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Abstract

According to the latest Cisco Annual Internet Report, the current communication net-

work infrastructures are approaching their limits caused by the increasing data traffic, more

frequent network usage, and rising number of connected devices. In order to overcome these

limitations, enabling technologies such as ultra-dense networks, multi-access edge networks,

and massive antenna arrays are proposed as part of the future generation of communica-

tion networks. However, in order to analyze, model, and simulate these technologies, an

appropriate mathematical framework that can handle large number of interacting entities

is necessary. Hence, the application of mean field games (MFGs) to future communication

networks is proposed in this dissertation.

The first work of this dissertation deals with the modeling of user behavior through belief

and opinion evolution in social networks, which is essential in improving the services pro-

vided by a network provider. A multiple-population MFG approach is applied to depict the

behavior of social network users in a multiple-group setting. Theoretical and experimental

simulations using a social evolution dataset suggest the effectiveness of the MFG approach

in estimating and predicting the distribution of belief and opinion in social networks. The

second work of this dissertation investigates an effective and efficient method for computa-

tion offloading in multi-access edge computing networks (MECN). A mean-field-type game

(MFTG) approach is utilized to design non-cooperative and cooperative computation of-

floading algorithms to decrease latency and energy consumption. The results indicate that

the proposed MFTG-based algorithms can optimize energy consumption and latency asso-

ciated with computation offloading. Then, the third work of this dissertation presents a

proposed dynamic hierarchical framework for resource allocation in network virtualization.

Lastly, this dissertation is concluded with a summary of important results and remarks.

Furthermore, future works integrating MFG in unmanned aerial vehicle (UAV) networks,

network virtualization, and Internet-of-Things (IoT) are proposed.
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Chapter 1

Introduction

1.1 The Future of Wireless Communication Networks

The current generation of wireless networks allows users to access a variety of services

such as data, voice, and multimedia. However, according to the latest Cisco Annual In-

ternet Report [1], these networks are reaching their full potential caused by the growth of

data traffic, more frequent network usage, and rise in number of devices and connections.

Consequently, these circumstances have inspired interest and necessity for a new generation

of wireless networks that can support the growing number of devices and connections as

well as the volume of data they generate.

The main goal of the next generation of wireless networks is to improve the implemen-

tation of current wireless networks as well as the services provided to the network users. In

5G, the networks are expected to handle high capacity, high data rate, low latency, massive

connectivity, increased network reliability, and improved energy efficiency [2]. In 6G, the

networks are expected to improve over the 5G networks and support new applications such

as extended reality (XR), wireless brain-computer interactions, and connected robotics and

autonomous systems [3]. Researchers have proposed technologies that can enable the pro-

posed enhancements. For 5G, some of these technologies include massive MIMO, millimeter

wave communications, ultra-dense networks, spectrum sharing, device-to-device communi-

cations, full-duplex communications, and cloud technologies [4]. For 6G, the proposed

technologies are communication with large intelligent surfaces, integrated terrestrial, aerial,

and satellite networks, and energy transfer and harvesting [3].

This dissertation addresses some of these issues and technologies such as the analysis and

modeling of user behavior for increased network reliability in multiple-population social net-

1



works, and the energy-efficient and low-latency computation offloading in multi-access edge

computing networks. To be able do so, the applications of mean field games (MFGs) in an-

alyzing, modeling, and simulation of future heterogeneous and hierarchical communication

networks have been the main focus of this dissertation. Proposed future works includ-

ing network virtualization for cloud and/or core networks and pursuit and evasion games

involving multiple unmanned aerial vehicles are also discussed.

