerouting duration time is a result of the 

decrease in the amount of disrupted flow as well as the decrease in the number of 

effective scenarios. This has happened for all demand cases (Case 1 to Case 6). TSPBM 

makes an active attempt to minimize the number of disturbed evacuees that remain in the 

system. Hence, TSPBM expedites the rerouting process of the disturbed flow. 
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In most demand cases, the maximum amount of rerouting CT is also decreased as 

observed in Cases 1 - 4. This is mainly due to the decrease in the amount of worst-case 

disturbed flow. However, in Case 1, the maximum amount of disturbed flow for both 

models is the same (110 evacuees). The maximum rerouting CT is decreased when using 

TSPBM. This is because the maximum disturbed flow shown in the table is in fact the total 

amount of disturbed flow over all nodes of the evacuation network. As this amount is 

dispersed between different nodes, the number of evacuees on the node, the location of 

the node, and its distance to destination nodes could affect the rerouting CT. 

To further analyze the performance of our model, we tabulated the improvement 

percentages in the expected value of the loss function under different time frames 

(dissimilar to CT of DPBM) in Table 4.3. 

Table 4.3:  Comparison of DPBM and TSPBM under Different Time Frames 

 

Case1 Case2 Case3 Case4 Case5 Case6 

TF 13 15 15 20 18 20 

obj 5.13 4.43 6.56 14.66 15.46 8.97 

Improv 56.00% 63.39% 58.40% 55.11% 42.31% 62.10% 

       
TF 14 16 16 21 19 21 

obj 3.9 3.3 5.1 11.3 11 7.23 

Improv 66.55% 72.73% 67.66% 65.40% 58.96% 69.46% 

    
  

  
TF 15 17 17 22 20 22 

obj 2.9 2.3 4.1 9.2 8.6 6.06 

Improv 75.13% 80.99% 74.00% 71.83% 67.91% 74.40% 

       
TF 16 18 18 23 21 23 

obj 1.9 1.3 3.1 7.53 6.93 4.9 

Improv 83.70% 89.26% 80.34% 76.94% 74.14% 79.30% 

*TF: time frame,          *obj: Expected value of loss function         *Improv: objective function improvement 

As shown in Table 4.3, when the time frame is greater than the clearance time of 

DPBM, TSPBM provides a more reliable plan that leads to fewer evacuees being severely 
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affected by the network disruption. For instance, in Case 1, when the evacuation time is 

increased by one unit of time and reaches 13, the improvement in the expected value of 

the loss function increases from 21.1% to 56%. This amount reaches 66.55% when the 

evacuation process time is 14. Thus, this instance demonstrates that by compromising the 

evacuation time, we can far better reduce the negative consequences resulting from 

disruptions. 

In the previous experiments, the probability distribution parameter 𝜆𝑒𝑥𝑝 = 10𝑇 is 

used for the disruption scenario generations. To further study the results, comparisons 

between DPBM and TSPBM under different values of λexp are made as shown in Table 4.4.  

Table 4.4:  Comparison of DPBM and TSPBM under Different Parameter for Disruption Scenario 

 

𝝀𝒆𝒙𝒑  
DPBM 

obj 
TSPBM 

obj 
Obj 

Improvement 

  

𝝀𝒆𝒙𝒑 
DPBM 

obj 
TSPBM 

obj 
Obj 

Improvement 

C
as

e 
1

 

14 9.5 7.36 22.53% 

 

C
as

e 
2

 

14 8.8 4.46 49.32% 

12 10 8.2 18.00% 

 

12 9.97 4.96 50.25% 

10 11.66 9.2 21.10% 

 

10 12.1 5.83 51.82% 

8 14 11.1 20.71% 

 

8 15.33 7.4 51.73% 

       
 

   

 

𝝀𝒆𝒙𝒑 
DPBM 

obj 
TSPBM 

obj 
Obj 

Improvement 

  

𝝀𝒆𝒙𝒑 
DPBM 

obj 
TSPBM 

obj 
Obj 

Improvement 

C
as

e 
3

 

14 11.93 8.3 30.43% 

 

C
as

e 
4

 

14 21.47 14 34.79% 

12 13.06 9.13 30.09% 

 

12 24.47 15.6 36.25% 

10 15.77 10.43 33.86% 

 

10 32.66 20.37 37.63% 

8 19.93 13.13 34.12% 

 

8 41.7 29.3 29.74% 

           

 

𝝀𝒆𝒙𝒑 
DPBM 

obj 
TSPBM 

obj 
Obj 

Improvement 

  

𝝀𝒆𝒙𝒑 
DPBM 

obj 
TSPBM 

obj 
Obj 

Improvement 

C
as

e 
5

 

14 18.6 15.63 15.97% 

 

C
as

e 
6

 

14 16.37 8.23 49.73% 

12 20.97 17.6 16.07% 

 

12 18.33 9.06 50.57% 

10 26.8 22.13 17.43% 

 

10 23.67 11.37 51.96% 

8 30.07 24.7 17.86% 

 

8 30.13 16.03 46.80% 

We observe that as λexp decreases, the amount of disturbed flow remaining in the 

system increases. This is due to the fact that by decreasing λexp, the average arc 
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disruption time increases. As a result, there could be an increase in disruptions and 

disturbed flow, as well as an increase in the expected value of the disturbed evacuees that 

remain in the system. Results also indicate that under different amounts of λexp, we 

experienced improvement in the value of the loss function yielded by TSPBM. 

In the previous experiments, we focused on the expected value of the loss function in 

order to make the comparisons between TSPBM and DPBM. In the following experiments, 

we illustrate that TSRPBM can be used to control variations in the loss function as well as 

make a tradeoff between solution and model robustness. Consequently, compared to 

TSPBM, we show that TSRPBM can provide even better results in terms of the loss 

function reduction. 

We consider an evacuation problem with the demand distribution on the source 

nodes as 𝐷1 = 102, 𝐷2 = 130, and 𝐷3 = 167. Using various values of omega (the weight 

controller of the robustness measures) and λ = 1 (the weight of the loss function 

variation), we make a tradeoff between the solution and the model robustness of the 

evacuation plan generated using the network sample of Figure 3.8. Results are shown in 

Table 4.5 and Figure 4.1. 

In Table 4.5, the solution robustness includes the expected value of the loss function 

as well as its variation. Figure 4.1 shows that critical points for omega are ω = 2.821, 

ω = 2.841, and ω = 2.91. When ω was less than 2.841, we observed that the expected 

value and variations in the loss function took no value and were at their minimum level 

(zero), meaning all evacuees were cleared. The reason for this is that the objective 

function puts less emphasis on the feasibility of the solution and more on reducing the 

loss function. Consequently, we obtain the maximum amount of deviation from the 
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capacity constraints (4.7) and increased redundant capacity for rerouting actions, and a 

lesser amount of disturbed evacuees remained in the system.  

Table 4.5:  Solution and Model Robustness 

Omega 

(𝝎) 

 Solution Robustness  Model Robustness 

 expected value variations  (infeasibility) 

1  0 0  5.55 

2  0 0  5.55 

2.82  0 0  5.55 

2.821  2 3.64  3.55 

2.84  2 3.64  3.55 

2.841  5 9.16  0.55 

2.85  5 9.16  0.55 

2.9  5 9.16  0.55 

2.91  5.55 11  0 

3  5.55 11  0 

7  5.55 11  0 

9  5.55 11  0 
 

Deviation (which is noted by ɀats) from the capacity constraint makes it possible for 

the system to accommodate and reroute more disturbed evacuees through the roads by 

considering a redundant capacity. This redundant capacity does not actually exist in the 

system unless evacuation managers decide to expand the capacity of the roads. When ω 

exceeded 2.821, the infeasibility of the capacity constraint adds more expenses to the 

objective function, leading to a reduced value for both infeasibilities and consequently 

model robustness terms. 

Overall, we see that as the value of omega (ω) increases, the value of model 

robustness decreases. This happens because more emphasis is put on the model 

robustness rather than the solution robustness. Since the influence of the solution 

robustness on the objective value is decreased, the value of the solution robustness 

increases. When the objective function is influenced more by the constraint infeasibility, 

the model provides plans that are feasible under more disruption scenarios.  
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Figure 4.1: Tradeoff between Solution and Model Robustness using Controller (Omega) 

The feasibility of capacity constraints under more scenarios restricts rerouting 

processes. Thus, in more scenarios, we observe disturbed evacuees remaining in the 

system. When ω exceeds 2.91, the model robustness equals zero. Thus, the infeasibility in 

the capacity constraint under all disruption scenarios amount to zero. This means that the 

model provides a solution that is feasible under all scenarios, including the worst-case 

scenarios.  

 

Figure 4.2: Expected Value, Variation, and Infeasibility Values under Different values of Lamda and Omega  
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The most conservative solution of this model occurs when ω exceeded 2.91 and leads 

to the lowest amount of solution robustness (expected value and deviation in the loss 

function). As a result, by using the controller omega, evacuation managers can make an 

appropriate tradeoff between the solution and model robustness and control the degree 

of conservatism of an evacuation plan. By changing the λ value with respect to ω, we are 

able to better trade-off between the expected value of the loss function, its variation, and 

its deviations in the road capacity constraints (infeasibility). Figure 4.2 shows these 

variations over different values of λ and ω. 

The evacuation managers can also make a decision on whether to use road capacity 

improvement techniques such as a contra-flow approach (Wolshon, 2001) to make 

redundant capacity in specific roads at specific times to improve the solution robustness, 

or to accept the increase in the amount of loss function. For any specific value of omega, 

we can detect critical roads in the network as well as the amount of excess capacity that, if 

provided, could make an efficient enhancement in the solution robustness. In Figure 4.3, 

the amount of road capacity deviation (infeasibility) over different time slots of the 

planning horizon, arcs (roads) of the network, and the disruption scenarios under 

differing amounts of 𝜔 considering λ = 1 are shown. When 𝜔 = 1, we see deviations 

occurring on arcs 𝑎4, 𝑎5, 𝑎6, 𝑎19, 𝑎2, and the time at which the road expansion is highly 

needed ranges from 𝑡4 to 𝑡18. By increasing the value of 𝜔 to 2.821 and 2.841, we observe 

fewer violations over time. 
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Figure 4.3:  Infeasibility of the arc capacity constraint under panning intervals, roads, and disruption 

scenarios 

4.4  Conclusion 

In this work, we presented a two-stage stochastic optimization model to provide 

reliable plans when there is a possibility of several road closures during an evacuation. 

Two innovative algorithms were introduced to calculate noise-related parameters that 

ultimately helped to develop a linear structured model. The first stage of our model 

presents the reliable evacuation plan, while the second stage defines actions and a 
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recovery plan to be implemented after the occurrence of road disruptions. The goal of the 

two-stage stochastic program (TSPBM) is to reduce the expected value of the number of 

evacuees that cannot reach a destination by the end of the planning horizon (considered 

as a loss function). Furthermore, to adjust and evaluate the level of plan conservatism, 

two robustness measures were introduced: optimality and feasibility. The optimality term 

aims to evaluate whether the provided evacuation plan is close enough to evacuation 

plans that are optimum for each disruption scenario. The feasibility term is considered as 

the penalty function of any violation of capacity constraints that relates to evacuation 

resources. By using goal programming, the decision-makers are given the opportunity to 

make a trade-off between these two terms in order to adjust the plan. 

Using numerical experiments, the performance of our TSPBM is compared to the 

performance of a deterministic path-based model DPBM presented in the literature. As 

observed in all test cases, the results supported that the introduced TSPBM outperforms 

DPBM in terms of generating a more reliable evacuation route plan and schedule in the 

face of network disruptions. Moreover, using TSPBM, we were able to provide a better 

route plan if the evacuation process time was compromised. The plan conservativeness 

was further adjusted by using the introduced robustness measures. Results showed that 

when decision-makers focus on the feasibility of a solution under all disruption scenarios, 

the plan becomes too conservative and deviates further from improving the solution 

robustness. On the other hand, when decision-makers allow a certain amount of 

violations from the capacity constraints, they can achieve far better solutions in terms of 

reducing the negative consequences of disruptions. We conclude that using the TSRPBM 

model results in better solutions with respect to TSPBM in terms of reducing the loss 

function and negative consequences of road disruptions in the initial evacuation plan. 
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Chapter 5   

Data-Driven Robust Optimization Approach Using 

Support Vector Clustering (SVC) 

5.1  Introduction 

The rate of participation of would-be evacuees during an emergency evacuation 

depends on a number of factors including the nature of the disaster (e.g., natural/man-

made), the type of dwellings involved (e.g., permanent versus mobile homes), the region 

of impact, the time of impact, and the evacuees’ perception of their risk. Here, in this 

research, we aim to develop proactive evacuation plans to reduce consequences arising 

from variations in demand (number of evacuees at each source node such as a ZIP code).   

Large-scale evacuations are rare events and because of their uniqueness, limited data 

regarding them is available. Most often, demand approximations are based on limited 

available data or on expert’s judgments. Hence, difficulties can arise during implementing 

an evacuation plan when there are inconsistencies in estimations. In some special cases, 

predictions using limited historical data may suffice to form the so-called expected-value 

problem. However, in most cases, especially in the context of mass-evacuations in which 

many unexpected events occur, using the expected-value plan may lead to many 

unwanted outcomes and dramatically damage the efficiency of the plan. This has urged us 

to study evacuation planning under uncertainty of input demand parameter. On the 

robust optimization concept, usually “worst-case” demand scenario is considered 

(Wolshon, 2009) and a single-scenario evacuation problem is solved. However, this 
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approach can increase the clearance time of the system. Clearance time is the time 

required to evacuate all evacuees and get them to safe shelters. The first uncertainty set is 

built using support vector clustering (SVC) which is most often used in machine learning 

techniques.  The second uncertainty set is obtained by the intersection of the previous 

uncertainty set with box uncertainty set (mostly used in robust optimization). In the 

following subsections, the proposed approaches are explained and through conducting 

numerical experiments their performances are studies. 

5.2  Problem Statement 

we adopt dynamic network flow optimization to capture evacuation traffic dynamics 

over the evacuation planning horizon and use a directed network 𝒢 = (𝒩,𝒜) to 

represent the evacuation network. T discrete time periods 𝕋 = {0, 1, … , T − 1} are 

assumed as the planning horizon to complete the movement of people and reach all 

evacuees to the destination nodes. The status of evacuation flow at a specific time 𝑡 ∈ 𝕋 is 

shown by a static network, and the dynamic network flow is constructed through multiple 

static networks associated with each time ∈ 𝕋 . The evacuation flow assignment on this 

network requires a representation of a series of flows that are limited and affected by the 

capacity of evacuation roads intersections at various times in the attempt to meet the 

evacuation demand. The following notations are used throughout the paper. 

