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ABSTRACT 

Haploinsufficient loss of progranulin (PGRN) is implicated in both frontotemporal 

lobar dementia (FTD) and Alzheimer’s disease (AD). Furthermore, Grn 

polymorphisms have been linked to various other neurodegenerative diseases 

suggesting PGRN plays an important role in neurodegenerative disease pathways. 

Although genetic studies have demonstrated that partial loss of PGRN increases 

the risk of AD there are conflicting reports in mouse studies examining the loss of 

PGRN and it is unclear how the loss of PGRN modulates AD pathophysiology. 

Therefore, the present study was designed to elucidate the effect of 

haploinsufficiency loss of PGRN on the pathophysiology of AD. 

 To this end, we characterized a novel PGRN haploinsufficient mouse model 

(Grn+/-) across age. Utilizing a battery of cognitive and non-cognitive behavior tests 

we observed key FTD-related behavior deficits in Grn+/- mice across age in the 

absence of FTD-related pathology including neuroinflammation and TDP-43 

proteinopathy as measured by immunohistochemical and western blot techniques. 

We observed functional deficits in Grn+/- mice, including impaired long-term 

potentiation and reduced numbers of GABAergic interneurons. Next, we 

investigated the role of happloinsufficiency PGRN loss on tau pathology by 

crossing Grn+/- mice with the P301S tau transgenic mouse model. There were 

slight differences in tau-related non-cognitive behavior deficits and reduced AT8 

tau phosphorylation in the brain and spinal cord measured by western blot 

techniques. While we did not observe differences in microglial activation, we 

observed alterations in the Akt signaling pathway. Lastly, we investigated the role 
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of haploinsufficiency PGRN loss on amyloid pathology by crossing Grn+/- mice with 

the APdE9 amyloid transgenic mouse model. We observed exacerbated deficits in 

AD-related cognitive and non-cognitive behavior, including worsened cognitive 

learning and memory and motor coordination. We also observed biochemical and 

morphological changes in amyloid pathology. While we did not observe differences 

in microglial activation, we did observe deficits in synaptic plasticity and loss of 

GABAergic interneurons with loss of PGRN. 

In summary, several conclusions can be drawn from the present study. 

First, heterozygous loss of global progranulin across age replicates critical 

frontotemporal dementia-related behavioral and functional deficits in the absence 

of detectable neuroinflammation. Secondly, heterozygous loss of progranulin 

reduces tau hyperphosphorylation in an Alzheimer’s transgenic mouse model 

suggesting that loss of progranulin, at least in the context of tau pathology, may be 

beneficial. Lastly, heterozygous loss of progranulin exacerbates Alzheimer’s 

disease- related behavior and amyloid-beta pathology in an Alzheimer’s transgenic 

mouse model, suggesting that loss of progranulin, at least in the context of amyloid 

pathology, may be detrimental. Our results suggest a dissociation of behavioral 

and functional deficits from microglial activation, suggesting an essential effect of 

progranulin deficiency on neurons driving key FTD-related behavioral deficits and 

potential underlying mechanisms. While progranulin has been suggested to be a 

potential therapeutic target for Alzheimer’s disease our results suggest this may 

not be the case due to differential effects on Alzheimer’s’ disease pathology.  
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CHAPTER 1: INTRODUCTION AND STATEMENT OF PROBLEM 

Alzheimer’s disease (AD) is the leading cause of dementia, affecting more 

than 35 million people worldwide (Prince et al., 2013). AD is a devastating 

neurodegenerative disease marked by progressive memory loss behaviorally and 

the accumulation of intracellular neurofibrillary tangles (NFTs) composed of 

hyperphosphorylated tau and extracellular amyloid-beta plaques composed of 

amyloid β (Aβ) in the central nervous system (Bertram et al., 2010). While Aβ is 

predominately only seen in AD, tau accumulation occurs in other diseases 

collectively known as tauopathies, including frontotemporal dementia (FTD), Pick’s 

disease, progressive supranuclear palsy and corticobasal degeneration (Goedert 

and Jakes, 2005). 

Due to AD and tauopathies’ high societal and economic costs, there is a 

significant need to discover new pathways and develop new treatments that either 

delay or prevent disease progression. If left untreated AD is expected to become 

an enormous economic burden, with the cost of caring for patients with AD and 

dementia is expected to rise to $2 trillion by 2030. Few treatments have been 

approved for AD and the ones that have do not alter disease progression, and only 

temporarily relieving symptoms (Karakaya et al., 2012; Anand et al., 2014). There 

are only five FDA-approved treatments for AD and the ones that have do not alter 

disease progression, but only temporarily relieve symptoms associated with 

memory loss (Karakaya et al., 2012; Anand et al., 2014). There are no approved 

treatments for tauopathies. Despite many efforts towards developing disease-
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modifying therapies that can block AD disease progression, drug candidates have 

99.6% failure rate, one of the highest of any disease area (Cummings et al., 2014). 

PGRN, a secreted pleiotropic growth factor, has been implicated in AD 

pathophysiology, with several studies suggesting genetic variability in PGRN is a 

risk factor for AD (Brouwers et al., 2008; Cortini et al., 2008; Viswanathan et al., 

2009). The PGRN polymorphism rs5848, which causes up to a 20% reduction of 

PGRN levels, increases the risk for AD (Rademakers et al., 2008; Lee et al., 2011; 

Sheng et al., 2014; Xu et al., 2016). Additionally, individuals with a single base-

pair deletion causing a frameshift mutation in Grn have been reported to have 

clinical presentations unique to AD, including prominent early memory impairment 

(Kelley et al., 2010). Lastly, Grn mutation carriers expressing the apolipoprotein 

E4 isoform have been reported to exhibit both plaques and tau-positive 

neurofibrillary tangles (Perry et al., 2013). Despite growing evidence 

that GRN mutations lead to neurodegeneration and affect AD via 

haploinsufficiency exactly how is unknown.  

Loss-of-function mutations in the GRN gene resulting in PGRN 

haploinsufficiency represent a significant cause of familial frontotemporal lobar 

dementia (FTLD) with TAR DNA-binding protein 43-positive inclusions and has 

been implicated in various other neurodegenerative diseases (Baker et al., 2006; 

Cruts et al., 2006b; Gass et al., 2006). While the exact function of PGRN in the 

central nervous system remains unclear, PGRN is expressed in neurons and 

dynamically in microglia (Daniel et al., 2000; Daniel et al., 2003; Petkau et al., 

2010). Studies using mouse models of PGRN deficiency have suggested both 
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neurotrophic and neuroprotective effects, with mice displaying abnormal 

behavioral and pathological phenotypes related to FTLD (Yin et al., 2010b; 

Martens et al., 2012; Petkau et al., 2012; Filiano et al., 2013). 

Exactly how haploinsufficient loss of PGRN modifies AD pathophysiology 

remains poorly understood. Two previous studies have focused on PGRN’s role in 

modulating neuroinflammation concerning AD (Minami et al., 2014; Takahashi et 

al., 2017a). Most reports studying PGRN loss have focused on PGRN’s role in 

neuroinflammation with Grn-/- mice exhibiting increased proinflammatory cytokines 

and increased microglial activation (Yin et al., 2010b; Martens et al., 2012; Petkau 

et al., 2012). Increased inflammation has long been implicated in the 

pathogeneses of AD and other neurodegenerative diseases, with PGRN 

expression being positively correlated with both dense-core and amyloid plaques 

in surrounding microglia (Akiyama et al., 2000; Wyss-Coray, 2006; Pereson et al., 

2009). Regarding amyloid pathology, conflicting reports exist with the effect of 

PGRN loss. In one study, an increase in Aβ plaques was observed in transgenic 

AD mice after microglial specific PGRN loss, and a reduction in plaque load was 

observed after the overexpression of total PGRN levels suggesting that loss of 

PGRN exacerbated Aβ pathology (Minami et al., 2014). However, in another study, 

an unexpected reduction of diffuse Aβ plaques was observed after PGRN loss via 

upregulation of TYROBP network genes suggesting that loss of PGRN may be 

beneficial (Takahashi et al., 2017a). The effect of PGRN loss on tau pathology is 

equally not well understood. In the same study, loss of PGRN loss was shown to 

increase tau AT8 and AT180 phosphorylation in Grn-/- mice compared to non-
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transgenic (NTg) mice that expressed human P3001L tau 1-441 via an adeno-

associated virus vector. This result is supported by a previous report showing 

increased tau phosphorylation in the same mouse model with partial loss of PGRN 

(Hosokawa et al., 2015). However, how the loss of PGRN modifies AD amyloid 

and tau pathology is unknown. 

In this dissertation, we investigated the role of PGRN in AD pathology and 

specifically how haploinsufficient, rather than complete loss, PGRN affects tau and 

amyloid pathology. The central hypothesis is that haploinsufficiency loss of PGRN 

in neurons and microglia worsens AD-associated behavioral abnormalities, the 

accumulation of NFTs composed of hyperphosphorylated tau, and extracellular 

amyloid plaque deposition. We examined three hypotheses: (1) Happloinsufficient 

loss of PGRN causes FTD-related behavioral deficits during aging in the absence 

of neuroinflammation, (2) PGRN haploinsufficiency worsens motor deficits and 

increases tau phosphorylation in the P301S tau transgenic mouse model, and (3) 

haploinsufficiency loss of PGRN worsens amyloid-related behavioral deficits and 

increases amyloid plaque deposition in the APdE9 amyloid transgenic mouse 

model. 

To test these hypotheses, we crossed Grn+/- mice, which have a global 

herterozygous reduction of PGRN with the P301S tau transgenic mouse model 

overexpressing the P301S mutant human tau associated with clinical cases of 

neurodegenerative tauopathy and the APPSwe/PSEN1dE9 (APdE9) amyloid 

mouse model expressing human APP with the Swedish mutant and human PSEN1 

lacking exon 9. While Grn-/- mice have predominately been used to study PGRN 
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deficiency we opted to use a Grn+/- mouse model instead. Although Grn-/- mice 

replicate some FTLD-related pathology, such as microgliosis, both Grn-/- and Grn+/- 

mice display key FTD-related behavior abnormalities (Yin et al., 2010b; Roberson, 

2012; Filiano et al., 2013). In humans, mutations causing PGRN haploinsufficiency 

have only been shown to cause FTLD, whereas mutations causing complete loss 

of PGRN causes neuronal ceroid lipofuscinosis suggesting different disease 

outcomes, which has been corroborated with mouse studies (Smith et al., 2012; 

Tanaka et al., 2014). Behavioral and signaling differences have been reported 

between the two models with Grn+/-, but not Grn-/- mice, showing social dominance 

and mTORC2/Akt signaling abnormalities (Arrant et al., 2016). Therefore, Grn+/- 

mice may be a better mouse model for modeling human PGRN-related FTD.  

In this study, we first phenotypically characterized a novel Grn+/- mouse 

model across aging looking at critical cognitive and non-cognitive FTLD-related 

behaviors and FTLD-related pathology. We then studied PGRN 

haploinsufficiency’s effect on AD by crossing the Grn+/- mouse model with the 

P301S tau transgenic model and the APdE9 tau transgenic mouse model. We 

measured AD-related cognitive and non-cognitive behaviors associated with 

respect to tau and amyloid pathologies for both models. We then investigated the 

effect of PGRN loss on tau and amyloid pathology using western blots, 

immunohistochemistry, and immunofluorescence techniques. In vitro extracellular 
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recordings were performed in the hippocampal slices to determine the effect of 

PGRN loss on long-term potentiation (LTP). 

The research presented here aims to elucidate further the role of PGRN in 

AD and neurodegenerative disease in general. By understanding the effects of 

PGRN haploinsufficency on AD pathophysiology and identifying mechanisms by 

which PGRN modulates AD disease progression, we may help develop novel 

strategies that will improve the treatment of patients with AD and other 

neurodegenerative diseases. 
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CHAPTER 2: REVIEW OF LITERATURE 

2.1 Alzheimer’s Disease 

In 1907 the first of two reports describing two patients with pre-senile 

dementia, “A Characteristic Disease of the Cerebral Cortex,” was published by the 

German psychiatrist Alois Alzheimer(Alzheimer, 1907). This two-page article and 

his later publication “On Certain Peculiar Diseases of Old Age” described the 

clinical and neuropathological history of Auguste D. and Johann F., who were both 

patients that were admitted to Alzheimer’s care for pre-senile dementia (Alzheimer, 

1911). In both patients, Alzheimer described profound memory impairment 

coupled with agnostic, aphasic, and apractic deficits. In addition to behavioral 

abnormalities, both patients also had pathological hallmarks, including small 

extracellular “military foci” and dense intracellular “bundles of fibrils” (Alzheimer, 

1907, 1911). 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease and the 

most common type of dementia, accounting for approximately 70% of all cases 

and affecting more than 35 million people worldwide (Burns, 2009; Prince et al., 

2013). Behaviorally AD is marked by progressive memory loss with 

neuropsychiatric symptoms including depression, apathy, aggression, and 

psychosis appearing later as the disease progresses (Lyketsos et al., 2011; Li et 

al., 2014). Neuropathologically, AD is characterized by two hallmark lesions: the 

accumulation of intracellular neurofibrillary tangles (NFTs) composed of 

hyperphosphorylated tau and extracellular amyloid plaques composed of amyloid-
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beta (Aβ) in the central nervous system (Bertram et al., 2010). The degree of 

cognitive decline parallels with the propagation and pathological distribution of the 

hallmark lesions that characterize AD (Braak and Braak, 1994; Gomez-Isla et al., 

1996). For instance, during the early stages of AD, lesions are primarily confined 

to the transentorhinal area and CA region of the hippocampus and selectively 

impair recognition, language comprehension, and visuospatial perceptions while 

sparing motoric and sensory functions (McKhann et al., 1984). However, in the 

later stages of AD, legions extend to the isocortex leading to motoric and sensory 

deficits. 

2.2 Tau Pathology in AD and tauopathies 

2.2.1 Tau in the healthy brain 

Tau is one of three major microtubule-associated proteins, and its primary 

function in the normal brain is the promotion of the assembly of tubulin into 

microtubules and the stabilization of the resulting structure (Weingarten et al., 

1975). In the human brain, tau has six different molecular isoforms coded by a 

single gene on chromosome 17 and generated by alternative splicing (Goedert et 

al., 1989; Himmler et al., 1989). Tau isoforms differ from each other only by the 

exclusion or inclusion of exon 10 in the carboxy-terminal half and the presence or 

absence of a 29 amino acid or 58 amino acid insert in the amino-terminal half. The 

exclusion of exon 10 in tau results in three isoforms with three repeats each, and 

the inclusion of exon 10 results in the three different isoforms with four repeats 

each. The repeats are the primary microtubule-binding domain for tau, and 

experimentally the four repeat isoforms better promote microtubule assembly 
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versus three repeat isoforms (Goedert and Jakes, 1990). In non-diseased brain 

there are similar levels of both three and four repeat isoforms. 

2.2.2 Genetics of tau in tauopathies 

To date, there no known reported tau mutations in AD, but mutations in tau 

have been reported in other tauopathies. Mutations in tau are predominately 

limited to frontotemporal dementias, characterized by neurodegeneration in only 

the frontal and temporal lobes of the cerebral cortex. In 1994, an autosomal 

dominantly inherited form of frontotemporal dementia with Parkinsonism was 

linked to chromosome 17q21.2, which later combined with the observations of 

other familial forms of frontotemporal dementia being linked to this region resulting 

in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) 

(Wilhelmsen et al., 1994). The pathological accumulation of hyperphosphorylated 

tau marks all cases of FTDP-17. Over 32 different tau mutations were reported in 

more than 100 families with FTDP-17, with the first being reported in 1998 (Hutton 

et al., 1998; Poorkaj et al., 1998; Spillantini et al., 1998). Mutations in tau consist 

of either missense, deletion, or silent mutations. 

Mutations in tau can be broadly separated into two categories: mutations 

that have a primary effect at the protein level and ones that affect tau pre-mRNA’s 

alternative splicing. Except for mutations in exon 10 of Tau, which affect both the 

protein and RNA levels, most Tau mutations only affect one (D'Souza et al., 1999; 

Yoshida et al., 2002). Most missense mutations decrease tau’s ability to bind to 

microtubules, which results in mutant tau’s reduced ability to promote microtubule 

assembly (Hasegawa et al., 1998; Hong et al., 1998). While a few missense 
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mutations have been shown to increase tau’s ability to promote microtubule 

assembly, the vast majority of missense mutations cause varying degrees of 

reduced microtubule binding and stability (Delobel et al., 2002). Missense 

mutations in tau have also been suggested to cause FTDP-17 by promoting tau 

protein aggregation (Nacharaju et al., 1999). A growing number of studies have 

demonstrated that missense mutations in tau promote tau hyperphosphorylation, 

with P301L and P301S mutations being the most prominent (Goedert et al., 1999).  

2.2.3 Hyperphosphorylation of tau 

In AD and other tauopathies, tau protein is abnormally 

hyperphosphorylated, and this phosphorylated tau is the major component of 

neurofibrillary tangles and is associated with neurodegeneration (Grundke-Iqbal et 

al., 1986; Lee et al., 1991). The hyperphosphorylation of tau is thought to precede 

the accumulation of tau protein into neurofibrillary tangles with different 

phosphorylation sites have been identified and used as markers for progression of 

tau pathology (Fig. 1) (Grundke-Iqbal et al., 1986). Pre-neurofibrillary tangles are 

primarily comprised by phosphorylation at Thr231 stained by the antibody AT180, 

while neurofibrillary tangles composed of filamentous tau is marked by 

phosphorylation at Thr212/Ser214 (AT100) and Ser202/Thr205 (AT8) in AD 

(Augustinack et al., 2002).  Quantitative immunohistochemistry studies have 

revealed tau deposits of only abnormally phosphorylated tau, but not normal tau in 

AD brains, suggesting phosphorylation is a prerequisite for aggregation (Bancher 

et al., 1989; Bancher et al., 1991). Pathogenically, hyperphosphorylation is 

believed to make tau more resistant to proteolysis, making phosphorylated tau’s 
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turnover severalfold slower than wild type tau and promoting aggregation (Wang 

et al., 1995; Wang et al., 1996). 

  



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

 

 

 

 

 

 

 

 

Fig. 1. Illustration of neurofibrillary tangle formation by tau 

hyperphosphorylation. Stabilization of microtubule-associated tau protein is 

controlled by kinases. Hyperphosphorylation of tau proteins results in destabilized 

microtubules due to the detachment of phosphorylated tau monomers. 

Phosphorylated tau monomers aggregate into cytoplasmic insoluble tau 

oligomers, which then accumulate to form paired helical filaments and is 

associated with phosphorylation at threonine 231 (AT180). Paired helical filaments 

then begin to aggregate ultimately leading to the formation of neurofibrillary tangles 

associated with phosphorylation at serine 202 and threonine 205 (AT8) and 

threonine 212 and serine 214 (AT100).  
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Like other phosphoproteins, the level of phosphorylation of tau is a function 

of the activity levels of kinases and phosphatases that regulate phosphorylation. 

In non-diseased states, normal tau contains two or three phosphate groups. 

however, in AD, hyperphosphorylated tau contains between 5 and 9 mol of 

phosphate per mole of the protein (Tomlinson et al., 1970). Over 45 different 

serine/threonine residues have been reported to be phosphorylated in AD, and 

several essential protein kinases have been identified (Singh et al., 1994; 

Morishima-Kawashima and Kosik, 1996; Hanger et al., 1998). Among the identified 

kinases involved in the abnormal hyperphosphorylation of tau, the most prominent 

is glycogen synthase kinase-3 beta (GSK-3β), cyclin-dependent protein kinase-5 

(CDK5), protein kinase A (PKA), mitogen-activated protein kinase ERK ½, calcium 

and calmodulin-dependent protein kinase-II (CaMKII) (Pei et al., 2003). Tau is 

primarily phosphorylated at proline-directed sites consisting of a serine/threonine 

followed by proline sites for proline-directed protein kinases (PDPKs). All major 

PDPKs, GSK3-β, CDK5, and ERK ½, have been shown to phosphorylate tau at 

many phosphorylation sites seen in the AD brain (Wang et al., 2013). 

The two most prominent PDPKs in phosphorylating tau are GSK-3β and 

CDK5, which share many of the same phosphorylation sites (Wang et al., 1998; 

Liu et al., 2002). The expression for both GSK-3β and cdk5 is high in the brain, 

and activity is associated with all neurofibrillary pathology stages (Woodgett, 1990; 

Tsai et al., 1993; Pei et al., 1998; Pei et al., 1999). In both cell cultures and 

transgenic mouse models, the overexpression of GSK-3β has been shown to 

increase tau phosphorylation in similar patterns seen in AD (Lovestone et al., 1996; 
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Spittaels et al., 2000; Lucas et al., 2001). Additionally, the inhibition of GSK-3β 

activity by lithium chloride has been shown to attenuate tau phosphorylation, 

further iterating the importance of GSK-3β activity on tau hyperphosphorylation 

(Stambolic et al., 1996; Hong et al., 1997; Perez et al., 2003). Cdk5 phosphorylates 

approximately 9-13 sites, and its activation requires the interaction of its regulatory 

subunit p39 or p35 or their proteolytic products p29 or p25 (Lew et al., 1994; Tsai 

et al., 1994). Phosphorylation of tau by cdk5-p35 is generally considered 

physiological, but phosphorylation by cdk5-p25 is considered pathological (Kimura 

et al., 2014). Incongruence with this, the overexpression of p25 in transgenic mice 

has been reported to increase the activity of cdk5 and the hyperphosphorylation of 

tau (Cruz et al., 2003; Noble et al., 2003). 

Unlike GSK-3β and cdk5, non-PDKs have been shown only to 

phosphorylate tau at a few sites. PKA and MARK kinase has been reported to 

phosphorylate tau at Ser-262 and PKA additionally at Ser-214, Ser-217, Ser-

396/404, and at Ser-416 (Brandt et al., 1994; Litersky et al., 1996; Drewes et al., 

1997). Additionally, CaMKII has been reported to phosphorylate tau at Ser-

262/356 and at Ser-416 (Singh et al., 1996; Sironi et al., 1998; Bennecib et al., 

2001). Interestingly, while non-PDPKs phosphorylate tau at fewer sites than 

PDPKs the phosphorylation of tau by non-PDPKs appears to prime tau for 
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phosphorylation tau by the PDPKs GSK-3β and cdk5 (Singh et al., 1995; Wang et 

al., 1998; Cho and Johnson, 2003). 

2.2 Amyloid Pathology in AD 

Amyloid precursor protein (APP) is a glycoprotein embedded in the 

membrane of neuronal cells, protruding both outside and inside the cell. APP 

comprises a large N-terminal extracellular domain, a short hydrophobic 

transmembrane domain, and a short intracellular C-terminal domain. APP’s exact 

role in the normal brain is unclear, but a growing amount of evidence suggests that 

APP is important in developmental and postnatal neurological functions (Pearson 

and Peers, 2006). While the normal function of APP is unknown mutations in APP 

and proteins that process APP suggest that alterations in APP processing and Aβ 

production is an essential aspect of familial Alzheimer’s disease (FAD) 

pathophysiology (Drewes et al., 1997) and is the primary component of amyloid 

plaques (Yankner and Mesulam, 1991; Haass et al., 1992; Seubert et al., 1992; 

Shoji et al., 1992). 

APP is a type 1 integral membrane protein and undergoes alternative 

splicing to produce eight APP isoforms. The most abundant and amyloidogenic 

isoforms are APP695, APP751, and APP770, possibly due to all three containing 

the same Aβ, intracellular and transmembrane domains (Kitaguchi et al., 1988; 

Palmert et al., 1988; Sandbrink et al., 1994). The relative expression of the APP 

splice forms varies from tissue to tissue, indicating differential regulation of mRNA 

processing and stability (Ponte et al., 1988). For example, the APP751 isoform is 
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distributed among various brain regions, and the APP695 isoform is predominately 

expressed in neuronal cells in the cortex (Tanzi et al., 1988). 

2.2.1 Amyloid processing and plaque formation 

APP is processed by two different sets of enzymes, leading to a non-

pathogenic pathway and the other set leading to a pathogenic pathway (Fig.2). 

Approximately 90% of APP is processed through the non-pathogenic pathway with 

the remaining 10% entering the pathogenic pathway (Thinakaran and Koo, 2008). 

Mutations in APP and related processing proteins and environmental factors can 

alter these ratios. 

In the non-pathogenic pathway, APP is cleaved first by the α-secretase 

resulting in a soluble N-terminal fragment (sAPPα) and a C-terminal fragment 

(CTFα). The function of sAPPα is unclear but may involve synaptogenesis, neurite 

outgrowth, and neuronal survival (Selkoe, 2001). The CTFα fragment is retained 

in the membrane where it is cleaved by the presenilin-containing γ-secretase 

yielding a  
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Fig. 2. Illustration of the amyloid precursor protein (APP) processing 

pathway. The APP protein can by processed by two pathways depending on the 

proteinase: the nonamyloidogenic pathway if processed first by α-secretase and 

the amyloidogenic pathway if processed first by β-secretase. In the 

nonamyloidogenic pathway, α-secretase cleaves in the middle of amyloid beta 

(Aβ) region releasing the soluble APP-fragment (sAPP-α), followed by the γ-

secretase resulting in the release of the P3 fragment and APP intracellular domain 

(AICD). In the amyloidogenic pathway, β-secretase cleaves APP above the Aβ 

region releasing the soluble APP-fragment (sAPP-β) resulting APP-CTF99 

(CTFβ). CTFβ is then cleaved by γ-secretase resulting in various Aβ species 

(Aβ40, Aβ42, etc.) which then aggregate ultimately resulting in amyloid plaques.  
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soluble N-terminal fragment (p3) and a membrane-bound C-terminal fragment 

(AICD). 

In the pathogenic pathway, APP is instead first cleaved by the β-secretase 

resulting in a soluble N-terminal fragment (sAPPβ) and a membrane-bound C-

terminal fragment (CTFβ). The CTFβ fragment is then cleaved by the γ-secretase 

resulting in an AICD fragment and a soluble N-terminal fragment (Aβ). Although 

Aβ is necessary for neuronal function and inhibition of long-term potentiation, it can 

accumulate in blood vessels and the brain’s parenchymal, where it can aggregate 

into amyloid plaques found in AD. Interestingly, β-secretase activity has been 

reported to increase with aging in human, monkey and mouse brains suggesting 

that aging alone increases the pathogenic processing of APP (Fukumoto et al., 

2004). 

Unlike other APP fragments, Aβ considered ‘sticky’ and can self-aggregate 

into extracellular plaques by a multi-step polymerization process (Thinakaran and 

Koo, 2008). First, Aβ aggregates into oligomers, which in turn cluster together with 

a β-sheet structure forming fibrils. Lastly, fibrils aggregate together, making mats, 

which further aggregate with other proteins, forming diffuse then dense-core 

amyloid plaques (Sheng et al., 1997). The aggregation of Aβ into amyloid plaques 

is influenced by several factors, including the concentration of Aβ, neuronal activity 

and synaptic release, and the activity of level of α-secretase and β-secretase, 

among others (Selkoe, 2001). 

Aβ cleavage products can differ in length between 36 and 43 amino acids. 

While a variety of Aβ fragments are generated, the two most important with regards 
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to AD is the Aβ fragment ending at amino acid 42 (Aβ42) and Aβ fragment ending 

at amino acid 40 (Aβ40). Aβ42 is considered the most pathogenic of Aβ species with 

mutations favoring the production of Aβ42 linked to familial AD (Thinakaran and 

Koo, 2008). 

2.2.2 Genetic evidence implicating Aβ in AD 

Unlike mutations in tau there is a considerable and growing amount of 

genetic evidence suggesting that either the increase in amyloid production or 

aberrant processing of APP is linked to AD’s development. Initial genetic evidence 

linking amyloid to familial causes of dementia was not in patients with AD but 

patients with Down’s syndrome. The APP gene is located on chromosome 21, and 

patients with Down’s syndrome having a third copy of chromosome 21 develop 

typical AD neuropathology, presumably due to the increased production of Aβ. 

