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ABSTRACT

Shape memory alloys (SMAs) are metallic materials that have the ability to ”re-

member” their previous form when subjected to appropriate thermomechanical

stimuli. This ”smart” property, which is attributed to a reversible, diffusionless,

solid-to-solid phase transformation from austenite to martensite, renders SMAs

desirable for applications in the medical, aerospace, and automotive industries.

Recent research also demonstrated that SMAs exhibit tailorable bulk thermal ex-

pansion (TE), projected to achieve coefficient of TE (CTE) over a wide range of

positive and negative values, via martensite variant texturing by taking advan-

tage of the significant intrinsic TE anisotropy of the martensite lattice. There is,

therefore, a remarkable potential of SMAs in applications in which TE is a criti-

cal design factor, such as high precision instruments in optical applications and

satellite antennas. To ultimately realize the true potential of SMAs in engineer-

ing applications as ”smart” or low-CTE materials, constitutive models capable

of effectively describing their response to thermomechanical stimuli are needed

to enable efficient design of SMA-based devices. In this thesis, a constitutive

model is proposed that i) can efficiently describe reversible phase transformation

from austenite to self-accommodated and/or oriented martensite, (re)orientation

of martensite variants, minor loops, latent heat effect and tension-compression

asymmetry, and ii) tailor the bulk TE tensor based on an effective description of

martensite variants texture. The strengths of the proposed model lie in i) its ability

to account for all the aforementioned aspects aspects of the deformation response

of SMAs and highlight their collective importance in complex non-proportional

thermomechanical loading, and ii) its innovation to accurately tailor the TE evolu-

tion during deformation processing. The model is validated against experimental

results under tension/compression/torsion box loading and on the CTE evolution

due to orientation of self-accommodated martensite, and verified by numerical

simulations of 3D SMA-based structures.
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1 INTRODUCTION

1.1 Shape Memory Alloys and their Applications

Advances in technology drive the development of ”smart systems” with adap-

tive and intelligent features, which is, however, highly restricted by material lim-

itations. A new category of materials, called ”smart materials”, has emerged,

which includes Piezoelectrics, Electrostrictives, Piezomagnetics and Magnetostric-

tives and Shape Memory Alloys (SMAs). SMAs are metallic materials which can

sustain large deformation and recover to their initial size under appropriate ther-

momechanical stimuli. SMAs have drawn significant attention and interest in

recent years in a broad range of engineering applications in the aerospace, auto-

motive, and biomedical industries.

Recent experiments [73] also demonstrated that SMA exhibit tailorable bulk

thermal expansion (TE), projected to achieve coefficient of TE (CTE) values be-

tween a wide of range of positive and negative values, via martensite variant

texturing by taking advantage of the significant intrinsic TE anisotropy of the

martensite lattice; one or more lattice directions of martensite lattice exhibit nega-

tive thermal expansion upon heating. Thus new innovative applications of SMAs

are booming in domains where TE is a critical design factor and dimensional sta-

bility and/or thermal fatigue resistance over a wide range of temperatures are

required, such as high precision instruments in optical applications and satellite

antennas.

1.1.1 Applications in the automotive and aerospace industries

The mechanical simplicity and compactness of SMA actuators reduce the scale,

weight and cost of automotive components significantly and provide substantial

performance benefits. In aerospace researchers, SMAs are applied in active and

1



adaptive structures toward morphing capability and system-level optimisation un-

der various flight conditions. We take the application of morphing chevron of

’smart wings’ as an example. Boeing has developed an active serrated aerody-

namic device with wire SMAs actuators, which is also known as a variable geom-

etry chevron (VGC) (see in Figure 1.1). This device has proven to be very effective

in reducing noise during take-off by maximizing the chevron deflection, and also

increasing the cruise efficiency by minimizing the chevron deflection during the

remainder of the flight.

Figure 1.1: SMA wire actuators of Chevron (VGC) [67, 79]

The author in [47] concludes current research or development trends of SMAs

in automotive and aerospace industries, they are:

• Self-healing and sensing structures/components

• Morphing capability for aerodynamic and aesthetic features

• High temperature actuators

• Noise, vibration and harshness

• Dampers/isolators

• Rotary actuators

2



Figure 1.2: Application of SMAs actuators in robots [47]

1.1.2 Applications in robotics

SMAs have been used in a diverse range of commercial robotic systems, es-

pecially as micro-actuators or artificial muscles. Several flying robots have been

developed with SMAs, such as the BATMAV [30, 13] and Bat Robot [23] . The

SMA actuators are equipped to control the stability of movements flight (see Fig-

ure 1.2). Additionally, a new SMA actuator design for a prosthetic hand was

introduced [66], where two SMA actuators are used to actuate the robotic fin-

ger instead of using the conventional push–pull type and the biased spring type

(Figure. 1.2).

1.1.3 Applications in biomedicine

SMAs have lots of excellent properties for the biomedical instruments, for ex-

ample, their functional properties like shape memory effects, high corrosion resis-

tance. Moreover, the bio-compatibility with human tissues and bones, gives SMAs

with substantial advantages and great opportunities for further commercial suc-

cess in the biomedical fields, even though, it is significantly more expensive com-

pared with other candidate materials like stainless steel.

The widest application of SMAs in the biomedical field is the self-expanding

stent, which is being used extensively to treat occlusions in endovascular arterial

lumens, such as narrowing of the blood vessels. The stent was firstly crimped

and mounted on a tube catheter outside the body, as shown in Figure 1.3. And

3



Figure 1.3: Self-expanding stent [8]

then the stent is inserted into the blood vessel to the position with arterial diseases

by the delivery system. When releasing the delivery tube, the NiTi SMAs stent

self-expands and exerts a radial force on the blood vessel to keep it open.

1.2 Phase Diagram of SMAs

SMAs are metallic materials which can sustain large deformation and recover

to their initial shape under reasonable thermomechanical load. The capability

of the material is because of the exhibit of a reversible, diffusionless, solid-to-

solid phase transformation from austenite to martensite. Large inelastic strain

induced during forward phase transformation from austenite to martensite can

be recovered during reverse phase transformation. This dissertation focuses on

modeling the material response under thermomechanical loading.

Austenite, the parent phase of SMAs, is usually characterized by a cubic crystal-

lographic structure, and is stable at high temperature and low stress. Martensite,

which is characterized by lower-symmetry crystallographic structure (for exam-

ple, monoclinic of NiTi SMAs), generally exits in two states, self-accommodated

(twinned) martensite and oriented (de-twinned) martensite. As shown in Fig-

ure 1.4, in the absence of applied stresses, the temperature-induced variants of

4



Figure 1.4: Schematic of phase transformation of SMAs

the martensite phase usually arrange themselves in a self-accommodating man-

ner, compensating each other. According to the terminology introduced in [95],

the self-accommodated martensite transforms to and from austenite without any

macroscopic deformation. The formation of oriented martensite is ascribed to

mechanical loading. Mechanical loading forces the martensite variants to orient

towards the direction of the applied loading yielding a macroscopic shape change

and the oriented martensite is formed. The oriented martensite is stable at low

temperature and high stress.

To describe the phase transition of SMAs, phase diagrams of SMAs are de-

veloped in terms of stress and temperature, as shown in Figure 1.5. The phase

diagram consists of equilibrium lines or phase boundaries that refer to lines that

declare conditions under which multiple phases can coexist at equilibrium. Phase

transformations occur along the lines of equilibrium.

In the phase diagram Figure 1.5, the three phases, austenite, self-accommodated,

and oriented marteniste, are denoted as A, Msa, and Mo, respectively. M f , Ms, As,

and A f are the martensite-finish, martensite-start, austenite-start, austenite-finish

transformation transition temperatures at zero load level, and σs and σf stand

5
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Figure 1.5: Stress–temperature phase diagram

for the critical values of stress required for initiation and completion of orien-

tation at a given temperature, respectively. The white strips indicate transition

from one phase to another and are labeled accordingly. When multiple strips

overlap, multiple transitions are possible. The different width of the forward and

reverse phase transformation strips indicate asymmetry between forward and re-

verse phase transformation. The different slopes of those strips indicate load and

temperature dependence of the hysteresis loop width. Note also the tempera-

ture dependence of the orientation strip. The relevance of this phase diagram to

experimental results can be traced in [84] and [4].

In this dissertation, three types of constraints (boundary lines) are defined to

model and describe the material response under thermomechanical loading.

• Phase transformation, phase transitions between austenite and martensite (self-

accommodated and oriented), both temperature-induced and stress-induced

are included. Phase transition from autenite to martensite is defined as for-

ward phase transformation, and vise versa is referred to as reverse phase

transformation.
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• Orientation, it indicates the process that mechanical loading forces the self-

accommodated martensite variants to orient towards the direction of the

applied load, and the process is constrained by σs and σf .

• Reorientation, it refers to the direction changes of the oriented martensite

attributed to the changes of loading path. According to this definition, the

magnitude of inelastic strain keeps constant during the direction changing.

This process actives when local non-proportional evolution is induced by the

loading complexity or the geometric nonlinearity.

The famous material behavior of SMAs, such as shape memory effects (SME) and

psuedoelasticity, and some secondary features, like tension-compression asymmetry,

minor-loop, thermomechanical coupled response, anisotropic of thermal expansion, will

be discussed in the following sections.

1.3 Primary Features of the Deformation Response of SMAs

1.3.1 Shape Memory Effect

Shape memory effect (SME) is one of major material behaviors of SMAs, which

is associated with temperature-induced phase transformation. It represents a pro-

cess when the material is deformed while in the self-accommodated martensitic

phase due to mechanical loading and then unloaded while at a temperature below

As. The material maintains the deformation until it is subsequently heated above

A f , the SMA will regain its original shape by transforming back into the parent

austenitic phase.

The detailed loading paths of SME are listed below.

1. Starting from the parent phase austenite (point A in Figure 1.6 (a)), and cool-

ing the material to the temperature below Ms under stress-free condition, which

leads to the formation of self-accommodated martensite (point B). No apparent
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Figure 1.6: Shape memory effect of SMAs

deformation is generated in this step.

2. Applying stress loading on the self-accommodated martensite (Point B) un-

til the applied stress exceeds the start stress level (σs, Point C), the orientation

process initiates, and results in the growth of certain favorably oriented marten-

sitic variants. The orientation process is completed at a stress level, σf (Point D),

that is characterized by the end of plateau in curve C→ E.

3. The material is then elastically unloaded from E to F and the oriented

martensite state is retained.

4. The deformation then recovered due to heating from Point F to H. Upon

heating, the reverse transformation initiates when the temperature reaches As, (at

Point G) and completes at temperature A f (Point H), where the material fully

transforms back to austenite.

The unique property, shape memory effect, provides SMAs a remarkable ad-

vantages to be desirable materials for actuators. A simple actuating loading path,

which referred to a temperature-induced phase transformation under isobaric

condition, is illustrated in Figure 1.7. The material initially subjected to a con-

stant mechanical loading which results to developing a stress level higher than σf

8



Temperature

St
re
ss

𝐴! 𝐴"𝑀!𝑀"

𝜎!

𝜎" 1

𝐴"#𝐴!#

𝑀!
#𝑀"#

2

(a) Loading path

Temperature

St
ra
in 𝐴!"

𝐴#"

1

𝑀#"

𝑀!
"

2

(b) A typical strain-temperature response un-
der isobaric condition

Figure 1.7: Temperature-induced phase transformation under isobaric loading

(lower than σMs , to make sure that the phase transformation is completely induced

by temperature and psuedoelasticity doesn’t affect ).

The actuation starts at relative high temperature, above Aσ
s , and the material

is at austenite. Cooling the material as the Path 1 shown in Figure 1.7(a), the

forward phase transformation initiates when the temperature reaches Mσ
s and

completes when it cools to Mσ
f . Large deformation yields during this process.

The deformation recovers to the initial shape by heating the material as Path 1

shown in Figure 1.7(a). The reverse phase transformation initiates and completes

at temperature Aσ
s and Aσ

f .

Although the materials have good capabilities, the real application of actuator

is still restricted by the technical issues, such as keeping constant stress level on

the material and speeding up the cooling process.

1.3.2 Psuedoelasticity

Another major material characteristic of SMAs is pseudoelasticity, also called

as superelasticity. The pseudoelastic behavior is associated with stress-induced

transformation, which leads to strain generation during loading and subsequent
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strain recovery according to unloading at a constant temperatures above A f . A

pseudoelastic loading path usually starts at a sufficiently high temperature where

austenite is stable, then applies load to a state at which oriented martensite is

stable, and finally reverses to the austenitic phase by unloading. Generally, the

loading cycle is performed under constant temperature which is above A f .
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Figure 1.8: Psuedoelatic of SMAs

The corresponding stress-strain response in Figure 1.8(b) indicates that the

forward phase transformation initiates at stress level (σMs ) and complete at (σM f ).

The onset of reverse phase transformation is at stress level (σAs ) and the end is

at (σA f ). According to in Figure 1.8(a), the stress level (σMs , σM f , σAs , σA f ) are

influenced by the temperature and the temperature-stress slope.

1.4 Secondary Features of the Deformation Response of SMAs

1.4.1 Tension-compression asymmetry

The tension-compression asymmetric transformation behavior, which is firstly

reported by [109] in 1971, typically expressed a reduced transformation stress and

greater transformation strain under tensile testing when compared with compres-

sion. In recent decades, experimental and theoretical analytical research has been
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performed in macro, micro as well as nano scale of NiTi SMAs. Figure 1.9(b)

presents a study of tension-compression of SMAs in nano-scale [103][18], and Fig-

ure1.10 indicates macro scale experiment which comparing the average nominal

axial stress-strain response under uniaxial tension and compression on tubular

specimens. The characteristic is mainly attributed to the crystalline texturing of

martensite variants.

Figure 1.9: Asymmetric research in nano scale from [103] and [18]

In paper [96], the author concluded the tension-compression asymmetric re-

sponses of polycrystal NiTi SMAs, they are:

1) Consistent with the Lüders-type deformation, and a transformation stress

plateau exists under uniaxial tension. However, for a compressive load, a steady

increase in stress can be observed during the transformation,

2) The critical transformation stress for the forward and reverse martensitic

transformation and its hysteresis width under uniaxial compression are greater

than under uniaxial tension. However, the length of transformation strain is longer

under uniaxial tension,

3) Inhomogeneous deformation occurring under uniaxial tension generates a

localized propagating transformation front. The deformation under compression

is approximately homogeneous without transformation front,

4) The temperature dependence slope of the critical transformation stress is

greater under compression than tension.
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Figure 1.10: Asymmetric research in macro scale from [50]

1.4.2 Minor loops

When SMAs are subjected to cyclic loading, either thermal or mechanical, an

important characteristic of SMAs should be considered, which is referred to as

minor loops. Minor loops are formed when the phase transformation direction

is reversed before the completion of the respective transformation, as illustrated

in Figure 1.11. The experiment was performed by Muller and Xu [77], and it

considers that states inside the major hysteresis loop are metastable. Partial yield-

ing and recovery occurs whenever the state approaches the line of unstable phase

equilibrium from below or from above respectively. Scalet [91] porposed a model

based on the assumption that the same energy level state is achieved after a series

of loadings, the material also obtains the respective microstructure and, conse-

quently, the same phase.

High attention should be paid on the behavior when designing the SMA ac-

tuators, especially for those shape adaptive structural applications which require

precise movement to various target shapes and variable amplitude trajectories.

And this characteristic is important since it largely affects the amount of gener-

ated transformation strains, the actuation frequency , and the fatigue life of the

component [53, 90, 14, 91].
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Figure 1.11: Major and a closed minor hysteresis cycle under constant mechanical
load [77]

1.4.3 Latent heat effects

As thermomechanical coupling is termed the phenomenon where the ther-

mal response of a structure affects its structural response and vice versa. This

phenomenon is prominent in SMA behavior [94, 20, 63, 9, 59, 106] since a me-

chanical load can provoke the occurrence of marentistic transformation leading to

latent heat release/absorbtion and consequently to variation in materials temper-

ature and in the same manner a change in the temperature can lead to structural

changes (i.e. shape recovery). This phenomenon is very important since it intro-

duces rate dependent effects in material response despite the rate independent

nature of the diffusionless martensitic transformations.

Figure 1.12 demonstrates the experimental DSC data reported by [59], wherein

the relative heat flow is plotted as a function of temperature. Heat absorption from

martensite to austenite phase transformation results in a ridge along the heating

part of the curve, while heat generation from austenite to martensite phase trans-

formation results in a valley along the cooling part. The peak and bottom points

on the heating and cooling parts, corresponding to temperatures θMA = 339 K and

θAM = 303 K denote average temperatures for forward and reverse phase transfor-

mation respectively and the area under the curve in each case, representing phase

13
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Figure 1.12: Heat generation and absorption (latent heat) during thermal-induced
phase transformation [59]

transformation latent heat, which is assumed to be the same.

The phenomenon was also exposed in [94] based on the psuedoelastic loading

path. Figure 1.13 illustrates a pseudoelastic uniaxial tensile tests performed on

polycrystalline NiTi specimens (50.1 at.% Ni) at three different strain rates 4% ·

s−1, 0.4% · s−1, 0.04% · s−1. In the referenced experiment, the heat exchange with

the surrounding takes place by means of natural air convection with the external

temperature maintained at 343 K. The stress-strain response is presented in Figure

1.13(a), and the relative temperature variations is in Figure 1.13(b).

To understand the phenomenon, an explanation is given as follows. If a quasi-

static loading is assumed, the temperature changes due to endothermic or exother-

mic reactions are compensated by the convection between the material and the am-

bient air, keeping the temperature unchanged. Contrary in dynamic loading paths

during the forward transformation the convection is not sufficient to compensate

the generated energy due to the exothermic reactions. Therefore, the material

temperature is increasing hindering the evolution of transformation and changing

materials response. In the same manner during the unloading the temperature

of the material is decreasing due to the endothermic reaction which prevents the
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Figure 1.13: Thermomechanical coupling response of SMAs at different strain
rates reported by [106] and [94]

evolution of the transformation and leads to further changes of the material re-

sponse. To this end, in dynamic loading paths, SMAs response is expected to

deviate significantly in comparison to its quasi-static response due to the presence

of strong thermomechanical coupling.

1.5 Tailorable Thermal Expansion of SMAs

Thermal expansion (TE) of SMAs is a critical design factor in engineering ap-

plications in which thermal fatigue resistance or dimensional stability over a wide

range of temperatures are required [28, 99, 46]. Such applications drive the design

of materials and structures with negative TE or zero TE. The most widely known

mechanisms that yield negative TE include the magneto-volume effect, atomic

radius contraction upon electronic transitions, and flexible networks [100].

Metallic materials that undergo martensitic transformation have been recently

shown to exhibit tailorable bulk TE with thermal expansion and contraction ranges

projected to achieve TE tensor values between -40 ppmK−1 and +50 ppmK−1
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due to the TE anisotropy of the low-crystallographic-symmetry martensite lat-

tice [73, 1, 34]. The comparison of the lattice parameter mismatch between austen-

ite and martensite phases can be used to predict the sign and relative magnitude

of the thermal expansion rate for any given direction of the martensite lattice.

The martensite lattice along a lattice vector direction in which the interatomic dis-

tance is greater (lower) than the interatomic distance along the same vector in

austenite at the same temperature is observed to contract (expand) when heated.

Martensitic materials with anisotropic crystallographic TE include shape memory

alloys (SMAs) (e.g., NiTi, NiTiPd, CoNiGa, NiMnGa, and TiNb), α-uranium [64]

and lead titanate. In these materials, the TE anisotropy of bulk polycrystals can

be exploited through crystallographic and martensite variant texturing upon de-

formation processing. Materials with ordered martensite can be textured through

variant (re)orientation [73]. For example, tensile deformation of a polycrystalline

NiTiPd SMA demonstrated sufficient martensite orientation for TE tensor values

to change from +14 ppmK−1 to -3 ppm K−1 after 5% tensile deformation. In ma-

terials with disordered martensite, simple deformation processing such as rolling

produce crystallographic texturing, creating anisotropically varying (anvar) TE

alloys [73, 34].

Figure 1.14 gives an example of thermal expansion evolution according to

martensite state at different strain levels. In the experiments [73], the material

was uniaxially cyclically strained in tension while at the martensite state. Five

loading–unloading cycles were performed with the maximum strain reached in

each loading equal to 1.0, 1.9, 2.7, 4.0 and 5.0%, respectively, as shown in Fig-

ure 1.14 (a). A heating (420 K)-cooling (300 K) cycle was then performed after

each mechanical loading when the material reaches zero stress level. The strain-

temperature response was shown in Figure 1.14 (b) and the evolution of thermal

16



0 1 2 3 4 5
ε [%]

0

100

200

300

400

500

600

σ 
[M

Pa
]

1st cycle
2nd cycle
3rd cycle
4th cycle
5th cycle

(a) Cyclic stress–strain response

275 300 325 350 375 400
T [K]

−0.05

0.00

0.05

0.10

0.15

ε 
[%

]

Initial
After 1st cycle
After 2nd cycle
After 3rd cycle
After 4th cycle
After 5th cycle

(b) Strain–temperature responses of the un-
deformed state and after each loading–
unloading cycle in the direction of loading

0 1 2 3 4 5
ε [%]

−5

0

5

10

15

20

CT
E 

 [1
0−6

/K
]

(c) Evolution of the TE tensor component
(CTE) in the loading direction, calculated
from the strain–temperature response in
(b), as a function of the maximum strain
achieved in each loading–unloading cycle
in (a)

Figure 1.14: NiTiPd response observed in the experiments performed in [73]

expansion attributed to the strain level is presented in Figure 1.14 (c). It is obvi-

ously to see that the thermal expansion tensor is highly affected by the magni-

tude martensite variants. Further researches also indicate that thermal expansion

evolves with the directions of martensite variants.