Sets: 

𝒩 Set of all nodes 

𝒩o Set of all source nodes 

𝒩d Set of all destination nodes 

𝕋 Set of all time slots 

𝓅 Set of all paths 
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𝑀𝑙 Set of demand zones at source node l ∈ 𝒩o 

𝓅𝑙
+ Set of paths emerging from source node l ∈ 𝒩o 

𝓅𝑙
− Set of paths reaching destination node l ∈ 𝒩d 

𝑆𝑉𝑙 support vectors (SV) for demand data of source node 𝑙 ∈ 𝒩𝑜 

𝐵𝑆𝑉𝑙 boundary support vectors (BSV) for demand data of source node 𝑙 ∈ 𝒩𝑜 

Decision Variables: 

𝑓𝑝𝑡 Assigned flow to path p ∈ 𝓅 scheduled to depart at time t ∈ 𝕋 

  𝛽𝑙 Unsatisfied demand related to source node 𝑙 ∈ 𝒩𝑠 

𝑥𝑙𝑘 An auxiliary variable 

Parameters: 

𝑆𝑙𝑘 Demand of zone 𝑘 ∈ 𝑀𝑙  at source node 𝑙 ∈ 𝒩𝑜  

𝐶𝑎 Capacity of arc 𝑎 ∈ 𝒜 

ℓ𝑙 Capacity of destination node 𝑙 ∈ 𝒩 

𝜏𝑎 Transit time on arc 𝑎 ∈ 𝒜 

𝜃𝑝𝑎 Transit time from the origin of path 𝑝 ∈ 𝓅 to arc 𝑎 ∈ 𝒜  

𝑆𝑙𝑘 The nominal value of uncertain demand 𝑆𝑙𝑘̃ 

𝑢𝑙𝑘 Normalized random variable of uncertain demand 𝑆𝑙𝑘̃ 

𝑆𝑙𝑘̂ Variation amplitude of uncertain demand 𝑆𝑙𝑘̃ 

𝑅𝑙 
Radius of the sphere obtained by SVC covering demand data of source node 

𝑙 ∈ 𝒩𝑜 

𝑝𝑙  
Center of the sphere obtained by SVC covering demand data of source node 

𝑙 ∈ 𝒩𝑜 

𝐿𝑙𝑘 Width parameter associated to demand data of source node 𝑙 ∈ 𝒩𝑜 

5.2.1 Path-Based Model 

We begin by briefly describing the deterministic path-based model (DPBM) for the 

evacuation planning problem, which is the base-model for developing the proposed data-

driven optimization model in the next section. The mathematical formulation of DPBM is 

presented as follows: 
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Minimize ∑ 𝛽𝑙
𝑙∈𝒩𝑜

 (DPBM) (5.1) 

Subject to: ∑ ∑𝑓𝑝𝑡
𝑡∈𝕋𝑝∈𝓅𝑙

+

+ 𝛽𝑙 ≥ ∑ 𝑆𝑙𝑘
𝑘∈𝑀𝑙

, ∀𝑙 ∈ 𝒩𝑜, (5.2) 

 ∑ 𝛿𝑝𝑎𝑓𝑝(𝑡−𝜃𝑝𝑎)
𝑝∈𝓅

≤ 𝐶𝑎 , ∀𝑎 ∈ 𝒜,  ∀𝑡 ∈ 𝕋, (5.3) 

 ∑ ∑ 𝑓𝑝𝑡
𝑡∈𝕋𝑝∈𝓅𝑙

−

≤ ℓ𝑙 , ∀𝑙 ∈ 𝒩𝑑 , (5.4) 

 𝑓𝑝𝑡 ∈ ℤ
+, ∀𝑝 ∈ 𝓅, ∀𝑡 ∈ 𝕋, (5.5) 

 𝛽𝑙 ∈ ℤ
+, 

∀𝑙 ∈ 𝒩𝑜. 
(5.6) 

The DPBM aims to minimize any evacuees left behind (β𝑙) for the given planning 

horizon T, which ultimately maximizes the total flow leaving the evacuation network 

within time T. Objective function (5.1) is used to make sure that the assignments of 

evacuation flow rates (fpt) to the selected set of paths 𝓅 are in such a way that the total 

remaining evacuees on all source nodes (∑ 𝛽𝑙𝑙∈𝒩𝑜 ) are minimized by the end of the 

planning horizon. Constraint (5.2) is to ensure that the total outflow departing from a 

source node 𝑙 ∈ 𝒩o and any remaining residents in the node (unserved demand 𝛽𝑙) meets 

the total number of available evacuees in each source node. Constraint (5.3) is the arc 

capacity constraint to accommodate the simultaneous use of an arc a ∈ 𝒜 by multiple 

paths. However, it places a limitation on the total amount of flow reaching an arc a ∈ 𝒜 at 

a specific time t ∈ 𝕋 and ensures that the flow is less than the capacity of the road Ca. 

Similarly, the total amount of flow reaching the destination node 𝑙 ∈ 𝒩o is restricted by its 

capacity as in Constraint (5.4). Non-negativity and integrality conditions of the variables 

are reflected in Constraints (5.5) and (5.6). 
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An estimate of the demand (𝑆𝑙𝑘) is used in constraint (5.2) of DPBM which can result 

in suboptimal or infeasible evacuation plans in face of uncertain demand variations. To 

avoid the complication and derive a better evacuation plan, we propose an approach by 

actively learning a data-driven uncertainty set from available data with the use of 

machine learning and robust optimization techniques. 

5.2.2 Data-Driven Robust Path-Based Model for Evacuation Planning 

Because the evacuation demand is uncertain, Constraint (5.2) of DPBM is 

reformulated as 

 ∑ ∑𝑓𝑝𝑡
𝑡∈𝕋𝑝∈𝓅𝑙

+

+ 𝛽𝑙 ≥ ∑ 𝑆𝑙𝑘̃
𝑘∈𝑀𝑙

, ∀𝑙 ∈ 𝒩𝑜 . (5.7) 

The uncertainty parameter can be expressed as 

 𝑆𝑙𝑘̃=𝑆𝑙𝑘 + 𝑢𝑙𝑘𝑆𝑙𝑘̂ , ∀𝑙 ∈ 𝒩𝑜 ,  ∀𝑘 ∈ 𝑀𝑙 .  

where 𝑆𝑙𝑘 is the nominal value of uncertain demand 𝑆𝑙𝑘̃,  𝑢𝑙𝑘 is the normalized random 

variable whose center of support is at the origin, and 𝑆𝑙𝑘̂is the variation amplitude of the 

uncertain parameter. An uncertainty set Ʋ𝑙 for each source node 𝑙 ∈ 𝒩o can be built upon 

the random vector 𝒖𝒍 = [𝑢1𝑙 , 𝑢2𝑙 , . . . , 𝑢𝑘𝑙, . . , 𝑢𝑛𝑙]
𝑇. The feasibility of constraint (5.7) is 

ensured when it is satisfied under all possible realization within Ʋ𝑙 as 

  ∑ 𝑆𝑙𝑘
𝑘∈𝑀𝑙

+𝑚𝑎𝑥𝑢𝑙∈Ʋ𝑙 ∑ 𝑢𝑙𝑘𝑆𝑙𝑘̂
𝑘∈𝑀𝑙

≤ ∑ ∑𝑓𝑝𝑡
𝑡∈𝕋𝑝∈𝓅𝑙

+

+ 𝛽𝑙 , ∀𝑙 ∈ 𝒩𝑜 . (5.8) 

By introducing auxiliary variable 𝑥𝑙𝑘 = 𝑆𝑙𝑘̂, the robust counterpart of the DPBM 

model under uncertainty set Ʋ𝑙 can be formulated as follows: 
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Minimize ∑ 𝛽𝑙
𝑙∈𝒩𝑜

  (5.9) 

S.t: (5.3)-(5.6),  (5.10) 

 𝑚𝑎𝑥𝑢𝑙∈Ʋ𝑙 ∑ 𝑢𝑙𝑘𝑥𝑙𝑘
𝑘∈𝑀𝑙

≤ ∑ ∑𝑓𝑝𝑡
𝑡∈𝕋𝑝∈𝓅𝑙

+

+ 𝛽𝑙 − ∑ 𝑆𝑙𝑘
𝑘∈𝑀𝑙

, ∀𝑎 ∈ 𝒜,  ∀𝑡 ∈ 𝕋. (5.11) 

5.2.2.1 Data-Driven Model with SVC-based Uncertainty Set 

We use support vector clustering to construct uncertainty set Ʋ𝑙 for the robust 

optimization model (5.9)-(5.11). The SVC algorithm has been proposed by Ben-Hur et al. 

(2001) based on the theory of machine learning. It helps to determine a minimum volume 

enclosed hypersphere that covers all data points. Assume that Ɗ𝑙  denotes a set of 𝑁𝑙  data 

samples Ɗ𝑙 = {𝑢
(𝑖)
𝑙}𝑖=1
𝑁𝑙  for node 𝑙 ∈ 𝒩o. The smallest enclosed hypersphere containing 

images of data sample for each node 𝑙 ∈ 𝒩o can be obtained by the following optimization 

model: 

Minimize 𝑅𝑙
2 +

1

𝑁𝑙𝜈𝑙
∑𝜀𝑖𝑙
𝑖∈𝑁𝑙

  (12) 

Subject to: ‖∅(𝒖(𝑖)𝑙) − 𝑝𝑙‖
2
≤ 𝑅𝑙

2+𝜀𝑖𝑙 , ∀𝑖 ∈ 𝑁𝑙 , (13) 

 𝜀𝑖𝑙 ≥ 0, ∀𝑖 ∈ 𝑁𝑙 . (14) 

where the nonlinear mapping ∅(𝒖𝒍):ℝ
𝑛 ⟶ℝ𝜅 maps the original input space into a high 

dimensional feature space, ‖. ‖ is the Euclidean norm, 𝑅𝑙 is the radius of the sphere and 𝑝𝑙  

is its center. Slack variables {𝜀𝑖𝑙} are used in the objective function and the constraints to 

provide a soft margin for the sphere which allows some data points to be outside of the 

sphere. Furthermore, a trade-off between the number of data points laying outside of the 

hypersphere and the volume of the hypersphere is possible by adjusting amount of the 

controller parameter 𝜈𝑙. To solve the optimization model (5.12)-(5.14), Lagrangian 
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multipliers 𝜶𝒍, 𝜸𝒍 ≥ 𝟎 are introduced and the Lagrangian function is constructed as 

𝐿(𝒑𝒍, 𝑅𝑙 , 𝜺𝒍, 𝜶𝒍, 𝜸𝒍) = 𝑅𝑙
2 +

1

𝑁𝑙𝜈𝑙
∑ 𝜀𝑖𝑙𝑖∈𝑁𝑙

− 

∑𝛼𝑖𝑙 (𝑅𝑙
2 + 𝜀𝑖𝑙 − ‖∅(𝒖

(𝑖)
𝑙) − 𝑝𝑙‖

2
)

𝑖∈𝑁𝑙

− ∑ 𝛾𝑖𝑙𝜀𝑖𝑙
𝑖∈𝑁𝑙

. 

(5.15) 

Following Karush-Kuhn-Tucker (KKT) conditions, we take derivatives from the 

Lagrangian function (5.15) with respect to 𝑅𝑙, 𝒑𝒍, 𝜺𝒍. Setting these derivatives equal to 

zero (
∂L

∂Rl
= 0, 

∂L

∂𝒑𝒍
= 0, and 

∂L

∂𝜺𝒍
= 0) leads to the following equations: 

∑𝛼𝑖𝑙
𝑖∈𝑁𝑙

= 0, ∀𝑙 ∈ 𝒩𝑜 , (5.16) 

∑ 𝛼𝑖𝑙
𝑖∈𝑁𝑙

∅(𝒖(𝑖)𝑙) = 𝒑𝒍, ∀𝑙 ∈ 𝒩𝑜 ,  (5.17) 

𝛼𝑖𝑙 + 𝛾𝑖𝑙 =
1

𝑁𝑙𝜈𝑙
, ∀𝑖 ∈ 𝑁𝑙 ,   ∀𝑙 ∈ 𝒩𝑜 . (5.18) 

 

According to the KKT complementarity condition, we have the following relations: 

 

(𝑅𝑙
2 + 𝜀𝑖𝑙 − ‖∅(𝒖

(𝑖)
𝑙) − 𝑝𝑙‖

2
) 𝛾𝑖𝑙 = 0, ∀𝑙 ∈ 𝒩𝑜 ,  (5.19) 

𝛼𝑖𝑙𝜀𝑖𝑙 = 0, ∀𝑖 ∈ 𝑁𝑙 ,   ∀𝑙 ∈ 𝒩𝑜 . (5.20) 

The position of each data point 𝑢𝑙
(𝑖)

 (∀𝑖 ∈ 𝑁𝑙) relative to its corresponding 

hypersphere boundary can be determined by interpreting optimal value of γl. If 𝜀𝑖𝑙 > 0, 

then 𝛼𝑖𝑙 = 0 and 𝛾𝑖𝑙 =
1

𝑁𝑙𝜈𝑙
 and the point is considered to be a boundary support vector 

(BSV).  If  0 < 𝛾𝑖𝑙 <
1

𝑁𝑙𝜈𝑙
, then according to (5.16) 𝛼𝑖𝑙 > 0 and according to (5.18) 𝜀𝑖𝑙 = 0 

which yields ‖∅(𝒖(𝑖)𝑙) − 𝑝𝑙‖
2
= 𝑅𝑙

2. This condition indicates that the corresponding point 
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is considered to be a support vector (SV). Consequently, if 𝛾𝑖𝑙 = 0 then 𝛼𝑖𝑙 =
1

𝑁𝑙𝜈𝑙
 and 

‖∅(𝒖(𝑖)𝑙) − 𝑝𝑙‖
2
> 𝑅𝑙

2 and the data point is regarded as an outlier. 

 By substituting (5.16)-(5.18) into the Lagrangian (5.15), the Wolfe dual problem 

which is a disciplined quadratic program can be induced for each source node 𝑙 ∈ 𝒩o as 

following: 

Maximize ∑ 𝛼𝑖𝑙𝐾𝑙(𝒖
(𝑖)
𝑙 , 𝒖

(𝑖)
𝑙)

𝑖∈𝑁𝑙

− ∑ ∑ 𝛼𝑖𝑙𝛼𝑗𝑙𝐾𝑙(𝒖
(𝑖)
𝑙 , 𝒖

(𝑗)
𝑙)

𝑗∈𝑁𝑙𝑖∈𝑁𝑙

 QPSVC (5.21) 

Subject to: 0 ≤ 𝛼𝑖𝑙 ≤ 1/𝑁𝑙𝜈𝑙 , ∀𝑖 ∈ 𝑁𝑙 , (5.22) 

 ∑ 𝛼𝑖𝑙
𝑖∈𝑁𝑙

= 1,  (5.23) 

where 𝐾(𝒖(𝑖)𝑙 , 𝒖
(𝑗)

𝑙) is the kernel function. Hence, we can define the support vectors (SV) 

and boundary support vectors (BSV) by solving the dual program (5.21)-(5.23) and 

analyze the optimum values of 𝛼𝑖𝑙  and construct the SV and BSV sets for each node 𝑙 ∈ 𝒩o 

can be determined based on 

𝑆𝑉𝑙 = {𝑖|𝛼𝑖𝑙 > 0, ∀𝑖 ∈ 𝑁𝑙  }, ∀𝑙 ∈ 𝒩o, (5.24) 

𝐵𝑆𝑉𝑙 = {𝑖|0 < 𝛼𝑖𝑙 < 1/𝑁𝑙𝜈𝑙 , ∀𝑖 ∈ 𝑁𝑙  }, ∀𝑙 ∈ 𝒩o. (5.25) 

Figure 5.1 demonstrates an example of a “SVC-based” uncertainty set, the support 

vectors, and the boundary support vectors. Motivated by Mercer’s theorem (Steinwart 

and Scovel, 2012), the kernel function is equal to the dot product (∅(𝒖(𝑖)𝑙). ∅(𝒖
(𝑗)

𝑙)) in 

the feature space with multiple dimensions (Cristianini & Shawe-Taylor, 2000). This eases 

computations by being able to simply calculate the inner-products in high-dimensional 

spaces. The most well-known kernel functions 𝐾(. , . ) used in pattern recognition and 

machine learning are: (1) Polynomial kernel: 𝐾(𝒖, 𝒗) = (𝒖𝑇𝒗 + 1)𝑑, (2) radial basis 
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function (RBF) kernel: 𝐾(𝒖, 𝒗) = exp {−‖𝒖 − 𝒗‖2/2𝜎2}, and (3) sigmoid kernel: 

𝐾(𝒖, 𝒗) = tanh (γ. 𝐮T𝒗 + 𝑟) (Hsu, et al. 2003).  