1.1.1 Social Networks

Social networks (SNs) are sets or groups of people with some patterns of contacts or

interactions between them, forming meaningful social relationships [5]. These networks

have evolved from simple web-based forums to ubiquitous mobile networks. As outlined

in [6], the advancement of the internet has given rise to web-based social networks such

as forums and chat rooms. Meanwhile, the advent of peer-to-peer networks and dedicated

social websites has caused a huge number of people to use social networking through online

social networks (OSNs) such as Facebook, Twitter, WeChat, and LinkedIn. OSNs allow

users sharing common interests to form online connections and social communities. More-

over, the increasing capability of mobile devices has made way for the integration of social

networks in mobile environments. Such networks, called mobile social networks (MSNs),

allow users to access, share, and distribute data by exploiting social relations [7]. These

relationships between social network users include physical contacts, financial exchanges,

group participations, among others [8].

One important aspect of social networks is understanding user behavior that is essential

to social network entities such as the service providers and network users. In the case of

OSNs, the study of user behavior is crucial to different internet entities [9]. It helps in-

ternet service providers (ISPs) learn the evolution of traffic patterns in OSNs. Meanwhile,

it provides OSN service providers knowledge about their users’ behavior toward different
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situations. Finally, it enhances the experience of social network users. One way of under-

standing the behavior of social network users is to study the evolution of belief and opinion

of these users regarding a social topic or issue. Hence, many researchers have studied and

developed mathematical models for belief and opinion dynamics in social networks. These

models attempt to capture emerging trends caused by the interactions and decisions of the

users [10].

Numerous works in the literature have focused on the application of statistical methods,

optimization techniques, and game theory to belief and opinion evolution in social networks.

Specifically, game theory models have been an attractive approach since they deal with

optimization involving several decision makers with conflicting interests. Game theory has

also been an effective tool in modeling and optimizing physical networks such as wireless

and communication networks with competing and/or cooperating network entities [11].

Furthermore, game theory has been used to improve the performance of wireless networks

through efficient and effective allocation of network resources [12].

However, as the number of decision makers grows large, the analysis of a problem becomes

more complicated due to the increasing number of interactions among the decision makers.

Thus, an appropriate mathematical framework is necessary to ease the analysis and the

calculation of the solution to the problem. MFG, a subclass of game theory introduced by

Lasry and Lions [13], was proposed to emulate scenarios involving a large number of decision

makers. MFG models the interaction of a decision maker with the collective behavior of

other decision makers in the game rather than with the individual behavior of each and

every decision maker in the game. Meanwhile, a new MFG framework proposed in [14]

concentrates on multiple-population settings where the populations are competing and each

player in a population are acting non-cooperatively. This kind of scenarios can be found

in social networks. For instance, social network users can be divided according to political

orientation, gender, age, and many other categories. Since users can interact with anyone

belonging to any group, it would be beneficial to study how these interactions affect the

3



belief and opinion of these users.

Inspired by this new research in MFG, Chapter 2 introduces a multiple-population MFG

to model the belief and opinion evolution in social networks [15]. The proposed model aims

to gain information on the behavior of social network users belonging to different groups.

Specifically, the proposed model can be utilized to estimate and predict how a social network

group affects the belief and opinion of other groups.

1.1.2 Multi-Access Edge Computing Networks

Mobile cloud computing (MCC) offers cloud services such as computing, caching, and

communications to mobile end users. These services are processed in the cloud that might

be geographically located far from the end users. Consequently, MCC suffers from high

latency that is not acceptable in some applications. To alleviate this problem, multi-access

edge computing (MEC) has been proposed in which the cloud services are provided at the

edge network located in proximity with the end users. Therefore, the move of computing

services from the cloud to the edge network effectively reduces latency. Aside from low

latency, other benefits of MEC include proximity, high bandwidth, real-time radio network

information, and location awareness [16]. MEC can be implemented through a network

of computing nodes distributed over a geographic area. These computing nodes form the

multi-access edge computing network (MECN) that provides computing services to the end

users.

Computation offloading is one of the main services provided by an MECN where an end

user equipment, such as a smartphone, can offload computation-intensive tasks, or portions

of it, to the MECN instead of performing the task locally. The decision to offload depends

on factors such as latency, bandwidth, and energy consumption of the equipment. In the

literature, computation offloading has been formulated as a game theoretic problem or an

optimization problem with the goal of minimizing the cost incurred by a mobile device or
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the network subject to constraints such as computing power, latency, and bandwidth.