1.6 Constitutive Models of the Thermomechanical Response of SMAs

Proposed in Literature

Modeling of the deformation response of SMAs has been an active research

field during the last few decades [60, 83, 57, 101, 58, 22, 17, 81, 116, 25, 130, 104, 44,
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108, 132]. The majority of the phenomenological models addressing the deformation

response of polycrystalline SMAS can be characterized as classical J2-flow theory

based models. These models rely on continuum thermomechanics with internal

variables to account for the changes in the microstructure, do not directly depend

on material parameters at the microscopic level, and are easily implementable in

numerical methods for the solution of boundary value problems on the struc-

tural (macroscopic) level. The choice of the evolution laws for the internal state

variables is a key point in their formulation. In general, two main approaches

are noteworthy; the direct, in which the evolution equations are derived from a

postulated ”yield” function and the potential approach, in which the evolution

equations are derived from a ”dissipation” potential. The evolution equations are

either explicitly integrated or through a minimum principle (variational approach).

The finite strain SMA models proposed in literature are based on either the

additive split of the rate of deformation [76] or on multiplicative decomposition

of the deformation gradient into elastic and inelastic parts [19, 2, 106, 119]. The

additive decomposition based finite strain models achieve a simple model struc-

ture and an easier implementation procedure, which makes them widely adopted

in current available finite element softwares (e.g., Abaqus, ANSYS). To satisfy the

principle of objectivity, additive models are required to use an objective rate for

integrating the hypoelastic constitutive relation. The Eulerian logarithmic strain,

sometimes referred to as true or natural or Hencky strain, is the only strain mea-

sure that its corotational rate (associated with the so-called logarithmic spin) is the

rate of deformation tensor, also-called stretching [89, 112]. Other stress objective

rates (e.g., Zaremba-Jaumann-Noll rate, Green-Naghdi-Dienes rate, and Truesdell

rate) combined with the rate of deformation may result in spurious phenomena

(e.g., shear stress oscillation, artificial stress residuals, etc). Moreover, only the
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spherical and the deviatoric parts of the Hencky strain can, in an additive man-

ner, separate the volumetric deformation and the isochoric deformation from the

total deformation [113] and it is the only finite strain measure that satisfies the

so-called Seth-Hill requirements that strain should approach +∞ (−∞) when the

stretch approaches +∞ (0) [24].

Variant orientation is the main inelastic mechanism during proportional me-

chanical loading of self-accommodated martensite and variant reorientation has a

significant influence in the deformation response of SMAs during non-proportional

loading [102, 61, 41, 42, 35]. Experimental evidence under various loading paths,

such as tension–torsion, axial–shear, and biaxial paths [102, 41, 42, 35] have been

reported in literature highlighting the reorientation response of SMAs. Constitu-

tive models accounting for orientation include [84, 128, 74, 107] and those account-

ing for reorientation include [3, 16, 127, 92, 5, 125, 48]. At the single crystal level,

the tension–compression asymmetry reported in literature [21, 82, 45] is rooted

in differences in the (re)orientation/detwinning response of different habit plane

variants, their unidirectional nature1, and the size of precipitates [33, 31]. At the

polycrystalline level it is further rooted in texture [62]. Models that account for

tension–compression asymmetry include [6, 27, 129, 48]. In general the deforma-

tion response of SMAs is non-linear, path-dependent, and hysteretic. The hys-

teresis originates from energy dissipation accompanying phase transformation,

mainly caused by friction associated with the movement of austenite–martensite

interfaces. Models describing the hysteretic response under minor/partial/inner

loops, i.e., loops involving partial phase transformation as opposed to the ma-

jor loops that involve full phase transformation, can be roughly distinguished to

(i) Preisach models [68, 88], (ii) Duhem–Madelung models [26, 29, 69], and (iii)

1in contrast to dislocation slip, for example, that may occur in either the positive or negative
direction on a slip plane, the polar nature of the atomic arrangements for phase transformation
results in its unidirectional nature.
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thermodynamically-based continuum mechanics models [9, 97, 51, 65, 52]. As al-

ready mentioned, phase transformation can result in self-heating or self-cooling

of the alloy, depending on the transformation direction, with immediate conse-

quences on the deformation response. The isothermal assumption is valid for a

range of strain rates within the regime of quasi-static processes at room temper-

ature even for complex geometries and loadings [85]. At higher strain rates, the

generation or absorption of latent heat may have a strong impact on the defor-

mation response and the stress–strain hysteresis loop area of SMAs, as shown

experimentally in [93, 85, 38]. The rate dependence of hysteresis has been shown

to be actually non-monotonic with a hysteresis peak at an intermediate strain rate

which depends on ambient conditions and the minimum hysteresis at adiabatic

conditions [40, 39, 120, 122]. Thermomechanical coupling has been accounted for

in [7, 131, 16, 74, 75, 121, 124, 105, 123].

SMAs have been recently shown to exhibit tailorable bulk thermal expansion

(TE) response (through crystallographic and martensite variant texturing) with

thermal expansion and contraction ranges projected to achieve TE tensor values

between -40 ppm ppm K−1 and +50 ppm ppm K−1 due to the crystallographic

TE anisotropy of the low-crystallographic-symmetry martensite [73, 1, 34]. A

micromechanics-based single crystal model was proposed to describe the TE evo-

lution in NiTiPd during (re)orientation of martensite variants [126]. The single

crystal’s averaged TE tensor was approximated by the isotropic coefficient of TE

of the high-crystallographic-symmetry austenite (B2), the anisotropic TE tensor of

martensite (B19) (in the local coordinate system of each variant), the transforma-

tion relationships between a global coordinate system and each variant’s, and the

volume fraction of the variants forming in the crystal. In order to reduce the com-

putational cost of the model in simulating the TE of polycrystalline aggregates, the

authors further proposed a rate-dependent self-consistent scale-transition scheme.
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The extension of these models to other SMA material systems entails substantial

complexity in their construction, numerical implementation, and, particularly, pa-

rameter calibration at the microscopic level. Herein, a macroscale phenomeno-

logical model within the framework of irreversible thermodynamics with internal

state variables is alternatively proposed, in which physical rigor in its formula-

tion is offset by simplicity and reduced calibration (and in turn experimental) and

computational effort in capturing the overall TE response of polycrystalline SMAs.

The TE response description in the model relies on the volume fraction of the most

prevalent martensite variants and a macroscopic description of the ”effective” ori-

entation of the martensite variants. The common assumption in the macroscopic

models for the deformation response of SMAs, e.g., [57, 58, 3, 74, 4, 15], has been

that of a constant, isotropic TE tensor for martensite.

1.7 Motivation and Outline of the Dissertation

SMAs have been traditionally desirable in engineering applications that can

take advantage of the martensitic transformation occuring in these intermetallics

under appropriate stimuli. The recent discovery that SMAs exhibit tailorable bulk

TE renders SMAs desirable as low-CTE materials in engineering applications in

which dimensional stability is of outmost importance.

In order to ultimately realize the true potential of SMAs in engineering appli-

cations as ”smart” or low-CTE materials, constitutive models capable of effectively

describing their response to thermomechanical stimuli are needed to enable effi-

cient design of SMA-based devices. Although there are constitutive models pro-

posed in literature that address most of the aspects of the deformation response

of SMAs, none includes in a single formulation all those ones that are collectively

important under complex non-proportional thermo-mechanical loading and none
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can facilitate choosing deformation processing routes to achieve targeted CTE val-

ues.

The motivation of the present work is, thus, to address the aforementioned

limitations of existing constitutive models in i) adequately describing the defor-

mation response of SMAs under complex non-proportional thermo-mechanical

loading conditions, and ii) tailoring the CTE of SMAs during deformation pro-

cessing. The proposed model is based on the Eulerian logarithmic strain and the

corotational logarithmic objective rate and can efficiently describe the main in-

elastic processes associated with the thermomechanical deformation response of

SMAs, i.e., the growth/shrinking, orientation, and reorientation of variants. The

model adopts the magnitude of the inelastic strain, its direction, and the volume

fraction of martensite as internal state variables, allowing for an implicit descrip-

tion of a fourth, the volume fraction of oriented martensite. The resulting consti-

tutive response describes superelasticity, one-way shape memory effect2, orientation,

reorientation, tension-compression asymmetry, latent heat effect, and minor loops

assuming isotropic material responses, neglecting ferroelasticity, plasticity, cyclic

evolution, and irreversible strains due to retained martensite. The model can fur-

ther describe a number of secondary effects associated with phase transformation,

such as smooth thermomechanical response, dependence of hysteresis width on

bias load level under thermomechanical loading (and on temperature in isother-

mal mechanical loading), asymmetry between forward and reverse phase transfor-

mation, and it is flexible one to address the deformation response in the presence

of all phases, i.e., when austenite, self-accommodated and oriented martensite

co-exist in the microstructure. Moreover, the model can capture the overall TE

2in which forward phase transformation under no externally applied mechanical load results
in self-accommodated martensite as opposed to the acquired characteristic of the two-way shape
memory effect in which phase transformation results in oriented martensite even in the absence of an
externally applied mechanical load.
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response of SMAs based the volume fraction of oriented martensite and a macro-

scopic description of the ”effective” orientation of the martensite variants.

The dissertation is organized as follows,

• Chapter 2 presents a brief review of the fundamental elements for the consti-

tutive modeling of SMAs. These fundamental elements consist of the basic

kinematics from continuum mechanics, strain measure, the adopted objec-

tive rate, and the basic principles of thermodynamics.

• Chapter3 is the proposition of a finite strain constitutive model for poly-

crystalline SMAs. The model is developed through classical thermody-

namic laws combined with the standard Coleman-Noll procedure. The

scalar martensitic volume fraction ξ, effective inelastic strain magnitude

Hcur, scalar variable λr associated with reorientation and the second-order

inelastic strain tensor hin are chosen as the internal state variables to capture

the material response including forward/reverse phase transformation, ori-

entation and reorientation. The anisotropic thermal expansion of SMAs are

predicted based on the assumption that thermal expansion evaluates with

the orientation of martensite variants.

• Chapter 4 focuses on the return mapping algorithm of the constitutive model.

The numerical implementation is demonstrated in three sections. Pre-calculation

of the finite strain calculators is firstly introduced, including the calculation

of logarithmic rate and the according rotation tenor. The return mapping

algorithm is described in the second part. Finally, the consistent tangent

moduli tensors are listed.

• Chapter 5 presents the numerical simulations to validate the proposed model

against experimental results and verify the stability and efficiency of the nu-

merical algorithm. The model’s capability to capture all the aspects of the
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martensitic transformation, including the major thermomechanical response

(phase transformation and shape memory effect) together with their inher-

ent characteristics (tension-compression asymmetry, minor loops, latent heat

effect, phase transformation asymmetry between forward and reverse, tem-

perature and load dependence of the hysteresis width, temperature depen-

dence of the critical force required for (re)orientation) is demonstrated. The

model is validated against the experimental results on the deformation re-

sponse of SMAs under complex multiaxial non-proportional loading con-

ditions, such as tension/compression/torsion box loading. The results in-

dicate that the model significantly improves the prediction accuracy by ac-

counting for all the aforementioned aspects and highlight their collective

importance under non-proportional loading conditions. Furthermore, the

validation of the proposed model on tailoring the TE evolution response is

presented. The model also shows its ability to tailor the TE coefficient dur-

ing non-proportional deformation processing. Finally, three simulations of

complicated 3D structures (spring actuator, self-expanding stent and SMAs

tube buckling) are introduced to verify the stability of numerical algorithm.

• Chapter 6 provides summaries and conclusions of this dissertation.
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2 PRELIMINARIES

2.1 Kinematics

Figure 2.1: The schematics of mapping material point X in the reference configu-
ration to the spatial point x in the deformed configuration

In this section, we adopt the symbol B refers to as the material body. S and

V indicates the surface and volume of the body respectively (see in Fig. 2.1). A

body B can take on many different shapes or configurations depending on the

loading applied to it. We choose one of these configurations to be the reference

configuration of the body and label it B0 . The reference configuration provides a

convenient fixed state of the body to which other configurations can be compared

to gauge their deformation, typically it corresponds to the state where no external

loading is applied to the body at time t0. We denote the position of a particle P

in the reference configuration by X = X(P). Since particles cannot be formed or

destroyed, we can use the coordinates of a particle in the reference configuration

as a label distinguishing this particle from all others. Once we have defined the

reference configuration, the deformed configuration at time t occupied by the

body is described in terms of a deformation mapping function that maps the
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reference position of every particle X ∈ B0 to its deformed position x,

x = x(X, t). (2.1)

Therefore, the deformation process of point P between the reference config-

uration and the current configuration can be defined through the well-known

deformation gradient tensor F(x, t),

F(x, t) =
∂x
∂X

. (2.2)

The deformation gradient F can be divided into the polar decomposition equa-

tion,

F = RU = V R, (2.3)

where R is an orthogonal tensor, which is called the rotation tensor, U and V

are the right (or Lagrangian) or left (or Eulerian) stretch tensor, respectively. The

polar decomposition indicates that any admissible deformation processes for the

continuous body can be decomposed into a pure rigid body rotation followed by

a pure stretch, i.e., F = V R, or into a pure stretch first followed by a rigid body

rotation, i.e., F = RU.

The spectrum decomposition of the left/right stretch tensors can be received

as following, for right stretch U,

U =
3

∑
i=1

λiQi ⊗Qi, (2.4)

and for left stretch V ,

V =
3

∑
i=1

λiqi ⊗ qi, (2.5)

where the scalars {λ1, λ2, λ3} are called the principal stretches which are the
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eigenvalues of U and V , and the unit base vectors {Q1, Q2 Q3} and {q1, q2 q3}

are called, respectively, the Lagrangian and Eulerian triads dictating the Lagrangian

and Eulerian principal directions.

The right Cauchy-Green tensor C and the left Cauchy-Green tensor b can be

obtained based on the left/right stretch tensors, as follows:

C = FT F = U2, (2.6)

b = FFT = V2. (2.7)

Considering the kinematics rate, the velocity field v(x, t) of a motion is defined

as,

v =
dx
dt

= ẋ, (2.8)

and the gradient of the velocity v can be derived as,

l = ∇v(x, t) =
∂v
∂x

= ḞF−1, (2.9)

where l is the velocity gradient.

The velocity gradient l can be additively decomposed into a symmetric part,

the stretching (rate of deformation) tensor d and an anti-symmetric part, the spin

tensor w, which are defined as:

l = d + w, d =
1
2
(l + lT), w =

1
2
(l − lT). (2.10)

2.1.1 Strain measures

There are many different strain measures available in the literature, and there

is by no means a unique method of defining strain. In fact, a specific choice of
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strain measure is usually willful and mainly controlled by its mathematical conve-

nience for specific model construction. Despite the various preferences on differ-

ent strain measures, two major categories can be listed based on their formulation

triads. A category of strain measure is introduced as Lagrangian strain tensors as

follows, i.e., strain measures formulated by using Lagrangian triads. The Eulerian

strain tensors which have the Eulerian principal directions, i.e., strain measures

formulated based on the Eulerian triads [80, 43]. Based on the left stretch, the

Eulerian strain tensors are defined as Eqn.(2.11)3

e(m) =





1
m (V m − I); m 6= 0,

ln(V); m = 0.
(2.11)

The Eulerian strain tensors can be reformulated by virtue of the principal

stretches and Eulerian triads as,

e(m) =
3

∑
i=1

f (λi)qi ⊗ qi, (2.12)

where f (λi) is defined as,

f (λi) =





1
m (λm

i − 1); m 6= 0,

lnλi; m = 0,
(2.13)

λi and qi is the principal stretches and unit base vectors of left stretch tensor V

defined in Eqn. (2.5). Commonly utilized strain measures can also be deduced

from the discussed strain family. For examples, Hencky strain with m = 0 , the

Biot strain with m = 1, and Almansi strain with m = −2.
3In this equation, the logarithm of a tensor is defined and the definition is as follows: given a

tensor B, another tensor A is said to be a tensor logarithm of B if B = eA, where eA = ∑∞
n=0

An

n! .
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The proposed finite strain constitutive model is based on the Eulerian loga-

rithmic strain (Hencky strain),

h = ln(V) =
1
2

ln b =
1
2

n

∑
i=1

ln λibi, (2.14)

which is introduced as the logarithmic measure of the left Cauchy-Green defor-

mation tensor Eqn. (2.14) ( λi are the n distinct eigenvalues of b, and bi are the

corresponding eigenprojections bi = qi ⊗ qi expressed by the eigenvectors qi ).

2.1.2 Stress measures

Motions are accompanied by forces. Classically, forces in continuum mechan-

ics are described spatially by [36]:

(i) contact forces between adjacent spatial regions; that is, spatial regions that

intersect along their boundaries;

(ii) contact forces exerted on the boundary of the body by its environment;

(iii) body forces exerted on the interior points of a body by the environment.

Those body forces are exerted throughout the entire continua regardless of its

location and time and measured per volume in the reference body. Contact forces

per unit area in the deformed body and described in conception of stress.

Figure 2.2: The schematics of traction forces at current configuration
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One of the most basic axioms in continuum mechanics is Cauchy’s stress prin-

ciple which states that there exists a linear relationship between the surface trac-

tion t(x, n) and the unit normal vector n (see in Fig. 2.2), in other words, there is

a second-order tensor field σ such that the traction vector is given by

t(x, n) = σ(x)n. (2.15)

Cauchy stress tensor is defined in the deformed configuration and valid only

in an averaging sense for a sufficiently representative volume of material.

Another important stress measure that has the same principal directions as

Cauchy stress tensor is the Kirchhoff stress tensor τ defined in the Eqn. (2.16),

wherein J is the determinant of the deformation gradient F, i.e., J = Det |F|.

The scalar value J gives the volume change of a particle. Therefore, τ is also an

Eulerian variable defined in the current configuration,

τ = Jσ. (2.16)

The Kirchhoff stress tensor is regarded as an energetic conjugate pair with the

Hencky strain of its Eulerian type h (discussed in Section 2.22), and they are uti-

lized as stress and strain measures in the formulation of the proposed constitutive

model for SMAs.

2.1.3 Objective rate–logarithmic strain, logarithmic rate and logarithmic spin

Two kinematic assumptions, i.e., the multiplicative decomposition of defor-

mation gradient F (F = FeF in)4 and the additive decomposition of the rate of

deformation tensor d (d = de + din), are usually used in finite deformation the-

ory. Hyperelastic constitutive relation is often used in multiplicative models while

4The superscript e contributes to the elastic part and in contributes to the inelastic part.

30



hypoelastic constitutive equation is utilized for additive models.

The hypoelastic constitutive equations are more straight forward way and de-

signed in the form of a relation between a stress-rate and a strain-rate (or the

rate of deformation tensor). However, the ”objective” of the rate form should be

carefully considered. The mechanical response of a material should not depend

on the frame of reference. In other words, material constitutive equations should

be frame-indifferent (objective). If the stress and strain measures are Lagrangian

quantities then objectivity is automatically satisfied. However, if the quantities

are spatial (Eulerian), then the objectivity of the stress-rate and strain-rate may

not be guaranteed. Many well-known objective stress rates are proposed in lit-

erature, such as Zaremba-Jaumann rate, Green-Naghdi rate, and Truesdell rate,

etc.. However, the theories have been criticized for its failure to be fully integrable

to describe a simple recoverable elastic behavior. Many spurious phenomenons,

such as shear stress oscillation, dissipation or stress errors are observed in simple

elastic deformation [114].

The aforementioned issues regarding objective rates are resolved via the loga-

rithmic rate proposed by [114, 112, 111, 10, 11, 12, 70, 71]. The Eulerian logarithmic

(Hencky) strain is the only strain measure whose objective time rate with respect

to a corrotational frame yields the total stretching (or rate of deformation) d, which

is defined in Eqn. (2.10)

h̊ = ḣ + hΩL −ΩLh = d, (2.17)

where the superscript ”˚” denotes the objective logarithmic time rate of any tensor

a,

å = ȧ + aΩL −ΩLa, (2.18)
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defined by the logarithmic spin ΩL = w +
n
∑

α 6=β

(
1+(λα/λβ)
1−(λα/λβ)

+ 2
ln(λα/λβ)

)
bαdbβ, and

” ˙ ” denotes material time rate.