In this study, we use a piece-wise linear kernel function in order to avoid complicated 

nonlinear terms in our data-driven robust optimization framework and provide a MIP 

model. The weighted generalized intersection kernel (WGIK) (Shang et al., 2017) is used 

for the demand data sample of source nodes of the evacuation problem as 

𝐾𝑙(𝒖
(𝑖)
𝑙 , 𝒖

(𝑗)
𝑙) = ∑ 𝐿𝑙𝑘 − ‖𝑸𝒍(𝒖

(𝑖)
𝑙 − 𝒖

(𝑗)
𝑙)‖

𝑘∈𝑀𝑙

, ∀𝑖 ∈ 𝑁𝑙 ,  ∀𝑖 ∈ 𝑁𝑙 ,  ∀𝑙 ∈ 𝒩o, (5.26) 

where 𝐿𝑙𝑘 is the width parameter for data sample related to node 𝑙 ∈ 𝒩o. This parameter 

is used to bound the uncertainty and prevent the inducing separating hyperplane to be 

distant and far from the center. To guarantee a positive-definite matric of kernel 

𝐾𝑙(𝒖
(𝑖)
𝑙 , 𝒖

(𝑗)
𝑙) and convexity of dual problem (5.21)-(5.23) the amount of 𝐿𝑙𝑘 is tuned 

according to 

𝐿𝑙𝑘 > 𝑚𝑎𝑥1≤𝑖≤𝑁𝑙𝑸𝑙𝑘
𝑻 𝒖(𝑖)𝑙 −𝑚𝑖𝑛1≤𝑖≤𝑁𝑙𝑸𝑙𝑘

𝑻 𝒖(𝑖)𝑙 , ∀𝑙 ∈ 𝒩o,  ∀𝑘 ∈ 𝑀𝑙 . (5.27) 

Whitening matrix 𝑸𝒍 is used in (5.26) to incorporate covariation information making 

each dimension of the transformed data 𝑸𝒍𝒖𝒍 to be isotropic and have the same effect on 

the kernel function. This matrix can be constructed based on unbiased estimation of the 

covariance matrix ∑ of the data samples as in 𝑸𝒍 = ∑
−𝟏/𝟐.  

Since the index sets of all support vectors (SV) and boundary support vectors (BSV) 

have been defined as such in (5.24)-(5.25), the formulation of the data-driven uncertainty 

set under a general kernel function can be derived as 



 
 
 
 

113 
 
  
 
 

Ʋ𝑙(Ɗ𝑙) = {𝑢𝑙 | 𝐾𝑙(𝒖𝒍, 𝒖𝒍) − 2∑ 𝛼𝑖𝑙  𝐾𝑙(𝒖𝑙 , 𝒖
(𝑖)
𝑙)

𝑖∈𝑁𝑙

+ ∑ ∑ 𝛼𝑖𝑙
𝑗∈𝑁𝑙

𝛼𝑗𝑙𝐾𝑙(𝒖
(𝑖)
𝑙 , 𝒖

(𝑗)
𝑙)

𝑖∈𝑁𝑙

≤ 𝑅𝑙
2}. (5.28) 

By substituting the WGIK kernel function into the uncertainty set (5.28), we will have 

Ʋ𝑙(Ɗ𝑙) = {𝑢𝑙 |∑ 𝛼𝑖𝑙‖𝑸𝑙(𝒖𝑙 − 𝒖
(𝑖)
𝑙)‖1

𝑖∈𝑁𝑙

≤ ն𝑙}, (5.29) 

where ն𝑙 = ∑ 𝛼𝑖𝑙𝑖∈𝑁𝑙 ‖𝑸𝑙(𝒖
(𝑗)

𝑙 − 𝒖
(𝑖)
𝑙)‖1, ∃𝑗 ∈ 𝐵𝑆𝑉. By introducing auxiliary variables 

𝑽𝑙 = [𝒗1𝑙 , … , 𝒗𝑁𝑙𝑙] and matrix  𝑾𝑙
(𝑖)
= 𝑸𝑙𝒖

(𝑖)
𝑙 the uncertainty set Ʋ𝑙(Ɗ𝑙) can be linearized 

as in 

Ʋ𝑙(Ɗ𝑙) =

{
 
 
 
 

 
 
 
 

𝑢𝑙

|

|

|

∃𝑣𝑖𝑘𝑙 ,   𝑖 ∈ 𝑆𝑉,  𝑘 ∈ 𝑀𝑙    𝑠. 𝑡.       

∑ ∑ 𝛼𝑖𝑙𝑣𝑖𝑘𝑙
𝑘∈𝑀𝑙𝑖∈𝑆𝑉

≤ ն𝑙          

∑ 𝑄𝑘ℎ𝑙𝑢ℎ𝑙 −𝑊𝑘𝑙
(𝑖)

ℎ∈𝑀𝑙

≤ 𝑣𝑖𝑘𝑙     ∀𝑘 ∈ 𝑀𝑙  

∑ 𝑄𝑘ℎ𝑙𝑢ℎ𝑙 −𝑊𝑘𝑙
(𝑖)

ℎ∈𝑀𝑙

≥ −𝑣𝑖𝑘𝑙     ∀𝑘 ∈ 𝑀𝑙

 }
 
 
 
 

 
 
 
 

. (5.30) 

By introducing Lagrange multipliers 𝜂𝑙 , 𝝁𝑙 , and 𝝀𝑙, and incorporating the linearized 

uncertainty set (5.30) into the worst-case constraint (5.11), we can derive the data-driven 

robust path-based model with SVC induced uncertainty set for our evacuation planning 

problem (DSPBM) as follows: 

Minimize ∑ 𝛽𝑙
𝑙∈𝒩𝑜

 (DSPBM) (5.31) 

Subject to: (5.3) − (5.6)  (5.32) 
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∑ ∑ [𝑊𝑘𝑙
(𝑖)(𝜇𝑖𝑘𝑙 − 𝜆𝑖𝑘𝑙)]

 𝑘∈𝑀𝑙𝑖∈𝑆𝑉

+ 𝜂𝑙ն𝑙 ≤ 

∑ ∑𝑓𝑝𝑡
𝑡∈𝕋𝑝∈𝓅𝑙

+

+ 𝛽𝑙 − ∑ 𝑆𝑙𝑘
𝑘∈𝑀𝑙

, 

∀𝑙 ∈ 𝒩𝑜 ,  (5.33) 

 ∑ ∑ [𝑄𝑘ℎ𝑙(𝜆𝑖𝑘𝑙 − 𝜇𝑖𝑘𝑙)]

 𝑘∈𝑀𝑙𝑖∈𝑆𝑉

− 𝑥𝑙ℎ = 0,  ∀ℎ ∈ 𝑀𝑙 , ∀𝑙 ∈ 𝒩𝑜 , (5.34) 

 𝜇𝑖𝑘𝑙 + 𝜆𝑖𝑘𝑙 = 𝜂𝑙𝛼𝑖𝑙 ,  ∀𝑖 ∈ 𝑆𝑉,  ∀𝑘 ∈ 𝑀𝑙 , ∀𝑙 ∈ 𝒩𝑜 , (5.35) 

 𝑥𝑙𝑘 = 𝑆𝑙𝑘̂ , ∀𝑙 ∈ 𝒩𝑜 ,  ∀𝑘 ∈ 𝑀𝑙 , (5.36) 

 𝜂𝑙 ≥ 0, 𝜇𝑖𝑘𝑙 ≥ 0, 𝜆𝑖𝑘𝑙 ≥ 0, ∀𝑖 ∈ 𝑆𝑉,  ∀𝑘 ∈ 𝑀𝑙 , ∀𝑙 ∈ 𝒩𝑜 . (5.37) 

5.2.2.2 Data-Driven Model with Box+SVC-based Uncertainty Set 

The SVC algorithm aims to find a minimum volume of hypersphere that encloses the 

data sample. As explained previously, by adjusting the amount of the regulator parameter 

𝜈, the decision-maker can adjust the volume of the hypersphere and accordingly adjust 

the coverage of the data point in the sample.  When the parameter 𝜈 is increased, the 

hypersphere becomes tighter, more data points lay outside the boundary of the 

hypersphere, and solution conservatism is decreased (See Figure 5.1).  

  
 

Figure 5.1: Data coverage of SVC-based uncertainty set 

 

Increase in regulator value 
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On the contrary, when the parameter 𝜈 is decreased, it leads to superfluous coverage 

by the induced uncertainty set (due to empty feature spaces covered by the hypersphere). 

As a method to reduce this superfluous coverage while maintaining the same sample data 

coverage (robustness), the “Box+SVC-based" uncertainty set is introduced to be used for 

each evacuation source demand data sample and, accordingly, the robust counterpart 

problem for the evacuation planning problem is derived. 

The box uncertainty set used in robust optimization is derived by the ∞-norm of the 

random vector 𝒖𝒍 = [𝑢1𝑙 , 𝑢2𝑙, . . . , 𝑢𝑘𝑙, . . , 𝑢𝑛𝑙]
𝑇 as in 

Ʋ𝑙(Ɗ𝑙) = {𝑢𝑙| ‖𝑢𝑙‖∞ ≤ 𝜓𝑙} = {𝑢𝑙|  |𝑢𝑘𝑙| ≤ 𝜓𝑙 ,    ∀𝑘 ∈ 𝑀𝑙  }, (5.38) 

where the controller/budget parameter 𝜓𝑙 is used to define the size of the box and restrict 

the covered area. Despite the ability to reduce the feature space coverage by adjusting the 

amount of parameter 𝜓𝑙, the box uncertainty set results in either extreme coverage of 

empty feature space or failure inappropriately covering the data sample (See Figure 5.2). 

 

 

Figure 5.2: Data coverage of box uncertainty set 

Hence, we first linearize the term |𝑢𝑘𝑙| ≤ 𝜓𝑙 and project it as −𝜓𝑙 ≤ 𝑢𝑘𝑙 ≤ 𝜓𝑙. Next, 

we intersect the SVC induced uncertainty set (5.30) with the box uncertainty set (5.38) to 

construct a more appropriate and tighter uncertainty set as in 

Decrease in budget value 

 



 
 
 
 

116 
 
  
 
 

Ʋ𝑙(Ɗ𝑙) =

{
 
 
 
 
 

 
 
 
 
 

𝑢𝑙

|

|

|

|

∃𝑣𝑖𝑘𝑙 ,   𝑖 ∈ 𝑆𝑉,  𝑘 ∈ 𝑀𝑙    𝑠. 𝑡.       

∑ ∑ 𝛼𝑖𝑙𝑣𝑖𝑘𝑙
𝑘∈𝑀𝑙𝑖∈𝑆𝑉

≤ ն𝑙          

∑ 𝑄𝑘ℎ𝑙𝑢ℎ𝑙 −𝑊𝑘𝑙
(𝑖)

ℎ∈𝑀𝑙

≤ 𝑣𝑖𝑘𝑙     ∀𝑘 ∈ 𝑀𝑙  

∑ 𝑄𝑘ℎ𝑙𝑢ℎ𝑙 −𝑊𝑘𝑙
(𝑖)

ℎ∈𝑀𝑙

≥ −𝑣𝑖𝑘𝑙     ∀𝑘 ∈ 𝑀𝑙

𝑢𝑘𝑙 ≤ 𝜓𝑙                                    ∀𝑘 ∈ 𝑀𝑙

𝑢𝑘𝑙 ≥ −𝜓𝑙                                 ∀𝑘 ∈ 𝑀𝑙

 }
 
 
 
 
 

 
 
 
 
 

. (5.39) 

Using the “Box+SVC-based" uncertainty set (5.39), the inner optimization problem 

(5.11) can be written as follows: 

Maximize ∑ 𝑢𝑙𝑘𝑥𝑙𝑘
𝑘∈𝑀𝑙

  (5.40) 

Subject to: ∑ ∑ 𝛼𝑖𝑙𝑣𝑖𝑘𝑙
𝑘∈𝑀𝑙𝑖∈𝑆𝑉

≤ ն𝑙 ,  (5.41) 

 ∑ 𝑄𝑘ℎ𝑙𝑢ℎ𝑙 −𝑊𝑘𝑙
(𝑖)

ℎ∈𝑀𝑙

≤ 𝑣𝑖𝑘𝑙 , 
 ∀𝑘 ∈ 𝑀𝑙 , 

(5.42) 

 ∑ 𝑄𝑘ℎ𝑙𝑢ℎ𝑙 −𝑊𝑘𝑙
(𝑖)

ℎ∈𝑀𝑙

≥ −𝑣𝑖𝑘𝑙 , 
 ∀𝑘 ∈ 𝑀𝑙 , 

(5.43) 

 𝑢𝑘𝑙 ≤ 𝜓𝑙 ,  ∀𝑘 ∈ 𝑀𝑙 , (5.44) 

 𝑢𝑘𝑙 ≥ −𝜓𝑙 ,  ∀𝑘 ∈ 𝑀𝑙 . (5.45) 

By introducing Lagrange multipliers 𝜂𝑙 , 𝜇𝑖𝑘𝑙 , 𝜆𝑖𝑘𝑙, 𝜗𝑘𝑙, and 𝜔𝑘𝑙 the dual problem of 

(5.40)-(5.45) can be induced and substituted by worst-case constraint (5.11) to form the 

data-driven robust path-based model with “Box+SVC-based" uncertainty set for 

evacuation planning problem (DBSPBM) as follows: 

Minimize ∑ 𝛽𝑙
𝑙∈𝒩𝑜

 (DBSPBM) (5.46) 

