
A FILE INTERFACE AND DATA DICTIONARY
FOR THE ECRDBS HIGH LEVEL DATABASE SYSTEM

A Thesis
Presented to

the Faculty of the Department of Computer Science
College of Natural Sciences and Mathematics
University of Houston, University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Yu-Tung Wu

August, 1987

ACKNOWLEDGEMENT

I would like to thank my research advisor,
Dr. Ramez A. Elmasri for his instructive tutelage and
guidance. This thesis would not have been possible without
his advice.

Thanks also go to the other members of my committee,
Dr. S.H. Stephan Huang and Dr. Stanley N. Deming for their
helpful comments and suggestions.

Also, I wish to thank other members of Dr. R. Elmasri’s
research group for their useful discussion. Special thanks
are given to Miss Chien-Lee Yao for using her scanner
program and Mr. Xingfang Lin for his help in preparing the
initial draft of the University schema definition file.

Finally, I wish to thank my parents for their financial
support and tremendous encouragement. Thanks also go to
my wife and daughter for their patience and understanding.

A FILE INTERFACE AND DATA DICTIONARY
FOR THE ECRDBS HIGH LEVEL DATABASE SYSTEM

An Abstract of
a Thesis

Presented to
the Faculty of the Department of Computer Science

University of Houston, University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Yu-Tung Wu

August, 1987

iv

ABSTRACT

The Entity-Category-Relationehip (ECR) data model
captures important descriptive semantics of a database, such
as generalization hierarchies and attribute inheritance.
Since no complete ECR DBMS has been implemented before, an
ECR DBMS, called ECRDBS, is implemented to demonstrate the
usefulness of the above data modeling concepts. This thesis
describes the design and implementation of two components of
ECRDBS; the file interface and the data dictionary system.

In the first part of the thesis, the indexed file
organization on the VAX/VMS system is used to implement a
file interface which provides basic, record at a time, file
commands for storage, retrieval and updating of information.

In the second part of the thesis, a data dictionary
system based on the ECR model is implemented. It is
responsible for parsing the data definition statements for a
particular database and creation of data dictionary files.
Function procedures are provided for the user and other
components of the ECRDBS system to access the information
stored in the data dictionary files.

v

TABLE OF CONTENTS

I. INTRODUCTION
1. Database Systems and Their Uses 1
2. Current Types of Database Systems 2
3. Semantic Data Models 8
4. Components of the ECRDBS 11

II. THE ENTITY-CATEGORY-RELATIONSHIP MODEL
1. Introduction to the ECR Model 14
2. Entities, Categories, Attributes and

Relationships 16
3. ECR Diagram 20

III. FILE INTERFACE AND FUNCTIONS
1. File System for a DBMS 26
2. Implementation of the File System 27

2.1 File Dictionary 28
2.2 Data Structures Used in the File System .. 30

3. File System Procedures and Interface 37
4. Limitations of the File System 48

IV. SCHEMA DEFINITION FOR THE ECRDBS
1. Role of the Data Dictionary System 50
2. Data Definition Language for the ECRDBS 52

vi

2.1 Value Set Definition 53
2.2 Entity type Definition 55
2.3 Category Definition 56
2.4 Relationship Definition 57
2.5 Data File Definition 60
2.6 Naming Restrictions in an ECR schema 64

3. Example DDLs for Two Databases 65
3.1 Company Database 66
3.2 University Database 70

V. DATA DICTIONARY IMPLEMENTATION
1. The Need for Data Dictionary Functions 80
2. Data Dictionary Files for the ECRDBS 81
3. Data Dictionary Procedures and Functions 95

VI. CONCLUSION ... 117

APPENDIX ... 119

REFERENCES ... 152

TABLE OF FIGURES

Figure 1 : A DBTG schema 3
Figure 2 : Relations for a database schema 6
Figure 3 : Components of the ECRDBS 13
Figure 4 : Conventions for ECR diagram 23
Figure 5 : Common cardinalities (1:1, 1:N, M:N) for

binary relationships 23
Figure 6 : ECR diagram for a Company database 24
Figure 7 : ECR diagram for an University database 25
Figure 8 : The structure of the file ’FILES.DIG' 28
Figure 9 : An example of condition tree 31
Figure 10 : An example of data file definition for

generalization category 62
Figure 11 : ECR diagram for a database schema example

(showing only entity types and categories) 107
Figure 12 : A C tree (with root class H) for a database

schema example 108

viii

CHAPTER 1

INTRODUCTION

1.1 Database Systems and Their Uses

Database management is one of the most important
functions provided by modern computer systems. In fact,
very often, it is the principal justification for acquiring
a computer. Database systems have been widely used in
recent years and many organizations have become dependent on
the continued and successful operation of database systems.
A database system is basically a computer-based
recordkeeping system [Date 81], It allows an organization’s
data to be processed as an integrated whole and permits
users to access data more naturally. Data integration
enables more information to be produced from a given amount
of data and reduces data duplication. Creation of
program/data independence, maintaining data consistency and
better data management are also achieved through data
integration.

A database management system (DBMS) is the collection
of software that allows users to use or modify the

1

2

integrated stored data. A major role of the DBMS is to
allow the user to deal with the data in abstract terms
rather than as the computer stores the data.

1.2 Current Types of Database Systems

One important aspect of a DBMS is the data model. Data
models are important database design tools and are also used
to categorize DBMSs. Data models have two major components,
the data definition language (DDL) and the data manipulation
language (DML). DDL is a vocabulary for defining the
structure of the database. DML is a vocabulary for defining
the processing of the database.

The current commonly used data models in commercial
DBMSs are the network model, the hierarchical model, and the
relational model. These models have been used in the bulk
of commercial database systems.

The network model (Codasyl DBTG model) [CODA 71,
CODA 78] is typically a syntactic graphic data model. The
basic methods of structuring data in this model are by
records and sets. Different record types are declared with
a specification of the data items in each record type and
what kind of values are allowed for each item. The set
specifies links between record occurrences in the database

3

state. Specifically, a set type consists of an owner record
type and a member record type. A set occurrence in the
database state consists of one occurrence of a record of
owner type and any number of occurrences of records of
member type. Fig. 1 shows a simple DBTG schema, It
specifies three record types and two set types, DEP_BEL and
FACJBEL. The BELONGS record type is a member of both set
types which the DEPARTMENT record type is the owner of the
DEP_BEL set type and the FACULTY record type is the owner of
the FAC_BEL set type. BELONGS is called a linking record
type and is used to represent the many to many logical
relationship (binary relationship with common cardinality
M : N) between two record types.

FAC_BELDEP_BEL
+------- +-------- +-------- +
} Dname { Dphone J Office !+------- +-------- +-------- +

DEPARTMENT

BELONGS
+---------- +

+----- +------ +------ +------+
J Ssn { Name ! Rank ! Addr !+----- +------ +------ +------+

FACULTY

Figure 1 A DBTG schema

The basic operations used to change the database state
are : store a record occurrence, delete a record occurrence,

4

insert a record into a set occurrence, remove a record from
a set occurrence and modify the values of items in a record.

Various integrity constraints can also be specified by
declaring in the schema different membership classes and by
specifying data items in record types as either being unique
within a set occurrence or unique within all record
occurrences of the record type. The membership class
specifies whether or not a record occurrence of a given
member record type is automatically inserted into a set
occurrence of a given type and whether or not it is
mandatory that once a member record occurrence is inserted
into a set occurrence of a given type, the record must
always be in a set occurrence of that type.

In addition to showing logical relationships between
record occurrences, the links showing set membership in the
network model are meant to represent access paths for the
retrieval language to access the database. So DHLs of
the network model are usually based on
"one-record-at-a-time" access.

If links in the schema are restricted so that the
database state is a set of trees of record occurrences, then
this is said to be a hierarchical data model. In the
hierarchical model, the record type at the top of the tree

5

is called the root. The root, may have any number of
dependents, each of these may have any number of lower-level
dependents, and no dependent record occurrence can exist
without its superior [Date 81]. The most widely used
database system, IMS, is based on the hierarchical model.
Both "one-record-at-a-time" access and higher-level
languages exist for IMS.

The relational model [Codd 70] was proposed to
eliminate the access dependencies present in the network and
the hierarchical data models. In this data model, the
database state consists of a set of named relations. Each
relation is a subset of the Cartesian product space
(DI X D2 X .. X Dn) where the Di are sets of values called
domains.

A relation is a set of tuples. The relations are
displayed in tabular form where ordering of rows and columns
are insignificant. A column (a field) is identified by the
domain from which its values are drawn, and by its attribute
name.

Fig. 2 shows relations corresponding to the same schema
in Fig. 1. Relation BELONGS is used to represent the many
to many logical relationship between relation DEPARTMENT and
relation FACULTY.

6

DEPARTMENT BELONGS
Dname

-+------------------
; Dphone 1 1

• + e
Office

-+
11

+-
1 t Dept_name 1 1

■ + —
Fac_ssn

COSC ! 749-2761 1 1 PGH520 1 1 1 1 COSC 1 1 451769345
• 1 • 1 1 • • I 1 1 • 1 1 •
• t 1 • 1 1 e • 1 1 1 • 1 1 •

-+------------------ -+ +-

FACULTY---------- +-
Ssn ;

------------- +-------------
1 1 AddrName I Rank

451769345 ' Mark William } Assoc. Prof. 1 1 11502 Leader
1 • 1 1 • 1 • 1 1 •

• t I • 1 • • 1
--------------------- +- -------------------------- +-

Figure 2 Relations for a database schema

The retrieval language used with the relational data
model is generally set oriented, such as Relational
Calculus [Codd 71], Relational Algebra [Codd 72], and SEQUEL
[Cham 76]. The update operations allowed in the relational
models are the insertion and deletion of sets of tuples.
These operations must be in accordance with the maintenance
of the key of the relation. A key is just a column with
values that each can uniquely identify a tuple in a
relation.

Normal forms of relations are also introduced to
prevent "update anomalies" [Codd 72a]. These anomalies
correspond to database states which do not represent
possible states of the abstract world being modelled. The

7

definition of the normal forms depends on the analysis of
functional dependencies. The concept of functional
dependency can be easily explained, a column B is said to
be functionally dependent on a column A of the same relation
if and only if it is the case that for each distinct value
of column A, there is necessarily exactly one distinct value
of column B. Functional dependencies specify certain types
of semantic features of the abstract world, but they are not
sufficient to capture all of the semantic information
necessary to maintain the database in a consistent state.

The relational model is much easier for the user to
comprehend since it presents only a single type of
structure, relation, while the network models presents
several different types of structures, and the full
specification of the network model is extremely complex
[Date 74].

There are only two kinds of update operations, adding
and deleting tuples, in the relational model, but the large
number of constraints necessary to maintain the semantic
integrity in a relational database could be very complex.
On the other hand, in the network model, knowing what type
of operation to use recognizes that certain types of
predefined requirements must be satisfied by the update

8

operation.

1.3 Semantic Data Models

The term semantic means "meaning". ANSI/SPARC
[Klug 77] suggested a conceptual schema, existing between
the internal schema (system or implementation's view) and
the external schema (user’s view), which provides semantic
description of the database. So a complete data model
should play two important roles, the semantic role and the
representation role at the conceptual level of a DBMS
architecture. That means that the data model should
provide a vocabulary for expressing the meaning as well as
the logical structure of the database data, and allow a
straightforward translation from the conceptual schema into
the physical data structures of the database [Elma 85].

However, most data models do not satisfy the two
above-mentioned roles at the conceputal level with equal
success. The network and the hierarchical models are
oriented toward facilitating the translation from the
conceptual schema into internal schema, and are also
burdened with numerous construction rules and artificial
constraints in the semantic role they play. In spite of
theoretical foundations about functional dependencies and
normalization, there is no implemented relational DBMS that

9

uses this theory. So the weakness of the relational model
is that users have to understand the implicit semantics of
the relational schema in order to specify a query. That
basically means the relational model fails to capture many
important descriptive semantics of a database.

One of the most accepted conceptual data models has
been the Entity-Relationship (ER) model [Chen 76, Chen 83).
The important contribution of the ER data model is the
distinction between entities (objects) and relationships
(connections among objects) among entities. The concepts of
entities and relationships are closer to user's perceptions
of the data than tabular forms in the relational model.
Also the semantic properties such as common cardinalities
(1:1, 1:N, M:N) for a relationship are clearly presented in
ER model [Elma 85].

However, the ER model is not sufficient to represent
some important data semantics. A lot of semantic data
models have evolved [Elma 81, Elma 85] which explicitly
represent some semantic concepts that are not directly
represented in the ER model. These semantic concepts
include, superclasses [Smit 77] (generalization categories,
grouping of entities into superclasses), ISA-hierarchies
[Mins 73] (subclass categories, grouping of entities into

10

subclasses), roles [Bach 77] (grouping of entities according
to the roles they play in relationships), and attribute
inheritance which is related to both generalization and
subclass categories. Hence an extended ER model, the
Entity-Category-relationship model (ECR model) [Elma 80,
Elma 81, Elma 83, Elma 84, Elma 85], was proposed to
represent all the above semantic concepts. An additional
construct, the concept of a category, was introduced to
accomplish this. Also the attributes in the ECR model can
be multi-valued, and more constraints are explicitly
specified on attributes and relationships.

Apparently, the ECR model (an enhanced conceptual data
model) satisfies the semantic role with great success. For
the other role, the representation role, to be fulfilled,
the ECR model must be translated into a representation data
model such as relational model or network model.

The query language used with the ECR model is GORDAS
which stands for Graph Oriented Data Selection Language
[Elma 81, Elma 83, Elma 85]. GORDAS is a functional-type
language [Back 78, Bune 79, Ship 81, Bune 82] and uses
functional reference in specifying objects related to a
given entity. The ECRDBS implemented at the University of
Houston translates the GORDAS query into tree of relational

11

algebra commands and represents the data internally as files
similar to the relations used in the relational model. In
this way, database applications are able to declare and
reference data as viewed in the ECR model, which offers more
descriptive semantics of a database.

1.4 Components of the ECRDBS

The ECRDBS software is divided into modules. Several
modular subsystems are identified with well-specified
interfaces among them. Basically there are six subsystems,
the File system, the Data dictionary system, the
Parser and translator system, the Optimization and retrieval
system, the Transaction system and the Graphic query
specification system.

The File system implements basic, record at a time,
file commands for use by other parts of the system. The
Data dictionary system is responsible for parsing the data
definition and the file definition statements for a
particular database schema. Thirty four function procedures
are provided as the interface to the data dictionary system.
The Parser and translator system parses a GORDAS query, and
translates the query into an equivalent tree of relational
algebra commands. The Optimization and retrieval system is
used to optimize the relational algebra commands by

12

performing transformation on the command tree and then
executes the resulting relational algebra commands. The
Transaction system is used to specify, compile and execute
transactions on the database. The Graphical query
specification system may be used to specify queries using
the graphic interface instead of stating the queries
directly in GORDAS. This thesis implements the File system
and the Data dictionary system. Fig. 3 shows a block
diagram of different components of the ECR DBMS [Elma 84].

13

DBMS USES

Figure 3 Components of the ECRDBS

CHAPTER 2

THE ENTITY-CATEGORY-RELATIONSHIP MODEL

2.1 Introduction to the ECR Model

The data model used in this thesis is the ECR model
(an extended ER model) which stands for
Entity-Category-Relationship model. The ECR model, like the
ER model, views the world as consisting of entities and
relationships among entities. Entities and relationships
have attributes which provide information. Furthermore, in
the ECR model, entities are not only grouped into entity
types according to the similarity of basic attributes, but
also are grouped into categories according to the roles
which they may play in relationships. For example,
categories FULLTIMEMPLOYEE (full-time employee), SCIENTIST,
TECHNICIAN and CONSULTANT are defined on entity type
EMPLOYEE. These are called "subclass categories". Entity
types are disjoint; an entity belongs to one and only one
entity type. Categories are not necessarily disjoint,
because an entity may be a member of several categories.
For example, an entity of type EMPLOYEE can also be a member
of category FULLTIMEMPLOYEE and category SCIENTIST.

14

15

Category can also provide for grouping of dissimilar
entities according to the similarity of their roles. For
example, category OWNER (of a vehicle) is defined on both
entity type PERSON and entity type CORPORATION. This is
called ’generalization category’. Specific attributes can
belong to categories if they exist. The set of attributes
of a category is actually the union of the basic attributes
of all entity types (some may even be categories) that the
category is defined on and all attributes which have been
specially defined for the category. This concept is called
’attribute inheritance’. So basically the ECR model has
four components : entities, categories, attributes and
relationships.

The ECR model extends the ER model in several important
areas [Elma 81]. They are :
(1) The ECR model allows a direct representation for

grouping of entities according to the roles the entities
play in a relationship.

(2) A direct representation of subclasses (subclass
categories) and superclasses (generalization categories)
is possible in the ECR model.

(3) Multi-valued and composite attributes are directly
represented, and are referenced just like single-valued
attributes.

16

(4) A more complete and precise specification of the
structural properties of relationships, and constraints
on attributes is possible.

By incorporating all this rich semantic information, the
ECR model can easily and naturally integrate user’s views
into a database schema, and perform crucial checks on
semantic integrity constraints which are expected to hold on
the data in the underlying database.

2.2 Entities, Categories, Attributes and Relationships

An entity is an object which exists in the real world
and can be distinctly identified. An entity also has
attributes which describe it. Entities which have similar
basic attributes are classified into entity types. An
entity type is similar to the entity set of the ER model
[Chen 76]. Entities can also be classified into categories
according to the roles they may play within relationships.
The entities of a category C are specified as follows :

C = T1[S1] U T2[S2] U ... U Tn[Sn]
where each Ti is an entity type (or a category) called the
defining entity type (or defining category). Each Si is a
predicate called defining predicate. The predicate
specifies the set of entities from Ti that belongs to C.
The predicate is optional. If no predicate is given, then

17

all entities in Ti belong to C [Elma 81].

A relationship is a connection between entities. An
element of a relationship is usually called a relationship
instance. A relationship R can be specified over n
participants (entity types or categories) Pl, ... , Pn,
where n >= 2 and Pl, ... , Pn are not necessarily
distinct. Participants Pl, ... , Pn are said to
participate in the relationship R, and R is just a subset of
the cartesian product Pl X ... X Pn.

Structural constraints on a relationship are used to
specify the possible ways in which entities of a participant
P can participate in a relationship R. The participation of
an entity type (or a category) P in a relationship R can be
specified by two numbers (il, i2), where 0 <= il <= i2 and
i2 > 0. The two numbers mean that each entity that is a
member of P, must participate in at least il, and in at most
i2 relationship instances in R.

The numbers il and i2, also called cardinality
constraints of a relationship, are a concise method of
specifying structural constraints. A relationship R is
total with respect to the participation of P if il >=1, and
partial if il = 0. The participation is functional if
i2 = 1, that means at most one appearance of each entity in

18

P will exist in R at a given moment. A relationship R is
specific with respect to the participation of P, if the
participation is total, and once an entity e from P is
related to some relationship instance in R, that
relationship instance cannot be removed unless the entity e
itself is deleted [Elma 85].

In the GORDAS query language, a connection name (a
participation name) is given for each participation in a
relationship. The connection name is used as a means of
functional reference to related entities. We will use the
word class to stand for a set of entities (an entity type or
a category) or a set of relationship instances (a
relationship). When a class is used as a participant in a
relationship, it means an entity type or a category only.

An attribute can be associated with either an entity
type, a category or a relationship. Each attribute is
defined on a value set, from which the values of the
attribute are drawn. An attribute a, of an entity type T,
or a category C, or a relationship R, defined on a value set
V, is a function with domain T, C or R, and range POWER(V),
where POWER(V) is the power set of V

a : T -> POWER(V) or a : 0 -> POWER(V) or
a : R -> POWER(V)

19

The power set of a set is the collection of all possible
subsets of that set, including the empty set. This
definition of attributes allows both single-valued and
multi-valued attributes to be modeled in a uniform manner.

If V is a set of single values, a is called a single
attribute. If V is the cross product of several sets
VI, ... , Vn (V = VI X V2 X ... X Vn), then a is called a
compound attribute. For example, if Fname (first name),
Minit (middle initial) and Lname (last name) are single
attributes, then Name (whole name) is a compound attribute
over these three single attributes.

Constraints exist on attributes in order to represent
real-word semantic constraints. The cardinality of an
attribute is the number of values from value set V that can
appear in a(x) for some element x (entity or relationship
instance) in the domain D (entity type T, category C or
relationship R) of a. The cardinality constraint for an
attribute a is specified by two numbers (il, i2), where
0 <= il <= i2 and i2 > 0, where il is the minimum number of
values, and i2 is the maximum number of values from V that
can appear in a(x) for some x in D. An attribute is
single-valued if i2 = 1, and is multi-valued if i2 > 1.
The attribute is total (no null values are allowed) if

20

il >= 1, and is partial (null values allowed) if
il = 0 [Elma 85].

An attribute is unique, if the values of that attribute
can be used to uniquely identify entities of a given entity
type. However, in the ECR model, an entity represents
itself; it is not necessary to specify unique attributes for
an entity.

2.3 ECR Diagram

The ECR diagram is an extension of the ER diagram
[Chen 76]. Entity types, attributes and relationship are
represented as in an ER diagram. Rectangular boxes
represent entity types, diamond boxes represent
relationships, ovals represent attributes. In an ECR
diagram, hexagonal boxes are used to represent categories,
and double ovals are used to represent multi-valued
attributes. Usually ovals or double ovals are connected
directly with rectangular boxes, diamond boxes or hexagonal
boxes, but in the case of compound attribute, ovals or
double ovals may also be connected with each other.

Partial participation is indicated by joining the
participant (entity type or category) and the relationship
by a single line. Total participation is indicated by a

21

double line and specific participation is indicated by a
triple line between the participant (entity type or
category) and the relationship. Functional participation
is represented by an arrow away from the participant
(entity type or category) which has a structural constraint
i2 equal to 1. The inclusion of an entity type (or a
category) in a subclass category is indicated by
drawing a line between the two and placing a set inclusion
symbol on that line. For generalization category, the only
difference is that there is a set union symbol (a letter U
inside a circle) between the entity types (some may even be
categories) that take part in the generalization category
and the generalization category itself. This is because a
generalization category is a subset of the union of several
entity types or categories. At least two participation
names (connection names) for each relationship are shown
besides the lines indicating relationship participations.
These names are used mainly for functional reference in
GORDAS query.

Some conventions for ECR diagram are shown in Fig. 4.
Fig. 5 demonstrates that common cardinalities (1:1, 1:N,
M:N) for binary relationships can be easily deduced from the
ECR diagram.

22

In Fig. 6, we show an ECR diagram for a Company
database. EMPLOYEE is an entity type. SCIENTIST,
TECHNICIAN, CONSULTANT, and FULLTIMEMPLOYEE are subclass
categories defined on EMPLOYEE. Society (of SCIENTIST) and
Location (of DIVISION) are two examples of multi-valued
attribute. In Fig. 7, we show another ECR diagram for a
University database. FACULTY and STUDENT are subclass
categories defined on entity type PERSON, and GRAD_STUDENT
is a subclass category further defined on category STUDENT.
CURRENT_SECTION is also a subclass category which is defined
on entity type SECTION. INSTR_RESEARCHER (stands for
instructors and researchers) is a generalization category
defined on both FACULTY and GRAD_STUDENT. Address, Name,
Qtryear and Degrees are examples of compound attribute.
Degrees is also a multi-valued attribute.