On account of Eqn. (2.18), relation

˙
RLTaRL = RLT

åRL (2.19)

holds, where the logarithmic rotation, RL, is defined from the differential equation

ṘL = ΩLRL; RL|t=0 = δ. (2.20)

The left hand side of Eqn. (2.19) represents the material time rate of a La-

grangian quantity and, thus, Eqn. (4.1) generates a one-parameter subgroup of

rotations that define a locally rotating coordinate system in which the material

time rates of the obtained rotated tensors remain unaltered by superposed spatial

rigid body motions [115]. Time integration of Eqn. (2.19), assuming a = h and

h|t=0 = 0, yields

h = RLT
(∫ t

0
RLh̊RLT

dt
)

RL 2.17
= RLT

(∫ t

0
RLdRLT

dt
)

RL. (2.21)

2.2 Stress Power

The stress power per unit volume at deformed configuration B is given by

Ẇ = Jσ : d = τ : d. (2.22)

Here, W is the stress power, σ is the Cauchy stress and τ = Jσ the Kirchhoff

stress (see in Section 2.1.2).

Eqn. (2.22) describes a physical quantity, the rate of work of the stresses on the

body. However, this expression for stress power is difficult to incorporate in the
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formulation of constitutive laws as it is based on the rate of stretching d. Hence,

to fulfill the conservation of energy requirement in formulating constitutive laws,

relation Eqn.(2.17) is introduced to Eqn.(2.22) to give

Ẇ = τ : h̊. (2.23)

The additive decomposition of d (e.g., d = de + din) also allows to split the rate

of work according to

Ẇ = Ẇe + Ẇ in = τ : (de + din), (2.24)

where Ẇ is related to the elastic part of the stress power,

Ẇe = τ : de = τ : h̊e, (2.25)

and he is the reversible elastic part of the Hencky strain.

We note in passing that with Eqn.(2.23) the above mentioned shortcoming of

the Eulerian formulation can be overcome, namely, the stretching d can be ex-

pressed as logarithmic rate of the Hencky strain h. This allows in a very straight-

forward manner to extend the classical description of elastic–inelastic material for

small deformations, including the whole thermomechanical frame, to finite defor-

mations. We therefore have to replace in these relations the infinitesimal strain ε

by Hencky strain h and the material time derivative of any tensorial quantity by

the logarithmic rate of these tensors.

2.3 Fundamental Principles of Continuum Mechanics

The basic physical laws that govern the behavior of continuum systems are

[98, 117]:
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1. Conservation of mass,

2. Balance of Linear Momentum,

3. Balance of Angular Momentum,

4. Conservation of Energy (First principle of Thermodynamics),

5. Entropy Inequality (Second principle of Thermodynamics).

According to the the definition of undeformed configuration (B0) and de-

formed configuration (B) in Section 2 (See Fig. 2.1), tensor fields can be described

in the referential (material) form based on X and spatial form based on x. The

time derivative of fields exist particularly apparent difference between the two de-

scriptions. Consider a field g, which can be written within the material or spatial

descriptions,

g = g(x, t) = ğ (X, t) , (2.26)

here g represents the value of the field variable, while g and ğ represent the

functional dependence of g on specific arguments. There are two possibilities for

taking a time derivative:
∂ğ (X, t)

∂t

∣∣∣∣
X

, (2.27)

material time derivative, which X is held fixed during the partial derivative; or

∂g (x, t)
∂t

∣∣∣∣
x

, (2.28)

local rate of change of g, of which the rate of change is held fixed at spatial

position x.

The material time derivative is the appropriate derivative to use whenever

considering the time rate of change of properties tied to the material itself, and it
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is denoted as Eqn. (2.29) in the following section,

Dg
Dt

=
∂ğ(X, t)

∂t
(2.29)

In some cases, it may be necessary to compute the material time derivative

within a spatial description. This can be readily done by using the chain rule,

Dg
Dt

=
Dg(x(X, t), t)

Dt
=

∂g(x, t)
∂t

+
∂g(x, t)

∂xj

∂xj(X, t)
∂t

=
∂g(x, t)

∂t
+

∂g(x, t)
∂xj

vj(x, t).
(2.30)

Conservation of Mass

This principle indicates that mass is a fixed quantity that cannot be formed

or destroyed, but only deformed by the applied loads. That means the mass of a

continua keeps constant from one configuration to the next,

m0(B0) = m(B), (2.31)

then the rate of mass is equal to zero. According to the Eqn.(2.30), time derivative

in local (spatial) form is written as,

ṁ =
∫

V
ρ̇ + ρ(∇ · [v])dV = 0, (2.32)

where v is the velocity fields of the material point, and ∇ · [v] represents the

divergence of the velocity field, and ρ is the density of the material in the deformed

configuration B. The conservation of mass in spatial form can be written as Eqn.

(2.33),
∂ρ

∂t
+ (∇ · [ρv]) = 0. (2.33)

Balance of Linear Momentum
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Balance of linear momentum indicates that the rate change of linear momen-

tum of a continuum system is equal to the total external force acting on the system,

including the body forces as well as the traction act on the surfaces. The expres-

sion can be given as,

D
Dt

∫

V
ρv dV =

∫

V
ρ bB dV +

∫

∂V
t dS, (2.34)

where bB is the body force 5 field act on the entire system, and t is the traction act

on the surfaces. According to Eqn. (2.30), the left hand side item can be written

as,

D
Dt

∫

V
ρv dV =

∫

V
ρ̇v + ρv∇ · [v] dV

=
∫

V
ρv̇ + (ρ̇ + ρ∇ · [v])︸ ︷︷ ︸

=0; based on Eqn.(2.32)

v dV

=
∫

V
ρv̇ dV.

(2.35)

The expression
D
Dt

∫

V
ρg dV =

∫

V
ρġ dV (2.36)

is referred to as Reynolds transport theorem, where g can be any fields in spatial

description.

The the balance of linear momentum Eqn.(2.34) can be written in local form as

follows,

ρ aB = ∇ · σ + ρ bB , (2.37)

where aB is the acceleration field of the material point.

Balance of angular momentum

5We use specific form of bB and aB to distinguish them from the symbols b and a defined in the
following constitutive model
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The balance of angular momentum states that the change in angular momen-

tum of a system is equal to the resultant moment applied to it,

D
Dt

H0 = Mext
0 , (2.38)

where the left hand side expression represents the angular momentum of the

system about the origin,

D
Dt

H0 =
D
Dt

∫

V
x× (ρẋ) dV, (2.39)

and the right hand side represents the total external moment about the origin,

Mext
0 =

∫

V
x× (ρ bB) dV +

∫

∂V
x× t dS. (2.40)

Based on Eqn.(2.30), we obtain balance of angular momentum in local form

Eqn. (2.41) , which implies that Cauchy stress tensor is symmetric,

σ = σT. (2.41)

First Principle of Thermodynamics

The first law of thermodynamics is also called the principal of conservation of

energy, states that the rate of change of summation of kinetic and internal energy

for the continua is equal to the summation of the rate of work applied by surface

and body forces, rate of heat flow across the boundary, and heat supply within

the body. The integral form of this principal can be expressed as follows,

D
Dt

∫

V

(
1
2

ρv2 + ρu
)

dV =
∫

∂V
t · vdS +

∫

V
ρbB · vdV −

∫

∂V
(q · n)dS +

∫

V
ρrdV.

(2.42)

In the proceeding equation, u is the internal energy per unit mass, q is the heat
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flux vector, r is the heat supply per unit mass, n is a unit normal vector on the

body surface ∂V, −(q · n) indicates the rate of heat flowing into the body.

The kinetic energy in left hand side can be written in the following form based

on Reynolds transport theorem Eqn.(2.36)

D
Dt

∫

V

(
1
2

ρv2
)

dV =
∫

V
ρaB · v dV, (2.43)

and the external forces item on right hand side can be written as,

∫

∂V
t · vdS +

∫

V
ρbB · vdV =

∫

V
∇ · [σ] · v + σ : d dV +

∫

V
ρbB · v dV

=
∫

V
(∇ · [σ] + ρbB)︸ ︷︷ ︸

=ρaB based on Eqn.(2.37)

·v dV +
∫

V
σ : d dV.

(2.44)

Substituting Eqn.(2.43) and Eqn.(2.44) and combining the balance of linear mo-

mentum Eqn.(2.37), the local form of principle of conservation of energy can be

expressed as,

ρu̇ = σ : d−∇ · (q) + ρr. (2.45)

(σ : d)6 represents the stress power per unit deformed volume, then the local

form of conservation of energy indicates that the rate of change of internal energy

equals the stress power per unit deformed volume minus the divergence of the

heat flux, plus heat production within the body.

Second Principle of Thermodynamics

The second principle of thermodynamics is also known as the entropy inequal-

ity, states that the entropy of an isolated system can never decrease in any process.

It can only increase or stay the same.

6The operator ”:” is the contraction operation between two tensors, which σ : d = σijdij.
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The inequality can be written as,

D
Dt

(∫

V
ρsdV

)
+
∫

∂V

q
T
· ndS−

∫

V

ρr
T

dV ≥ 0, (2.46)

we then obtain Clausius-Duhem inequality in local form,

ρṡ +∇ · ( q
T
)− ρr

T
≥ 0. (2.47)

It can also be written as,

ρṡ +
1
T
∇ · q− 1

T2 q∇ · T − ρr
T
≥ 0, (2.48)

based on experimental observations that heat only flows spontaneously from a

hotter material point to a colder one, we can assume that the term − 1
T2 q∇ · T is

always greater than or equal to zero [55] (P. 125), the strong form of the second

law then reduces to

ρṡ +
1
T
∇ · q− ρr

T
≥ 0. (2.49)
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3 Constitutive Model of Shape Memory Alloys

In this chapter, the constitutive model will be presented in details.

3.1 Kinematics

Motivated by the the idea of additive decomposition, the total strain is di-

vided into two parts, elastic strain and a recoverable inelastic strain due to the

detwinning of martensite, which reads as,

h = he + hin. (3.1)

Assuming that there are three proccesses contributing to the accumulation of

inelastic strain, which are:

ht, the transformation strain due to the phase transformation from austenite

to martensite;

ho, the orientation strain caused by the detwining of self-accommodated marten-

site to oriented martensite;

hr, the reorientation strain describes the reorientation of the martensite direc-

tion according to the non-proportional loading.

Then the total strain can be written as

h = he + hin = he + ht + ho + hr. (3.2)

The rate of inelastic strain is taken to be,

h̊in = h̊t + h̊o + h̊r =

√
3
2
(
ξḢNo + ξ̇HN t + ξHN̊

)
, (3.3)

where,
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ξ is the martensite volume fraction, and is restricted by 0 ≤ ξ ≤ 1;

H is the effective inelastic strain restricted by 0 ≤ H ≤ Hmax;

N t and N t are the flow direction of phase transformation and orientation re-

spectively;

N is the ”effective” direction of oriented martensite, which is defined as,

N = hin/‖hin‖, and Ṅ suggests the reorientation direction under sufficient non-

proportional loading.

And the multiplier
√

3
2 is induced to the measure of effective inelastic strain,

i.e.,Hmax =
√

2
3 hin

max : hin
max.

3.2 Thermodynamic Potential

To derivative the constitutive relation, a free energy potential and complemen-

tary independent state variables should be chosen. By following the framework of

Lagoudas and coworkers [55, 58, 118], Gibbs free energy is adopted. The external

state variables τ and absolute temperature T are regarded as the independent state

variables. And a set of internal state variables is defined as Υ = {ξ, hin, κt, κo, κr},

where ξ is martensite volume fraction, hin is the effective inelastic strain and

κt, κo, κr are the isotrpic hardening variables associated with phase transforma-

tion, orientation and reorientation process respectively.

The specific Gibbs Free energy is defined by the rule of mixture as,

G(τ, T, ξ, hin, κo, κt, κr) = (1− ξ)GA(τ, T) + ξGM(τ, T) + Gm(τ, hin, κo, κt, κr),

(3.4)

where

Gβ(τ, T) = − 1
2ρ0

τ : Sβ : τ − 1
ρ0

τ : αβ(T − T0) + cβ(ξ)

[
T − T0 − T ln

(
T
T0

)]
− sβ

0 T + uβ
0 , (3.5)

for β = A, M, stand for the thermoelastic contributions to the Gibbs free energy

from the regions of austenite and martensite (the superscripts A and M denote
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austenite and martensite phases, respectively), and

Gm(τ, hin, κo, κt, κr) = − 1
ρ0

τ : hin +
1
ρ0

go(κo) +
1
ρ0

gt(κt) +
1
ρ0

gr(κr)

︸ ︷︷ ︸
hardening term

(3.6)

stands for the contribution due to the interaction between the phases.

The parameter ρ0 denotes the density which is assumed to be the same regard-

less of phase. The model parameters Sβ, αβ, cβ, sβ
0 , and uβ

0 denote the compliance

tensor, thermal expansion,specific heat capacity, specific entropy, and specific in-

ternal energy at the reference state, respectively, which are assumed to be different

for each phase.

S(ξ) = SA + ξ
(
SA − SM

)
= SA + ξ∆S , (3.7)

α(ξ) = αA + ξ
(

αM − αA
)
= αA + ξ∆α, (3.8)

c(ξ) = cA + ξ
(

cM − cA
)
= cA + ξ∆c, (3.9)

s0(ξ) = sA
0 + ξ

(
sM

0 − sA
0

)
= sA

0 + ξ∆s0, (3.10)

u0(ξ) = uA
0 + ξ

(
uM

0 − uA
0

)
= uA

0 + ξ∆u0, (3.11)

where, gt, go, and gr which describe the free energy blocked in the microstructure

due to phase transformation, orientation and reorientation, respectively, depend

only on the respective isotropic hardening variables κo, κt, and κr.

Considering the evolution of anisotropic thermal expansion, we make a special

assumption to TE tensor,

αA = αAδ, (3.12)

where αA is a scalar and δ is the unit tensor with components δij = 1 if i = j and

δij = 0 if i 6= j.
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The thermal expansion of martensite is assumed to evolve with (re)orientation

as a function of the oriented martensite volume fraction, ξo = ξH/Hmax, and

orientation direction, N = hin/‖hin‖, as follows

αM = αM
0 δ + αMξo N, (3.13)

where αM
0 and αM are scalar parameters to be determined from experiments. αM

0 δ

corresponds to the isotropic CTE of self-accommodated martensite. Thus, in view

of Eqn. (3.8), (3.12) and (3.13), the effective value of the TE tensor reads as

α = αA + ξ∆α = αA + ξ
(

αM
0 − αA

)
δ + ξ2αM H

Hmax N. (3.14)

3.3 Constitutive Relations

In this section, we derive the necessary constitutive relations following a stan-

dard thermodynamic procedure, which is referred as Coleman-Noll procedure.

The phase transformation in SMAs is a dissipative process that involves an en-

tropy increase. The material response of dissipative process is constrained by the

second law of thermodynamics, which adopting the strong form of the Clausius-

Duhem inequality (Eqn. (3.15)),

ρ0ṡ +
1
T
∇ · q− ρ0r

T
≥ 0, (3.15)

where q ,r and s denote the heat flux heat sources and entropy respectively. Com-

bined with the first law of thermodynamics Eqn. (3.16) and the relation between

specific internal energy u and Gibbs free energy G Eqn. (3.17):

ρ0u̇ = τ : d−∇ · q + ρ0r, (3.16)
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G = u− 1
ρ0

τ : h− sT. (3.17)

We are able to get

D = ρ0ṡT +∇ · q− ρ0r = −ρ0Ġ− ρ0sṪ − h : τ̊ ≥ 0. (3.18)

Taking into account Eqn. (3.4), the rate of change of the Gibbs free energy is

given by,

Ġ =
∂G
∂τ

: τ̊ +
∂G
∂T

Ṫ +
∂G

∂hin : h̊in +
∂G
∂ξ

: ξ̇ +
∂G
∂κt : κ̇t +

∂G
∂κo : κ̇o +

∂G
∂κr : κ̇r. (3.19)

Substituting Eqn. (3.19) into Eqn. (3.18), we obtain,

−
(

ρ0
∂G
∂τ

+ h
)

: τ̊ − ρ0

(
∂G
∂T

+ s
)

Ṫ
︸ ︷︷ ︸

Thermoelastic Region

−ρ0
∂G

∂hin : h̊in − ρ0
∂G
∂ξ

: ξ̇ − ρ0
∂G
∂κt : κ̇t − ρ0

∂G
∂κo : κ̇o − ρ0

∂G
∂κr : κ̇r

︸ ︷︷ ︸
Dissipation

≥ 0. (3.20)

The first two items represent the thermoelastic region and the rest items con-

tribute to dissipation due to the rate of internal state variables Υ̊.

In the thermoelastic region, Υ̊ is zero. To make sure the above inequality valid

for all τ̊ and Ṫ, the following constitutive relations should be satisfied:

h = −ρ0∂τG = S : τ + α(T − T0) + hin, (3.21)

s = −∂TG =
1
ρ0

τ : α + c ln
(

T
T0

)
+ s0. (3.22)

These constitutive relations are also assumed to be valid everywhere at the

boundary of the thermoelastic region. A detailed discussion on this assumption

is presented in [86].
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3.4 Evolution of Internal State Variables

The dissipation inequality is defined as Eqn. (3.23)

D = −Γ : Υ̊ = pξ̇ + π :
(

h̊t + h̊o + h̊r
)
+ µtκ̇t + µoκ̇o + µrκ̇r ≥ 0, (3.23)

where, Γ is defined as a set of generalized thermodynamic forces which conjugate

to the rate of internal state variable set Υ̇, as Eqn. (3.24)

Γ = −ρ0
∂G
∂Υ

. (3.24)

The components of the thermodynamic forces set are listed as follows:

p = −ρ0∂ξ G =
1
2

τ : ∆S : τ + τ : ∂ξα(T − T0)

− ρ∆c
[

T − T0 − T ln
(

T
T0

)]
+ ρ0∆s0T − ∆u0,

(3.25)

π = −ρ0∂hin G =

[
I + αMξ2 H

Hmax
I − N ⊗ N
‖hin‖ (T − T0)

]
: τ, (3.26)

µa = −ρ0∂κa G, (3.27)

and a stands for any of the superscripts t, o or r.

Motivated by the assumption that the inelastic strain is induced due to three

procedures, phase transformation, orientation and reorientation, we consider a

strong form of dissipation, which is definitely satisfied Eq. (3.23),





Dt = pξ̇ + π : h̊t + µtκ̇t > 0; ξ̇ 6= 0,

Do = π : h̊o + µoκ̇o > 0; h̊o 6= 0,

Dr = π : h̊r + µrκ̇r > 0; h̊r 6= 0.

(3.28)

These relations are the rate of work done by phase transformation, orientation
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and reorientation due to changes in micro-structure induced by Υ̇ in generalized

thermodynamic force space and they are obeyed at all times so that the dissipation

inequality is concurrently satisfied.

The above inequalities, Eqn. (3.28), are used to determine the kinetic relations

for the internal state variables, i.e., the flow rules, as follows.

Denoting as Υ any set of internal state variables {ho, κo},
{

ht, ξ, κt}, or {hr, κr},

the dissipation inequalities in Eqn. (3.28) can be written in the generic form

D(Γ; Υ̊) = Γ : Υ̊ ≥ 0, (3.29)

where Γ = −ρ0∂ΥG is the set of generalized thermodynamic forces conjugate to

Υ̊.

In view of the above definitions, generalized normality allows one to define evo-

lution equations of the internal variables

Υ̊ = λ̇∂ΓQ, (3.30)

subjecting to the Kuhn–Tucker conditions:

λ̇ ≥ 0; Φ ≤ 0; λ̇Φ = 0, (3.31)

where Q(Γ; T) is a given smooth (at least once differentiable), scalar function

called potential, which may not be coincident with the respective yield function,

Φ(Γ; T). In view of Eqn.(3.30), a yield function that satisfies the dissipation in-

equality Eqn. (3.29) is

Φ = Γ : ∂ΓQ−Y ≤ 0, (3.32)
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where Y = −Q(0; T) > 0. If Q is convex, then

D = λ̇Γ : ∂ΓQ ≥ λ̇ (Q + Y) , (3.33)

and, thus, yield functions such that

Φ ≤ Q and Φ(0; T) = Q(0; T), (3.34)

satisfy the dissipation inequality. The special case Φ = Q in the above inequal-

ity corresponds to the so-called standard dissipative materials obeying associative

flow rules for which D is the global maximum for the space of the admissible

generalized thermodynamic forces conjugate to Υ̊.

Therefore, the next important step for establishing the desired kinetic rela-

tions for the internal state variables is the selection of the appropriate form of the

potential functions, Q, and yield functions, Φ.