Subject to: (5.3) − (5.6),  (5.47) 
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∑ ∑ [𝑊𝑘𝑙
(𝑖)(𝜇𝑖𝑘𝑙 − 𝜆𝑖𝑘𝑙)]

 𝑘∈𝑀𝑙𝑖∈𝑆𝑉

+ 𝜂𝑙ն𝑙 + 𝜓𝑙 ∑ (𝜗𝑘𝑙 + 𝜔𝑘𝑙)

 𝑘∈𝑀𝑙

≤ ∑ ∑𝑓𝑝𝑡
𝑡∈𝕋𝑝∈𝓅𝑙

+

+ 𝛽𝑙 − ∑ 𝑆𝑙𝑘
𝑘∈𝑀𝑙

, 
∀𝑙 ∈ 𝒩𝑜 ,  (5.48) 

 ∑ ∑ [𝑄𝑘ℎ𝑙(𝜆𝑖𝑘𝑙 − 𝜇𝑖𝑘𝑙)]

 𝑘∈𝑀𝑙𝑖∈𝑆𝑉

+ 𝜗ℎ𝑙 + 𝜔ℎ𝑙 − 𝑥𝑙ℎ = 0,  ∀ℎ ∈ 𝑀𝑙 , ∀𝑙 ∈ 𝒩𝑜 , (5.49) 

 𝜇𝑖𝑘𝑙 + 𝜆𝑖𝑘𝑙 = 𝜂𝑙𝛼𝑖𝑙 ,  ∀𝑖 ∈ 𝑆𝑉,  ∀𝑘 ∈ 𝑀𝑙 , ∀𝑙 ∈ 𝒩𝑜 , (5.50) 

 𝑥𝑙𝑘 = 𝑆𝑙𝑘̂ , ∀𝑙 ∈ 𝒩𝑜 ,  ∀𝑘 ∈ 𝑀𝑙 , (5.51) 

 𝜂𝑙 ≥ 0, 𝜇𝑖𝑘𝑙 ≥ 0, 𝜆𝑖𝑘𝑙 ≥ 0, ∀𝑖 ∈ 𝑆𝑉,  ∀𝑘 ∈ 𝑀𝑙 , ∀𝑙 ∈ 𝒩𝑜 . (5.52) 

5.3  Computational Results 

This section is designed to test the performance of the “SVC-based" uncertainty set, 

the “Box+SVC-based" uncertainty set, and the corresponding data-driven robust 

evacuation path-based models DSPBM and DBSPBM. All experiments are conducted on a 

sample evacuation network shown in Figure 3.8. The quadratic program QPSVC is solved in 

MATLAB R2017b using CVX (Grant and Boyd, 2013), and the data-driven mixed-integer 

programs are solved by CPLEX 12.5.1 (IBM, 2013) on a PC with a 3.07 GHz Intel Core i7 

processor having 24GB RAM and running Ubuntu 10.04.3. The test network in Figure 3 

includes 22 arcs connecting three source nodes (𝒩1, 𝒩2, and 𝒩3), five intermediate nodes 

(𝒩4 ,…, 𝒩8) and two destination nodes (𝒩9 and 𝒩10). Arc transit times (𝜏𝑎) as well as their 

capacities (𝐶𝑎) are shown above each arc in the network. The solution pool feature of 

CPLEX for the shortest path problem is used to generate all possible paths between all 

origin and destination (O-D) pairs and 42 paths are selected as the candidate paths to be 

used in path-based models. 
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Demand (number of evacuees) at zones of each source node (𝑆𝑙𝑘̃) is considered to be 

uncertain and 500 samples embodying correlations are generated for each source node 

(𝒩1, 𝒩2, and 𝒩3). The value of each sample is decomposed to define the nominal value 𝑆𝑙𝑘, 

variation amplitude 𝑆𝑙𝑘̂, and a random amount 𝑢𝑙𝑘 of the sample. The nominal and 

amplitude values are presented in Table 5.1, and the random values are plotted in Figure 

5.3. 

Table 5.1:  Nominal and magnitude value of data samples   

 
 Node 1 Node 2 Node 3 

Nominal value 
Zone 1 7 10 5 

Zone 2 3 10 15 
     

Magnitude 
Zone 1 12 26 45 

Zone 2 20 14 12 

 

 

 

Figure 5.3: Scatter plot of random variables of demand samples under each source node 

Node 1 

 
Node 2 

 

Node 3 
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The “SVC-based" uncertainty sets are constructed for each data samples by solving 

the quadratic program QPSVC , and the regularization parameter (𝜈𝑙) is used to adjust the 

conservatism of the uncertainty sets. The derived uncertainty sets were able to 

systematically cover complicated distributional geometries of the uncertain parameters. 

As an example, Figure 5.4 visualizes data coverage of the induced uncertainty sets for the 

data sample of node 3 under regularization parameters ν3 = 0.01, ν3 = 0.03, ν3 = 0.05, 

ν3 = 0.07, ν3 = 0.09, and ν3 = 0.1. The relationship between the regularization parameter 

and the number of support vectors (SV), the number of boundary support vectors (BSV), 

and the percentage of outliers are presented in Table 5.2.  

Table 5.2: Number of SV, BSV, and Outliers under different regularization parameter 

    Regulation Parameter (𝜈𝑙) 

    0.01 0.02 0.03 0.04 0.05 0.06 0.07 

𝓝𝟏 
#SV 11 15 19 23 25 32 41 

#BSV 10 7 6 5 5 32 41 
Outliers% 1.80% 2.80% 3.40% 4.40% 5.40% 6.20% 8.00% 

𝓝𝟐 

        

#SV 11 15 19 23 26 32 40 
#BSV 10 7 6 5 6 32 40 

Outliers% 2.00% 2.80% 3.60% 4.40% 5.60% 6.20% 7.80% 

𝓝𝟑 

        

#SV 8 13 17 24 28 31 39 
#BSV 4 5 3 7 5 31 39 

Outliers% 1.40% 2.40% 3.20% 4.60% 5.40% 6.00% 7.60% 

As observed in Table 5.2, when the value of the regularization parameter increases, 

the number of employed support vectors increases. For instance, changing 𝜈1 from 0.01 to 

0.05 increases the number of support vectors used in the uncertainty set of node 1 from 

11 to 28. More support vectors result in more hyperplanes in the uncertainty set. 

Therefore, the resulting uncertainty sets, which are the intersection of the hyperplanes, 

tend to be more and more smooth. Furthermore, when the regularization parameter 

increases, more demand data points reside outsight the constructed set. For instance, 
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changing 𝜈1 from 0.01 to 0.05 increases the number of outliers by 4%. This is due to the 

fact that the uncertainty set becomes tighter and covers fewer areas of the feature space. 

This leads to less conservative evacuation plans. 

  

  

 
 

Figure 5.4: “SVC-Based” uncertainty sets for node 3 based on different regulation parameters 

If the actual evacuation demand falls into a constructed set, then the evacuation plan 

𝝂𝟑 = 𝟎. 𝟎𝟏 

 
𝝂𝟑 = 𝟎. 𝟎𝟑 

 

𝝂𝟑 = 𝟎. 𝟎𝟓 

 
𝝂𝟑 = 𝟎. 𝟎𝟕 

 

𝝂𝟑 = 𝟎. 𝟎𝟗 
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and schedule are considered feasible (evacuation demand is met). Otherwise, the 

evacuation plan becomes infeasible and the excess amount of evacuees remains at the 

source nodes. Hence, it puts a toll on the emergency evacuation strategy as the incumbent 

evacuation plan becomes infeasible, and the need to consider a recovery strategy if an 

incident arises. If the uncertainty set covers most of the data points, the plan robustness 

increases, and the risk of plan infeasibility reduces. However, if the uncertainty set 

becomes loose, the assumed number of would-be evacuees in the planning phase becomes 

inflamed, leading to an overly conservative evacuation plan and unnecessary evacuation 

preparedness. 

To obtain the optimal evacuation policies based on the constructed “SVC-based" 

uncertainty sets from the demand data samples, the induced data-driven robust 

evacuation planning counterparts DSPBM are solved. Table 5.3 demonstrates the amount 

of optimal evacuation flow obtained by DSPBM that planned to depart each of the source 

nodes. When 𝜈𝑙 increases, a smaller number of evacuees are considered to be evacuated 

from the source nodes and the plan robustness and conservatism reduces. For instance, 

when the regularization parameter changes from 0.01 to 0.05, the number of would-be 

evacuees on node 1 decreases by 14.7% from 285 to 243. However, as mentioned before, 

the percentage of outliers increases which adds to the risk of plan infeasibility. 

Table 5.3:  Optimal evacuation flow obtained by DSPBM 

  Regulation Parameter (𝜈𝑙) 

    0.01 0.02 0.03 0.04 0.05 0.06 0.07 

F
lo

w
 𝒩1 285 268 259 249 243 240 239 

𝒩2 152 149 149 149 149 147 145 

𝒩3 192 185 178 172 171 170 170 
         

Total  629 602 586 570 563 557 554 
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The solution time for solving the quadratic program QPSVC and DSPBM under 

different values of regularization parameter (𝜈𝑙) are tabulated in Table 5.4. When the 

value of 𝜈𝑙 increases, the computational time of DSPBM appears to increase. This is 

because more support vectors are employed in the corresponding uncertainty set,  a more 

complicated uncertainty set is obtained, and more constraints are embodied in DSPBM. 

However, on average, it only takes about 0.0002s to solve the quadratic programs and 

0.052s to solve DSPBM integer programs, which are negligible. 

Table 5.4: Solution time of QPSVC and DSPBM 

   Regulation Parameter (𝜈𝑙) 

 
    0.01 0.02 0.03 0.04 0.05 0.07 

So
lu

ti
o

n
 

T
im

e
 

QPSVC 

𝒩1 0.0002 0.0003 0.0001 0.0002 0.0002 0.0003 

𝒩2 0.0001 0.0001 0.0002 0.0002 0.0003 0.0002 
𝒩3 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 

DSPBM   0.022 0.0299 0.0472 0.0553 0.0767 0.0811 

To reduce the redundant coverage of the feature space by the uncertainty sets, the 

introduced “Box+SVC-based" uncertainty sets are investigated. Examples of the 

combination of a box uncertainty set with an “SVC-based" uncertainty set for each source 

node of the evacuation network is visualized in Figure 5.5. As is shown, the projected 

“Box+SVC-based" uncertainty sets are tighter compared to the associated “SVC-based" 

uncertainty sets while having the same number of outliers (Same level of plan 

conservatism). 
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Figure 5.5: “Box”, “SVC-based” and “Box+Svc-based” uncertainty sets 

Results of more investigations on the performance of the box uncertainty set, “SVC-

based" uncertainty set, and “Box+SVC-based" uncertainty set are shown in Figure 5.6. The 

horizontal axes depict the level of plan conservatism defined by the percentage of data 

that lay outside of the corresponding uncertainty sets. Under each level of plan 

conservativeness, optimum numbers of evacuation flow are derived by solving the 

associated optimization model of the box, “SVC-based", and “Box+SVC-based" uncertainty 

set. The vertical axes depict these optimum flow values. It is noticeable that “SVC-based" 

uncertainty set optimization model (DSPBM) performs better than the robust 

optimization model built upon the uncertainty sets (RPBM) in most cases considered.  
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As the level of conservatism decreases (percentage of outliers increases), this 

performance distinction becomes more and DSPBM is able to provide solutions with less 

cost of robustness; meaning that it can provide evacuation plans that are prone to the 

same level of infeasibility risk but require less evacuation preparedness efforts since the 

optimum value of the assumed would-be evacuees is decreased.  

 

 

Figure 5.6: Optimal evacuation flow resulted from “Box”, “SVC-based” and “Box+Svc-based” uncertainty 

sets 

For instance, the optimum number of would-be evacuees on node 1 obtained by 

DSPBM under 8% level of conservatism equals 239, which is 8% less than 259 of RPBM 

(see Figure 5.6(a)). The data-driven optimization model built upon Box+SVC-based" 
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uncertainty set (DBSPBM) performs slightly better DSPBM and is most beneficial if the 

level of conservatism is increased. However, compared to RPBM, in all cases, DBSPBM has 

been able to provide better solutions that require less amount of evacuation efforts. 

5.4  Conclusion 

This paper introduced a data-driven mixed-integer linear programming framework 

for evacuation route planning and traffic flow schedule under uncertain evacuation 

demand. The motivation behind the development of the data-driven framework is to be 

able to effectively capture the geometry of the uncertain demand (number of evacuees) 

data. A dynamic network flow optimization approach has been developed to capture the 

evacuation flow moving along the network over time. In order to make the optimization 

model scalable for large-scale transportation networks, a solution method was developed 

using a path-based model (PBM). An uncertainty set is defined based on support vector 

clustering (SVC) for the proposed data-driven robust optimization model. The “SVC-

based” uncertainty set advantages from the benefits of nonparametric kernel learning 

methods; hence they do not require parameter adjustment. Moreover, it is reasonable for 

it to be adopted for complex data while substantially reducing the computational costs. 

Most kernel functions used in the literature provide a way to transform the feature space 

with the original coordinates into a lower-dimensional space. Since this transformation is 

nonlinear, developing a data-driven robust optimization counterpart with a linear 

structure is not possible. Hence, we proposed to use a piecewise linear kernel termed as 

the generalized intersection kernel to derive the MIP data-driven formulation for the 

evacuation problem (DSPBM). Furthermore, the intersection of the SVC-based uncertainty 

set and the conventional box uncertainty set is introduced to provide tighter uncertainty 
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sets and reduce the conservatism. Consequently, a data-driven optimization approach 

(DBSPBM) corresponding to the new uncertainty set has been developed. 