23

Relationship Entity Type Multi-valued Attribute

Participation
(i,= 0)

Participation
(t| >« 1)

Participation Participation
(t) >= 1. a special case (’g® O

of Total Participation)

Figure 4 Conventions for ECR diagram

Figure 5 Common cardinalities (1:1, 1:N, M:N) for
binary relationships

24

CONTROLSNumber

division

projects

DIVISION PROJECT

Numbermanager

Mstart employees

Hours
MANAGESdivision

WORKSONproj_managed

FULLTIMEMPLOYEE

projects
Addres

EMPLOYEESCIENTIST

OrganizationSgrade

Ophone
TECHNICIAN

Location

ASSIGNED

Hphone

Society

employees

Figure 6 ECR diagram for a Company database

25

Figure 7 ECR diagram for an University database

CHAPTER 3

FILE INTERFACE AND FUNCTIONS

3.1 File System for a DBMS

The file system, a basic component of a database
system, is used to manage all files in the database system.
Each file consists of a number of records, and each record
is composed of a number of related data fields. Some fields
and some combinational fields can be keys used to uniquely
identify records in a file. A file system is responsible
for inserting, retrieving and updating records in files, and
also supplies detailed information about fields, keys and
records in files. Some file systems also provide security
facilities against unauthorized access, modification or
deletion of records, and offer information like the time of
creation and latest modification of files.

A file system usually has a consistent physical
organization. The selection of the physical organization is
determined largely by the need for operational efficiency,
fast response time and cost minimization. A file
dictionary, a component of a file system, is also needed to

26

27

store information such as file names and the format of the
records comprising each file.

The basic features desired of a file system are fast
access for retrieval, convenient updating, economy of
storage, reliability, and maintenance of integrity of data
stored in the file system.

3.2 Implementation of the File System

This thesis describes a FILE system for the ECRDBS.
The File system for the ECRDBS provides basic, record at a
time, file commands for storage, retrieval and updating of
information stored in files. This file interface consists
of fourteen procedures which offer both file level and
record level operations. A File dictionary stored in the
file ’FILES.DIG’ contains information about fields and keys
for all files of the ECRDBS.

The File system is implemented using the Indexed file
organization and the Record Management Services (RMS) on the
VAX/VMS system [Dec 83, Dec 84). The File Description
Language (FDL) is used to construct the description of an
indexed file, and a process is spawned to create the file
described by the FDL during OPEN_FILE operation (see Section
3.3). The information in the FDL file is also stored into

28

the File dictionary.

3.2.1 File Dictionary

The File dictionary is used to keep the information
describing files and their fields. All the information will
be needed when retrieving, inserting or updating a record of
the file. The File dictionary is stored in a file
’FILES.DIG’.

FILES.DIG
FIELD TYPE

CHARACTER
POSSIBLE VALUES STARTPOS

+---------------------------
1 FILETYPE

+ -
1 1
A _

1
+-
1 1 ’I’, ’R’ , ’S’

-+-
1 1

- -f- -
1

-+
1 1

; schemafilename: 35 CHARACTERS 1 1 1
* + •

2 1 1

;fieldname 1
1 1 16 CHARACTERS 1 1 1 37 1 1

;combination 1 1 1 CHARACTER 1 1 ’Y’ f ’N’ 1 i 53 1 1
■* +

IKEYNO 1 1 INTEGER 1 1 -1, 0 , 1 . .254 I I 54 1 1

1STARTPOS • e INTEGER 1 • > = 1 I l 58 1 1

!LENGTH i i INTEGER 11 > = 1 I i
- * -

62 1 1

*, FIELDTYPE f i 1 CHARACTER 11 ’I’ f ’R’ , ’S’
▼
1 i

■ + "
66 1 1

;dup t i 1 CHARACTER • 1 ’Y’ > ’N’ I i 67 1 I
— 4*

;CHANGES i i 1 CHARACTER 1 • ’Y’ ’N’ I i 68 ii

!NULL_KEY 4--------------
i i
+-

1 CHARACTER 1 •
+•

’Y’ ’N’ i i
-+-

69 ii
-+

Figure 8 The structure of the file ’FILES.DIG’

29

Fig. 8 shows the structure of the File dictionary
file ’FILES.DIC’. The SCHEMAFILENAME is just the
subdirectory name concatenated with the file name. For
example, [.COMPANY]EMPLOYEE is a SCHEMAFILENAME. COMPANY in
this case is a subdirectory name, also a database schema
name, because every ECR database schema is stored in a
separate subdirectory. EMPLOYEE is the file name in
this example. The actual physical file name in the VAX/VMS
system is ’EMPLOYEE.DAT’, because a file extension ’.DAT’ is
added to the file name by the ECR File system. For FILETYPE
(file type), ’I’ stands for ’Indexed file’, ’R’ stands for
'Relative file’, and ’S’ stands for ’Sequential file’. Only
Indexed file organization is implemented in this thesis.
COMBINATION with ’Y’ value, means the field is a
combinational key field. If value of KEYNO (key number) is
0, then the field is a primary key. KEYNO with value -1,
means the field is not a key. Any other value of KEYNO from
1 to 254 means the field is a secondary key. STARTPOS is
the starting position of the field in a record. LENGTH
is the number of bytes of the field in a record. For
FIELDTYPE (field type), ’I’ stands for integer, *R’ stands
for real, and ’S’ stands for character string. DUP, CHANGES
and NULL_KEY are related to key field only. DUP with ’Y’
value, means that duplicate key values are allowed for key

30

field. CHANGES with ’Y* value, means that changes to key
values are allowed. NULL_KEY with 'Y’ value, means that
null key values are allowed. The primary key (key 0) of the
file 'FILES.DIG’ is the combination key over fields
SCHEMAFILENAME and FIELDNAME. A secondary key (key 1) is
defined on field SCHEMAFILENAME. These two keys are used to
facilitate retrieval of information from the File
dictionary.

3.2.2 Data Structures Used in the File System

Before retrieving a record from an existing file, the
correct position of the record in the file must be located.
A condition tree, a binary tree, is used to pass the
complex condition description to the COMPLEX_FIND operation
(see Section 3.3), so that the record can be located.

Fig. 9 shows an example of the condition tree. In
this example, Number, Salary, Bonus and Limit are all
field names. The condition tree is evaluated to find the
next record in the file which satisfies the complex
condition. If the user just wants to get records
sequentially according to the order of the primary key, a
nil TREE pointer can be used.

31

TREE
+--------+
; not ;+--------+

V- \+------ +
; AND : NIL+------ +

/ \v,

v, \4 A/ +--------- + +--- + +---- + +------ +
! Number ! ! 30 ! ! + ! ! Limit |+--------- + +--- + +---- + +------ +

/ \
\Z, +-------- + +------ +

! Salary ! I Bonus |+-------- + +------ +

Figure 9 An example of condition tree

The data structure for each tree node is listed in the
following.

VSTR512 = VARYING [512] OF CHAR;
STRINGTYPE = PACKED ARRAY [1..16] OF CHAR;
LEAF_TYPE = (AL, SL, IL, RL);
TREE_TYPE = *TREE_NODE;
TREE_NODE = RECORD

LEFT, RIGHT : TREE_PTR;
OPERATOR ! INTEGER;
CASE LEAF ! LEAF_TYPE OF

AL ! (ATTR_NAME ! STRINGTYPE;
ATTR_TYPE : LEAF_TYPE);

SL ! (STR_CONST : VSTR512);
IL : (INT_CONST : INTEGER);
RL : (REAL_CONST : REAL);

END;

32

The OPERATOR of a TREE_NODE contains an integer value which
represents a logical, an arithmetic or a comparison
operator. The possible values of OPERATOR are listed in the
following.

I (NOT), 2 (AND), 3 (OR), 4 (=), 5 (<>), 6 (>),
7 (>=), 8 (<), 9 (<=), 10 (+, Real or Mixed),
I1 (-, Real or Mixed), 12 (*, Real or Mixed),
13 (/, Real or Mixed), 14 (+, Integer),
15 (-, Integer), 16 (*, Integer), 17 (DIV, integer),
18 (REM, Integer), 19 (MOD, Integer)

Mixed means real number mixed with integer number. The
result of calculation of this kind of mixed operands is
always real. If the value of OPERATOR equals to -1, then
this tree node is a leaf node. A leaf node contains only
field name or constant value instead of the logical,
arithmetic or comparison operator. For every leaf node,
leaf type can be AL, SL, IL or RL. AL stands for attribute
(i.e. field), SL stands for character string constant, IL
stands for integer constant, RL stands for real constant.
If leaf type is AL, then ATTR_NAME (field name) must be
specified, else a constant must be provided.

The only limitation to the condition tree is that there
can only be one descendent tree node on the right subtree

33

descending from the tree node with OPERATOR value between 4
and 9.

In order to maintain all opened physical data files, a
linked list of logical file units is built for each ECRDBS
session. Each logical file unit is composed of the
following components.

(1) SCHEMAFILENAME (subdirectory name + file name)
(2) FILENO (file number, any integer number)

A physical file can be opened more than once with
different file numbers and all copies of the file can
stay open at the same time.

(3) STRFILE (a pointer to the actual physical file)
(4) SIMP_FIND (a boolean variable)

SIMP_FIND with a true value is used to indicate that
a SIMPLE_FIND operation (see Section 3.3) has been
done and is still valid, so that the SIMP_FINDNEXT
operation (see Section 3.3) can then be executed on
this file.

(5) KEYED (keyed access)
IF SIMP_FIND is true, then KEYED with a true value is
used to indicate that the field used in the
SIMPLE_FIND operation is a key and keyed access on
indexed file should be done when executing a
SIMP_FINDNEXT operation.

34

(6) FIELDNAME (field name)
If SIMP_FIND is true, then FIELDNAME stores the name
of the field used in the SIMPLE_FIND operation.

(7) STARTPOS (starting position, positive integer)
If SIMPLE_FIND is true, then STARTPOS stores the
starting position of the field used in SIMPLE_FIND
operation.

(8) LEN (field length, positive integer)
If SIMP_FIND is true, then LEN stores the number of
bytes of the field used in SIMPLE_FIND operation.

(9) COMP_OP (comparison operator : EQL, GEQ, GTR, NEQ,
LTH, LEQ)

If SIMP_FIND is true, then COMP_OP stores the
comparison operator used in SIMPLE_FIND operation.

(10) CONST_V (constant value)
If SIMPLE_FIND is true, the CONST_V stores the
constant value used in the SIMPLE_FIND operation.
A constant value is actually a variant record of
type CONST_VALUE.

CONST_VALUE - RECORD
CASE TAG : TAG_TYPE OF

0 : (INUM : INTEGER);
1 : (CNUM : VSTR512);
2 : (RNUM : REAL);
3 i (INUM1, INUM2 : INTEGER);
4 : (TWINCNUM : STR8);

END;
STR8 = PACKED ARRAY [1..8] of CHAR:

35

TAG with value 3 and 4 are used for combinational
integer key values.

(11) COMP_FIND (a boolean variable)
COMP_FIND with a true value is used to indicate that
a COMPLEX_FIND operation (see Section 3.3) has been
done and is still valid. So that the COMP_FINDNEXT
operation (see Section 3.3) can be then executed on
this file.

(12) TREE (a condition tree pointer)
If COMP_FIND is true, then TREE is a pointer
pointing to a condition tree used in the
COMPLEX_FIND operation. This condition tree can
then be used in COMP_FINDNEXT operation.

(13) RE_SET (reset, a boolean variable)
RE_SET with a true value is used to indicate that a
RESET_FILE operation (see Section 3.3) has been done
on this file, and the previous SIMPLE_FIND or
COMPLEX_FIND operation is now invalid. No
SIMP_FINDNEXT or COMP_FINDNEXT operation can be
executed at this point.

(14) UPDATE_BUF (update buffer, of TYPE VSTR512)
The UPDATE_BUF is used to store the content of the
record which has just been modified by
MODIFY_RECORD operation (see Section 3.3). This

36

buffer is used for comparison purpose, so that all
records in a file satisfying a specific condition
can be modified using MODIFYJRECORD operation, and
no record will be modified more than once with the
same condition.

In order to save space in a file and make the
implementation of the File system using PASCAL language
possible, all data are stored in the file as if they were
character strings. Two kinds of variant records are used to
code integers or reals as character strings before they are
written to a file. This data is actually in integer or real
(binary form). These two kinds of variant records are
listed in the following. By setting TAG to 1 in VAR_RECORD,
any integer or real number can be stored as four bytes into
a file. The TWIN_RECORD is used for the same purpose but
is for combination integer key field only.

VAR_RECORD = RECORD
CASE TAG : TAG_TYPE OF

0 : (INUM : INTEGER);
1 : (CNUM : STR4);
2 : (RNUM : REAL);

END;
TWIN_INTRECORD = RECORD

CASE TAG : TAG_TYPE OF
0 : (INUM1, INUM2 : INTEGER);
1 : (TWINCNUM : STR8);

END;
STR4 = PACKED ARRAY [1..4] OF CHAR;

37

3.3 File System Procedures and Interface

The ECRDBS File system provides an interface which
consists of five file commands and nine record commands.
The file commands are CREATE_FILE, DELETE_FILE, OPEN_FILE,
CLOSE_FILE AND RESET_FILE. The record commands are
INSERTJRECORD, SIMPLE_FIND, SIMPJFINDNEXT, DELETEJRECORD,
READ_RECORD, MODIFY_RECORD, FINDSEQ_NEXT, COMPLEX_FIND AND
COMP_FINDNEXT. The READ_RECORD, DELETE_RECORD and
MODIFY_RECORD commands can only be executed on the current
record of a file. The current record must first be located
by one of the following commands : SIMPLE_FIND,
SIMP_FINDNEXT, COMPLEX_FIND, COMPJFINDNEXT, RESET_FILE,
FINDSEQ_NEXT. These fourteen operations of the file
interface are listed in the following.

(1) CREATE_FILE
Purpose : Create an indexed file according to the file

specification given.
Input : FILETYPE (filetype 'I', ’R’ or ’S’)

FILENAME (file name, of type PACKED ARRAY [1..16]
OF CHAR)

FIELDS (a pointer pointing to a linked list of
records of type FIELDDEF)

PTR_FIELDDEF = ''FIELDDEF;

38

FIELDDEF = RECORD
FIELDNAME : STRINGTYPB;
COMBINATION : CHAR;
KEYNO : INTEGER;
STARTPOS ! INTEGER;
LENGTH : INTEGER;
FIELDTYPE ! CHAR;
DUP : CHAR;
CHANGES : CHAR;
NULL_KEY : CHAR;
NEXT : PTR_FIELDDEF;

END;
Record of type FIELDDEF (field definition) contains
the same information as described in the File
dictionary.

Output : None
Major actions taken :

(a) Make sure all field definitions are correct.
(b) Write field definitions for the given file into the

File dictionary 'FILES.DIG’.
(c) Create FDL file according to field definitions.
(d) Spawn a process to create an indexed file according to

the FDL file specification.

(2) DELETE_FILE
Purpose : Delete an indexed file.
Input : FILENAME (file name)
Output : None
Major actions taken :

(a) Make sure all copies of the file (with different file

39

numbers, of course) are closed
(b) Remove all records in File dictionary ’FILES.DIC’ that

are related to the given file.
(c) Spawn a process to delete the indexed file.

(3) OPEN_FILE
Purpose : Open an indexed file in the File system.
Input : FILENAME (file name)

FILENO (file number)
Output : None
Major actions taken :

(a) Make sure that the File dictionary already contains
information about the given file.

(b) Set up a logical file unit, and put it into the linked
list of logical file units.

(c) Open the indexed file in the VAX/VMS system,
(specifying that the file is for sharing.)

(4) CLOSEJFILE
Purpose : Close an indexed file in the File system.
Input : FILENAME (file name)

FILENO (File number)
Output : None
Major actions taken :

(a) Make sure that a logical file unit already existing

40

matches the file name and file number given.
(b) Close the indexed file in the VAX/VMS system.
(c) Delete the logical file unit from the linked list of

logical file units.

(5) RESET_FILE
Purpose : Reset an indexed file for sequential access

according to the order of the given key number.
Input : FILENAME (filename)

FILENO (file number)
KEYNO (key number)

Output : FOUND (A true value indicates that the first record
has been located.)

Major actions taken :
(a) Make sure that the File dictionary contains

information about the given file.
(b) Reset the file according to the order of the given key

number.
(c) Set FOUND to true, if the file is not empty.

(6) INSERT_RECORD
Purpose : Insert a record into the given indexed file.
Input : FILENAME (file name)

FILENO (file number)
FIELDLIST (a pointer to a linked list of records of

41

type FIELD_UNIT)
PTR_FIELDUNIT = ''FIELDJJNIT;
FIELDJJNIT = RECORD

FIELDNAME : STRINGTYPE;
NEXT : PTR_FIELDUNIT;
CASE TAG : TAG_TYPE OF

0 : (INUM : INTEGER);
1 : (CNUM : VSTR512);
2 : (RNUM : REAL);
3 : (INUM1, INUM2 : INTEGER);
4 : (TWINCNUM ! STR8);

END;

Each record of type FIELDUNIT contains a field name
and a field value.

Output : INSERT_STATUS (an integer)
(A value of 0 indicates that the INSERT_RECORD
operation is successful. A value of 5 indicates
that the duplication key value error occurs. A
value of -1 indicates other error occurs.)

Major actions taken :
(a) Make sure that the file has already been opened by the

File system.
(b) Get field definitions from the File dictionary.
(c) Put field values from FIELD_UNIT records into a

buffer. For surrogate key field (see Section 4.2.5),
an unique integer number is inserted automatically.

(d) Insert that buffer (as a record) into the file.
(e) Return INSERT_STATUS to indicate whether the

42

INSERT_RECORD operation is successful or not.

(7) SIMPLE_FIND
Purpose : Use the field name, comparison operator and

constant value given to locate a record in the
file satisfying this simple condition.

Input : FILENAME (file name)
FILENO (file number)
FIELDNAME (field name)
COMP_OP (comparison operator : EQL, GEQ, GTR, NEQ,

LTH, LEQ)
CONST_V (constant value, see Section 3.2.2)

Output : FOUND (A true value indicates that a record has
been located.)

Major actions taken :
(a) Make sure that the file has already been opened by

the File system.
(b) Get the field definition information for the given

field from the File dictionary.
(c) Find the first record that satisfies this simple

condition.
(d) Record the information into the corresponding logical

file unit, so that SIMP_FINDNEXT operation can use
this information.

(e) Set FOUND to true if a record has been located.

43

(8) SIMP_FINDNEXT
Purpose : Locate the next record satisfying the same

condition as specified in the previous SIMPLE_FIND
operation.

Input : FILENAME (file name)
FILENO (file number)

Output : FOUND (A true value indicates that a record has
been located.)

Major actions taken :
(a) Make sure that the file has already been opened by the

File system.
(b) Get information about previous SIMPLE_FIND operation

from the corresponding logical file unit, then locate
the next record satisfying the same condition.

(c) Set FOUND to true if a record has been located.

(9) DELETE_RECORD
Purpose : Delete the current record from the given file.
Input : FILENAME (file name)

FILENO (file number)
Output : None
Major actions taken :

(a) Make sure that the file has already been opened by the
File system, and that a current record has been
specified by one of the FIND operations or RESET_FILE.

44

(b) Delete the current record from the given file.

(10) READ_RECORD
Purpose : Read the current record from the given file.
Input : FILENAME (file name)

FILENO (file number)
Output : FIELDLIST (a linked list of records of type

FIELD_UNIT)
Each record of type FIELD_UNIT will contain field
name and field value fetched from the current
record.

Major actions taken :
(a) Make sure that the file has already been opened by the

File system, and that a current record has been
specified by one of the FIND operations or RESET_FILE.

(b) Get field definitions for the given file from the File
dictionary.

(c) Get field values from the current record of the given
file and store them together with field name into
records of type FIELD_UNIT.

(d) Return the pointer FIELDLIST which points to a linked
list of records of type FIELD_UNIT. This contains the
field values of the record.

(11) MODIFY_RECORD

45

Purpose : Modify the current record of the given file.
Input : FILENAME (file name)

FILENO (file number)
FIELDLIST (a linked list of records of type

FIELD_UNIT)
Each record of type FIELD_UNIT contains field name
and field value used to modify the current record.

Output : STOP (A true value indicates that no more records
in the file are to be modified.)

Major actions taken :
(a) Make sure that the file has already been opened by the

File system.
(b) If the current record has not yet been modified by

the same FIELDLIST, then modify the current record,
else modify the next record (if any) satisfying the
same condition as that of the current record.

(c) Set STOP to true, if no more records in the given file
satisfy the same condition.

(12) FINDSEQ_NEXT
Purpose : Locate the next record according to the order

specified by the previous RESET_FILE operation.
Input : FILENAME (file name)

FILENO (file number)
Output : FOUND (A true value indicates that a record has

46

been located for sequential access.)
Major actions taken :

(a) Make sure that the file has already been opened by the
File system and also been reset by a previous
RESET_FILE operation.

(b) Locate the next record according to the order
specified in the previous RESET_FILE operation.

(c) Set FOUND to true if a record has been located.

(13) COMPLEX_FIND
Purpose : Use a condition tree to locate a record in the

file satisfying the complex condition described by
the condition tree.

Input : FILENAME (file name)
FILENO (file number)
TREE (a pointer to a condition tree)

Output : FOUND (A true value indicates that a record has
been located by the COMPLEX_FIND operation.)

Major actions taken :
(a) Make sure that the file has already been opened by the

File system.
(b) Use a simple condition (a field name, a comparison

operator and a constant value) existing in a subtree
of the condition tree to find a record satisfying the
simple condition chosen. Preference is given to a

47

key, and the primary key is the best choice. Also,
preference is given to a comparison operator among
EQL, GEQ and GTR. If no record satisfies the simple
condition chosen, then set FOUND to false and return
to the calling program.

(c) Evaluate the condition tree. If the condition tree is
evaluated to be true for the record located in (b),
then set FOUND to true and record information about
COMPLEX_FIND operation into the corresponding logical
file unit so that COMP_FINDNEXT operation can use
them, else go to (b).

(14) COMP_FINDNEXT
Purpose : Locate the next record satisfying the same complex

condition as specified in the condition tree of
the previous COMPLEX_FIND operation.

Input : FILENAME (file name)
FILENO (file number)

Output : FOUND (A true value indicates that a record has
been located.)

Major actions taken :
(a) Make sure that the file has already been opened by the

File system.
(b) Get information about last COMPLEX_FIND operation from

the corresponding logical file unit, and then locate

48

the next record satisfying the same complex condition.
(c) Set FOUND to true if a record has been located.

3.4 Limitations of the File System

Since the File system is built on top of the indexed
file organization of the VAX/VMS system, there are some
limitations inherited directly from the VAX/VMS Record
Management Services. Other limitations are arbitrarily set
to optimize the performance of the File system. All
limitations are listed in the following.