Interestingly, individuals with translocation Down’s syndrome with only the distal 

part of chromosome 21 not containing the APP gene have Down’s features but not 

AD neuropathology (Prasher et al., 1998). Furthermore, individuals who have the 

APP gene segment duplicated but not the rest of chromosome 21 do not develop 

Down’s features but typically develop AD in their 50’s (Rovelet-Lecrux et al., 2006). 

Conversely, the APP missense mutation A673T results in the lifelong decrease of 

APP cleavage by the β-secretase resulting in the decrease of the amyloidogenic 

cleavage of APP, effectively decreasing the production of Aβ (Jiang et al., 2014). 
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Patients with the A673T mutation have a lower risk of developing AD 

neuropathology and cognitive decline (Kero et al., 2013). 

The first mutation discovered in APP capable of causing dementia is the 

E693Q Dutch missense mutation, where mutation carriers develop a severe 

hereditary form of cerebral amyloid angiopathy (CAA) that is separate from AD 

(Levy et al., 1990). A handful of mutations in APP causative for FAD were 

discovered one year later, including V7171 London and V717F Indiana mutations 

(Goate et al., 1991; Murrell et al., 1991). In general, APP mutations can be 

categorized either as causative for CAA or FAD with several unique differences. 

Mutations causative for CAA is located in the central region of APP and promote 

fibril formation by changing the charge distribution, likely affecting peptide structure 

(Miravalle et al., 2000; Baumketner et al., 2008). Unlike FAD mutations, CAA 

causative APP mutations do not increase the production of Aβ, but some 

mutations, most notably the Dutch mutation, have been reported to make the APP 

peptide less efficiently degraded (Morelli et al., 2003). Unlike CAA causative 

mutations, FAD mutations are typically clustered around the proteolytic processing 

of APP into Aβ by the β-secretase and γ-secretase enzymes (Weggen and Beher, 

2012). Possibly the most well described APP FAD mutation at the β-secretase site 

is the KM670/671NL Swedish mutation, which increases total Aβ secretion (Citron 

et al., 1992; Cai et al., 1993; Citron et al., 1994) . Mechanistically the Swedish 

mutation and other mutations associated with the β-secretase increase APP’s 

affinity for the beta-secretase resulting in increased Aβ species’ increased 

production (Vassar et al., 1999). FAD mutations that occur distal to the γ–



23 
 

secretase, unlike mutations occurring around the β–secretase cleavage site, 

typically elevate the Aβ42/Aβ40 ratio (Bergman et al., 2003; Hecimovic et al., 

2004). Although it is not clear exactly how FAD mutations increase the Aβ42/Aβ40 

ratio, the γ–secretase cleaves APP into a variety of different Aβ peptide species 

(Aβ38, Aβ39, Aβ40, Aβ42, and Aβ43), and it has been postulated that the FAD 

mutations make the production of the Aβ42 cleavage more favorable (Weggen and 

Beher, 2012). Interestingly, the A673T APP missense mutation decreases the 

affinity for APP cleavage by the γ–secretase resulting in a lower risk of clinical AD 

and age-related cognitive decline (Jonsson et al., 2012). 

Most identified FAD mutations are in the PSEN1 gene on chromosome 14. 

Since the first mutations identified in PSEN1 and PSEN2 in 1995, over 180 

different pathogenic mutations have been identified (Sherrington et al., 1995; 

Weggen and Beher, 2012). PSEN proteins form the catalytic core of γ-secretase 

which catalyzes the last step in the cleavage and generation of Aβ peptides from 

APP (De Strooper, 2010).  While PSEN mutations have been postulated to have 

both γ-secretase-dependent and –independent effects the most consistent feature 

of PSEN mutations is the increase ratio of Aβ42/Aβ40 that is caused by either 

increase in Aβ42 levels with decreased A40, increased A42 with unchanged A40 

or unchanged A42 with decreased A40 (Weggen and Beher, 2012). Although 

PSEN mutations were at first considered to be gain-of-function due to the elevation 

of Aβ42 production subsequent work has shown that overall γ-secretase activity 
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may be decreased compared to wild type as evidenced by PSEN mutations 

reducing NICD production representing a loss-of-function (Song et al., 1999). 

Several genome-wide association studies have highlighted new genes that 

might be risk factors for late-onset AD (LOAD). Specifically, three types of 

processes have emerged as biologically relevant to AD’s pathogenesis including 

cholesterol/sterol metabolism, endosomal vesicle recycling, and the brain’s innate 

immune system and inflammation. Of importance is the role of the immune system 

in AD pathophysiology. The immune system has long been implicated in AD due 

to the early observation that multiple components of the classical complement 

cascade are present in and around amyloid plaques most likely due to the 

presence of microglia (McGeer et al., 1989). Only recently have genetic reports 

emerged implicating genetic variability in microglia-specific genes associated with 

LOAD implicating microglial clearance of Aβ as an essential function; genetic risk 

factors for AD included polymorphisms in CD33 (Bertram et al., 2008; Hollingworth 

et al., 2011b; Naj et al., 2011), CLU, complement receptor 1 (Lambert et al., 2009), 

TREM2 (Guerreiro et al., 2013; Jonsson et al., 2013) and the HLA-DRB4-DRB1 

region (Lambert et al., 2013). The risk genes for CR1, CD33, and TREM2 have 

been the most studied and are involved in microglia response to Aβ. The 

inactivation or blockade of either CR1 or CD33 inhibits microglial activation and 

increases microglial phagocytosis of Aβ (Crehan et al., 2013; Griciuc et al., 2013), 

and TREM2 is responsible for maintaining microglial phagocytosis (Wang 2015). 

TREM2 expression is upregulated in microglia surrounding amyloid, and the 

overexpression of TREM2 in hAPP Tg mice decreases amyloid plaque burden 
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(Karakaya et al., 2012). Taken together, all of these data suggest strongly that the 

innate immune system and specifically the phagocytosis of Aβ by microglia play 

an essential role in the pathogeneses of LOAD. 

2.2.3 Neuroinflammation and Amyloid Pathology 

Even before genome-wide association studies, inflammation has long been 

associated with the pathological progression in AD (Rogers et al., 1996). Systemic 

infection and severe head injury, which are both causes of increased inflammation, 

have been reported to be risk factors for AD (Tanaka et al., 2014). Additionally, 

epidemiological studies suggest that people taking anti-inflammatory drugs have a 

significantly lower AD incidence (McGeer et al., 1990). Taken together with prior 

literature, supports the idea that chronic inflammation exacerbates AD’s 

progression, and blunting the immune response may benefit AD. Initial attempts at 

manipulating the immune response in transgenic mice led to the surprising finding 

that the inflammatory response initiation increased the clearance of amyloid 

plaques suggesting that inflammation attenuated AD pathophysiology (Birch et al., 

2014). However, the overexpression of pro-inflammatory mediators increased 

disease progression supporting the initial hypothesis that increased inflammation 

exacerbated AD disease progression (Colton et al., 2006). These seemingly 

paradoxical results underlie the complexity of the role of inflammation and, 

specifically, the role microglia play in AD’s progression. Microglia’s role in AD 

disease progression is further complicated when taking into consideration aging 

as an important etiological factor. A growing body of evidence from Streit and 

colleagues have shown microglia are subjected to replicative senescence and 
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show age related decline in structure and function (Streit, 2006; Streit and Xue, 

2013; Streit et al., 2021). 

Despite these paradoxical results, general themes have emerged between 

the genetic manipulations of multiple inflammatory pathways versus studies 

administering compounds that promote inflammation (Colton et al., 2006; Kummer 

et al., 2011). In general, the genetic ablation of pro-inflammatory mediators tends 

to decrease inflammation and AD disease progression. For example, inhibiting pro-

inflammatory cytokines IL-12 and IL-23 by deleting their standard subunit p40 

decreased amyloid plaque burden and cognitive decline (Vom Berg et al., 2012). 

Additionally, inhibiting IFNγ signaling by deleting the IFNγ receptor results in 

reduced neuroinflammation and amyloid plaque burden (Yamamoto et al., 2007). 

Both results are taken together with other studies genetically ablating inflammatory 

pathways, enforce the notion that inflammation exacerbates AD’s progression. 

Therefore, a positive correlation generally exists between inflammatory levels and 

increased AD pathology after genetic manipulation. 

In contrast to genetic ablation experiments, most studies increasing 

inflammation, either by the administration of lipopolysaccharide (LPS) or IL-1β, 

result in increased gliosis and paradoxically decreased in amyloid plaque burden, 

suggesting that inflammation may be beneficial. This reduction in amyloid plaques 

is primarily associated with microglial activation (Shaftel et al., 2008; Jaeger et al., 

2009; Matousek et al., 2012). For example, in one study seven days after the 

administration of LPS reduced the amyloid plaque burden (Herber et al., 2007). 

However, another study’s chronic administration of LPS for two weeks resulted in 
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increased amyloid plaque burden (Qiao et al., 2001). The discrepancy in these 

results may be due to microglial activity during short- and long-term inflammatory 

processes activation. For example, three days after APP/PS1 transgenic mice 

were injected with LPS had decreased amyloid levels, but after 28 days, amyloid 

levels rebounded (Herber et al., 2004). This change coincided with changes in 

microglia morphology during the same period. Taken together, data suggest that 

at least initially, the activation of inflammatory processes, specifically microglial 

activation, decreases amyloid pathology. Therefore, a negative correlation is 

generally seen with increased inflammatory levels and decreased pathology after 

stimulation. 

 The dichotomy between how the inflammatory pathway is manipulated, 

genetically modified versus stimulation, and the concurrent effect on pathology 

suggests that microglia’s various functions are being activated. Like macrophages, 

microglia exist in various phenotypes (M1, M2a, M2b, and M2c) associated with 

various functions (Mantovani et al., 2004; Boche et al., 2013). The M1 phenotype 

is characterized as a classically activated state and is involved in recruiting other 

immune cells and phagocytic activity (Szekanecz and Koch, 2007). The M2 

phenotypes are considered to be alternatively activated states with the M2a 

phenotype associated with wound-healing and tissue remodeling, M2b a mix of M1 

and M2a phenotypes and involved in immunoregulation, and M2c involved with 

immunoregulation and tissue remodeling (Mantovani et al., 2004; Edwards et al., 

2006). Notably, in AD patients, the neuroinflammatory phenotype changes with 

disease’s progression (Sudduth et al., 2013). Early-stage AD patients microglia 



28 
 

are typically clustered into either an M1 or M2a inflammatory phenotype, while late-

stage AD displays a mixed phenotype. This mixed microglial phenotype is 

associated with a significant increase in neuritic amyloid plaques, and early-stage 

AD patients with an M2a phenotype are associated with a higher degree of 

cardiovascular disease than in patients with the M1 phenotype. This 

heterogeneous population of microglial activation in AD patients is also seen in 

transgenic mouse models, with reports suggesting that the M1 phenotype is 

associated with a lower amyloid burden due to increased phagocytic activity. For 

example, overexpressing IL-1β, a well-characterized M1 cytokine, resulted in a 

decrease in amyloid burden (Shaftel et al., 2007). The mixed microglial phenotype 

is generally associated with the increased amyloid burden with the Tg2576 AD 

transgenic mouse models typically having a mixed M2a and M2c inflammatory 

phenotype (Wilcock et al., 2011). The transition away from an M1 to an M2 

phenotype is associated with increased disease progression. For example, the 

overexpression of IFNγ initially induces an M1 inflammatory phenotype 4-months 

post-infection, but at six months, a mixed M2 microglial phenotype is observed 

(Weekman et al., 2014). While no changes in amyloid burden were observed at 

four months, a significant increase was observed after six months. The different 

effects of the microglial phenotype on AD pathology suggest that microglial have 
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a multi-faceted role in AD, and specifically, the manipulation of microglia’s 

phagocytic activity plays a vital role in AD disease progression. 

2.3 Progranulin’s role in neurodegenerative disease 

PGRN is a multifunctional protein expressed in both neurons and microglia 

with neurotrophic and neuroprotective functions (Pereson et al., 2009; Petkau et 

al., 2010). Although the exact function of PGRN in the central nervous system 

(CNS) is not well-understood loss-of-function mutations in the PGRN gene (GRN) 

are a significant cause of familial frontotemporal dementia (FTD), and genetic 

variation in PGRN has been linked to multiple neurodegenerative diseases (Baker 

et al., 2006; Cruts et al., 2006b). PGRN’s association with a large number of 

different neurodegenerative diseases has led many to hypothesize that it plays an 

important role in neurodegenerative disease as a whole and has made it an 

attractive and potential therapeutic target for a wide range of neurodegenerative 

diseases. 

2.3.1 Progranulin and FTLD 

FTLD is a devastating neurodegenerative disease and is the leading cause 

of dementia in people under 65 (McKhann et al., 2001; Vossel and Miller, 2008). 

FTLD is a collective term used to describe a group of pathologically heterogeneous 

neurodegenerative disorders that result in selective atrophy of the brain’s frontal 

and temporal lobes. Clinically, FTLD is referred to as frontotemporal dementia 

(FTD) can be subdivided into three distinct subtypes based on clinical features, 

including behavioral variant, which is marked by a progressive decline in behavior 

and executive function; semantic dementia, which is characterized by a loss of 
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semantic memory in verbal and non-verbal domains; and progressive non-fluent 

aphasia, which is characterized by deficits in either expressive or motor speech. 

 FTLD can be further classified into three different histological subtypes 

based on the main components of aggregated protein. The earliest pathology to 

be recognized was hyperphosphorylated tau protein deposits in both neurons and 

astrocytes called FTLD-Tau (Pickering-Brown, SM 2002). In most cases where tau 

deposits are absent, neuronal cytoplasmic inclusions that are immunoreactive for 

ubiquitin are present and referred to as FTLD-U (Neumann et al., 2009). Ubiquitin 

is a small regulatory protein that among other roles marks proteins for degradation. 

Withing the context of neurodegenerative disease the presence of ubiquinated 

protein inclusions are thought to represent a failure to successfully degrade the 

specific protein (Basisty et al., 2018). Depending on the significant ubiquitinated 

protein present, FTLD-U can be further subdivided into either FTLD-TDP, FTLD-

FUS or FTLD-UPS (Mackenzie and Rademakers, 2007). FTLD due to autosomal 

dominant loss-of-function mutations in GRN is a major cause of familial FTLD-

TDP(Baker et al., 2006; Cruts et al., 2006a). The major ubiquitinated protein in 

many cases of FTLD is made up of trans-activating DNA binding protein with a 

molecular weight of 43kDa (TDP-43)(Cairns et al., 2007) . Notably, TDP-43 

pathology is not unique to just FTLD but is also commonly reported in amyotrophic 

lateral sclerosis (ALS) and as high as 50% of cases with AD (Wilson et al., 2011). 

 Unlike in most neurodegenerative disorders, where mutations result in a 

toxic gain-of-function, FTLD with GRN mutations is thought to be caused by a 

global decrease in the levels of expressed and secreted PGRN. The majority of 
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reported GRN mutations result in nonsense-mediated mRNA decay, which is a 

eukaryotic mechanism for eliminating mutant transcripts containing premature stop 

codons, resulting in the complete loss of mRNA expression from one allele 

(Rademakers and Rovelet-Lecrux, 2009). Over 69 familial mutations in GRN have 

been described; the most common involves the premature insertion of stop codons 

or frame shifts that destroy mRNA through nonsense-mediated decay. Given that 

a wealth of mutations has been discovered and all with a similar mode of actions 

strongly supports the hypothesis that GRN haploinsufficiency results in an 

insufficient level of PGRN that leads to FTLD. 

FTLD patients with loss-of-function mutations in GRN are highly 

heterogeneous in disease duration, clinical presentations, and age of onset 

(Seelaar et al., 2011).  FTLD patients with Grn mutations have heterogeneous 

clinical syndromes with patients present with all of the defined clinical syndromes 

of FTLD, including primary progressive aphasia, FTLD with Parkinsonism, 

concomitant MND, and corticobasal syndrome (Galimberti and Scarpini, 2012). By 

far, the most consistent neuroimaging feature of patients with Grn mutations is 

asymmetric brain atrophy (Whitwell and Josephs, 2012), with asymmetric damage 

to white mater (Bozzali et al., 2013), severe cortical atrophy, and parietal (Whitwell 

et al., 2009) lobe involvement are additional clinical features associated with Grn 

mutations. 

2.3.2 Sex differences in GRN-related FTLD 

In general, FTD affects men and women equally but sex differences have 

not been well characterized. For example, with respect to clinical prevalence some 
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studies have reported sex differences (Bernardi et al., 2012; Goodman et al., 

2017), while others have not(Rosso et al., 2003; Borroni et al., 2010). More recent 

studies suggest that there may be sex differences with specific FTD subtypes 

compared to FTD overall. An early study by Ratnavalli and colleagues reported 

that men were four times more likely than women to develop the bvFTD subtype 

(Ratnavalli et al., 2002). Although this initial study used a small sample size a later 

study also found similar sex differences (Johnson et al., 2005). In this study, men 

were more likely to have bvFTD and SD, whereas women were more likely to have 

progressive nonfluent aphasia. 

In support of sex differences in FTD, the prevalence of GRN mutations have 

been reported to be 33% higher in females (Curtis et al., 2017). In support of the 

notion PGRN may drive sex differences in the prevalence of FTD, PGRN has been 

implicated in sexual differentiation of the developing brain and estrogen-induced 

neurogenesis (Chiba et al., 2007; Suzuki et al., 2009). Furthermore, sex 

differences in behavior have also reported in Grn-/- mice, with elevated levels of 

aggression and anxiety-like behavior observed (Chiba et al., 2009). 

2.3.3 PGRN variability and other degenerative disorders 

Because the penetrance of GRN mutations is incomplete, the striking 

variability associated with GRN mutations, and variability in wild type GRN allele 

other genes are considered to contribute to disease pathogenesis (Gass et al., 

2006; Rademakers et al., 2007). Evidence that genetic background plays a 

significant role in disease comes from one report that analyzed 30 different 

families, all with the Arg493X nonsense mutation in GRN that found four clinical 
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presentations and 25-year age range of onset among the families (Rademakers et 

al., 2007). also, monozygotic twins with FTLD due to GRN mutations were reported 

to have striking similar clinical and neuroimaging features, further suggesting the 

importance of genetic background on disease progression (McDade et al., 2012). 

 Recently the gene TMEM106B was identified in a genome-wide association 

study as a potential disease modifier for Grn FTLD mutation carriers (Van Deerlin 

et al., 2010). THEM106B codes for a transmembrane protein associated with 

PGRN in endo-lysosomes, and increased expression of TMEM106B reportedly 

increases intracellular PGRN (Chen-Plotkin et al., 2012; Lang et al., 2012). A minor 

allele of TMEM106B is associated with lower plasma PGRN levels in both patients, 

and health Individuals and genetic variability in TMEM106B has been shown to 

affect disease penetrance and age of onset in Grn mutation carriers (Cruchaga et 

al., 2011; Finch et al., 2011; van der Zee et al., 2011).  

There is growing evidence that genetic variability in Grn acts as a risk factor 

for other neurodegenerative diseases other than FTLD. Variability in the micro-

RNA binding site of the 3’ untranslated region of Grn (rs5848) has been shown to 

affect levels of PGRN and increase the risk for FTLD in one study (Rademakers et 

al., 2008). For unclear reasons, another study did not see an increase in risk with 

rs5848 (Rollinson et al., 2011). This discrepancy may further illustrate the 

importance of other factors, including genetic background and environment, affect 

the loss of PGRN. Regardless, the frisk allele’s functional consequences for 

rs5848 are reduced levels of circulating PGRN, and the risk allele is over-

represented in hippocampal sclerosis cases (Dickson et al., 2010; Hsiung et al., 
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2011; Pao et al., 2011; Kamalainen et al., 2013). Additionally, four tagging single 

nucleotide polymorphism in the Grn gene was significantly associated with the 

development of sporadic FTLD in patients who do not carry Grn causal mutations 

(Galimberti et al., 2010) further linking a connection between genetic variability and 

sporadic FTLD a subsequent study identified increased methylation of the PGRN 

promoter with a concurrent decrease in PGRN mRNA levels (Galimberti et al., 

2012). 

Additionally, a growing number of gene association studies assessing Grn 

gene variability in various neurodegenerative diseases have identified 

associations between disease duration, risk, and age of onset of disease with Grn 

variants in AD (Fenoglio et al., 2009; Lee et al., 2011), multiple sclerosis (Fenoglio 

et al., 2010), ALS (Sleegers et al., 2008) and bipolar disorder and schizophrenia 

(Galimberti et al., 2010; Momeni et al., 2010). Interestingly, Grn variability as a 

disease modifier is often small and not consistently reproducible, suggesting 

complex interactions between PGRN and genetic and environmental factors 

(Rollinson et al., 2011). Taken together, growing clinical data suggests that PGRN 

plays an essential role in brain function and neuronal health. 

2.4 Progranulin’s role in the central nervous system (CNS) 

2.4.1 Expression of PGRN in the CNS 

While the function of PGRN is still not well defined, clues can be gained from where 

it is expressed within the CNS. PGRN is primarily expressed in only neurons and 

microglia in the brain, with relatively low expression during development that 

increases with age (Petkau et al., 2010; Matsuwaki et al., 2011). Evidence exists 
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that PGRN may also be present at low levels in astrocytes, but there are conflicting 

reports (Ahmed et al., 2010; Petkau et al., 2010). 

 In microglia, PGRN is dynamically regulated, with PGRN expression being 

upregulated in response to injury or insult. Increased PGRN immunoreactivity in 

activated microglia has been found in patients and mouse models of multiple 

diseases, including Lewy body dementia (Revuelta et al., 2008), ALS (Malaspina 

et al., 2001; Irwin et al., 2009; Philips et al., 2010), multiple sclerosis (Vercellino et 

al., 2011) and AD (Gliebus et al., 2009; Pereson et al., 2009). PGRN levels have 

been shown to increase in microglia and macrophages after sciatic axotomy, spinal 

cord injury, and traumatic brain injury (Moisse et al., 2009; Naphade et al., 2010; 

Byrnes et al., 2011; Tanaka et al., 2013). 

 In neurons, it is unclear if PGRN expression is regulated in a similar way as 

microglial PGRN. An increase in PGRN immunoreactivity has been reported in 

neurons associated with dense-core plaques in the Tg2576 and APPPS1 AD 

transgenic mouse models (Pereson et al., 2009). However, other studies have 

reported either no change in PGRN expression (Moisse et al., 2009) or a decrease 

(Petkau et al., 2010) after injury. Regardless of how PGRN is regulated during 

injury under normal conditions, PGRN generally exists at low but stable levels in 

neurons. 

 Because GRN mutations that cause FTLD result in loss-of-function, and 

subsequent haploinsufficient loss of PGRN, one would expect PRN expression in 

patients with mutations to be reduced compared to normal controls. While this is 

true for histopathologically spared regions, surprisingly, in regions that are 



36 
 

histopathologically involved, such as the frontal and temporal cortex, one study 

found that GRN mRNA levels were increased and not decreased as would be 

expected (Chen-Plotkin et al., 2010). The increase in PGRN expression in the 

frontal and temporal lobes was caused by the remaining functional allele and 

increased in both the number and the activation state of microglia. Taken together 

with other reports on PGRN expression in the brain, the bulk of PGRN expressed 

during injury is contributed by the microglial population, while there appears to be 

little or no change in the expression of PGRN in the neuronal population. Despite 

a significant increase in PGRN from the microglial population during injury, the 

increased level of PGRN does little to compensate for the loss of PGRN expression 

during disease pathophysiology, suggesting that the specific reduction of PGRN in 

the neuronal population drives disease progression (Eriksen, 2010). 

2.4.2 PGRN’s function in neurons 

As loss of PGRN is implicated in numerous neurodegenerative disorders 

indicating PGRN may be a crucial neurotrophic factor in the brain, a handful of 

studies have examined the potential role of PGRN in neurite outgrowth (Toh et al., 

2011). In zebrafish models, PGRN is essential for motor neuron development and 

neurite outgrowth and branching. In one study, knockdown of PGRN was shown 

to generate truncated caudal primary motor neurons, with co-injection of PGRN 

partially rescued these effects (Chitramuthu et al., 2010). Similar results were 

reported in a separate study, which showed knockdown of the two PGRN 

homologs GRNa and GRNb resulted in a substantial decrease in axonal length, 

with the GRNa homolog producing a more significant reduction in axon length 
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(Laird et al., 2010). In the same study, PGRN overexpression rescued the 

axonopathy induced by PGRN knockdown. In rat cortical and motor neurons, full-

length PGRN and the granulin E peptide have been reported to promote neuronal 

survival and enhance neurite outgrowth (Van Damme et al., 2008; Ryan et al., 

2009).  

Additionally, in rat hippocampal neurons, small interfering RNA-mediated 

knockdown of PGRN resulted in reduced neurite arborization and dendritic 

protrusions (Tapia et al., 2011). In primary hippocampal cultures from Grn-/- mice, 

decreased neurite outgrowth was observed, which could be partially rescued by 

the treatment of recombinant full-length PGRN and granulin peptides (Gass et al., 

2012). How PGRN regulates neuronal outgrowth remains poorly understood, but 

one study using cultures of primary mouse neurons showed that treatment with 

PGRN resulted in an increase in neurite outgrowth by regulating glycogen 

synthase kinase-3β (GSK-3β) (Gao et al., 2010). Furthermore, a study recently 

generated transgenic mice with inducible neuronal PGRN overexpression and 

found that PGRN accelerated axonal outgrowth and restoration of neuromuscular 

synapses after an injury to the sciatic nerve (Altmann et al., 2016). While few 

reports exist studying neurotrophic properties of PGRN in vivo, one study reported 

decreased dendritic length in the apical dendritic arbor of CA1 pyramidal neurons 

in the hippocampus of Grn-/- mice (Petkau et al., 2012). Another study examining 
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Grn+/- mice reported changes in the dendritic arbors in the basomedial amygdala 

and the prelimbic cortex (Arrant et al., 2016). 

 Because the partial loss of PGRN results in gross neuronal loss, several 

studies have evaluated the role of PGRN in response to exogenous stressors. In 

cultures of primary mouse neurons, PGRN knockdown increased sensitivity to 

hydrogen peroxide and n-methyl-D-aspartic acid (NMDA) (Guo et al., 2010). 

Another study using differentiated neurons derived from induced pluripotent stem 

cells from a patient with a heterozygous GRN mutation had an increased sensitivity 

to kinase inhibitors (Almeida et al., 2012). Specifically, sensitivity was found for 

inhibitors for the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt) and 

mitogen-activated protein/extracellular signal-regulated kinase (MEK)/mitogen-

activated protein kinase signaling pathways. Interestingly, PGRN overexpression 

rescued axonopathy from TDP-43-induced toxicity in zebrafish but not from SOD1-

induced toxicity (Laird et al., 2010). Selective increase sensitivity has been 

reported in vivo PGRN mouse models. Against cerebral artery occlusion, lentiviral 

overexpression of PGRN had a protective effect suggesting neuroprotective 

effects of PGRN against ischemia and stress-induced cell death (Tao et al., 2012). 

In Grn-/- mice, increased neuronal cell death was observed in the substantia nigra 

administering of the toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

(Martens et al., 2012). However, loss of PGRN has not been shown to increase 

sensitivity to all stressors in Grn-/- mice with 3-nitropropionic acid, quinolinic acid, 

kainic acid, and pilocarpine hydrochloride all not affecting neuronal cell death in 

the striatum and hippocampus compared NTg mice (Petkau et al., 2013). 
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Collectively, evidence from both cell cultures and PGRN mouse models suggests 

PGRN has a neurotrophic effect on select toxins. 

 Despite growing evidence that PGRN may be a crucial neurotrophic factor, 

one major impediment to understating how PGRN promotes survival and neurite 

outgrowth in neurons is the lack of a definitive receptor that interacts with PGRN 

and initiates signal transduction (Kao et al., 2017). Currently, tumor necrosis factor 

(TNF) receptors and sortilin have been reported to be receptors for PGRN, but 

their interaction and function remain unclear (Hu et al., 2010; Tang et al., 2011). 

Sortilin has been shown to traffic extracellular PGRN to the lysosome for 

degradation and is unlikely to regulate PGRN mediated neuronal survival and 

neurite outgrowth. Recombinant PGRN has been shown to promote neurite 

outgrowth in hippocampal neurons despite lacking sortilin in vitro (Gass et al., 

2012). Similar results were also seen for granulin E promotion of neurite outgrowth 

despite inhibition of the granulin E-sortilin interaction (De Muynck et al., 2013). 