Numerical experiments were conducted to study the performance of the proposed 

data-driven models under different demand distributions on the source nodes of a sample 

transportation network. Results showed that the DSPBM is able to systematically 

integrate information from historical data into the evacuation planning and is capable of 

effectively leveraging information to handle complicated distributional geometries. The 

model is computationally tractable, and the computational times of all experiments made 

in this paper were negligible. We showed that the conservatism of the evacuation plan can 

be adjusted by a regulation parameter. Smaller values of the regulation parameter 

resulted in looser uncertainty sets, better data coverage, and, subsequently, more 

conservative evacuation plans. Further investigations were made on the performance of 

DSPBM, DBSPBM, and the robust optimization model based on box uncertainties. The 

results indicated that, in most cases, DSPBM and DBSPBM can provide evacuation plans 

with the same level of conservatism, but at a lower cost of robustness (evacuation efforts) 

compared to the traditional robust optimization model. Also, the DBSPBM outperformed 

the DSPBM in terms of reducing the cost of robustness, but the difference became less 

significant as the regulation parameter increased. Hence, it is more suitable to use 

DBSPBM when a higher level of plan conservatism is desirable. 
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Chapter 6 

Distributionally Robust Chance-Constraint program: 

Unknown Probability Distribution of Network 

Disruption Times 

 6.1  Introduction 

In this section, we describe the evacuation planning problem subject to the risk of 

multiple road disruptions. The purpose is to fill the gap in the literature by introducing a 

distributionally robust optimization model that ensures the constraints subject to 

parameter randomness are satisfied under actual distributions, consistent with the 

ambiguity set built on the distributions’ moment information. Unlike previous studies, we 

introduce an improved framework that: (i) provides a proactive plan that is less 

interrupted by the occurrence of probable road disruptions; (ii) better projects traffic 

dynamics by employing a dynamic traffic network flow optimization approach, which 

allows for variation in flow rates over the planning horizon; (iii) provides more realistic 

results considering disruptions on roads (where roads are defined as a section of a path) 

instead of on an entire path in the evacuation network; (iv) assumes simultaneous 

disruptions on multiple roads in the evacuation network; (v) makes no assumptions 

regarding the type of uncertainty distributions and considers that the probability 

distribution functions of road disruption times are not fully known and that only partial 

information (the first two moments) is available. 
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In the context of stochastic programming, the most reliable way to account for 

demand uncertainty is to use chance-constraints, which have the following form: 

min  𝑓(𝑥)   
(6.1) 

s.t.  ℙ(𝐹(𝑥. 𝜉) ≤ 0) ≥ 1 − 𝜖. (6.2) 

where 𝜉 is a random vector demonstrating uncertain parameters and ℙ is the associated 

probability measure, 𝑓 is the objective function of the program, and function 𝐹 is related 

to performance measures representing constraints in a particular system. In our problem, 

𝜉 is a random vector describing road disruption times in the evacuation network. We fix a 

risk level 𝜖 ∈ [0,1] so that the constraint (6.2) requires that the uncertain constraint 

𝐹(𝑥. 𝜉) ≤ 0 be satisfied with a confidence level of at least (1 − 𝜖). 

Generally, the way the problem is approached from an algorithmic perspective 

strongly depends on the form of 𝐹 as well as the information that is available on the 

probability distribution of the uncertain parameters. In the above chance-constrained 

program, if the underlying random parameter is known, we may be able to provide a 

deterministic equivalent of it using the inverse of the cumulative distribution function 

(CDF) of the uncertain parameter. However, due to insufficient data available related to 

road disruption times and differences in the nature of disasters, accurately identifying the 

underlying distribution may be impossible. In some studies, the unknown distribution ℙ 

in (6.2) has been replaced by crude estimate, like ℙ̃, which can result in an overly 

optimistic solution that may not satisfy the chance-constraint under the “true” 

distribution ℙ. Approximating the probability in the chance-constraint requires making 

some assumptions about the probability distribution. A more realistic assumption is that 
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we have limited information regarding ℙ, such as information about its first two 

moments. These assumptions consequently affect the optimal choice of evacuation routes 

and traffic flow in an evacuation plan.  

In the following subsections, we develop a mathematical formulation representing a 

distributionally robust data-driven program for the evacuation planning problem under 

uncertainty of network disruption. Since the problem is intractable, we decompose the 

noise (uncertainty)-related constraint into three sets of constraints and reformulate the 

problem to obtain a Mixed Integer formulation. Moreover, we introduce a solution 

methodology to be employed for large-scale evacuations. Numerical experiments are 

conducted, and a detailed conclusion of our study is presented accordingly. 

6.2  Problem Formulation 

The evacuation network is represented as a directed graph 𝒢 = (𝒩,𝒜), which 

consists of a set of nodes 𝒩 corresponding to intersections and a set of arcs 𝒜 to project 

the evacuation road segments restricted by road capacities 𝐶𝑎 and weighted by estimated 

arc travel times 𝜏𝑎. Since a dynamic network flow optimization approach is employed, the 

traffic assignment is projected on a time-expanded network. Set 𝕋 = {0, 1, … , 𝑇 − 1} 

shows time slots that represent equal intervals of the planning horizon. Using this 

approach, throughout the evacuation process, variable flow rates are assigned to the 

paths that connect the origin–destination nodes of the network. 

A path-based approach is adopted, and set 𝓅 is used to demonstrate the set of all 

paths that have been chosen by authorities and are fed into the optimization evacuation 

model. Three sets of integer decision variables are used in the model, including: set 

fpt ∈ ℤ
+, to show the evacuation flow (evacuees) scheduled to depart on path p ∈ 𝓅 at 
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time 𝑡 ∈ 𝕋; set  𝛽𝑛 ∈ ℤ
+, representing unsatisfied demand on the source node 𝑛 ∈ 𝒩𝑠; and 

set 𝐼𝑝𝑛𝑡 ∈ ℤ
+, demonstrating the departed flow on path p ∈ 𝓅 at time 𝑡 ∈ 𝕋 that is 

interrupted due to road incidents and is jammed before node 𝑛 ∈ 𝒩. Note that the initial 

number of evacuees on a source node is denoted as demand 𝐷𝑛, and the number of 

evacuees who have not been evacuated by the end of the evacuation horizon is referred to 

as unsatisfied demand. 

6.2.1 Scenario Analysis Associated with Disturbance Uncertainty 

To develop the mathematical model, the first possible scenarios regarding the effect 

on time of multiple road/arc disruptions on a scheduled flow assigned to a path are 

investigated. Let the random variable 𝐷𝑇̃𝑎 represent the uncertain disruption time on arc 

𝑎 ∈ 𝒜 of the transportation network. Considering disruption time of a specific arc 𝑎 ∈ 𝒜 

(𝐷𝑇̃𝑎) as well as disruption time of preceding arcs (𝐷𝑇̃𝑎̅) along path 𝑝 ∈ 𝓅, three cases can 

occur for a scheduled flow 𝑓𝑝𝑡. 

Case 1: Flow is not disturbed before reaching arc 𝒂 ∈ 𝓐 and is only disturbed on arc 𝒂 ∈ 𝓐 

In this case, disruption times of the arcs preceding 𝑎 ∈ 𝒜 cannot disrupt the flow, as 

shown by the following conditions: 

𝑡 + 𝜃𝑝𝑎̅ + 𝜏𝑎̅ ≤ 𝐷𝑇𝑎̃̅ , 

&    𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 > 𝐷𝑇𝑎̃ , 
∀𝑎̅ ∈ 𝒜 preceding to 𝑎 ∈ 𝒜 on 𝑝 ∈ 𝓅. 

When a flow starts at time 𝑡 ∈ 𝕋, it takes 𝜃𝑝𝑎̅ amount of time for the flow to reach the arc 

𝑎̅ ∈ 𝒜. Passing through this arc requires 𝜏𝑎̅ unit of time. If the disruption on the arc 𝑎̅ ∈ 𝒜 

happens after the flow has passed through the arc (𝑡 + 𝜃𝑝𝑎̅ + 𝜏𝑎̅), then flow is not affected 
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by the disruption on the arc 𝑎̅ ∈ 𝒜 at all. This situation can be shown by 𝑡 + 𝜃𝑝𝑎̅ + 𝜏𝑎̅ ≤

𝐷𝑇𝑎̃̅. If the same thing happens for all arcs 𝑎̅ ∈ 𝒜 that precede arc 𝑎 ∈ 𝒜, then the flow 

can successfully reach arc 𝑎 ∈ 𝒜. If the flow cannot safely pass through arc 𝑎 ∈ 𝒜 and the 

disruption time of arc a ∈ 𝒜 is greater than the time needed for the flow to pass through 

the arc (𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 > 𝐷𝑇𝑎̃), then the flow will be disrupted on arc 𝑎 ∈ 𝒜 and jammed on 

node 𝑛 ∈ 𝒩 (origin node of arc 𝑎 ∈ 𝒜). 

Case 2: Flow is disturbed before reaching arc 𝒂 ∈ 𝓐 

In this case, a preceding arc a̅ ∈ 𝒜 interrupts the flow and prevents it from reaching arc 

a ∈ 𝒜 which is shown by the condition 

𝑡 + 𝜃𝑝𝑎̅ + 𝜏𝑎̅ > 𝐷𝑇𝑎̅, ∃𝑎̅ ∈ 𝒜 preceding to 𝑎 ∈ 𝒜 on 𝑝 ∈ 𝓅. 

Case 3: Flow is not disturbed at all and can pass through arc 𝒂 ∈ 𝓐 

The disruption times of the arcs preceding arc a ∈ 𝒜, as well as arc a ∈ 𝒜 itself, do not 

influence the flow, and the flow successfully reaches and passes through arc a ∈ 𝒜. We 

show this case by the following conditions 

𝑡 + 𝜃𝑝𝑎̅ + 𝜏𝑎̅ ≤ 𝐷𝑇𝑎̅, 

                      &    𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 ≤ 𝐷𝑇𝑎 , 
∀𝑎̅ ∈ 𝒜 preceding to 𝑎 ∈ 𝒜 on 𝑝 ∈ 𝓅. 

Given this understanding of possible scenarios regarding the influence of arc 

disruption times on a scheduled flow, an incident indicator (𝑣̃𝑝𝑛𝑡) is introduced and will 

be employed in the problem mathematical formulation described in Section 3.2. 

Incident Indicator (𝒗̃𝒑𝒏𝒕): This parameter is a function of uncertain arc disruption 

times (𝐷𝑇𝑎̃) and is defined as 
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𝑣̃𝑝𝑛𝑡 =
|𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎̃|

𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎̃
, ∀𝑎 ∈ 𝒜 emerging from node 𝑛 ∈ 𝒩 on path 𝑝 ∈ 𝓅. 

 

If a scheduled flow on path 𝑝 ∈ 𝓅 that departs at time 𝑡 ∈ 𝕋 is interrupted by 

disruption on emerging arc 𝑎 ∈ 𝒜 from node 𝑛 ∈ 𝒩, then disruption time of the arc (𝐷𝑇𝑎̃) 

is greater than the time required for the flow to reach and pass through the arc 

(𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎). In this case, since 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎 > 0, we would have 

|𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎̃| (𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝐷𝑇𝑎̃)⁄ = 1. Otherwise, if the flow can pass through 

the arc without any disturbances, then |𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎̃| (𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝐷𝑇𝑎̃)⁄ = −1. 

6.2.2 Path-Based Approach 

The purpose of the evacuation model is to develop a reliable flow schedule and route 

assignment under the uncertainty of road disruptions such that that the evacuation plan 

is less negatively affected by the consequences of the disruptions. The following 

mathematical notation is used throughout the paper: 

Sets: 

𝒩 Set of all nodes in the evacuation network 

𝒩𝑜 Set of all origin nodes 

𝒩𝑑 Set of all destination nodes 

𝒩𝑝𝑛 Set of all preceding nodes to node 𝑛 on path 𝑝 

𝕋 Set of all time slots 

𝒜 Set of all arcs 

𝓅 Set of all paths 

𝓅𝑛
+ Set of paths originating from source node 𝑛 

𝓅𝑛
− Set of paths terminated at destination node 𝑛 
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Decision Variables: 

𝑓𝑝𝑡 Flow on path 𝑝 that is dispatched from the source at time 𝑡 

𝛽𝑛 Undispatched demand from source node 𝑛 

𝐼𝑝𝑛𝑡 Disturbed flow on node 𝑛 of path 𝑝 at time 𝑡 

Parameters: 

𝐷𝑇̃𝑎 Uncertain disruption time of arc 𝑎 

𝜃𝑝𝑎 Transit time from origin of path 𝑝 to arc 𝑎  

𝐶𝑎 Capacity of arc 𝑎 

𝐷𝑛 Demand of source node 𝑛 

𝜏𝑎 Transit time on arc 𝑎  

𝜃́𝑝𝑛 Transit time from the origin of path 𝑝 to node 𝑛  

𝛿𝑝𝑎 If arc 𝑎 belongs to path 𝑝 

𝛾𝑛𝑎 If node 𝑛 is upstream (origin) node of arc 𝑎 

𝑣̃𝑝𝑛𝑡 
Incident indicator for a flow scheduled at time 𝑡 that accumulates on node 

𝑛 of path 𝑝 

𝜑𝑝𝑛 𝑛 Takes value 1 if node 𝑛 is not behind the node 𝑛  on path 𝑝, and otherwise 0 

𝑀 A large number 

 

The mathematical formulation for the evacuation planning problem under 

uncertainty of road disruptions is as follows: 

Minimize 
∑ 𝛽𝑛
𝑛∈𝒩𝑜

+∑ ∑∑𝐼𝑝𝑛𝑡
𝑡∈𝕋𝑛∈𝒩𝑝∈𝓅

 
PBM (6.3) 

Subject to: ∑ ∑𝑓𝑝𝑡
𝑡∈𝕋𝑝∈𝓅𝑛

+

+ 𝛽𝑛 ≥ 𝐷𝑛 , ∀𝑛 ∈ 𝒩𝑜 , (6.4) 

 
∑𝛿𝑝𝑎𝑓𝑝(𝑡−𝜃𝑝𝑎)
𝑝∈𝓅

≤ 𝐶𝑎, ∀𝑎 ∈ 𝒜,  ∀𝑡 ∈ 𝕋, (6.5) 
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𝐼𝑛𝑝(𝑡+𝜃́𝑝𝑛) ≥ 𝑓𝑝𝑡𝑣̃𝑝𝑛𝑡 − ( ∑ 𝑣̃𝑝𝑛 𝑡
𝑛 ∈𝑁𝑝𝑛

+ |𝑁𝑝𝑛|)𝑀, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, (6.6) 

 𝑓𝑝𝑡 ∈ ℤ
+, 𝛽𝑛 ∈ ℤ

+, 𝐼𝑝𝑛𝑡 ∈ ℤ
+, ∀𝑝 ∈ 𝓅, 𝑡 ∈ 𝕋, 𝑛 ∈ 𝒩𝑜 . (6.7) 

 

The objective function (6.3) attempts to minimize the number of evacuees who are 

left behind on the source nodes (∑ 𝛽𝑛𝑛∈𝒩𝑠 ) and the total number disrupted evacuees 

(∑ ∑ ∑ 𝐼𝑝𝑛𝑡𝑡∈𝕋𝑛∈𝒩𝑝∈𝓅 ) who are left in the evacuation network by the end of the planning 

horizon. Constraints (6.4) guarantee that the total number of evacuees departing from a 

source node 𝑛 ∈ 𝒩𝑜 into different paths over all time (∑ ∑ 𝑓𝑝𝑡𝑡∈𝕋𝑝∈𝓅𝑛
+ ) plus the number of 

evacuees remaining on the source node (𝛽𝑛) is greater than the initial number of evacuees 

on the node (𝐷𝑛). Constraints (6.5) ensure that aggregated flow from all paths that reach 

arc 𝑎 ∈ 𝒜 at time 𝑡 ∈ 𝕋 is less than the capacity of the arc (𝐶𝑎).  