(1) The maximum number of fields in a record is 50.
(2) The maximum number of bytes a field can have is 512.
(3) The maximum number of characters in a file name is 16.

(The File system will automatically append a file
extension .DAT to the file name.)

(4) The maximum number of characters in a field name is 16.
(5) The maximum number of characters in a schemafilename

(subdirectory name + file name) is 35.
(6) The key number can be -1 (non-key) and from 0 to 254.
(7) The maximum number of files that can be simultaneously

opened is 74.
(8) Key of type String cannot exceed 255 characters.
(9) Primary key (key 0) cannot have for CHANGES or ’Y’

for NULL_KEY in the file definition. However, primary

49

key can have for DUPLICATES.
(10) Combination key can only be set on several contiguous

string fields or two contiguous integer fields.
(11) The length of noncombinational integer or real fields

is always 4.
(12) Noncombinational key can only be set on character

string or integer field.

CHAPTER 4

SCHEMA DEFINITION FOR THE ECRDBS

4.1 Role of the Data Dictionary System

A data dictionary is a principal component of a
database system. It handles and controls the data
information. It enables management to enforce data
definition standards; it supplies information about the
creation, usage and relationships of data; it eliminates the
data redundancy and data inconsistency; it aids the security
of sensitive data definitions against unauthorized use
[Chan 83].

A data dictionary provides assistance to the database
administrator in cataloging and maintaining the database
design, so that the data dictionary becomes one of the most
important tools in database administration. An integrated
data dictionary is also used by the database system software
whenever the software needs information on the structure of
the data. So basically it is a tool to help the database
administrator, system analyst, application programmer and
user to plan, control and use the data stored in the

50

51

database, and hence is an essential part of a database
system.

This thesis describes a data dictionary system based on
the Entity-Category-Relationship model. The Data dictionary
system for the ECR model is responsible for parsing the
data definition and the file definition statements for a
particular database schema. These statements are analyzed
and checked for correctness and consistency. The
information in these statements is then stored in data
dictionary files for use when queries and transactions are
specified and executed.

The data definition statements specify an ECR schema,
the file definition statements specify the data file
descriptions, as well as their correspondence to the ECR
schema. Mapping ECR requests to the data files is
accomplished during translation.

Because of the complexity of the ECR model (relative to
the relational model), thirteen data dictionary files have
been created to store and cross-reference the information.
Some of the data in the Data dictionary is stored
redundantly in order to facilitate retrieval of the same
information based on different selection criteria. However,
the redundant storage is consistent since it is always

52

controlled by the Data dictionary system when the schema is
defined.

Retrieval of information from the Data dictionary is
via function procedures with appropriate parameters. Both
DBMS system routines and DBMS users (using a user friendly
interface) can retrieve descriptions from the Data
dictionary [Elma 84].

4.2 Data Definition Language for the ECRDBS

The statement for defining the name of an ECR schema is
the SCHEMA statement. To specify the constructs of an ECR
schema, we have four types of DEFINE statements : DEFINE
VALUESET, DEFINE ENTITYTYPE, DEFINE CATEGORY, and DEFINE
RELATIONSHIP. In addition, a DEFINE FILE statement is used
to specify the file structures corresponding to the ECR
schema. The BNF symbols used in data definition language
are :

[x] : x occurs 0 or 1 times.
[x] : x occurs 0 or more times.
x | y : x or y.
(x|y;...;z) : x or y or ... or z, used to group

alternatives.
*x’ : x is a literal metasymbol.

53

The BNF for SCHEMA statement and DEFINE statement follows :

<schema def> ::= SCHEMA <schema name> <define statement>
(\<define statement^ END

<define statement> ::= DEFINE (<value set>!<entity type>J
<category>|<relationship>!<file>)

<schema name> ::= <string of characters>
<string of characters> <letter or digit>

{(letter or digit>)
(letter or digit> (letter>I(digit>
(digit> ::= 0 J1•2 J 3!4;5!6{718|9
(letter> ::= A! B J C J D J E J F J G! H 11J !K ! L !M! N ! 0 !P! Q !R j S I T JU! V! W!X

JYJZJaJbJcJdJeJfJgJhJiJJJkJlJmJnJoJpJqJrJsJtJuJ
vjwjxjyjzj-

4.2.1 Value Set Definition

A value set is defined by its name and description.
The value set names must be unique because they are used to
refer to the value set when an attribute is defined. The
value set descriptions can be one of the following :
(1) A set of explicit values. This specification is used

for a small value set with values of irregular
structure.

(2) A standard data type. It can be integer, real, or
string. The standard type can also be restricted to a

54

subrange.
(3) By reference to an attribute of some given class, such

as entity type, category or relationship. The value set
is defined to be the set of values that currently exists
in the database for the given attribute of the given
class.

BNF for value set definition :

<value set> ::= VALUESET <value set name> AS
<value set description

<value set description ::= <explicit value set>!
<standard value set>|
<reference value set>

<explicit value set> ’<constant>{,<constant>}*}’
<standard value set> STRING <integer>}INTEGER [[RANGE]

<integer>[:<integer>]]JREAL
[[INTERVAL]<real>[:<real>]]

(reference value set> ::= <attribute name> OF <class name>:
<low level domain

<low level domain ::= <standard value set>
<value set name> ::= <string of characters>
<constant> ::= <string of characters)
<attribute name) <string of characters)
<class name) ::= <string of characters)

55

4.2.2 Entity type Definition

An entity type is defined by its name and attribute
list. The entity type name must be unique, since it is used
by the user to specify the entity type when formulating a
query or transaction. Each attribute in the attribute list
must have a unique name and is associated with a value set.

The cardinality of an attribute is specified by the
optional integers following MIN and MAX. The default values
are MIN 1 and MAX 1. The optional key word UNIQUE specifies
a unique attribute, and may be used to define both single
and compound attributes. MIN cardinality must be greater
than or equal to 0. If MIN cardinality is equal to 0, then
the attribute is partial (null values are allowed), else the
attribute is total (no null values are allowed). MAX
cardinality must be greater than or equal to 1. If MAX
cardinality is equal to 1, the attribute is single-valued,
else the attribute is multi-valued.

BNF for entity type definition :

<entity type> ENTITYTYPE <entity type name) ATTRIBUTES
<attribute list>

<attribute list> ::= <constrained attribute>
{,(constrained attributed

56

<constrained attribute> ::= <attribute name> VALUESET
<value set name>[UNIQUE] [MIN
<integer>] [MAX <integer>]

<entity type name) ::= <string of characters>
(attribute name> ::= (string of characters>

4.2.3 Category Definition

A category is defined by its name, the entity type
specifications and an optional attribute list. Each entity
type specification is composed of entity type specs, and
optional predicates (logical expression). Each entity type
spec can be an entity type or a category. A predicate
selects the subset of a entity type spec which specifies the
members of the category. The entities in a category is
defined to be the union of those subsets of entity type
specs. If the optional predicate is not given, any member
from the entity type spec can be a member of the category.
Specific attributes for the category (if any) are defined by
an attribute list.

BNF for category definition :

(category> ::= CATEGORY (category name> FROM
(entity type specifications> [[SPECIFIC]
ATTRIBUTES (attribute list>]

57

(entity type specifications> ::= (entity type spec>
[:(predicate>]
{,entity type spec>
[:(predicate>]}

(entity type spec> ::= ((entity type name>J(category name>)
(predicate> ::= (attribute name> = (constant>
(constant) ::= (string of characters)
(category name) ::= (string of characters)
(attribute name) := (string of characters)

4.2.4 Relationship Definition

A relationship is specified by its name, participation
list and optional attribute list. The relationship name
must be unique from all other relationship names, entity
type names and category names in the schema.

In a relationship, there must exist at least two
participations. Each participation of a category or entity
type in the relationship is specified by the category name
or entity type name, a pair of participation names and the
structural constraints on the participation (the integers
after MIN and MAX).

MIN cardinality constraint must be greater than or
equal to 0. If MIN cardinality constraint is equal to 0,

58

then the participation is partial, else the participation is
total. MAX cardinality constraint must be greater than or
equal to 1. If MAX cardinality constraint is equal to 1,
then the participation is functional. The default values
for structural constraints are MIN 0, MAX maxint (the
largest integer value in PASCAL). If MIN > 0, we can also
specify the DLT option. In this case if some relationship
tuple specified for deletion causes some instance e in P
(participant of the relationship) to be related to less than
MIN cardinality tuples, then both the relationship tuple and
the related instance e from P are deleted. On the other
hand, if DLT is not defined, then a transaction will be
rejected if it contains delete-relationship operation which
violates the MIN structural constraint.

In addition to the structural constraints of a
relationship, another constraint called basic relationship
constraint must always hold. The basic relationship
constraint specifies that each relationship tuple must
relate to instances that currently exist in the entity types
or categories that participate in the relationship. This
constraint is implicit in the ECR model definition for
relationships. In order to maintain the basic relationship
cons tk^^, if PD (Prohibit Deletion) is defined, then a

transaction will be rejected if it contains an operation

59

which deletes a participant instance that participates in
some relationship tuple. If PD is not defined, then both
the participant instance and the relationship tuples in
which it participates are removed [Elma 80].

A relationship R is SPECIFIC with respect to the
participation of P, if the participation is total and once
an instance e from P is related to some relationship
instance in R, that relationship instance can not be deleted
unless e itself is deleted. If SPECIFIC is defined for a
participant P, then PD (Prohibit Deletion) must not be
defined on the basic relationship constraint.

BNF for relationship definition :

<relationship> ::= RELATIONSHIP Relationship name> FROM
<participation list> [ATTRIBUTES
(attribute list>]

(participation list> ::= (participation), (participation)
{,(participation)}

(participation) ::= ((category name)!(entity type name))
[SPECIFIC] [PD]’(’(participation namel),
(participation name2>*)’[MIN (integer)
[DLT]] [MAX (integer)]

(relationship name) ::= (string of characters)
(participation namel) (string of characters)

60

participation name2> ::= <string of characters>

4.2.5 Data File Definition

A data file is defined by its name, file type,
corresponding class name or attribute name, and field list.
The file type can be INDEX, REL (relative) or SEQ
(sequential). Only INDEX file organization are implemented
in this thesis. The corresponding class name can be either
entity type name, category name or relationship name. The
corresponding attribute must be the name of a multi-valued
attribute name.

Every field is defined by field name, starting
location, fieldtype, length (field length), keyno (key
number), combination (combinational key), dup (duplicate key
value), changes (change of key values) and null_key (null
key value). Fieldtype can be I (integer), R (real) or S
(character string). Keyno can be -1 (non-key), 0 (primary
key) or any number between 1 and 254 (secondary key). The
value for combination, dup, changes and null_key are either
’Y’ or ’N’.

The CORRESPONDS clause is used to relate the field to
an attribute of a class (entity type, category or
relationship). Since subclass categories have no

61

corresponding files, all corresponding fields of subclass
categories are put into the file corresponding to the entity
type (or category) they are defined on. So a field (defined
by a SUBCATEGORY clause) is needed for each subclass
category, to indicate which record in the file belong to the
subcategory. On the other hand, Generalization categories
have their own corresponding files and the GENCATEGORY
clause is used to define the primary key field of that file.
The unique value of the primary key is generated by the File
system automatically (as a surrogate key). An example of
data file definition for a file related to a
generalization category is shown in Fig. 10. In this
example, the DEFINING clause is used to define join fields
between the file corresponding to the generalization
category and the file corresponding to the class (an entity
type or a category) that takes part in the generalization
category.

For entity types that do not have unique keys (weak
entity types), the SURROGATE clause is used to define a
unique primary key field (surrogate key) for that entity
type. The value of the surrogate key is automatically
generated by the file system. The REFERS clause is used to
define join fields for two files. Since the corresponding
field of a multi-valued attribute are stored in a different

62

DEFINE X_FILE TYPE INDEX CORRESPONDS X_CATEGORY FIELDS
X_key 1 14 0 N N N N GENCATEGORY,
X_a 5 S 9 1 N N N N DEFINING A_CLASS A_FILE A_field,
X_b 14 S 8 2 N N N N DEFINING B_CLASS B_FILE B_field,
X_c 22 S 7 3 N N N N DEFINING C_CLASS C_FILE C_field,
X_d 29 S 4 -1 N Y Y Y CORRESPONDS Xd_attr OF X_CATEGORY\

A_attr (unique) B_attr (unique) C_at.tr (unique)
A_field (key 0) B_field (key 0) C_field (key 0)+----------- + +------------ + +------------ +
; a_class ; ; b_class ; ; c_class !
; (A_FILE) ! ! (B_FILE) { ! (C_FILE) !+----------- + +------------ + +------------ +

+ — 4-
! X_CATEGORY (a generalization category) |
I (X_FILE) ; +--- +

-- Xd_attr

X_key (key 0)
X_a (key 1)
X_b (key 2)
X_c (key 3)
X_d (non-•key)

Figure 10 An example of data file definition
for generalization category

file (multi-valued file), the short REFERS clause without
FOR key word is used to define a join field (a key field in
the multi-valued file) corresponding to the entity type,
category or relationship which the multi-valued attribute
belongs to. The long REFERS clause with FOR key word is
used to define join fields between two files for which a
relationship exists between two classes.

63

By using the appropriate relational join specifications
and surrogate keys, all relevant information concerning
relationships, categories and multi-valued attributes can be
stored into tabular forms used in relational model
[Elma 85].

BNF for data file definition :

<file> FILE <filename> TYPE <file type> CORRESPONDS
(<class name>!<attribute name>)
FIELDS
<field name> <starting location> <fieldtype>
<length> <keyno> <combination> <dup> <changes>
<null_key> [(CORRESPONDS (attribute name> OF
(class name> | REFERS (field name2> OF
(file name2> [FOR (relationship name)
(class namel> (class name2> (participation namel>
(participation name2>] J SUBCATEGORY
(category name> J GENCATEGORY | DEFINING
(class name> (file name> (field name)
I SURROGATE)]
{,(field name> (starting location> (fieldtype>
(length> (keyno> (combination> (dup> (changes)
(null_key> [(CORRESPONDS (attribute name) OF
(class name) J REFERS (field name2> OF

64

<file name2> [FOR Relationship name)
<class namel> <class name2> <participation namel>
participation name2>] ! SUBCATEGORY
<category name> ! GENCATEGORY J DEFINING
<class name> <file name) <field name>
J SURROGATE)]}

<filename> ::= (string of characters>
(file type> INDEX ! REL ! SEQ
(field name) ::= (string of characters)
(starting location) (integer)
(fieldtype) ::= I ! R ! S
(length) ::= (integer)
(keyno) := (integer)
(attribute name) (string of characters)
(class name) ::= (string of characters)
(combination) ::= Y I N
(dup) ::= Y ! N
(changes) ::= Y ! N
(null_key> ::= Y ! N

4.2.6 Naming restrictions in an ECR schema

In order to avoid ambiguity in the GORDAS query
statements, some naming restrictions are needed in an ECR
schema and are listed in the following.

65

(1) All value set names must be unique.
(2) All entity type, category, and relationship names must

be unique.
(3) All data file names must be unique.
(4) All attribute names of a particular class (entity type,

category or relationship) must be unique.
(5) All field names of a particular file must be unique.
(6) All participation names (connection names) directly

related to a particular entity type or a category must
be unique.

(7) Entity type names, category names, relationship names
and file names are all in upper case.

(8) Participation names (connection names) are all in lower
case.

(9) The first character of attribute names and field names
are in upper case, the rest of the characters are in
lower cases.

(10) The names of the attributes of a binary relationship
(relationship in which only two classes participate)
must be different from the names of the attributes of
the two classes (entity types or categories) that
participate in the relationship.

4.3 Example DDLs for Two Databases

66

The data definition files for the two ECR schemas
Company and University (ECR diagrams in Fig. 6 and Fig. 7)
are listed in the following to illustrate the definitions of
value set, entity type, category, relationship and data
file.

4.3.1 Company Database

SCHEMA COMPANY

DEFINE VALUESET SOCSECNUM AS INTEGER 0:999999999\
DEFINE VALUESET SALARIES AS REAL 0.0:999999.99\
DEFINE VALUESET LOCATIONCODES AS {MN01,OH20,AZ05,CA06,CAOS,

MN09,TX01,TX05,TX25}\
DEFINE VALUESET STATES AS (MINNESOTA,OHIO,ARIZONA,

CALIFORNIA,TEXAS)\
DEFINE VALUESET PEOPLENAMES AS STRING 15\
DEFINE VALUESET PHONENUM AS STRING 12\
DEFINE VALUESET PROJECTNAMES AS NAME OF PROJECT: STRING 15\
DEFINE VALUESET PROJECTNUMS AS NUMBER OF PROJECT:INTEGER\
DEFINE VALUESET DIVISIONNAMES AS NAME OF DIVISION:STRING 15\
DEFINE VALUESET STARTDATES AS STRING 8\
DEFINE VALUESET WEEKLYHOURS AS REAL 0:40\
DEFINE VALUESET SCIENTISTGRADES AS (S1,S2,S3,S4,S5,E,F}\
DEFINE VALUESET TECHNICIANGRADES AS (T1,T2,T3,T4,T5,T6,T7,

T8,T9}\
DEFINE VALUESET DIVISIONNUMS AS INTEGER\
DEFINE VALUESET ADDRESSES AS STRING 30\
DEFINE VALUESET TRADEUNIONS AS (UAW,TEAMSTERS}\
DEFINE VALUESET ORGANIZATIONS AS STRING 15\
DEFINE VALUESET TECHSOCIETIES AS {ACM,IEEE,ASME,AMS}\

DEFINE ENTITYTYPE DIVISION ATTRIBUTES
Number VALUESET DIVISIONNUMS UNIQUE,
Name VALUESET DIVISIONNAMES UNIQUE,
Location VALUESET LOCATIONCODES MIN 1 MAX 20\

DEFINE ENTITYTYPE EMPLOYEE ATTRIBUTES
Ssn VALUESET SOCSECNUM UNIQUE,
Name VALUESET PEOPLENAMES,

67

Hphone
Ophone
Address

VALUESET PHONENUM MIN 0 MAX 1,
VALUESET PHONENUM MIN 0 MAX 1,
VALUESET ADDRESSES MIN 1 MAX 1\

DEFINE ENTITYTYPE
Number
Name
Location
Pstart

PROJECT ATTRIBUTES
VALUESET PROJECTNUMS UNIQUE,
VALUESET PROJECTNAMES UNIQUE,
VALUESET LOCATIONCODES,
VALUESET STARTDATES\

DEFINE CATEGORY FULLTIMEMPLOYEE FROM EMPLOYEE ATTRIBUTES
Sal VALUESET SALARIES\

DEFINE CATEGORY CONSULTANT FROM EMPLOYEE ATTRIBUTES
Organization VALUESET ORGANIZATIONS,
Payscale VALUESET SALARIES\

DEFINE CATEGORY SCIENTIST FROM EMPLOYEE ATTRIBUTES
Sgrade VALUESET SCIENTISTGRADES,
Society VALUESET TECHSOCIETIES MAX 2\

DEFINE CATEGORY TECHNICIAN FROM EMPLOYEE ATTRIBUTES
Tgrade VALUESET TECHNICIANGRADES,
Union VALUESET TRADEUNIONS\

DEFINE RELATIONSHIP ASSIGNED FROM
FULLTIMEMPLOYEE (division, employees) MIN 1 MAX 1,
DIVISION (employees, division)\

DEFINE RELATIONSHIP CONTROLS FROM
DIVISION (projects,division),
PROJECT (division,projects) MIN 1 MAX 1\

DEFINE RELATIONSHIP MANAGES FROM
FULLTIMEMPLOYEE (proj_managed, manager) MIN 0 MAX 1,
PROJECT (manager, proj_managed) MIN 1 MAX 1

ATTRIBUTES
Mstart VALUESET STARTDATES\

DEFINE RELATIONSHIP WORKSON FROM
EMPLOYEE (projects, employees),
PROJECT (employees, projects)
ATTRIBUTES
Hours VALUESET WEEKLYHOURS\

68

DEFINE FILE EMPLOYEE TYPE INDEX CORRESPONDS EMPLOYEE
FIELDS

Ssn 1 I 4 0 N N N N
CORRESPONDS Ssn OF EMPLOYEE,

Name 5 S 15 1 N Y N N
CORRESPONDS Name OF EMPLOYEE,

Hphone 20 S 12 -1 N Y Y Y
CORRESPONDS Hphone OF EMPLOYEE,

Ophone 32 s 12 -1 N Y Y Y
CORRESPONDS Ophone OF EMPLOYEE,

Address 44 s 30 -1 N Y Y Y
CORRESPONDS
EMPLOYEE,

Address OF
Fulltime 74 s 1 3 N Y Y Y

SUBCATEGORY FULLTIMEMPLOYEE,
Sal 75 R 4 -1 N Y Y Y

CORRESPONDS Union OF
TECHNICIAN\

CORRESPONDS Sal OF
FULLTIMEMPLOYEE,

Divnum 79 I 4 2 N Y Y Y
REFERS Number OF DIVISION FOR
ASSIGNED FULLTIMEMPLOYEE
DIVISION division employees,

Consultant 83 S 1 4 N Y Y Y
SUBCATEGORY CONSULTANT,

Organization 84 S 15 -1 N Y Y Y
CORRESPONDS Organization OF
CONSULTANT,

Payscale 99 R 4 -1 N Y Y Y
CORRESPONDS Payscale OF
CONSULTANT,

Scientist 103 S 1 5 N Y Y Y
SUBCATEGORY SCIENTIST,

Sgrade 104 S 32 -1 N Y Y Y
CORRESPONDS Sgrade OF
SCIENTIST,

Technician 136 S 1 6 N Y Y Y
SUBCATEGORY TECHNICIAN,

Tgrade 137 S 32 -1 N Y Y Y
CORRESPONDS Tgrade OF
TECHNICIAN,

Union 169 S 32 -1 N Y Y Y

DEFINE FILE SOCIETY TYPE INDEX CORRESPONDS Society
FIELDS

Ssn 1 140 N Y N N
REFERS Ssn OF EMPLOYEE,

69

Society 5 S 32

DEFINE FILE DIVISION TYPE
FIELDS
Number 1 14

Name 5 S 15

DEFINE FILE LOCATION TYPE
FIELDS

Number 1 14
Location 5 S 32

1 N Y Y Y
CORRESPONDS Society OF
SCIENTIST

INDEX CORRESPONDS DIVISION
0 N N N N

CORRESPONDS Number OF
DIVISION,

1 N N N N
CORRESPONDS Name OF DIVISION\

INDEX CORRESPONDS Location
0 N Y N N

REFERS Number OF DIVISION,
1 N Y Y Y

CORRESPONDS Location OF
DIVISION\

DEFINE FILE PROJECT TYPE INDEX CORRESPONDS PROJECT
FIELDS

Number 1 I 4 0 N N N N
CORRESPONDS Number OF PROJECT,

Name 5 S 15 1 N N N N
CORRESPONDS Name OF PROJECT,

Locationi 20 S 32 -1 N Y Y Y
CORRESPONDS Location OF
PROJECT,

Pstart 52 S 8 -1 N Y Y Y
CORRESPONDS Pstart OF PROJECT,

Divnum 60 I 4 3 N Y Y Y
REFERS Number OF DIVISION FOR
CONTROLS PROJECT DIVISION
division projects,