Interactions between PGRN and TNF receptors are still controversial, with one 

study unable to reproduce the interaction by co-immunoprecipitation or surface 

plasmon resonance (Chen et al., 2013). Therefore, it is unclear how PGRN could 

regulate neuronal survival and neurite outgrowth through TNF receptors. 

 There is a growing amount of evidence that PGRN plays a vital role in 

synapse and synaptic plasticity. A role of PGRN in synapse biology was first 

proposed after a screen of dysregulated genes from FTLD patients with GRN 

haploinsufficient mutations (Kocerha et al., 2011). Changes in both the number of 

synaptic vesicles and vesicle release probability have been observed in primary 
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hippocampal cells after siRNA-mediated knockdown of PGRN (Tapia et al., 2011). 

An increase in the number of synaptic vesicles has also been reported in FTLD 

patients carrying haploinsufficient GRN mutations, further suggesting that PGRN 

levels’ changes cause changes in synaptic function. PGRN has also been shown 

to colocalize with dense-core vesicle markers and is secreted in an activity-

dependent manner with neuronal activity increasing the recruitment of PGRN to 

synapses and increasing the density of PGRN (Petoukhov et al., 2013). The same 

study also that the treatment of recombinant PGRN increased the synapse density 

while decreasing the size and number of synaptic vesicles. 

Contrary to data from hippocampal cultures, postmortem brain sections 

from FTD patients with GRN mutations and Grn-/- mice had decreased synaptic 

vesicles per synapse number(Tapia et al., 2011; Petkau et al., 2012). In the same 

paper, complete loss of PGRN decreased LTP in the Schaffer collateral of Grn-/- 

mice. Decreased LTP has not been shown in Grn+/- mice; however, studies have 

only been reported in mice up to eleven months (Filiano et al., 2013). Regardless 

of the various methodologies and models used, growing evidence suggests that 

PGRN plays a vital role in synaptic function and neuronal connectivity. 

2.4.3 Progranulin’s function in microglia 

Only a few studies have directly investigated the role of PGRN in microglia, 

however, due to a growing number of studies reporting gross neuroinflammation 

in Grn-/- mouse models (Ahmed et al., 2010; Yin et al., 2010b; Petkau et al., 2012) 

and in FTLD patients (Chen-Plotkin et al., 2010) there is a renewed interest in the 

role of PGRN in microglia about neurodegeneration. The bulk of the existing 
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evidence strongly suggests that PGRN has an anti-inflammatory function with 

complete loss of PGRN resulting in overactive microglia (Ahmed et al., 2007). Grn-

/- mice exposed to MPTP exhibited an increased microglial inflammatory response 

resulting in the increased neuronal loss (Martens et al., 2012). The same study 

also showed an increased inflammatory response marked by increased 

inflammatory cytokines in Grn-/- isolated microglia after treatment with LPS/IFN-γ. 

Similarly, microglia from Grn-/- mice exhibited increased inflammatory response 

compared to wildtype mice after exposure to bacterial lipopolysaccharide (LPS) 

exhibited by decreased release of the anti-inflammatory cytokine interleukin-10 

and increased release of inflammatory cytokines (Yin et al., 2010b). However, 

another study using siRNA-mediated knockdown of PGRN in human fetal microglia 

reported decreased inflammatory cytokine production in response to the activation 

of different TLR receptors via LPS and poly IC suggesting that loss of PGRN did 

not result in an exaggerated inflammatory phenotype after stimulation (Suh et al., 

2012). Although contradictory, this may suggest various regulations of PGRN in 

mouse versus human microglia. Additionally, because this study involved siRNA-

mediated knockdown of PGRN versus the latter using Grn-/- mice, this may reflect 

differences in acute versus chronic PGRN deficiency in regulating microglial 

activity. 

Under specific conditions, PGRN is a chemoattractant for microglia. The 

first evidence came from a report that showed that intracortical administration of 

human PGRN by lentiviral construct in mice increased the number of activated 

microglia localized to the site injection site (Pickford et al., 2011). However, in a 
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second paper, the administration of recombinant PGRN to the hippocampus in rats 

did not alter the microglia number (Zhu et al., 2013). However, the same study did 

see an increase in the number of CD11b-positive microglia after administration of 

recombinant PGRN in mice with pilocarpine-induced status epilepticus suggesting 

that exogenous PGRN acts as a chemoattractant only under specific conditions. 

Another study investigating the recruitment of microglia to amyloid plaques found 

no difference in the number of Iba1-positive microglia surrounding amyloid plaques 

in mice with 50% reduced microglial expression of PGRN versus wild-type mice 

(Minami et al., 2014). Interestingly, two of the studies that examined PGRN’s 

chemoattractant ability for activated microglial in Grn-/- mice, found that complete 

loss of PGRN did not affect microglial migration to the site of injury suggesting that 

while exogenous PGRN can increase microglial chemotaxis microglial PGRN is 

not required for chemotaxis.  

There is growing evidence that PGRN plays a role in endocytosis in 

microglia and macrophages. In one study, the addition of recombinant PGRN 

enhanced the endocytosis of Aβ1-42 peptide in primary mouse microglial cells 

(Pickford et al., 2011). Further evidence supporting the role of PGRN in microglial 

phagocytic activity comes from observations that Caenorhabditis elegans were 

deficient for the gene homologous to the human Grn gene, which exhibited 

increased phagocytic removal of apoptotic cells (Kao et al., 2011). In the same 

study, macrophages isolated from Grn-/- mice also exhibited an enhanced 

apoptotic cell phagocytosis rate. Furthermore, a separate study using LysM-cre 

Grnflox/flox mice reported fewer PGRN-deficient microglia than wild-type microglia 
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phagocytosed fluorescent beads, suggesting reducing phagocytic activity after the 

loss of PGRN (Minami et al., 2014). Like PGRN as a chemoattractant, it appears 

that altered levels of PGRN modulate phagocytic activity but not wholly dependent 

on PGRN in microglia and macrophages due to differences in rates of phagocytic 

activities in Grn+/+ and Grn-/- cells. 

2.5 Mouse models of progranulin deficiency 

Several unique lines of Grn-/- and Grn+/- mouse lines have been generated and 

have been histopathologically and behaviorally characterized (Kayasuga et al., 

2007; Ahmed et al., 2010; Petkau et al., 2010; Yin et al., 2010b; Yin et al., 2010a; 

Ghoshal et al., 2012; Wils et al., 2012; Filiano et al., 2013). To date, Grn-/- mice 

have predominately been studied as a model for Grn caused FTLD over Grn+/- 

mice due to initial reports suggesting Grn-/- mice have more robust behavioral and 

pathological phenotypes. 

2.5.1 Pathology in PGRN mouse models 

Although FTLD patients with Grn mutations exhibit robust TDP-43 

pathology, both Grn-/- and Grn+/- mouse models show little or no signs of TDP-43 

pathology (Roberson, 2012). In FTLD patients with TDP-43 proteinopathy, TDP-

43 is pathologically cleaved, translocated to the cytoplasm, and is a significant 

constituent of ubiquitinated inclusions. While there has been no evidence of 

pathologically cleaved TDP-43 in either Grn-/- and Grn+/- mouse models, 

abnormally phosphorylated TDP-43 has been observed in several Grn-/- mouse 

models (Ahmed et al., 2010; Yin et al., 2010b; Wils et al., 2012), but not in Grn+/- 

mice. Similarly, unlike FTLD patients that exhibit a gross neuronal loss in the frontal 
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and temporal lobes, neurodegeneration has not been observed in either Grn-/- and 

Grn+/- mice (Roberson, 2012).  

 The most consistent neuropathological change observed in PGRN mouse 

models is increased inflammation in the brain. Increased microgliosis and 

astrogliosis is consistently observed in Grn-/- mouse lines between 12 and 18 

months of age (Ahmed et al., 2010; Yin et al., 2010b; Yin et al., 2010a; Ghoshal et 

al., 2012; Petkau et al., 2012; Filiano et al., 2013), but not in Grn+/- mice (Filiano et 

al., 2013). In addition to neuroinflammation Grn-/- mouse models have consistently 

shown early and exaggerated deposition of lipofuscin in the brain (Ahmed et al., 

2010; Petkau et al., 2010; Yin et al., 2010b; Ghoshal et al., 2012; Wils et al., 2012), 

but not in Grn+/- mice (Filiano et al., 2013). Lipofuscin is an autofluorescent pigment 

that accumulates in the brain with age, suggesting that loss of PGRN may lead to 

accelerated aging (Kelley et al., 2010). 

2.5.2 Behavior deficits in PGRN mouse models 

Most behavioral abnormalities in Grn-/- and Grn+/- mice are usually subtle 

and variable between studies. Most reports have only focused on Grn-/- mice, 

which develop an FTD-like behavioral disturbances pattern, including social and 

emotional abnormalities and deficits in hippocampal-dependent memory. By far 

the most commonly reported behavioral abnormality is in social behavior, with Grn-

/- displaying impaired social behavior in the three-chamber sociability test (Yin et 

al., 2010a; Filiano et al., 2013) and the resident/intruder test (Ghoshal et al., 2012; 

Petkau et al., 2012). Both Grn-/- and Grn+/- mice have shown deficits in impaired 

emotional behavior with a decrease in freezing time during fear conditioning 
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(Filiano et al., 2013). Only Grn-/- mice have been shown to exhibit increase 

aggressive and sexual behaviors (Kayasuga et al., 2007) as well as increased 

depression-like behavior (Yin et al., 2010a). Generally, Grn-/- mice do not exhibit 

any differences in non-cognitive behavior, but a few papers have reported sex-

differences within the Grn-/- genotype in the motorized rotarod and open field test 

(Petkau et al., 2012; Roberson, 2012). In Grn-/- mice hippocampus-dependent 

learning and memory, tested via the Morris water maze (MWM), has been shown 

to only be impacted in aged mice. With mice between twelve and eighteen months 

showing impaired learning and memory (Yin et al., 2010a; Ghoshal et al., 2012). 

The presence or absence of learning and memory deficits in Grn+/- mice is less 

clear, with only one studying showing no effects at nine months in the MWM 

(Filiano et al., 2013). However, given that learning and memory deficits are only 

present in aged Grn-/- mice older than twelve months, they may be present in Grn+/- 

at older ages. 

2.5.3 Differences between Grn-/- and Grn+/- mice 

Historically, studies investigating murine PGRN deficiency have primarily 

focused on the homozygous loss of PGRN versus a haploinsufficient loss of 

PGRN. While Grn-/- mice replicate some FTLD-related pathology, such as 

microgliosis, both models have recently been shown to replicatd key FTLD-related 

behavior abnormalities including social and emotional behavior deficits (Yin et al., 

2010b; Roberson, 2012; Filiano et al., 2013). Growing evidence suggests that 

patients with complete loss of PGRN may be significantly different from patients 

who have a haploinsufficient loss of PGRN. While Grn mutations causing 
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haploinsufficient loss of PGRN have only been observed in FTLD patients, recently 

a mutation causing complete loss of PGRN was identified in siblings. However, 

unexpectedly instead of having FTLD, the siblings have neuronal ceroid 

lipofuscinosis (NCL), a lysosomal storage disorder (Smith et al., 2012). This has 

been confirmed in Grn-/- mice, which recapitulate pathological features of Grn-

associated-FTLD and NCL, such as elevated lysosomal proteins cathepsin D, 

lysosomal-associated membrane protein 1 and transmembrane protein 106B 

(Gotzl et al., 2014; Tanaka et al., 2014). Interestingly, while Grn-/- mice display 

pathological features of NCL, Grn+/- mice do not suggest that NCL is specific to 

complete loss of PGRN and not haploinsufficient loss of PGRN (Smith et al., 2012). 

Besides, recent evidence from Grn+/- mice suggests that critical FTLD-related 

behavioral deficits resulting from haploinsufficient loss of PGRN can develop in the 

absence of neuroinflammation (Filiano et al., 2013). This disassociation between 

behavioral deficits and neuroinflammation suggests that FTLD-related behavioral 

deficits are independent to the increase of microgliosis and astrogliosis. 

There is a growing body of evidence suggesting divergent effects between 

partial and complete loss of PGRN. In addition to differences in pathological 

features, the emergence of behavioral and signaling differences in Grn-/- and Grn+/- 

mice suggesting divergent effects of partial and complete loss of PGRN. While 

most studies reporting abnormal behavior in Grn-/- mice did not compare them to 

Grn+/- mice, there have been several instances of divergent behavior (Yin et al., 

2010a; Ghoshal et al., 2012). In one study, increased aggressive behavior was 

observed in Grn-/- mice but not in Grn+/- mice (Kayasuga et al., 2007). Although 
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studies previously did not observe differences between Grn+/- and Grn-/- mice in 

social behavior via the three-chamber sociability test (Filiano et al., 2013), recently, 

differences were observed in the social dominance tube test (Arrant et al., 2016). 

In this study, Grn+/-, but not Grn-/- mice displayed age-dependent abnormalities in 

the social dominance tube test. In the same study, signaling differences were also 

reported in the MTORC2/Akt signaling pathway in Grn+/- and Grn-/- mice. Between 

six and nine months of age, increased phosphorylated ribosomal protein S6 at 

phosphosites Ser235/236 and Akt at phosphosites Ser473 was observed in the 

amygdala of Grn+/-, but not in Grn-/- mice and this correlated with changes in social 

dominance behavior (Arrant et al., 2016). Taken together, the mounting behavioral, 

pathological, and signaling differences between complete and partial PGRN 

deficiency as well as divergent clinical data suggest that Grn-/- and Grn+/- model 

different disease pathways.  

2.6 Role of progranulin in Alzheimer’s disease 

Given the high societal and economic cost of AD and dementia, there is a 

significant societal need to develop new treatments that delay or prevent AD 

disease progression. PGRN is a secreted pleiotropic growth factor and has been 

implicated in both Aβ, and NFT AD pathophysiology, with a growing number of 

studies, suggest that PGRN is a risk factor for AD (Brouwers et al., 2008; Cortini 

et al., 2008; Viswanathan et al., 2009). Polymorphisms in PGRN, which can cause 

up to a 20% reduction in PGRN levels, have been shown to increase the risk for 

AD (Rademakers et al., 2008; Lee et al., 2011; Sheng et al., 2014; Xu et al., 2016). 

In contrast with FTLD, AD is typically associated with early memory loss whereas 
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FTLD is associated with early executive behavioral differences. Despite GRN 

mutations being a major cause of FTLD there have been patients with a frameshift 

mutation in GRN due to a single base-pair deletion that have been reported to 

have clinical presentations to similar to AD (Kelley et al., 2010). Moreover, Grn 

mutation carriers with the apolipoprotein E4 isoform have been reported to exhibit 

both amyloid plaques and tau-positive NFTs (Perry et al., 2013). 

2.6.1 Expression of PGRN in AD 

Although there is an increasing number of studies reporting that loss of 

PGRN is associated with a higher risk for AD, precisely how PGRN loss modifies 

AD pathophysiology remains poorly understood. Currently, only three studies 

explore the loss of PGRN in AD transgenic mouse models, with two focusing on 

PGRN’s role in neuroinflammation (Minami et al., 2014; Hosokawa et al., 2015; 

Takahashi et al., 2017b). A growing number of studies have suggested that 

increased neuroinflammation contributes to AD’s pathogenesis and 

neurodegenerative disease in general. Recently, two genome-wide association 

studies linked complement component receptor 1, CD33, and triggering receptor 

expressed on myeloid cells 2 to an elevated risk for late-onset AD (Seshadri et al., 

2010; Hollingworth et al., 2011a). 

Much of PGRN’s interest in neuroinflammation and specifically in microglia 

is due to PGRN’s expression in the AD brain. PGRN levels are elevated in AD 

patients and are co-localized with microglia surrounding dense-core amyloid 

plaques (Gliebus et al., 2009; Pereson et al., 2009; Minami et al., 2014). 

Interestingly, in three different AD amyloid transgenic mouse models, PGRN is 
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significantly decreased compared to controls where amyloid pathology is either 

minimal or absent but elevated with extensive plaque deposition, suggesting that 

PGRN is differentially regulated during AD pathophysiology (Minami et al., 2014). 

While the upregulation of PGRN is most likely due to increased transcription via 

increased activation of microglia, it is not clear how PGRN is downregulated. One 

possible explanation that has been suggested is that Aβ oligomers may 

downregulate PGRN in neurons and microglia (Minami et al., 2014). While Aβ 

fibrils associated with amyloid plaques have been shown to increase PGRN 

expression in microglia, Aβ oligomers have been shown to signaling pathways that 

have previously been reported to decrease PGRN expression (Suh et al., 2012). 

2.6.2 PGRN and amyloid pathology 

Currently, two studies have focused on PGRN’s role in modulating 

inflammation concerning Aβ pathology but have conflicting results (Minami et al., 

2014; Takahashi et al., 2017a). In one study a protective role of PGRN was 

reported with an increase in Aβ plaques in transgenic AD mice with microglial 

specific loss of PGRN and a reduction of Aβ plaque load with the overexpression 

of PGRN (Minami et al., 2014). However, paradoxically another study reported a 

reduction of Aβ plaques after complete PGRN loss in transgenic AD mice via 

upregulation of the TYROBP network of genes instead of an expected increase in 

Aβ plaque load (Takahashi et al., 2017a). One possible explanation for the 

discrepancy in the two studies is that the first study utilized LysM-cre mice lacking 

endogenous Lyz2, which is a gene that is upregulated in Grn-/- mice and Lyz2 is 

increased in the CSF of AD and has been suggested to have a protective role in 
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Aβ aggregation (Ganz et al., 2003; Helmfors et al., 2015; Lui et al., 2016). 

Regardless of the conflicting reports, both papers strongly suggest that complete 

loss of PGRN is modulating AD pathophysiology through microglial activity. The 

first study showed impaired phagocytosis of fluorescent beads in brain slices of 

Grnflox/flox mice compared to wild-type mice, and the addition of recombinant PGRN 

increases the endocytosis of Aβ in primary microglia cultures (Minami et al., 2014). 

In the other study, complete loss of PGRN enhanced microglial Aβ phagocytosis 

caused by increased expression of the TYROBP network of genes, including the 

AD risk factor Trem2 (Takahashi et al., 2017b). 

2.6.3 PGRN and tau pathology 

The effect of PGRN deficiency on tau pathology is even less understood, 

with only two studies investigating PGRN’s effect on tau pathology. Tau pathology 

has been observed in FTLD patients with Grn mutations suggesting an association 

with Grn mutations and tau pathology (Leverenz et al., 2007; Rademakers et al., 

2007; Perry et al., 2013). Recently the Grn rs5848 T allele was shown to increase 

cerebrospinal fluid (CSF) tau levels, but interestingly no changes in CSF p-tau181 

were observed. While tau protein has been reported to be decreased in FTLD 

patients with PGRN missense mutations (Papegaey et al., 2016) only changes in 

tau phosphorylation have been reported in mouse models (Hosokawa et al., 2015; 

Papegaey et al., 2016; Takahashi et al., 2017b). In the first study, heterozygous 

loss of PGRN resulted in increased AT8, pT181, and pS422 tau phosphorylation 

Tris-soluble fractions and AT8 in sarkosyl-insoluble fractions (Hosokawa et al., 

2015). Unlike in previous reports suggesting PGRN was modulating amyloid 
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pathology via microglia it is unlikely that PGRN affected tau phosphorylation 

through alterations in inflammation, with no changes in Iba1 immunoreactivity 

observed. Instead, the study reported increased phosphorylated cyclin-dependent 

kinases. In another study using the same P301L tau transgenic mouse model, an 

increase in AT8 and AT180 tau phosphorylation was observed in P301L mice with 

complete loss of PGRN (Takahashi et al., 2017b). 
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CHAPTER 3: EFFECT OF PGRN LOSS ACROSS AGE 

3.1 Introduction 

The present chapter examined whether heterozygous loss of PGRN in mice 

is sufficient to cause behavioral deficits related to FTLD. Behavior and 

neuropathology were examined in a novel Grn+/- mouse model between six and 

eighteen months. Several experimental approaches of behavior modeling, 

histology, and electrophysiology demonstrated that the heterogeneous loss of 

PGRN resulted in significant behavioral abnormalities in the absence of FTLD-

related neuropathology. Electrophysiological alterations accompanied by a loss of 

GABAergic interneurons were observed in aged Grn+/- mice. These findings 

suggest that the dissociation, previously reported, is between behavioral 

abnormalities, loss of interneurons, and synaptic deficits in the absence of 

inflammation and TDP-43 proteinopathy. 

3.2 Materials and Methods 

3.2.1 Animal Models 

All studies were conducted following the University of Houston-approved 

Institutional Animal Care and Use Committee protocols. PGRN mutant mice were 

created by deleting exons 5-12 of the Grn gene by homologous recombination. 

Two clones containing the recombined alleles were isolated and injected into 

C57BL/6J blastocytes, resulting in 16 chimeric mice. Chimeric males were crossed 

with C57BL/6J females, and the mutated allele was transmitted to their progeny. 

The heterozygous mutant mice had normal fertility and did not exhibit any visible 
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differences compared to their wild-type littermates. Grn+/- and non-transgenic mice 

(NTg) were used at six, twelve, and eighteen months of age in this study. 

3.2.2 Tissue processing 

Animals from both genotypes were euthanized with CO2 and brains were 

harvested. One hemibrain was flash-frozen in 2-methylbutane and dry ice and 

stored for long-term storage at -80°C. The other hemibrain was fixed in Accustain 

(Sigma) for three days and then transferred to 70% ethanol solution and stored at 

4°C for long-term storage. Accustain fixed brains were subjected to paraffin 

processing (Leica TP1020) and then sectioned using a Leica microtome at 10-µm 

intervals.  

3.2.3 Behavioral Tests 

3.2.3.1 Open Field 

The open field test assessed non-cognitive behavior at six, twelve, and 

eighteen months. Mice were placed in the center of a 60x40 cm Plexiglas box and 

allowed to explore the novel environment for 30 minutes in standard lighting 

conditions. Activity was measured using a computer-operated Opto-Varimex Micro 

Activity Meter v2.00 system (Optomax Columbus Instruments; OH) as previously 

described (Vollert et al., 2013). The Plexiglas box contained sensors consisting of 

eight infrared light emitting diodes and eight phototransistors that emit and detect 

infrared light beams. Movement was detected by beam breaks and the Opto-

Varimex program recorded total time spent moving (MOVE), time spent resting 

(REST), and stereotypic behavior (STEREO). Time spent in the center and 

periphery was analyzed by defining a 25 cm x 25 cm square zone in the center of 
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the Plexiglas box so that the program defined this space as the center and the 

remaining outside space as the periphery. The Plexiglass box was cleaned with 

70% ethanol between mice. 

3.2.3.2 Motorized Rotarod 

Motor learning, motor coordination, and balance was evaluated by an 

accelerating cylindrical drum Rotamex Rotarod machine (Columbus Instruments; 

Columbus, OH) at six and eighteen months as previously described (Vollert et al., 

2013). Mice underwent 4 trials with 15-minute inter-trial intervals per day, for a total 

of 2 days. Each trial consisted of placing the mouse on the horizontal accelerating 

rod (4-40 rpm) and a trial ended whenever the mouse fell of the rod, the trial time 

elapsed 300 seconds, or if the mouse became inverted twice in the same trial 

without falling. The length of time each mouse was able to stay on the rod was 

recorded by the observer blinded to genotype. The motorized rotarod was cleaned 

with 70% ethanol between each trial. 

3.2.3.3 Light Dark Transition 

Anxiety-like behavior was evaluated using the light dark transition test at 

six, twelve, and eighteen months as described (Vollert et al., 2011). The test 

consisted of a Plexiglas box with a light compartment made from clear Plexiglas 

(27 cm x 27 cm x 27 cm) and a dark compartment made from black non-clear 

Plexiglass (27 cm x 18 cm x 27 cm) that blocked light. Both compartments were 

separated by a partition with a single opening (7 cm x 7 cm) to allow passage 

between the compartments. Each test consisted of placing the mouse in the center 

of the light compartment and allowing the mouse to explore the Plexiglas box for 
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5 minutes. Transitions between the light and dark compartments was defined as 

once the mouse’s head and forelimbs crossed the opening between 

compartments. Each test was observed blinded to the genotype and manually 

documented the time each mouse spent in the light and dark compartments and 

the number of transitions between the compartments. The Plexiglas box was 

cleaned with 70% ethanol between mice. 

3.2.3.4 Elevated Plus Maze 

Building upon the light dark transition test, the elevated plus maze was used 

to assess fear and anxiety-like behavior at six, twelve, and eighteen months as 

previously described (Vollert et al., 2011; Butler et al., 2013). Compared to the light 

dark transition test the elevated plus maze introduces the additional elements of 

height and openness in the form of an X-shaped apparatus. The apparatus 

consists of four 5 cm x 30 cm runways arranged perpendicularly to each other and 

elevated approximately 1 meter above the floor. Two opposing arms are open with 

the other two opposing arms having tall grey Plexiglas walls (15.5 cm height) and 

a central open area connecting the four arms. Each test consisted of placing the 

mouse in the center area facing one of the open arms and allowing the mouse to 

explore the apparatus for 5 minutes. Each test was observed blinded to the 

genotype and manually documented the time spent in the open and closed arms 
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and number of transitions between arms. The elevated plus maze was cleaned 

with 70% ethanol between mice. 

3.2.3.5 Social Dominance Tube 

Social behavior was measured by the social dominance tube test as 

previously described (Lindzey et al., 1961; Filiano et al., 2013). The social 

dominance tube test consists of a clear Plexiglas tube (3.5 cm ID x 30 cm in 

length). Mice of the same sex but opposite genotype (Grn+/- vs. NTg) and from 

different cages were paired for testing. Mice of each genotype were assigned 

evenly to the left and right sides of the tubes to avoid potential side bias. Each trial 

consisted of placing mice into either end of the tube and released simultaneously 

when both mice were completely inside. A trial was considered over when two 

paws of one mouse left the tube deemed the ‘loser’ or less dominant and the 

mouse deemed the ‘winner’ or more dominant (Fig. 3). Tests longer than 2 minutes 

or if mice crossed paths in the tube were ended and run again at the end of the 

testing session. All tests were manually recorded by the observer who was blind 

to genotype. The social dominance tube was cleaned with 70% ethanol between 

every trial. 
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Figure 3. Illustration of the social dominance tube test. Mice of different 

genotypes (Grn+/- vs. NTg) are released into opposite ends of the clear narrow 

acrylic tube. The mice will then interact in the middle of the tube with the more 

dominant mouse forcing the less dominant mouse out of the tube. A mouse is 

declared the loser when all four paws are outside of the tube while the mouse 

remaining inside the winner. 

  

Winner Loser 

Animals interact in center 

Release site Release site 
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3.2.3.6 Cued Fear Conditioning 

Amygdala-dependent short-term associative learning was assessed at six 

months by cued fear conditioning as previously described (Butler et al., 2013). In 

this test mice are conditioned to freeze to an auditory cue that is associated with a 

foot shock and/or tone. Short-term associative learning is measured by the ability 

for the mouse to learn and remember the association of the auditory cue with the 

aversive stimulus one hour after the conclusion of the training trial. A training trial 

was used for the acquisition of fear conditioning consisting of a 13 cm x 10.5 cm x 

13 cm conditioning chamber containing a 28 V house light, loudspeaker, and a 

metal rod floor with 19 equally placed rods (2.8 mm diameter). For the training 

session, mice were placed in the conditioning chamber and were able to explore 

the environment for 2 minutes. Subsequently, three pairings of a 30 second tone 

(80 dB, 2kHz) preceded by a 2 second foot shock (0.75 mA) occurred at 3, 4, and 

6 minutes. The training session lasted 7 minutes (60 seconds after the last shock). 

The amount of time the mouse spent freezing, defined as immobility, was detected 

by infrared cameras within the conditioning chamber and measured automatically 

using computer software (FreezeFrame, Med Associates/Actimetrics). At the end 

of the training session mice were returned to their home cage. 