Using constraints (6.6), the amount of flow disturbed by disruptions and 

accumulated at time 𝑡 + 𝜃́𝑝𝑛 on node 𝑛 ∈ 𝒩 of path 𝑝 ∈ 𝓅 is calculated. Indicator 𝑣̃𝑝𝑛𝑡 is 

equal to 1 if a flow that departs at time 𝑡 ∈ 𝕋 on path 𝑝 ∈ 𝓅 due to disturbances is trapped 

on node 𝑛 ∈ 𝒩; otherwise it is equal to -1. If flow 𝑓𝑝𝑡 is only disturbed by an arc emerging 

from node 𝑛 ∈ 𝒩, since it is not interrupted by any preceding arc to the node, then 

∑ 𝑣̃𝑝𝑛 𝑡𝑛 ∈𝑁𝑝𝑎 = −|𝑁𝑝𝑛| and 𝑣̃𝑝𝑛𝑡=1. Hence, 𝐼𝑛𝑝(𝑡+𝜃́𝑝𝑛) = 𝑓𝑝𝑡 when the objective function is 

minimized. However, if Case 2 or Case 3 occurs, constraints (6.6) will be relaxed. The non-

negativity and integrality conditions of variables are shown in constraints (6.7). 

Model PBM is not deterministic as constraints (6.6) are influenced by the uncertain 

parameter 𝑣̃𝑝𝑛𝑡. The so-called individual chance-constraints, which can be presented as in 

(6.8), limit the infeasibility of each constraint by a violation level 𝜖𝑖 ∈ (0,1]. 
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ℙ(𝐼𝑛𝑝(𝑡+𝜃́𝑝𝑛) ≥ 𝑓𝑝𝑡𝑣̃𝑝𝑛𝑡 − ( ∑ 𝑣̃𝑝𝑛 𝑡
𝑛 ∈𝑁𝑝𝑛

+ |𝑁𝑝𝑛|)𝑀) ≥ 1 − 𝜖𝑝𝑛𝑡, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋. (66.8) 

By replacing 𝑣̃𝑝𝑛𝑡 as a function (6.3) of the uncertain disruption times, constraints 

(6.8) can be presented as: 

ℙ(𝐼𝑛𝑝(𝑡+𝜃́𝑝𝑛) ≥ 𝑓𝑝𝑡𝛾𝑛𝑎𝛿𝑝𝑎
|𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎̃|

𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎̃

− ( ∑ 𝛾𝑛𝑎 𝛿𝑝𝑎 
|𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎 ̃ |

𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇𝑎 ̃
𝑛 ∈𝑁𝑝𝑛

+ |𝑁𝑝𝑛|)𝑀) ≥ 1 − 𝜖𝑝𝑛𝑡 , 

∀𝑝 ∈ 𝓅,  

𝑛 ∈ 𝒩,  

𝑡 ∈ 𝕋. 

(6.9) 

Even if the probability distribution function F𝐷𝑇𝑎̃ of the random parameters (𝐷𝑇𝑎̃𝑠) 

were known with certainty, deriving the deterministic equivalent of the chance-

constraints (6.9) would not be possible, and the chance-constraints would be intractable. 

In our paper, the challenge is even greater since it is assumed that the distribution ℙ of 

random variables (𝐷𝑇𝑎̃𝑠) is not known except for some assumed structural features. 

Hence, to be able to develop convex approximations for the probability constraints, the 

set of constraints (6.6) is reformulated, as described later in the section. 

6.2.3 Decomposition of Probability Constraints 

To make tractable approximations of the probability constraints, auxiliary variables 

𝑤𝑝𝑛𝑡, and 𝑦𝑝𝑛𝑡 are introduced and used to break down the set of constraints (6.6) into 

three different sets of constraints (6.10), (6.11), and (6.12) as follows: 

S.t. 𝑤𝑝𝑛𝑡 ≥
1

𝑀
𝛿𝑝𝑎𝛾𝑛𝑎(𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇̃𝑎), ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, 𝑎 ∈ 𝒜, (6.10) 
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𝑦𝑝𝑛𝑡 ≥ 𝑤𝑝𝑛𝑡 −𝑀 ∑ 𝜑𝑝𝑛 𝑛𝑤𝑝𝑛 𝑡

𝑛 ∈𝒩/{n}

, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, (6.11) 

 𝐼𝑛𝑝(𝑡+𝜃𝑝𝑛) = 𝑓𝑝𝑡𝑦𝑝𝑛𝑡 , ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋. (6.12) 

Variable 𝑤𝑝𝑛𝑡 takes value 1 if the flow that departs at time 𝑡 ∈ 𝕋 from the origin of 

path 𝑝 ∈ 𝓅 has a disruption condition due to the disruption time (𝐷𝑇̃𝑎) of the emerging 

arc from node 𝑛 ∈ 𝒩; otherwise, it takes 0. Variable 𝑦𝑝𝑛𝑡takes value 1 if the departed flow 

at time 𝑡 ∈ 𝕋 from the origin of path 𝑝 ∈ 𝓅 does not disturb any preceding arcs to node 

𝑛 ∈ 𝒩 and is only disturbed on 𝑛 ∈ 𝒩; otherwise, it takes 0. Constraints (6.10) ensure 

that the disruption condition for any departed flow on an arc is checked and the value of 

𝑤𝑝𝑛𝑡 is determined. Constraint (6.11) implies that a scheduled flow is considered to be 

disturbed on node 𝑛 (𝑦𝑝𝑛𝑡 = 1) only if it has disruption condition on this node and does 

not have any disruption condition on any of the preceding nodes to the node 

(∑ 𝜑𝑝𝑛 𝑛𝑤𝑝𝑛 𝑡𝑛 ∈𝒩/{n} = 0). Constraints (6.12) determine the amount of disturbed 

evacuation flow, where the disturbed evacuees are located, and the time they are stopped 

and added to the remaining disturbed flow. 

6.2.4 Distributionally Robust Approximation of Chance-Constraints 

In the reformulated constraints, only constraints (6.10) are influenced by the 

uncertainty of parameter 𝐷𝑇̃𝑎. Hence, the chance-constraint of the reformulated probable 

with the desired confidence level 1 − 𝜖𝑖 ∈ (0,1] can be presented as 

ℙ(𝑤𝑝𝑛𝑡 ≥
1

𝑀
𝛿𝑝𝑎𝛾𝑛𝑎(𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇̃𝑎)) ≥ 1 − 𝜖𝑝𝑛𝑡𝑎, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, 𝑎 ∈ 𝒜. (6.13) 

To develop a data-driven approximation of this program, the individual chance-



 
 
 
 

137 
 
  
 
 

constraints (6.13) are rearranged and presented as in (6.14) such that the random 

variable 𝐷𝑇̃𝑎 is separate on the left-hand side of the inequality 

 

ℙ(𝐷𝑇𝑎̃ ≥ 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝑀𝑤𝑝𝑛𝑡) ≥ 1 − 𝜖𝑝𝑛𝑡𝑎, 
𝑖𝑓 𝛿𝑝𝑎𝛾𝑛𝑎 = 1,  

∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, 𝑎 ∈ 𝒜. 
(6.14) 

Note: Condition 𝛿𝑝𝑎𝛾𝑛𝑎 = 1  is added to create the same feasible region as 

constraints (6.13) impose. If either δpa = 0 or γna = 0, then the product will be 

δpaγna = 0, and consequently 𝑤𝑝𝑛𝑡 ≥ 0, which is a surplus condition since 𝑤𝑝𝑛𝑡 is already 

defined as a binary variable. Hence, we can ignore these cases (𝛿𝑝𝑎 = 0 or 𝛾𝑛𝑎 = 0) and 

consider the constraint only under 𝛿𝑝𝑎𝛾𝑛𝑎 = 1 condition as in 

If the probability distribution function of the uncertain parameters 𝐹𝐷𝑇̃𝑎 were known 

with certainty, then the deterministic equivalent of the chance-constraints (6.14) would 

be of the form 

𝐹𝐷𝑇̃𝑎
−1 (𝜖𝑝𝑛𝑡𝑎) ≥ 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝑀𝑤𝑝𝑛𝑡 ,      if   𝛿𝑝𝑎𝛾𝑛𝑎 = 1, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, 𝑎 ∈ 𝒜. (6.15) 

However, knowing the probability distributions is rather unlikely due to scarce 

available data on link failures during evacuation emergencies. Hence, a robust tractable 

approximation of the chance-constraints is derived assuming the availability of partial 

information, such as first and second moments, on probability distributions of link 

disruptions. The proposed approach in this paper is related to Lim et al. (2019). However, 

the proposition differs from the above-published work based on the fact that the 

ℙ(𝑤𝑝𝑛𝑡 ≥
1

𝑀
𝛿𝑝𝑎𝛾𝑛𝑎(𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇̃𝑎)) = ℙ(𝐷𝑇𝑎̃ ≥ 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝑀

1

𝛿𝑝𝑎𝛾𝑛𝑎
𝑤𝑝𝑛𝑡) = 

= ℙ(𝐷𝑇𝑎̃ ≥ 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝑀𝑤𝑝𝑛𝑡|𝛿𝑝𝑎𝛾𝑛𝑎 = 1). 
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probability constraint is structurally different, and hence the distributionally robust 

constraints are derived by employing a different asymptotic estimation for inequalities. 

The purpose is to put restrictions on auxiliary variable 𝑤𝑝𝑛𝑡 such that the chance-

constraints (6.14) hold irrespective of the probability distribution of 𝐷𝑇̃𝑎. 

Proposition 1. Consider a family of distributions denoted by 𝓅 = (𝐷𝑇̅̅ ̅̅ , 𝛴), where 

𝐷𝑇̅̅ ̅̅ = (𝐷𝑇̅̅ ̅̅ 𝑎)𝑎∈𝒜  is the mean vector and 𝛴 = 𝑑𝑖𝑎𝑔(𝜎𝑎
2) 𝑎∈𝒜  is the covariance matrix of the 

random vector 𝐷𝑇̃. For all distributions included in 𝓅 (distributions that are compatible with the 

given moments), the chance-constraints (6.14) can be written as: 

Minimize ∑ 𝛽𝑛
𝑛∈𝒩𝑜

+∑ ∑∑𝐼𝑝𝑛𝑡
𝑡∈𝕋𝑛∈𝒩𝑝∈𝓅

  (6.16) 

s.t 

inf
𝐷𝑇̃~(𝐷𝑇̅̅ ̅̅ ,𝛴)

      ℙ(𝐷𝑇𝑎̃ ≥ 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝑀𝑤𝑝𝑛𝑡|𝛿𝑝𝑎𝛾𝑛𝑎 = 1)

≥ 1 − 𝜖𝑝𝑛𝑡𝑎, 

∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, 

𝑎 ∈ 𝒜, 
(6.17) 

 𝑤𝑝𝑛𝑡 ∈ {0,1},  𝑦𝑝𝑛𝑡 ∈ {0,1}, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, (6.18) 

 (6.4), (6.5), (6.7), (6.11), & (6.12),  (6.19) 

where constraints (6.17) can be approximated and replaced by a convex second-order cone 

constraint for the family of distribution 𝓅 = (𝐷𝑇̅̅ ̅̅ , 𝛴) as expressed in 

𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝑀𝑤𝑝𝑛𝑡 ≤ 𝐷𝑇̅̅ ̅̅ 𝑎 − √
1 − 𝜖𝑝𝑛𝑡𝑎

𝜖𝑝𝑛𝑡𝑎
𝜎𝑎 , 

if    𝛿𝑝𝑎𝛾𝑛𝑎 = 1,      

 ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, 𝑎 ∈ 𝒜. 
(6.20) 

Proof. From Cantelli's inequality we can write a one-sided version of Chebyshev's 

inequality as 

ℙ(𝐷𝑇𝑎̃ ≤ 𝐷𝑇̅̅ ̅̅ 𝑎 − 𝜅𝜎𝑎) ≤
1

1 + 𝜅2
, (6.21) 

which is equal to 
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ℙ(𝐷𝑇𝑎̃ ≥ 𝐷𝑇̅̅ ̅̅ 𝑎 − 𝜅𝜎𝑎) ≥ 1 −
1

1 + 𝜅2
. (6.22) 

If inequality (6.21) holds, then we can conclude that 

ℙ(𝐷𝑇𝑎̃ ≥ 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝑀𝑤𝑝𝑛𝑡) ≥ ℙ(𝐷𝑇𝑎̃ ≥ 𝐷𝑇̅̅ ̅̅ 𝑎 − 𝜅𝜎𝑎),    if    𝛿𝑝𝑎𝛾𝑛𝑎 = 1. (6.23) 

Finally, from inequalities (21) and (22) we can conclude that 

ℙ(𝐷𝑇𝑎̃ ≥ 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝑀𝑤𝑝𝑛𝑡) ≥ 1 −
1

1 + 𝜅2
, if    𝛿𝑝𝑎𝛾𝑛𝑎 = 1.  (6.24) 

The probability that each of these constraints is violated is more than 1 1 + κ2⁄ . 

Setting κ = √
1−ϵpnta

ϵpnta
 yields the desired result, and the data-driven robust chance-

constraint approximation (18) can be used. Clearly, when the risk level ϵpnta is decreased, 

the estimation of arc disruption time (𝐷𝑇𝑎̃) is decreased to reach the desired level of 

confidence, and the resulting proactive plan can better handle possible disruption times 

that occur earlier in the evacuation process, providing more conservative measures. 

When the risk level ϵpnta is increased, the estimated disruption times are increased, and 

the obtained plan becomes more vulnerable to change in the actual disruption times. 