Mgrssn 64 I 4 2 N Y Y Y
REFERS Ssn OF EMPLOYEE FOR
MANAGES PROJECT
FULLTIMEMPLOYEE
manager proj_managed,

Mstart 68 S 8 -1 N Y Y Y
CORRESPONDS Mstart OF MANAGES\

DEFINE FILE WORKSON TYPE INDEX CORRESPONDS WORKSON
FIELDS

Hours 1 R 4 -1 N Y Y Y
CORRESPONDS Hours OF WORKSON,

Empssn 5 I 4 1 N Y N N

70

Pnum 9 142

Essnpnum 5 180
END

REFERS Ssn OF EMPLOYEE FOR
WORKSON WORKSON EMPLOYEE
employees projects,
N Y N N
REFERS Number OF PROJECT FOR
WORKSON WORKSON PROJECT
projects employees,
Y N N N

4.3.2 University Database

SCHEMA UNIVERSITY

DEFINE VALUESET SOCSECNUM AS STRING 9\
DEFINE VALUESET PERSONLNAMES AS STRING 15\
DEFINE VALUESET PERSONFNAMES AS STRING 15\
DEFINE VALUESET PERSONMNAMES AS STRING 1\
DEFINE VALUESET PERSONNAMES AS STRING 31\
DEFINE VALUESET STREETNUMS AS STRING 6\
DEFINE VALUESET STREETNAMES AS STRING 15\
DEFINE VALUESET APTNUMS AS STRING 4\
DEFINE VALUESET CITYNAMES AS STRING 15\
DEFINE VALUESET STATENAMES AS STRING 15\
DEFINE VALUESET ZIP AS STRING 5\
DEFINE VALUESET ADDRESSES AS STRING 60\
DEFINE VALUESET DAYS AS STRING 10\
DEFINE VALUESET SEXES AS {M,F}\
DEFINE VALUESET SALARIES AS REAL INTERVAL 0.0:999999.99\
DEFINE VALUESET RANKS AS STRING 10\
DEFINE VALUESET OFFICES AS STRING 10\
DEFINE VALUESET PHONES AS STRING 12\
DEFINE VALUESET GRANTITLES AS Title OF GRANT:STRING 15\
DEFINE VALUESET GRANTNUMS AS INTEGER\
DEFINE VALUESET GRANCODES AS STRING 10\
DEFINE VALUESET GRANTAGENCIES AS Agency OF GRANT:STRING 15\
DEFINE VALUESET SUPPORTDURATIONS AS Time OF SUPPORT:INTEGER

RANGE 0:10\
DEFINE VALUESET COLLEGENAMES AS STRING 15\
DEFINE VALUESET DEPTNAMES AS STRING 15\
DEFINE VALUESET COURSENAMES AS STRING 15\
DEFINE VALUESET COURSENUMS AS STRING 10\
DEFINE VALUESET COURSEDESC AS STRING 20\
DEFINE VALUESET SECTIONNUMS AS STRING 5\

71

DEFINE VALUESET SECTIONQTRS AS {SPRING,SUMMER1,SUMMER2,
FALL,WINTER}\

DEFINE VALUESET YEARS AS STRING 4\
DEFINE VALUESET QTRYEARS AS STRING 11\
DEFINE VALUESET CLASSES AS INTEGER RANGE l:20\
DEFINE VALUESET GRADES AS {A,B,C,D,F,W,I,P,S,U}\
DEFINE VALUESET DEGREE AS {AA,BA,BS,MA,MS,MBA,PHD,JD,MD}\
DEFINE VALUESET DEGREES AS STRING 38\

DEFINE ENTITYTYPE PERSON ATTRIBUTES
Ssn VALUESET SOCSECNUM UNIQUE
Lname VALUESET PERSONLNAMES,
Fname VALUESET PERSONFNAMES,
Minit VALUESET PERSONMNAMES,
Name VALUESET PERSONNAMES,
No VALUESET STREETNUMS,
Street VALUESET STREETNAMES,
Aptno VALUESET APTNUMS,
City VALUESET CITYNAMES,
State VALUESET STATENAMES,
Zip VALUESET ZIP,
Address VALUESET ADDRESSES,
Sex VALUESET SEXES,
Bdate VALUESET DAYS\

DEFINE ENTITYTYPE
No
Code
Title
Agency
Stdate

GRANT ATTRIBUTES
VALUESET GRANTNUMS UNIQUE,
VALUESET GRANCODES UNIQUE,
VALUESET GRANTITLES,
VALUESET GRANTAGENCIES,
VALUESET DAYS\

DEFINE ENTITYTYPE
Dname
Office
Dphone

DEPARTMENT ATTRIBUTES
VALUESET DEPTNAMES UNIQUE,
VALUESET OFFICES,
VALUESET PHONES\

DEFINE ENTITYTYPE
Cname
Coffice
Dean

COLLEGE ATTRIBUTES
VALUESET COLLEGENAMES UNIQUE,
VALUESET OFFICES,
VALUESET PERSONNAMES\

DEFINE ENTITYTYPE
Secno
Qtr
Year
Qtryear

SECTION ATTRIBUTES
VALUESET SECTIONNUMS,
VALUESET SECTIONQTRS,
VALUESET YEARS,
VALUESET QTRYEARS\

72

DEFINE ENTITYTYPE COURSE ATTRIBUTES
Cno VALUESET COURSENUMS UNIQUE,
Cname VALUESET COURSENAMES,
Cdesc VALUESET COURSEDESC\

DEFINE CATEGORY FACULTY FROM PERSON ATTRIBUTES
Salary VALUESET SALARIES,
Rank VALUESET RANKS,
Foffice VALUESET OFFICES,
Fphone VALUESET PHONES\

DEFINE CATEGORY STUDENT FROM PERSON ATTRIBUTES
Class VALUESET CLASSES\

DEFINE CATEGORY GRAD_STUDENT FROM STUDENT:Class=5 ATTRIBUTES
College VALUESET COLLEGENAMES MIN 0 MAX 10,
Major VALUESET DEPTNAMES MIN 0 MAX 10,
Year VALUESET YEARS MIN 0 MAX 10,
Degree VALUESET DEGREE MIN 0 MAX 10,
Degrees VALUESET DEGREES MIN 0 MAX 10\

DEFINE CATEGORY INSTR_RESEARCHER FROM FACULTY,GRAD_STUDENT\
\ DEFINE CATEGORY CURRENT_SECTION FROM SECTION

a " :Qtryear=cur_qtr_year\

DEFINE RELATIONSHIP ADVISOR FROM /f
FACULTY (main_advisees, advisor) MIN 0 MAX 10,
GRADJSTUDENT (advisor, main_advisees) MIN 0 MAX 1\

DEFINE RELATIONSHIP COMMITTEE FROM <lo

FACULTY (advisees, committee) MIN 0 MAX 10,
GRAD_STUDENT (committee, advisees) MIN 0 MAX 10\

DEFINE RELATIONSHIP BELONGS FROM
FACULTY (depts, faculty) MIN 1 MAX 5,
DEPARTMENT (faculty, depts) MIN 1 MAX 100\

DEFINE RELATIONSHIP CHAIRS FROM
FACULTY (dept_chaired, chair) MIN 0 MAX 1,
DEPARTMENT (chair, dept_chaired) MIN 1 MAX 1\

DEFINE RELATIONSHIP PI FROM
FACULTY (grants, facus) MIN 0 MAX 20,
GRANT (facus, grants) MIN 1 MAX 1\

73

DEFINE RELATIONSHIP SUPPORT FROM
GRANT (supportees, grant_support) MIN 1 MAX 10,
INSTR_RESEARCHER (grant_support, supportees) MIN 0 MAX 10

ATTRIBUTES
Start VALUESET DAYS,
Time VALUESET SUPPORTDURATIONS,
End VALUESET DAYS\

DEFINE RELATIONSHIP MINOR FROM
STUDENT (minor_dept, minors) MIN 0 MAX 1,
DEPARTMENT (minors, minor_dept) MIN 0\

DEFINE RELATIONSHIP MAJOR FROM
STUDENT (major_dept, majors) MIN 0 MAX 1,
DEPARTMENT (majors, major_dept) MIN 0\

1 'DEFINE RELATIONSHIP REGISTERED FROM
STUDENT (current_courses, registrants) MIN 0 MAX 10,
CURRENT_SECTION (registrants, current_courses) MIN 5

MAX 100\
DEFINE RELATIONSHIP TRANSCRIPT FROM

STUDENT (completed_course, students),
SECTION (students, completed_course) MIN 5

ATTRIBUTES
grade VALUESET GRADESX

DEFINE RELATIONSHIP CS FROM
SECTION (course, sections) MIN 1 MAX 1,
COURSE (sections, course) MIN 1\

<—
DEFINE RELATIONSHIP DC FROM
DEPARTMENT (courses, dept) MIN 0 MAX 100,
COURSE (dept, courses) MIN 1 MAX 1\

DEFINE RELATIONSHIP CD FROM 7
DEPARTMENT (college, depts) MIN 1 MAX 1,
COLLEGE (depts, college) MIN 1\

DEFINE RELATIONSHIP TEACH FROM
INSTR_RESEARCHER (sections_taught, instructor) MIN 0

MAX 5,
SECTION (instructor, sections_taught) MIN 1 MAX 1\

DEFINE FILE PERSON TYPE INDEX CORRESPONDS PERSON
FIELDS

Ssn 1 S 9 0 N N N N
CORRESPONDS Ssn OF PERSON,

74

Lname 10 S 15 -1 N Y Y N
CORRESPONDS Lname OF PERSON,

Fname 25 S 15 -1 N Y Y N
CORRESPONDS Fname OF PERSON,

Mini t 40 S 1 -1 N Y Y N
CORRESPONDS Minit OF PERSON,

Name 10 S 31 1 Y Y Y N
CORRESPONDS Name OF PERSON,

Streetnum 41 S 6 -1 N Y Y Y
CORRESPONDS No OF PERSON,

Street 47 S 15 -1 N Y Y Y
CORRESPONDS Street OF PERSON,

Aptno 62 S 4 -1 N Y Y Y
CORRESPONDS Aptno OF PERSON,

Cityname 66 S 15 -1 N Y Y Y
CORRESPONDS City OF PERSON,

State 81 S 15 -1 N Y Y Y
CORRESPONDS State OF PERSON,

Zipcode 96 S 5 -1 N Y Y Y
CORRESPONDS Zip OF PERSON,

Address 41 S 60 2 Y Y Y Y
CORRESPONDS Address OF PERSON,

Sex 101 S 1 -1 N Y N Y
CORRESPONDS Sex OF PERSON,

Bdate 102 S 10 -1 N Y Y Y
CORRESPONDS Bdate OF PERSON,

Faculty 112 S 1 3 N Y Y Y
SUBCATEGORY FACULTY,

Rank 113 S 10 -1 N Y Y Y
CORRESPONDS Rank OF FACULTY,

Salary 123 R 4 -1 N Y Y Y
CORRESPONDS Salary OF FACULTY,

Foff ice 127 S 10 -1 N Y Y Y
CORRESPONDS Foffice OF FACULTY

Fphone 137 S 12 -1 N Y Y Y
CORRESPONDS Fphone OF FACULTY,

Student 149 S 1 4 N Y Y Y
SUBCATEGORY STUDENT,

Class 150 14-1 N Y Y Y
CORRESPONDS Class OF STUDENT,

Major 154 S 15 5 N Y Y Y
REFERS Dname OF DEPARTMENT FOR
MAJOR STUDENT DEPARTMENT
major_dept majors,

Minor 169 S 15 6 N Y Y Y
REFERS Dname OF DEPARTMENT FOR
MINOR STUDENT DEPARTMENT
minor_dept minors,

75

Grad_stud 184 S 1 7 N Y Y Y
SUBCATEGORY GRAD_STUDENT,

Fac_ssn 185 S 9 -1 N Y Y Y
REFERS Ssn OF PERSON FOR
ADVISOR GRAD_STUDENT FACULTY
advisor main_advisees\

DEFINE FILE INSTR_RES TYPE INDEX CORRESPONDS
INSTR_RESEARCHER

FIELDS
Instr_res_id 1 14 0 N N N N

GENCATEGORY,
Faculty_ssn 5 S 9 1 N N N Y

DEFINING FACULTY PERSON Ssn,
Res_ssn 14 S 9 2 N N N Y

DEFINING GRAD_STUDENT PERSON
Ssn\

DEFINE FILE COMMITTEE TYPE INDEX CORRESPONDS COMMITTEE
FIELDS
Faculty_grad 1 S 18 0 Y N N N,
Facultyssn 1 S 9 1 N N N N

REFERS Ssn OF PERSON FOR
COMMITTEE COMMITTEE FACULTY
committee advisees,

Gradstudssn 10 S 9 2 N N N N
REFERS Ssn OF PERSON FOR
COMMITTEE COMMITTEE
GRAD_STUDENT
advisees committee\

DEFINE FILE GRANT TYPE INDEX CORRESPONDS GRANT
FIELDS
Number 1 I 4 0 N N N N

CORRESPONDS No OF GRANT,
Code 5 S 10 1 N N N N

CORRESPONDS Code OF GRANT,
Title 15 S 15 2 N Y Y N

CORRESPONDS Title OF GRANT,
Agency 30 S 15 3 N Y Y Y

CORRESPONDS Agency OF GRANT,
Fssn 45 S 9 4 N Y Y Y

REFERS Ssn OF PERSON FOR PI GRANT
FACULTY facus grants,

Stdate 54 S 10 -1 N Y Y Y
CORRESPONDS Stdate OF GRANTX

DEFINE FILE SUPPORT TYPE INDEX CORRESPONDS SUPPORT

76

FIELDS
Support_id 1 I 8 0 Y N N N,
Instr_res_id 1 I 4 1 N Y N N

REFERS Instr_res_id OF
INSTR-RESEARCHER FOR SUPPORT
SUPPORT INSTR-RESEARCHER
supportees grant—support,

Grantnum 5 I 4 2 N Y N N
REFERS No OF GRANT FOR SUPPORT
SUPPORT GRANT grant_support
supportees,

Start 9 S 10 -1 N Y Y Y
CORRESPONDS Start OF SUPPORT

End 19 S 10 -1 N Y Y Y
CORRESPONDS End OF SUPPORT,

Time 29 14-1 N Y Y Y
CORRESPONDS Time OF SUPPORT\

DEFINE FILE BELONGS TYPE INDEX CORRESPONDS BELONGS
FIELDS

Fssn_dname 1 S 24 0 Y N N N,
Fssn 1 S 9 1 N N N N

REFERS Ssn OF PERSON FOR
BELONGS BELONGS FACULTY
faculty depts,

Dname 10 S 15 2 N N N N
REFERS Dname OF DEPARTMENT FOR
BELONGS BELONGS DEPARTMENT
depts faculty\

DEFINE FILE DEPARTMENT TYPE
FIELDS

INDEX CORRESPONDS DEPARTMENT
Dname 1 S 15 0 N N N N

CORRESPONDS Dname OF
DEPARTMENT,

Dphone 16 S 12 -1 N Y Y Y
CORRESPONDS Dphone OF
DEPARTMENT,

Office 28 S 10 -1 N Y Y Y
CORRESPONDS Office OF
DEPARTMENTS,

Collegename 38 S 15 1 N Y Y Y
REFERS Cname OF COLLEGE FOR CD
DEPARTMENT COLLEGE college
depts,

Chairssn 53 S 9 2 N N Y N
REFERS Ssn OF PERSON FOR

77

CHAIRS DEPARTMENT FACULTY
chair dept_chaired\

DEFINE FILE COLLEGE TYPE INDEX CORRESPONDS COLLEGE
FIELDS
Cname 1 S 15 0 N N N N

CORRESPONDS Cname OF COLLEGE,
Coffice 16 S 10 -1 N Y Y Y

CORRESPONDS Coffice OF COLLEGE,
Dean 26 S 31 1 N N Y Y

CORRESPONDS Dean OF COLLEGE\
DEFINE FILE COURSE TYPE INDEX CORRESPONDS COURSE

FIELDS
Cnumber 1 S 10 0 N N N N

CORRESPONDS Cno OF COURSE,
Cname 11 S 15 1 N Y Y N

CORRESPONDS Cname OF COURSE,
Cdesc 26 S 20 -1 N Y Y Y

CORRESPONDS Cdesc OF COURSE,
Offer_dept 46 S 15 2 N Y Y N

REFERS Dname OF DEPARTMENT FOR
DC COURSE DEPARTMENT
dept courses\

DEFINE FILE DEGREES TYPE
FIELDS

INDEX CORRESPONDS Degrees
Gradssn_major 1 S 43 0 Y N N N,
Gradssn 1 S 9 1 N Y N N

REFERS Ssn OF PERSON,
Major 10 S 15 2 N Y N N

CORRESPONDS Major OF
GRAD_STUDENT,

Degree 25 S 4 3 N Y Y Y
CORRESPONDS Degree OF
GRAD_STUDENT,

College 29 S 15 -1 N Y Y Y
CORRESPONDS College OF
GRAD_STUDENT,

Year 44 s 4 -1 N Y Y Y
CORRESPONDS Year OF
GRAD_STUDENT,

Degrees 10 s 38 4 Y Y Y N
CORRESPONDS Degrees OF
GRAD_STUDENT\

78

DEFINE FILE SECTION TYPE INDEX CORRESPONDS SECTION
FIELDS

Section_id 1 I 4 0 N N N N
SURROGATE,

Cnumber 5 S 10 1 N Y Y N
REFERS Cnumber OF COURSE FOR
CS SECTION COURSE course
sections,

Secnum 15 S 5 2 N Y Y N
CORRESPONDS Secno OF SECTION,

Qtr 20 S 7 -1 N Y Y N
CORRESPONDS Qtr OF SECTION,

Year 27 S 4 -1 N Y Y N
CORRESPONDS Year OF SECTION,

Qtryear 20 S 11 3 Y Y Y Y
CORRESPONDS Qtryear OF
SECTION,

Insres_id 31 I 4 4 N Y Y Y
REFERS Instr_res_id OF
INSTR_RESEARCHER FOR TEACH
SECTION INSTR_RESEARCHER
instructor sections_taught,

Current_sec 35 S 1 -1 N Y Y Y
SUBCATEGORY CURRENT_SECTION\

DEFINE FILE TRANSCRIPT TYPE INDEX CORRESPONDS TRANSCRIPT
FIELDS
Trans_id 1 I 4 0 N N N N

SURROGATE,
Stud_ssn 5 S 9 1 N Y N N

REFERS Ssn OF PERSON FOR
TRANSCRIPT TRANSCRIPT STUDENT
students completed_course,

Section_id 14 I 4 2 N Y N N
REFERS Sectioned OF SECTION
FOR TRANSCRIPT TRANSCRIPT
SECTION completed_course
students,

Grade 18 S 1 -1 N Y Y Y
CORRESPONDS Grade OF
TRANSCRIPT\

DEFINE FILE REGISTERED TYPE INDEX CORRESPONDS REGISTERED
FIELDS

Reg_id 1 I 4 0 N N N N
SURROGATE,

Stud_ssn 5 S 9 1 N Y N N

END

Section_id 14 I 4

79

REFERS Ssn OF PERSON FOR
REGISTERED REGISTERED STUDENT
registrants current_courses,

2 N Y N N
REFERS Section_id OF SECTION
FOR REGISTERED REGISTERED
CURRENT_SECTION
current_courses registrants

CHAPTER 5

DATA DICTIONARY IMPLEMENTATION

5.1 The Need for Data Dictionary Functions

Because the ECR model is a data model with rich
semantics, the Data dictionary of the ECRDBS is more
complicated than other data dictionaries based on other data
models. There is a total of thirteen data dictionary files
for each database schema. Each schema is stored in a
separate subdirectory. Also, the main ECRDBS directory has
two files ’FILES.DIG’ (the File dictionary) and ’SCHEMA.DIC’
which contain useful information for the Data dictionary
system. The ’SCHEMA.DIC’ file contains all database schema
names existing in the whole ECRDBS.

In order to save the trouble of knowing the detailed
structure of each data dictionary file, and facilitate
retrieval of some information stored in several data
dictionary files, thirty four functional procedures are
provided for user or other components of the ECRDBS to
retrieve information stored in the Data dictionary system.

By using the Data dictionary functions, users can get

80

81

all information stored in the Data dictionary and the File
dictionary without worrying about any changes that could be
made to both the Data dictionary and the File dictionary,
and also avoid coding complicated functional procedures
themselves.

5.2 Data Dictionary Files for the ECRDBS

Each ECR database schema has its own Data dictionary
which is composed of thirteen dictionary files. These
thirteen dictionary files provide information about
attributes, value sets, entity types, categories,
relationships and data files in an ECR database schema.

Each data dictionary file is described in the following
with a simple example.

(1) VALUESETDBD
Description : An indexed file composed of records of type

VALUESETDBDRECORD.
VALUESETDBDRECORD = RECORD

VALUESETNAME : [KEY(0)]STRINGTYPE;
REF : BOOLEAN;
ATTRIBUTENAME, CLASSNAME : STRINGTYPE;
CASE VALUESETTYPE : CHAR OF

’S’ ! (LEN : INTEGER);
’E’ I (COUNT : INTEGER);
’I’ : (MINI, MAXI : INTEGER);
’R’ : (MINR, MAXR : REAL)

END;

82

This file stores information about value sets. Field
VALUESETNAME (value set name) is the primary key of this
file. If REF is true, then this value set is a reference
set, and ATTRIBUTENAME and CLASSNAME store the information
about the reference value set; else this value set can be an
explicit value set (with VALUESETTYPE value ’E*) or a
standard value set (with VALUESETTYPE value 'S’, ’I’ or
’R’). The field COUNT stores the number of explicit values
in an explicit value set. The field LEN stores the length
of a string type standard value set. The fields MINI, MAXI
store the subrange of the integer type standard value set.
The fields MINR, MAXR store the subrange of a real type
standard value set. VALUESETDBD is the only dictionary file
that is not managed by the ECR File system.

Example : Part of VALUESETDBD for the Company database.
VALUESETNAME REF ATTRIBUTENAME CLASSNAME VALUESETTYPE LEN
PROJECTNAMES TRUE Name PROJECT S 15
VALUESETNAME REF VALUESETTYPE COUNT
TECHSOCIETIES FALSE E 4
VALUESETNAME REF VALUESETTYPE LEN
PEOPLENAMES FALSE S 15
VALUESETNAME REE VALUESETTYPE MINI MAXI
SOCSECNUM FALSE I 0 999999999
VALUSETNAME REF VALUESETTYPE MINR MAXR
WEEKLYHOURS FALSE R 0 40

(2) EXPLICITDBD

83

Description : An indexed file with two fields.
[1] VALUESETNAME : STRINGTYPE;
[2] DATA_VALUE : DATA_VALUETYPE;
(DATA_VALUETYPE is PACKED ARRAY [1..32] OF CHAR)

This file stores data values of all explicit value
sets. The primary key (key 0) is the combination of field
VALUESETNAME (value set name) and field DATA_VALUE (data
value). Key 1 is on field VALUESETNAME.