One hour after the training session mice were tested for short-term cued 

fear conditioning. This consisted of placing the mouse back into the same 

conditioning chamber used in the training session but modified (different olfactory, 

spatial, tactile, and visual characteristics) to stimulate a novel environment. During 

the cue trial mice could explore the modified conditioning chamber for 7 minutes 
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with the tone presented for 3 minutes in the middle of the trial. As before in the 

training session freezing behavior was measured automatically using computer 

software. The conditioning chamber was cleaned with 70% ethanol between mice 

during the training trials and with isopropanol during cued testing. 

3.2.3.7 Hot Plate Analgesia 

Nociception was measured in mice using the hot plate analgesia meter 

(Columbus Instruments, OH). The plate was heated to 55C, and each mouse was 

placed in the center. Latency was defined as the period from being placed on the 

meter to when the mouse either licked its paw or jumped as an indicator of a 

nociceptive threshold. A trial was aborted if the mouse stayed on the meter for 

longer than twenty seconds without a response.  

3.2.3.8 Pre-Pulse Inhibition 

Sensorimotor gating was measured using the pre-pulse inhibition (PPI) test 

by assessing the startle response to a sudden loud sound. This test is based on 

the observation that the startle response is diminished when a softer sound is given 

before the loud sound. The diminished startle response is a neurobiological 

process of filtering out redundant and/or unnecessary stimuli and is a form of 

sensorimotor gating. PPI was measured using the SR-LAB Startle Response 

System (San Diego Instruments, San Diego, CA) as previously described (Spencer 

et al., 2006). The testing apparatus consists of a Plexiglas cylinder enclosed in a 

sound-attenuated startle chamber. The startle response was measured by an 

electrostatic sensor located directly below the Plexiglas cylinder. Each test last for 

15 minutes and consists of placing the mouse in the Plexiglas cylinder with the first 
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5 minutes for acclimation and the last 10 minutes for the test session. The test 

session consisted of the following trials in a pseudorandom manner with an inter-

trial interval of 10-20 seconds: a) no stimulus trial to measure baseline movement; 

b) startle only trial (40 ms, 120 dB) to measure the maximum startle response and 

c) 5 additional trial types (20 ms each; 78, 82, 86, or 90 dB) that preceded 100 ms 

before the 120 dB startle stimulus (Paylor and Crawley, 1997). The testing 

apparatus was cleaned with 70% ethanol between mice. 

The percent PPI was calculated by using the maximum startle response 

averaged over 6 trials and used in the following formula: 

 

3.2.3.9 Morris Water Maze 

The Morris water maze (MWM) was used to assess hippocampal-

dependent spatial learning and memory in Grn+/- at eighteen months-of-age. The 

MWM is a spatial navigation task requiring the mouse to learn the location of a 

hidden “escape” platform in a circular pool divided into four quadrants (Fig. 4). The 

water is made opaque with white tempura powder requiring the mouse to rely only 

on four visual cues outside of the pools as a guide to locate the hidden escape 

platform located in the 4th quadrant. The MWM consists of a training phase for 

spatial learning followed by probe trials for short-term and long-term memory trials. 

The training phase consists for four trials a day with a thirty-minute inter-trial 

100 – [(startle response on acoustic prepulse + startle stimulus 

trials/startle response) x 100] 
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interval for four days where the mouse is trained to locate the hidden platform. 

Each trial consisted of releasing the mouse into the pool from one of the four 

starting quadrants, with the hidden platform location remaining constant. The time 

taken for the mouse to find the hidden platform is measured as the latency to 

escape and each trial lasted a maximum of 60 seconds or until the mouse 

successfully discovered the hidden platform. Over the course of the four training 

days the starting position for each trial was changed so that each mouse started 

from a different position each day and the starting position of each trial within each 

day also changed.  

One and twenty-four hours after the last training trial (trial number 16; day 

4 and 5) each mouse underwent a probe trial, where the hidden platform was 

removed, and the mouse could search the pool for 60 seconds. Time spent in each 

quadrant was measured to assess if the mouse remembered the location of the 

hidden platform during the training trials. After the last probe trial on day 5, a visual 

acuity test was performed to rule out potential visual differences between Grn+/- 

and NTg mice as a potential confounding variable. The visual acuity test consisted 

of three trials where a visual platform (consisting of a black box on top of a 10 cm 

post extending above the water) was positioned at different locations within the 

circular pool excluding the position for the hidden platform. Mice were allowed a 

maximum of 60 seconds to find the visual platform measured as escape latency. 

The swimming speed was also recorded automatically by software for each mouse 

during the training trials to rule out hyperactivity as a confounding variable. All tests 
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were assessed using Ethovision XT software and track system (Noldus, Leesburg, 

VA, USA). 
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Figure 4. Illustration of the Morris Water Maze. Example swim paths from Day 

1 and Day 4 illustrating spatial learning. On the first day mice swim aimlessly 

around the pool until eventually finding the hidden platform (white circle). Over the 

course of each trial and day mice will get better at locating with the hidden platform. 

Eventually, on day 4 mice exhibiting spatial learning will have a more direct path 

to and faster time finding the hidden platform. Created with BioRender.com 
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3.2.4 Electrophysiology 

Male mice between eighteen and twenty months of age were sacrificed, and 

brains immediately and briefly transferred to ice-cold carboxygenated 

(95%O2/5%CO2) cutting solution: (5 mM glucose, 110 mM sucrose, 60 mM NaCl, 

28 mM NaHCO3, 3 mM KCl, 1.25 mM NaH2PO4, 7 mM MgCl2, and 0.5 mM CaCl2, 

0.6 mM ascorbate). Sagittal hippocampal slices (400 µm) were prepared in an ice-

cold cutting solution using a 1000Plus Vibratome sectioning system (Vibratome 

Co., St. Louis, Missouri). Slices were transferred to room temperature (1:1) cutting 

solution/artificial cerebral spinal fluid (aCSF; 25 mM glucose, 125 mM NaCl, 2.5 

mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 1 mM MgCl2, and 2 mM CaCl2), for 

20 minutes and then to 100% aCSF at room temperature for a minimum of 1 hr 

prior to recordings. Recordings were carried out in an interface chamber (Harvard 

Apparatus, Holliston, MS) at room temperature, perfused continuously with 

carboxygenated ACSF (perfusion rate: 1-2 ml/min). A bipolar enamel-coated 

platinum stimulating electrode was placed in CA3 Schaffer collateral/commissural 

fibers, and a borosilicate glass recording electrode (resistance 1-4 MΩ) filled with 

aCSF was placed into stratum radiatum of area CA1 (Fig. 5). Field excitatory 

postsynaptic potentials (fEPSP) were collected every twenty seconds and 

averaged over two-minute intervals using a stimulus intensity that produced 30-

50% of the maximum initial slope fEPSP obtained during input/output 

measurements. Baseline fEPSPs were monitored for at least 20 min for stability. 

For LTP induction, two high-frequency stimuli (HFS) trains were delivered at 100Hz 

for 1 sec with an inter-train interval of 5 min. The stimulus intensity of the HFS 
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pulses was matched to that used during baseline recordings. Data was collected 

and analyzed using pClamp version 10 (Molecular Devices, Sunnyvale, CA). 

Recordings were normalized to the baseline mean before introduction of LTP. 
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Figure 5: Illustration of a sagittal hippocampal slice with electrodes in place 

for measuring long-term potentiation. The bipolar enamel-coated platinum 

stimulating electrode (left; blue) is placed into the CA3 Schaffer collateral axons 

(orange). The borosilicate glass recording electrode (right; yellow) is placed into 

the stratum radiatum dendrites of the CA1 region. Created with BioRender.com.  
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3.2.5 Immunohistochemistry and Immunofluorescence 

Coronal sections (10μm) were deparaffinized and subjected to antigen 

retrieval using 10mM sodium citrate, pH 6.0, in a Decloaking Chamber system 

(Biocare Medical). Following antigen retrieval, sections were blocked with 5% 

normal goat serum in TBST for 1 hr. Sections were incubated with IBA1 (1:1000 

dilution, Wako Chemicals) and GFAP (1:1000 dilution, DAKO) primary antibodies 

overnight and washed with TBST. Sections were then incubated with species-

specific HRP-goat antibody (Vector Laboratories) for 30 min, washed with TBST 3 

times, and developed with chromogenic substrate diaminobenzidine 

tetrahydrochloride (DAB; Vector Laboratories). Slides were viewed under an 

Olympus IX61 DSU confocal microscope, and the images were processed with 

Neurolucida (MicroBrightField Inc., Williston, VT). 

For immunofluorescence staining, coronal sections (10μm) were 

deparaffinized and subjected to antigen retrieval using 10mM sodium citrate, pH 

6.0, in a Decloaking Chamber system (Biocare Medical). Following antigen 

retrieval, sections were blocked with 5% normal goat serum in TBST for one hour 

and then washed with TBST 3 times. Sections were then blocked using mouse-

on-mouse (MOM) reagent for one hour at room temperature and then washed with 

TBST 3 times. Sections were then incubated with mouse anti-GAD67 (1:500 

dilution, Millipore) primary antibody overnight and subsequently washed with 

TBST. Following washing, sections were incubated with biotinylated secondary 

(1:200 dilution, Vector) for 30 min at room temperature and then washed with 

TBST 3 times. Sections were then incubated with avidin fluorophore (1:100 
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dilution, Vector) for 10 min at room temperature, washed with TBST, and mounted 

using Fluoro-Gel II (EMS). 

3.2.6 Image analysis 

For image analysis of IBA1, GFAP, and GAD67, four montage 

photomicrographs, spaced 50 µm apart, were taken for each mouse with a 20x 

objective. Thresholds were set to include only GFAP, Iba1, and GAD67 positive 

cells. The total number of GFAP or Iba-1 positive cells were counted and averaged 

for the four montage photomicrographs by a blind observer using NIH ImageJ 

software in the cortex and hippocampus between Paxinos plate numbers 42 and 

52 (Filiano et al., 2013). 

3.2.7 Western blot and image analysis 

Brain lysates were prepared using radioimmune precipitation buffer (RIPA; 

Thermo Scientific) supplemented with 2% SDS followed by extraction of RIPA 

insoluble pellets with urea buffer (7M urea, 2M thiourea, 4% CHAPS, 30 mM Tris, 

pH 8.5) as previously described (Wils et al., 2012). Hemibrain homogenate protein 

extracts were separated using SDS-PAGE, transferred to a polyvinylidene 

difluoride membrane, and probed for protein expression. The membranes were put 

into SuperBlock T20 (PBS) blocking buffer (Thermo Scientific) for one hour at room 

temperature. Blots were then incubated in primary antibody PGRN (R&D Systems, 

1:2000) and TDP-43 (Proteintech, 1:2000) in Tris-buffered saline containing 0.5% 

Tween 20 (TBST) overnight at 4°C. Membranes were then washed three times in 

TBST and incubated for one hour at room temperature with appropriate HRP 

secondary antibody (Jackson Laboratories, 1:10000) and processed with an 
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enhanced chemiluminescence reagent kit (Amersham ECL plus kit, GE 

Healthcare). Blots were imaged by a Fluorchem 8900 imaging system with the 

intensity of each immunoreactive band quantified using ImageJ and normalized to 

GAPDH (Millipore, 1:3000)  

3.2.8 Data analysis 

All experiments were conducted by observer’s blind to genotype. All data 

are expressed as mean ± standard error mean. Data was analyzed using Staistica 

(TIBCO Software, Pal Alto, CA) and statistical comparisons were made using a 

two-sample t-test to compare Grn+/- and NTg mice. A two-way analysis of variance 

(ANOVA) was used to compare main effect of sex and genotype followed by a 

Fisher LSD post-hoc for behavioral tests (Buccafusco, 2009). For the motorized 

rotarod a two-way repeated measures ANOVA, with the Grn+/- genotype and age 

(six and eighteen months) as between-subject factors and trials as within-subject 

factor was used, followed by two-way ANOVA and Fisher LSD post hoc to analyze 

the effect of PGRN haploinsufficiency effect on rotarod performance at each of the 

eight trials at six and eighteen months of age. p < 0.05 was considered significant. 

For the tube test of social dominance statistical comparisons were made with a 

two-tailed binomial test against an expected outcome of 50%. 

3.3 Results 

3.3.1 Progranulin haploinsufficiency causes cognitive and non-cognitive 

behavioral abnormalities in Grn+/- mice 

First, Western blotting’s relative levels of PGRN were detected using a 

polyclonal antibody against full-length PGRN in brain homogenates of Grn+/- and 
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NTg mice to confirm genotype. Consistent with genotypes, a two-sample t-test 

revealed a significant reduction (50%; p<0.001) of PGRN protein in whole brain 

homogenates of Grn+/- mice compared to NTg littermates (Fig.6). 

 Differences in non-cognitive behavior have previously been reported in Grn-

/- mice; therefore, non-cognitive behavior was next investigated in Grn+/- mice 

(Petkau et al., 2012). The open-field test was used to assess exploratory activity 

in Grn+/- mice and their NTg littermates at six, twelve, and eighteen months. No 

abnormalities were observed in Grn+/- mice by measuring time spent moving 

(MOVE), resting (REST), and stereotypic (STEREO) behavior at six and twelve 

months (Fig. 7A-B). At eighteen months two-way ANOVA revealed a main 

interaction between sex and genotype, [F(2, 14)=4.6348, p<0.05]. Newman-Keuls 

post-hoc indicated that male Grn+/- mice spent significantly more time moving 

(MOVE) compared to NTg mice (p<0.05; Fig. 7C). Additionally, Newman-Keuls 

post-hoc indicated male Grn+/- mice spent significantly less time resting (REST) 

compared to NTg mice (p<0.05; Fig. 7C).  These experiments suggest that PGRN 

reduction may have a protective effect on age-related decline in spontaneous 

exploratory behavior.  

Motor coordination, learning, and balance was next assessed in Grn+/- mice 

across aging by using a motorized rotarod at six and eighteen months by 

measuring the latency to fall over the course of two days with each day consisting 

of 4 trials totaling a total of 8 trials (Fig. 8A and B). Two-way repeated measures 

ANOVA applied to the latency to fall over the 8 trials revealed a main effect of trials 

with a significant increase in latency to fall over the course of the 8 trials 
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[F(7,196)=15.552, p=0.000] indicating mice exhibited motor learning. Repeated 

measures ANOVA also revealed age as a main effect with eighteen months 

significantly decreasing overall latency to fall compared to six months 

[F(1,28)=22.180; p<0.0001], but the Grn+/- genotype did not have a main effect on 

overall rotarod performance [F(1,28)=0.0035, p=0.954]. Fisher LSD post hoc test 

indicated six-month-old Grn+/- mice had a significantly decreased latency to fall 

compared to NTg mice on trial 1 (p<0.05; Fig. 8A). These results indicate PGRN 

haploinsufficiency does not affect motor coordination, learning, or balance at either 

six or eighteen months.  

Anxiety-like behavior was next assessed in Grn+/- and NTg littermates by 

the light dark transition and the elevated plus-maze test, which have been 

previously reported to be affected in Grn-/- mice (Roberson, 2012). Two-sample t-

test indicated no significant differences in time spent in the light compartment 

between Grn+/- and NTg mice at ages six (p>0.05; Fig. 9A), twelve (p>0.05; Fig. 

9B), and eighteen months (p>0.05; Fig. 9C) in the light-dark test indicating PGRN 

haploinsufficiency did not affect anxiety-like behavior across age. Anxiety-like 

behavior was further evaluated by the elevated plus maze. At six months a sex 

specific difference was observed in percent time spent in the open arms (Fig. 9D). 

Two-way ANOVA did not reveal a main effect of Grn+/- genotype [F(1,27)=2.5572, 

p=0.1214] or sex [F(1,27)=2.6580, p=0.115] nor a significant interaction effect 

between Grn+/- and sex [F(1,27)=3.5938, p=0.069]. Two-sample t-test indicated 

female Grn+/- spent significantly less time in the open arms compared to female 

NTg mice (p=0.033; Fig. 9D). Significant differences between Grn+/- and NTg mice 
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and sex were not seen at twelve (p>0.05; Fig. 9E) and eighteen (p>0.05; Fig. 9F) 

months. Taken together these results suggest that PGRN haploinsufficiency 

results in task- and sex-dependent effects on anxiety-like behavior. 
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Figure 6. Progranulin expression in NTg and Grn+/- mice. Western blot 

analysis of relative PGRN levels in whole brain homogenates (*p<0.05; n=5 mice 

per genotype; age eighteen months). 
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Figure 7. Male Grn+/- mice displayed increased exploratory behavior at 

eighteen months. (A and B) Grn+/- and NTg mice spent similar time moving 

(MOVE), resting (REST), and stereotypic behavior (STEREO) at six and twelve 

months. (C) However, at eighteen months Grn+/- mice had an increased time 

moving and decreased time resting compared to NTg littermates. (*p<0.05; 6 

months N = 7 male NTg, 9 male Grn+/-, 10 female NTg, and 12 female Grn+/-; 12 

months N = 4 male NTg, 13 male Grn+/-, 3 female NTg, and 11 female Grn+/-; 18 

months N = 5 male NTg, 6 male Grn+/-, 4 female NTg, and 4 female Grn+/-). 
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Figure 8. Progranulin haploinsufficiency had a mild impact on motor 

coordination and balance. (A) Grn+/- mice had a signficant increase in latency to 

fall on the first trial but otherwise normal on the following seven trials compared to 

NTg littermates at six months. (B) No significant differences were observed 

between Grn+/- and NTg mice at eighteen months. (*p<0.05; N = 6-10 mice per 

genotype). 
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Figure 9. Progranulin haploinsufficiency had a task, age and sex-specific 

effect on anxiety-like behavior. (A) At six months of age, female Grn+/- mice 

spent significantly less time time in the open arm compared to female NTg mice 

exhibiting anxiety-like behavior in the elvated plus maze. (B and C) Time spent in 

the open arms is similar between Grn+/- and NTg mice at twelve and eighteen 

months of age. (D, E, and F) Grn+/- had no signfiicant difference with NTg mice in 

the time spent in the light/dark test at ages six, twelve, and eighteen months. 

(*p<0.05; 6m N = 16 NTg and 24 Grn+/-; 12m N = 9 NTg  and 16 Grn+/- ; 18m N = 

8 NTg and 10 Grn+/-; N = 4-8 mice per sex and genotype). 
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Behavioral and emotional changes often precede cognitive alterations in 

FTD effect of heterozygous loss of PGRN on fear conditioning and were assessed 

by performing short-term cued-fear conditioning at six months of age. Cued-fear 

conditioning requires an association between an aversive foot shock and an 

auditory cue. The amount of time a mouse is frozen after an auditory cue 1-hour 

post-training is a measure of fear memory. A two-sample t-test was used to 

compare NTg and Grn+/- mice in short-term cued fear conditioning. Percentage 

spent freezing was significantly reduced (29.71%; p<0.05) in male Grn+/- mice 

compared to NTg littermates indicating PGRN haploinsufficiency impaired short-

term associate learning (Fig. 10A). There were no significant differences between 

Grn+/- and NTg in the hot plate analgesia test indicating PGRN haploinsufficiency 

did not affect pain sensitivity and ruling out pain sensitivity as a potential 

confounding variable (p>0.05; Fig. 10B). 

Abnormalities in social behavior, which are a common symptom of FTLD 

and have been reported in several different mouse lines, were next studied 

(Roberson, 2012). To test social impairments in Grn+/- mice, the social dominance 

tube test was used because of its prior use to assess social dysfunction in Grn-/- 

mice (Filiano et al., 2013). In the absence of social impairment, each genotype 

would be expected to win 50% of trials. When paired against NTg mice, Grn+/- mice 

won 75% of the time at eight months of age (12 of 16 trials; p=0.278; Fig. 11).  
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Figure 10. Grn+/- mice exhibited impaired associative learning. (A) At six 

months male Grn+/- had a signifcantly reudced percent freezing compared to NTg 

mice in short-term cued-fear conditioning. (B) Grn+/- did not exhibit a significant 

difference in nocieptive response in the hot plate analgesia test. (*p<0.05; NTg = 

8; Grn+/- N = 10). 
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Figure 11. Progranulin haploinsufficiency causes impairment in social 

behavior. Eight-month-old Grn+/- mice exhibited increased social dominance 

behavior in the social dominance tube test. Grn+/- mice won 75% (12 of 16) of 

trials against NTg littermates (exact p = 0.0278). 
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This result agrees with past reports that PGRN haploinsufficiency causes impaired 

social behaviors evidenced by increased social dominance behavior (Filiano et al., 

2013).  

Deficits in PPI have been widely reported in various psychotic disorders, 

including schizophrenia (Anand et al., 2014). Because FTLD and schizophrenia 

may share common etiological mechanisms, pre-pulse inhibition changes were 

tested in Grn+/- mice, a test used to measure the ability to filter out unnecessary 

information sensorimotor gating (Jankowsky et al., 2004; Galimberti et al., 2012). 

A two-sample t-test was used to compare Grn+/- and NTg mice revealed no 

significant differences in either the startle amplitude at 120 dB or percent of 

inhibition at 74 dB (p>0.05; Fig. 12A and B). However, a two-sample t-test did 

reveal significant decreases in the percent of inhibition was observed at 78 

(19.32%; p<0.05), 82 (21.68%; p<0.05), 86 (12.83%; p<0.01), and 90 dB (17.72%; 

p<0.05) in Grn+/- mice compared to NTg littermates indicating PGRN 

haploinsufficiency impaired sensorimotor gating (Fig. 12B). 

Deficits in spatial cognitive memory have only been reported in only a few 

of the published Grn-/- mouse models and none of the Grn+/- mouse models 

(Roberson, 2012). Therefore, we used a MWM test previously validated in Dr. 

Eriksen’s lab to see if PGRN haploinsufficiency impaired spatial learning and 

memory as old as eighteen months (Vollert et al., 2013). Using two-sample t-test 

to compare NTg and Grn+/- mice revealed Grn+/- took significantly longer to find the 

hidden platform (latency to platform) on day 4 but not days 1, 2, or 3 indicating 
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impaired spatial learning (p<0.05; Fig. 13A). However, no significant differences 

were observed in either the short- (1hr) or long-term (24hr) memory probe test, 

suggesting that PGRN haploinsufficiency did not impact spatial memory (p>0.05; 

Fig. 13B). Additionally, no differences were observed in either the visual cue test 

or swim speeds ruling out visual and activity levels as potential confounding 

variables (p>0.05; Fig. 13C and D). 
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Figure 12. Progranulin haploinsufficiency causes impairment in 

sensorimotor gating. (A) No differences were observed in startle amplitudes at 

120 dB. (B) Grn+/- had statistically lower % prepulse inhibition (PPI) at 78, 82, 86 

and 90 dB. (*p<0.05; NTg N = 8 mice; Grn+/- N = 9 mice). 
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Figure 13. Loss of progranulin worsened spatial learning in eighteen-month-

old mice. (A) Grn+/- mice took longer to find the hidden platform on training day 4. 

(B) There were no differences in time spent in quadrant 4 in either the short-term 

memory (STM) or long-term memory (LTM) probe test. (C) No differences were 

observed in escape latency between genotypes in the visual acuity trials. (D) No 

differences were observed in the swim speed between genotypes during 

acquisition trials. (*p<0.05; NTg = 8 mice, Grn+/- = 8 mice). 
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3.3.2 Absence of FTD-related neuropathology in Grn+/- mice 

Due to observed behavioral differences, the presence of FTD-related 

neuropathology was next investigated in Grn+/- mice. Neuroinflammation in the 

hippocampus of Grn+/- mice was assessed at 18 months of age using 

immunohistochemistry for allograft inflammatory factor 1 (Iba1) and glial fibrillary 

acidic protein (GFAP), which are markers for resting and activated microglia and 

astroglia, respectively (Fig. 14A and B) (Shapiro et al., 2009). Quantitative image 

analysis of Iba-1 positive cells to evaluate microgliosis and GFAP as a marker of 

astrogliosis revealed no differences in the number of either cells between Grn+/- 

and NTg littermates in the hippocampus indicating the absence of 

neuroinflammation (Fig. 15A and B).  

In humans with FTLD, PGRN-haploinsufficiency results in the pathological 

aggregation and fragmentation of C-terminal fragments (CTFs) of TDP-43 

(Neuman et al., 2006). Using a polyclonal antibody against full-length TDP-34 

(Proteintech), no differences were observed in the levels of RIPA soluble TDP-43 

and CTFs in eighteen-month-old Grn+/- and NTg littermates indicating TDP 

processing was not impaired (Fig. 16A). Urea soluble TDP-43 was further studied 

and observed no significant differences between Grn+/- and NTg mice, suggesting 

the absence of pathological aggregation of TDP-43 (Fig. 16B). 
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Figure 14. Representative images of Iba1 and GFAP immunoreactivity in the 

hippocampus of eighteen-month-old Grn+/- mice. (A) Grn+/- mice NTg 

littermates displayed similar levels of Iba1 immunoreactivity in the hippocampus. 

(B) Grn+/- mice NTg littermates displayed similar levels of GFAP immunoreactivity 

in the hippocampus. Scale bar represents 200µm. (Brown = Iba1 and GFAP; Blue 

= hematoxylin counterstain) 
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Figure 15. Absence of neuroinflammation in the hippocampi of eighteen-

month-old Grn+/- mice. (A) Absence of microgliosis, indicated by Iba1 

immunoreactivity in the hippocampi of Grn+/- mice compared to NTg mice. (B) 

Absence of astrogliosis, indicated by GFAP immunoreactivty in the hippocampi of 

Grn+/- mice compared to NTg littermates. (N = 3 mice per genotype; 18 months of 

age). 
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Figure 16. Absence of TDP-43 proteinopathy in eighteen-month-old Grn+/- 

mice. (A) Immunoblotting of whole brain homogenates did not show any differences 

in the fragmentation pattern of RIPA-soluble TDP-43 between Grn+/- mice ang NTg 

littermates. (B) Differences were also not observed in urea-soluble TDP-43. (N = 3-

5 per genotype; 18 months of age). 
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3.3.3 Impaired synaptic plasticity and loss of hippocampal GABAergic 

interneurons in Grn+/- mice 

Hippocampal field excitatory post-synaptic potentials (fEPSPs) were next 

studied in Grn+/- mice at eighteen – twenty months of age (NTg = 4 mice, 11 slices: 

Grn+/- = 4 mice, 15 slices). Alterations in LTP have previously been reported in 

some but not all PGRN transgenic mouse models (Petkau et al., 2012; Filiano et 

al., 2013). Hippocampal neurons from both NTg and Grn+/- exhibited normal 

responses to increasing stimulation intensities exhibited by the input-output curve 

(I/O Fig. 17A). Long-term potentiation (LTP) was induced by two brief bursts of 

high-frequency stimuli (HFS, 100 shocks at 100 Hz) (Fig. 17B). A two-sample t-

test revealed significant decrease in post-tetanic potentiation 1 (PTP1) (42.59%; 

p<0.05) and post-tetanic potentiation 2 (PTP2) (46.47%; p<0.01) was observed in 

Grn+/- mice compared to NTg littermates (Fig. 17C). Additionally, a significant 

decrease in the resultant mean of LTP 45-minute post-HFS conditioning (53.29%; 

p<0.001) was observed in Grn+/- mice compared to NTg littermates indicating 

PGRN haploinsufficiency impaired LTP at eighteen months (Fig. 17D).  

One explanation for the cognitive behavioral results is that hippocampal and 

cortical GABAergic interneurons are either reduced or lost in Grn+/- mice. 