Model Linearization 

The term 𝑓𝑝𝑡𝑦𝑝𝑛𝑡 in constraint (6.12) is nonlinear, and hence the resulting 

mathematical model is a mixed-integer nonlinear program (MINLP). In the product of two 

variables 𝐼𝑛𝑝(𝑡+𝜃𝑝𝑛) = 𝑓𝑝𝑡𝑦𝑝𝑛𝑡 in constraint (6.12), 𝑓𝑝𝑡 is an integer, and 𝑦𝑝𝑛𝑡 is a binary 

variable. If 𝑓𝑝𝑡 is bounded below by zero and above by fp̅t, then we can linearize the 

nonlinear equation by substituting it with a set of inequalities 
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𝐼𝑛𝑝(𝑡+𝜃𝑝𝑛) ≤ 𝑓̅𝑝𝑡𝑦𝑝𝑛𝑡 , 

𝐼𝑛𝑝(𝑡+𝜃𝑝𝑛) ≤ 𝑓𝑝𝑡 , 

𝐼𝑛𝑝(𝑡+𝜃𝑝𝑛) ≥ 𝑓𝑝𝑡 − (1 − 𝑦𝑝𝑛𝑡)𝑓̅𝑝𝑡, 

∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋. (6.25) 

For defining the upper bound of the integer variable 𝑓𝑝𝑡, we assume that at each time 

interval 𝑡 ∈ 𝕋, regardless of flow congestion in previous time intervals, we can dispatch a 

flow equal to the maximum capacity of the path 𝑝 ∈ 𝓅. The maximum capacity of a path is 

defined by the capacity of its bottleneck arc, which is the arc in the path with the 

minimum capacity. Hence, we can have 𝑓𝑝̅𝑡 = 𝑚𝑖𝑛{𝐶𝑎𝛿𝑝𝑎 , ∀𝑎 ∈ 𝒜}. Replacing the set of 

constraints (6.12) with constraints (6.25), we will have a MIP formulation, presented in 

the following: 

Minimize ∑ 𝛽𝑛
𝑛∈𝒩𝑜

+∑ ∑∑𝐼𝑝𝑛𝑡
𝑡∈𝕋𝑛∈𝒩𝑝∈𝓅

 DRPBM (6.26) 

s.t 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 −𝑀𝑤𝑝𝑛𝑡 ≤ 𝐷𝑇̅̅ ̅̅ 𝑎 − √
1 − 𝜖𝑝𝑛𝑡𝑎

𝜖𝑝𝑛𝑡𝑎
𝜎𝑎 , 

if    𝛿𝑝𝑎𝛾𝑛𝑎 = 1,      

 ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, 𝑎 ∈ 𝒜, 
(6.27) 

 𝐼𝑛𝑝(𝑡+𝜃𝑝𝑛) ≤ 𝑓̅𝑝𝑡𝑦𝑝𝑛𝑡 , ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, (6.28) 

 𝐼𝑛𝑝(𝑡+𝜃𝑝𝑛) ≤ 𝑓𝑝𝑡 , ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, (6.29) 

 𝐼𝑛𝑝(𝑡+𝜃𝑝𝑛) ≥ 𝑓𝑝𝑡 − (1 − 𝑦𝑝𝑛𝑡)𝑓̅𝑝𝑡, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, (6.30) 

 (6.4), (6.5), (6.7), (6.11), & (6.18).  (6.31) 

The proposed DRPBM is a mixed-integer program (MIP) with a linear structure and 

is able to find solutions to small and medium-sized problems in a timely manner. To 

improve the solution procedure, reduce the complexity of the model, and reduce the 

computational time for large-scale problems, we introduce a heuristic methodology, to be 

discussed later in the section. 
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6.2.5 Heuristic Algorithm to Find Optimal Solutions 

This section explains a heuristic solution procedure to expedite solution 

computation. A two-step procedure is developed including the following: (i) employing 

preprocessing Algorithm 6.1 to calculate values of a specific parameter 𝜗𝑝𝑛𝑡. This 

parameter indicates the disturbance location of the flow 𝑓𝑝𝑡 based on the estimation of arc 

disruption times (𝐷𝑇𝑎̃)s that belong to 𝑝 ∈ 𝓅; (ii) feeding the obtained values 𝜗𝑝𝑛𝑡 into a 

reduced optimization model (6.32)–(6.34). Preprocessing Algorithm 6.1 has two main 

steps: (i) calculate ωpnt value based on 𝐷𝑇𝑎̃ s Approximation, and (ii) calculate 𝜗𝑝𝑛𝑡 value 

based on ωpnt of preceding arcs to node m ∈ 𝒩.  

In the first step, for a specific arc of a path, if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇̅̅ ̅̅ 𝑎 +√
1−𝜖𝑝𝑛𝑡𝑎

𝜖𝑝𝑛𝑡𝑎
𝜎𝑎 > 0, 

then according to the value of approximated 𝐷𝑇𝑎̃, scheduled flow 𝑓𝑝𝑡 cannot pass through 

the arc and is halted behind node n ∈ 𝒩 (origin node of arc 𝑎 ∈ 𝒜); hence 𝜔𝑝𝑛𝑡 = 1. 

Otherwise, if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇̅̅ ̅̅ 𝑎 +√
1−𝜖𝑝𝑛𝑡𝑎

𝜖𝑝𝑛𝑡𝑎
𝜎𝑎 ≤ 0, the flow is not affected by the 

estimated disruption time of the arc and hence 𝜔𝑝𝑛𝑡 = 0. 

However, to define the exact disturbance location of the flow, we must also consider 

the effect of the disruption time of other arcs in paths on the flow. Thus, in the second part 

of the algorithm, values of 𝜔𝑝𝑛𝑡 associated with preceding arcs to node m ∈ 𝒩 are 

considered in defining the value of the parameter ϑpnt. If ∑ ωpmtm∈𝒩 = 0 for all preceding 

arcs of arc a ∈ 𝒜 and ωpnt = 1 (where n ∈ 𝒩 is the origin node of the arc), then the actual 

disturbance location of the flow fpt is on node n ∈ 𝒩 of path p ∈ 𝓅; Hence, ϑpnt = 1. 

Otherwise, flow disturbance does not occur at all or occurs elsewhere in the network, and 
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ϑpnt = 0. 

Preprocessing Algorithm 6 . 1 

Inputs: 

An evacuation network 𝒢 consisting of a set of nodes 𝒩 and a set of arcs 𝒜 

for all paths 𝑝 ∈ 𝓅 do 

for all time slots 𝑡 ∈ 𝕋 do 

for all arcs that belong to path 𝑝 ∈ 𝓅 do 

Calculating 𝝎𝒑𝒏𝒕 value based on 𝑫𝑻𝒂̃ s Approximation: 

if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇̅̅ ̅̅ 𝑎 +√
1−𝜖𝑝𝑛𝑡𝑎

𝜖𝑝𝑛𝑡𝑎
𝜎𝑎 > 0 then 

 𝜔𝑝𝑛𝑡 = 1 (𝑛 is origin node of arc 𝑎) 

else if 𝑡 + 𝜃𝑝𝑎 + 𝜏𝑎 − 𝐷𝑇̅̅ ̅̅ 𝑎 +√
1−𝜖𝑝𝑛𝑡𝑎

𝜖𝑝𝑛𝑡𝑎
𝜎𝑎 ≤ 0 then 

𝜔𝑝𝑛𝑡 = 0  

end if  

Calculating 𝝑𝒑𝒏𝒕 value based on 𝝎𝒑𝒏𝒕 of preceding arcs to node 𝒎 ∈ 𝓝: 

for all preceding nodes 𝑚 ∈ 𝒩 to arc 𝑎 on path 𝑝 do 

if ∑ 𝜔𝑝𝑚𝑡𝑚∈𝒩 = 0 and 𝜔𝑝𝑛𝑡 = 1 then 

 𝜗𝑝𝑛𝑡 = 1 (𝑛 is origin node of arc 𝑎) 

else then 

𝜗𝑝𝑛𝑡 = 0  

end if  

end for 

end for  

end for 

end for 
 

Having the value of the parameter ϑpnt, we can eliminate constraints that relate to 

the disruption time estimations and the effect of disruption times on the flow and reduce 
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the model as follows: 

Minimize ∑ 𝛽𝑛
𝑛∈𝒩𝑜

+∑ ∑∑𝐼𝑝𝑛𝑡
𝑡∈𝕋𝑛∈𝒩𝑝∈𝓅

 DRPBMReduced (6.32) 

 𝐼𝑛𝑝(𝑡+𝜃𝑝𝑛) = 𝑓𝑝𝑡𝜗𝑝𝑛𝑡, ∀𝑝 ∈ 𝓅, 𝑛 ∈ 𝒩, 𝑡 ∈ 𝕋, (6.33) 

s.t (6.4), (6.5), & (6.7).  (6.34) 

6.3  Computational Results 

Computational experiments are conducted to evaluate the performance of the 

proposed distributionally robust data-driven model (DRPBM) as well as the introduced 

heuristic solution methodology under various test problems. First, investigations are 

conducted on a small sample network, the performance of DRPBM is compared to the 

result of the deterministic model DPBM, and the effect of the introduced heuristic solution 

methodology in reducing computational time is illustrated. Then, DRPBM is used to 

conduct experiments on a real evacuation network involving a large metropolitan area. 

The mathematical models are solved using CPLEX 12.5.1, heuristic algorithms are run 

using MATLAB R2017b, and experiments are performed on a PC with a 3.07 GHz Intel 

Core i7 processor and 24GB RAM and running Ubuntu 10.04.3. 

6.3.1      Numerical Case Study 

For the computational experiments in this section, the test evacuation network 

shown in Figure 3.8 is used. The network includes three source nodes (𝒩1, 𝒩2, and 𝒩3) 

and two destination nodes (𝒩9 and 𝒩10). Values of arc transmit times (τa) as well as arc 

capacities (Ca) are shown for each arc, and the disruption time of arcs is considered to be 
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uncertain. Six different test samples (C1, C2, …, C6) are defined by considering a 

combination of two levels for source node demands and three levels for arc disruption 

times. Level 1 of source node demands includes the amounts of 91, 99, and 74 for the 

demand values on the nodes 𝒩1, 𝒩2, and 𝒩3, respectively. In Level 2 of source node 

demands, these amounts are 136, 157, and 121. For each level of arc disruption times, the 

first number of arcs that undergo disruption is randomly selected from the range [3–7]. 

According to these numbers, a set of arcs from the available 22 arcs of the network is 

selected. Next, the mean and standard deviation of the disruption time of each of the 

selected arcs are randomly chosen from the range [0.2CT–0.7CT] and [0.05CT–0.2CT], 

respectively. Here, CT is the clearance time obtained by the deterministic model DPBM 

and represents the minimum amount of time required to complete the evacuation process 

and clear the network under deterministic settings. 

The CPLEX pool feature is used to enumerate and generate all possible paths 

between the origin–destination (O-D) nodes of the sample network. Paths with long 

durations are eliminated, and the remaining 42 candidate paths (see Appendix) are 

chosen to form a set 𝓅 of input paths. DRPBM has 5|𝓅| + 5|𝒩| + 6|𝕋| + 2|𝒜| + |𝒩𝑜| 

constraints, 2|𝓅| + |𝒩| + 2|𝕋| + |𝒩𝑜| integer variables, and 2|𝓅| + 2|𝒩| + 2|𝕋| binary 

variables. These amounts are reduced in DRPBMReduced to 3|𝓅| + 3|𝒩| + 4|𝕋| + 2|𝒜| +

|𝒩𝑜| constraints, 2|𝓅| + |𝒩| + 2|𝕋| + |𝒩𝑜| integer variables, and |𝓅| + |𝒩| + |𝕋| binary 

variables. Table 6.1 illustrates the comparison between the number of constraints and 

variables in DRPBM and DRPBMReduced for the sample network in Figure 3.8. As is shown, 

using DRPBMReduced, the number of constraints and the number of binary variables are 

reduced by 33.5% and 50%, respectively, indicating the effectiveness of DRPBMReduced in 

reducing the complexity of the problem. 



 
 
 
 

145 
 
  
 
 

Table 6.1: Number of constraints and variables in DPRBM and DRPBMReduced 

 
Constraints 

 
Variables 

   
Binary Integer total 

DRPBM 537 
 

180 175 355 

DRPBMReduced 357 
 

90 175 265 

Improvement% 33.5%  50.0% 0.0% 25.4% 

 

DRPBM and the heuristic approach are used to solve the problem under the test 

samples C1, C2, …, C6. The solution time of the DRPBM model and the solution time of the 

heuristic algorithm, which included the computational time of the reduced model 

(DRPBMReduced) and the computational time of the heuristic preprocessing algorithm 6.1, 

are tabulated in Table 6.2. As shown, the computational time of Algorithm 6.1 is less than 

a second and hence negligible. However, in most cases (C2, C3, C4, C5), the total 

computational time of the heuristic approach overcomes the computational time of 

DRPBM due to the reduction in complexity of the DRPBMReduced compared to DRPBM. 

Table 6.2: Computational times of DRPBM and DRPBM-Heuristic 

  
Solution Time (sec) 

    C1 C2 C3 C4 C5 C6 

DRPBM DRPBM 0.06 989.02 1002.02 867.04 1007.16 0.09 

DRPBM -

Heuristic 

DRPBMReduced 0.03 0.02 0.02 0.03 0.03 0.02 

Algorithm 6.1 0.05 0.05 0.06 0.05 0.06 0.06 

Total 0.08 0.07 0.08 0.08 0.09 0.08 

Improvement% -33.3% 100.0% 100.0% 100.0% 100.0% 11.1% 

 

Procedure 6.1 is proposed to investigate the effectiveness of the DRPBM in 

comparison with the well-known path-based deterministic model (Rungta et al., 2012). 

We should mention that DRPBM and DRPBMReduced provide the same evacuation plans, 
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and the only difference is in their computational time. In the first step of Procedure 1, for 

each test sample C1, C2, …, C6, the flow rate and schedule 𝑓𝑝𝑡
𝐷𝑃𝐵𝑀 are determined by 

solving the deterministic model DPBM. 

Procedure 6.1: Output generation for model comparison 

Inputs: 

An evacuation network 𝒢 consisting of a set of nodes 𝒩 and a set of arcs 𝒜. 

Test samples C1, C2, …, C6. 

Calculated parameter 𝜗𝑝𝑛𝑡. 

Step 1: Obtain the number of disturbed evacuees under the 

deterministic plan 

Step 1.a: Obtain the deterministic plan 

Solve the deterministic model (DPBM) introduced by Rungta et al. (2012) to obtain a 

deterministic evacuation plan 𝑓𝑝𝑡
𝐷𝑃𝐵𝑀  

Step 1.b: Calculate the number of disturbed evacuees 

Feed deterministic plan 𝑓𝑝𝑡
𝐷𝑃𝐵𝑀  as an input parameter to the DRPBM  

Generate 10 disruption scenarios  

Use the plan 𝑓𝑝𝑡
𝐷𝑃𝐵𝑀  and calculate ∑ ∑ ∑ 𝐼𝑝𝑛𝑡𝑡∈𝕋𝑛∈𝒩𝑝∈𝓅  under each disruption scenario 

Step 2: Obtain the number of disturbed evacuees under the 

proposed plan 

Solve DRPBM to obtain stochastic evacuation plan 𝑓𝑝𝑡
𝐷𝑅𝑃𝐵𝑀  

Use the 10 previously generated disruption scenarios  

Use the plan 𝑓𝑝𝑡
𝐷𝑅𝑃𝐵𝑀and calculate ∑ ∑ ∑ 𝐼𝑝𝑛𝑡𝑡∈𝕋𝑛∈𝒩𝑝∈𝓅  under each disruption scenario 

Step 3: Comparison 

Compare the average and standard deviation of the percentage of disturbed evacuees 

under plans resulting from DPBM and DRPBM 
 

 For each test sample C1, C2, …, C6, 10 random disruption scenarios under uniform or 

normal distribution functions are generated. The mean and the variance of the uniform or 
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normal distribution are considered to be inconsistent with the mean and variance 

previously used in each case C1, C2, …, C6. Next, 𝑓𝑝𝑡
𝐷𝑃𝐵𝑀 is considered as an input 

parameter and is inserted into DRPBM, and the number of disturbed evacuees 

(∑ ∑ ∑ 𝐼𝑝𝑛𝑡𝑡∈𝕋𝑛∈𝒩𝑝∈𝓅 ) is calculated for each of the generated disruption scenarios. Table 

6.3 illustrates the average and the standard deviation of the percentage of disturbed 

evacuees over the generated disruption scenarios. In the second step of Procedure 1, the 

same procedure is conducted for DRPBM. First, the desired confidence level (1-𝜖𝑝𝑛𝑡𝑎) is 

selected, then DRPBM is solved under each test sample C1, C2, …, C6, and the 

corresponding flow and schedule 𝑓𝑝𝑡
𝐷𝑅𝑃𝐵𝑀 are obtained. Next, a disruption scenario is 

considered, 𝑓𝑝𝑡
𝐷𝑅𝑃𝐵𝑀 is inserted in DRPBM, and the number of disturbed evacuees 

(∑ ∑ ∑ 𝐼𝑝𝑛𝑡𝑡∈𝕋𝑛∈𝒩𝑝∈𝓅 ) under the realization of the considered disruption scenario is 

calculated. Table 6.3 tabulates the results and demonstrates the performance of the 

proposed DRPBM using 95%, 90%, and 80% confidence levels with the performance of 

the DPBM under the normal and uniform probability distribution function assumption for 

the road disruptions. 