Example : Part of EXPLICITDBD for the Company database.
VALUESETNAME 1DATA_VALUE
TECHSOCIETIES ; ACM
TECHSOCIETIES IIEEE
TECHSOCIETIES lASME
TECHSOCIETIES JAMS
TRADEUNIONS JUAW
TRADEUNIONS !TEAMSTERS

(3) ATTRIBUTEDBD
Description : An indexed file with nine fields.

[1] ATTRIBUTENAME : STRINGTYPE;
[2] BELONGTO : STRINGTYPE;
[3] OBJECT_TYPE : INTEGER;
[4] VALUESETNAME : STRINGTYPE;
[5] UNIQUE : CHAR;
[6] MIN : INTEGER;
[7] MAX : INTEGER;
[8] CORRES_FILE : STRINGTYPE;
[9] CORRESJFIELD : STRINGTYPE;

This file stores information about attributes. The
primary key is the combination of fields ATTRIBUTENAME

84

(attribute name) and BELONGTO (the class name which the
attribute belongs to). Key 1 is on field ATTRIBUTENAME.
Key 2 is on field BELONGTO. Key 3 is the combination of
fields CORRES_FILE (corresponding file) and CORRES_FIELD
(corresponding field). The field OBJECT_TYPE contains an
integer indicating the object type of the class name stored
in field BELONGTO. The possible object types of a database
schema are listed in the following.

1 : Attributes 2 : Entity types
3 : Categories (Subclass categories)
4 : Relationships
5 : Participation names (Connection names)
6 : Value sets
7 : Gcategories (Generalization categories)

The OBJECT_TYPE field in ATTRIBUTEDBD can only have
value 2, 3, 4 or 7. The field UNIQUE with a ’T’ value
indicates that this attribute is unique. The field MIN and
field MAX contain the cardinality constraints of the
attribute.

Example : Part of ATTRIBUTEDBD for the Company database.
ATTRIBUTENAME: BELONGTO ;OBJECT_TYPE |VALUESETNAME !UNIQUE + + + +------
Number---------! DIVISION- ',2------------ |DIVISIONNUMS-- JT
Union • TECHNICIAN!3 J TRADEUNIONS IF
Hours I WORKSON |4 JWEEKLYHOURS ,'F

85

MIN ! MAX ;CORRES_FILE ;CORRES_FIELD
1 (DIVISION 1 Number
1 !1 ;EMPLOYEE !Union
1 !1 ;WORKSON !Hours

(4) TOTALDBD
Description : An indexed file with two fields.

[1] OBJECT_NAME : STRINGTYPE;
[2] OBJECT_TYPE : INTEGER;

This file stores all object names and object types of a
database schema. The primary key is on field OBJECT_NAME
(object name).

Example : Part of TOTALDBD for the Company database.
OBJECT_NAME |OBJECT_TYPE----------------- +----------
Ssn
EMPLOYEE
TECHNICIAN
WORKSON
employees
SOCSECNUM

!2
*3
14
!5
!6

(5) ENTITYDBD
Description : An indexed file with five fields.

[1] ENTITYTYPENAME : STRINGTYPE;
[2] PARTICIP_NAME1 : STRINGTYPE;
[3] PARTICIP_NAME2 ! STRINGTYPE;
[4] RELATION_NAME : STRINGTYPE;
[5] RELATED_TO : STRINGTYPE;

Each record of this file contains an entity type name
(field ENTITYTYPENAME), the class name (field RELATED_TO) it

86

is in relationship with, the relationship name (field
RELATIONSHIP) and the participation names (fields
PARTICIP_NAME1, PARTICIP_NAME2) for both participants of
the relationship. The primary key is the combination of
field ENTITYTYPE and field PARTICIP_NAME1. Key 1 is on
field ENTITYTYPENAME. Key 2 is on field PARTICIP_NAME1. If
the relationship is not binary (i.e. more than two
participants) then the RELATED_TO field will contain blanks.

Example : Part of ENTITYDBD for the Company database.
ENTITYTYPENAME JPARTICIP_NAME1 !PARTICIP_NAME2----------------+ +-----------
DIVISION [projects---------- [division
PROJECT [division [projects
PROJECT [manager [proj_managed
RELATION_NAME [RELATED_TO----------------+----------------
CONTROLS [PROJECT
CONTROLS [DIVISION
MANAGES [FULLTIMEMPLOYEE

(6) CATEGORYRELDBD
Description : An indexed file with five fields.

[1] CATEGORYNAME : STRINGTYPE;
[2] PARTICIP_NAME1 : STRINGTYPE;
[3] PARTICIP_NAME2 : STRINGTYPE;
[4] RELATION_NAME : STRINGTYPE;
[5] RELATED_TO : STRINGTYPE;

Each record of this
(field CATEGORYNAME), the
is in relationship with,

file contains a category name
class name (field RELATED_TO) it
the relationship name (field

87

RELATION_NAME) and the participation names (fields
PARTICIP_NAME1, PARTICIP_NAME2) for both participants of the
relationship. The primary key of this file is the
combination of field CATEGORYNAME and field PARTICIP_NAME1.
Key 1 is on field CATEGORYNAME. Key 2 is on field
PARTICIP_NAME1. If the relationship is not binary, then the
RELATED_TO field will contain blanks.

Example : CATEGORYRELDBD for the Company database.
CATEGORYNAME | PARTI CIP_NAME1 PARTICIP_NAME2-----------------+ +----------------
FULLTIMEMPLOYEE {proj_managed-- !manager
FULLTIMEMPLOYEE !division |employees
RELATION_NAME jRELATED_TO +----------------
MANAGES------- !PROJECT
ASSIGNED 1 DIVISION

(7) CATEGORYDBD
Description : An indexed file with eight fields.

[1] CATEGORYNAME : STRINGTYPE;
[2] DEFINED_ON_CLASS : STRINGTYPE;
[3] CLASS_TYPE: CHAR;
[4] ATTRIBUTE : STRINGTYPE;
[5] CONST_VAL : STRINGTYPE:
[6] CORRES_FILE : STRINGTYPE;
[7] CORRES_FIELD : STRINGTYPE;
[8] CTYPE : CHAR;

This file stores all information about categories. The
primary key is the combination of field CATEGORYNAME
(category name) and field DEFINED_ON_CLASS (the class name

88

that the category is defined on). Key 1 is on field
CATEGORYNAME. Key 2 is on field DEFINED_ON_CLASS. Key 3 is
on field CLASS_TYPE (the class type of the
DEFINED_ON_CLASS). CLASS_TYPE can have value ’E’ (for
entity type) or ’C’ (for category). The field ATTRIBUTE
(attribute name) and the field CONST_VAL (constant value)
specify the defining predicate used to select entities from
DEFINED_ON_CLASS that belongs to the category. If no
defining predicate is present, then both ATTRIBUTE and
CONST_VAL contain blanks. Field CTYPE (category type) can
have value ’G* (for generalization category) or ’S’ (for
subclass category). The field CORRES_FILE contains the file
name corresponding to the category. The field CORRES_FIELD
(corresponding field) contains a field name (in the
corresponding file) which is used to specify the category.
This corresponding field name is fetched from the field name
defined by SUBCATEGORY or GENCATEGORY clause in the data
file definition statement.

Example : Part of CATEGORYDBD for the University database.
CATEGORYNAME !DEFINED_ON_CLASS }CLASS_TYPE !ATTRIBUTE + + +-----------
STUDENT------------[PERSON----------- [E----------- !
GRAD_STUDENT [STUDENT [C [Class
INSTR_RESEARCHER [FACULTY [C [
INSTR_RESEARCHER [GRAD_STUDENT [C [

89

CONST_VAL ;CORRES_FILE JCORRES_FIELD iCTYPE---------- + + +-----
[PERSON------ [Student------ [S

5 [PERSON [Grad_student JS
[INSTR_RES [Instr_res_id [G
[INSTR_RES [Instr_res_id [G

(8) RELATIONSHIPDBD
Description : An indexed file with ten fields.

[1] RELATION_NAME : STRINGTYPE;
[2] RELATION_FROM : STRINGTYPE;
[3] PARTICIP-NAMEl I STRINGTYPE;
[4] PARTICIP_NAME2 : STRINGTYPE;
[5] FROM_TYPE : CHAR;
[6] SPECIFIC : CHAR;
[7] PD : CHAR;
[8] DLT : CHAR;
[9] MIN : INTEGER;
[10] MAX : INTEGER;

This file stores all information about relationships.
Field RELATION_NAME contains a relationship name. Field
RELATION_FROM contains the name of a participant of this
relationship. Field PARTICIP_NAME1 is the participation
name for the participant specified and field PARTICIP_NAME2
is the participation name for the unspecified participant in
this relationship. Field FROM_TYPE specifies the type of
RELATION_FROM. FROM_TYPE can have value ’E’ (for entity
type) or value *C* (for category). Field SPECIFIC with
value ’T* means that the relationship is specific. Field PD
and field DLT are explained in more detail in Relationship
Definition (section 4.2.4). Fields MIN and MAX specify the

90

structural constraints of the relationship. The primary key
is the combination of field RELATION_NAME, field
RELATION_FROM and field PARTICIP_NAME1. Key 1 is on field
RELATION_NAME. Key 2 is on field RELATION_FROM. Key 3 is
the combination of field RELATION_FROM and field
PARTICIP_NAME1.

Examples : Part of RELATIONSHIPDBD for the Company database.
RELATION_NAME }RELATIONJFROM !PARTICIP_NAME1 -------------- +-----------------+---------------
ASSIGN
ASSIGN
WORKSON

{DIVISION {employees
{FULLTIMEMPLOYEE {division
{EMPLOYEE {projects

(MAXINT is the largest integer value 2,147,483,647 on the

PARTICIP_NAME2 {FROM_TYPE {SPECIFIC !PD {DLT {MIN {MAX
division !E !F !F !F !0 {(MAXINT)
employees !C !F !F !F 51
employees !E !F !F !F !0 {(MAXINT)

VAX/VMS system)

(9) JOINDBD
Description : An indexed file with nine fields.

[1] CLASS_NAME1 : STRINGTYPE;
[2] PARTICIP_NAME1 ! STRINGTYPE;
[3] CLASS_NAME2 : STRINGTYPE;
[4] PARTICIP_NAME2 : STRINGTYPE;
[5] RELATION_NAME : STRINGTYPE;
[6] FILE1 : STRINGTYPE;
[7] JOINFIELD1 : STRINGTYPE;
[8] FILE2 : STRINGTYPE;
[9] JOINFIELD2 : STRINGTYPE;

91

This file stores join information for relationships.
Each record of this file contains a relationship name (field
RELATION_NAME), names of participants (fields CLASS_NAME1,
CLASS_NAME2) in this relationship, participation names
(fields PARTICIP_NAME1, PARTICIP_NAME2) for this
relationship, join files (fields FILE1, FILE2) and join
fields (field JOINFIELD1, JOINFIELD2) for these two
participants. The primary key is the combination of field
CLASS_NAME1 and field PARTICIP_NAME1. Key 1 is the
combination of field CLASS_NAME2 and field PARTICIP_NAME2.

Example : Part of JOINDBD for the Company database.
CLASS_NAME1 |PARTICIP_NAME1 ;CLASS_NAME2 JPARTICIP_NAME2-----------------+ + +---------------
FULLTIMEMPLOYEE !division------- (DIVISION---- (employees
DIVISION (projects (PROJECT (division
RELATION_NAME (FILEl (JOINFIELD1 (FILE2 (JOINFIELD2 + + + +--------------
ASSIGNED------ (EMPLOYEE- (Divnum----- (DIVISION- (Number
CONTROLS (DIVISION (Number (PROJECT (Divnum

(10) MVATTRDBD
Description : An indexed file with seven fields.

[1] ATTRIBUTENAME : STRINGTYPE;
[2] CLASSNAME : STRINGTYPE;
[3] MV_FILE : STRINGTYPE;
[4] MV_JOINFIELD : STRINGTYPE;
[5] FILE2 : STRINGTYPE;
[6] JOINFIELD2 : STRINGTYPE;
[7] MV_FIELD : STRINGTYPE;

Each record of this file contains a multi-valued

92

attribute (field ATTRIBUTENAME), a class name (field
CLASSNAME) that the multi-valued attribute belongs to, a
multi-valued file (field MV_FILE), a join field (field
MV_JOINFIELD) in the multi-valued file, the corresponding
file (field FILE2) of CLASSNAME, the join field (field
JOINFIELD2) in FILE2, and a field (field MV_FIELD)
corresponding to the multi-valued attribute. The primary
key of this file is the combination of field ATTRIBUTENAME
and field CLASSNAME. Key 1 is on field ATTRIBUTENAME. Key
2 is on field CLASSNAME.

Examples : MVATTRDBD for the Company database.
ATTRIBUTENAME |CLASSNAME [MV-FILE JMV_JOINFIELD + + +-------------
Society------- {SCIENTIST- {SOCIETY--{Ssn
Location {DIVISION {LOCATION {Number
FILE2 {JOINFIELD2 {MV_FIELD + +-------------
EMPLOYEE--{Ssn--------{Society
DIVISION {Number {Location

(11) GENCATJOINDBD
Description : An indexed file with six fields.

[1] GEN_CATEGORYNAME : STRINGTYPE;
[2] CLASSNAME2 : STRINGTYPE;
[3] GEN_FILE : STRINGTYPE;
[4] GEN_JOINFIELD : STRINGTYPE;
[5] FILE2 : STRINGTYPE;
[6] JOINFIELD2 : STRINGTYPE;

This file stores join information about generalization

93

categories. Each record of this file contains the name of
a generalization category (field GEN_CATEGOTYNAME), the name
of a class (field CLASSNAME2) which takes part in the
generalization category, the corresponding file (field
GEN_FILE) of the generalization category, the corresponding
file (field FILE2) of CLASSNAME2, and join fields (fields
GEN_JOINFIELD, JOINFIELD2) of these two files. The primary
key is the combination of field GEN_CATEGORYNAME and field
CLASSNAME2. Key 1 is on field GEN_CATEGORYNAME. Key 2 is
on field CLASSNAME2.

Example : GENCATJOINDBD for the University database.
GEN_CATEGORYNAME ;CLASSNAME2 ;GEN_FILE JGEN_JOINFIELD + + +-----------------
INSTR_RESEARCHER--[FACULTY----- !INSTR_RES- !Faculty_ssn
INSTR_RESEARCHER [GRAD_STUDENT !INSTR_RES !Res_ssn
FILE2 :JOINFIELD2 --------+----------
PERSON [Ssn
PERSON [Ssn

(12) KEYVALUESDBD
Description : An indexed file with three fields.

[1] FILENAME : STRINGTYPE;
[2] KEY_FIELD : STRINGTYPE;
[3] HIGHEST_KEY : INTEGER;

Each record of this file stores the name of a surrogate
key (field KEY_FIELD), the name of the file (field FILENAME)
which the surrogate key field belongs to, and the current

94

value (field HIGHEST_KEY) of the surrogate key. The initial
value of the field HIGHEST_KEY is zero. The value of
HIGHEST_KEY is increased by one during each INSERT_RECORD
operation operated on the file specified in the FILENAME.
The primary key of this file is the combination of field
FILENAME and field KEY_FIELD. Key 1 is on field FILENAME.

Example : Part of KEYVALUESDBD for the University database.
FILENAME !KEY_FIELD !HIGHEST_KEY + +-------------
INSTR_RES----- ;instr_res_id---JO
SECTION JSection_id JO
REGISTERED JReg_id JO

(13) CLASSFILEDBD
Description : An indexed file with four fields.

[1] CLASSNAME : STRINGTYPE;
[2] CORRES_FILE : STRINGTYPE;
[3] SURROGATE-KEY : STRINGTYPE;
[4] MAJOR : CHAR;

Each record of this file contains the name of a class
(field CLASSNAME), the name of the corresponding file (field
CORRES—FILE) of this class, the name of a surrogate key
(field SURROGATE—KEY) for this file, and a major indicator
(field MAJOR). If no surrogate key is defined for this
file, then the field SURROGATE—KEY contains blanks. Since
each class can have more than one corresponding file, the
field MAJOR with value ‘Y* is used to indicate that this

95

file is the major corresponding file of the class. The
primary key of this file is on field CLASSNAME. Key 1 is on
field CORRES_FILE. Key 2 is on field SURROGATE_KEY.

Example : Part of CLASSFILEDBD for the University database.
CLASSNAME ICORRES—FILE [SURROGATE_KEY [MAJOR
INSTR_RESEARCHER 1 INSTR RES [Instr_res id !Y
SECTION ;SECTION [Section id !Y
CS 1 SECTION • 1 !N
TEACH [SECTION 1 1 !N
CURRENT_SECTION [SECTION • 1 !N
REGISTERED [REGISTERED [Reg—id !Y

5.3 Data Dictionary Procedures and Functions

There are thirty four functional procedures provided
for the user or other component of the ECR DBMS to retrieve
information stored in the Data dictionary, File dictionary,
and ’SCHEMA.DIG* file. These thirty four functional
procedures are listed in the following. Appropriate
parameters for each functional procedure are explained in
detail.

(1) SET_SCHEMA
Purpose : Set the current schema to the given schema name.
Files accessed : None.
Input : SCHEMA (a schema name).
Output : None.

96

(2) DELETE_DATABASE
Purpose : Delete a database (an ECR schema).
Files accessed : SCHEMA.DIG, FILES.DIG.
Input : SCHEMANAME (a schema name).
Output : None.

(3) GET_SCHEMA
Purpose : Get all schema names in the ECR DBMS.
Files accessed : SCHEMA.DIG.
Input : None.
Output : All schema names are stored in a linked list, and

the pointer pointing to this linked list is
returned.

(4) FIELD_INFO
Purpose : Get field definition (as described in the File

dictionary) for a field, given a file name and a
field name.

Files accessed : FILES.DIG
Input : FILENAME (a file name).

FIELDNAME (a field name).
Output : Field definition is stored in a record and the

pointer pointing to this record is returned. If no
such field is found, then a NIL pointer is
returned

97

(5) FILE_FIELD_INFOS
Purpose : Get all field definitions for fields in a file,

given a filename.
Files accessed : FILES.DIG.
Input : FILENAME (a file name).
Output : All field definitions are stored in a linked list,

and the pointer pointing to this linked list is
returned. If no such file is found, then a NIL
pointer is returned.

(6) FILE_FIELD_NAMES
Purpose : Get all field names and indicate all combination

key fields, given a file name.
Files accessed : FILES.DIG.
Input : DATAFILENAME (a data file name).
Output : All field names and combination key indicators are

stored in a linked list and pointed at by
FIELDNAMERECPTR.

Remark :
(a) FIELDNAMEREC is of type PTR_FIELDNAMEREC.

PTR _FIELDNAMEREC = ''FIELDNAMEREC;
FILENAMEREC = RECORD

FIELDNAME : STRINGTYPE;
FTYPE : CHAR;
NEXT : PTR_FIELDNAMEREC;

END;
(b) Combination key indicator (FTYPE) can have value ’C*

98

(for combination key field) or value 'F* (for
noncombinational field).

(7) UNIQUE_FIELDS
Purpose : Get all unique field names, given a file name.
Files accessed : FILES.DIG.
Input : FILENAME (a file name).
Output : All unique key field names are stored in a linked

list, and the pointer pointing to this linked list
is returned. If no unique fields are found, then
return a NIL pointer.

(8) OBJECT_TYPE
Purpose : Get the object type, given an object name of the

current schema.
Files accessed : TOTALDBD.
Input : ONAME (an object name).
Output : a schema object type

0 -- object names not found 1 -- attributes
2 — entity types 3 — subclass categories
4 -- relationship 6 -- value sets
5 -- participation names (connection names)
7 -- generalization categories

(9) GET_OBJECT_INFO
Purpose : Get all object names and object types of the

99

current schema (not including value sets).
Files accessed : TOTALDBD.
Input : None.
Output : All object names and object types are stored in a

linked list, and the pointer pointing to this
linked list is returned.

(10) ALL_CLASSNAMES
Purpose : Get all class names (entity type names, category

names and relationship names) of the current
schema.

Files accessed : TOTALDBD.
Input : None.
Output : All class names are stored in a linked list, and

the pointer pointing to this linked list is
returned.

(11) VALUESET_INFO
Purpose : Get all information about a value set, given an

attribute name and a class name.
Files accessed : ATTRIBUTEDBD, VALUESETDBD.
Input : ATTR_NAME (an attribute name).

CLASSNAME (a class name).
Output : All information about the value set of an attribute

is stored in a record and pointed at by VALPTR. If

100

no such attribute name and class name are found
then VALPTR is set to NIL.

Remark :
(a) VALPTR is of type PTR_VALUESETRECORD.

PTR_VALUESETRECORD = ~VALUESETDBDRECORD ;
VALUESETDBDRECORD - RECORD

VALUESETNAME : STRINGTYPE;
REF ! BOOLEAN;
ATTRIBUTENAME : STRINGTYPE;
CLASSNAME ! STRINGTYPE;
CASE VALUESETTYPE ! CHAR OF

’S’ : (LEN ! INTEGER);
’E’ : (COUNT : INTEGER);
'I* i (MINI, MAXI : INTEGER);
’R’ : (MINR, MAXR : REAL)

END;

(12) EXPLICIT_VALUE
Purpose : Get all explicit data values for an explicit

value set, given a value set name.
Files accessed : EXPLICITDBD.
Input ! VNAME (a valueset name).
Output : All explicit data values are stored in a linked

list pointed at by EXPTR. If no such explicit
value set is found, then EXPTR is set to NIL.

Remark :
(a) EXPTR is of type PTR_EXPLICIT.

VSTR32 = VARYING [32] OF CHAR;
PTR_EXPLICIT = *EXPLICIT_UNIT;
EXPLICIT_UNIT - RECORD

DATA_VALUE : VSTR32;
NEXT : ptr_explicit;

END;

101

(13) GET_CLASS_UNIQKEYS
Purpose : Get attribute names, corresponding file names,

corresponding field names for all unique
attributes in a given class.

Files accessed : ATTRIBUTEDBD, FILES.DIG.
Input : CLASSNAME (a class name).
Output : All attribute names, file names, field names are

stored in a linked list, and the pointer pointing
to this linked list is returned. The node
containing the primary key of the corresponding
file will be put at the front of the list.

(14) BELONG_TO
Purpose : Check whether an attribute belongs to a class.
Files accessed : ATTRIBUTEDBD.
Input : ATTR_NAME (an attribute name).

CLASSNAME (a class name).
Output : A boolean value TRUE or FALSE.

(15) ATTRIBUTE_NAME
Purpose : Get all attribute names which belong to a class.
Files accessed : ATTRIBUTEDBD.
Input : CLASSNAME (a class name).
Output : All attribute names are stored in a linked list

pointed by ATTRPTR. If no attributes belong to

102

the given class, then ATTRPTR is set to NIL.
Remark :

(a) ATTRPTR is of type PTR_ATTRIBUTEREC.
PTR_ATTRIBUTEREC = *ATTRIBUTEREC;
ATTRIBUTEREC = RECORD

ATTRIBUTENAME : STRINGTYPE;
NEXT : PTR_ATTRIBUTEREC;

END;

(16) ATTRIBUTE_UNIQUE
Purpose : Check whether an attribute of a class is unique.
Files accessed : ATTRIBUTEDBD.
Input : ATTR_NAME (an attribute name).