Immunofluorescence staining was used to quantify the number of GAD67-positive 

cells (GABAergic neuron marker) in the hippocampus and the posterior parietal 

cortex. Significantly fewer GAD67-positive cells were observed in Grn+/- compared 

to NTg littermates. A two-sample t-test a significant reduction of GAD67-positive 

cells in the DG (30.3%; p<0.05) and CA1 (18%; p<0.05) hippocampi regions but 
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not significant in the posterior parietal cortex (0.7%; p>0.05) of Grn+/- mice 

compared to NTg littermates (Fig. 18). 
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Figure 171. Impaired long-term potentiation (LTP) in Grn+/- mice at eighteen-

twenty months. (A) No differences in fEPSPs were observed with increasing 

stimulus intensities. (B) LTP was induced by two bursts of high-frequency stimuli 

(HFS, 100 shocks at 100 Hz). (C) Quantification of post-tetanic potentiation (PTP) 

after both bursts of HFS and (D) LTP, measured 45 minutes after HFS, was 

significantly reduced in Grn+/- mice compared to NTg mice. (*p< 0.05; NTg = 4 

mice, 11 slices; Grn+/- = 4 mice, 15 slices).  
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Figure 182. Loss of GABAergic interneurons in hippocampal area DG in 

Grn+/- mice. (A) Fluorescent immunostaining of the GABAergic marker GAD67 in 

the CA1 and DG regions of the hippocampus and the posterior parietal cortex of 

Grn+/- and Ntg mice. (B) Grn+/- mice showed a significant reduction in the number 

of GAD67-positive neurons in the DG and CA1 regions of the hippocampus 

compared to NTg littermates. (*p< 0.05; n=5 mice, 14 sections per genotype; 18 

months). The scale bar is 100 uM. 
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3.4 Discussion 

In this Chapter, behavior and neuropathology were evaluated in a novel 

Grn+/- mouse line across age. The combined results confirm and expand upon a 

recent report indicating PGRN haploinsufficiency in mice recapitulate key FTD-

related behavioral deficits in the absence of neuropathology (Filiano et al., 2013). 

In agreement with previous reports, our work demonstrates that Grn+/- mice show 

social and emotional deficits in the absence of neuroinflammation (microgliosis and 

astrogliosis). These results also extend the previous behavioral reports to include 

impaired short-term cued-fear conditioning at six months in male Grn+/- mice, sex-

specific increases in anxiety-like behavior in the elevated-plus maze, and impaired 

decreased sensorimotor gating. We also observed mild cognitive impairment in 

eighteen-month-old Grn+/- mice which is FTD-related behavioral deficit that has 

been noticeably absent in previous studies behaviorally characterizing PGRN 

haploinsufficiency. In addition to behavioral abnormalities, synaptic dysfunction 

and reduced GABAergic interneurons were also observed in old Grn+/- mice. 

Despite these observed behavioral and functional deficits, we did not observe 

FTD-related neuropathology including neuroinflammation and TDP-43 

proteinopathy contrary to previous studies using transgenic mice with a complete 

loss of PGRN. 

Most reports modeling murine PGRN deficiency have focused on 

homozygous knock-out mice due to the presence of FTD-related neuropathology, 

specifically neuroinflammation, that is not seen in PGRN haploinsufficient mouse 

models (Garcia-Alloza et al., 2006). The most consistent and robust behavioral 
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deficit seen across the previously published mouse lines is social dysfunction 

(Leverenz et al., 2007; Yin et al., 2010a; Petkau et al., 2012). Emotional 

dysfunction including anxiety-like and depression-like behavior is another key 

feature of FTD and has been reported in PGRN knock-out mice (Chiba et al., 2009; 

Yin et al., 2010a; Petkau et al., 2012). Memory loss is seen in late-stage FTLD and 

has been reported in only some mouse lines (Leverenz et al., 2007; Yin et al., 

2010a; Vollert et al., 2013). Recently, it has been shown that PGRN 

haploinsufficiency in mice recapitulate many of the behavioral deficits seen in the 

knock-out mouse models, including social and emotional deficits but without 

changes in spatial memory suggesting a dissociation between FTD-related 

behavioral deficits and neuroinflammation (Filiano et al., 2013). This section 

confirms and expands upon the previous observation that PGRN 

haploinsufficiency reproduces key behavioral deficits related to FTLD in a novel 

Grn+/- mouse line.  

Social deficits are the most consistently observed behavior deficit in the four 

published Grn-/- mouse lines (Garcia-Alloza et al., 2006) and represent a key 

symptom of FTLD patients (Rascovsky et al., 2011). Patients with FTD often 

exhibit diminished social interest and diminished empathy (Garcia-Alloza et al., 

2006). Multiple tests have been used, including the three-chamber sociability test 

(Yin et al., 2010a; Filiano et al., 2013), resident-intruder test (Kayasuga et al., 

2007; Leverenz et al., 2007; Petkau et al., 2012), and the social dominance tube 

test (Filiano et al., 2013; Arrant et al., 2016) to measure different aspects of the 

social phenotype found in FTD in mouse modes. In this study, social deficits in 
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Grn+/- mice were observed at eight months of age indicated by increased social 

dominance using the social dominance tube test which has been reported to be a 

robust behavioral phenotype unique to Grn+/- and not seen in Grn-/- mice (Filiano 

et al., 2013; Arrant et al., 2016; Arrant et al., 2017). This is in agreement with a 

previous paper reporting social dominance behavior using a different Grn+/- mouse 

line with the social dominance tube test between six and eight months (Filiano et 

al., 2013).  In agreement with past studies, PGRN haploinsufficiency was sufficient 

to cause social deficits in the social dominance tube test a key FTD-related 

behavior.  

Abnormalities in anxiety-like behavior have been reported in multiple 

studies examining behavior in PGRN-deficient mice. Two studies reported an 

increase in anxiety-like behavior (Kayasuga et al., 2007; Petkau et al., 2012), and 

one reporting a decrease in anxiety-like behavior, which they attributed to 

increased risk-taking behavior (Yin et al., 2010a). In this study, PGRN 

haploinsufficiency did not affect anxiety-like behavior in the light-dark test. 

However, young female Grn+/- mice exhibited increased anxiety-like behavior in 

the elevated-plus maze exhibited by reduced time spent in the open arms. PGRN 

loss has previously been shown to affect some sexually dimorphic behaviors 

including aggression and sexual behavior, and Grn has been hypothesized to be 

an androgen-inducible gene (Kayasuga et al., 2007; Suzuki et al., 2009). 

Fluctuations in the estrogen cycle are known to affect in the elevated plus maze 

(Walf and Frye, 2007). These results extend the observation of sex differences in 
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PGRN-deficient mice’s behavior, including anxiety-like behavior as seen in the 

elevated plus maze. 

Disturbances in emotion are a common feature of FTLD(Werner et al., 

2007; Kipps et al., 2009), and impairments in fear conditioning have been observed 

in patients with behavioral variant FTD (Hoefer et al., 2008). Progranulin 

haploinsufficiency has previously been shown to impair cued-fear conditioning at 

twelve months but not at four months (Filiano et al., 2013). Because Grn+/- mice in 

the same study was observed to have social deficits as early as six months of age, 

we tested short-term cued-fear conditioning in Grn+/- mice at six months. Cued fear 

conditioning is an amygdala-dependent and hippocampus-independent 

associative learning behavior requiring an association to be made between an 

auditory cue and an aversive stimulus. In agreement with past reports, we 

observed a significant reduction in the percentage time spent immobile in Grn+/- 

mice compared to NTg littermates indicating PGRN haploinsufficiency impaired 

cued fear conditioning as early as six months  

FTD has been suggested to share similar etiological mechanisms with 

schizophrenia (Lalonde et al., 2005; Galimberti et al., 2012) and loss-of-function 

GRN mutations have been observed in patients with schizophrenia (Momeni et al., 

2010). Because deficits in pre-pulse inhibition (PPI) are widely reported in patients 

with schizophrenia and neurodegenerative diseases (Janus et al., 2015) , PPI was 

tested in nine-month-old Grn+/- mice. PPI is considered to reflect the automatic 

inhibitory process sensorimotor gating where irrelevant sensory and/or cognitive 

stimuli are filtered out and prevented from influencing behavior. PPI is measured 
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by presenting a weaker auditory prestimulus (prepulse) which inhibits the startle 

response of an organism to a subsequent stronger auditory stimulus (pulse). We 

observed significantly reduced percent inhibition in Grn+/- mice at nine months 

indicating PGRN haploinsufficiency impaired sensorimotor gating. 

Mild deficits in spatial learning and memory assayed by the MWM have 

been observed in only a few of the Grn-/- mice and none of the Grn+/- mouse lines 

(Roberson, 2012). In general, spatial memory deficits have been observed in older 

(> sixteen months) (Leverenz et al., 2007; Vollert et al., 2013; Papegaey et al., 

2016), but not younger (< twelve months) Grn-/- mice (Petkau et al., 2012). Spatial 

deficits have not been observed in Grn+/- mice although previous reports have only 

looked at nine months (Filiano et al., 2013). Because FTD patients do not exhibit 

cognitive deficits until late into the disease progression (Cruts et al., 2006a) and 

the previous behavioral work, this study focused on testing spatial memory at 

eighteen months of age in Grn+/- mice. Following previous literature, only mild 

spatial deficits were observed exhibited by a significant decrease in the latency to 

find the platform on Day 4 of the acquisition trials in Grn+/- compared to NTg 

littermates, but no differences in the probe trials. 

Two studies have reported impaired locomotor activity in separate Grn-/- 

mouse lines, with relatively normal exploratory behavior. Petaku and colleagues 

observed a significant increase in latency to fall on an accelerating rotarod in male 

Grn-/- mice indicating impaired locomotor activity (Petkau et al., 2012). In another 

study, Grn-/- mice were observed to significantly slower swim speed, indicating 

impaired locomotor activity (Ghoshal et al., 2012). It is worth noting that Grn-/- mice 
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were reported to have an increased susceptibility to collagen-induced arthritis 

(Tang et al., 2011), suggesting complete loss of PGRN may affect non-cognitive 

behavior through peripheral effects. In this study, no biologically significant 

locomotor activity differences were observed in young or old Grn+/- suggesting 

locomotor impairment is unique to Grn-/- mice. Additionally, the opposite was 

observed with old Grn+/- mice exhibiting hyperactivity compared to NTg mice in the 

open field test. 

Several reports suggest that PGRN knockdown alters neuronal 

connectivity. In one study, the knockdown of PGRN in hippocampal neurons 

resulted in an increased number of vesicles per synapse and an increase in the 

frequency of mEPSCs (Tapia et al., 2011). In the same study, the increased 

number of vesicles per synapse was observed in FTLD patients with PGRN 

mutations, suggesting PGRN knockdown alters synaptic plasticity. A recent study 

from the same lab showed that PGRN is secreted at synapses in an activity-

dependent manner, suggesting a possible role in regulating activity-dependent 

changes in neuronal connectivity (Takahashi et al., 2017b). In another study Grn-

/- mice exhibited impaired LTP and abnormal neuronal morphology at ten to twelve 

months of age (Petkau et al., 2012), but not in Grn+/- mice at the same age (Filiano 

et al., 2013). Because mild spatial cognitive deficits were previously observed at 

eighteen months of age, LTP was next studied in Grn+/- mice between eighteen 

and twenty months. A significant decrease in both the post-tetanic potentiation and 
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LTP were observed in Grn+/- compared to NTg mice, suggesting PGRN 

haploinsufficiency significantly altered synaptic connectivity at eighteen months. 

Our LTP results are inconsistent with a previous study using a different 

Grn+/- mouse model (Filiano et al., 2013). There are several potential explanations 

for this apparent contradiction. It is possible that PGRN haploinsufficiency only 

affects induction of LTP in the Schaffer collateral at eighteen months or older since 

the previous study measured LTP at twelve months. Another potential explanation 

is that PGRN haploinsufficiency’s effect on LTP is temporally sensitive. The 

temporal spacing between high frequency stimuli trains have been reported to 

involve different singling processes and intracellular singling pathways (Woo et al., 

2003). For example, trains separated between 3-20 seconds (massed) regulates 

PKA-dependent LTP (Scharf et al., 2002; Woo et al., 2003), whereas trains 

separated between 300-600 seconds (spaced) requires PKA for induction of 

LTP(Kim et al., 2010). The protocol used to induce LTP in the previous study and 

ours was nearly identical except for the intertrain interval used between HFS’s, 

with the previous study using an intertrain interval of 20 seconds (massed) versus 

our study utilizing a 300s (spaced) intertrain interval. Therefore, PGRN 

haploinsufficient effect on the induction of LTP in the Schaffer collateral of the 

hippocampus is maybe temporally sensitive to spaced intervals only. 

Several neuropathological hallmarks present in FTLD patients carrying 

GRN mutations have been reported in multiple Grn-/- mouse lines, including 

increased microgliosis, increased astrogliosis, and TDP-43 proteinopathy (Garcia-

Alloza et al., 2006). Under pathological conditions, TDP-43 is cleaved, translocated 
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to the cytoplasm, and becomes the main protein constituent of the ubiquitinated 

inclusions FTLD-U patients with GRN mutations (Neumann et al., 2006). The most 

consistent neuropathological change observed in Grn-/- mouse lines is increased 

neuroinflammation, in microglia and astrocytes, in the brain. In this chapter, no 

changes were observed in neuroinflammation in the hippocampus of Grn-/- mice at 

eighteen months of age, despite observed behavioral changes consistent with the 

literature (Filiano et al., 2013). Alterations in TDP-43 expression was also 

observed, but no differences were observed between insoluble full-length TDP-43 

and cleavage of RIPA soluble TDP-43 in eighteen-month-old Grn+/- mice despite 

behavioral abnormalities; these findings are consistent with previous reports in 

Grn-/- mice (Yin et al., 2010b; Yin et al., 2010a; Ghoshal et al., 2012; Wils et al., 

2012). These findings demonstrate that functional deficits of PGRN loss are 

independent of FTLD-associated neuropathology. 

The initial findings that Grn+/- mice lacked FTD-related neuropathology seen 

in in Grn-/- mice coupled with a lack of robust behavioral phenotypes led to Grn-/- 

mice being viewed as the superior model for studying PGRN’s role in FTD and 

other neurovegetative diseases. However, the findings in this aim in conjunction 

with previous reports modeling behavior more extensively in Grn+/- mice calls this 

initial view into question and suggests that Grn+/- may in fact be the better model 

for evaluating PGRN’s role in neurodegenerative disease. Our findings further 

strengthen the dissociation between not just FTD-related behavioral deficits and 

FTD-related neuropathology but also deficits in synaptic plasticity and loss of 

interneurons. Our results extend previous reports and show Grn+/- mice exhibit a 
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more complete range of key FTD-related behavioral deficits including learning to 

previously identified social and emotional deficits. Although initial research did not 

identify clear behavioral and physiological phenotypes in Grn+/- mice, our results in 

accordance with past studies suggest social dominance and fear conditioning are 

robust behavioral phenotypes, having been reproduced in multiple Grn+/- mouse 

models, and the significant decrease in induction of LTP utilizing a spaced inter-

train interval is potentially a novel physiological phenotype. In addition to 

recapitulating key-FTD behaviors and functional deficits the greatest advantage of 

Grn+/- mice over Grn-/- is that because one PGRN allele remains the interplay 

between different pools of PGRN including neuronal, extracellular, and the 

dynamic expression in microglia are retained. Therefore, Grn+/- may be a more 

useful tool in evaluating PGRN’s role in neurodegenerative diseases and 

evaluating potential therapies.  
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CHAPTER 4: PGRN LOSS AND TAU PATHOLOGY 

4.1 Introduction 

In this chapter, we explore the role of heterozygous loss of PGRN on the 

development of tau-associated pathologies with the hypothesis PGRN 

haploinsufficiency exacerbates tau-related behavioral deficits and increases tau 

phosphorylation. Behavior and neuropathology were examined in the P301S 

transgenic mouse model, which overexpresses the P301S mutant human tau 

associated with clinical cases of neurodegenerative tauopathy, with the previously 

described Grn+/- mouse model. Several experimental approaches of behavior 

modeling, histology, and western blotting were used to evaluate the effect of PGRN 

haploinsufficiency on tau-related behavioral deficits and tau pathology. Contrary to 

previous reports, heterozygous loss of PGRN in the P301S transgenic mouse 

model has a protective effect on tau pathology indicated by a decrease in AT8 tau 

phosphorylation that was associated with increased inhibitory phosphorylation of 

several proteins in the Akt signaling pathway including GSK-3β which is a key 

proline-directed serine-threonine kinase involved in tau phosphorylation. We also 

observed a significant decrease in motor coordination and balance in P301S but 

not P301S-Grn+/- mice further suggesting a protective effect of PGRN 

haploinsufficiency on tau. These changes were observed with the absence of 

gross changes in neuroinflammation suggesting a dissociation between 
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haploinsufficient loss of PGRN’s protective effect on tau pathophysiology and 

neuroinflammation.  

4.2 Materials and Methods 

4.2.1 Animal models 

The P301S tau transgenic (P301S) mouse model expressing human tau 

(1N4R) with a P301S mutation and develops progressive neurofibrillary tangle 

(NFT) pathology and neurodegeneration in the brain and spinal cord (Yoshiyama 

et al., 2007). In addition to neuropathology, they develop lower-limb weakness 

starting at six months of age. The P301S tau transgenic mouse model was crossed 

with a Grn+/- mouse model producing P301S tau transgenic mice harboring the 

GRN hemizygote (P301S-Grn+/-). Offspring were backcrossed to C57BL/6J mice. 

All male and female mice used in this study were ten – eleven months of age. 

Mice were housed in the animal facility at the University of Houston and 

housed in a climate-controlled room (25°C) on a 12/12 h light/dark cycle and given 

food and water ad libitum. All studies were conducted following the University of 

Houston approved Institutional Animal Care and Use Committee and implemented 

following the National Research Council’s Guide of The Care and Use of 

Laboratory Animals. 

4.2.2 Tissue processing 

Animals from both genotypes were euthanized with CO2, and brains were 

harvested. One hemibrain was flash-frozen in 2-methylbutane and dry ice and 

stored for long-term storage at -80°C. The other hemibrain was fixed in Accustain 
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(Sigma-Aldrich) and stored at 4°C for long-term storage. Accustain fixed brains 

were subjected to paraffin processing (Leica TP1020) and then sectioned using a 

Leica microtome at 10-µm intervals. The other half of each brain and cervical spinal 

cord were snap-frozen and stored at -80°C for biochemical processing. Tissues 

were homogenized in cold RIPA lysis and extraction buffer (Thermo-Fisher 

Scientific) containing protease and phosphatase inhibitors. Samples were then 

centrifuged at 20,000 x g for twenty minutes at 4°C. The pellet was discarded, and 

a portion of the RIPA lysate was used for biochemical analysis. Sarkosyl–insoluble 

tau was isolated following previous reports, with RIPA supernatants adjusted to 

1% sarkosyl. Samples were incubated for one hour at room temperature and then 

spun at 100,000 x g at room temperature. The supernatants were discarded, and 

the pellets were resuspended in O+ buffer (62.5 mM Tris-HCL, 10% glycerol 5% 
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2-mercaptoethanol, 0.1% SDS phosphatase, and protease inhibitors). Samples 

were then boiled for 3 min and kept at -20°C for Western blot analysis. 

4.2.3 Behavioral tests 

4.2.3.1 Open Field 

 Procedures were performed as described in Section 3.2.3.1. 

4.2.3.2 Motor Coordination and Balance 

 Procedures were performed as described in Section 3.2.3.2 

4.2.3.3 Light Dark Transition 

 Procedures were performed as described in Section 3.2.3.3. 

4.2.4 Immunohistochemistry and image analysis 

Brain and lumbar spinal cord tissue were paraffin processed and sectioned 

at 10 um thickness and the same brain plate and spinal cord regions used in 

immunofluorescence analysis were used. Immunohistochemistry was performed 

on equidistant sections from the lumbar spinal cord n > 3 sections per animal) and 

hemibrain (n > 3 sections per animal) using anti-NeuN (1:1000, Millipore), anti-

Iba1 (1:500, Wako), and anti-GFAP (1:500, Abcam). Sections were incubated in 

primary antibody overnight at 4°C, incubated with horseradish peroxidase-labeled 

secondary antibody, and stained with DAB. The number of positively stained 

neurons with an identifiable nucleus was quantified by a blinded observer using 

NIH Image J software to determine the number of alpha motor neurons in the spinal 

cord’s ventral horn and neurons in the cortex. A 200 µm x µ1000 m rectangular 

region of the CA3 and CA1 was quantified manually for the hippocampus. For Iba1 
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and GFAP analysis, three sections per mouse were collected and thresholds were 

set to include only Iba1 and GFAP positive pixels per image and averaged using 

Image J in the hippocampus between Paxinos plate numbers 42 and 52. 

4.2.5 Western blot and image analysis 

Tau from the spinal cord, hippocampus, and cortex samples from RIPA and 

sarkosyl extractions were resolved using SDS-PAGE or dot blot. Blots were probed 

with tau antibodies [TAU5, (1:1000), AT8 (1:1000), AT100 (1:1000) and AT180 

(1:250)]. After overnight incubation at 4°C, blots were incubated in horseradish 

peroxidase-labeled secondary antibodies and visualized with an ECL substrate kit 

(Amersham). Band densities were analyzed with NIH Image J software, and band 

values were normalized to glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH). Dot blots were prepared by pipetting 1.2 ul of each sample in each 

square of a nitrocellulose membrane and allowed to dry for 30 minutes. Blots were 

incubated with T22 (1:250, kindly donated by Dr. R. Kayed) overnight at 4°C, 

followed by incubation with a horseradish peroxidase-labeled secondary and 

visualization with ECL. Dot intensities were analyzed with NIH Image J software. 

4.2.6 Analysis of Akt signaling pathway 

The PathScan Akt Signaling array kit (Cell Signaling Technology, MA) was 

used according to the manufacturer’s instructions to detect phosphorylated 

proteins in the Akt signaling pathway. The kit detects 16 signaling proteins when 

phosphorylated, including Akt (Thr308), Akt (Ser473), S6 Ribosomal Protein 

(Ser235/236), AMPKa (Thr172), PRAS40 (Thr246), mTOR (Ser2481), GSK-3a 

(Ser21), GSK-3b (Ser9), p70 S6 Kinase (Thr389), p70 S6 Kinase (Thr421/Ser424), 
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Bad (Ser380), RSK1 (Ser380), PTEN (Ser380), PDK1 (Ser241), Erk ½ 

(Thr202/Tyr204) and 4E-BP1 (Thr37/46). 

4.2.7 Data Analysis 

All experiments were conducted by observer’s blind to genotype. All data 

are expressed as mean ± standard error mean. Data was analyzed using Staistica 

(TIBCO Software, Pal Alto, CA) and statistical comparisons were made using a 

two-sample t-test to compare P301S and P301S-Grn+/- mice. A two-way analysis 

of variance (ANOVA) was used to compare all four groups (NTg, Grn+/-, P301S, 

and P301S-Grn+/-). After ANOVA, a Fisher LSD post-hoc was used for behavioral 

tests and Tukey’s HSD post-hoc was used to compare the significant effects 

between groups. For the motorized rotarod test a two-ways repeated measures 

ANOVA, with the Grn+/- and P301S genotype as between-subject factors and trials 

as within-subject factor was used followed by two-way ANOVA and Fisher LSD 

post hoc to analyze the effect of genotype on rotarod performance at each of the 

8 trials. p < 0.05 was considered significant. 

4.3 Results 

4.3.1 Heterozygous loss of PGRN affects both motor coordination and 

anxiety-like behavior in P301S mice 

To test the hypothesis that PGRN haploinsufficiency worsened tau 

pathology motor coordination, learning, and balance assessed using the motorized 

rotarod was first investigated. Two-way repeated measures ANOVA applied to the 

latency to fall over the 8 trials revealed a main effect of trials with a significant 

increase in latency to fall over the course of the 8 trials [F(7,168)=6.8047, p=0.000] 
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indicating mice exhibited motor learning (Fig. 19). Two-way ANOVA did not reveal 

main effects by either the Grn+/- [F(1,24)=0.0533, p=0.816] or P301S genotypes 

[F(1,24)=1.4252, p=0.244] or an interaction effect between the two genotypes 

[F(1,24)=0.6057, p=0.444]. Fisher LSD post hoc indicated P301S mice had a 

significantly decreased latency to fall on the rotarod for trials 5 (p<0.05) and 6 

(p<0.05) on day two compared to NTg littermates indicating the P301S genotype 

impacted motor coordination and balance (Fig. 19A and B). P301S-Grn+/- mice on 

the other hand were not significantly different from NTg mice on trials 5 (p>0.05) 

and 6 (p>0.05) suggesting that PGRN haploinsufficiency decreased the effect of 

the P301S genotype on motor coordination and balance or delayed the onset of 

motor coordination and balance impairment. 

Non-cognitive behavior was further investigated using the open field test. 

PGRN haploinsufficiency resulted in increased exploratory activity (MOVE) and 

decreased time spent resting (REST) while exploring the open field (Fig. 20). Two-

way ANOVA analysis did not reveal a main effect from either the Grn+/- 

[F(2,23)=0.002, p=0.998] or P301S genotypes [F(2,23)=1.667, p=0.211] nor a 

significant effect between the two genotypes [F(2,23)=1.772, p=0.192]. Fisher LSD 

post hoc test indicated P301S-Grn+/- mice spent more time moving (MOVE) and 

significantly less time moving (REST) compared to Grn+/- mice (p<0.05; Fig. 20). 

There were no significant differences in stereotypic behavior (STERO) between 

P301S-Grn+/- and Grn+/- mice nor any differences in exploratory behavior between 

NTg and Grn+/- mice and P301S and P301S-Grn+/- mice. 
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Figure 19. P301S mice exhibit significantly impaired motor coordination and 

balance. (A) The motorized rotarod across eight trials measured motor 

coordination and learning for two days. (B) P301S-Grn+/- mice exhibited impaired 

motor coordination on trials five and six of the motorized rotarod compared to NTg 

mice. (*p<0.05; N = 7 per genotype). 
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Figure 20. Open field locomotor performance enhanced in P301S-Grn+/- mice. 

P301S-Grn+/- mice showed increased exploratory behavior indicated by the 

increased time moving (MOVE) and decreased time resting (REST) compared to 

Grn+/- mice. No differences in stereotypic behavior (STEREO) were observed in 

either genotype. (*p<0.05; N = 7 – 9 per genotype). 
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Anxiety-like behaviors were also investigated with previously reported 

alterations in both Grn+/- and AD mouse models (Kayasuga et al., 2007; Petkau et 

al., 2012). The light-dark transition test was used to assess whether PGRN 

haploinsufficiency affected anxiety-like behavior in P301S mice. Two-way ANOVA 

revealed a significant effect between the Grn+/- and P301S genotypes 

[F(1,27)=7.2479, p=0.1204] but not a main effect of either Grn+/- [F(1,27)=1.3707, 

p=0.252] or P301S [F(1,27)=1.7434, p=0.198] genotypes (Fig. 21). A Fisher LSD 

post hoc test indicated P301S mice spent significantly less time in the light 

compartment compared to NTg indicating tau pathology increased anxiety-like 

behavior (p<0.05; Fig. 21). This significant decrease seen in time spent in the light 

compartment of P301S mice, however, was not seen in P301S-Grn+/- mice and a 

Fisher LSD post hoc test indicated instead a significant increase compared to 

P301S mice (p<0.05; Fig. 21). These findings suggest that PGRN 

haploinsufficiency may attenuate or decrease the onset of anxiety-like behavior 

seen in the P301S tau transgenic mouse model. 

4.3.2 Heterozygous loss of PGRN reduces hyperphosphorylated tau in P301S 

mice 

Previously, two studies have reported that loss of PGRN increases tau 

phosphorylation in the P301L mouse model (Hosokawa et al., 2015; Takahashi et 

al., 2017b). Therefore, whether PGRN haploinsufficiency affected tau pathology in 

the brain and spinal cord of P301S transgenic mice was next examined.  
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Figure 21. Progranulin haploinsufficiency rescues anxiety-like behavior in 

P301S mice in the light dark transition test. P301S mice spent significantly less 

time on the light side compared to NTg, indicating increased anxiety-like behavior. 

However, P301S-Grn+/- spent significantly more time in the light than P301S, 

suggesting loss of PGRN reduced anxiety-like behavior. (*p<0.05; N = 7 – 9 per 

genotype).  
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Sequential RIPA and sarkosyl-extractions to quantify soluble and insoluble 

levels of tau protein in the cortex, hippocampus, and spinal cord was used to 

assess the impact of PGRN haploinsufficiency (Planel et al., 2009). A Student’s t-

test was used to analyze differences between P301S and P301S-Grn+/- genotypes. 

A significant reduction in soluble tau (p=0.031; Fig. 22C) was observed in the 

cortex and reduced soluble AT8 phosphorylation in the spinal cord (p=0.005; Fig. 