3.4.1 Flow rules associated with orientation

As discussion in Section 3.3, assuming the internal state variables Υo = {ho, κo}

are associated with orientation process. The orientation potential function is pro-

posed based on the thermodynamic forces Γ = {π, µo} conjugated to Υo and

temperature T, which is written as Eqn. (3.35),

Qo (π, µo, T; ξ) = ξ (πR− µo −Yo + coT) (ξ 6= 0), (3.35)
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where Yo and co are positive scalars, such that Yo − coT > 0 for ξ 6= 0, i.e., 0 <

co < Yo/A f , the orientation related internal state variables read as





h̊o = λ̇o∂πQo,

κ̇o = λ̇o∂µo Qo,
(3.36)

or equivalently as 



h̊o = λ̇oξ∂π (πR) ,

κ̇o = −λ̇oξ,
(3.37)

where π =
√

3
2 π′ : π′ stands for the deviatoric part of thermodynamic force (π′ =

π − 1
3 tr(π)δ and δ is the unit tensor with components δij = 1 if i = j and δij = 0

if i 6= j), and

R(π) =

[
1 + γ

det (π′)
π3

] 1
n

, (3.38)

accounts for tension-compression asymmetry, and the convexity condition is dis-

sussed in section A.1.

Note that with respect to the notation introduced in Eqn. (3.3), λ̇o = Ḣ, i.e.,

the rate of the orientation multiplier defines the rate of increase of the effective

inelastic strain.

3.4.2 Flow rules associated with forward phase transformation

The potential function associated with forward phase transformation reads as

Qt
f (π, p, µt, T; H) = HπR + p− µt

f −Yt, (3.39)

where Yt is a strictly positive scalar.
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The transformation related internal state variables are then given by





h̊t = λ̇t
f ∂πQt

f = λ̇t
f H∂π (πR) ,

ξ̇ = λ̇t
f ∂pQt

f = λ̇t
f ,

κ̇t = λ̇t
f ∂µt

f
Qt

f = −λ̇t
f ,

(3.40)

and equivalently, in view of Eqn. (3.39), by





h̊t = ξ̇H∂π (πR) ,

κ̇t = −ξ̇.
(3.41)

3.4.3 Flow rules associated with reorientation

The following choice of the reorientation potential function

Qr
(

π, µr, hin, T
)
= ξH (πM −Yr + crT) , (3.42)

where Yr and cr are positive scalars, such that Yr − crT > 0 for ξ 6= 0, πM is

given by replacing π with M : π in the definition of the von misses stress, M =

I − N ⊗ N, and I is the unit fourth-order tensor with components Iijkl = δikδjl ,

yields

h̊r = λ̇r∂πQr = λ̇rξH∂ππM. (3.43)

Note that M : π is the projection of π on the hyperlpane with normal N and

represents the orientation difference between the applied stress tensor and the

inelastic strain.

With respect to the notation introduced in Eqn.(3.3), Ṅ = λ̇r
√

2
3 ∂ππM and,

thus, the constraint ‖N‖ = 1 is satisfied, as in fact N : Ṅ = 0.
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3.4.4 Flow rules associated with reverse phase transformation

Assuming

Qt
r

(
π, P, µt

r, T; hin
)
= −π : hin

ξ
− p + µt

r −Yt, (3.44)

the flow rules for reverse phase transformation are given by





h̊in = λ̇t
r∂πQt

r = −λ̇t
r
hin

ξ
,

ξ̇ = λ̇t
r∂pQt

r = −λ̇t
r,

κ̇t = λ̇t
r∂µt

r
Qt

r = λ̇t
r,

(3.45)

or equivalently by 



h̊in = ξ̇
hin

ξ
,

κ̇t = −ξ̇.

(3.46)

Thus, the direction of the inelastic strain recovery is governed by the average

direction of the martensite variants and the magnitude of strain recovery rate

is proportional to the rate of martensite volume fraction, thus, there can be no

remanent inelastic strain upon reversal to the austenite state.

3.4.5 Hardening functions associated with phase transformation and

(re)orientation

Thus far the hardening functions, µt
f , µt

r and µo, associated with phase trans-

formation and orientation have not been specified. The branched hardening func-

tion that changes with transformation direction, introduced in [58], is adopted for
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phase transformation

µt(κt) = µt(ξ) :=





µt
f (ξ) =

1
2 at

1

[
1 + ξnt

1 − (1− ξ)nt
2

]
+ at

3; ξ̇ > 0,

µt
r(ξ) =

1
2 at

2

[
1 + ξnt

3 − (1− ξ)nt
4

]
− at

3; ξ̇ < 0,

(3.47)

which allows for the experimentally observed asymmetry in forward and reverse

phase transformation and for smooth transitions between the elastic and phase

transformation regimes. The coefficients at
1 − at

3 are material parameters while

the exponents nt
1 − nt

4, which take values in the interval (0, 1], do not have an

associated material property but are directly chosen to best fit the four corners of

the transformation hysteresis plots.

A similar power-law form for the hardening function associated with orienta-

tion is introduced

µo(κo; ξ) = µo(ξH; ξ) :=
1
2

ao
1

{
1 +

(
H

Hmax

)no
1

−
[

1−
(

H
Hmax

)]no
2
}

, (3.48)

where ao
1 are material parameters and 0 < no

1 ≤ 1, 0 < no
2 ≤ 1 are chosen to best

fit the transitions between the elastic and orientation regimes.

Note that based on the model’s performance on simulating the experimental

deformation response under non-proportional loading paths, no hardening dur-

ing reorientation is assumed, i.e., µo(κo) = 0.

3.4.6 Minor loops

In order to simulate minor loops, two scalar-valued functions Qr and Q f are

introduced in the potential functions associated with forward and reverse phase
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transformation, respectively,





Qt
f = HπR + p− µt

f +Qr −Yt ≤ 0,

Qt
r = −

π : hin

ξ
− p + µt

r +Q f −Yt ≤ 0,
(3.49)

such that

Q f =





(
µt

f − µt
r + 2Yt

)
(1− ξ); Φt

f = 0,

Q f ; else,
(3.50)

only evolves when reverse phase transformation is active, and

Qr =





−
(

µt
f − µt

r + 2Yt
)

ξ; Φt
r = 0,

Qr; else,
(3.51)

only evolves when forward phase transformation is active, i.e., during forward

phase transformation, Qr is constant, and, similarly, during reverse phase trans-

formation, Q f is constant. Thus, the evolution equations and the dissipation in-

equalities related to phase transformation remain unaltered while the transforma-

tion yield functions now read as





Φt
f = HπR + p− µt

f +Qr −Yt ≤ 0,

Φt
r = −

π : hin

ξ
− p + µt

r +Q f −Yt ≤ 0.
(3.52)

These functions, i.e., Qr and Q f , essentially shift the transformation yield sur-

faces from being identical at the initiation of either forward or reverse phase trans-

formation to the expressions introduced in (3.57) once phase transformation (for-

ward or reverse) is completed.

Note that this description of minor loops is based only on the major loop data

with no additional requirements.
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3.4.7 Yield functions

The dissipation inequalities Eqn. (3.28) now read, in view of Eqns. (3.37), (3.41),

(3.46) and (3.43), as





Do = λ̇oξ [π : ∂τ (πR)− µo] ≥ 0; h̊o 6= 0, (3.53)



Dt
f = ξ̇

[
π : H∂π (πR) + p− µt

f

]
≥ 0; ξ̇ > 0,

Dt
r = −ξ̇

(
π : hin

ξ
+ p + µt

r

)
≥ 0; ξ̇ < 0,

(3.54)

Dr = λ̇rξH (π : ∂ππM) ≥ 0; h̊r 6= 0. (3.55)

The convexity of the potential functions Qo, Qt
f , Qt

r, and Qr are ensured by Eqn.

(A.4) in section A.1. Accordingly, the following yield functions are postulated that

satisfy the above dissipation inequalities (see section 3.3),





Φo (π, µo; T) = Qo (π, µo, T) = πR− µo + coT −Yo ≤ 0, (3.56)




Φt
f (π, p, µt

f , T; H) = (1− C)HπR + p− µt
f −Yt ≤ 0,

Φt
r(π, p, µt

r, T; hin) = −(1 + C)
π : hin

ξ
− p + µt

r −Yt ≤ 0,
(3.57)

Φr (π, µr, T) = Qr (π, µrT) = πM + crT −Yr ≤ 0. (3.58)

Note that the introduced parameter 0 < C < 1 in the expressions of Φt
f and Φt

r,

which results in Φt
α < Qt

α and Φt
α(0) = Qt

α(0) (Section 3.4), where α stands for f or

r, accounts for the dissimilar slopes of the transformation boundaries on the SMA

phase diagram (Clapeyron slopes), i.e., on the temperature and load dependence

of the width of the hysteresis loop evident for example in isobaric cooling–heating

experiments at different bias load levels.

The constitutive model is summarized in Table 1.
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Table 1: Model Summary

State Variables Thermodynamic force π, temperature T, total strain train h, inelastic strain hin,

transformation strain ht, orientation strain ho , reorientation strain hr ,

volume fraction of martensite ξ, hardening variables
{

κt, κo , κr}

Gibbs Free Energy G(π, T, ξ, hin, κo , κt, κr) = (1− ξ)GA(π, T) + ξGM(π, T) + Gm(π, hin, κo , κt, κr)

Gβ(π, T) = − 1
2ρ0

π : Sβ : π − 1
ρ0

π : αβ(T − T0) + cβ(ξ)
[

T − T0 − T ln
(

T
T0

)]
− sβ

0 T + uβ
0

Gm(π, hin, κo , κt, κr) = − 1
ρ0

π : hin + 1
ρ0

go(κo) + 1
ρ0

gt(κt) + 1
ρ0

gr(κr)

(β stands for any of the superscripts A or M)

Thermal Expansion αA = αAδ; αM = αM
0 δ + αMξo N

α = αA + ξ∆α = αA + ξ
(
αM

0 − αA) δ + ξ2αM H
Hmax N

Thermodynamic Forces p = −ρ0∂ξ G = 1
2 τ : ∆S : τ − ρ0∆c

[
T − T0 − T ln

(
T
T0

)]
+ ρ0∆s0T − ∆u0,

µt(κt) = µt(ξ) = −ρ0∂κt G :=





µt
f =

1
2 at

1

[
1 + ξnt

1 − (1− ξ)nt
2
]
+ at

3; ξ̇ > 0,

µt
r =

1
2 at

2

[
1 + ξnt

3 − (1− ξ)nt
4
]
− at

3; ξ̇ < 0,

µo(κo ; ξ) = µo(ξH; ξ) = −ρ0∂κo G := 1
2 ao

1

{
1 +

( H
Hmax

)no
1 −

[
1−

( H
Hmax

)]no
2
}

µr(κr) = −ρ0∂κr G = 0

Yield Surfaces

· Orientation Φo (π, µo , T) = Qo (π, µo ; T) = πR− µo + coT −Yo ≤ 0

· Phase Transformation





Φt
f (π, p, µt

f , T; H) = (1− C)HπR + p− µt
f +Qr −Yt ≤ 0

Φt
r(π, p, µt, T; hin) = −(1 + C)

π : hin

ξ
− p + µt

r +Q f −Yt ≤ 0

· Reorientation Φr (π, µr , T) = Qr (τ, µr , T) = τM + crT −Yr ≤ 0

Evolution Equations

· Orientation h̊o = ξḢ∂π Qo

· Phase Transformation Forward Reverse

h̊t = ξ̇H∂π (πR) h̊in = ξ̇
hin

ξ

· Reorientation h̊r = λ̇rξH∂π πM
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3.5 Thermomechanical Coupling: Latent Heat Effect

Taking into account Eqn.(3.18), (3.23) can be written as

D = Do + Dt + Dr = ρ0ṡT +∇ · q− ρ0r. (3.59)

In view of the constitutive relationship Eqn. (3.22), the entropy rate is deduced

as

ṡ = c
Ṫ
T
+

1
ρ0

τ̊ : α +

[
1
ρ0

τ : ∂ξα + ∆c ln
(

T
T0

)
+ ∆s0

]
ξ̇ +

1
ρ0

∂HαḢ +
1
ρ0

∂hin α : h̊in,

(3.60)

where,

∂ξα =
(

αM
0 − αA

)
δ + 2ξαM H

Hmax N,

∂Hα = ξ2αM 1
Hmax N,

∂hin α = ξ2αM H
Hmax

I − N ⊗ N
‖hin‖ .

(3.61)

And, thus, Eqn. (3.59) reads as

ρ0cṪ + τ̊ : αT − Ḣξ [π : ∂π (πR)− µo −π : ∂HαT]︸ ︷︷ ︸
heat released during orientation

−





ξ̇

{
π : H∂π (πR) + p− µt

f −
[

π : ∂ξα + ρ0∆c ln
(

T
T0

)
+ ρ0∆s0

]
T
}

︸ ︷︷ ︸
heat released during forward phase transformation

or

ξ̇

{
−π : hin

ξ
− p + µt

r −
[

π : ∂ξα + ρ0∆c ln
(

T
T0

)
+ ρ0∆s0

]
T
}

︸ ︷︷ ︸
heat absorbed during reverse phase transformation

− λ̇rξH {π − ∂hin αT} : ∂ππM︸ ︷︷ ︸
heat released during reorientation

= −∇ · q + ρ0r, (3.62)
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which is the 3D form of the fully thermomechanically-coupled energy balance

equation for SMAs. The first term of the left-hand side of the above equation

is the energy change associated with the specific heat capacity. The second term

demonstrates the energy change according to the stress rate. The third, fourth, and

fifth terms on the left-hand side express temperature variations due to orientation,

phase transformation, and reorientation, respectively. The first and second terms

of the right-hand side are related to the heat transfer processes by the heat flux, q,

and heat sources, ρ0r.

The heat flux q is assumed to be governed by Fourier’s law

q = −k(ξ)∇T, (3.63)

where k(ξ) = (1− ξ)kA + ξkM stands for the thermal conductivity, which is ap-

proximated from the conductivities of austenite, kA, and martensite, kM, by the

rule of mixtures.

The latent heat produced during forward transformation in the stress-free state

can be obtained by integrating the term

ξ̇

{
π : H∂π (πR) + p− µt

f −
[

π : ∂ξα + ρ0∆c ln
(

T
T0

)
+ ρ0∆s0

]
T
}

, (3.64)

of the heat equation Eqn. (3.62) that corresponds to the rate of excess heat during

transformation [56]. The latent heat produced during forward transformation is

equal to the latent heat absorbed during reverse phase transformation as a result

of conservation of energy.

3.6 Model Calibration

The calibration of the proposed model, based on the experimentally deter-

mined deformation response of the material under uniaxial loading, is described
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in this section. In the case of finite strains, experimental evaluation of the onset

of phase transformation and post-transformation stress-strain behavior generally

should be based on either the 1st Piola-Kirchhoff stresses or of Cauchy stresses,

i.e., either on the undeformed or deformed configuration, respectively. However,

since elastic and transformation-induced volumetric deformations in SMAs are

small, the specific choice of the stress measure is not significant and may include

the Kirchhoff stress, τ = Jσ ∼ σ. Thus, the calibration procedure of the finite-

and infinitesimal-strain models differ only on experimental evaluation of the log-

arithmic strain in the former instead of the engineering strain in the latter.

Assuming experimental evaluation of the engineering strain, the constitutive

equations are first reduced to 1D. The relation between the current stress and

strain, Eqn. (3.21), reduces to

σ = E(ξ)
[
ε− α(ξ) (T − T0)− εt − εo − εr] , (3.65)

where

E(ξ) =
[

1
EA

+ ξ

(
1

EM
− 1

EA

)]−1

. (3.66)

The evolution equations, Eqn. (3.37), (3.41), and (3.46), are reduced to





ε̇o = Ḣξsgn(σ)
[

1 + sgn(σ)
2
27

γ

] 1
n

,

ε̇t =





ξ̇Hsgn(σ)
[

1 + sgn(σ)
2
27

γ

] 1
n

; ξ̇ > 0,

ξ̇Hsgn(σ)
[

1 + sgn(σ)
2

27
γ

] 1
n

; ξ̇ < 0,

(3.67)

and the yield surfaces, Eqn. (3.56), (3.57), and (3.58), neglecting the effects of ∆c
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(common engineering assumptions), are reduced to





Φo(σ, T, ξ) = sgn(σ)σ
[

1 + sgn(σ)
2

27
γ

] 1
n

− µo −Yo ≤ 0,




Φt
f (σ, T, ξ) = sgn(σ)(1− C)σH

[
1 + sgn(σ)

2
27

γ

] 1
n

+ p− µt
f −Yt

0 ≤ 0; ξ̇ > 0,

Φt
r(σ, T, ξ; εin) = −sgn(σ)(1 + C)σ

εin

ξ
− p + µt

r −Yt
0 ≤ 0; ξ̇ < 0.

(3.68)

3.6.1 Calibration of the elastic constants, EA, EM, νA, νM.

EA, EM can be calculated directly from isothermal stress–strain curves where

loads are applied at temperatures outside the transformation regions. It is gener-

ally assumed that νA = νM = 0.3.

3.6.2 Calibration of TE tensor

The calibration of the TE constants of austenite, αA, and self-accommodated

martensite, αM
0 , can be calibrated from temperature variations under zero bias

load above the austenite-finish and below the martensite-finish temperatures, re-

spectively. The parameter αM can be calibrated from experiments like the ones

performed in [73], and reviewed in Section 3.2, by fitting the expression (3.13)

to the experimentally determined values of the TE tensor. In Eqn. (3.13), the H-

value can be measured in such experiments from the irrecoverable strain upon

unloading and the orientation tensor N is given by

N =

√
2
3




1 0 0

0 −1/2 0

0 0 −1/2




.
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3.6.3 Calibration of the transformation related parameters

Assuming thermally-induced transformation occurring under load-free condi-

tions, the following independent equations are obtained:

1. Forward transformation (ξ̇ > 0) at zero stress begins at the martensitic start

temperature Ms,

Φt
f (0, Ms, 0) = 0.

2. Forward transformation (ξ̇ > 0) at zero stress ends at the martensitic finish

temperature M f ,

Φt
f (0, M f , 1) = 0.

3. Reverse transformation (ξ̇ < 0) at zero stress begins at the austenitic start

temperature As,

Φt
r(0, As, 1) = 0.

4. Reverse transformation (ξ̇ < 0) at zero stress ends at austenitic finish tem-

perature A f ,

Φt
r(0, A f , 0) = 0.

5. For a full transformation loop, the material should return to its initial state,

which requires the Gibbs free energy to return to its initial value. This re-

quirement, given the form of Gibbs free energy adopted Eqn. (3.4), yields

∫ 1

0
µt

f dξ +
∫ 0

1
µt

rdξ = 0.
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The above five conditions yield the following expressions for the model pa-

rameters:

at
1 = ρ∆s0

(
M f −Ms

)
, at

2 = ρ∆s0
(

As − A f
)

,

at
3 = − at

1
4

(
1 +

1
nt

1 + 1
− 1

nt
2 + 1

)
+

at
2

4

(
1 +

1
nt

3 + 1
− 1

nt
4 + 1

)
,

ρ∆u0 =
ρ∆s0

2
(

Ms + A f
)

, Yt = ρ∆s0
(

Ms − A f
)
− at

3.

(3.69)

Calibration of ρ∆s0 and C is performed by considering the slope of the trans-

formation surface in a uniaxial stress–temperature space assuming constant ξ.

Then, the Kuhn–Tucker conditions imply

dΦt = ∂σΦtdσ + ∂TΦtdT = 0. (3.70)

Assuming σ > σf (Figure 1.5), the above yields





dσ

dT

∣∣∣
Φt

f =0
=

−ρ∆s0

(1− C) Hmax
(
1 + 2

27 γ
) 1

n + σ
(

1
EM
− 1

EA

) ,

dσ

dT

∣∣∣
Φt

r=0
=

−ρ∆s0

(1 + C) Hmax
(
1 + 2

27 γ
) 1

n + σ
(

1
EM
− 1

EA

) .

(3.71)

Note that
dσ

dT

∣∣∣
Φt

f

and
dσ

dT

∣∣∣
Φt

r=0
are nearly constants since σ

(
1

EM
− 1

EA

)
at load

levels of interest are small values in comparison to (1± C) Hmax (1 + 2
27 γ
) 1

n . Thus,

dropping σ
(

1
EM
− 1

EA

)
and by denoting the forward and reverse transformation

slopes, CM and CA, respectively, Eqn. (3.71) yields





ρ∆s0 = −Hmax (1 + 2
27 γ
) 1

n 2CMCA

CM + CA ,

C =
CM − CA

CM + CA .

(3.72)
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As already mentioned, the hardening coefficients nt
1 − nt

4 are directly chosen

to best fit the four corners of the transformation hysteresis plots.

Next, γ and Hmax are calibrated from the experimentally determined values of

maximum transformation strain. At completion of forward phase transformation,

integration of Eqn. (3.41), gives





mεt
t = Hmax

(
1 +

2
27

γ

) 1
n

; tension,

mεt
c = −Hmax

(
1− 2

27
γ

) 1
n

; compression,

(3.73)

where mεt
t, and mεt

c are the experimentally determined maximum transformation

strains under tensile and compressive loading, respectively. The above system

yields 



γ =
27
2

εn
∗ + 1

εn∗ − 1
,

Hmax =
mεt

t(
1 + 2

27 γ
) 1

n
,

(3.74)

where ε∗ =
mεt

t

mεt
c
, and n can take any value that ensures convexity of the yield

functions Eqn. (A.3).