CLASSNAME (a class name).
Output : A boolean value TRUE or FALSE.

(17) CHECK_MV_ATTR
Purpose : Check whether an attribute of a class is a

multi-valued attribute.
Files accessed : ATTRIBUTEDBD.
Input : ATTR_NAME (an attribute name).

CLASSNAME (a class name).
Output : A boolean value TRUE or FALSE.

(18) GET_FIELD_ATTR_CLASS
Purpose : Get all corresponding attribute names, class

names, field names, field type, field length, and
combination field indicator, given a file name.

103

Files accessed : FILES.DIG, ATTRIBUTEDBD, CLASSFILEDBD.
Input : FILENAME (a file name).
Output : All attribute names, class names, field names,

field type, field length, combination field
indicators are stored in a linked list, and the
pointer pointing to this linked list is returned.

Remark : Combination field indicator can have value ’O’ (for
combination key field) or value ’F’ (for
noncombinational field).

(19) ENTITY_RELATE_NAME
Purpose : Get all class names (entity type names or category

names) and participation names related to a
given entity type.

Files accessed : ENTITYDBD.
Input : ENTITYTYPENAME (an entity type name).
Output : All class names, participation names are stored in

a linked list pointed by RELPTR. If no related
class names are found, then RELPTR is set to NIL.

Remark : RELPTR is of type PTR_RELATED.
PTRJRELATED = "RELATEDREC;
RELATEDREC = RECORD

RELATED_TO : STRINGTYPE;
PARTICIP_NAME1 ! STRINGTYPE;
PARTICIP_NAME2 : STRINGTYPE;
NEXT : PTR RELATED;

END;

104

(20) CHECK_CONNECTION
Purpose : Get relationship name, related class name

(category name or entity type name), given a class
name (entity type name or category name) and a
connection name.

Files accessed : TOTALDBD, ENTITYDBD, CATEGORYRELDBD.
Input : CLASSNAME (a class name).

CNAME (a connection name).
Output : RNAME (a relationship name).

CLASSNAME2 (related class name).
YESNO (a boolean value TRUE or FALSE indicating

whether this relationship existed or not).

(21) CREATE_CTREE
Purpose : Get a C tree (category tree) which contains

information about all defining categories and
defined on classes (entity types or categories)
related to the given class (as root of the C
tree).

Files accessed : CATEGORYDBD.
Input : CLASSNAME (a class name).
Output : A pointer pointing to the C tree (with the given

class as the root) is returned.
Remark :

(a) A pointer pointing to a C tree (category tree) is of

105

type CTREE_PTR.
CTREEJPTR = ACNODETYPE;
CNODETYPE = RECORD

PARENT_PTR : CTREE_PTR;
DEFINING_TREE : CTREE_PTR;
DEFINEDON_TREE : CTREE_PTR;
CLASSNAME : STRINGTYPE;
CTYPE : CHAR;
LEVEL ! INTEGER;
NEXT_PTR : CTREE_PTR;
NEXT_QPTR : CTREE_PTR;

END;

CTYPE (category type) can have value ’S’ (for subclass
category), value ’G* (for generalization category) or
value ’R’ (for root of a C tree). The root of a C
tree has NIL value for its PARENT_PTR. LEVEL contains
an integer value indicating level of a node from the
root of a C tree. The root of a C tree has a LEVEL
value 0. Other nodes have a LEVEL value greater than
0 and a nonnil PARENT_PTR. DEFINING_TREE is a pointer
pointing to a subtree with root of the subtree
containing the defining category of the specified
node. DEFINEDON_TREE is a pointer pointing to a
subtree with the root of the subtree containing the
defined on class (entity type or category) of the
specified node. NEXT_PTR is a pointer pointing to the
next brother node (with the same LEVEL value) of the
specified node. NEXT_QPTR (next queue pointer) is
just a pointer used in programming nonrecursive

106

functions for constructing a C tree and retrieving
information from a C tree.

(b) AC tree for an ECR database schema example.
Fig. 11 shows the ECR diagram for this database
schema example (showing only entity types and
categories). CATEGORYDBD for this ECR database schema
example is shown below.

Fig. 12 shows a C tree (with root class H) for this

CATEGORYNAME !DEFINED ON CLASS !CLASS TYPE 1 1 •
-+-—

CTYPE —.+----------------- . +-----------
E ID IE 1 1 • S
H ID IE 1 t • s
M IH IC 1 1 • s
L IH IC 1 1 • s
R IM 10 1 1 • s
K II IE 1 1 • G
K 1 J IC • • • G
J IG IE 1 1 • G
J IH IC 1 1 • G
H IA IE 1 1 • G
H IB IE 1 I • G

ECR database schema example.

(22) GET_DEFINE_LIST
Purpose : Get all class names (entity type names or category

names), category types and category levels related
to the given class (entity type or category) in
the order of ascending level value.

Files accessed : CATEGORYDBD.
Input : CLASSNAME (a class name).

107

Figure 11 ECR diagram for a database schema example
(showing only entity types and categories)

108

NIL

PAn»r_pre*nn'iNiNGL'nuiji>EFJNEDON_TREZ
CLASSNAME CTYFE LEVEL NEXI-FTR NEXT-jOPTN

Figure 12 A C tree (with root class H) for a database
schema example

109

Output : All class names, category types and levels are
stored in a linked list in the order of ascending
level value, and the pointer pointing to this
linked list is returned.

Remark :
(a) The output pointer is of type CLISTPTR.

CLISTPTR = *NAME_NODE;
NAME_NODE = RECORD

CTYPE : CHAR;
CLASSNAME : STRINGTYPE;
LEVEL : INTEGER;
NEXT : CLISTPTR;

END;
(b) The output of this functional procedure for the C tree

example given in Fig. 12 is shown below.
+-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+

pointer -> ;s!m;i;-!-> !sjl!1!-!-> ;g;jsi!-:-> :s;d;i:-:-+
+-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ ; । ।+---+

; +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+
+—> ;g!A!1!-;-> !g:b;i;-;-> :s:r:2;-:-> ;g:k:2;-:-------------+

+-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ ;। ।+-- +
; +-+-+-+-+ +-+-+-+-+ +-+-+-+-+
+--> !G!g;2:-!-> :s;e!2;-:-> :g;i:3;-;-> nil

+-+-+-+-+ +-+-+-+-+ +-+-+-+-+

(23) DEFINED_ON :
Purpose : Check whether a class name is defined on the given

defined name.
Files accessed : CATEGORYDBD.
Input : CLASSNAME (a class name).

110

DEFINED_NAME (another class name).
Output : A boolean value TRUE or FALSE.
Remark : This functional procedure works for both subclass

and generalization categories.

(24) REPEAT_DEFINEDON_SUBCLASS
Purpose : Get all level superclass class names of a given

subclass category.
Files accessed : CATEGORYDBD.
Input : CATEGORYNAME (a subclass category name).
Output : All superclass class names are stored in a linked

list pointed by DEFINEDPTR. If no defined on
superclasses are found, then set DEFINEDPTR to
NIL.

Remark :
(a) DEFINEDPTR is of type PTR_DEFINEDON.

PTRJDEFINEDON = "DEFINEDREC;
DEFINEDREC = RECORD

DEFINE : STRINGTYPE;
NEXT : PTR_DEFINEDON;

END;
(b) This procedure works for subclass category only.

(25) DEFINING_SUBCLASS
Purpose : Get all first level subclass defining class names

of a given class.
Files accessed : CATEGORYDBD.

Ill

Input : CLASSNAME (a class name).
. Output : All defining subclass class names are stored in a

linked list pointed by DEFININGPTE. If no defining
subclasses are found, then set DEFININGPTR to NIL.

Remark :
(a) DEFININGPTR is of type PTR_DEFINING.

PTR_DEFINING = PTR_DEFINEDON;
(b) This procedure works for subclass category only.

(26) REPEATJDEFINING_SUBCLASS
Purpose : Get all level defining subclass class names of a

given class.
Files accessed : CATEGORYDBD.
Input : CLASSNAME (a class name).
Output : All level defining class names are stored in a

linked list pointed by DEFININGPTR. If no defining
subclasses are found, then set DEFININGPTR to NIL.

Remark :
(a) DEFININGPTR is of type PTR_DEFINING.
(b) This procedure works for subclass category only.

(27) CATEGORY_RELATE_NAME
Purpose : Get all class names (entity type names or category

names) and participation names related to a
category.

112

Files accessed : CATEGORYRELDBD.
Input : CATEGORYNAME (a category name).
Output : All class names and participation names are stored

in a linked list pointed at by RELPTR. If no
related class names are found, then set RELPTR to
NIL.

Remark
(a) RELPTR is of type PTRJRELATED.

(28) GET_CONN_MIN_MAX
Purpose : Get MIN and MAX structural constraints for one

end of a participation in a relationship, given a
class name (entity type name or category name) and
a connection name.

Files accessed : RELATIONSHIPDBD.
Input : CLASSNAME (a class name).

CNAME (a connection name).
Output : MIN, MAX structural constraints.

(29) CHECK_RELATIONSHIP
Purpose : Get relationship name, related class name (entity

type name or category name), connection name for
the related class, and MIN, MAX structural
constraints for both ends of participations in the
relationship, given a class name (entity type name

113

or category name) and a connection name.
Files accessed : TOTALDBD, CATEGORYRELDBD, ENTITYDBD,

RELATIONSHIPDBD.
Input : CLASSNAME (a class name).

CNAME (a connection name).
Output : RNAME (a relationship name).

CNAME2 (connection name for the other end of
participation in a relationship).

CLASSNAME2 (Class name for the other end of
participation in a relationship).

MIN2, MAX2 (MIN, MAX structural constraints for
related participation).

MIN, MAX (MIN, MAX structural constraints for the
given CLASSNAME and CNAME).

YESNO (a boolean value TRUE or FALSE, indicating
whether this relationship existed or not).

(30) GET_JOIN_ATTRIBUTE
Purpose : Get join information of a relationship, given a

class name (entity type name or category name) and
a connection name.

Files accessed : JOINDBD, RELATIONSHIPDBD.
Input : CLASSNAME (a class name).

CNAME (a connection name).
Output : MTON (a boolean value TRUE or FALSE, indicating

114

whether the relationship is M to N or not).
FILE1, FILE2 (two join files, if relationship is

not M to N).
FILES, FILE4 (more join files needed, if

relationship is M to N).
JOINFIELD1, JOINFIELD2, JOINFIELDS, JOINFIELD4
(join fields for each join file).
If MTON is TRUE, then FILE2 and FILE4 are the same
file (the corresponding file of this relationship).

(31) CORRES_FILES
Purpose : Get a corresponding data file name and

corresponding multi-valued file names and
multi-valued field names, given a class name.

Files accessed : MVATTRDBD, CLASSFILEDBD.
Input : CLASSNAME (a class name).
Output : PRIM_FILENAME (a corresponding data file name).

All corresponding multi-valued file names and
multi-valued field names are stored in a linked
list pointed by MV_RECPTR. If no such class name
is found, then PRIM_FILENAME is set to blanks. If
no multi-valued fields are found, then MV_RECPTR is
set to NIL.

Remark :
(a) MVJRECPTR is of type PTR_MVREC.

115

PTRJ4VREC = *MV_REC;
MV_REC = RECORD

MVJFILENAME, MV_FIELDNAME : STRINGTYPE;
NEXT ! PTR_MVREC;

END;

(32) GET_MV_JOININFO
Purpose : Get multi-valued join information, given a

multi-valued attribute name and a class name.
Files accessed : MVATTRDBD.
Input : CLASSNAME (a class name).

ATTRIBUTENAME (a multi-valued attribute name).
Output : MV_FILE (multi-valued file name).

MV_FIELD (multi-valued field name).
MV_JOINFIELD (the join field of the multi-valued

file).
FILE2 (the main data file to join with).
JOINFIELD2 (the join field of the main data file).
If no such multi-valued attribute is found, then
all output are set to blanks.

(33) GET_GENCAT_INFO
Purpose : Get join information of a generalization category,

given a generalization category name and name of
a class which takes part in the generalization.

Files accessed : GENCATJOINDBD.
Input : GEN_CATEGORY (a generalization category name).

116

CLASSNAME2 (name of a class taken part in the
generalization category).

Output : GEN_FILE (main generalization category data file).
GEN_JOINFIELD (join field of the generalization

data file).
FILE2 (data file of the class taken part in the

generalization).
JOINFIELD2 (join field of FILE2).

(34) GET_SURROGATE_KEY
Purpose : Get surrogate key (if any) and corresponding

file name, for a given class.
Files accessed : CLASSFILEDBD.
Input : CLASSNAME (a class name).
Output : Corresponding file name and surrogate key name are

stored in a record, and this record is returned.
If no surrogate key exists for the given class,
then surrogate key name is set to blanks.

CHAPTER 6

CONCLUSION

The purpose of this thesis is to describe two
components of the ECR database management system, the ^File
system and the Data dictionary system.

The File system is built on the Indexed file
organization of the VAX/VMS system, and offers a file
interface for the other components of the ECR DBMS to access

I information stored in the data files. The Data dictionary
system provides the schema definition parsing facilities and
functional procedures for accessing information in the data
dictionary files.

More changes can be made to the File system and the
Data dictionary system to improve the efficiency of the
whole ECRDBS. Offering concurrency control in the ECR File
system and loading the ECR Data dictionary into the main
memory during run time of the ECR DBMS are being proposed
[Lin 87], As main memory becomes less expensive and more
high speed processors are available, the DBMS based on the
ECR model will be more efficient.

117

118

The ECR model provides a semantically rich means of
modeling user’s views into a conceptual database schema, and
information concerning semantic integrity constraints are
stored in the Data dictionary for the ECR DBMS to maintain
the semantic integrity of the database. Consequently,
database applications can easily and naturally declare,
reference and update data as viewed in the ECR model.
Since the ECR model offers more descriptive semantics of a
database and acceptable performance of the ECR DBMS can be
achieved in the near future, therefore the ECR model will
be no doubt the data model of the future.

APPENDIX

PROGRAM DESCRIPTION

The programs in this thesis are divided into four
parts. They are :

I. Program for installing the ECR database system.
II. Program for creating the file interface.

III. Program for parsing the ECR schema definition.
IV. Program for creating data dictionary procedures and

functions.

I. Program for installing the ECR database system.
(A) Description of the program ’INSTALLSYS*.

Program ’INSTALLSYS’ is used to install the whole ECR
database system by creating two empty files ’FILES.DIC’ and
’SCHEMA.DIG’.

FILES.DIC -- to store the file dictionary
SCHEMA.DIC -- to store the schema names

(B) How to run the ’INSTALLSYS’ program.
$RUN INSTALLSYS

II. Program for creating the file interface.

119

120

(A) Description of the program 'FILESYS*.
There are two levels of basic operations in the file

interface. They are file level and record level operations.
There are a total of fourteen procedures one can use to

perform these operations on files or records. The detailed
procedures are listed in the following.
(1) File level operations
Data structure :

STR16 = PACKED ARRAY [1..16] OF CHAR;
STRINGTYPE = STR16;
FILENAMETYPE = STR16;
PTRJFIELDDEF = "FIELDDEF;
FIELDDEF = RECORD

FIELDNAME : STRINGTYPE;
COMBINATION : CHAR;
KEYNO : INTEGER;
STARTPOS : INTEGER;
LENGTH : INTEGER;
FIELDTYPE : CHAR;
DUP : CHAR;
CHANGES : CHAR;
NULL_KEY ! CHAR;
NEXT ! PTRJFIELDDEF;

END;
COMBINATION : (’Y’ or ’N’), ’Y’ for combination key
KEYNO : (-1..254), -1 for nonkey, 0 for primary key,

1..254 for secondary keys
STARTPOS : starting position of a field in a record
LENGTH : length of a field in a record
FIELDTYPE : (’I, ’R’, or 'S'), ’I’ for integer,

’R’ for real, ’S’ for character string

121

DUP : (or ’N’)» means duplicate key value allowed
CHANGES : (’¥’ or ’N’), ’¥’ means changes to key values

allowed
NULL_KEY : (*¥’ or *N'), •¥' means null key values

allowed
(a) PROCEDURE CREATE_FILE (FILETYPE ! CHAR; FILENAME :

FILENAMETYPE; VAR FIELDS : PTR_FIELDDEF);
FILETYPE : (’I’, ’R’ OR ’S’)

’I’ for indexed file
’R’ for relative file
’S’ for sequential file
only indexed file organization is implemented
in this thesis.

FILENAME should be 16 characters long without file
extension. A ’.DAT’ extension will be added to the
filename by the file system.
A linked list of FIELDDEF records containing field
definitions should be provided and pointed at by FIELDS.

(b) PROCEDURE DELETE_FILE (FILENAME : FILENAMETYPE);
(c) PROCEDURE OPEN_FILE (FILENAME ! FILENAMETYPE; FILENO :

INTEGER):
FILENO can be any integer number. A file can be opened
with different file numbers for concurrent read access.

(d) PROCEDURE CLOSE_FILE (FILENAME : FILENAMETYPE; FILENO :

122

INTEGER);
(e) PROCEDURE RESET_FILE (FILENAME : FILENAMETYPE; FILENO,

KEYNO : INTEGER; VAR FOUND : BOOLEAN);
Procedure RESET_FILE is used for sequential read access
of a file in the order of the given key. If the file is
not empty, then FOUND will be true.

(2) Record level operations
Data structure :

STR8 = PACKED ARRAY [1..8] OF CHAR;
VSTR512 = VARYING [512] OF CHAR;
PTR_FIELDUNIT = *FIELD_UNIT;
FIELD_UNIT = RECORD

FIELDNAME : STRINGTYPE;
NEXT : PTR_FIELDUNIT;
CASE TAG : TAG_TYPE;

0 : (INUM : INTEGER);
1 : (CNUM : VSTR512);
2 : (RNUM : REAL);
3 : (INUM1, INUM2 ! INTEGER);
4 : (TWINCNUM : STR8);

END;
COMPARISON_OP = (EQL, GEQ, GTR, NEQ, LTH, LEQ);
CONST_VALUE = RECORD

CASE TAG : TAG_TYPE OF
0 : (INUM : INTEGER);
1 : (CNUM : VSTR512);
2 : (RNUM : REAL);
3 : (INUM1, INUM2 : INTEGER);
4 : (TWINCNUM : STR8);

END;
LEAF_TYPE = (AL, SL, IL, RL);
TREE_PTR = *TREE_NODE;
TREE_NODE = RECORD

LEFT, RIGHT : TREE_PTR;
OPERATOR : INTEGER;
TREE_TYPE ! LEAF_TYPE;
CASE LEAF : LEAF_TYPE OF

123

AL : (ATTR_NAME : STRINGTYPE;
ATTR_TYPE : LEAF_TYPE);

SL : (STR_CONST : VSTR512);
IL : (INT_CONST : INTEGER);
RL : (REAL_CONST : REAL);

END;
INUM : integer number
CNUM : character string
RNUM : real number
INUM1, INUM2 : integer combination key values

(a) PROCEDURE INSERT_RECORD (FILENAME : FILENAMETYPE; FILENO
: INTEGER; FIELDLIST : PTR_FIELDUNIT;
VAR INSERTJSTATUS : INTEGER);

A linked list of FIELD_UNIT records containing field
names and field values should be provided and pointed at
by FIELDLIST. If the record has been inserted
successfully, then INSERT_STATUS will be set to 0, else
set to -1. The only exception is that when duplication
key value error occurs, the INSERT_STATUS is set to 5.

(b) PROCEDURE SIMPLE_FIND (FILENAME : FILENAMETYPE; FILENO :
INTEGER ; FIELDNAME : STRINGTYPE; COMP_OP :
COMPARISON_OP; CONST_V : CONST_VALUE; VAR FOUND
: BOOLEAN);

Field value is supplied in CONST_V.
(c) PROCEDURE SIMP_FINDNEXT (FILENAME : FILENAMETYPE; FILENO

: INTEGER; VAR FOUND : BOOLEAN);
This procedure uses the same condition provided in the

124

previous SIMPLE_FIND to find the next record satisfying
the condition.

(d) PROCEDURE DELETE_RECORD (FILENAME : FILENAMETYPE; FILENO
! INTEGER);

This procedure deletes the record which has been located
by a previous SIMPLE_FIND or COMPLEX_FIND.

(e) PROCEDURE READ_RECORD (FILENAME : FILENAMETYPE; FILENO :
INTEGER; VAR FIELDLIST : PTR_FIELDUNIT);

A linked list of FIELD_UNIT records containing field
names and field values will be returned and pointed at by
FIELDLIST.

(f) PROCEDURE MODIFY_RECORD (FILENAME : FILENAMETYPE; FILENO
: INTEGER; FIELDLIST : PTR_FIELDUNIT;
VAR STOP : BOOLEAN);

A linked list of FIELD_UNIT records containing field
names and field values should be provided and pointed at
by FIELDLIST.

(g) PROCEDURE FINDSEQ_NEXT (FILENAME : FILENAMETYPE; FILENO:
INTEGER; VAR FOUND : BOOLEAN);

This procedure gets the next record according to the
order specified by the previous RESET_FILE.

(h) PROCEDURE COMPLEX_FIND (FILENAME : FILENAMETYPE; FILENO
: INTEGER; TREE :*TREE_PTR; VAR FOUND : BOOLEAN);

TREE is a pointer to a condition tree and should be

125

supplied to this procedure.

OPERATOR of the TREE_NODE :
1 (NOT) 2 (AND) 3 (OR) 4 (=) 5 (<>)
6 (>) 7 (>=) 8 (<) 9 (<=)
10 (+ real or mixed) 11 (- real or mixed)
12 (* real or mixed) 13 (/ real or mixed)
14 (+ integer) 15 (- integer) 16 (* integer)
17 (DIV integer) 18 (REM integer) 19 (MOD integer)
Mixed means real number mixed with integer number.

If OPERATOR equals to -1, then this TREE_NODE is
a LEAF_NODE. For LEAF_NODE, LEAF_TYPE can be AL, SL, IL
or RL.

LEAF_TYPE : AL (attribute)
SL (character string constant)
IL (integer constant)
RL (real constant)

(i) PROCEDURE COMP_FINDNEXT (FILENAME : FILENAMETYPE; FILENO
: INTEGER; VAR FOUND : BOOLEAN);

This procedure uses the same condition provided in the
previous COMPLEX_FIND to find the next record satisfying
the condition.

(B) Examples of calling procedures in program ’FILESYS*.