22A) and cortex (p=0.027; Fig. 22C) of P301S-Grn+/- versus P301S mice. Although 

not significant, reductions in insoluble tau (36% decrease) and soluble AT8 

phosphorylation (47% decrease) in the hippocampus were observed in P301S-

Grn+/- compared to P301S mice (Fig. 22B). Loss of PGRN did not significantly 

affect the levels of soluble AT100 or AT180 in the spinal cord, hippocampus, or 

cortex of P301S mice (Fig. 22A, B, and C). No significant effects on either 

insoluble tau or insoluble phosphorylated tau were observed in the spinal cord, 

hippocampus, or cortex in the sarkosyl extractions (Fig. 23A, B, and C). Next 

soluble tau oligomeric tau in the spinal cord and brain was investigated by dot blot 

analysis. Two-sample t-test revealed that PGRN haploinsufficiency did not affect 

the levels of tau oligomers in either the spinal cord or brain; mice from the P301S-

Grn+/- mice displayed similar levels of oligomer tau in the spinal cord (p=0.611) and 

brain (p=0.699) (Fig. 24). Taken together, our results, contrary to previous reports 

suggest that PGRN haploinsufficiency reduces site-specific (AT8) tau 

phosphorylation. 
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Figure 22. RIPA-soluble tau levels in the spinal cord, cortex, and 

hippocampus of P301S transgenic mice with progranulin haploinsufficiency.  

RIPA-soluble total (TAU5) and phosphorylated (AT8, AT100, and AT180) tau 

protein quantification via western blot analysis of the (B) hippocampus revealed 

no significant reductions in P301S-Grn+/- versus P301S mice. However, the (A) 

spinal cord revealed a significant reduction in AT8-tau phosphorylation and the (C) 

cortex revealed a significant reduction in total tau and AT8-tau phosphorylation in 

P301S-Grn+/- versus P301S mice. (*p<0.05; n = 4 mice per Genotype) 
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Figure 23. Sarkosyl-insoluble tau levels in the spinal cord, cortex, and 

hippocampus of P301S transgenic mice with progranulin haploinsufficiency.  

Sarkosyl-insoluble total and phosphorylated Western blot analysis of the (A) spinal 

cord, (B) cortex and (C) hippocampus revealed no significant reductions in P301S-

Grn+/- versus P301S mice. (*p<0.05; n = 4 mice per Genotype) 
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Figure 24. Soluble tau oligomers are present in the spinal cord and brain of 

progranulin haploinsufficient P301S mice. (A) Dot blot analysis indicates similar 

levels of oligomeric tau in the spinal cord, cortex, and hippocampus. (B) 

Represenative dot blot images of T22 in the spinal cord, cortex, and hippocampus. 

(N = 4 per genotype). 
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4.3.3 PGRN haploinsufficiency does not alter neurodegeneration or 

neuroinflammation in the brain of P301S mice 

Neurodegeneration in P301S and P301S-Grn+/- mice was assessed by 

quantifying motor neurons in the spinal cord and neurons in the brain by NeuN 

immunohistochemistry. Neurodegeneration was observed in the cortex and CA1 

and CA3 regions of the hippocampus but not in the spinal cord (Fig. 25A, B, C, 

and D). A main effect from the P301S genotype [F(4,9)=21.386, p=0.001] but not 

from the Grn+/- genotype [F(4,9)=2.4303, p=0.124] nor an interactive effect 

between the two genotypes [F(4,9)=1.2357, p=0.362] indicated by two-way 

ANOVA analysis. In the spinal cord, Tukey HSD post hoc did not indicate any 

significant differences in number of motor neurons in any of the groups (p>0.05; 

Fig. 25A). In the cortex, Tukey HSD post hoc test indicated P301S and P301S-

Grn+/- mice had significantly fewer NeuN-positive cells compared to NTg (p<0.01) 

and Grn+/- mice (p<0.01) in the cortex (Fig. 25B). In the hippocampus, P301S and 

P301S-Grn+/- mice had significantly fewer NeuN-positive cells compared to NTg 

(p<0.01) and Grn+/- mice (p<0.01) in the CA1 and CA3 regions (Fig. 25C and D). 

However, no differences in NeuN-positive cells were observed between P301S 

and P301S-Grn+/- mice in the spinal cord, cortex and CA1 and CA3 hippocampal 

regions indicating PGRN haploinsufficiency did not affect neurodegeneration in the 

P301S transgenic mouse model (Fig. 25A, B, C, and D). 
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Figure 25. Heterozygous loss of progranulin does not affect 

neurodegeneration in the spinal cord or brain of P301S transgenic mice. (A) 

The number of spinal cord motor neurons was not significantly different across all 

groups. (B, C, and D) P301S transgenic mice displayed significant 

neurodegeneration in the posterior parietal cortex and the CA1 and CA3 region of 

the hippocampus compared NTg and Grn+/- mice controls regardless of Grn 

genotype. (*p<0.05; N = 3 – 5 per genotype). 
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Whether PGRN loss affected neuroinflammation in P301S mice was next 

evaluated by Iba1 and GFAP immunoreactivity. Microgliosis was measured by the 

percent area of Iba1 positive pixels by immunohistochemistry. A significant 

increase in Iba1 positive pixels was observed in the spinal cord, hippocampus, and 

cortex of P301S and P301S-Grn+/- mice compared to NTg and Grn+/- mice. Two-

way ANOVA revealed a main effect of the P301S genotype [F(3,8)=27.828, 

p=0.0001]. Tukey HSD post hoc test revealed significant increase in Iba1 

immunoreactivity in P301S mice compared to NTg mice and P301S-Grn+/- mice 

compared to Grn+/- mice in the spinal cord (p<0.001; Fig. 26A), hippocampus 

(p<0.001; Fig. 26B), and cortex (p<0.001; Fig. 26C). Next astrogliosis was 

measured by the percent area of GFAP positive pixels by immunohistochemistry. 

A significant increase in GFAP positive pixels was observed in the spinal cord, 

hippocampus, and cortex of P301S and P301S-Grn+/- mice compared to NTg and 

Grn+/- mice. Two-way ANOVA revealed a main effect of the P301S genotype 

[F(3,8)=27.828, p=0.0001]. Tukey HSD post hoc test revealed significant increase 

in Iba1 immunoreactivity in P301S mice compared to NTg mice and P301S-Grn+/- 

mice compared to Grn+/- mice in the spinal cord (p<0.001; Fig. 26D), hippocampus 

(p<0.001; Fig. 26E), and cortex (p<0.001; Fig. 26F). No differences were observed 

between the P301S and P301S-Grn+/- for both Iba1 and GFAP immunoreactivity 

mice indicating PGRN haploinsufficiency did not affect neuroinflammation in the 
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spinal cord, hippocampus or cortex of P301S mice, despite observed changes in 

total and hyperphosphorylated tau. 

4.3.4 PGRN haploinsufficiency dysregulates GSK-3β and Akt signaling 

pathway in P301S mice 

Sixteen phosphorylated proteins that belong to the Akt signaling network 

were investigated using the PathScan Akt Signaling array kit (Cell Signaling 

Technology; #9700) in the spinal cord to characterize how PGRN 

haploinsufficiency might decrease phosphorylated tau in the P301S mouse model. 

Within the Akt signaling network, a two-sample t-test revealed significant increases 

in the inhibitory phosphorylation sites for GSK-3β (Ser9), PTEN (Ser380), and 4E-

BP1 (Thr37/46) in P301S-Grn+/- mice compared to P301S mice (p<0.05; Fig. 27). 

Furthermore, a two-sample t-test revealed a significant increase in GSK-3β 

phosphorylation at Ser9 in the spinal cord of P301S-Grn+/- mice compared to 

P301S mice via western blot indicating increased inhibition of GSK-3β activity in 

P301S mice with PGRN haploinsufficiency (Fig. 28A and B). Taken together, 

these results suggest that PGRN haploinsufficiency dysregulates the Akt signaling 

pathways and increases inhibitory phosphorylation of GSK-3β (Ser9). 
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Figure 26. Heterozygous loss of Progranulin does not affect 

neuroinflammation in the spinal cord or brain of P301S transgenic mice. (A, 

B, and C) P301S mice displayed significant microgliosis in the spinal cord, 

hippocampus, and posterior parietal cortex compared to NTg and Grn+/- mice 

regardless of Grn genotype. (D, E, and F) P301S mice displayed significant 

astrogliosis in the spinal cord, hippocampus, and cortex compared to NTg and 

Grn+/- mice regardless of Grn genotype. (*<0.05; N = 3 – 5 per genotype).  
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Figure 273. Akt signaling and GSK-3β are dysregulated in P301S-Grn+/- mice. 

Analysis of the Akt signaling network by the PathScan® Akt Signaling Antibody 

Array Kit P301S-Grn+/- mice showed increased phosphorylation of GSK-3b (Ser9), 

PTEN (Ser380), and 4E-BP1 (Thr37/46) . (*p<0.05; N = 4 per genotype). 
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Figure 284. Increased inhibitory phosphorylation (Ser9) of GSK-3β in P301S-

Grn+/- mice. (A) Western blot analysis indicates increased inhibiotry 

phosphorylation of GSK-3β (Ser9) in the spinal cord of P301S-Grn+/- mice. (B) 

Representative western blots of GSK-3β (Ser9) in the spinal cord. (*p<0.05; N = 4 

per genotype). 
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4.4 Discussion 

In this series of experiments, whether heterozygous loss of PGRN 

worsened the AD-related behavior and pathology in mice that overexpress human 

P301S mutation was investigated. In the P301S transgenic mouse model, 

heterozygous loss of PRGN improved non-cognitive tau-related behavioral 

deficits, which was accompanied by reduced tau phosphorylation in the brain and 

spinal cord. However, despite these changes’ partial loss of PGRN did not affect 

neurodegeneration or neuroinflammation. Moreover, PGRN haploinsufficiency in 

the P301S transgenic mouse model altered cell signaling in the Akt signaling 

pathways. These findings suggest new roles of PGRN in AD and 

neurodegenerative disease in general and that loss of PGRN attenuates tau-

related pathology, at least with respect to P301S tau mutation, which is contrary to 

previous reports evaluating PGRN loss on tau pathology. 

The P301S mutation has been shown to increase hyperphosphorylation, 

aggregation, and filament formation of tau associated with FTD forms (Bugiani et 

al., 1999; Lossos et al., 2003; Goedert and Jakes, 2005). By six months of age, 

P301S tau transgenic mice develop extensive tau pathology in the spinal cord, 

accompanied by neurogenic muscle atrophy resulting in a progressive decline in 

locomotor function (Scattoni et al., 2010; Schaeffer et al., 2012). While there was 

no observed decline in general activity levels of P301S mice in the open field test, 

a significant reduction in motor coordination was observed during the rotarod test 

in P301S mice compared to NTg littermates. However, no significant reduction was 

observed in P301S-Grn+/-, suggesting that heterozygous loss of PGRN may have 



130 
 

attenuated decline in motor coordination of P301S mice. P301S mice have 

previously been reported to exhibit decrease in anxiety-like behavior with the 

progression of tau pathology (Takeuchi et al., 2011). In this study, P301S mice 

spent significantly less time in the light compartment during the light-dark test 

compared to NTg mice, suggesting an increase in anxiety-like behavior, which 

contrasts with the previous study. Although increased anxiety-like behavior in 

P301S mice was observed, this was absent P301S-Grn+/- mice which spent 

significantly more time in the light compartment compared to P301S mice, 

suggesting ` haploinsufficiency reduced anxiety-like behavior in P301S mice. A 

lack of a distinct general locomotor phenotype and discrepancy in anxiety-like 

behavior in our P301S mice may potentially be due to phenotypic drift, which has 

been previously reported in the P301S mouse line (Iba et al., 2013; Maruyama et 

al., 2013). 

Pre-neurofibrillary tangles are composed predominately of phosphorylated 

Ther231 (AT180) tau, with later-stage neurofibrillary tangles made up of 

filamentous tau that are characterized by phosphorylation at sites Ser202/Thr205 

(AT8) and Thr212/Ser214 (AT100). In this study, a significant reduction was 

observed in only AT8 phosphorylated tau in the lumbar spinal cord and 

hippocampus of P301S-Grn+/- mice, with no differences in AT180 or AT100 

phosphorylation or total tau. This finding suggests that PGRN haploinsufficiency 
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attenuates the progression of neurofibrillary tangle formation in the spinal cord and 

hippocampus in P301S mice.  

Despite evidence that loss of PGRN affects soluble tau phosphorylation in 

mice (Hosokawa et al., 2015; Takahashi et al., 2017a), it is not clear if PGRN loss 

affects insoluble tau accumulation which represents another pathological 

characteristic of tauopathies (Hasegawa, 2006). Therefore, RIPA-soluble and 

sarkosyl-insoluble forms of tau were analyzed in the brain and spinal cord of 

P301S and P301S-Grn+/- mice. While RIPA is commonly used to detect pre-

aggregated tau, sarkosyl extractions are commonly used to isolate aggregated 

paired helical filaments of tau, which are the primary constituents of insoluble 

NFT’s (Julien et al., 2012). Significant reductions of both total and 

hyperphosphorylated tau for RIPA-soluble tau in the brain and spinal cord of 

P301S-Grn+/- mice were observed but did not observe any differences in sarkosyl-

insoluble tau. In the brain, significant reductions of RIPA-soluble total tau and AT8-

tau phosphorylation were observed in the cortex of P301S-Grn+/- mice, with similar 

but not significant reductions in the hippocampus. No differences were observed 

in AT100, or AT180 phosphorylated tau. Levels of soluble tau oligomers were 

analyzed, which is a toxic species of tau and has been suggested to initiate toxicity 

before forming NFTs (Lasagna-Reeves et al., 2012; Gerson and Kayed, 2013). 

Although differences were observed in RIPA-soluble tau, no significant effects of 
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PGRN loss were observed on tau oligomer’s levels in the brain or spinal cord of 

P301S mice. 

These reported results of tau phosphorylation after the heterozygous loss 

of PGRN contrast with two previous studies that used a different tau transgenic 

mouse model with either complete or partial loss of PGRN (Hosokawa et al., 2015; 

Takahashi et al., 2017a). In both studies, complete and partial loss of PGRN 

increased and not decreased tau phosphorylation in the P301L transgenic tau 

mouse model. One possible explanation for this discrepancy could be the different 

choice of transgenic tau mouse models, where P301S and P301L mutations may 

affect strain-specific signaling pathways; phenotypic differences between the 

P301S and P301L tau mouse models have been previously reported. Neuronal 

loss was observed to be more pronounced in P301S mice than in the P301L mice, 

which is consistent with FTD patients carrying the P301S mutation (Allen et al., 

2002). Unlike the P301L tau line, which shows increased DNA fragmentation and 

apoptosis (Gotz et al., 2001; Ho et al., 2001), the P301S tau line showed no 

evidence for apoptosis based on DNA fragmentation and increased activation of 

caspase-3, which is also consistent with tauopathies in humans (Migheli et al., 

1994; Atzori et al., 2001; Ferrer et al., 2001). Our data, in context with previous 

reports, suggest that the effect of PGRN haploinsufficiency on tau pathology 

maybe mutation specific. 

Although these results suggest the heterozygous loss of PGRN reduces 

total and phosphorylated tau in the brain of P301S mice, no changes were 

observed in neuronal loss between P301S and P301S-Grn+/- mice, indicating a 



133 
 

reduction in PGRN expression did not affect the rate of neurodegeneration in 

P301S mice. Consistent with previous studies, significant neurodegeneration was 

observed in the CA1 and CA3 regions of the hippocampus and cortex of P301S 

mice (Yoshiyama et al., 2007; Crescenzi et al., 2014; Koga et al., 2014), but not in 

the spinal cord (Ohia-Nwoko et al., 2014). Even though, PGRN loss leads to 

neurodegeneration in humans, it is not surprising that there was no observed 

increase in neuronal loss in P301S-Grn+/- compared to P301S mice. While PGRN 

has been shown to be neuroprotective and a neurotrophic factor for some 

stressors (Guo et al., 2010; Martens et al., 2012; Tao et al., 2012), it has also been 

reported not to be for others (Petkau et al., 2013). Differences between different 

neurotoxic stressors in Grn-/- mice suggest a complex role of PGRN as a 

neurotrophic factor suggesting that PGRN deficiency may only exacerbate specific 

stressors. Taken together, the data reported here suggest that PGRN-dependent 

neurotrophic pathways are independent of tau-induced toxicity in the P301S 

transgenic mouse model. 

How PGRN reduction modulates AD and specifically tau phosphorylation is 

not well understood. One possible explanation is changes in the inflammatory 

pathway, which has been reported to increase tau phosphorylation in tau 

transgenic mouse models (Kitazawa et al., 2005; Lee et al., 2010; Maphis et al., 

2015). Previous reports studying the effect of PGRN on AD pathology have largely 

focused on PGRN’s role in regulating inflammation and, more specifically, 

microglial activity (Minami et al., 2014; Takahashi et al., 2017a). Despite the strong 

relationship between inflammation and complete loss of PGRN, the finding in this 
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study that PGRN haploinsufficiency did not affect neuroinflammation in P301S 

mice and prior literature suggests that PGRN haploinsufficiency is likely affecting 

tau phosphorylation through a mechanism independent of changes in the 

inflammatory pathway. No differences were observed in either the total number of 

microglia or astrocytes in both the brain and spinal cord of P301S-Grn+/- compared 

to P301S mice, despite observed reductions in total and phosphorylated tau. This 

is consistent with previous studies of Grn+/- mice showing that they do not develop 

neuroinflammation (Filiano et al., 2013), unlike Grn-/- mice (Filiano et al., 2013). 

This is also consistent with a recent study that also found no changes in 

neuroinflammation, indicated by cytokine levels, despite observing changes in tau 

phosphorylation in the P301L tau mouse model with PGRN loss (Hosokawa et al., 

2015).  

To better understand how PGRN haploinsufficiency reduces total and 

phosphorylated tau signaling pathways that play a key role in tau phosphorylation 

was next investigated. Many different kinases and phosphatases regulate tau’s 

phosphorylation with glycogen synthase kinase 3β (GSK-3β), a proline-directed 

serine/threonine kinase, being a key kinase in AT8 phosphorylation (Stoothoff et 

al., 2005). Increased expression of GSK-3β has been observed in AD, and the 

dysregulation of GSK-3β has also been suggested to play a key role in AD’s 

pathogenesis. Overexpression of GSK-3β in cells and mice enhance tau 

phosphorylation and promotes tau aggregation (Lucas et al., 2001; Goldbaum et 

al., 2003; Johnson and Stoothoff, 2004; Rankin et al., 2008). Furthermore, 

overexpression of GSK3β was shown to increase AT8  phosphorylation (Braak 
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and Braak, 1995), and AT8 phosphorylation could not be detected in the absence 

of GSK3β in SK-N-SH cells (Richet et al., 2012). GSK-3β activity is known to be 

regulated by phosphorylation, with phosphorylation of Ser9 inhibiting GSK-3β 

function and phosphorylation of Tyr216 increasing function (Jope and Johnson, 

2004). In this study we observed a significant increase in p-GSK-3β (Ser9) in 

P301S-Grn+/- mice versus P301S littermates and is consistent with the previous 

observation of a significant reduction in AT8 phosphorylation in the brain and spinal 

cord of P301S-Grn+/- mice. To the best of our knowledge, this is the first report 

showing that heterozygous loss of PGRN haploinsufficiency dysregulates GSK-3β 

activity in a transgenic mouse model. 

This observed dysregulation of GSK-3β in P301S-Grn+/- mice is consistent 

with previous studies reporting changes GSK-3β phosphorylation. PGRN was first 

shown to increase phosphorylation of GSK-3β (Ser9) in neurons treated with 

exogenous PGRN which was associated with PGRN’s neurotrophic effects (Gao 

et al., 2010). Another study also observed increased phosphorylation of GSK-3β 

(Ser9) and proliferation in neural progenitor cells from Grn-/- mice treated with 

PGRN (Nedachi et al., 2011). However, although previous studies show an 

increase p-GSK-3β (Ser9) after an increase in PGRN, in this study we observed 

an increase with PGRN haploinsufficiency. This discordance maybe due to 

differential effects on GSK-3β between neuronal and exogenous PGRN or PGRN’s 
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effect maybe disease-dependent. Regardless, our results suggest PGRN 

haploinsufficiency increases p-GSK-3β (Ser9) in the P301S mice. 

How exactly PGRN is modulating GSK-3β activity is not clear. One possible 

explanation is that PGRN haploinsufficiency is modulating GSK-3β through the 

Wnt signaling pathway. PGRN deficiency has been implicated in Wnt signaling 

with an increased Wnt signaling observed after loss of PGRN (Rosen et al., 2011; 

Alquezar et al., 2014). The stabilization of free β-catenin by the inactivation of GSK-

3β is a critical step in Wnt signaling (Xu et al., 2016). Another possibility is through 

increased mTORC2/Akt signaling which has been observed in Grn+/- mice (Arrant 

et al., 2016). In this study phosphorylation of Akt at Ser473, which is associated 

with increased activity, mTORC1 was increased in Grn+/- mice, but not Grn-/- mice, 

between six and eight months. Although not investigated in this study p-Akt 

(Ser473) has been shown to increase p-GSK-3β (Endo, et al., 2006). Another 

possibility is that PGRN haploinsufficiency increases p-GSK-3β through the 

PI3K/Akt signaling pathway. This is supported by our results where an increase in 

phosphorylated PTEN at Ser380 was observed. PTEN is a primary regulator of the 

PI3K/Akt signaling pathway and phosphorylation of Ser380 is known to reduce 

PTEN function (Vazquez et al., 2000). Loss or inactivation of PTEN is correlated 

with an increase in p-Akt (Ser473) and increased p-GSK-3β (Ser9) (Mulholland et 

al., 2006). Given that we report an increase in p-PTEN (Ser380) and p-GSK-3β 

(Ser9) our results suggest that PGRN haploinsufficiency decreases tau 
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phosphorylation through dysregulating the PI3K/Akt signaling pathway in P301S 

mice. 

Although previous reports suggest that PGRN loss worsens tau pathology 

in the P301L transgenic mouse model, the findings in this aim suggests PGRN 

haploinsufficiency has a protective role in the P301S transgenic mouse model. Our 

findings further strengthen the dissociation between PGRN’s functional effects on 

behavior disease pathology independent to changes in neuroinflammation. 

Contrary to previous reports showing complete and haploinsufficient loss of PGRN 

increased AT8 tau phosphorylation, we observed a decrease in AT8 

phosphorylation of RIPA-soluble, but not sarkosyl-soluble, tau. Furthermore, we 

observed impairments in motor coordination and balance and increase in anxiety-

like behavior only in P301S mice suggesting PGRN haploinsufficiency had a 

protective effect with disease progression in P301S mice. In agreement with a 

decrease in AT8 phosphorylation we observed increased inhibitory 

phosphorylation of both PTEN and GSK-3β indicating decreased PI3K/Akt 

signaling in P301S-Grn+/- mice. Taken together, the results of this aim suggest 

PGRN haploinsufficiency may differentially affect tau pathology depending on the 

mutation present and with respect to the P301S mutation PGRN loss has a 

protective role.  
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CHAPTER 5: PGRN LOSS AND AMYLOID PATHOLOGY 

5.1 Introduction 

In this chapter, the role of PGRN in AD pathology with respect to Aβ 

pathology was investigated with the hypothesis that PGRN haploinsufficiency 

would exacerbate cognitive behavioral deficits and Aβ pathology. To test this, the 

APPSwe/PSEN1dE9 (APdE9) amyloid mouse model, which expresses human 

APP with the Swedish mutant and human PSEN1 lacking exon 9, was crossed 

with a global heterozygous loss of PGRN mouse model (Jankowsky et al., 2004). 

Although previous studies have predominately used Grn-/- mice to recapitulate 

PGRN loss, a Grn+/- mouse model was used instead as a more analogous model 

of typical FTLD carriers. While only Grn-/- mice replicate some FTLD-related 

pathology, such as microgliosis, both models exhibit key FTD-related behavior 

abnormalities (Yin et al., 2010b; Roberson, 2012; Filiano et al., 2013). Growing 

evidence suggests that patients with a complete loss of PGRN may be significantly 

different from patients who have haploinsufficiency. With mutations causing 

complete loss of PGRN causing neuronal ceroid lipofuscinosis and only partial loss 

resulting in FTD (Smith et al., 2012; Tanaka et al., 2014). Additionally, behavioral 

and signaling differences have been reported between the Grn+/- and Grn-/- mice 

suggesting that complete and partial loss of PGRN are maybe affecting different 

disease and signaling pathways (Arrant et al., 2016). Utilizing several experimental 

approaches of behavior modeling, histology, and electrophysiology we 

demonstrated heterozygous loss of PGRN exacerbated deficits in spatial learning 

and memory, synaptic plasticity, modulated Aβ-related pathology, and decreased 
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the number of GABAerigc interneurons in the APdE9 transgenic mouse model in 

absence of increased neuroinflammation suggesting PGRN haploinsufficiency 

worsens Alzheimer’s disease progression with respect to amyloid pathology. 

5.2 Materials and Methods 

5.3.1 Animal models 

The APPSwe/PS1dE9 amyloid transgenic (APdE9) mouse model expressing 

human APP with the Swedish mutation and human PSEN1 lacking exon 9. The 

APdE9 mouse model begins to develop amyloid plaques as early as six months of 

age, with abundant plaques in the hippocampus and cortex seen at nine months 

(Jankowsky et al., 2004; Garcia-Alloza et al., 2006). In addition to amyloid 

pathology, they develop impaired contextual memory and spatial learning by 12 

months of age (Lalonde et al., 2005; Janus et al., 2015). The APdE9 mice were 

crossed with a Grn+/- mouse model producing APdE9 amyloid transgenic mice 

harboring the GRN hemizygote (APdE9-Grn+/-). Both mouse models were 

backcrossed using C57BL/6J mice. All mice used in this study were behaviorally 

screened at twelve months and electrophysiology was performed at fourteen 

months. 

Mice were housed in the animal facility at the University of Houston and 

housed in a climate-controlled room (25°C) on a 12/12 h light/dark cycle and given 

food and water ad libitum. All studies were conducted following the University of 

Houston approved Institutional Animal Care and Use Committee and implemented 
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following the National Research Council’s Guide to The Care and Use of 

Laboratory Animals. 

5.3.2 Tissue Processing 

Animals from both genotypes were euthanized with CO2 and brains were 

harvested. One hemibrain was flash-frozen in 2-methylbutane and dry ice and 

stored for long-term storage at -80°C. The other hemibrain was fixed in Accustain 

(Sigma-Aldrich) and stored at 4°C for long-term storage. Accustain fixed brains 

were subjected to paraffin processing (Leica TP1020) and then sectioned using a 
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Leica microtome at 10-µm intervals. The other half of each brain and cervical spinal 

cord were snap-frozen and stored at -80°C for biochemical processing.  

5.3.3 Behavior tests 

5.3.3.1 Open Field 

 Exploratory and non-cognitive behavior was evaluated by the open field test 

at twelve months-of-age. Procedures were performed as described in Section 

3.2.3.1. 

5.3.3.2 Motor Coordination and Balance 

 Motor learning, coordination, and balance were evaluated by a motorized 

rotarod at twelve months-of-age. Procedures were performed as described in 

Section 3.2.3.2. 

5.3.3.3 Light Dark Transition 

 Anxiety-like behavior was assessed by the light dark transition test at twelve 

months-of-age. Procedures were performed as described in Section 3.2.3.3. 

5.3.3.4 Elevated Plus Maze 

 Anxiety-like behavior and fear was assessed by the elevated plus maze at 

twelve-months of age. Procedures were performed as described in Section 3.2.3.4. 