3.6.4 Calibration of the orientation related parameters

During orientation under tension, the orientation yield function, Eqn. (3.56),

yields

Φo = σ

(
1 +

2
27

γ

) 1
n

− µo −Yo + coT = 0, (3.75)

where µo is defined in Eqn. (3.48).
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The above equation, (3.75), evaluated at H = 0 and H = Hmax, reads as





σt
s

(
1 +

2
27

γ

) 1
n

−Yo + coT = 0,

σt
f

(
1 +

2
27

γ

) 1
n

− ao
1 −Yo + coT = 0,

(3.76)

where σt
s is the stress level required for initiation of orientation and σt

f for com-

pletion of orientation.

From the above, we obtain





ao
1 =

(
σt

f − σt
s

)(
1 +

2
27

γ

) 1
n

,

Yo = σt
s

(
1 +

2
27

γ

) 1
n

+ coT.

(3.77)

Experimental determination of σt
s and σt

f at two temperatures, T = T∗ and

T = T∗∗, yields





co = −σt
s(T∗)− σt

s(T∗∗)
T∗ − T∗∗

(
1 +

2
27

γ

) 1
n

,

ao
1 =

(
σt

f (T
∗)− σt

s(T
∗)
)(

1 +
2

27
γ

) 1
n

,

Yo =
σt

s(T∗∗)T∗ − σt
s(T∗)T∗∗

T∗ − T∗∗

(
1 +

2
27

γ

) 1
n

.

(3.78)

The hardening coefficients no
1 and no

2 are chosen to best fit the corners of the

reorientation stress–strain plot.

3.6.5 Calibration of the reorientation related parameters

It is assumed that Yr = Yo and cr = co. All model parameters and associated

material properties are listed in Table 2.
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Table 2: Parameter Calibration and Associated Material Properties

Common SMA Material Parameter Model Parameters Calibration

EA, EM, νA, νM SA, SM Section 3.6.1

αA, αM αM
0 Eqn. (3.13)

Ms, M f , As, As ρ∆u0, a1, a2, a3, Yt Eqn. (3.69)

CA CM ρ∆s0,C Eqn. (3.72)

mεt
t, mεt

c γ, Hmax Eqn. (3.74)

σt
s(T∗), σt

s(T∗∗), σt
f (T
∗), σt

f (T
∗∗) co, ao

1, Yo Eqn. (3.78)

N/A Yr,cr Section 3.6.5
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4 NUMERICAL IMPLEMENTATION

In the previous chapter, we discussed the derivation of a 3-d SMA thermo-

mechanical constitutive model. In this chapters, we address on the numerical

implementation of SMAs thermomechanical constitutive response based on the

return mapping algorithm, which is appropriate for rate-dependent inelastic con-

stitutive models. To trace the response of an SMA structural model subjected to a

given loading history an incremental–iterative procedure is needed. The load is ap-

plied in a number of increments, and the structural response after each increment

is computed from the equilibrium equations (and the energy balance equation).

The equilibrium equation is nonlinear and an iterative loop inside the global (top-

level) loop of load incrementation is needed to restore equilibrium. At every

iteration during this loop, it is necessary to evaluate the stress corresponding to a

change of the strain (and temperature) field. The stress evaluation, in the case of

material models with internal state variables such as the proposed SMA model,

requires another iteration loop, the so-called stress return mapping algorithm, nested

in the global equilibrium(/energy balance) iteration loop. Below the closest point

projection return mapping algorithm is described, which outputs an increment of

stress given an increment of strain and temperature. Furthermore, the algorith-

mic tangent moduli tensors are given, which are needed for preserving the rate of

convergence of the global equilibrium iteration.

4.1 Closed-Form Algorithm for Updating the Rotation Tensor

To update the logarithmic rate, ΩL
n+1, given the increments of displacement,

∆un, and temperature, ∆Tn, the algorithm proceeds as follows. The deformation

gradient

Fn+1 = (δ +∇n[∆un]) Fn; where ∇n[u] =
∂u(xn)

∂xn
,
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the stretching

dn+1 =
1
2

[
Fn+1 − Fn

∆t
F−1

n+1 +

(
Fn+1 − Fn

∆t
F−1

n+1

)T
]

,

the spin,

wn+1 =
1
2

[
Fn+1 − Fn

∆t
F−1

n+1 −
(

Fn+1 − Fn

∆t
F−1

n+1

)T
]

,

the left Cauchy-Green stretch bn+1

bn+1 = Fn+1FT
n+1

are updated sequentially, and in turn the logarithmic rate

ΩL
n+1∆t =

[
wn+1 +

m

∑
α 6=β

(
1 + (λα

n+1/λ
β
n+1)

1− (λα
n+1/λ

β
n+1)

+
2

ln(λα
n+1/λ

β
n+1)

)
bα

n+1dn+1bβ
n+1

]
∆t,

where the λα
n+1 and bα

n+1 are the eigenvectors and their corresponding eigenpro-

jections of b.

According to the logarithmic rate ΩL, logarithmic rotation can be defined as

following (see 4.1), 



ṘL(t) = ΩLRL(t),

RL|t=0 = δ.
(4.1)

The existence theorem for ordinary differential equations tells us that this

problem has exactly one solution RL(t), −∞ < t < +∞, which we write in the

form [78, 36]

RL(t) = exp(ΩLt), (4.2)

and in the incremental form,

RL
n+1 = exp [ΩL

n+1∆t]RL
n. (4.3)
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Nakshatrala, K. B. [78] discussed the numerical implementation of the expo-

nential map. The one of the Nineteen dubious methods [72] evaluates the expo-

nential map by truncating the infinite series given by,

exp(ΩL) = I +
n=∞

∑
n=1

1
n!
(ΩL)n. (4.4)

However this method is prone to round-off errors and not recommended. A

highly recommended algorithm for evaluating the exponential of 3 × 3 skew-

symmetric matrices is based on Rodrigues formula [110, 54].

Let the set of all 3× 3 real-proper-orthogonal matrices be defined as SO(3),

SO(3) = {RL : RL ∈ R3×3, RLRLT
= I, Det(RL) = 1}. (4.5)

The set of all 3× 3 skew-symmetric matrices is denoted by SK(3),

SK(3) = {ΩL : ΩL ∈ R3×3, ΩLT
= −ΩL}. (4.6)

Any skew-symmetric matrix ΩL ∈ SK(3) can also be represented in axial vec-

tor ω̂, which are,

ω̂ =




ω1

ω2

ω3




, ΩL =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




. (4.7)

Rodrigues formula gives a closed-form expression as solution of Eqn. (4.1),

exp[ΩLt] = I +
sin(‖ω̂‖t)
‖ω̂‖ ΩL +

1− cos(‖ω̂‖t)
‖ω̂‖2 ΩL2

. (4.8)
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4.2 Closest Point Projection Return Mapping Algorithm

Transformation consistency is enforced by determining the intersection of the

stress evolution curve with the boundary of the transformation surface (return

mapping). In this section, the numerical implementation of SMA thermomechani-

cal constitutive response is presented using return mapping algorithms appropri-

ate for rate-independent inelastic constitutive models.

4.2.1 Implicit Euler method

The goal is to evaluate the stress increment given the increments of total strain

and temperature by solving the elastic-transformation-orientation-reorientation

problem defined by the total strain relation Eqn. (3.2), the flow rules Eqn. (3.37),

(3.41), (3.43), and Eqn.(3.46), and the yield functions (3.56). First, a thermoelastic

prediction assumes that the inelastic strain increment is null. If the predicted ther-

moelastic state violates the yield criteria an iterative loop of corrections restores

the consistency conditions.

For the system of algebraic and ordinary differential equations (ODEs), this

algorithm integrates the transformation evolution equation for the transformation

correction using the backward Euler method (λ= 1 in (4.9)) resulting in a nonlinear

algebraic set of equations that are solved using the Newton iteration method.

The numerical discretization with the initial conditions given in Eqn. (4.10) is

performed on the SMA model as the transformation strain are discretized using

the generalized trapezoidal rule,

hin
n+1 = hin

n + (κn+1 − κn) [(1− λ)Λn + λΛn+1] . (4.9)
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4.2.2 Thermoelastic prediction

The evolution of stress state toward the transformation surface (Φ = 0) starts at

the trial thermoelastic state. To begin, a thermoelastic predictor problem is solved

that is described by assuming that the increments of the internal state variables

{∆ξn+1, ∆Hcur
n+1, ∆λr

n+1}7 are zero, then the trial thermoelastic state written as,





hn+1 = hn + ∆hn+1 =
1
2

ln(bn+1),

Tn+1 = Tn + ∆Tn+1,

ξ
(0)
n+1 = ξn,

Hcur (0)
n+1 = Hcur

n ,

α
(0)
n+1 = αn,

hin (0)
n+1 = hin

n

τ
(0)
n+1 = S−1

n :
[

hn+1 − hin (0)
n+1 − α

(0)
n+1(Tn+1 − T0)

]
,

(4.10)

where ∆hn+1 and ∆Tn+1
8 are the specified strain and temperature increments and

the subscript (·)n denotes the converged values from the previous global iteration,

the yield criteria





Φo (0)
n+1 = Φo

(
τ
(0)
n+1, Hcur (0)

n+1 , Tn+1; ξ
(0)
n+1

)
≤ 0,

Φt (0)
n+1 = Φt

(
τ
(0)
n+1, p(0)n+1, ξ

(0)
n+1, Tn+1; Hcur (0)

n+1 , hin (0)
n+1

)
≤ 0,

Φr (0)
n+1 = Φr

(
τ
(0)
n+1, hin (0)

n+1 , Tn+1

)
≤ 0,

(4.11)

7The internal state variable set is defined as [hin, ξ, κt, κo, κr] at beginning, and it reduced to the
current set {ξ, Hcur, λr} according to Eqn. (3.36)(3.41)(3.46)

8∆Tn+1 and ∆hn+1 is given by the global iteration, and they are not implemented in yield
correction
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are examined, where

Φt (0)
n+1 =





Φt
f

(
τ
(0)
n+1, p(0)n+1, ξ

(0)
n+1, Tn+1; Hcur (0)

n+1

)
; ξ̇ > 0,

Φt
r

(
τ
(0)
n+1, p(0)n+1, ξ

(0)
n+1, Tn+1; hin (0)

n+1

)
; ξ̇ < 0.

(4.12)

If all are less than zero, then the trial state is taken as the final state. Otherwise,

a correction is used to restore consistency.

4.2.3 Yield correction on phase transformation

According to Eqn.(4.9), the algorithm integrates the transformation (forward/

reverse) evolution equation for the transformation correction using the implicit

Euler method resulting in a nonlinear algebraic set of equations, including a con-

strained function (Kuhn-Tucker optimality conditions), residual strain (evolution

law) and residual stress (constitutive equation),









Φt (0)
f n+1 = (1− C)Hcur

n+1(τR)n+1 + p(0)n+1 − µt
f (ξ

(0)
n+1) +Qr −Yt,

Φt (0)
r n+1 = −(1 + C)

(
τ : hin

ξ

)(0)

n+1
− p(0)n+1 + µt

r(ξ
(0)
n+1) +Q f −Yt,

Rh (0)
n+1 = hin

n − hin (0)
n+1 +





(ξ
(0)
n+1 − ξn)Hcur

n+1∂τ(Rτ)
(0)
n+1; ξ̇ > 0,

(ξ
(0)
n+1 − ξn)

hin (0)
n+1

ξ
(0)
n+1

; ξ̇ < 0,

Rτ (0)
n+1 = S (0)

n+1 : τ
(0)
n+1 + α

(0)
n+1(Tn+1 − T0) + hin (0)

n+1 − hn+1,

(4.13)

where p is defined as in Eqn. (3.26).

In the nonlinear system, there are 13 unknowns [ ∆ξn+1 (1), ∆τn+1 (6), ∆hin
n+1

(6) ] and 13 equations {Φt (1), Rh (6) and Rτ (6)}. Newton-Raphson method is

adopted to solve the nonlinear system.

By the method, the root of the nonlinear system is searched by following the
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steepest descent path with respect to unknown state variables [∆ξn+1, ∆τn+1, ∆hin
n+1].

The nonlinear system is firstly linearized by differentiating with respect to the un-

knowns,9









Φt (k)
f n+1 + ∂τΦt (k)

f n+1 : ∆τ
(k)
n+1 + ∂ξΦt (k)

f n+1 : ∆ξ
(k)
n+1 = 0,

Φt (k)
r n+1 + ∂τΦt (k)

r n+1 : ∆τ
(k)
n+1 + ∂ξΦt (k)

r n+1 : ∆ξ
(k)
n+1 + ∂hin Φt (k)

r n+1 : ∆hin (k)
n+1 = 0,

Rh (k)
n+1 + ∂τ Rh (k)

n+1 : ∆τ
(k)
n+1 + ∂ξ Rh (k)

n+1 ∆ξ
(k)
n+1 + ∂hin Rh (k)

n+1 : ∆hin (k)
n+1 = 0,

Rτ (k)
n+1 + ∂τ Rτ (k)

n+1 : ∆τ
(k)
n+1 + ∂ξ Rτ (k)

n+1 ∆ξ
(k)
n+1 + ∂hin Rτ (k)

n+1 : ∆hin (k)
n+1 = 0.

(4.14)

The above system can be written as a linear system,

J
(k)
n+1 · ∆X

(k)
n+1 = B

(k)
n+1,

9The subscript n+1 indicates the (n+1) increment of the global iteration depending on the loading
path. The superscript (k) is denoted as the kth iteration in local Newton-Raphson scheme, which is
contributing to the yield correction process.
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where,

J
(k)
n+1 =








[(1− C)Hcur∂τ(Rτ) + ∆S : τ + ∂ξ α(Tn+1 − T0)]
(k)
n+1[

−(1 + C)
hin

ξ
− ∆S : τ − ∂ξ α(Tn+1 − T0)

](k)

n+1




(ξ
(k)
n+1 − ξn)[Hcur∂2

τ2 (Rτ)]
(k)
n+1

0

S (k)
n+1





−∂ξ µ
t (k)
f n+1[

τ : hin

ξ2 + ∂ξ µt
r

](k)

n+1





0

−
[

τ

ξ

](k)

n+1




[Hcur∂τ(Rτ)]
(k)
n+1

hin (k)
n+1

ξ
(k)
n+1





−I

−

1−

(ξ
(k)
n+1 − ξn)

ξ
(k)
n+1


 I

∆S : τ
(k)
n+1 + ∂ξ α

(k)
n+1(Tn+1 − T0) I + ∂hin α

(k)
n+1(Tn+1 − T0)




;

∆X
(k)
n+1 =




∆τ
(k)
n+1

∆ξ
(k)
n+1

∆hin (k)
n+1




; B
(k)
n+1 =








−Φt (k)
f n+1

−Φt (k)
r n+1

−Rh (k)
n+1

−Rτ (k)
n+1




.

This procedure is repeated until {Φt
n+1, Rh

n+1, Rτ
n+1} are converged to zero (a tol-

erance value).
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Detailed expressions in the matrix J are listed below:

∂ττ′ = I − 1
3

δ� δ; ∂τ(det τ) = (det τ) τ−T ; ∂τ(τ
−1) = −τ−1 ⊗ τ−1,

∂τ (τR) = R
3
2

τ′

τ
+

1
n

γτR(1−n) det(τ′)
τ3 χ,

χ = (τ′)−1 :
(

I − 1
3

δ� δ

)
− 9

2
τ′

τ2 ,

∂2
τ2 (τR) =

3γ

2n
R(1−n) τ′

τ
� det(τ′)

τ3 χ +
3
2

R
1
τ

(
I − 1

3
δ� δ− 3

2
τ′

τ
� τ′

τ

)

+
3γ

2n
R1−n det(τ′)

τ3 χ� τ′

τ
+

1− n
n2 γ2τR(1−2n) det(τ′)

τ3 χ� det(τ′)
τ3 χ +

γ

n
τR(1−n)χ� det(τ′)

τ3 χ

+
γ

n
τR(1−n) det(τ′)

τ3

[
−(τ′)−1 ⊗ (τ′)−1 :

(
I − 1

3
δ� δ

)
− 9

2
1
τ2

(
I − 1

3
δ� δ− 3

τ′

τ
� τ′

τ

)]
,

∂ξ α =
(

αM
0 − αA

)
δ + 2ξαM H

Hmax N,

∂hin α = ξ2αM H
Hmax

I − N � N
‖hin‖ ,

∂ξ µt
f =

1
2

at
1

[
nt

1ξ(n
t
1−1) + nt

2(1− ξ)(n
t
2−1)

]
,

∂ξ µt
r =

1
2

at
2

[
nt

3ξ(n
t
3−1) + nt

4(1− ξ)(n
t
4−1)

]
,

(4.15)

where, I is denoted to the identify fourth order tensor and δ is the kroneck delta,

and the expressions are:

Iijkl =
1
2
(δikδjl + δilδjk),

δij =





1, if i = j,

0, if i 6= j.

(4.16)

The calculator symbol � in Eqn.(4.15) means the product of two second order

tensors and producing a fourth order tensor with components ( f � g)ijkl = fijgkl ,

and the symbol ⊗ defined as ( f ⊗ g)ijkl = fikgjl .
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4.2.4 Yield correction on orientation yield surface

When orientation yield surface active, the dicretitized nonlinear system is as

follows,





Φo (0)
n+1 = (Rτ)

(0)
n+1 − µo(Hcur (0)

n+1 ) + coTn+1 −Yo,

Rh (0)
n+1 = hin

n − hin (0)
n+1 + ξn+1[H

cur (0)
n+1 − Hcur

n ]∂τ(Rτ)
(0)
n+1,

Rτ (0)
n+1 = Sn+1 : τ

(0)
n+1 + α

(0)
n+1(Tn+1 − T0) + hin (0)

n+1 − hn+1.

(4.17)

Linearizing the nonlinear system based on the unknowns [∆Hcur (k)
n+1 , ∆τ

(k)
n+1, ∆hin (k)

n+1 ],





Φo (k)
n+1 + ∂τΦo (k)

n+1 : ∆τ
(k)

n+1 + ∂Hcur Φo (k)
n+1 ∆Hcur (k)

n+1 = 0,

Rh (k)
n+1 + ∂τ Rh (k)

n+1 : ∆τ
(k)
n+1 + ∂Hcur Rh (k)

n+1 ∆Hcur (k)
n+1 + ∂hin Rh (k)

n+1 : ∆hin (k)
n+1 = 0,

Rτ (k)
n+1 + ∂τ Rτ (k)

n+1 : ∆τ
(k)
n+1 + ∂Hcur Rτ (k)

n+1 ∆Hcur (k)
n+1 + ∂hin Rτ (k)

n+1 : ∆hin (k)
n+1 = 0.

(4.18)

The above system can be written as a linear system,

J
(k)
n+1 · ∆X

(k)
n+1 = B

(k)
n+1,

where,

J
(k)
n+1 =




∂τ(Rτ)
(k)
n+1 −∂Hcur µ

o (k)
n+1 0

(Hcur (k)
n+1 − Hcur

n )[ξ∂2
τ2(Rτ)]

(k)
n+1 [ξ∂τ(Rτ)]

(k)
n+1 −I

S (k)
n+1 ∂Hcur α

(k)
n+1(Tn+1 − T0) I + ∂hin α

(k)
n+1(Tn+1 − T0)




.
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4.2.5 Yield correction on reorientation yield surface

When reorientation yield surface active, the dicretitized nonlinear system is as

follows,





Φr (0)
n+1 = (τM)

(0)
n+1 + crTn+1 −Yr,

Rh (0)
n+1 = hin

n − hin (0)
n+1 + [ξHcurλr]

(0)
n+1(∂ττM)

(0)
n+1,

Rτ (0)
n+1 = Sn+1 : τ

(0)
n+1 + α

(0)
n+1(Tn+1 − T0) + hin (0)

n+1 − hn+1.

(4.19)

Linearizing the nonlinear system based on the unknowns {∆λ
r (k)
n+1 , ∆τ

(k)
n+1, ∆hin (k)

n+1 },





Φr (k)
n+1 + ∂τΦr (k)

f n+1 : ∆τ
(k)

n+1 + ∂hin Φr (k)
f n+1∆hin (k)

n+1 = 0,

Rh (k)
n+1 + ∂τ Rh (k)

n+1 : ∆τ
(k)
n+1 + ∂λr Rh (k)

n+1 ∆λ
r (k)
n+1 + ∂hin Rh (k)

n+1 : ∆hin (k)
n+1 = 0,

Rτ (k)
n+1 + ∂τ Rτ (k)

n+1 : ∆τ
(k)
n+1 + ∂hin Rτ (k)

n+1 : ∆hin (k)
n+1 = 0.