126

(1) Sequential read according to a given key order
OPEN_FILE(FILENAME, FILENO);
RESET_FILE(FILENAME, FILENO, KEYNO, FOUND);
WHILE FOUND DO

BEGIN
READ_RECORD(FILENAME, FILENO, FIELDLIST);
FINDSEQ_NEXT(FILENAME, FILENO, FOUND);

END;
CLOSE_FILE(FILENAME, FILENO);

(2) Nonsequential read (indexed access)
(a) using SIMPLE_FIND and SIMP_FINDNEXT

OPEN_FILE(FILENAME, FILENO);
SIMPLE_FIND(FILENAME, FILENO, FIELDNAME, COMP_OP

CONST_V, FOUND);
WHILE FOUND DO

BEGIN
READ_RECORD(FILENAME, FILENO, FIELDLIST);
SIMP_FINDNEXT(FILENAME, FILENO, FOUND);

END;
CLOSE_FILE(FILENAME, FILENO);

(b) using COMPLEX_FIND and COMP_FINDNEXT
OPEN_FILE(FILENAME, FILENO);
COMPLEX_FIND(FILENAME, FILENO, TREE, FOUND);
WHILE FOUND DO
BEGIN

READ_RECORD(FILENAME, FILENO, FIELDLIST);
COMP_FINDNEXT(FILENAME, FILENO, FOUND);

END;
CLOSE_FILE(FILENAME, FILENO);

(3) Modify records in a file
(a) using SIMPLE_FIND

OPEN_FILE(FILENAME, FILENO);
SIMPLE_FIND(FILENAME, FILENO, FIELDNAME, COMP_OP

CONST_V, FOUND);
IF FOUND THEN

STOP := FALSE
ELSE

STOP := TRUE;

127

WHILE NOT STOP DO
MODIFY_RECORD(FILENAME, FILENO, FIELDLIST, STOP);

CLOSE_FILE(FILENAME, FILENO);
(b) using COMPLEX_FIND

OPEN_FILE(FILENAME, FILENO);
COMPLEX_FIND(FILENAME, FILENO, TREE, FOUND);
IF FOUND THEN
STOP := FALSE

ELSE
STOP := TRUE;

WHILE NOT STOP DO
MODIFY_RECORD(FILENAME, FILENO, FIELDLIST, STOP);

CLOSE_FILE(FILENAME, FILENO);
(4) Delete records in a file

(a) using SIMPLE_FIND
OPEN_FILE(FILENAME, FILENO);
SIMPLE_FIND(FILENAME, FILENO, FIELDNAME, COMP_OP,

CONST_V, FOUND);
WHILE FOUND DO

BEGIN
DELETE_RECORD(FILENAME, FILENO);
SIMPLE_FIND(FILENAME, FILENO, FIELDNAME, COMP_OP

CONST_V, FOUND):
END;

CLOSE_FILE(FILENAME, FILENO);
(b) using COMPLEX_FIND

OPEN_FILE(FILENAME, FILENO);
COMPLEX_FIND(FILENAME, FILENO, TREE, FOUND);
WHILE FOUND DO

BEGIN
DELETE_RECORD(FILENAME, FILENO);
COMPLEX_FIND(FILENAME, FILENO, TREE, FOUND);

END;
CLOSE_FILE(FILENAME, FILENO);

(5) Insert a record into a file
OPEN_FILE(FILENAME, FILENO);
INSERT_RECORD(FILENAME, FILENO, FIELDLIST,

INSERT_STATUS);
CLOSE_FILE(FILENAME, FILENO);

128

(6) Create a file, Delete a file
CREATE_FILE(FILETYPE, FILENAME, FIELDS);
DELETE_FILE(FILENAME);

(C) How to use the ’FILESYS’ program.
Any program calling procedures in the program ’FILESYS’

should do the following steps first.
(1) Put [INHERIT (’FILESYS’)] in the first line of the

program.
(2) Call the following two procedures in the beginning of

the main program block.
INIT_FILESYS;
SET_SCHEMA(SCHEMA_NAME);

INIT_FILESYS initializes the file interface, and
SET_SCHEMA restricts all file and record operations to a
subdirectory(an ECR schema) under the current directory.

(3) Link program with ’FILESYS’.
(D) Error messages

Error messages

CREATE_FILE ERROR — FIELD DEFINITION ERROR
CREATEJFILE ERROR -- INDEX TYPE DEFINITION ERROR
CREATE_FILE ERROR — COMBINATION INDEX DEFINITION ERROR
CREATE_FILE ERROR — FILE ALREADY IN DICTIONARY
DELETE_FILE ERROR -- FILE NOT IN DICTIONARY
DELETE_FILE ERROR — FILE NOT YET CLOSED
OPEN_FILE ERROR — FILE NOT IN DICTIONARY
OPEN_FILE ERROR -- FILE WITH SAME FILENAME AND SAME FILE

NUMBER ALREADY OPENED
RESET_FILE ERROR — NO SUCH KEY NUMBER
RESET_FILE ERROR — FILE NOT YET OPENED
CLOSE_FILE ERROR -- FILE NOT YET OPENED

129

INSERT_RECORD ERROR -- FILE NOT YET OPENED
INSERT_RECORD ERROR -- FIELD NOT FOUND
INSERTJRECORD ERROR -- INSERTED FIELD STRING TOO LONG
INSERT_RECORD ERROR — NULL VALUE NOT ALLOWED
INSERTJRECORD ERROR — DUPLICATE KEY VALUES NOT ALLOWED

FOR KEY DUP = N
SIMPLE_FIND ERROR — FILE NOT YET OPENED
SIMPLE_FIND ERROR — FIELD NOT FOUND
SIMPLE_FIND ERROR — CONSTANT STRING VALUE TOO LONG
SIMP_FINDNEXT ERROR — FILE NOT YET OPENED
SIMP_FINDNEXT ERROR -- SIMPLE_FIND NOT ALREADY DONE OR

HAS BEING CLEARED
DELETEJRECORD ERROR — FILE NOT YET OPENED
DELETE_RECORD ERROR — RECORD UNDEFINED
READ_RECORD ERROR — FILE NOT YET OPENED
READ_RECORD ERROR -- RECORD UNDEFINED
MODIFY_RECORD ERROR — FILE NOT YET OPENED
MODIFY_RECORD ERROR — RECORD UNDEFINED
MODIFY_RECORD ERROR -- FIELD NOT FOUND
MODIFY_RECORD ERROR — UPDATE STRING VALUE TOO LONG
FINDSEQ_NEXT ERROR -- FILE NOT YET OPENED
FINDSEQ_NEXT ERROR -- RESET_FILE NOT ALREADY DONE, OR

HAS BEEN CLEARED
COMPLEX_FIND ERROR -- FILE NOT YET OPENED
COMPLEX_FIND ERROR -- ATTRIBUTE NOT FOUND
COMPLEX_FIND ERROR — INVALID OPERATOR
COMPLEX_FIND ERROR -- TREE LEAF TYPE MISMATCH
COMP_FINDNEXT ERROR -- FILE NOT YET OPENED
COMP_FINDNEXT ERROR — COMPLEX_FIND NOT ALREADY DONE, OR

HAS BEEN CLEARED
Explanation :
Possible causes for FIELD DEFINITION ERROR could be the
following.

(1) fields not contiguous
(2) first field not starting from position 1
(3) integer field (not integer combination index) and

real field, field length not equal to 4
Possible causes for COMBINATION INDEX DEFINITION ERROR
could be the following.

130

(1) combination index not corresponding to contiguous
string fields or two contiguous integer fields

(2) combination index not on fields of type string or
type integer

III Program for parsing the ECR schema definition.
(A) Description of the program ’SCHEMA’.

Program ’SCHEMA’ is used to parse the ECR definition
language in an ECR schema definition file. Thirteen data
dictionary files and data files for the database based on
the schema definition are created. Schema name is stored
into ’SCHEMA.DIC’ file and information about each file,
record, and field are stored into ’FILES.DIC’ file.

If the schema name given in the definition file is not
in ’SCHEMA.DIC’ file and there is no errors in parsing the
definition file, then a subdirectory is created and all data
dictionary files and data files are put into the
subdirectory created. The name of the subdirectory is the
same as. the schema name. If the schema name given
already existed in ’SCHEMA.DIC’, then an error message is
displayed and no action will be taken. If there is an error
during parsing the definition file, then all files related
to the schema are deleted, the subdirectory is deleted,
schema name is deleted from the ’SCHEMA.DIC’ file and all
records in ’FILES.DIC’ related to the schema are deleted.

131

The procedure TRANSLATE_SCHEMA in program ’SCHEMA*
calls other procedures to do the parsing of the schema
definition language.

PROCEDURE TRANSLATE_SCHEMA (DEFJSCHEMAFILE : VSTR39);
The name of the schema definition file is provided by
DEF_SCHEMAFILE. VSTR39 is a type of VARYING [39] OF CHAR.
(B) How to use the ’SCHEMA’ program.

Any program calling procedure TRANSLATE_SCHEMA in the
program ’SCHEMA’ should do the following steps first.
(1) Put [INHERIT (’SCHEMA_FILEDEF’, ’SCANNER’, ’FILESYS’)]

in the first line of the program.
(2) Call the following two procedures in the beginning of

the main program block.
INIT_FILESYS;
SET_SCHEMA(SCHEMA_NAME) ;

(3) Call procedure TRANSLATE_SCHEMA inside the program.
TRANSLATE_SCHEMA(DEF_SCHEMAFILE);

(4) Link program with ’SCHEMA’, ’MODI’ and ’FILESYS’.
Program ’MODI’ is a scanner provided by Miss Yao to
fetch tokens from the schema definition file.

(C) Data dictionary files.
Thirteen data dictionary files are generated during

parsing an schema definition file. The detailed data
structure of each data dictionary files are listed in the
following.

132

(1) File ’VALUESETDBD.DAT’.
VALUESETDBDRECORD = RECORD

VALUESETNAME : [KEY(0)]STRINGTYPE;
REF : BOOLEAN;
ATTRIBUTENAME, CLASSNAME : STRINGTYPE;
CASE VALUESETTYPE t CHAR OF

’S’ : (LEN : INTEGER);
’E’ : (COUNT : INTEGER);
’I’ : (MINI, MAXI : INTEGER);
’R’ : (MINR, MAXR : REAL)

END;
VALUESETDBD : FILE OF VALUESETDBDRECORD;
Default :

MINI : -MAXINT (-2147483647), MAXI : MAXINT (2147483647)
MINR : -1.70E38, MAXR : 1.70E38

ATTRIBUTENAME and CLASSNAME are meaningful, only when REF
equals to TRUE.
Access method :

OPEN(VALUESETDBD, +SCHEMANAME+’]VALUESETDBD.DAT’, OLD
, ORGANIZATION := KEYED, ACCESS_METHOD := KEYED);

(2) File ’EXPLICITDBD.DAT’.
File ’EXPLICITDBD.DAT’ is an indexed file with two

fields.
[1] VALUESETNAME : STRINGTYPE;
[2] DATA_VALUE : DATA_VALUETYPE;

Key 0 (EXPLICIT_PRIM) is the combination of field [1] and
field [2]. Key 1 is field [1].
DATA_VALUETYPE is PACKED ARRAY [1..32] OF CHAR;
Access method :

OPEN_FILE(’EXPLICITDBD ’, FILENO);

133

(3) File ’ATTRIBUTEDBD.DAT’.
File ’ATTRIBUTEDBD.DAT’ is an indexed file with nine

fields.
[1] ATTRIBUTENAME : STRINGTYPE;
[2] BELONGTO : STRINGTYPE;
[3] OBJECT_TYPE : INTEGER;
[4] VALUESETNAME : STRINGTYPE;
[5] UNIQUE : CHAR;
[6] MIN : INTEGER;
[7] MAX : INTEGER;
[8] CORRES_FILE : STRINGTYPE;
[9] CORRESJFIELD : STRINGTYPE;

Key 0 (ATTRIBUTE_PRIM) is the combination of field [1] and
field [2]. Key 1 is field [1]. Key 2 is field [2].
Key 3 (FILE_FIELD) is the combination of field [8] and
field [9] .
Default :

UNIQUE : ’F’, MIN : 1, MAX : 1
Access method :

OPEN_FILE(’ATTRIBUTEDBD ’, FILENO);
(4) File ’TOTALDBDD.DAT’.

File ’TOTALDBD.DAT’ is an indexed file with two fields.
[1] OBJECT_NAME : STRINGTYPE;
[2] OBJECT_TYPE : INTEGER;

OBJECT_TYPE :
1 : ATTRIBUTES, 2 : ENTITYTYPES
3 : CATEGORIES 4 : RELATIONSHIPS
5 : PARTICIPATION NAMES (CONNECTION NAMES)
6 : VALUESETS 7 : GCATEGORIES

Key 0 is field [1].

134

Access method :
OPEN_FILE('TOTALDBD ‘, FILENO);

(5) File ’ENTITYDBD.DAT’.
File ’ENTITYDBD.DAT’ is an indexed file with five

fields.
[1] ENTITYTYPENAME : STRINGTYPE;
[2] PARTICIP_NAME1 : STRINGTYPE;
[3] PARTICIP_NAME2 : STRINGTYPE;
[4] RELATION_NAME : STRINGTYPE;
[5] RELATED_TO : STRINGTYPE;

Key 0 (ENTITY_PRIM) is the combination of field [1] and
field [2]. Key 1 is field [1]. Key 2 is field [2].
If the relationship is not binary (more than two
participants), then RELATED_TO will contain blanks.
Access method :

OPEN_FILE(’ENTITYDBD ’, FILENO);
(6) File ’CATEGORYRELDBD.DAT’.

File ’CATEGORYRELDBD.DAT’ is an indexed file with five
fields.

[1] CATEGORYNAME : STRINGTYPE;
[2] PARTICIP_NAME1 : STRINGTYPE;
[3] PARTICIP_NAME2 : STRINGTYPE;
[4] RELATION_NAME : STRINGTYPE;
[5] RELATED_TO : STRINGTYPE;

Key 0 (CATEGORYREL_PRIM) is the combination of field [1] and
field [2]. Key 1 is field [1]. Key 2 is field [2].
Access method :

OPEN_FILE(’CATEGORYRELDBD ’, FILENO);

135

(7) File ’CATEGORYDBD.DAT’.
File ’CATEGORYDBD.DAT* is an indexed file with eight

fields.
[1] CATEGORYNAME : STRINGTYPE;
[2] DEFINED_ON_CLASS : STRINGTYPE;
[3] CLASS_TYPE: CHAR;
[4] ATTRIBUTE : STRINGTYPE;
[5] CONST_VAL : STRINGTYPE:
[6] CORRES_FILE : STRINGTYPE;
[7] CORRES_FIELD : STRINGTYPE;
[8] CTYPE : CHAR;

Key 0 (CATEGORY_PRIM) is the combination of field [1] and
field [2]. Key 1 is field [1]. Key 2 is field [2],
Field [3] CLASS_TYPE can be *E* or *C* (for entitytype or
category). Field [8] CTYPE can be *G* or ’S’ (for
generalization or subclass category).
If no <predicate> on DEFINED_ON_CLASS, then field [4]
ATTRIBUTE and field [5] CONST_VAL will contain blanks.
Access method

OPEN_FILE(’CATEGORYDBD *, FILENO);
(8) File ’RELATIONSHIPDBD.DAT’.

File ’RELATIONSHIPDBD.DAT* is an indexed file with ten
fields.

[1] RELATION_NAME : STRINGTYPE;
[2] RELATION_FROM : STRINGTYPE;
[3] PARTICIP_NAME1 : STRINGTYPE;
[4] PARTICIP_NAME2 : STRINGTYPE;
[5] FROM_TYPE : CHAR;
[6] SPECIFIC : CHAR;
[7] PD : CHAR;
[8] DLT : CHAR;
[9] MIN : INTEGER;

136

[10] MAX : INTEGER;
Key 0 (RELATION_PRIM) is the combination of field [1],
field [2] and field [3], Key 1 is field [1]. Key 2 is
field [2], Key 3 (RELATION_TRD) is the combination of
field [2] and field [3].
Default :

SPECIFIC : ’F’, PD : ’F’, DLT : »F’
MIN : 0, MAX : MAXINT

Field [5] FROM_TYPE can be ’E’ or ’C’. Field [6] SPECIFIC
can be ’T’ or *F’. Field [7] PD can be ’T’ or ’F’.
Field [8] DLT can be ’T’ or ’F’.
Access method :

OPEN_FILE(’RELATIONSHIPDBD ’, FILENO);
(9) File ’JOINDBD.DAT’.

File ’JOINDBD.DAT’ is an indexed file with nine fields.
[1] CLASS_NAME1 : STRINGTYPE;
[2] PARTICIP_NAME1 : STRINGTYPE;
[3] CLASS_NAME2 : STRINGTYPE;
[4] PARTICIP_NAME2 : STRINGTYPE;
[5] RELATION_NAME : STRINGTYPE;
[6] FILE1 : STRINGTYPE;
[7] JOINFIELD1 : STRINGTYPE;
[8] FILE2 : STRINGTYPE;
[9] JOINFIELD2 : STRINGTYPE;

Key 0 (JOIN_PRIM) is the combination of field [1] and
field [2]. Key 1 (JOIN_SCND) is the combination of
field [3] and field [4].
Access method :

137

OPEN_FILE(*JOINDBD ’, FILENO);
(10) File ’MVATTRDBD.DAT’.

File ’MVATTRDBD.DAT* is an indexed file with seven
fields.

[1] ATTRIBUTENAME : STRINGTYPE;
[2] CLASSNAME : STRINGTYPE;
[3] MV_FILE : STRINGTYPE;
[4] MV_JOINFIELD : STRINGTYPE;
[5] FILE2 : STRINGTYPE;
[6] JOINFIELD2 ; STRINGTYPE;
[7] MVJFIELD : STRINGTYPE;

Key 0 (MVATTR_PRIM) is the combination of field [1] and
field [2]. Key 1 is field [1]. Key 2 is field [2].
Access method :

OPEN_FILE(’MVATTRDBD *, FILENO);
(11) File *GENCATJOINDBD.DAT*.

File ’GENCATJOINDBD.DAT’ is an indexed file with six
fields.

[1] GEN_CATEGORYNAME : STRINGTYPE;
[2] CLASSNAME2 : STRINGTYPE;
[3] GEN_FILE : STRINGTYPE;
[4] GEN_JOINFIELD : STRINGTYPE;
[5] FILE2 : STRINGTYPE;
[6] JOINFIELD2 : STRINGTYPE;

Key 0 (GEN_PRIM) is the combination of field [1] and
field [2], Key 1 is field [1]. Key 2 is field [2].
Access method :

OPEN_FILE (’GENCATJOINDBD ’, FILENO);
(12) File ’KEYVALUESDBD.DAT’.

File ’KEYVALUESDBD.DAT’ is an indexed file with three

138

fields.
[1] FILENAME : STRINGTYPE;
[2] KEY_FIELD : STRINGTYPE;
[3] HIGHEST_KEY : INTEGER;

Key 0 (KEYV—PRIM) is the combination of field [1] and
field [2]. Key 1 is field [1].
Access method :

OPEN_FILE('KEYVALUESDBD ’, FILENO);
(13) File ’CLASSFILEDBD.DAT’.

File ’CLASSFILEDBD.DAT* is an indexed file with four
fields.

[1] CLASSNAME : STRINGTYPE;
[2] CORRES_FILE : STRINGTYPE;
[3] SURROGATE-KEY : STRINGTYPE;
[4] MAJOR : CHAR;

Key 0 is field [1]. Key 1 is field [2],
Key 2 is field [3].
Field [4] MAJOR can be *Y* or ’N*. This field indicates
which classname is the major corresponding classname of a
given file.
Access method :

OPEN_FILE(’CLASSFILEDBD ’, FILENO);
(D) Error messages.

Two kinds of error messages are provided by program
* Schema *.

(1) Syntax error messages
(2) Database definition error (DBD ERROR) messages

139

Unexpected token or illegal token will produce an
syntax error. Inconsistency in the schema definition will
produce an database definition error.

Error messages for SYNTAX ERROR

SYNTAX ERROR — INVALID <CONSTANT>
SYNTAX ERROR — OR ”}" EXPECTED
SYNTAX ERROR — INVALID <STANDARD VALUE SET>
SYNTAX ERROR -- INVALID REFERENCE VALUE SET>
SYNTAX ERROR — EXPECTED
SYNTAX ERROR -- "DEFINE" EXPECTED
SYNTAX ERROR — "\" OR "END" EXPECTED
SYNTAX ERROR — INVALID <VALUE SET NAME>
SYNTAX ERROR — "AS" EXPECTED
SYNTAX ERROR — INVALID <INTEGER>
SYNTAX ERROR -- "END", OR CCONSTRAINED ATTRIBUTE>

EXPECTED
SYNTAX ERROR -- INVALID <CONSTRAINED ATTRIBUTE>
SYNTAX ERROR -- INVALID ATTRIBUTE NAME>
SYNTAX ERROR -- "VALUESET" EXPECTED
SYNTAX ERROR -- INVALID <VALUE SET NAME>
SYNTAX ERROR -- INVALID <ENTITY TYPE NAME>
SYNTAX ERROR — "ATTRIBUTES" EXPECTED
SYNTAX ERROR — "VALUESET", "CATEGORY","FILE","RELATIONSHIP"

OR "ENTITYTYPE" EXPECTED
SYNTAX ERROR — "SCHEMA" EXPECTED
SYNTAX ERROR -- INVALID <SCHEMA NAME>
SYNTAX ERROR — INVALID <CATEGORY NAME>
SYNTAX ERROR — "FROM" EXPECTED
SYNTAX ERROR -- INVALID <ENTITY TYPE NAME> OR

<CATEGORY NAME>
SYNTAX ERROR — , "END", "\", "SPECIFIC", OR

"ATTRIBUTES" EXPECTED
SYNTAX ERROR — INVALID (RELATIONSHIP NAME>
SYNTAX ERROR — "\", "END", OR "ATTRIBUTES" EXPECTED
SYNTAX ERROR -- "SPECIFIC", "PD", OR "(" EXPECTED
SYNTAX ERROR -- INVALID (PARTICIPATION NAME>
SYNTAX ERROR — "," EXPECTED
SYNTAX ERROR -- ")" EXPECTED
SYNTAX ERROR — "MIN", "MAX", "\", "END", "ATTRIBUTES",

(CATEGORY NAME> OR (ENTITY TYPE NAME>
EXPECTED

140

SYNTAX ERROR — — "X", "END", (CATEGORY NAME>,
"ATTRIBUTES", OR (ENTITY TYPE NAME> EXPECTED

SYNTAX ERROR — — "=" EXPECTED
SYNTAX ERROR (SCHEMA NAME> LONGER THAN 16 CHARS
SYNTAX ERROR — — (VALUE SET NAME> LONGER THAN 16 CHARS
SYNTAX ERROR — — (ATTRIBUTE NAME> LONGER THAN 16 CHARS
SYNTAX ERROR (CLASS NAME> LONGER THAN 16 CHARS
SYNTAX ERROR —— (ENTITY TYPE NAME> LONGER THAN 16 CHARS
SYNTAX ERROR (CATEGORY NAME> LONGER THAN 16 CHARS
SYNTAX ERROR — — (RELATIONSHIP NAME> LONGER THAN 16 CHARS
SYNTAX ERROR — — (PARTICIPATION NAME> LONGER THAN 16 CHARS
SYNTAX ERROR — — (CATEGORY NAME> OR (ENTITY TYPE NAME> LONGER

THAN 16 CHARS
SYNTAX ERROR —— INVALID (FILENAME>
SYNTAX ERROR ■ — (FILENAME) LONGER THAN 16 CHARS
SYNTAX ERROR "TYPE" EXPECTED
SYNTAX ERROR — — "INDEX", "REL", OR "SEQ" EXPECTED
SYNTAX ERROR — — "CORRESPONDS" EXPECTED
SYNTAX ERROR — — INVALID (CLASS NAME)
SYNTAX ERROR — — "FIELDS" EXPECTED
SYNTAX ERROR — — (FIELD NAME) LONGER THAN 16 CHARS
SYNTAX ERROR — — INVALID (STARTING LOCATION), (INTEGER)

EXPECTED
SYNTAX ERROR —— "I", "R", OR "S" EXPECTED
SYNTAX ERROR —— INVALID (LENGTH), (INTEGER) EXPECTED
SYNTAX ERROR * w INVALID (KEYNO), (INTEGER) EXPECTED
SYNTAX ERROR — — "CORRESPONDS", "REFERS", "CATEGORY",

"\", OR "END" EXPECTED
SYNTAX ERROR "END", OR "\" EXPECTED
SYNTAX ERROR —— "OF" EXPECTED
SYNTAX ERROR — — INVALID (FIELD NAME)
SYNTAX ERROR — — "FOR", ",", "\", OR "END" EXPECTED
SYNTAX ERROR — — "Y" OR "N" EXPECTED
SYNTAX ERROR — — INVALID (CLASS NAME) OR (ATTRIBUTE NAME)

Error messages for DBD ERROR

DBD ERROR -- VALUESET NOT DEFINED
DBD ERROR — ATTRIBUTE MIN SHOULD >= 0
DBD ERROR -- ATTRIBUTE MAX SHOULD >= 1
DBD ERROR -- RELATIONSHIP NOT DEFINED
DBD ERROR -- DEFINED_ON_CLASS OF CATEGORY IS NEITHER

CATEGORY NOR ENTITYTYPE

141

DBD ERROR — ATTRIBUTE NOT DEFINED
DBD ERROR -- PARTICIPATION <CATEGORY NAME> OR

<ENTITYTYPE NAME> NOT DEFINED
DBD ERROR — PARTICIPATION MIN SHOULD >= 0
DBD ERROR -- PARTICIPATION MAX SHOULD >= 1
DBD ERROR — <ATTRIBUTENAME> AND <CLASS NAME> COMBINATION

NOT FOUND
DBD ERROR — <CATEGORY NAME> NOT DEFINED
DBD ERROR — <CLASS NAME> OR (ATTRIBUTE NAME> NOT DEFINED
DBD ERROR — (CLASS NAME> NOT DEFINED
DBD ERROR -- (PARTICIPATION NAME> NOT DEFINED
DBD ERROR — SCHEMA ALREADY EXISTED

IV. Program for creating data dictionary procedures and
functions.

(A) Description of program ’DICTIONARY'.
Program ’DICTIONARY’ contains 34 procedures and

functions for users or other components of the ECR DBMS
system to access the information stored in the file
dictionary (’FILES.DIC’), ’SCHEMA.DIC’ file, and data
dictionary files for a particular ECR schema. The detailed
procedures and functions are listed in the following.