5.3.3.5 Contextual Fear Conditioning 

Contextual fear conditioning was used to test short-term associative 

learning at twelve months-of-age as previously described (Butler et al., 2013). Like 

cued fear conditioning, mice were conditioned to freeze to visual cues that are 

associated with a foot shock and/or tone. Mice were measured on their ability to 
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learn and remember the association of the environment cues with the aversive 

stimulus. For the learning trial, mice were placed in a 13 cm x 10.5 cm x 13 cm 

conditioning chamber with a loudspeaker, 28V house light, and a metal floor 

consisting of 19 equally spaced rods (2.8 mm diameter) for 7 minutes. For the first 

2 minutes mice were to explore the environment. At the 3rd, 4th, and 6th minute 

mark a 30-second tone (80 dB, 2 kHz) followed by a 2 second foot shock (0.75 

mA) was presented. Sixty seconds after the last shock the session ended. Each 

mouse spent freezing (defined as immobility) was detected by infrared cameras 

within the conditioning chamber and automatically measured using computer 

software (FreezeFrame, Med Associates/Actimetrics). Percentage freezing for 

post-conditioning was measured by averaging the percentage freezing of the 6th 

and 7th minute of the learning trial. Mice were returned to their home cage and the 

conditioning chamber was cleaned between mice with 70% ethanol. 

To evaluate short-term and long-term associate learning mice were placed 

back into the test chamber 1 and 24 hours after the last learning trial. The 

contextual trial consisted of placing the mice back into the conditioning chamber 

and allowed to explore the environment for 7 minutes. No shocks or tone were 

presented to evaluate the mouses contextually conditioned fear, which was 

evaluated as associative learning and memory behavior. As with the learning trials 

the time spent freezing the conditioning chamber was automatically measured 

using computer software (FreezeFrame, Med Associates/Actimetrics). Percentage 

freezing for the 1-hour and 24-hour context trials was calculated by averaging the 
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percentage freezing (%) of the final 3 minutes (minutes 5, 6, and 7). The 

conditioning chamber was cleaned with 70% ethanol between mice. 

5.3.3.6 Morris Water Maze 

 Spatial learning and memory were assessed by the MWM at twelve-

months-of-age. Procedures were performed as described in Section 3.2.3.9. 

5.3.4 Electrophysiology 

Mice fourteen months of age were sacrificed, and brains immediately and 

briefly transferred to ice-cold carboxygenated (95%O2/5%CO2) cutting solution: 

(5 mM glucose, 110 mM sucrose, 60 mM NaCl, 28 mM NaHCO3, 3 mM KCl, 1.25 

mM NaH2PO4, 7 mM MgCl2, and 0.5 mM CaCl2, 0.6 mM ascorbate). Sagittal 

hippocampal slices (400 µm) were prepared in an ice-cold cutting solution using a 

1000Plus Vibratome sectioning system (Vibratome Co., St. Louis, Missouri). Slices 

were transferred to room temperature (1:1) cutting solution/artificial cerebral spinal 

fluid (aCSF; 25 mM glucose, 125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 25 

mM NaHCO3, 1 mM MgCl2, and 2 mM CaCl2), for twenty minutes and then to 100% 

aCSF at room temperature for a minimum of one hour prior to recordings. 

Recordings were carried out in an interface chamber (Harvard Apparatus, 

Holliston, MS) at room temperature, perfused continuously with carboxygenated 

ACSF (perfusion rate: 1-2 ml/min). A bipolar enamel-coated platinum stimulating 

electrode was placed in CA3 Schaffer collateral/commissural fibers and a 

borosilicate glass recording electrode (resistance 1-4 MΩ) filled with aCSF was 

placed into stratum radiatum of area CA1. Field excitatory postsynaptic potentials 

(fEPSP) were collected every twenty seconds and averaged over a two-minute 
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interval using a stimulus intensity that produced 30-50% of the maximum initial 

slope fEPSP obtained during input/output measurements. Baseline fEPSPs were 

monitored for at least 20 min for stability. For LTP induction, two high-frequency 

stimuli (HFS) trains were delivered at 100Hz for 1 sec with an inter-strain interval 

of 5 min. The stimulus intensity of the HFS pulses was matched to that used during 

baseline recordings. Data was collected and analyzed using pClamp version 10 

(Molecular Devices, Sunnyvale, CA). Recordings were normalized to the baseline 

mean before induction of LTP. 

5.3.5 Aβ Sandwich ELISA 

Mouse hemibrains for NTg, Grn+/-, APdE9, and APdE9-Grn+/- were 

homogenized in PBS extraction buffer and centrifuged at 20,800 x g for 30 min at 

4C to separate PBS-soluble and PBS-insoluble fractions. The insoluble proteins 

were then extracted using RIPA buffer. RIPA fractions were sonicated then 

centrifuged at 20,800 x g for thirty minutes at 14C to separate RIPA-soluble and 

RIPA-insoluble fractions. Aβ levels were then determined by end-specific 

sandwich ELISAs as previously described (Kukar et al., 2005; Murphy et al., 2007). 

Briefly, Ab9 (anti-Aβ1-16 of Aβ) was used as the capture antibody and 21.3.1 (anti-

Aβ 35-42) or 13.1.1 (anti-Aβ 35-40) as the detection antibodies for Aβ40 and Aβ42.  

5.3.6 Immunohistochemistry and Image Analysis 

Coronal sections (10μm) were deparaffinized and subjected to antigen 

retrieval using 10mM sodium citrate, pH 6.0, in a Decloaking Chamber system 

(Biocare Medical, CA). Following antigen retrieval, sections were blocked with 5% 

normal goat serum in TBST for one hour. Sections were incubated with IBA1 
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(1:1000 dilution, Wako Chemicals) and 4G8 (1:1000 dilution, DAKO) primary 

antibodies overnight and washed with TBST. Sections were then incubated with a 

species-specific HRP-goat antibody (Vector Laboratories) for 30 min, washed with 

TBST 3 times, and developed with chromogenic substrate diaminobenzidine 

tetrahydrochloride (DAB; Vector Laboratories). Slides were viewed under an 

Olympus IX61 DSU confocal microscope, and the images were processed with 

Neurolucida (MicroBrightField Inc., Williston, VT). 

For image analysis of IBA1 and GAD67, four montage photomicrographs, 

spaced 50 µm apart, were taken from each sample using a 20x objective. 

Thresholds were set to include only Iba1 and GAD67 positive cells. The total 

number of Iba-1 positive pixels were counted and averaged for the four montage 

photomicrographs by a blind observer using NIH ImageJ software in the cortex and 

hippocampus between Paxinos plate numbers 42 and 52 (Filiano et al., 2013). For 

GAD67, the total numbers of GAD67 positive cells were counted and averaged for 

the four montage micrographs. 

5.3.7 Data Analysis 

All experiments were conducted by observer’s blind to genotype. All data 

are expressed as mean ± standard error mean. Data was analyzed using Staistica 

(TIBCO Software, Pal Alto, CA) and statistical comparisons were made using a 

two-sample t-test to compare APdE9 and APdE9-Grn+/- mice. Two-way analysis of 

variance (ANOVA) was used to compare all four groups (NTg, Grn+/-, APdE9, and 

APdE9-Grn+/-). After two-way ANOVA analysis, a Fisher LSD post hoc was used 

for behavioral tests and Tukey’s HSD post hoc was used to compare the significant 
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effects between groups for LTP, Aβ sandwich ELISA, and immunohistochemistry 

data. A two-way repeated measures ANOVA with Grn+/- and APdE9 genotypes as 

between-subject factors and trials as within-subject factor was used for analyzing 

the motorized rotarod behavioral test. Two-way repeated measures ANOVA was 

then followed by two-way ANOVA and Fisher LSD post hoc for analyzing the effect 

of PGRN haploinsufficiency on single trials of the motorized rotarod in the APdE9 

transgenic mouse model. p < 0.05 was considered significant. 

5.3 Results 

5.3.1 Heterozygous loss of PGRN exacerbates AD-related cognitive and non-

cognitive behavior deficits in APdE9 mice 

To test the hypothesis that PGRN haploinsufficiency worsens AD 

pathogenesis and disease progression, the effect of PGRN haploinsufficiency on 

AD-related behaviors was first investigated. For assessing spatial learning and 

memory, the Morris water maze (MWM) was used and evaluated mice at twelve 

months of age. Two-way ANOVA revealed a main effect of the APdE9 genotype 

[F(6,41)=2.5699, p<0.033] but not a main effect by the Grn+/- genotype 

[F(6,41)=1.3901, p=0.242] or an interaction effect between the two genotypes 

[F(6,41)=2.0646, p=0.079] (Fig. 29). During the training trials, Fisher LSD post hoc 

test indicated APdE9-Grn+/- mice, but not APdE9 mice, spent significantly more 

time to find the hidden escape platform (latency to platform) on day 3 and day 4 

compared to NTg mice indicating impaired spatial learning (p<0.05; Fig. 29A). 

During long-term memory trial, Fisher LSD post hoc test indicated APdE9-Grn+/- 

mice, but not APdE9 mice, spent significantly less time in quadrant 4, the quadrant 
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containing the hidden “escape” platform during training trials, indicating impaired 

long-term spatial memory (p<0.01; Fig. 29B). No differences were observed in 

either the latency to find the visible platform during the acuity trials or swim speed 

during the training trials across all genotypes ruling out activity levels or visual 

issues as potential confounding variables (Fig. 29C and D). Taken together, the 

results from the MWM indicate PGRN haploinsufficiency increases the onset of 

spatial learning and long-term memory deficits in the APdE9 transgenic mouse 

model. 

Learning and memory was futher investigated by contextual fear-

conditioning to evaluate the effect of PGRN haploinsufficiency on associative 

learning and memory. A two-way ANOVA revealed a main effect of the APdE9 

genotype [F(4,39)=4.7946, p=0.003] but not a main effect of the Grn+/- genotype 

[F(4,39)=0.9873, p=0.426] or an interaction effect between genotypes 

[F(4,39)=0.1747, p=0.95] (Fig. 30). For the training trial, Fisher LSD post hoc test 

indicated both Grn+/- and APdE9-Grn+/- mice had significantly lower percentage 

freezing compared to NTg (p<0.05; Fig. 30) and APdE9 mice (p<0.05; Fig. 30). 

For the context 1 hour trial, Fisher LSD post hoc indicated APdE9-Grn+/- mice, but 

not APdE9 mice, had significantly lower percentage freezing compared to NTg 

mice (p<0.05) suggesting PGRN haploinsufficiency worsened short-term 

hippocampal-dependent associate memory in the APdE9 transgenic mouse model 

(Fig. 30). 

Anxiety-like behavior was next investigated, which has been previously 

reported in both Grn+/- and APdE9 mouse models (Kayasuga et al., 2007; Petkau 
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et al., 2012). In the light dark transition test, a two-way ANOVA showed no main 

effect between either the Grn+/- genotype [F(1,47)=1.8702, p=0.178] or APdE9 

genotype [F(1,47)=0.1037, p=0.748] as well as no interaction effect between the 

two genotypes [F(1, 47)=2.361, p=0.131] (Fig. 31). Fisher LSD post hoc test 

revealed a significant decrease in the time Grn+/- spent in the light compartment 

compared to NT g mice (p<0.05), while no significant difference was observed 

between APdE9 and APdE9-Grn+/- mice (p>0.05) (Fig. 31). This result suggests 

PGRN haploinsufficiency increases anxiety-like behavior in the absence of the 

APdE9 genotype. 

Anxiety-like behavior was further evaluated with the elevated plus maze 

which introduces the added elements of height and openness compared to the 

light dark transition test. A two-way ANOVA revealed a main effect from the Grn+/- 

genotype [F(1,43)=6.9535, p=0.012] but not a main effect from the APdE9 

genotype [F(1,43)=0.1460, p=0.708] or an interaction effect between the two 

genotypes [F(1,43)=0.8397, p=0.365] (Fig. 32). Fisher LSD post hoc test revealed 

APdE9-Grn+/- mice spent significantly less time in the open arms compared to 

APdE9 mice (p<0.05) indicating PGRN haploinsufficiency increased anxiety-like 

fear in the APdE9 mouse model (Fig. 32). Additionally, anxiety-like behavior was 

examined in the open field test but did not observe any differences in time spent 

in the periphery versus center across all genotypes (p>0.05; Fig. 34B). These 



149 
 

results suggest that PGRN haploinsufficiency increases anxiety-like behavior in a 

task-specific manner independent of Aβ pathology. 

AD-related pathology has also been shown to affect non-cognitive 

behaviors in transgenic mouse models (Kuwabara et al., 2014). Therefore, the 

effect of haploinsufficient loss of PGRN was also assessed with non-cognitive 

behaviors in the APdE9 transgenic mouse model. The motorized rotarod test and 

open field test were used to measure motor coordination and activity levels in all 

genotypes at twelve months. The latency to fall off the rotarod for eight trials split 

over two days was measured in the motorized rotarod test. Repeated measures 

ANOVA applied to the latency to fall all over the 8 trials showed a significant main 

effect of trials [F(7,301)=10.705, p=0.000] and the APdE9 genotype 

[F(1,43)=5.4077, p=0.0248] but not the Grn+/- genotype [F(1,43)=0.7784, p=0.383] 

or interaction effect between the two the genotypes [F(1,43)=1.3704, p=0.248]. No 

significant interactions were observed between trials and either the Grn+/- 

[F(7,301)=1.662, p=0.118] or APdE9 genotype [F(7,301)=0.9335, p=0.485] were 

observed indicating neither genotype impacted motor learning (Fig. 33A). Fisher 

LSD post hoc test indicated a significant decrease in latency to fall for APdE9-

Grn+/- mice compared to NTg mice on trials 1 (p<0.05), 3 (p<0.05), and 5 (p<0.05) 

(Fig. 33B). This result suggests PGRN haploinsufficiency worsens motor 

coordination and balance but not learning in the APdE9 transgenic mouse model.  

In the open field test, similar levels of activity were observed across all 

genotypes, with no differences in time spent moving (MOVE), resting (REST), or 

stereotypic behavior (STEREO) (Fig. 34A). Two-way ANOVA revealed no main 
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effect from either the Grn+/- [F(2,53)=0.225, p=0.800] or APdE9 [F(2,53)=0.040, 

p=0.0961] genotype as well as no interaction effect from both genotypes 

[F(2,53)=0.441, p=0.0646]. While motor coordination deficits were observed in the 

motorized rotarod neither the Grn+/- or APdE9 genotype affected overall 

exploratory activity levels. 
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Figure 29. Heterozygous loss of progranulin exacerbated spatial learning 

and memory in the APdE9 mouse model (A) APdE9-Grn+/-, but not APdE9 mice, 

took longer to find the hidden platform during the third and fourth acquisition trials 

of the Morris water maze. (B) APdE9-Grn+/- spent significantly less time in the 

target quadrant during the long-term memory trial. (C) No differences were 

observed in the swim speed between all genotypes during the acquisition trials. 

(D) No differences were observed in escape latency between all genotypes in the 

visual acuity trials. (*p<0.05; N = 7-9 mice per genotype).  
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Figure 30. Progranulin haploinsufficiency exacerbated associative learning 

in the APdE9 mouse model. Both APdE9 and APdE9-Grn+/- mice had impaired 

freezing response in post-conditioning but only APdE9-Grn+/- mice exhibited 

significantly decreased freezing in the 1-hour contextual trial. (*p<0.05; N = 7-9 

mice per genotype).  
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Figure 31.5 Heterozygous loss of progranulin increases anxiety-like 

behavior in NTg mice in the light dark transition test. Grn+/- mice spent 

significantly less time in the light compartment compared NTg mice, indicating 

increased anxiety-like behavior, but no differences were observed in the APdE9 or 

APdE9-Grn+/- mice (*p<0.05; N = 7-9 mice per genotype). 
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Figure 326. Heterozygous loss of progranulin increases anxiety-like 

behavior in APdE9 mice in the elevated plus maze. APdE9-Grn+/- mice spent 

significantly less time in the open arms compared to APdE9 mice indicating 

increased anxiety-like behavior.  (*p<0.05; N = 7-9 mice per genotype). 
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Figure 33. Heterozygous loss of progranulin impairs motor coordination in 

the APdE9 mouse model. (A and B) APdE9-Grn+/- mice exhibited impaired motor 

coordination on trials 1, 3, and 5 of the motorized rotarod. (*p<0.05; N = 7-9 mice 

per genotype). 
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Figure 34. Progranulin haploinsufficiency does not affect exploratory 

behavior. (A) Time spent moving (MOVE) and resting (REST), or stereotypic 

behavior (STEREO) were not different between Grn+/- and NTg mice while 

exploring the open-field chamber. (B) Time spent in the periphery versus the 

center of the open-field chamber were similar between genotypes. (*p<0.05; N = 

7-9 mice per genotype). 
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5.3.2 Heterozygous loss of PGRN modulates amyloid pathology but not 

neuroinflammation in APdE9 mice 

Previously, conflicting reports exist whether complete loss of PGRN impacts 

amyloid pathology, with one report showing exacerbation of plaque deposition and 

another showing complete loss of PGRN surprisingly reduced diffuse 

amyloid(Minami et al., 2014; Takahashi et al., 2017b). In both papers, only the 

effect of the complete loss of PGRN was studied on amyloid pathology. Therefore, 

whether haploinsufficient loss of PGRN affected amyloid pathology in the brain of 

twelve-month-old APdE9 mice was next examined. Quantification of RIPA-soluble 

Aβ40 and Aβ42 in the whole brain by ELISA revealed PGRN haploinsufficiency 

increased Aβ40 and Aβ42 in APdE9 mice (Fig. 35A). Two-way ANOVA revealed 

a main effect of Grn+/- genotype [F(2, 15)=8.7105, p<0.003)], APdE9 genotypes 

[F(2,15)=0.06264, p<0.000)], and interaction effect between Grn+/- and APdE9 

genotypes [F(2,15)=10.081, p<0.0017] (Fig. 35A). Tukey HSD post hoc test 

indicated that APdE9-Grn+/- mice had significantly higher levels of RIPA-soluble 

Aβ40 and Aβ42 compared to APdE9 mice (p<0.001; Fig. 35A).  

Whether PGRN haploinsufficiency the aggregation and distribution of Aβ 

plaques was next investigated using an immunostaining method with the anti-

human-Aβ mouse monoclonal antibody 4G8 (Fig. 35B). A two-sample t-test was 

used to compare the number of and average area size of 4G8-positive amyloid 

plaques in the posterior parietal cortex and hippocampus between APdE9 and 

APdE9-Grn+/- mice. In the cortex, significantly fewer (p<0.05; Fig. 35C), but larger 

amyloid plaques (p<0.01; Fig. 35D) were observed in APdE9-Grn+/- mice 
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compared to APdE9 mice. Although a similar trend was observed in the 

hippocampus it was not significantly different in either the number of (p>0.05; Fig. 

35C) or size (p<0.05; Fig.35D) of amyloid plaques between APdE9 and APdE9-

Grn+/- mice. Both results suggest that the PGRN haploinsufficiency modulates the 

production and aggregation of Aβ in the APdE9 transgenic mouse model. 
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Figure 35. Heterozygous loss of progranulin modulates Aβ plaque deposition 

in APdE9 mice. (A) RIPA-soluble Aβ40 and Aβ42 measured by sandwich ELISA 

were significantly increased in APdE9-Grn+/- mice compared to APdE9 mice. (B) 

Representative images of 4G8 immunostaining in the cortex and hippocampus. 

(C) Loss of progranulin decreased the number of 4G8 immunostained plaques in 

the cortex of APdE9-Grn+/- mice. (D) Loss of progranulin increased the average 

size of 4G8 immunostained plaques in the cortex of APdE9 mice. Scale bars 

represent 100 um. (*p<0.05; N = 4 mice per genotype).  
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Previous reports studying the effect of complete loss of PGRN on amyloid 

pathology have focused on PGRN’s relationship with microglial function(Minami et 

al., 2014; Takahashi et al., 2017b). Given that altered amyloid deposition was 

observed in APdE9-Grn+/- mice, microgliosis was investigated using an 

immunostaining method for allograft inflammatory factor 1 (Iba1) (Fig. 36), which 

is a marker for both resting and activated microglia (Shapiro et al., 2009). 

Quantification of microgliosis by Iba1 immunoreactivity revealed a significant 

increase in the number of microglia in the cortex and hippocampus of APdE9 and 

APdE9-Grn+/- mice compared to NTg and Grn+/- mice (Fig. 37A and B). Two-way 

ANOVA revealed a main effect of the APdE9 genotype [F(2,11)=39.059, p<0.001]. 

Tukey HSD post hoc test revealed significant increase in % area positive pixels of 

Iba1 immunostaining between APdE9 and NTg mice (p<0.001; Fig. 37A and B) 

and APdE9-Grn+/- and Grn+/- mice (p<0.001; Fig. 37A and B) in both the posterior 

parietal cortex and hippocampus. However, no differences were observed 

between APdE9 and APdE9-Grn+/- mice indicating PGRN haploinsufficiency did 

not affect microgliosis in APdE9 mice (p>0.05; Fig. 37A and B).  These results 

suggest that unlike with complete loss of PGRN, PGRN haploinsufficiency impacts 

AD-related behavior and amyloid pathology independent to changes in 

microgliosis. 
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Figure 36. Iba1 immunoreactivity in the cortex and hippocampus of APdE9-

Grn+/- mice. Representative images of Iba1 immunoreactivity in the cortex and 

hippocampus of NTg, Grn+/-, APdE9, and APdE9-Grn+/- mice (Brown = Iba1; N = 

3– 5 mice per genotype). Scale bars represent 100 um.   



163 
 

 

 

 

 

 

Figure 37. Heterozygous loss of progranulin does not affect microgliosis in 

the cortex or hippocampus of APdE9 transgenic mice. (A and B) APdE9 and 

APdE9-Grn+/- displayed significant microgliosis in the cortex and hippocampus 

compared to NTg and Grn+/- mice regardless of Grn+/- genotype. (*p<0.05; N = 3–

5 mice per genotype).  
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5.3.3 Loss of PGRN Impaired synaptic plasticity and loss of hippocampal 

GABAergic interneurons in APdE9 mice 

One explanation for the hippocampus-dependent memory deficits observed 

in the MWM and contextual fear conditioning is changes in long-term potentiation 

(LTP) (Campbell et al., 2002). Therefore, the effect of heterozygous loss of PGRN 

on hippocampal field excitatory post synaptic potentials (fEPSPs) in the Schaffer 

collaterals of APdE9 at fourteen months of age was next tested. LTP was induced 

by two brief bursts of high-frequency stimuli (HFS, 100 shocks at 100 Hz) (Fig. 

38A). Two-way ANOVA revealed a main effect of the Grn+/- genotype 

[F(3,33)=7.1001, p=0.001] but not a main effect of the APdE9 genotype 

[F(3,33)=0.5659, p=0.641] or an interaction effect between Grn+/- and APdE9 

genotypes [F(3,33)=0.2988, p=0.8259] (Fig. 38). Tukey HSD post hoc test 

revealed no significant differences in either the post-tetanic potentiation 1 and 2 

(PTP1 and PTP2) across all genotypes (p>0.05; Fig. 38C). For LTP, Tukey HSD 

post hoc test revealed a significant decrease in LTP in APdE9-Grn+/- mice 

compared to APdE9 mice (p<0.01), as well as a significant decrease in LTP in 

Grn+/- mice compared to NTg (p<0.05) and APdE9 mice (p<0.01) (Fig. 38D). This 

data is consistent with electrophysiology results from Chapter 3 and reiterates the 

finding that haploinsufficient loss of PGRN is sufficient to impair LTP in the Schaffer 

collateral pathway and in the context of APdE9 mice impairs synaptic plasticity in 

the hippocampus independent to amyloid pathology. Furthermore, because 

changes were only observed in LTP and not in either PTP1 or PTP2 suggests 

PGRN haploinsufficiency impacts synaptic plasticity through either post-
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translational mechanisms or gene transcription and protein syntheses rather than 

through changes in the buildup of calcium in the axon terminals of presynaptic 

neurons during HFS. 

A possible explanation for both the cognitive and electrophysiology deficits 

observed in APdE9 transgenic mice is that heterozygous loss of PGRN impacts 

GABAergic interneurons in the hippocampus. Recently, complete loss of PGRN 

was shown to increase preferential elimination of inhibitory synapses of 

parvalbumin-positive interneurons(Lui et al., 2016) and loss of interneurons have 

previously been reported in AD transgenic mouse models(Levenga et al., 2013). 

Immunohistochemistry was used to quantify the number of GAD67-positive 

interneurons, a general marker for counting GABAergic interneurons(Rudy et al., 

2011), in the CA1 and DG regions of the hippocampus and posterior parietal cortex 

to determine if PGRN haploinsufficiency impacts GABAergic interneurons in 

APdE9 mice. Two-way ANOVA revealed a main effect of the Grn+/- genotype 

[F(3,9)=7.4098, p=0.008)] significantly decreasing GAD67-positive interneurons 

but not with the APdE9 genotype [F(3,9)=2.5125, p=0.124)] or an interaction 

between the two genotypes [F(3,9)=0.3923, p=0.761] (Fig. 39). In the CA1 region 

of the hippocampus, Tukey HSD post hoc test revealed a significant decrease in 

GAD67-positive cells in APdE9-Grn+/- mice compared NTg (p<0.01) and APdE9 

mice (p<0.05) as well as a significant decrease in GAD67-positive cells in Grn+/- 

mice compared to NTg mice (p<0.05) (Fig. 39). In the DG regions of the 

hippocampus, Fisher LSD post hoc test revealed a significant decrease in GAD67-

positive cells in APdE9-Grn+/- mice compared to NTg (p<0.01) and APdE9 mice 
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(p<0.05) (Fig. 39). Although not statistically significant a similar trend was seen in 

Grn+/- mice compared to NTg mice (p=0.076). Unlike in the hippocampus, no 

significant differences were seen in the posterior parietal cortex across genotypes. 

In agreement with results in Chapter 3, PGRN haploinsufficiency decreases the 

number of GAD67-positive interneurons in the hippocampus but not posterior 

parietal cortex of APdE9 mice. 

  



167 
 

 

 

Figure 38. Heterozygous loss of progranulin impairs long-term potentiation 

in APdE9 mice. (A) LTP was induced by two bursts of high-frequency stimuli 

(HFS, 100 shocks at 100 Hz). (B) Representative LTP traces for NTg, Grn+/-, 

APdE9 and APdE9-Grn+/- traces. (C) Quantification of post-tetanic potentiation 

(PTP) after both bursts of HFS was significantly reduced in APdE9-Grn+/- mice, 

and (D) LTP, measured 45 minutes after HFS, was significantly reduced in both 

Grn+/- and APdE9-Grn+/- mice. (*p<0.05; NTg = 4 mice, 11 slices; Grn+/- = 4 mice, 

15 slices; APdE9 = 3 mice, 8 slides; APdE9-Grn+/- = 4 mice, 12).   
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Figure 39. Heterozygous loss of progranulin results in loss of GABAergic 

interneurons in the hippocampus. Significant decrease in GAD-67 

immunostained cells in the CA1 and DG regions of the hippocampus but not in the 

posterior parietal cortex (Ctx) in Grn+/- and APdE9-Grn+/- mice. (*p<0.05; N = 4 

mice per genotype).  
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5.4 Discussion 

In this series of experiments, whether PGRN haploinsufficiency 

exacerbated AD-related behavior and pathology progression in mice that 

overexpress mutant human APPSWE and PS1-dE9 genes were investigated. The 

major conclusions of this section are that heterozygous loss of PGRN exacerbated 

cognitive and non-cognitive AD-related behaviors that was accompanied by 

changes in amyloid plaque morphology and increased RIPA-soluble Aβ42. 

Moreover, PGRN haploinsufficiency disrupted LTP and significantly reduced the 

number of interneurons in the hippocampus. Importantly, these changes were 

observed without gross changes in microglia which is seen in models with 

complete loss of PGRN suggesting PGRN haploinsufficiency may be affecting 

disease progression through neuronal-dependent affects instead. These findings 

extend previous studies suggesting that changes in PGRN levels affects behavior 

and amyloid pathology and suggests new roles of PGRN in AD and 

neurodegenerative disease.  