(4.20)

The above system can be written as a linear system,

J
(k)
n+1 =




(∂ττM)
(k)
n+1 0 (∂hin τM)

(k)
n+1

[ξHcurλr∂2
τ2(τM)]

(k)
n+1 [ξHcur∂τ(τM)]

(k)
n+1 −I + [ξHcurλr(∂hin ∂ττM)]

(k)
n+1

S (k)
n+1 0 I + ∂hin α

(k)
n+1(Tn+1 − T0)




.
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The expressions of symbols in matrix J
(k)
n+1 are listed as follows,

τ′M = τM : (I − 1
3

δ� δ), τM = M : τ, M = I − N � N,

∂ττM =
3
2

τ
′
M

τM
,

∂hin τM = −3
2
(τ : N) τ

′
M

τM‖hin‖ ,

∂2
τ2 τM =

3
2

1
τM

(
I − 1

3
δ� δ− N � N − 3

2
τ
′
M

τM
� τ

′
M

τM

)
,

∂hin ∂hτ τM =
3
2

1
τM‖hin‖

[
−N � τ

′
M − τ′ : N

(
I − N � N − 3

2
τ
′
M

τM
� τ

′
M

τM

)]
.

4.2.6 Several yield surfaces active simultaneously

In this section, we will present the numerical implementation when several

yield surfaces active simultaneously. There are five possible co-currencies of yield

surfaces, and they are:

•forward phase transformation and orientation;

•forward phase transformation and reorientation;

•reverse phase transformation and reorientation;

•orientation and reorientation ;

•forward phase transformation, orientation and reorientation.

We take the co-currency of forward phase transformation and reorientation as

an example to describe the numerical iterations of combined internal state vari-

ables evolution induced by more than one yield surface. The nonlinear system is

given as follows,

75







Φt (0)
f n+1 = (1− C)Hcur

n+1(τR)(0)n+1 + p(0)n+1 − µt
f (ξ

(0)
n+1) +Qr −Yt,

Φr (0)
n+1 = (τM)n+1 + crT(0)

n+1 −Yr,

Rh (0)
n+1 = hin

n − hin (0)
n+1 + (ξ

(0)
n+1 − ξn)Hcur

n+1∂τ(Rτ)
(0)
n+1 + [ξHcurλr]

(0)
n+1(∂ττM)

(0)
n+1,

Rτ (0)
n+1 = S (0)

n+1 : τ
(0)
n+1 + α

(0)
n+1(Tn+1 − T0) + hin (0)

n+1 − hn+1.

(4.21)

Linearizating the system, we get,





Φt (k)
f n+1 + ∂τΦt (k)

f n+1 : ∆τ
(k)
n+1 + ∂ξΦt (k)

f n+1 : ∆ξ
(k)
n+1 = 0,

Φr (k)
f n+1 + ∂τΦr (k)

f n+1 : ∆τ
(k)

n+1 + ∂hin Φr (k)
f n+1∆hin (k)

n+1 = 0,

Rh (k)
n+1 + ∂τ Rh (k)

n+1 : ∆τ
(k)
n+1 + ∂ξ Rh (k)

n+1 ∆ξ
(k)
n+1 + ∂λr Rh (k)

n+1 ∆λ
r (k)
n+1 + ∂hin Rh (k)

n+1 : ∆hin (k)
n+1 = 0,

Rτ (k)
n+1 + ∂τ Rτ (k)

n+1 : ∆τ
(k)
n+1 + ∂ξ Rτ (k)

n+1 ∆ξ
(k)
n+1 + ∂hin Rτ (k)

n+1 : ∆hin (k)
n+1 = 0.

(4.22)

The linearilized system can be written in the following matrix format,

J(k) · ∆X(k) = B(k),
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where,

J
(k)
n+1 =




[(1− C)Hcur∂τ(Rτ) + ∆S : τ + ∂ξ α(T − T0)]
(k)
n+1 −∂ξ µ

t (k)
f n+1

∂τ(τM)
(k)
n+1 0

(ξ
(k)
n+1 − ξn)[Hcur∂2

τ2 (Rτ)]
(k)
n+1 + [ξHcurλr∂2

τ2 τM]
(k)
n+1 [Hcur∂τ(Rτ)]

(k)
n+1

S (k)
n+1 ∆S : τ

(k)
n+1 + ∂ξ α

(k)
n+1(T − T0)

0 0

0 ∂hin (τM)
(k)
n+1

[ξHcur∂ττM]
(k)
n+1 −I + [ξHcurλr(∂hin ∂ττM)]

(k)
n+1

0 I + ∂hin α
(k)
n+1(T − T0)




,

∆X
(k)
n+1 =




∆τ
(k)
n+1

∆ξ
(k)
n+1

∆λ
r (k)
n+1

∆hin (k)
n+1




, B
(k)
f n+1 =




−Φt (k)
f n+1

−Φr (k)
n+1

−Rh (k)
n+1

−Rτ (k)
n+1




.

Expressions in J are listed previously.
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4.3 Consistent Tangent Moduli Tensors

This section demonstrates the algorithmic process of calculating the consistent

tangent moduli tensor of the proposed constitutive model. As shown previously,

the solution of the rate-type constitutive model is obtained through integrating a

number of time steps. The stress tensor, as a result of the process, is defined as a

function of the deformation history as well as temperature history up to a given

instant. The global finite element problem is commonly solved by the the well-

known Newton’s iteration method and the tangent moduli tensor is important to

maintain the quadratic rate of asymptotic convergence in the linearized problem.

In other words, the notion of a consistent tangent stiffness tensor and tangent

thermal moduli tensor arises due to the enforcement of the consistency condition

on the discrete algorithmic problem. The tangent moduli are the tensors that relate

the strain and temperature increments (input) to the calculated stress increment

(output). It should be written in an incremental form as follows,

∆τn+1 = L : ∆hn+1 + Θ∆Tn+1, (4.23)

where L is the tangent stiffness tensor and Θ is the tangent thermal moduli tensor.

Considering the constitutive relation

S−1 : τ = h− α(T − T0)− ht − ho − hr, (4.24)

and the incremental form of the constitutive relation based on the time increments

is given as,

S : ∆τ + ∆ξ∆S : τ = d− α∆T − ∆α(T − T0)− ∆ht − ∆ho − ∆hr. (4.25)

Accounting for the expression of thermal expansion ( Eqn. 3.61) and evolution
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law of yield surfaces, we finally obtain 10

S : ∆τ + ∆ξ∆S : τ
.
= d− α∆T −

[
∆ξ∂ξα + ∆H∂Hα + ∆λr Hξ∂hin α : Λr] (T − T0)

− ∆ξHΛt − ∆HξΛo − ∆λr HξΛr.
(4.26)

This section will demonstrate the detailed procedure of calculating the consis-

tent tangent moduli when only forward phase transformation active, and then list

the tangent moduli tensors in all possible conditions.

Forward Phase Transformation

The incremental form of constitutive relation reduces to Eqn. (4.27) if the

forward phase transformation is the only active yield surface,

S : ∆τ = ∆h− α∆T − ∆ξ∆S : τ − ∆ξ∂ξα(T − T0)− ∆ξH∂τ(Rτ)

= ∆h− α∆T − ∆ξ∂τΦt
f .

(4.27)

According to the Kuhn-Tucker consistency condition, the differentiation of the

transformation function results in11,

∆Φt
f = ∂τΦt

f : ∆τ + ∂TΦt
f ∆T + ∂ξΦt

f ∆ξ = 0. (4.28)

Substitute the constitutive relation (4.27) into the consistency condition, we

obtain Eqn. (4.29),

∂τΦt
f :
{
S−1 :

[
∆h− α∆T − ∆ξ∂τΦt

f

]}
+ ∂TΦt

f ∆T + ∂ξΦt
f ∆ξ = 0. (4.29)

10We need to note the slight difference between thermodynamic forces π we defined
in the constitutive model and the kirchhoff stress τ.The relation is defined as π =[

I + αMξ2 H
Hmax

I−N⊗N
‖hin‖ (T − T0)

]
: τ = K : τ, and the symbol .

= in Eqn. (4.26) is denoted that

the minor difference of the two tensor can be neglected in numerical calculation
11In this section, the superscript indicates the active yield surfaces, and t stands for phase trans-

formation, r for reorientation and o for orientation respectively. Moreover, forward and reverse
phase transformation are distinguished by the subscript f for forward and r for reverse respec-
tively. For instances, symbols to

f represents forward phase transformation and orientation active

simultaneously
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Then the increment of state variable ∆ξ can be expressed by the given incre-

ments (strain and temperature) as Eqn. (4.30),

∆ξ =
∂τΦt

f : S−1 : ∆h + (∂TΦt
f − ∂τΦt

f : S−1 : α)∆T

∂τΦt
f : S−1 : ∂τΦt

f − ∂ξΦt
f

. (4.30)

Subtitute the expression of ∆ξ Eqn. (4.30) into constitutive Eqn. (4.29), we are

able to obtain the stiffness moduli and thermal moduli tensor,

∆τ = Lt
f : ∆h + Θt

f ∆T, (4.31)

where,

Lt
f = S−1 − S−1 : ∂τΦt

f �Z t
f ξ , and Θt

f = Lt
f : α− T t

f ξS
−1 : ∂τΦt

f .

The expression of the symbols are shown as follows:

Z t
f ξ =

∂τΦt
f : S−1

at
f

, T t
f ξ =

∂TΦt
f

at
f

,

at
f = ∂τΦt

f : S−1 : ∂τΦt
f − ∂ξΦt

f .

Reverse Phase Transformation

Lt
r and Θt

r represent stiffness tangent moduli and thermal tangent moduli

respectively when reverse phase transformation is the only active yield surface,

∆τ = Lt
r : ∆h−Θt

r : ∆T, (4.32)

where,

Lt
r = S−1 − S−1 : ∂τΦt

r �Z t
r ξ , and Θt

r = Lt
r : α− T t

r ξS−1 : ∂τΦt
r.
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The expression of the symbols are shown as follows:

Z t
r ξ =

∂τΦt
r : S−1

at
f

, T t
r ξ =

∂TΦt
r

at
r

,

at
f = ∂τΦt

r : S−1 : ∂τΦt
r + ∂ξΦt

r.

Orientation Yield Surfaces

Lo and Θo represent stiffness tangent moduli and thermal tangent moduli

respectively when orientation is the only active yield surface,

∆τ = Lo : ∆h−Θo : ∆T, (4.33)

where,

Lo = S−1 − S−1 : ξ∂τΦo �Z o
Hcur , and Θo = Lo : α− T o

HcurS−1 : ξ∂τΦo.

The expression of the symbols are displayed as follows:

Z o
Hcur =

∂τΦo : S−1

ao , T o
Hcur =

∂TΦo

ao ,

ao = ξ∂τΦo : S−1 : ∂τΦo − ∂Hcur Φo.

Reorientation Yield Surface

Lr and Θr represent stiffness tangent moduli and thermal tangent moduli of

reorientation yield surface,

∆τ = Lr : ∆h−Θr : ∆T, (4.34)
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where,

Lr = S−1 − S−1 : ∂τΦr �Z r
λr , and Θr = Lr : α− T r

λrS−1 : ∂τΦr.

The expressions of symbols Z r
λr , T r

λr are listed:

Z r
λr =

∂τΦr : S−1

ar , T r
λr =

∂TΦr

ar ,

ar = ∂τΦr : S−1 : ∂τΦr − ∂hin Φr : ∂τΦr.

Forward and Orientation

Lto
f and Θto

f represent stiffness tangent moduli and thermal tangent moduli

respectively when forward phase transformation and orientation yield surfaces

active simulteneously,

∆τ = Lto
f : ∆h−Θto

f : ∆T, (4.35)

where,

Lto
f = S−1 − S−1 : ∂τΦt

f �Z to
f ξ − S−1 : ξ∂τξΦo �Z to

f Hcur ,

and

Θto
f = Lto

f : α− T to
f ξS

−1 : ∂τΦt
f − T to

f HcurS−1 : ξ∂τΦo.
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The detailed expressions of the symbols are listed following:

Z to
f ξ =

(aoo∂τΦt
f − ato

f ∂τΦo) : S−1

att
f aoo − aot

f ato
f

, T to
f ξ =

(aoo∂TΦt
f − ato

f ∂TΦo) : S−1

att
f aoo − aot

f ato
f

,

Z to
Hcur =

(aot
f ∂τΦt

f − att
f ∂τΦo) : S−1

aot
f ato

f − att
f aoo , T to

f Hcur =
(aot

f ∂TΦt
f − att

f ∂TΦo) : S−1

aotato
f − att

f aoo ,

att
f = ∂τΦt

f : S−1 : ∂τΦt
f − ∂ξΦt

f , ato
f = ξ∂τΦt

f : S−1 : ∂τΦo − ∂Hcur Φt
f ,

aoo = ∂τΦo : S−1 : ξ∂τΦo − ∂Hcur Φo, aot
f = ∂τΦo : S−1 : ∂τΦt

f .

Forward and Reorientation

Ltr
f and Θtr

f represent stiffness tangent moduli and thermal tangent moduli

respectively when forward phase transformation and reorientation yield surfaces

active simultaneously,

∆τ = Ltr
f : ∆h + Θtr

f ∆T, (4.36)

where,

Ltr
f = S−1 − S−1 : ∂τΦt

f ⊗Z tr
f ξ − S−1 : ∂τΦr ⊗Z tr

f λr ,

and

Θtr
f = −Ltr

f : α− TξS−1 : ∂τΦt
f − TλrS−1 : ∂τΦr.
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The expressions of the symbols in the modulus tensor are as follows:

Z tr
f ξ =

(arr∂τΦt
f − atr

f ∂τΦr) : S−1

att
f arr − art

f atr
f

, T tr
f ξ =

arr∂TΦt
f − atr

f ∂TΦr

att
f arr − art

f atr
f

,

Z tr
f λr =

(art
f ∂τΦt

f − att
f ∂τΦr) : S−1

art
f atr

f − att
f arr , T tr

f λr =
art

f ∂TΦt
f − att

f ∂TΦr

att
f arr − art

f atr
f

,

att
f = ∂τΦt

f : S−1 : ∂τΦt
f − ∂ξΦt

f , atr
f = ∂τΦt

f : S−1 : ∂τΦr,

arr = ∂τΦr : S−1 : ∂τΦr − ∂hin Φr : ∂τΦr, art
f = ∂τΦt

f : S−1 : ∂τΦr − ∂hin Φr : ∂τΦt
f .

Reverse and Reorientation

Ltr
r and Θtr

r represent stiffness tangent moduli and thermal tangent moduli

respectively when forward phase transformation and reorientation yield surfaces

active simultaneously,

∆τ = Ltr
r : ∆h + Θtr

r ∆T, (4.37)

where,

Ltr
r = S−1 − S−1 : ∂τΦt

r ⊗Z tr
r ξ − S−1 : ∂τΦr ⊗Z tr

r λr ,

and

Θtr
f = −Ltr

r : α− TξS−1 : ∂τΦt
r − TλrS−1 : ∂τΦr.

84



The expressions of the symbols in the moduli tensor are as follows:

Z tr
r ξ =

(arr∂τΦt
f − atr

r ∂τΦr) : S−1

att
r arr − art

r , atr
f

, T tr
r ξ =

arr∂TΦt
r − atr

r ∂TΦr

att
f arr − art

r atr
r

,

Z tr
r λr =

(art
r ∂τΦt

r − att
r ∂τΦr) : S−1

art
f atr

r − att
f arr , T tr

r λr =
art

r ∂TΦt
r − att

r ∂TΦr

att
f arr − art

r atr
r

,

att
r = ∂τΦt

f : S−1 : ∂τΦt
f − ∂ξΦt

f , atr
r = ∂τΦt

r : S−1 : ∂τΦr,

arr = ∂τΦr : S−1 : ∂τΦr − ∂hin Φr : ∂τΦr, art
r = ∂τΦt

r : S−1 : ∂τΦr − ∂hin Φr : ∂τΦt
r.

Orientation and Reorientation

Lor
f and Θor

f represent stiffness tangent moduli and thermal tangent moduli

respectively when martensite variants orients and reorients simulteneously,

∆τ = Lor : ∆h−Θor : ∆T, (4.38)

where,

Lor = S−1 − S−1 : ξ∂τΦo �Z or
Hcur − S−1 : ∂τΦr �Z or

λr ,

and

Θor = Lor : α− T or
HcurS−1 : ξ∂τΦo − T or

λr S−1 : ∂τΦr.

The detailed expressions are given as follows:

Z or
Hcur =

(arr∂τΦo − aor∂τΦr) : S−1

arraoo − aroaor , T or
Hcur =

(arr∂TΦo − aor∂TΦr) : S−1

arraoo − aroaor ,

Z or
λr =

(aro∂τΦo − aoo∂τΦr) : S−1

aroaor − arraoo , T or
λr =

(aro∂TΦt
f − aoo∂TΦo) : S−1

aroaor − arraoo ,

aoo = ∂τΦt
f : S−1 : ξ∂τΦo − ∂Hcur Φo, aor = ∂τΦo : S−1 : ∂τΦr,

arr = ∂τΦr : S−1 : ∂τΦr − ∂hin Φr : ∂τΦr, aro = ∂τΦr : S−1 : ξ∂τΦo − ∂hin Φr : ξ∂τΦo.
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5 NUMERICAL SIMULATIONS AND DISCUSSION

In this section, the three-fold task of verifying the model’s ability to reproduce

the intended characteristics of the thermomechanical response of SMAs, validat-

ing it against experimental data obtained under complex non-proportional load-

ing conditions, and testing the robustness and efficiency of the numerical imple-

mentation is undertaken. Note that whenever no values are provided for certain

parameters, these parameters are insignificant for the respective simulations, e.g.,

reorientation related parameters for proportional loading simulations.

5.1 Proportional Loading

Here, orientation, phase transformation, rate effects, and minor loops are sim-

ulated under uniaxial loading paths. It is worth noting that reorientation cannot

be triggered from proportional loading and it is thus insignificant in these simu-

lations.

5.1.1 Orientation & phase transformation

In Figure 5.1, the material’s deformation response for a loading path that re-

sults in shape memory, orientation, and psuedoelasticity is shown. An initially

austenitic material is cooled from 300 to 220 K under zero bias load. The resulted

self-accommodated martensite is loaded in tension uniaxially and isothermaly to

a maximum stress of 320 MPa, resulting in orientation. Subsequent unloading

does not alter the orientation-induced deformation. Heating at zero stress to a

maximum temperature of 300 K induces the shape memory effect, i.e., reverse

phase transformation takes place and the orientation strain is recovered. Then

the material is loaded again in tension undergoing forward phase transformation

and transformation-induced deformation which is recovered upon unloading due
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Table 3: Closet Point projection implicit algorithm for shape memory alloys

1.Known

{
Solved by global interation un, un+1 (εn, εn+1); Fn, Fn+1; Tn, Tn+1; τn

Internal State Variables κt
n; κo

n; κr
n; hin

n

2.Pre-Calculation (Finite Strain Only)

Calculate the Hencky strain, rate of deformation and increment of rotation, and rotate relative variables

hn =
1
2

ln(FnFT
n ), hn+1 =

1
2

ln(Fn+1FT
n+1)

Dn+1 =
1
2

[
Fn+1 − Fn

∆t
F−1

n+1 +

(
Fn+1 − Fn

∆t
F−1

n+1

)T
]

∆Rlog
n+1 = exp

(
Ω

log
n+1∆t

)

hin
n = ∆Rlog

n+1hin
n ∆Rlog T

n+1 ; τn = ∆Rlog
n+1τn∆Rlog T

n+1
3. Thermoelastc Prediction. Let

k = 0; κ
t (0)
n+1 = κt

n; κ
o (0)
n+1 = κo

n; κ
r (0)
n+1 = κr

n; hin (0)
n+1 = hin

n

α
(0)
n+1 = (1− ξ

(0)
n+1)α

A + ξ
(0)
n+1α

M (0)
n+1

τ
(0)
n+1 = τn + S−1 (0)

n+1 : (Dn+1 − α
(0)
n+1(Tn+1 − Tn))

4.Kuhn-Tucker Condition
Calculate the themoelastic prediction, and evaluate the active set. (α stands for the all the yield surfaces
and β stands for the active set)

|Φα (0)
n+1 = Φα(τ

(0)
n+1, Tn+1, κ

α (0)
n+1 ; (hin (0)

n+1 ))| ≤ tol1 Return to global iteration

|Φα (0)
n+1 = Φα(τ

(0)
n+1, Tn+1, κ

α (0)
n+1 ; (hin (0)

n+1 ))|β > tol1 Active Set, Continue 5
5. Yield Correction
• Discretizing the equations in active set, evolution law and constitutive relation based on the implicit
backward Euler integration Section 4.2.3

{Φα (k)
n+1 = Φα[τ

(k)
n+1, Tn+1, κ

α (k)
n+1 ; (hin (k)

n+1 )]}β

Rh (k)
n+1 = −hin (k)

n+1 + hin
n +

β

∑
α=1

Λ
α (k)
n+1

(
κ

α (k)
n+1 − κα

n

)

Rτ (k)
n+1 = S (k)n+1 : τ

(k)
n+1 + α

(k)
n+1(Tn+1 − Tn) + hin (k)

n+1 − hn+1

IF |{Φα (k)
n+1 }β| ≤ tol1, ‖Rh (k)

n+1 ‖ ≤ tol2 and ‖Rτ (k)
n+1 ‖ ≤ tol2

Retain the value and GOTO 7
Else

Continue yield correction

• Solved the system by Newton-Raphson iteraton method Section 4.2.3

J(k) · ∆X(k) = B(k)

Where J(k) is the algorithm Jacobin matrix, obtained by differential the system with respect to the inde-
pendent

state variables [hin, τ, {κα}β]

B(k) is the residual

B(k) = [{−Φα (k)
n+1 }β,−Rh (k)

n+1 ,−Rτ (k)
n+1 ]T

∆X is the solution

∆X(k) = [∆hin (k)
n+1 , ∆τ

(k)
n+1, {∆κ

α (k)
n+1 }β]

T

6. Update State Varables

{κα (k+1)
n+1 = κ

α (k)
n+1 + ∆κ

α (k)
n+1 }β; hin (k+1)

n+1 = hin (k)
n+1 + ∆hin (k)

n+1 ; τ
(k+1)
n+1 = τ

(k)
n+1 + ∆τ

(k)
n+1

k = k + 1 Return to 5
7. Update consistent stiffness matrix
Calculate and update consistent stiffness matrix Ln+1 and thermal matrix Θn+1 (Section4.3)

Exit UMAT and return to global iteration
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Figure 5.1: Orientation, pseudoelasticity, and shape memory effect under uniaxial
thermomechanical loading.The model parameter values adopted in the
simulations are given in Table 4

Table 4: Parameter values used for the simulations presented in Fig 5.1

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 37500 Hmax[%] 2
EM [MPa] 32500 M f [K] 220
νA = νM 0.33 Ms [K] 248
ρ [g mm−3] ... As [K] 245
cA = cM [J g−1 K−1] ... A f [K] 270
kA [W mm−1 K−1] ... CA,CM [MPa K−1] 7.6, 7.6
kM [W mm−1 K−1] ... n1, n2 ,n3, n4 0.12, 0.17 ,0.73, 0.82

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 0,1.0 αA [10−6·K−1] ...
Yo = Yr [MPa] 10 αM

0 [10−6·K−1] ...
ao [MPa] 390 αM [10−6·K−1] ...
no

1, no
2 0.98,0.32
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to reverse phase transformation (pseudoelasticity). The resulted deformation re-

sponse is depicted with a solid black line in Figure 5.1. A similar loading path is

then followed denoted by the dashed red line in Figure 5.1. The material parame-

ter values used in the simulations are given in Table 4.