In Chapter 3, the idea of computation offloading is extended to offloading among com-

puting nodes [17]. Specifically, an MECN aggregates the computation tasks from the end

users and then it offloads portions of the aggregated tasks to the computing nodes. Since

an MECN can be implemented through finite number of computing nodes where a com-

puting node can have a significant effect on the utility of the network, the mean-field-type

game (MFTG), a relaxed version of MFG, is utilized to analyze and model the computation

offloading problem. Specifically, non-cooperative and cooperative MFTG approaches are

applied to computation offloading in MECN. In these approaches, the goal of each comput-

ing node is to minimize cost by controlling its own offloading strategy subject to the state

dynamics of the MECN. Each computing node does not need to know the offloading strat-

egy of other computing nodes in order to determine its own offloading strategy. Instead, a

computing node only needs to know the mean field terms that correspond to the aggregate

effect of other computing nodes to the network.

1.1.3 Network Virtualization

The internet has been successful in providing users access to information and commu-

nication through an assortment of applications. These applications include web browsing,

voice and data communication, video streaming, among others. The service providers (SPs)

offer these applications through networks that vary in topology and architecture. The in-

frastructure providers (InPs), entities that manage a network of physical infrastructures,

can support these multiple diverse networks through network virtualization. Network vir-

tualization (NV) allows multiple heterogeneous virtual networks (VNs) to share common

physical network (PN) infrastructures. In the case of the internet, it will enable the support

of multiple independent VNs which in turn offer various applications to the end users (EUs).

There are many advantages to implementing NV including flexibility, diversity, security,
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and manageability [18]. However, NV faces some challenges such as the allocation of network

resources and the economic relationship between the SPs and the InPs. Hence, researchers

have developed algorithms and models that solve NV resource allocation problems. Resource

allocation in NV is performed by the InPs after receiving resource requests from the SPs

[19]. Thus, the main focus of many works has been the dynamics between the SPs and

the InPs. The lack of a unified framework for NV that involves all levels of abstraction of

NV (e.g., the EUs, the SPs, and the InPs) has inspired us to develop an economic model

that represents the dynamics within the entire NV system. The dynamics in an NV system

include the failure, payoff, competition, and service rates at each level of abstraction. This

model depicts not only the economic relationship among the InPs and the SPs but also the

economic relationship among the SPs and the EUs.

In Chapter 4, a unique approach to NV resource allocation and economics is presented.

NV is a dynamic system where the quantities of resource trading between the consumers

and the producers are constantly changing with time. In addition, NV has multiple levels

of interactions that are difficult to analyze and model using a conventional game theory

approach. Thus, a dynamic hierarchical model, called the prey-predator food chain model,

is used to analyze and model the dynamic resource allocation and economics in a multiple-

level NV system. Consider an ecosystem with different species living together where a

species is the only food source of one other species which in turn is the only food source of

one other species and so on (i.e., a food chain). The interactions among many agents of the

same species (i.e., competition) and the interactions between two agents of different species

(i.e., consumption) are modeled mathematically in the prey-predator food chain model. In

NV, the EUs, SPs, and InPs are the agents or decision makers while the gain or loss of

money depicts the interaction between any two decision makers. When the prey-predator

food chain model is applied to NV, the resulting model represents the dynamic resource

allocation and economics in an NV system.
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1.2 Mean Field Games

1.2.1 Background

Mean field game (MFG) theory is introduced by Lasry and Lions in [13]. It deals with

the study and analysis of differential games with infinitely many decision makers or players.

It enables the study of the solution concept of Nash equilibrium of games with very large

number of indistinguishable players. The term indistinguishable refers to a scenario where

players share common structures of the model and are allowed to have heterogeneous states

[20]. An MFG is typically formulated as a couple of differential equations, a Fokker-Planck-

Kolmogorov (FPK) equation for the evolution of state distribution of the players and a

Hamilton-Jacobi-Bellman (HJB) equation for the evolution of a player’s value function

given the state distribution of all other players. Since the number of players in an MFG

is large and the players are indistinguishable, the game is taken from the point of view of

a representative or reference player playing against the aggregate or collective behavior of

other players in the game.