To evaluate the role PGRN haploinsuffiency in AD disease progression the 

APdE9 transgenic mouse model containing the APP KM670/671NL (Swedish 

mutation) and the PS1-dE9 mutation was used. The Swedish mutation is located 

immediately adjacent to the β-secretase site in APP and biases β-secretase 

processing of APP resulting in the increase production of Aβ40 and Aβ42 but does 

not affect the ratio of Aβ40/Aβ42. The PS1-dE9 mutation on the other hand is 

located on one of the four core proteins comprising the γ-secretase complex and 

has been shown to increase the pool of Aβ42 without changing levels of Aβ40, 
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resulting in significantly increased plaque load. By six months of age, APdE9 mice 

begin to deposit Aβ with amyloid plaques forming in the hippocampus and cortex 

between nine and twelve months accompanied by cognitive and non-cognitive 

behavior deficits (Lui et al., 2016). We and others have previously shown that the 

APdE9 transgenic mouse line show spatial deficits signifincatnly later at sixteen 

months of age when backcrossed on a C57Bl/6J mouse line (Vollert et al., 2013; 

Takahashi et al., 2017b). Due to the late onset of amyloid pathology and cognitive 

deficits seen in the APdE9 transgenic mouse model made it uniquely suitable for 

assessing the effects of PGRN haploinsufficiency on AD disease progression. 

Because Grn+/- and APdE9 mice do not show disturbances in spatial 

learning and memory until sixteen and eighteen months-of-age spatial learning and 

memory was tested at twelve months to determine if PGRN haploinsufficiency 

increased the onset of learning and memory deficits in APde9 mice. Utilizing the 

MWM, significant increases in the latency to find the hidden platform on learning 

days three and four was observed for APde9-Grn+/-, but not APdE9 mice indicating 

PGRN haploinsufficiency impaired spatial learning in APdE9 mice. Furthermore, a 

significant decrease in time spent in the target quadrant of the 1hr probe trial was 

also observed in APdE9-Grn+/- mice, but not APdE9 mice indicating PGRN 

haploinsufficiency also impaired short-term spatial memory. Differences were not 

observed in either the visual acuity trials or swim speed throughout the learning 

trials ruling out vision and hyperactivity as potential confounding variables. In 

addition to the findings in the MWM, APdE9-Grn+/- mice had a significant decrease 

in the percent freezing during the 1hr context trial, which was absent in APdE9 
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mice, indicating PGRN haploinsufficiency also impaired short-term contextual 

memory in APdE9. Together, these results indicate that PGRN haploinsufficiency 

increases the onset of contextual and spatial learning and memory deficits in the 

APdE9 transgenic mouse model and is consistent with the hypothesis that 

heterozygous loss of PGRN exacerbates AD disease progression and a previous 

report showing complete loss of PGRN exacerbates Aβ-related behavioral deficits 

(Minami et al., 2014). 

Anxiety-like behavior has also been shown to be affected in both AD and 

PGRN mouse models (Kayasuga et al., 2007; Petkau et al., 2012). Although no 

differences were observed in anxiety-like behavior in APdE9 mice in either the 

elevated plus-maze or light-dark test, a task-specific effect was observed with 

Grn+/- genotype. In the elevated plus-maze, a significant reduction was observed 

in time spent in the open arms of both Grn+/- and APde9-Grn+/- mice compared to 

APdE9 mice suggesting that the partial loss of PGRN increased anxiety-like 

behavior in APdE9-Grn+/- mice. In the light-dark test, a reduction in time spent in 

the light compartment was only observed in Grn+/- mice compared to NTg 

littermates indicating increased anxiety-like behavior only in the Grn+/- genotype 

but was not seen in the APdE9 mice. 

Non-cognitive behaviors including exploratory behavior and motor 

coordination have also been shown to be affected by increases in amyloid plaque 

deposition (Lomoio et al., 2012; Kuwabara et al., 2014). Although no differences 

were observed in activity levels across all genotypes in the open field, motor 

coordination impairment was observed using the rotarod test. APdE9-Grn+/- mice 
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had a decreased latency to fall on three of the eight trials compared to NTg mice, 

suggesting that heterozygous loss of PGRN impaired motor coordination in APdE9 

mice. These observations are consistent with previous studies that have reported 

motor deficits in patients with the PS1-dE9 mutation and the APdE9 transgenic 

mouse model (Crook et al., 1998; Kuwabara et al., 2014).  The cerebellum is well 

known to be essential for motor coordination, and Aβ pathology has been shown 

to accumulate in the cerebellum of APdE9 mice (Kuwabara et al., 2014). 

Impairment in motor coordination is consistent with the cognitive behavioral data 

suggesting that PGRN haploinsufficiency exacerbates AD-related cognitive and 

non-cognitive behavior. 

Amyloid plaques are composed of both Aβ40 and Aβ42 peptides that 

aggregate into oligomers and, in turn combine to form fibrils and ultimately into 

plaques. In normal brains soluble pools of Aβ40 and Aβ42 are the largest fractions 

of total Aβ but are the smallest in the AD brain suggesting the insoluble pool of Aβ 

correlates with amyloid plaque deposition (Wang., et al. 1999). Aβ42 is the main 

species of Aβ peptide deposited in plaques, with even small changes of Aβ42 can 

significantly modulate the rate of amyloid deposition and plaque formation. In this 

study, differences in both biochemical and morphological changes in Aβ pathology 

were observed in APdE9 mice with heterozygous loss of PGRN. Biochemically, an 

increase in RIPA-soluble Aβ42 and Aβ40 was observed in the whole brain. 

Morphological changes in amyloid plaque deposition were also observed with 

heterozygous loss of PGRN, resulting in fewer but larger plaques in the cortex. 
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These findings show that heterozygous loss of PGRN modulates the deposition of 

Aβ pathology in APdE9 mice.  

The progressive impairment in hippocampal-based spatial learning and 

memory in AD transgenic mouse lines has been associated with Aβ associated 

synaptic dysfunction (Walsh et al., 2002; Palop and Mucke, 2010). The majority of 

AD mouse models have focused on the long-term form of synaptic plasticity 

induced by high-frequency stimulation with Aβ pathology resulting in synaptic 

depression and reduced synaptic facilitation (Walsh et al., 2002). In this study, 

synaptic plasticity and LTP were investigated in APdE9-Grn+/- mice at 14 months. 

A significant reduction in LTP was observed in APdE9-Grn+/- and Grn+/- mice and 

a significant reduction in post-tetanic potentiation was only seen in APdE9-Grn+/- 

mice. Because no significant differences were observed in either the post-tetanic 

potentiation or LTP in the APdE9 mice, our data suggest that the heterozygous 

loss of PGRN is driving the decreased LTP rather than an effect associated with 

Aβ pathology. Although our study did not evaluate in greater detail how PGRN 

haploinsuffieincy impaired LTP in Grn+/- and APdE9-Grn+/- mice this observation is 

consistent with the prior literature where several reports have observed altered 

neuronal connectivity after complete loss of PGRN (Petkau et al., 2012; Lui et al., 

2016). In hippocampal neurons, the knockdown of PGRN increased the number of 

vesicles per synapse and the frequency of mEPSCs (Tapia et al., 2011). Moreover, 

in the same study, an increase in the number of vesicles per synapse was 

confirmed in FTLD patients with PGRN mutations. Abnormal neuronal morphology 



174 
 

has also been seen in Grn+/- mice exhibiting decreased LTP in the Schaffer (Petkau 

et al., 2012). 

Exactly how the loss of PGRN is impacting learning and memory and 

specifically synaptic plasticity, is unclear. Earlier reports have reported differences 

in the number of vesicles per synapse and altered synaptic morphology (Petkau et 

al., 2012). Recently, it has been suggested that loss of PGRN impacts inhibitory 

synapses of parvalbumin-positive interneurons driven by microglia (Lui et al., 

2016). Supporting the idea that loss of PGRN impacts inhibitory synapses, a 

significant reduction of GAD67-positive cells was observed in this study in both 

Grn+/- and APdE9-Grn+/- mice with APdE9-Grn+/- having significantly fewer GAD-

67 positive interneurons compared to NTg, Grn+/- and ApdE9 mice. These results 

suggest that alterations in interneurons are not only driven by the Grn-/- genotype, 

but that heterozygous loss of PGRN is impacting GAD-67 positive interneurons 

independent of amyloid pathology. 

The observed reduction of interneurons is consistent with the reported 

behavioral and synaptic plasticity deficits observed in APdE9-Grn+/-, which have 

been observed in other mouse models with similar phenotypes (Li et al., 2009; 

Andrews-Zwilling et al., 2010; Loreth et al., 2012). In contrast to the previous report 

which showed a preferential loss of inhibitory synapses in parvalbumin-positive 

interneurons in Grn-/- mice due to aberrant microglia activation, no significant 

differences in either number or morphology were seen in microglia in our 

experiments suggesting that loss of PGRN maybe impacting GABAergic differently 

in heterozygous versus a complete loss of PGRN. Furthermore, the previous study 
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looked specifically at the number of synapses of parvalbumin-positive 

interneurons, whereas our study looked at the total number of interneurons and 

not at the synapse level. It is unclear if the loss of interneurons seen in Grn+/- and 

ApdE9-Grn+/- mice is also accompanied by a loss of inhibitory synapses or if the 

loss of inhibitory synapses is specific only to increased microgliosis seen in the 

Grn-/- phenotype. While it is unclear how PGRN haploinsufficiency impacts 

GABAergic interneurons, further study would help better understand how loss of 

PGRN impacts specific subpopulations of GABAergic interneurons such as 

parvalbumin and somatostatin expressing interneurons and whether this loss 

occurs during development or through aging. 

 How PGRN haploinsufficiency modulates AD pathophysiology, specifically 

amyloid pathology and synaptic plasticity, is not well understood. One possible 

explanation is that the reduction of PGRN is impacting the inflammatory pathway, 

which has been reported to both increase and decrease amyloid pathology in AD 

transgenic mouse models depending on how it is manipulated (DiCarlo et al., 2001; 

Qiao et al., 2001; Herber et al., 2004; Vom Berg et al., 2012). An increase in a pro-

inflammatory state has been suggested to contribute to the pathogenesis of 

multiple neurodegenerative diseases, including AD (Akiyama et al., 2000; Wyss-

Coray, 2006; Frank-Cannon et al., 2009). The relationship of PGRN with 

inflammation has been extensively studied in PGRN transgenic mouse models, 

with Grn-/- mice displaying a marked age-dependent increase in both microgliosis 

and astrogliosis across multiple transgenic mouse models (Ahmed et al., 2010; Yin 

et al., 2010b; Ghoshal et al., 2012). The reduction of PGRN has been reported to 
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act as a chemoattractant to recruit microglia and increase the endocytosis of 

amyloid β (Pickford et al., 2011). Moreover, in cell cultures, Grn-/- macrophages 

have been reported to cause an exaggerated release of cytokines after stimulation 

(Yin et al., 2010b), increased inflammatory response (Martens et al., 2012), and 

increased phagocytosis activity (Kao et al., 2011). 

Although there is a strong connection between the complete loss of PGRN 

and inflammation, both findings in this report and prior literature suggest that the 

heterozygous loss of PGRN may affect Aβ pathology and synaptic plasticity 

through mechanisms that are independent of changes in neuroinflammation. 

Despite observed changes in both AD-related behavior and pathology, no 

differences were observed in the total number of microglia in APdE9-Grn+/- mice 

suggesting haploinsufficient loss of PGRN did not exacerbate neuroinflammation 

in APdE9 mice. This is contrary to a previous study that reported reduced diffuse 

Aβ plaque growth attributed to enhanced microglial Aβ phagocytosis caused by 

increased expression of TYROBP network genes in APdE9-Grn-/- mice (Takahashi 

et al., 2017). One potential explanation is the lack of a neuroinflammatory 

phenotype in Grn+/- mice which do not develop neuroinflammation marked by 

increased microglia and astrocytes seen in their Grn-/- littermates (Ahmed et al., 

2010) despite both models showing FTD-related behavioral deficits (Filiano et al., 

2013). Furthermore, a recent study evaluating loss of PGRN on tau pathology did 

not see any changes in inflammatory cytokines suggesting that heterozygous loss 

of PGRN was modulating AD pathology independent of changes in 

neuroinflammation (Hosokawa et al., 2015), despite observing increased tau 
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phosphorylation. However, microglial involvement Instead this group suggested 

that PGRN loss increased tau phosphorylation through the activation of P cyclin-

dependent kinases rather than through the inflammatory pathway. 

Our results that haploinsufficient loss of PGRN affects amyloid pathology in 

lieu of changes in neuroinflammation is in contrast with two other reports 

investigating the role of PGRN in AD pathology. Both studies used Grn-/- mice and 

results supported the role of inflammation in PGRN’s effect on AD disease 

progression albeit with conflicting results. In one report, an increase in amyloid 

plaque deposition was reported in mouse models of both complete loss and partial 

loss of PGRN specific to microglia suggesting loss of PGRN effect on amyloid 

pathology was due to impaired phagocytosis in microglia (Minami et al., 2014). 

Paradoxically, a later study reported a reduction of diffuse Aβ plaques in the 

APdE9 transgenic mouse model with complete loss of PGRN and this was 

associated with upregulated expression of microglial genes from the TYROBP 

network suggesting complete loss of PGRN increased microglial phagocytosis of 

Aβ (Takahashi et al., 2017a). However, like the previous report studying the role 

of PGRN and inflammation, Grn+/- mice did not exhibit the same increases in 

TYROBP gene network as their Grn-/- counterparts, suggesting this may be a 

unique phenotype to the complete loss of PGRN.  

In context with these two studies our results have interesting implications 

for the role of PGRN in AD disease progression. Our results show that 

heterozygous loss of PGRN is able to affect amyloid beta and exacerbate 

behavioral deficits despite the absence of increased neuroinflammation which is 
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seen with complete loss of PGRN. This is in line with the growing literature that 

PGRN haploinsufficiency can cause behavioral and neuropathological deficits in 

the absence of neuroinflammation (Filiano et al., 2013; Arrant et al., 2016; Arrant 

et al., 2017). Although we did not observe gross changes in the levels of microglia 

this does not rule out the possibility that PGRN haploinsufficiency still modulated 

amyloid pathology through effects on microglia. In a previous study examining loss 

of PGRN on amyloid pathology LysM-cre mice was utilized to selectively reduce 

levels of PGRN in an AD mouse model. Interestingly, they showed that microglia 

in this model had an approximately 50% decrease in PGRN mRNA and this 

reduction was followed by an increase in plaque deposition attributed to a 

decrease in phagocytic activity in microglia. Therefore, it is possible that although 

gross changes were not seen in microglia levels in our study, PGRN 

haploinsufficiency still impaired phagocytic activity in microglia suggesting a 

dissociation between neuroinflammation and impaired microglial phagocytic 

activity. This could be an explanation to why we observed increased levels of 

soluble Aβ and larger plaques in APdE9 mice with haploinsufficient loss of PGRN. 

Microglia with impaired ability to phagocytize soluble Aβ could result into a larger 

soluble pool of Aβ available to aggregate to plaques already formed. Although this 

can only be determined with a more in-depth analysis of the composition of amyloid 

plaques observed and evaluating primary microglia phagocytic activity from 

APdE9-Grn+/- mice. 

Our results are also inconsistent with a previous study reporting a decrease 

in number of amyloid plaques after heterozygous loss of PGRN. One potential 
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explanation for this is the differences in experimental design. In our study we used 

the APdE9 transgenic mouse model which contains the Swedish mutation 

increasing the amount of APP processed by the β-secretase and the PS1dE9 

mutation which increases the preferential cleavage of Aβ42. On the other hand, 

the previous study used the Tg2576 transgenic mouse model which only contains 

the Swedish mutation resulting in increased processing of Aβ species but not 

altering the preference for the Aβ42 species. It is possible that PGRN 

haploinsufficiency may exert a mutant-dependent effect on amyloid pathology 

where different ratios of Aβ40/Aβ42 are present. Another possible explanation is 

that both studies examined amyloid pathology at different timepoints. In our study, 

we examined amyloid pathology at twelve months where amyloid plaque 

deposition is beginning to appear and cognitive deficits are not yet seen, whereas 

the other study examined amyloid pathology between sixteen and eighteen months 

where amyloid pathology is more extensive. Therefore, the discrepancy maybe 

due to PGRN haploinsufficiency having a biphasic effect on amyloid pathology 

during the initial stages of amyloid plaque development and late stages of amyloid 

plaque development. However, regardless of the difference in mouse models and 

stage of disease progression, our results clearly suggest PGRN haploinsufficiency 

increased RIPA soluble Aβ42 and modulates amyloid plaque deposition in the 

APdE9 mouse model. 
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CHAPTER 6: CONCLUDING REMARKS 

6.1 Summary and Conclusions 

 Overall, the work presented in this dissertation highlights an aspect 

that, until recently, has been largely overlooked in PGRN research – the effect of 

heterozygous rather than complete loss of PGRN across aging and on AD 

pathologies. Prior work has focused almost exclusively on the complete loss of 

PGRN in neurodegeneration, emphasizing PGRN’s role in microglia. However, 

data from this dissertation and a growing body of literature suggests that the 

heterozygous loss of PGRN recapitulates many of the functional deficits seen with 

complete loss of PGRN independent of changes in neuroinflammation. 

Furthermore, the partial loss of PGRN has both positive and negative effects on 

AD pathophysiology suggesting that therapies that increase global PGRN levels 

may not be beneficial in treating AD. 

Several different Grn transgenic mouse lines have been studied as models 

of FTLD-TDP, with the majority only focused on the effect of complete loss of 

PGRN due to the initial observation that only full-knockout PGRN mouse models 

had observable phenotypes (Kayasuga et al., 2007; Ghoshal et al., 2012; Petkau 

et al., 2012; Wils et al., 2012; Filiano et al., 2013). However, Filiano and colleagues 

recently reported FTLD-related social and emotional dysfunction in Grn+/- mice in 

the absence of neuroinflammation, suggesting a dissociation between 

neuroinflammation and behavioral deficits also observable behavioral deficits in 

Grn+/- mice (Filiano et al., 2013). In congruence with this finding, using a novel 
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Grn+/- transgenic mouse line, data from this dissertation confirms and extends the 

observation that heterozygous loss of PGRN causes key FTLD-related behavioral 

deficits in the absence of FTLD-related pathology to include deficits in spatial 

learning and sensorimotor gating (Fig. 40). Our findings extend the initial 

observations and shows for the first time that heterozygous loss of PGRN results 

in a reduced number of GABAergic interneurons in the hippocampus of aged Grn+/- 

mice and impaired LTP, all in the absence of neuroinflammation. This data 

supports the observation of a dissociation between FTLD-related pathology and 

the functional effects of PGRN loss, suggesting that PGRN’s effect on neurons 

rather than microglia is the cause for observed functional deficits. Furthermore, 

this work and others suggest that Grn+/- mice, rather than Grn-/- mice, may be a 

better mouse model at recapitulating FTLD-TDP and PGRN’s role in 

neurodegeneration. 
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Fig. 40. Schematic diagram of behavioral and neuropathology changes in 

progranulin haploinsufficient mice across age. Previous studies examining 

behavior in Grn+/- mice identified social and behavioral abnormalities but not in 

cognitive behavior or synaptic plasticity. In this study Grn+/- mice exhibited impaired 

spatial learning and reduced synaptic plasticity at eighteen months which is much 

later than previously tested. 
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Epidemiological reports suggest that loss of PGRN may be a risk factor for 

AD, but transgenic mouse model studies investigating the complete loss of PGRN 

have resulted in conflicting reports. Concerning tau pathologies, data from this 

work suggests that heterozygous loss of PGRN results in reduced motor 

coordination and balance deficits and AT8 tau phosphorylation in the P301S tau 

transgenic mouse model, which was associated with abnormal cell signaling in the 

Akt and Wnt signaling pathways (Fig. 41). Although significant tau phosphorylation 

changes were observed, they did not appear to affect the progression of 

neurodegeneration. This contrasts with two previous studies showing increased 

tau phosphorylation with complete or partial loss of PGRN in the P301L mouse 

model suggesting the effect of PGRN loss on tau pathology is mutation dependent. 

This work suggests that partial loss of PGRN may not worsen all aspects of AD 

pathology and may be beneficial in attenuating the progression of tau pathology. 

Additionally, while previous reports have focused on PGRN’s function in microglia 

and potential impact on AD, our data suggests that a partial loss of PGRN modifies 

tau phosphorylation through the Akt signaling pathway rather than through 

changes in the activity of microglia. 

With regards to amyloid pathology, data from this dissertation show that 

heterozygous loss of PGRN exacerbated AD-related cognitive and non-cognitive 

behavior and modulated Aβ pathology in the APdE9 mouse model (Fig. 41). 

Reduced LTP and a significant reduction in GABAergic interneurons in APdE9 

mice with heterozygous loss of PGRN were also observed. Despite observing 
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significant changes in AD-related behavior and pathophysiology, the heterozygous 

loss of PGRN did not appear to affect the number of microglia activity, which has 

been reported in AD transgenic mice with complete loss of PGRN. This work 

further expands on the prior literature and suggests that complete loss and even 

partial loss of PGRN are enough to exacerbate amyloid-related behavioral and 

functional deficits. However, unlike with complete loss of PGRN, partial loss of 

PGRN appears to exacerbate AD-related pathology independent of inflammation 

and microglial function. 
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Fig. 41. Schematic diagram of the opposing effects of progranulin 

haploinsufficiency on Alzheimer’s disease neuropathology. Progranulin 

haploinsufficiency caused by a GRN mutation decreased tau AT8 phosphorylation 

and reduced motor coordination and balance impairment suggesting a possible 

protective role. Progranulin haploinsufficiency increased RIPA-soluble Aβ40/Aβ42, 

modulated amyloid plaque formation, and increased spatial and learning cognitive 

deficits suggesting progranulin haploinsufficiency maybe a risk factor. 

  



187 
 

6.2 Implications and Future Directions 

 Future work will be needed to understand the role of PGRN in AD and 

neurodegeneration fully. 

An important implication from this work is the different functional roles of 

microglial versus neuronal PGRN in neurodegeneration. The bulk of the current 

literature has focused on PGRN’s role in microglia in driving neurodegenerative 

disease processes. However, this work and others suggest that similar effects on 

AD disease progression are seen in Grn+/- mice in the absence of apparent 

changes in microglial function, suggesting a dissociation between loss of PGRN’s 

effect on neurodegenerative disease and microglial function. The present study 

utilized a global Grn+/- mouse model. However, this model is limited in that PGRN 

is reduced in both neurons and microglial, making it challenging to separate PGRN 

loss effects between neuronal and microglial populations. Recently, a group 

developed two neuronal PGRN-deficient mouse lines to better differentiate effects 

from neuronal and microglial PGRN loss and reported that both lines developed 

social behavior abnormalities, a fundamental FTLD behavioral deficit, similar to 

global Grn+/- mice and that this behavior along with lysosomal abnormalities was 

corrected after adeno-associated virus-driven expression of neuronal PGRN 

(Arrant et al., 2017). A potential conclusion from our work regarding PGRN 

haploinsufficiency effect on tau and amyloid pathology is that neuronal loss and 

not microglial loss is driving changes in disease progression given a lack of gross 

changes in microglia. However, given both pools of PGRN were reduced and the 

possibility that PGRN haploinsufficiency was affecting microglial function 
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independent of increases in gross markers of activity (number and morphology) it 

cannot be ruled out. Future studies utilizing neuron specific PGRN-deficient mouse 

models crossed with AD transgenic mouse models and the rescue of specific 

neuronal PGRN in mouse models will better elucidate the functional roles of 

neuronal and microglial PGRN in neurodegenerative disease. 

One limitation of the present study is that it only characterized 

neuroinflammation by histological expression of Iba1-positive cells. Because Iba1 

is a gross maker for that the total number of microglial cells and is not specific to 

activated microglia, partial loss of PGRN may cause more subtle microglia 

changes that are not detected with a general marker with histology. For example, 

our observation of changes in amyloid plaque morphology in APdE9-Grn+/- mice 

could be due to haploinsufficient loss of PGRN affecting microglia phagocytosis 

despite not observing increases in Iba1 staining. In a previous study, microglial 

PGRN deficiency was induced using LysM-Cre in high APP expressing model 

(Minami et al., 2014). Interestingly, these mice were reported to have increased 

plaque deposition and isolated microglia exhibited impaired phagocytosis with an 

approximately 50% decline in PGRN mRNA. Therefore, in the context of this study 

it is possible that PGRN haploinsufficiency may be disrupting microglial function in 

APdE9-Grn+/- mice accounting for the changes in amyloid pathology. While PGRN-

deficient microglia have been thoroughly studied regarding microglial 

phagocytosis, PGRN-haploinsufficient microglia have not (Pickford et al., 2011; 

Martens et al., 2012). Future studies should explore microglial function in greater 

detail. With regards to our study reducing only microglial specific PGRN will be 



189 
 

valuable in better understanding how PGRN haploinsufficiency is affecting amyloid 

pathology and synaptic plasticity deficits and if these effects are the result of 

specific populations of PGRN. Furthermore, phenotyping microglial by looking at 

levels of different inflammatory M1 and M2 markers across AD disease pathology 

will also build upon the current literature and better elucidate PGRN’s role. 

PGRN has long been implicated in increasing neuronal susceptibility 

leading to neurodegeneration, and evidence suggests that PGRN also plays an 

essential role in neuronal differentiation during neurodevelopment with modulating 

motor neuron development and the masculinization of the rodent brain (Suzuki et 

al., 2009; Chitramuthu et al., 2010). An important finding in this dissertation is that 

the heterozygous loss of PGRN resulted in fewer GAD67-positive interneurons in 

Grn+/- mice as early as twelve months of age. However, it is unclear if this loss is 

due to increased susceptibility in interneuron-specific populations during aging or 

during embryonic development since this study only looked at mice as young as 

twelve months of age. Furthermore, a recent study showed increased synaptic 

pruning of parvalbumin positive interneurons in Grn-/- mice due to microglia (Lui et 

al., 2016). Because we only looked at gross levels of interneurons and not at the 

level of synapses an important follow-on study for our work is to see if we see a 

similar effect in Grn+/-. If interneuron synapses are not lost this may suggest that 

synaptic pruning of interneurons by microglia is a unique to Grn-/- and PGRN 

haploinsufficiency is affecting interneurons at a neuronal level. Therefore, future 

studies should investigate interneuron populations in PGRN-deficient mice during 
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embryonic stages to determine if interneurons’ loss is due to developmental effects 

or because of aging as well as corroborate results from Grn-/- mice. 

A limitation of the present study is that it only characterized GAD67-positive 

interneurons, a gross marker for GABAergic interneurons, but not for specific 

subtypes. Interneurons can be further subdivided by whether they co-express 

parvalbumin, somatostatin or the serotonin receptor 5HT3a which together 

account for nearly all neuronal GABAergic interneurons in the cortex (Rudy et al., 

2011). Therefore, future studies should further characterize GABAergic 

interneuron subtypes in Grn+/- mice to determine if the heterozygous loss of PGRN 

results in a global loss of GABAergic interneurons or rather specific 

subpopulations. 

Another important finding in this study is that PGRN haploinsufficiency 

dysregulates the Akt signaling pathway through increase inhibitory 

phosphorylation of PTEN and an increased inhibitory phosphorylation of GSK3β 

activity in P301S mice. However, it is unclear how exactly PGRN loss perturbs this 

signaling pathway and if this disruption is unique to PGRN loss in the context of 

tau pathology or is also seen in Grn+/- mice. To date, only one other publication 

has reported an increase in GSK3β phosphorylation after treatment with PGRN in 

cultured neurons (Gao et al., 2010). One critical gap in PGRN biology knowledge 

is what receptors it interacts with, and a better understanding of PGRN’s 

relationship with these signaling pathways may be essential road marks. 

Therefore, future studies would be beneficial in further elucidating how PGRN 
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interacts with the Akt signaling pathway in the context of Alzheimer’s disease and 

PGRN’s overall role in the CNS. 

Another interesting finding from this study is that heterozygous loss of 

PGRN decreased tau phosphorylation in the P301S transgenic mouse model, 

which contrasts with another report showing increased tau phosphorylation in the 

P301S transgenic mouse model. The discordance between these two results 

suggests that PGRN may interact with tau differently based on the mutation 

present. Different signaling pathways have been reported to be perturbed in the 

P301S and P301L transgenic mouse models, suggesting that PGRN may be 

interacting with different signaling pathways resulting in either the increase or 

decrease in tau phosphorylation. Therefore, more detailed studies, would help 

better understand how PGRN interacts with different tau mutations to better the 

role of PGRN in Alzheimer’s disease and related tauopathies. 
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