(a) Stress–strain curves resulting from a pseu-
doelastic loading–unloading cycle in both
tension and compression

(b) Strain–temperature curves resulting from
isobaric thermal cycles at different bias load
levels

Figure 5.2: Simulations compared against experimental results under uniaxial
condition

From the plotted deformation response in Figure 5.1, the following capabilities

of the model are evident:

(i) the smooth transition from elastic deformation to phase transformation (or

orientation)

(ii) the asymmetry between forward and reverse phase transformation

(iii) the dependence of the load level required for phase transformation and

orientation

The simulated responses are compared against available experimental data

using the calibrated values reported in Tables 5 and 6, respectively. A pseudoe-

lastic loading–unloading cycle in both tension and compression is simulated in

Figure 5.2(a), the experimental data are from the experiments performed by [48]

and the model parameter values adopted in the simulations are given in Table 5.

89



A strain–temperature curves resulting from isobaric simulations at different bias

stress levels in Figure 5.2(b). The experimental data are reported in [37] and the

quantitative material parameters are listed in Table 6. Note that the strain has

been adjusted in Figure 5.2(b) so that the difference in the maximum transfor-

mation strain reached under each bias load is evident. The model’s ability to

reproduce (Figure 5.2):

(iv) tension–compression asymmetry

(v) temperature dependence of the hysteresis

(vi) load dependence of maximum transformation strain

Table 5: Parameter values used for the numerical results presented in Figure 5.2a.
The simulation is at reference temperature 297 K [48]

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 55000 Hmax[%] 4.25
EM [MPa] 32500 M f [K] 160
νA = νM 0.33 Ms [K] 179
ρ [g mm−3] ... As [K] 225
cA = cM [J g−1 K−1] ... A f [K] 245
kA [W mm−1 K−1] ... CA,CM [MPa K−1] 4.2,4.2
kM [W mm−1 K−1] ... n1, n2 ,n3, n4 0.4, 0.6 ,0.46, 0.32

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 2.46,0.5 αA [10−6·K−1] ...
Yo = Yr [MPa] ... αM

0 [10−6·K−1] ...
ao [MPa] ... αM [10−6·K−1] ...
no

1, no
2 ...

5.1.2 Minor loops & Latent heat effect

The model’s ability to capture minor loops and latent heat effect, i.e., phase-

transformation-induced heat generation/absorption, is assessed by uniaxial load-

ing simulations at different loading rates (Figure 5.3). An SMA rectangular bar

is clamped on one end and subjected to controlled tensile displacement on the
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Table 6: Parameter values used for the numerical results presented in Fig-
ure 5.2(b). The material properties of NiTi (55.0 at.%Ni) are calibrated
from [37]

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 90000 Hmax[%] 1.5
EM [MPa] 63000 M f [K] 242
νA = νM 0.33 Ms [K] 308
ρ [g mm−3] ... As [K] 288
cA = cM [J g−1 K−1] ... A f [K] 342
kA [W mm−1 K−1] ... CA,CM [MPa K−1] 16,10
kM [W mm−1 K−1] ... n1, n2 ,n3, n4 0.2, 0.26 ,0.38, 0.21

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 0,1.0 αA [10−6·K−1] ...
Yo = Yr [MPa] 10 αM

0 [10−6·K−1] ...
ao [MPa] 390 αM [10−6·K−1] ...
no

1, no
2 0.98,0.32

other end. The mechanical (un)loading is interrupted repeatedly before comple-

tion of (reverse) forward phase transformation. The nodes at the ends are kept

at a constant temperature throughout the calculations to simulate massive hard

grips which act as constant temperature baths. The thermal boundary conditions

on the remaining faces correspond to heat flux q due to convection in air of the

form q = h(T − Ts)n, where h stands for the film coefficient, Ts is the sink tem-

perature, and n is the outward unit normal to the deformed boundary. In the

calculations, h = 12 W/(m2K), which is standard for air, and Ts = 300 K. The

thermal conductivity is assumed constant, equal to k = (kA + kM)/2. In Fig-

ure 5.3a, the resulting stress–strain curves for four strain rates equal to 2.5 · 10−4,

2.5 · 10−3, 2.5 · 10−2, and 2.5 · 10−1 are shown. The hysteresis loops corresponding

to the lowest strain rate is very similar to that obtained from the isothermal cal-

culations. The higher the loading rate, the steeper the inelastic response, i.e., the
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(b) Temperature evolution for the simulations
depicted in (a)

Figure 5.3: Latent-heat effects on the deformation response. The thermal bound-
ary conditions correspond to heat convection in air. The model param-
eter values are given in Table 7

Table 7: Parameter values used for the numerical results presented in Figure 5.3

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 90000 Hmax[%] 1.7
EM [MPa] 90000 M f [K] 225
νA = νM 0.33 Ms [K] 263
ρ [g mm−3] 0.0065 As [K] 275
cA = cM [J g−1 K−1] 0.48 A f [K] 310
kA [W mm−1 K−1] 0.0018 CA,CM [MPa K−1] 4.2,4.2
kM [W mm−1 K−1] 0.0018 n1, n2 ,n3, n4 0.3,0.26,0.28,0.31

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 0,1.0 αA [10−6·K−1] ...
Yo = Yr [MPa] ... αM

0 [10−6·K−1] ...
ao [MPa] ... αM [10−6·K−1] ...
no

1, no
2 ...
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steeper the slopes of stress–strain curves during transformation/plastic deforma-

tion. The resulting response is the outcome of the interplay between the rate of

heat generation/absorption during transformation, which influences the load re-

quired for phase transformation due to the Clapeyron slopes, and the rate of heat

transfer by conduction/convection. During loading, the temperature of the mate-

rial increases due to heat absorption induced from forward phase transformation

despite heat convection in air, which prevails during elastic unloading decreasing

the temperature (Figure 5.3b). During reverse phase transformation, the rate of

cooling increases due to combined heat convection and transformation-induced

heat absorption; it is even possible that the temperature may drop below the am-

bient temperature depending on the loading rate. It should be noted that the

model is not in agreement with the experimental observations of ”return points”

according to which the minor loops always pass on return through the limiting

(σ, ε) points at which the imposed rate of the strain changes its sign.

5.2 Non-Proportional Loading

The aim here is the model’s validation against experiments performed on

NiTi (50.7 at.% Ni) tubes under non-proportional loading: tension–compression–

torsion experiments [35].

In Figure 5.4, the control paths of the simulated experiments are shown that

span all four axial/shear strain quadrants resulting in non-proportional loading.

Following the notation introduced in [35], ε = εzz stands for the axial strain and

γ′ = 2εzθ/
√

3, where εzθ is the torsional shear strain, on a cylindrical coordinate

system. Arrows indicate the loading direction, thus, for example, the box test

starts in simple compression, runs in the clockwise direction and ends back at its

origin. The numbers characterize points in time (or points in the loading path);

respective numbers in the subsequent plots characterize the exact same points.
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(a) Box loading path (b) Butterfly loading path

Figure 5.4: Strain–strain diagrams of the controlled loading paths

The butterfly test is substantially different in that the strain space origin is several

times traversed and, thus, the overall loading is repeatedly reduced and increased.

The maximum strains are ε = γ′ = 0.015.

The simulation results, based on the calibrated material parameter values

given in Table 8, are presented in Figures 5.5, 5.6, and 5.7 and compared with

the reported experiment results. Specifically, comparisons are provided for the

torsional stress τ′ =
√

3σzθ vs axial stress σ = σzz responses (Figure 5.5), the tor-

sional stress vs torsional strain responses (Figure 5.6), and the axial stress vs axial

strain responses (Figure 5.7). These comparisons demonstrate that the model can

capture the response of an SMA subjected to non-proportional loading with a very

good accuracy.

In Figure 5.8, the importance of (i) minor loops, (ii) tension–compression asym-

metry, and (iii) reorientation in the simulation of the box test is shown (Fig-

ures 5.8a, and 5.8b respectively). These figures depict the necessity of an ”ex-

tended” constitutive model, i.e., a model that incorporates the above referenced
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(a) Box test (b) Butterfly test

Figure 5.5: Simulations of the torsional stress vs axial stress responses for the con-
trol strain paths shown in Figure 5.4

(a) Box test (b) Butterfly test

Figure 5.6: Simulations of the torsional stress vs torsional strain responses for the
control strain paths shown in Figure 5.4 (τ′ =

√
3τ)

(a) Box test (b) Butterfly test

Figure 5.7: Simulations of the axial stress vs axial strain responses for the control
strain paths shown in Figure 5.4
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(a) Simulations with and without minor loops.

(b) Simulations with and without tension–
compression asymmetry (calibration of the
model parameters from uniaxial tension or
uniaxial compression).
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(c) Simulations with and without reorientation.

Figure 5.8: Simulations of the torsional stress vs axial stress response for the box
loading path shown Figure 5.4(a). The importance of minor loop,
tension-compression asymmetry and reorientation are presented
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Table 8: Parameter values used for the numerical results presented in Section 5.2.
The calibration of the material parameters included the uniaxial experi-
ments performed by [35]. All simulations are at reference temperature
300K

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 37500 Hmax[%] 1.6
EM [MPa] 32500 M f [K] 178
νA = νM 0.33 Ms [K] 198
ρ [g mm−3] ... As [K] 204
cA = cM [J g−1 K−1] ... A f [K] 228
kA [W mm−1 K−1] ... CA,CM [MPa K−1] 4.2,4.2
kM [W mm−1 K−1] ... n1, n2 ,n3, n4 0.12, 0.8 ,06, 0.12

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 1.46,0.6 αA [10−6·K−1] ...
Yo = Yr [MPa] 120 αM

0 [10−6·K−1] ...
ao [MPa] ... αM [10−6·K−1] ...
no

1, no
2 ...

deformation response characteristics, in capturing the SMAs response under non-

proportional loading paths. In Figure 5.8(a), the experimental response (dot-

ted line), full-model simulation (dashed–dotted line), and simulation without ac-

counting for minor loops (solid line) are compared. Partial phase transformation

occurs when loading direction is changing, for example, in load step 2-3-4, axial

loading is changing from compression to tension with a constant shear loading,

and the direction of phase transformation reverses before it completely transform

to a certain phase. The results of the solid line indicate the effects of the partial

phase transformation during the non-proportional loading. Figure 5.8(b) indi-

cates experimental response (dotted line), full-model simulation (dashed–dotted

line), simulations without accounting for tension–compression asymmetry; cal-

ibration based on uniaxial tension (solid line) or uniaxial compression (dotted

line). Figure 5.8(c) is the experimental response (dotted line), full-model simu-

lation (dashed–dotted line), and simulation without accounting for reorientation

97



(solid line). Without reorientation assumption, the oriented martensite variants

that have already generated by previous loading history will not change their

directions when subjected to new loading path, then the predicted direction of

transformation strain will not be closely associated with the direction of devia-

toric stress and a sudden drop may be resulted during reverse phase transforma-

tion based on the proposed model.

5.3 Anisotropic Thermal Expansion Evolution during Deformation

Processing

5.3.1 Experimental data, model calibration & validation

The model is calibrated based on the available experimental data on NiTiPd

presented in [73]. The calibration of the TE martensite tensor, as described in Sec-

tion 3.6.2, is depicted in Fig 5.9. A close fit between the experimental data and

the expression (3.13) adopted for the dependence of the martensite TE tensor on

the volume fraction of oriented martensite, ξo, and the unitary orientation tensor,

N, is shown under the assumption that the initial microstructure corresponds to

self-accommodated martensite. The elastic properties and the orientation related

parameters can be calibrated from the experimental stress–strain results presented

in Figure 1.14(a) and are listed in Table 9. It is assumed that orientation is com-

pleted at 3.56% strain.

A shown in Figure 5.10, the simulated (i) stress–strain response during the

loading–unloading cycles (Figure 5.10(a)), (ii) strain–temperature response at zero

bias load at the end of every cycle (in the cycle’s loading direction) (Figure 5.10(b)),

and (iii) evolution of the TE tensor components with cycling (Figure 5.10(c)) ad-

equately approximate the respective experimental results. According to the nu-

merical simulations, the TE response exhibits transverse isotropy since the TE
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Figure 5.9: Calibration of the martensite TE tensor expression Eqn.(3.13) from ex-
perimental data: TE tensor component in the direction reported in
Figure 1.14(c)

Table 9: Model parameters calibrated from the experimental data in [73]

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 40000 Hmax[%] 3.56
EM [MPa] 37500 M f [K] ...
νA = νM 0.33 Ms [K] ...
ρ [g mm−3] ... As [K] ...
cA = cM [J g−1 K−1] ... A f [K] ...
kA [W mm−1 K−1] ... CA,CM [MPa K−1] ...
kM [W mm−1 K−1] ... n1, n2 ,n3, n4 ...

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 0,1.0 αA [10−6·K−1] 15
Yo = Yr [MPa] 150 αM

0 [10−6·K−1] 15
ao [MPa] 570 αM [10−6·K−1] -22.5
no

1, no
2 0.15,0.95
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(c) TE tensor components in the loading direction
and the transverse directions vs orientation strain

Figure 5.10: Simulated vs experimental NiTiPd response
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evolutions curves in the orthogonal directions transverse to the direction of load-

ing coincide (Figure 5.10(c)). The TE tensor components along those directions

increase with increasing orientation strain contrarily to the axial TE tensor com-

ponent which exhibits the opposite dependence. Although, there are no exper-

imental results to verify the predicted response in the transverse directions, it

should be noted that it is in accordance with the predictions of the TE response

of polycrystalline NiTiPd based on the crystal plasticity-type constitutive model

introduced in [126].

5.3.2 Predictions of thermal expansion evolution under uniaxial compressive

loading

According to model, the TE tensor components evolution under uniaxial com-

pressive loading beyond the elastic regime is the opposite of that under uniaxial

tensile loading; the components in the axial/transverse directions increase/decrease

with increasing orientation strain instead of the other way around (Figure 5.11).
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Figure 5.11: Martensite TE tensor components under uniaxial compressive load-
ing vs orientation strain

There are currently no experimental observations to confirm the predicted ten-

dency. However, given (i) the tendency of tensile loading to align in its direction

the long axis of the martensite variants vs the tendency of compressive loading to
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align in its direction the small axis instead, and (ii) the intrinsic anisotropy of TE

tensor of the martensite lattice (Appendix A.2), according to which the TE tensor

component along the long axis is negative and that along the short axis positive,

the predicted response seems quite plausible. On the basis of the above argument,

it is also plausible that there may be a tension–compression asymmetry on the de-

pendence of the TE tensor on martensite variant orientation, which has not been

included in the present model for simplicity in the absence of related experimental

data.

5.3.3 Model verification

The numerical results presented below are based on the model parameter val-

ues listed in Tables 10. The related parameters (Table 10) are not representative of

NiTiPd since the experimental results reported in [73] were not sufficient for their

calibration.

Table 10: Material parameters used for the simulations presented in Section 5.3.3

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 40000 Hmax[%] 3.56
EM [MPa] 37500 M f [K] 435
νA = νM 0.33 Ms [K] 516
ρ [g mm−3] ... As [K] 472
cA = cM [J g−1 K−1] ... A f [K] 538
kA [W mm−1 K−1] ... CA,CM [MPa K−1] 6.5,6.5
kM [W mm−1 K−1] ... n1, n2 ,n3, n4 0.6,0.6,0.6,0.6

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 0,1.0 αA [10−6·K−1] 15
Yo = Yr [MPa] 150 αM

0 [10−6·K−1] 15
ao [MPa] 570 αM [10−6·K−1] -22.5
no

1, no
2 0.15,0.95

In Figure 5.12, the stress–strain response and the evolution of the TE tensor
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components for an isothermal uniaxial loading–unloading cycle at a temperature

at which austenite is stable (above A f ) are shown. Complete forward phase trans-

formation results in fully-oriented martensite and the TE tensor component values

at complete transformation are equal to those presented in Figure 5.10(c).

(a) Stress–strain response (b) TE tensor components vs strain

Figure 5.12: Isothermal uniaxial tensile response at a temperature, T = 560K,
above the austenite-finish temperature, A f

In Figure 5.13, the temperature–strain response and TE tensor components

evolution are shown for a thermal cycle at different constant bias load levels (iso-

baric loading) starting from the highest temperature. The range of temperature

allows for complete forward and complete reverse phase transformation. For suf-

ficient high bias load levels, forward phase transformation results in fully-oriented

martensite and, thus, the TE tensor component values at complete transformation

are again equal to those that correspond to complete orientation presented in Fig-

ure 5.10(c) and 5.12(b). For lower applied load levels, the TE component values

at complete forward phase transformation are dependent on the volume fraction

of oriented martensite that can be achieved by the corresponding bias load levels.

Note that the dashed lines in Figure 5.13(a) correspond to the temperature–strain

responses under the common assumption in literature of an isotropic constant

TE martensite tensor, with a coefficient of TE equal to that of self-accommodated
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martensite.

The numerical results in Figure 5.15 correspond to the control strain path

shown in Figure 5.14 applied to a thin-walled tube, i.e., to a box test spanning

all four axial/shear strain quadrants, which results in non-proportional loading

and reorientation [35]. Following the notation introduced in [35], ε = εzz stands

for the axial strain and γ′ = 2εzθ/
√

3, where εzθ is the torsional shear strain,

on a cylindrical coordinate system. Arrows indicate the loading direction, thus,

the box test starts in simple tension, runs in the counterclockwise direction and

ends back at its origin. The numbers characterize points in time (or points in

the loading path); respective numbers in the subsequent plots characterize the

exact same points. The resulting stress–stress curve is depicted in Figure 5.15(a),

in which σ = σzz is the axial stress and τ′ =
√

3σzθ , where σzθ is the torsional

shear stress. In Figure 5.15b, the TE tensor components evolutions with respect

to time is shown, and in Figure 5.15(c), 5.15(d), and 5.15(e) with respect to the

martensite volume fraction, ξ. Note (i) the reorientation induced changes in the

TE tensor components’ values, i.e., changes induced from the orientation unitary

tensor N, which are evident by the changes in those values occurring at constant

values of martensite volume fraction, ξ, for example near point 7 in Figure 5.15(c)

and 5.15(d), and (ii) the non-zero values of the non-diagonal component αzθ .

5.4 3D Analysis of SMA Devices

In this section, complex 3D simulations of SMAs devices, i.e., of a self-expanding

stent, buckling tube and helical spring actuator, are undertaken.