For each combination of confidence level, test sample, and underlying distribution 

function of the road disruptions, the average (Ave) and the standard deviation (STD) of 

the disturbed flow percentage are displayed. For instance, in test sample C1, using DRPBM 

with a 90% confidence level, the average amount of disturbed flow percentage equals 

5.7%, with the standard deviation of 4.1% over the 10 generated disruption scenarios 

from the normal distribution function. These amounts rise to 11.7% for the average 

disturbed flow percentage and 6.7% for the standard deviation when DPBM is used.  
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Table 6.3: Percentage of disturbed flow associated with DRPBM and DPBM evacuation plans 

Dist. Model 
Confidence level 

(1- 𝝐) 

Ave (STD) per test sample 

C1 C2 C3 C4 C5 C6 

N
o

rm
a

l DRPBM 

95% 
0.0% 

(0.0%) 
9.3% 

(4.2%) 
2.3% 

(1.9%) 
12.4% 
(4.1%) 

16.7% 
(3.0%) 

4.0% 
(2.3%) 

90% 
5.7% 

(4.1%) 
9.5% 

(4.0%) 
1.5% 

(1.2%) 
12.9% 
(3.3%) 

16.9% 
(3.3%) 

2.9% 
(1.9%) 

80% 
7.3% 

(4.5%) 
12.4% 
(5.3%) 

6.9% 
(1.2%) 

16.3% 
(3.1%) 

17.6% 
(2.9%) 

4.3% 
(1.9%) 

DPBM 
11.7% 
(6.7%) 

11.7% 
(6.7%) 

12.8% 
(6.9%) 

7.0% 
(2.0%) 

21.4% 
(6.7%) 

24.9% 
(4.9%) 

U
n

if
o

rm
 

DRPBM 

95% 
0.0% 

(0.0%) 
8.0% 

(4.2%) 
1.1% 

(1.3%) 
12.1% 
(3.4%) 

14.7% 
(3.7%) 

1.9% 
(1.9%) 

90% 
5.3% 

(4.0%) 
10.6% 
(4.4%) 

2.5% 
(2.1%) 

12.7% 
(4.1%) 

17.9% 
(3.0%) 

3.0% 
(2.3%) 

80% 
5.6% 

(4.1%) 
12.9% 
(5.5%) 

2.9% 
(2.4%) 

13.0% 
(3.8%) 

18.1% 
(3.0%) 

4.5% 
(3.4%) 

DPBM 
7.2% 

(5.1%) 
7.2% 

(5.1%) 
13.8% 
(3.7%) 

5.2% 
(3.4%) 

17.5% 
(6.1%) 

23.58% 
(1.3%) 

          Ave: Average of disturbed flow percentage;      STD: Standard deviation of disturbed flow percentage   

The same results are obtained using a combination of other test samples with other 

distribution assumptions, indicating that compared to DPBM, the proposed DRPBM can 

provide evacuation plans with a lower percentage of disrupted evacuees. Note that the 

normal distribution shows a better result than the uniform distribution when DPBM is 

used. For instance, the average of the disturbed flow percentage resulting from the DPBM 

plan is 11.7% in test sample C1 under a normal distribution and drops to 7.2% under the 

uniform distribution. However, we did not find  the same results for DRPBM plans. 

We also observe that the average of the disturbed flow percentage under DRPBM 

with higher values of confidence level (1-𝜖𝑝𝑛𝑡𝑎) outperforms the DRPBM with lower 

confidence levels. For instance, under test sample C1, the average amount of disturbed 

flow percentage equals 0% when a confidence level of 95% is used. However, this average 
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increases to 7.3% when the confidence level is reduced to 80%. This difference is due to 

the fact that by increasing the confidence level, the risk level 𝜖𝑝𝑛𝑡𝑎 decreases, resulting in 

a reduction in the estimated amount of disruption time (𝐷𝑇̅̅ ̅̅ 𝑎 −√
1−𝜖𝑝𝑛𝑡𝑎

𝜖𝑝𝑛𝑡𝑎
𝜎𝑎). Figure 6.1 

displays the estimated amounts of road disruption time for a set of arcs 

(𝑎3, 𝑎5, 𝑎8, 𝑎10, 𝑎12, 𝑎14, 𝑎16, and 𝑎19) under different amounts of the risk level 𝜖𝑝𝑛𝑡𝑎. 

 

Figure 6.1: Estimation of DT under different values of 𝜖 

Through a reduction in the risk level, the produced evacuation plan, which is built on 

the lower values estimated for the disruption times, is less affected by the actual 

occurrence of early disruptions in the network. To better demonstrate the effectiveness of 

our proposed approach, in Figure 6.2 we display the percentage of reliability 

improvement of DRPBM with different confidence levels under different test samples. The 

reliability improvement percentage refers to the percentage reduction of disturbed 

evacuees when DRPBM is used in comparison to DPBM. As in our previous conclusion, 

DRPBM outperforms DPBM and improves the reliability of the evacuation plan, and the 

higher the confidence level of DRPBM, the more reliable the plan is in the face of possible 

road disruptions. 
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Figure 6.2: Reliability improvement by DRPBM under different confidence levels 

6.3.2      Numerical Experiments on a Large-Scale Network 

We continue the experiments on a large metropolitan area evacuation network. 

Figure 6.3 displays the transportation network of the Greater Houston area in Texas (Lim 

et al., 2012). The city, which is the fourth-largest city in the United States., is situated on 

the Gulf Coast and is one of the most vulnerable metropolitan cities in the area as it has 

experienced many severe hurricanes and floods over the past decades. In Figure 6.3, the 

endangered areas are represented by the 13 nodes (𝒩1–𝒩13), and the destination and 

safe shelters are represented by the last four nodes (𝒩39–𝒩42). The rest of the nodes are 

intermediate nodes that connect the considered 107 roads displayed by directed arcs. 

The input data used for this network is obtained from the work in Lim et al. (2012). 

The road transit times are considered to be multiples of 𝜏 = 30-minute intervals. The total 

number of evacuation vehicles on the 13 source nodes is 779,400. To evacuate evacuees 

on each of the first six nodes (𝒩1–𝒩6), 1,400 evacuation vehicles are required; for each 

source node (𝒩7–𝒩10), 48,000 vehicles are needed, and for source nodes (𝒩11–𝒩13), 

193,000 vehicles are required. 
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Figure 6.3: Houston transportation network 

All possible paths between all O-D pairs are enumerated by using the solution pool 

feature of CPLEX, solving the shortest path problem for each O-D pair. The solution pool of 

paths is refined, and 140 candidate paths are selected to be used in the optimization 

model. The DRPBMReduced is used to provide an evacuation plan for the Houston network. 

The computation time of running preprocessing Algorithm 1 was 61.23 seconds, while it 

took 5.78 seconds to solve the DRPBMReduced. The corresponding robust evacuation plan 

resulting from the heuristic approach is displayed in Figure 6.4. The horizontal axis 

displays the time intervals of the planning horizon, and the vertical axes illustrate the 

total number of evacuation vehicles that need to depart from the source nodes during 

each time interval. The total time required to complete the evacuation process and move 
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approximately 1,792,600 evacuees to safe destinations was 167τ. 

 
 
 

 
 

Figure 6.4: Robust evacuation plan for Houston transportation network 

6.4  Conclusion 

The study aims to investigate the hazard process with probable disruptions before 

the occurrence of a disaster to provide a proactive evacuation plan that is less affected by 

the actual realization of the road disruptions. It is assumed that since a proper database of 

disturbed roads in hazard situations is very unlikely to be available, accurate estimates of 

the disruption times are not possible to determine, and the probability distribution 
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function of road incident times is unknown. However, partial information, such as the first 

and second moment of the probability distribution functions, is accessible through the 

data. Accordingly, we propose a distributionally robust data-driven evacuation planning 

problem with known first and second moments. Since the developed distributionally 

robust data-driven model is intractable, the model is reformulated and the constraint that 

is subject to uncertainty is decomposed into three different sets of constraints to 

construct a MIP model (DRPBM). Moreover, to reduce the computational time of the 

model, we introduce a preprocessing algorithm that defines the value of an introduced 

parameter based on the robust linear approximations of the constraint subjected to the 

disruption uncertainty and the departure times of the evacuation flow on the evacuation 

paths. Next, we directly use this parameter in a reduced optimization framework 

(DRPBMReduced) that provides the same results as DRPBM but in less computation time. 

Numerical experiments were thoroughly conducted to compare the performance of 

the proposed DRPBM and DRPBMReduced with the deterministic model in the literature 

(DPBM) under different sample tests and under different assumptions for the actual 

probability distribution of the disruptions. The percentage of disturbed evacuation flow 

due to road disruptions is used as a measure for the performance comparisons. Results 

showed that our proposed approach outperformed the DPBM in providing plans with 

more robustness in the face of road disruptions as it yields lower percentages of 

disturbed evacuees. We also observed that higher confidence levels in the proposed 

distributionally robust data-driven models resulted in better performance of the resulting 

plan. Further experiments were conducted to compare the efficiency of DRPBMReduced in 

reducing computation time. The numerical experiments indicate that using DRPBMReduced 

results in a 63% decrease in computation time on average. More experiments projected 
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the efficiency of DRPBMReduced in solving evacuation problem for the large-scale network 

of the Houston metropolitan area. 
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Chapter 7     

Conclusion and Future Research 

In our research, we have addressed different problems pertaining to emergency 

evacuations under uncertainty in events. During the course of an evacuation, many 

unforeseen events may happen due to the unpredictable nature of hazardous events, 

influencing dynamics of the flow, road congestions and consequently prolonging 

completion time of the evacuation process. We contributed to the knowledge and 

research capacity in evacuation planning by introducing effective recovery and proactive 

strategies to mitigate the undesired effect of either probable occurrence of events 

or uncertainty regarding the data values associated with evacuation. We now illustrate 

the limitations of our proposed approaches and propose directions for future research. 

Dynamic Network Flow Optimization for Real-time Evacuation Reroute Planning under 

Multiple Road Disruptions 

In our rerouting framework we provided a recovery strategy to be used as a 

response to real-time road incidents. We used distinctive algorithms to calculate values 

for specific parameters related to road disruption. This enabled us to develop a MIP 

formulation for the problem. A heuristic algorithm was introduced to effectively calculate 

rerouting clearance time (the minimum amount of time required to mobilize disturbed 

evacuees to the safe shelters). Performance of the model was studied through various 

numerical experiments and the effect of three incident-related factors; (i) location of the 

disruption; (ii) time of disruption occurrence; and (iii) plan updating time, were 
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investigated on the efficiency of rerouting plan. As future work, one can extend this work 

by considering a contra-flow strategy to further reduce rerouting clearance time. It is also 

possible to consider parameter uncertainty in the model, such as travel times, alternative 

road capacity, and evacuees’ behavior. Extending the proposed approach which benefits 

from projecting variable traffic flow rates through the network framework as a basis for 

vulnerabilities analysis through developing a probabilistic mechanism that accounts for 

factors including simultaneous multiple occurrences can be another interesting topic for 

future work. 

Two-Stage Stochastic Model for Evacuation Planning: Adjusting the Plan Robustness under 

Possible Road Disruption 

In our proposed two-stage stochastic program we considered risk and impact of road 

disruptions in order to provide a proactive evacuation plan that is less affected under 

network disruptions. The mathematical model has two distinctive components: a 

structural component that is fixed and free of any variations in its input data, and a 

control component that is subjected to uncertainty in the input data. The upper level of 

the model consists of design variables that define our proactive evacuation plan. The 

lower level consists of both structural and control components and uses recourse 

variables to represent reroute planning for the disturbed flow (recovery strategy) after 

the realization of each disruption scenario. Two algorithms were introduced for their 

parameter calculations. With the help of these algorithms, specific parameters related to 

potential road incidents were calculated. The design and recourse variables were built in 

accordance with these parameters in such a way to develop a linear formulation structure 

and reduce computational complexity. Moreover, two robustness measures were 
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introduced to assess the solution optimality, as well as solution feasibility under each 

disruption scenario and a controller was used to make a trade-off between these 

measures. The study can be extended in the future by taking into account real-time 

information on traffic flow speeds along with lane closures. Considering the evacuation 

plan on a zonal basis in order to better prioritize the evacuation can be another extension 

for this work. Providing a fast solution procedure to be adopted for large scale 

evacuations could be another interesting area to explore. 

Data-Driven Robust Optimization Approach Using Support Vector Clustering (SVC) 

In our data-driven robust optimization framework, we used an unsupervised 

machine learning approach which is often used in pattern recognition to efficiently 

capture the distributional geometry of massive demand data. Accordingly, we used 

intersection kernel support vector clustering (SVC) and a piecewise kernel method to 

build compact uncertainty sets that efficiently cover data associated with the evacuation 

demand (number of to be evacuees) at the evacuation source nodes. Based on KKT 

conditions and the dual problem of SVC, we incorporated the “SVC-based” uncertainty set 

into the proposed data-driven optimization framework. Next, we derived a more compact 

uncertainty set by intersecting the previous uncertainty set (SVC-based) and a 

conventional robust optimization uncertainty set (e.g., box uncertainty set) and derived 

its associated data-driven robust optimization framework. The study can be extended in 

the future by taking into account demand-loading approaches in evacuation planning, 

which addresses time-dependent evacuation demands. Another possible research 

direction is to adopt dimension reduction approaches such as PCA and ICA to be 

integrated with the data-driven optimization models to better handle data in feature 
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spaces with high dimensions. 

Distributionally Robust Chance-Constraint program for Evacuation Planning under Partial 

Information of Probability Distribution of Road Disruption Times 

In our proposed distributionally robust chance-constraint program we considered 

that the probability distribution function of road disruption times is unknown and only 

partial information is available. Using moment information of the probability 

distributions, we developed a framework to provide an evacuation plan that is less 

affected by the probable road disruptions and lead to less disturbed evacuees stranded on 

the evacuation roads. To provide a tractable distributionally robust chance-constrained 

formulation, we decomposed the uncertainty related constraint into three different sets of 

constraints by using auxiliary variables. Moreover, to even further reduce the 

computational burden, we introduced a heuristic framework including: (i) a heuristic 

algorithm to calculate specific disruption related parameter; and (ii) a reduced model 

built upon the aforementioned parameter which results in less variables and constraints 

and, consequently, computational time. Extensions to this work could be simulating 

rerouting strategies after the realization of probable disruptions to more realistically 

reflect the undesired effect of road disruptions on the traffic flow. Another extension is to 

develop the distributionally robust program under other partial information assumptions, 

such as support or symmetry information, for the probability distribution function of the 

uncertain parameters.  
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