Data structure :
SCHEMANAMETYPE = VARYING [16] OF CHAR;
PTR_SCHEMAREC = ‘SCHEMAREC;
SCHEMAREC = RECORD

SCHEMANAME : SCHEMANAMETYPE;
NEXT : PTR_SCHEMAREC;

END;
PTR _FIELDNAMEREC - ‘FIELDNAMEREC;
FILENAMEREC = RECORD

FIELDNAME : STRINGTYPE;
FTYPE : CHAR; (* ’C’ or ’F’ »)
NEXT : PTR_FIELDNAMEREC;

END;
PTR_UNIQFIELDS = ‘UNIQFIELDREC;

142

UNIQFIELDREC = RECORD
UNIQFIELD ! STRINGTYPE;
NEXT i PTR_UNIQFIELDS;

END;
PTR_OBJECTREC = ''OBJECTREC;
OBJECTREC = RECORD

OBJECT_NAME : STRINGTYPE;
OBJECT_TYPE : INTEGER;
NEXT : PTR_OBJECTREC;

END;
PTR_CLASSNAME = *CLASSNAME_NODE;
CLASSNAME_NODE = RECORD

CLASSNAME : STRINGTYPE;
VERSION ! INTEGER;
NEXT : PTR_CLASSNAME;

END;
STR32 = PACKED ARRAY [1..32] OF CHAR;
DATA_VALUETYPE = STR32;
PTR_VALUESETRECORD = "VALUESETDBDRECORD;
VALUESETDBDRECORD = RECORD

VALUESETNAME : [KEY(0)]STRINGTYPE;
REF : BOOLEAN;
ATTRIBUTENAME,CLASSNAME :STRINGTYPE;
CASE VALUESETTYPE : CHAR OF

’S’ : (LEN : INTEGER);
’E’ : (COUNT : INTEGER);
'I* : (MINI, MAXI : INTEGER);
’R’ : (MINR, MAXR : REAL)

END;
VSTR32 = VARYING [32] OF CHAR;
PTR_EXPLICIT = ~EXPLICIT_UNIT;
EXPLICIT-UNIT = RECORD

DATA_VALUE : VSTR32;
NEXT : PTRJEXPLICIT;

END;
UNIQKEYLIST = ~UNIQKEYREC;
UNIQKEYREC - RECORD

ATTRIBUTENAME : STRINGTYPE;
CORRES_FILE : STRINGTYPE;
CORRES_FIELD : STRINGTYPE;
NEXT : UNIQKEYLIST;

END;
PTR_ATTRIBUTEREC = ''ATTRIBUTEREC;
ATTRIBUTEREC = RECORD

ATTRIBUTENAME : STRINGTYPE;
NEXT : PTR_ATTRIBUTEREC;

END;
ATTR_NODE_PTR = AFULL_ATTR_NODE;

143

TRN_CLASS_PTR = ‘'TRN_CLASS_NODE;
TRN_CLASS_NODE = RECORD

CL_NAME : STRINGTYPE;
CL_VERSION : INTEGER

END;
FULL_ATTR_NODE = RECORD

ATTRIBUTE : STRINGTYPE;
CLASS : TRN_CLASS_PTR;
OLD_FIELD : STRINGTYPE;
FIELD : STRINGTYPE;
NEW_FIELD : STRINGTYPE;
FTYPE : CHAR;
DTYPE : CHAR;
DLEN : INTEGER;
NEXT_NODE : ATTR_NODE_PTR;

END;
PTR_RELATED = "RELATEDREC;
RELATEDREC = RECORD

RELATED_TO : STRINGTYPE;
PARTICIP_NAME1 : STRINGTYPE;
PARTICIP_NAME2 : STRINGTYPE;
NEXT : PTR_RELATED;

END;
CTREE_PTR = "CNODETYPE;
CNODETYPE = RECORD

PARENT_PTR : CTREE_PTR;
DEFINING_TREE : CTREEJPTR;
DEFINEDON_TREE : CTREE_PTR;
CLASSNAME : STRINGTYPE;
CTYPE I CHAR; (* ’R’, ’S’ or ’G’ *)
LEVEL : INTEGER;
NEXT_PTR : CTREE_PTR;
NEXT_QPTR : CTREE_PTR;

END;
CLISTPTR = "NAME-NODE;
NAME_NODE = RECORD

CTYPE : CHAR; (» ’S’ or ’G’ *)
CLASSNAME : STRINGTYPE;
LEVEL : INTEGER;
NEXT : CLISTPTR;

END;
PTR_DEFINEDON = "DEFINEDREC;
DEFINEDREC = RECORD

DEFINE : STRINGTYPE;
NEXT : PTR_DEFINEDON;

END;
PTR_DEFINING = PTR_DEFINEDON;
DEFININGREC = DEFINEDREC;

144

PTR_MVREC = *MV_REC;
MV_REC = RECORD

MV_FILENAME, MV_FIELDNAME : STRINGTYPE;
NEXT : PTR_MVREC;

END;

(1) PROCEDURE SET_SCHEMA (SCHEMA : SCHEMANAMETYPE);
PURPOSE : Set the current schema to the given schema name.
(2) PROCEDURE DELETE_DATABASE (SCHEMANAME ! SCHEMANAMETYPE);
PURPOSE : Delete a database (an ECR schema).
(3) FUNCTION GET_SCHEMA : PTR_SCHEMAREC;
PURPOSE : Get all schema names in the ECR DBMS.
(4) FUNCTION FIELD_INFO (FILENAME, FIELDNAME : STRINGTYPE) :

PTR_FIELDDEF;
PURPOSE : Get field definition for a field, given a file

name and a field name.
REMARK : This function returns NIL, if no such field is

found.
(5) FUNCTION FILE_FIELD_INFOS (FILENAME : STRINGTYPE) :

PTR_FIELDDEF
PURPOSE : Get all field definitions for fields in a file,

given a filename.
REMARK : This function returns NIL, if no such file is

found.
(6) PROCEDURE FILE_FIELD_NAMES (DATAFILENAME : STRINGTYPE;

VAR FIELDNAMERECPTR : PTR_FIELDNAMEREC);
PURPOSE : Get all field names and indicate all combination

key fields, given a file name.

145

REMARK : FTYPE — ’C* for combination key field.
’F* for noncombinational field.

(7) FUNCTION UNIQUE_FIELDS (FILENMAME : STRINGTYPE) :
PTR_UNIQFIELDS;

PURPOSE : Get all unique field names, given a file name.
REMARK : This function returns NIL, if no unique fields are

found.
(8) FUNCTION OBJECT_TYPE (ONAME : STRINGTYPE) : INTEGER;
PURPOSE : Get the object type, given an object name of the

current schema.
(9) FUNCTION GET_OBJECT_INFO : PTR_OBJECTREC;
PURPOSE : Get all object names and object types of the

current schema (not including value sets).
(10) FUNCTION ALL_CLASSNAMES : PTR_CLASSNAME;
PURPOSE : Get all class names (entity type names, category

names and relationship names) of the current
schema.

(11) PROCEDURE VALUESET_INFO (ATTR_NAME, CLASSNAME :
STRINGTYPE; VAR VALPTR : PTR_VALUESETRECORD);

PURPOSE : Get all information about a value set, given an
attribute name and a class name.

REMARK : VALPTR is set to NIL, if no such attribute name and
class name are found.

(12) PROCEDURE EXPLICIT_VALUE (VNAME i STRINGTYPE; VAR EXPTR
: PTR_EXPLICIT);

PURPOSE : Get all explicit data values for an explicit value

146

set, given a value set name.
REMARK : EXPTR is set to NIL, if no such explicit value set

is found.
(13) FUNCTION GET_CLASS_UNIQKEYS (CLASSNAME : STRINGTYPE) :

UNIQKEYLIST;
PURPOSE : Get attribute names, corresponding file names,

corresponding field names for all unique
attributes in a given class.

(14) FUNCTION BELONG_TO (ATTR_NAME, CLASSNAME : STRINGTYPE)
: BOOLEAN;

PURPOSE : Check whether an attribute belongs to a class.
(15) PROCEDURE ATTRIBUTE_NAME (CLASSNAME : STRINGTYPE; VAR

ATTPTR : PTR_ATTRIBUTEREC);
PURPOSE : Get all attribute names which belong to a class.
REMARK : ATTRPTR is set to NIL, if no attributes belong to

this class.
(16) FUNCTION ATTRIBUTE_UNIQUE (ATTR_NAME, CLASSNAME :

STRINGTYPE) : BOOLEAN;
PURPOSE : Check whether an attribute of a class is unique.
(17) FUNCTION CHECK_MV_ATTR (ATTR_NAME, CLASSNAME :

STRINGTYPE) : BOOLEAN;
PURPOSE : Check whether an attribute of a class is a

multi-valued attribute.
(18) FUNCTION GET_FIELD_ATTR_CLASS (FILENAME : STRINGTYPE) :

ATTR_NODE_PTR;
PURPOSE : Get all corresponding attribute names, class

names, field names, field type, field length, and

147

combination field indicator, given a file name.
REMARK : FTYPE — ’C’ for combinational key field.

*F’ for noncombinational field.
DTYPE — data field type, ’I’ for integer,

*R’ for real, ’S’ for character string.
(19) PROCEDURE ENTITY_RELATE_NAME (ENTITYTYPENAME i

STRINGTYPE; VAR RELPTR : PTR_RELATED);
PURPOSE : Get all class names (entity type names or category

names) and participation names related to a
given entity type.

REMARK : RELPTR is set to NIL, if no related class names are
found.

(20) PROCEDURE CHECK-CONNECTION (CLASSNAME, CNAME :
STRINGTYPE; VAR RNAME, CLASSNAME2 :
STRINGTYPE; VAR YESNO : BOOLEAN);

PURPOSE : Get relationship name, related class name
(category name or entity type name), given a class
name (entity type name or category name) and a
connection name.

(21) FUNCTION CREATE_CTREE (CLASSNAME : STRINGTYPE) I
CTREE_PTR;

PURPOSE : Get a C tree (category tree) which contains
information about all defining categories and
defined on classes (entity types or categories)
related to the given class (as root of the C
tree).

148

(22) FUNCTION GET_DEFINE_LIST (CLASSNAME : STRINGTYPE) :
CLISTPTR;

PURPOSE : Get all class names (entity type names or
category names), category types and category
levels related to the given class (entity type or
category) in the order of ascending level value.

(23) FUNCTION DEFINED_ON (CLASSNAME, DEFINED_NAME :
STRINGTYPE) ! BOOLEAN;

PURPOSE : Check whether a class name is defined on the given
defined name.

Remark : This function works for both subclass and
generalization categories.

(24) PROCEDURE REPEAT_DEFINEDON_SUBCLASS (CATEGORYNAME !
STRINGTYPE; VAR DEFINEDPTR : PTR_DEFINEDON);

PURPOSE : Get all level superclass class names of a given
subclass category.

REMARK : (a) DEFINEDPTR is set to NIL, if no defined on
superclasses are found.

(b) This procedure works for subclass category
only.

(25) PROCEDURE DEFINING_SUBCLASS (CLASSNAME : STRINGTYPE;
VAR DEFININGPTR : PTR_DEFINING);

PURPOSE : Get all first level subclass defining class names
of a given class.

REMARK : (a) DEFININGPTR is set to NIL, if no defining
subclasses are found.

149

(b) This procedure works for subclass category
only.

(26) PROCEDURE REPEAT_DEFINING_SUBCLASS (CLASSNAME :
STRINGTYPE; VAR DEFININGPTR : PTR_DEFINING);

PURPOSE : Get all level defining subclass class names of a
given class.

REMARK : (a) DEFININGPTR is set to NIL, if no defining
subclasses are found.

(b) This procedure works for subclass category
only.

(27) PROCEDURE CATEGORY_RELATE_NAME (CATEGORYNAME :
STRINGTYPE; VAR RELPTR : PTR_RELATED);

PURPOSE : Get all class names (entity type names or category
names) and participation names related to a
category.

REMARK : RELPTR is set to NIL, if no related class names are
found.

(28) PROCEDURE GET_CONN_MIN_MAX (CLASSNAME, CNAME :
STRINGTYPE; VAR MIN, MAX : INTEGER);

PURPOSE : Get MIN and MAX structural constraints for one
end of participation in a relationship, given a
class name (entity type name or category name) and
a connection name.

(29) PROCEDURE CHECK_RELATIONSHIP (CLASSNAME, CNAME :
STRINGTYPE; VAR RNAME, CNAME2, CLASSNAME2 :
STRINGTYPE; VAR MIN, MAX, MIN2, MAX2 : INTEGER;
VAR YESNO : BOOLEAN);

150

PURPOSE : Get relationship name, related class name (entity-
type name or category name), connection name for
the related class, and MIN, MAX structural
constraints for both ends of participations in the
relationship, given a class name (entity type name
or category name) and a connection name.

(30) PROCEDURE GET_JOIN_ATTRIBUTE (CLASSNAME, CNAME :
STRINGTYPE; VAR FILE1, JOINFIELD1, FILE2,
JOINFIELD2, FILE3, JOINFIELDS, FILE4,
JOINFIELD4 : STRINGTYPE; VAR MTON : BOOLEAN);

PURPOSE : Get join information of a relationship, given a
class name (entity type name or category name) and
a connection name.

(31) PROCEDURE CORRES_FILES (CLASSNAME : STRINGTYPE; VAR
PRIM_FILENAME : STRINGTYPE; VAR MVJRECPTR :
PTR_MVREC);

PURPOSE : Get a corresponding data file name and
corresponding multi-valued file names and
multi-valued field names, given a class name.

REMARK : (a) PRIM_FILENAME is set to blanks, if no such
class name is found.

(b) MV_RECPTR is set to NIL, if no multi-valued
fields are found.

(32) PROCEDURE GET_MV_JOININFO (CLASSNAME, ATTRIBUTENAME :
STRINGTYPE ; VAR MV_FILE, MV_JOINFIELD,
FILE2, JOINFIELD2, MV_FIELD : STRINGTYPE);

PURPOSE : Get multi-valued join information, given an

151

multi-valued attribute name and a class name.
REMARK : This procedure sets all output variables to blanks,

if no such multi-valued attribute is found.
(33) PROCEDURE GET_GENCAT_INFO (GEN_CATEGORY, CLASSNAME2 :

STRINGTYPE; VAR GEN_FILE, GEN_JOINFIELD,
FILE2, JOINFIELD2 : STRINGTYPE);

PURPOSE : Get join information of a generalization category,
given a generalization category name and name of
a class which takes part in the generalization.

(34) FUNCTION GET_SURROGATE_KEY (CLASSNAME : STRINGTYPE):
UNIQKEYREC;

PURPOSE : Get surrogate key (if any) and corresponding
file name, for a given class.

REMARK : If no surrogate key exists for the given class,
then surrogate key name is set to blanks.

(B) How to use the ’DICTIONARY’ program.
Any program calling procedures and functions in the

program ’DICTIONARY’ should do the following steps first.
(1) Put [INHERIT (’DICTIONARY’,’SCHEMA_FILEDEF’, ’SCANNER’,

’FILESYS’)] in the first line of the program.
(2) Call the following procedures in the beginning of the

program block.
INIT_FILESYS;
SET_SCHEMA(SCHEMA_NAME);

(3) Link program with ’DICTIONARY’, ’SCHEMA’, ’MODI’, and
’FILESYS’.

REFERENCES

[Bach 77] C. Bachman and M. Daya, "The Role Concept in
Database Models", VLDB77 Proceedings, IEEE, Tokyo,
Japan, September 1977, pp. 464-476.

[Back 78] J. Backus, "A functional style and its algebra of
programs", Commun. ACM, Vol. 21, No. 8, 1978,
pp. 613-641.

[Bune 77] P. Buneman and R. E. Frankel, "FQL - A functional
query language", Proc. ACM SIGMOD, Int. Conf.
Management of Data, Boston, May 30 - June 1, ACM,
New York, 1979, pp. 52-57.

[Bune 82] P. Buneman, R. E. Frankel and R. Nikhil, "An
implementation technique for database query
languages", ACM Trans. Database Systems, Vol. 7,
No. 2, 1982, PP. 164-186.

[Cham 76] D. D. Chamberlin, et al. "SEQUEL 2 : A Unified
Approach to Data Definition, Manipulation and
Control", in IBM Journal of Research and
Development, Vol 20, No. 6, November 1976.

[Chan 83] K. Chang, "A Data Dictionary System for a
High-Level Data Model", Master’s Thesis, Computer
Science Department, University of Houston, August
1983.

152

153

[Chen 76] P. P. Chen, "The Entity-relationship model:
towards a unified view of data", ACM Trans.
Database Systems, Vol. 1, No. 1, 1976, pp 9-36.

[Chen 83] P. P. Chen (Ed.), "Entity-Relationship Approach to
Information Modeling and Analysis", North-Holland,
Amsterdam 1983.

[CODA 71] CODASYL (Committee On Data Systems Languages),
Data Base Task Group Report, ACM, New York, 1971.

[CODA 78] CODASYL (Committee On Data Systems Languages),
Data Base Task Group Revised Report, ACM,
New York, 1978

[Codd 70] E. F. Codd, "A Relational Model for Large Shared
Data Banks", Communications of the ACM, Vol. 13,
No. 6, June 1970, pp. 377-387.

[Codd 71] E. F. Codd, "A Data Base Sublanguage Founded on
the Relational Calculus", Proc. 1971 ACM SIGFIDET
Workshop on Data Description, Access and Control,
pp. 35-68.

[Codd 72] E. F. Codd, "Relational Completeness of Data Base
Sublanguage", Data Base Systems, Courant Computer
Science Symposia Series, Vol. 6, Printice Hall,
1972

154

[Codd 72a] E. F. Codd, "Further Normalization of the Data
Base Relational Model", Data Base Systems,
Courant Computer Science Symposia Series, Vol 6,
Printice Hall, 1972.

[Date 74] C. J. Date and E. F. Codd, "The Relational and
Network Approaches: Comparison of the Application
Programming Interfaces", Proc. 1974 ACM SIGMOD
Workshop.

[Date 81] C. J. DATE, "An Introduction to Database Systems".
Addison-Wesley Publishing Company, 3rd Edition,
Vol. 1, 1981.

[Dec 83] Digital Equipment Corporation, "Programming in
VAX-11 PASCAL", July, 1983.

[Dec 84] Digital Equipment Corporation, "VAX-11 Record
Management Services Reference Manual", "VAX-11
Record Management Services Utilities Reference
Manual", "VAX-11 Record Management Services Tuning
Guide", "VAX/VMS File Definition Language Facility
Reference Manual", September, 1984.

[Elma 80] R. Elmasri, "Semantic Integrity in DDTS
(Distributed Database Test System)", Honeywell
CCSC, Technical Report HR-80-274 : 17-38,
Bloomington, Minnesota.

155

[Elma 81] R. Elmasri, "GORDAS: A Data Definition Query and
Update Language for the Entity-Category-
Relationship Model of Data",Honeywell
CCSC, Technical Report HR-81-250 : 17-38,
Bloomington, Minnesota.

[Elma 83] R. Elmasri and G. Wiederhold, "GORDAS: A formal
high-level query language for the entity­
relationship model", in [Chan 83], pp. 49-72.

[Elma 84] R. Elmasri, "A DBMS Based On an Extended ER
Model", Technical Report #UH-CS-84-5, Department
of Computer Science, University of Houston, May
1984.

[Elma 85] R. Elmasri, J. Weeldreyer and A. Hevner, "The
category concept: An extension to the entity­
relationship model", Data & knowledge Engineering,
Vol. 1, No. 1, 1985, pp 75-116.

[Klug 77] A. Klug and D. Tsichritzis (Eds.), "The
ANSI/X3/SPARC Report of the Study Group on Data
Base Management Systems", AFIPS press, 1977.

[Lin 87] X. Lin, "Extensions of the ECRDBS High Level
Database System", Master Thesis, Dept, of Computer
science, University of Houston, 1987, in
preparation.

156

[Mins 73] M. Minsky, "Computer Science and Representation of
Knowledge", Proceeding of the National Computer
Conference, AFIPS, Vol. 42, 1973.

[Ship 81] D. W. Shipman, "The functional data model and the
data language DAPLEX", ACM Trans. Database System,
Vol. 6, No. 1, 1981, pp. 140-173.

[Smit 77] J. Smith and D. Smith, "Database Abstractions :
Aggregation and Generalization", ACM Transactions
on Database Systems, Vol. 2, No. 2, June 1977,
pp. 105-133.