5.4.1 Biomedical SMA self-expanding stent

The good material behavior of SMAs, like psuedoelasticity and shape mem-

ory effect, along with its biocompatibility and fatigue properties have made the
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(a) Stress–strain responses. The solid lines corre-
spond to the anisotropic evolving TE marten-
site tensor proposed in the present model and
the dashed lines to the common assumption in
literature of an isotropic constant TE marten-
site tensor with a coefficient of TE equal to that
of self-accommodated martensite

(b) TE tensor components vs strain for tensile bias
load resulting in σ = 620 MPa

(c) TE tensor components vs strain for tensile bias
load resulting in σ = 400 MPa

Figure 5.13: Isobaric responses under tensile bias load resulting in σ = 400 MPa
and 620 MPa for thermal cycles that ensure complete forward and
reverse phase transformation
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Figure 5.14: Control strain path

material attractive for medical applications. Self-expanding SMAs stent, which is

used to treat narrowed arteries in the body, is one of representative application

in biomedical (Figure 5.16). Taking advantage of the psuedoelastic property of

SMAs, these stents are crimped into a smaller diameter outside the body and in-

serted into the diseased artery. After being delivered into the desired position,

releasing the constraints of the SMAs stent and it will self-expand to its original

diameter. Self-expanding stents have proven to reduce the extent of arterial recoil

and restenosis as compared to balloon angioplasty procedures and provide a less

invasive alternative in the treatment of endovascular disease.

The manufacturing process of SMAs stents starts from a thin tube in which a

pattern is micro-machined. The finite element model is built from this machined

tube. At first, the stent is expanded to its nominal dimensions, typically at a

diameter much larger than the original tube diameter. The stent is then annealed

to provide its new unloaded configuration. It is then crimped from the outside

and inserted into the delivery system (catheter tube). Once inside the blood vessel,

the stent will self-expand when releasing the catheter tube.

The structure used in the simulations is 61.5 mm long, 25.4 mm in outer di-

ameter and 0.5 mm thick in radial direction. The expanded and crimped shape of
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(a) Stress–stress curve
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(b) TE tensor evolution
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Figure 5.15: Simulated response for the control strain path shown in Figure 5.14
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Figure 5.16: Self-expanding NiTi stent

the stent and a unit-cell of the structures are given in Figure 5.17.

Crimped
Expanded

Unit cell structure 
(crimped)

Unit cell structure 
(expanded)

Figure 5.17: Self-expanding NiTi stent geometry and unit-cell model

The material properties of the stent are calibrated in two temperature level,

as shown in Figure5.18(a), 293 K as room temperature (crimped stent outside the

body) and 310 K as body temperature (self-expanded stent in the body) [8], and

the material parameters used in the simulation are listed in Table 11.
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Table 11: Parameter values used for the numerical results presented in Sec-
tion 5.4.1. The calibration of the material parameters included the uni-
axial experiments performed by [8]

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 37700 Hmax[%] 3.5
EM [MPa] 28500 M f [K] 175
νA = νM 0.33 Ms [K] 190
ρ [g mm−3] ... As [K] 264
cA = cM [J g−1 K−1] ... A f [K] 288
kA [W mm−1 K−1] ... CA,CM [MPa K−1] 11.5,12
kM [W mm−1 K−1] ... n1, n2 ,n3, n4 0.6,0.2,0.2,0.3

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 0,1.0 αA [10−6·K−1] ...
Yo = Yr [MPa] 20 αM

0 [10−6·K−1] ...
ao [MPa] 120 αM [10−6·K−1] ...
no

1, no
2 ...
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(a) Calibration and experimental validation of the pro-
posed constitutive NiTi model [8], and the calibrated
parameters are shown in Table 11

X

Y

Z

(b) Boundary condition of crimping

Figure 5.18: Material calibration and simulation boundary condition of the SMAs
self-expanding stent

Figure 5.18(b) gives the boundary condition for the simulation of the stent
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crimping and self-expanding. The loading path adopted by the full-scale 3D SMA

stent simulation consists of three steps:

(i) the stent is crimped outside the body at temperature 293 K by applying

a uniform cylindrical displacement as shown in Figure 5.18 and attached to a

constraint container device called catheter tube;

(ii) the stent is inserted into the body and, thus, the ambient temperature

increases from room temperature 293 K to body temperature 310 K;

(iii) the constraint is removed and the stent is allowed to self-expand to its

original shape.

Stent Diameter [mm] 0.0
1.0
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3.0

4.0
5.0

Temperatu
re [K

]

290
295

300
305

310
Ra

di
al

 F
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Crimp Self-expanded

Figure 5.19: Force-diameter-temperature response of SMA stent during crimping
and self-expanding

Figure. 5.19 is the total reaction radial force response with respect to the

stent diameters and ambient temperatures. The psuedoelasticity properties can

be clearly observed when projecting the curve to the force-diameter plane (Figure

5.20 (left)). Since the stent sustains large deformation from crimped configura-

tion to expanded one, finite strain theory plays an important role there. To show

how the finite strain theory affects the results, two simulations are performed and

compared. One is the proposed finite strain constitutive model based on logarith-

mic rate and another is based on the infinitesimal strain theory. The radial force

response is compared in Figure 5.20, and it is obvious that the finite strain theory
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provide more accurate prediction [8].

12

3

4
5

Figure 5.20: Finite strain theory and infinitesimal strain theory are compared on
the left figure. The respective points are selected in force-diameter
response curve on the right figure and the related evolution of de-
formed configuration is shown in Figure 5.21

1 2 3 4 5

Crimp Self-expanding

Figure 5.21: Von Mises of Kirchhoff Stress, τ̄, and martensite volume fraction, ξ,
distributions in a unit cell at various instances during the simulation.
The numerical points are marked in Figure 5.20

We select several representative points (in Figure 5.20(right)) to exhibit the von

mises of Kirchhoff stress and martensite volume fraction distribution evolution

in a unit cell, and it is shown in Figure 5.21. Stress concentrations evolve at the

hinge location, which is subjected to bending, during the crimping process; the

initially austenitic material transforms to martensite in the strut curve parts while
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the straight strut parts remain in the austenite phase. Once the stent is allowed

to self-expand, the martensitic material regions transform back to the austenite

phase and the stent assumes its original shape.

5.4.2 SMA tube buckling

The author in [49] recently demonstrated that pseudoelastic NiTi tubes com-

pressed axially buckle and subsequently collapse by progressive development of

buckle lobes. On unloading, the material transforms back to austenite, deforma-

tion is recovered, and the buckling lobes are erased.

Table 12: Geometry parameters of the SMAs Tube

L (mm) D (mm) t (mm) T (K)
19.62 6.32 0.268 293

The finite element model of the tube is compressed between two rigid plates,

and the geometry parameters of the thin-wall tube, the length (L), outer diameter

(D), and wall thickness (t), are given in the Table 12. The tube is assigned with

initial geometry imperfections and the adopted imperfection mode is given in Fig-

ure 5.22(b)(c). The material parameters are calibrated under uniaxial compression

as Figure 5.22 (a) at room temperature 293 K. The dotted line is the experimental

results and the solid line is the simulation results based on calibrated material

parameters given in Table 13.
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(a) Tube calibration under uniaxial compression at
room temperature 293 K [49], and the calibrated
material parameters are shown in Table 13

(b) (c)

Figure 5.22: Material calibration and initial geometry imperfection of the tube
(amplitudes exaggerated)
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Table 13: Parameter values used for the numerical results presented in Sec-
tion 5.4.2. The calibration of the material parameters under the uniaxial
compression at room temperature 293 K [50], as shown in Figure 5.22(a)

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 37500 Hmax[%] 3.5
EM [MPa] 32500 M f [K] 178
νA = νM 0.33 Ms [K] 198
ρ [g mm−3] ... As [K] 204
cA = cM [J g−1 K−1] ... A f [K] 228
kA [W mm−1 K−1] ... CA,CM [MPa K−1] 4.2,4.2
kM [W mm−1 K−1] ... n1, n2 ,n3, n4 0.12, 0.8 ,0.6, 0.12

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 0,1.0 αA [10−6·K−1] ...
Yo = Yr [MPa] 20 αM

0 [10−6·K−1] ...
ao [MPa] 120 αM [10−6·K−1] ...
no

1, no
2 ...
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(a) Compressive axial stress-shortening re-
sponse of SMAs tube buckling.The sim-
ulation results are compared with the ex-
perimental response
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(b) Selected representative points in stress-
shortening response, and the related de-
formed configuration and the distribu-
tion of martensite valume fracture ξ are
shown in Figure 5.24

Figure 5.23: Stress-shortening response of tube buckling

The loading path of this simulation is relatively simple,

(i) compressing the tube by the two rigid plates to 0.667mm (3.40% shortening),

(ii) releasing the external force, and the tube will recover to its original shape
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itself.

The stress-shortening response is demonstrated in Figure 5.23. The simula-

tion results is compared with the experimental one in Figure 5.23(a), and some

representative points are selected and numbered in 5.23(b). The corresponding

deformed configurations and martensite volume fraction distribution evolution

are given in Figure 5.24.

1 2 3 4

5

6789

Figure 5.24: Deformed configuration and distributions of martensite volume frac-
tion ξ of the tube buckling and recovering. The images correspond to
the numbered bullets on the responses in Figure 5.23 (b)

Attributed to the initial geometry imperfection, the load distribution during

buckling is non-proportional and reorientation actives simultaneously with phase

transformation. The importance of reorientation is indicated in Figure 5.25.

5.4.3 SMA helical spring actuator

Finally, an SMA helical spring actuator is considered. The response of single

free coil with diameter 12.7 mm, wire diameter 0.5 mm, and a pitch size 2.8 mm is
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Figure 5.25: Comparison of stress-shortening response with proper martensite
variants reorientation and without reorientation

F

F

(a) Initial geometry of a coil of the SMA
helical spring

(b) Mesh on the end
surfaces

Figure 5.26: Coil geometry and mesh
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Table 14: Parameter values used for the numerical results presented in [37]

Thermoelastic Phase Transformation

parameter value parameter value

EA [MPa] 90000 Hmax[%] 1.5
EM [MPa] 63000 M f [K] 242
νA = νM 0.33 Ms [K] 308
ρ [g mm−3] ... As [K] 288
cA = cM [J g−1 K−1] ... A f [K] 342
kA [W mm−1 K−1] ... CA,CM [MPa K−1] 16,10
kM [W mm−1 K−1] ... n1, n2 ,n3, n4 0.2, 0.26 ,0.38, 0.21

(Re)orientation T/C Asymmetry Thermal Expansion

value parameter value parameter value parameter

co = cr [MPa K−1] ... γ, n 0,1.0 αA [10−6·K−1] ...
Yo = Yr [MPa] 10 αM

0 [10−6·K−1] ...
ao [MPa] 390 αM [10−6·K−1] ...
no

1, no
2 0.98,0.32

simulated (Figure 5.26(a)). The mesh, shown on a spring section in Figure 5.26(b),

consists of eight-node brick elements with an aspect ratio equal to 8. The material

parameters for the spring are given in Table 14. The following loading path is

considered:

(i) a bias load F = 1.5 N is applied at the coil ends at T = 310 K, and

(ii) the coil is heated to T = 420 K maintaining the bias load.

The bias load is applied to reference points of rigid surfaces by imposing tie

constraints between the nodes of each of the coil end surfaces and an associated

adjacent rigid surface. An additional kinematic constraint is applied to prevent

unbounded rotation about coil’s axis.

As can be seen in Figure 5.27(a), the application of the load results in a substan-

tial coil elongation, i.e., increase in the axial distance between the two end surfaces,

of ∼ 35 mm. Note that the results of the finite strain analysis are very different

from those of the infinitesimal strain one due to geometric effects captured by the
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former analysis, which result in a progressive stiffening of the structure. The lo-

cal von Mises stress and martensite volume fraction distribution evolutions in the

midsection of the coil are presented in Figure 5.27(b). The von Mises stress level

and in turn the martensite volume fraction are higher on the surface than the wire

center due to local bending.
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(c) von Mises stress, σ̄, and martensite volume fraction, ξ, distributions at various instances during
the simulation

Figure 5.27: Global and local response of a coil in an SMA helical spring actuator
subjected first to mechanical loading that induces phase transforma-
tion and then heating while maintaining the load constant. The ma-
terial parameter values adopted in the simulations are those reported
in Table 14
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5.5 Summaries of Model Capabilities and Corresponding Validation

A summary of the theoretical contributions, their corresponding model capa-

bilities, and validation efforts are list in Table 15.

Table 15: Summary of the theoretical contributions, model capabilities, and vali-
dation efforts

Theoretical Contributions Model Capabilities Numerical Validation

Finite Strain Theory
Eulerian logarithmic strain and the
corotational logarithmic objective
rate (Section ??)

•large deformation and rotation response Section 5.4.1 (Figure
5.20(a)); Section 5.4.3
(Figure 5.27(a))

Framework (Table 1)
Framework of irreversible thermody-
namics

•shape memory effect and pseudoelastic-
ity

Section 5.1.1 (Figure
5.2)

Relying on a set of three independent
internal state variables {ξ, H, λr}

•co-existence of several phases under mul-
tiaxial, non-proportional loading

Section 5.2 (Figure 5.7)

•temperature and load dependence of the
hysteresis width

Section 5.1.1 (Figure
5.1)

•temperature dependence of the critical
force required for (re)orientation

Yield Surface
Classical J2 yield surface with the fol-
lowing modifications:
Clapeyron slope (Section 3.4.7) •asymmetry between forward and reverse

phase transformation
Section 5.1.1 (Figure
5.2(b))

Minor Loops captured by two major-
loop based scalar-values (Section
3.4.6)

•minor loop Section 5.1.1 (Figure
5.3); Section 5.2 (Fig-
ure 5.8(a))

Tension-compression asymmetry
based on Lode invariant (Section
A.1)

•tension-compression asymmetry Section 5.1.1 (Figure
5.2(a)); Section 5.2
(Figure 5.8(b))

Thermomechanical Coupling
Latent heat (Section 3.5) •rate effects due to latent heat Section 5.1.1 (Figure

5.3)

Anisotropic TE (Section 3.2)
Within the aforementioned frame-
work

•TE evolution response under uniaxial
loading

Section 5.3 (Figure
5.13, Figure 5.10)

CTE evolution dependenting on
matensite variants

•CTE evolution during non-proportional
deformation response

Section 5.3.3 (Figure
5.15)

Numerical Implementation
Closet point projection return map-
ping algorithm (Table 3)

•a good convergence rate allowing the
simulations of complex 3D structures

Section 5.4.1 (Figure
5.21); Section 5.4.2
(Figure 5.23); Section
5.4.3 (Figure 5.27)
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6 CONCLUSIONS

A constitutive model for the thermomechanical deformation response of shape

memory alloys (SMAs) is proposed, which can efficiently describe the material re-

sponse under non-proportional thermomechanical loading and tailoring the evo-

lution of thermal expansion (TE) tensor during deformation.

The model accounts for pseudoelasticity, shape memory effect, reorientation

of martensite variants, minor loops, tension–compression asymmetry, and latent-

heat-induced rate effects in a finite strain description. Although most of the afore-

mentioned aspects of martensitic transformation can be adequately described by

different models in literature, each of which accounts for a number of those, the

strength of the proposed model lies in its ability to account for all in a fairly

simple manner by introducing a set of three independent internal state variables.

These internal variables, the martensite volume fraction, the magnitude and the

direction of the inelastic strain, allow for an implicit definition of the volume frac-

tion of oriented vs self-accommodated martensite. The model further accounts for

temperature and load dependence of the hysteresis width, asymmetry between

forward and reverse phase transformation, smooth thermomechanical response,

and can address the deformation response in the concurrent presence of several

phases, i.e., when austenite, self-accommodated and oriented martensite co-exist

in the microstructure. Moreover, the model accounts for temperature dependence

of the critical force required for (re)orientation, which is largely neglected in the

models proposed in the literature. The model’s ability to reproduce all the above

characteristics of martensitic transformation and the efficiency of the numerical

scheme employed for the model integration has been demonstrated by compari-

son of simulations with available experimental data. The model is able to capture
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in good accord the deformation response of SMAs observed in complex experi-

ments, such as tension/compression/torsion experiments. The proposed model is

also validated against recent experiments on tailoring TE through martensite ori-

entation in a NiTiPd high temperature SMA. In those experiments, the TE tensor

component in the loading direction of NiTiPd in the martensite state was shown to

decrease with increasing inelastic strain induced by uniaxial tensile loading. Ac-

cording to the model, the TE tensor components in the transverse to the loading

directions decrease with increasing tensile inelastic strain. The TE tensor compo-

nents’ dependence on inelastic strain is predicted to be reversed for compressive

uniaxial loading. In the absence of related experimental observations, the model

does not account for possible tension–compression asymmetry in the TE response

for simplicity. The efficiency of the numerical implementation is verified with

simulations of SMA devices, such as a biomedical stent and a spring actuator, as

well as buckling of an SMA tube.
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A APPENDIX

A.1 Tension-Compression Asymmetry–Convexity of the Associated

Yield Surface

NiTi SMAs have been reported to exhibit asymmetric behavior under tension

and compression during phase transformation, which is discussed in Section 1.4.1.

The intensity of the asymmetry depends on the heat treatment and, consequently,

the size of the formed precipitates [32]. The material usually shows higher trans-

formation stress, smaller recoverable strain and steeper transformation strain-

stress slope when it is subjected to compressive load. Conversely, lower critical

stress, and larger recoverable strain are observed when subjected to tension. The

present work in this section is devoted to the analysis of yield conditions and dis-

sipation potentials of tension-compression asymmetry of SMAs. To capture the

tension-compression, a class of yield conditions based on the second and third

deviatoric stress invariants is expressed by [87]. The Lode invariants r and y are

induced to present the asymmetry,

J̃2 =
1
2

Tr(τ′2), J̃3 = Det(τ′),

r(τ′) =
√

2 J̃2, y(τ′) =
3
√

3 J̃3

2( J̃2)
3
2

,
(A.1)

where τ′ is denoted to the deviatoric part of Kirchhoff stress τ.12 The Lode in-

variant r(τ′) represents the stress radius, and y(τ′) is the homogeneous func-

tion of degree zero of the stress deviator, which is bounded by [−1, 1]. That

means the value of y(τ′) can indicates the stress state of material. If y(τ′) takes

value y(τ′) = 0, the material is at simple shear. The material is under tension if

12We use π, the thermodynamic force conjugated to hin (see Eqn. (3.27)) to define the yield
surfaces in previous chapters.
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y(τ′) = 1 and compression if y(τ′) = −1. The asymmetric yield surface can be

specified by a two-parameter power shape function as,

R(y) = (1 + b y(τ′))
1
n =

(
1 + γ

Det(τ′)

τ
3
2

) 1
n

, R(0) = 1, γ =
27
2

b (A.2)

According previous work [87], the convexity condition of the shape function

is defined as Eqn. (A.3),

(1− y2)R”(y)− yR”(y) +
R(y)

9
> 0 (A.3)

Consequently, we are able to find the convexity condition for the two asym-

metric parameters γ and
1
n

as Eqn. (A.4):





1
n ≤ 0

γ ≤ 27
2

n
n−9

, or





0 ≤ 1
n ≤ 11

3

γ ≤ 27
2

√
12n3−39n2

12(n−1)(n2−9)

, or





1
n ≥ 11

3

γ ≤ 27
2

n
9−n

. (A.4)

The theoretical convexity region is shown in Figure A.1.
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Figure A.1: Convex region of asymmetric yield surface [87]

Then a J2 − J3 yield surface contributing to tension-compression asymmetry
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can be defined as Eqn. (A.5),

Φ(τ) = R(τ′)τ =

(
1 + γ

Det(τ′)

τ
3
2

) 1
n

τ. (A.5)

To visualize how the asymmetry shape function contributing to the yield sur-

face, a theoretical limit transformation curve in plane stress in displayed in Figure

A.2, where τc is the critical stress. In Figure A.2(a), the dotted line shows the yield

surface based on classical J2 theory, and the solid line is the yield condition con-

sidering tension-compression asymmetry. Figure A.2(b) shows the yield surface if

the asymmetric parameters fail to satisfy the convexity condition.
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Figure A.2: Theoretical limit transformation curve in plane stress state for SMA

A.2 TE Tensors of the Austenite and Martensite Lattices

As reported by [73], the austenite phase in NiTiPd is a cubic B2 structure with

a lattice length of a0 = 0.3091nm and the martensite phase is an orthorhombic

B19 structure and its lattice constants are a = 0.2784nm, b = 0.4450nm and c =

0.4697nm. The TE tensor of the austenite lattice is isotropic

κA = κA
ij eA

i ⊗ eA
i , (A.6)
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where eA
1 := [100]A, eA

2 := [010]A, and eA
3 := [001]A are the orthonormal basis

vectors of the local coordinate system of austenite (Figure A.3a) and

[
κA

ij

]
=




14.4 0 0

0 14.4 0

0 0 14.4




ppm K−1. (A.7)

The TE tensor of the martensite lattice is anisotropic,

κM = κM
ij eM

i ⊗ eM
i , (A.8)

where eM
1 := [100]M, eM

2 := [010]M, and eM
3 := [001]M are the orthonormal basis

vectors of the local coordinate system of martensite residing on the a, b, and c-axis,

respectively (Figure A.3(b)), and

[
κM

ij

]
=




51.33 0 0

0 −3.17 0

0 0 −34.51




ppm K−1. (A.9)
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(a) Austenite (b) Martensite

Figure A.3: Austenite and martensite unit cells in their respective local coordinate
systems
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