Consider a non-cooperative game with large number of indistinguishable players. Let x

be the state of a player and m = m(x, t) be the mean field or distribution of players over

state x at time t. Assume that a representative player tries to minimize the cost J(x,m, u)

subject to the state dynamics ẋ through the input or control u = u(x, t). That is,

min
u∈U

J(x,m, u) = E
[ ∫ T

0
L(x,m, u) dt+ Ψ(x, T )

]
,

subject to dx = f(x,m, u) dt+ σ dw(t),

(1.1)

where L(x,m, u) corresponds to the running cost, Ψ(x, T ) refers to the terminal cost or the

cost at terminal time T , f(x,m, u) denotes the average rate of change of the state, σ as the

diffusion constant, and w(t) as a standard Wiener process. Also, define the value function

v(x, t) = minu∈U J(x,m, u). Then, an MFG can be expressed as a pair of HJB and FPK
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equations,

−∂v
∂t

(x, t)−H(x,m, p) =
σ2

2
D2v(x, t),

∂m

∂t
(x, t) + div(f(x,m, u)m(x, t)) =

σ2

2
D2m(x, t),

(1.2)

with boundary conditions v(x, T ) = Ψ(x, T ) and m(x, 0) = m0(x). The first equation in

(1.2) is the HJB equation that characterizes the optimized reaction of a representative player

against the mean field while the second equation in (1.2) is the FPK equation that describes

the evolution of the mean field of the players that behave optimally [20]. Meanwhile,

H(x,m, p) is called the Hamiltonian and is defined mathematically as

H(x,m, p) = min
u∈U

L(x,m, u) + pf(x,m, u), (1.3)

where p = ∂v
∂x(x, t).

The optimal control u∗ = u(x∗, t) is the input or control that achieves the minimum cost

J(x,m, u∗). It satisfies the equation

J(x,m, u∗) = E
[ ∫ T

0
L(x,m, u∗) dt+ Ψ(x, T )

]
= v(x, t),

∀t ∈ [0, T ], with x∗ as the solution to the state dynamics ẋ. Furthermore, the optimal

control u∗ is the solution to the partial differential equation

f(x,m, u∗) =
∂H

∂p
(x,m, p). (1.4)

A related discussion of MFG utilized in this work can be found in Chapter 2.

1.2.2 Applications

MFGs have been applied in many applications in economics and engineering. Recently,

the applications of MFGs in engineering include power control in device-to-device (D2D)
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networks [21], wireless communications in multiple unmanned aerial vehicle (UAV) net-

works [22], real-time D2D streaming networks [23], energy harvesting in ultra-dense small

cell networks [24], power supply and interference mitigation in wireless-powered Internet-of

Things (WP-IoT) [25], future ultra-dense wireless networks [26], electric vehicle competi-

tion in smart grids [27], security enhancements in mobile ad-hoc networks [28], and power

allocation in full-duplex ultra-dense cellular networks [29].

1.3 Dissertation Contributions and Organization

This dissertation consists of three main works. The first work in Chapter 2 focuses on the

MFG modeling of belief and opinion evolution in social networks. The main contributions

of this work are summarized as follows.

• The belief and opinion evolution in a social network with a large number of users is

formulated as a single population MFG. In this model, the users are assumed to share

a common characteristic, and hence can be grouped into a single population. The

proposed MFG model aims to provide the evolution with time of the distribution of

opinions within the population.

• For social networks that can be divided into several populations or groups where users

in a group share a common characteristic, the belief and opinion evolution is modeled

using a multiple-population MFG framework. The goal of the proposed model is to

capture the evolution of the distributions of opinions within the populations. More-

over, the proposed model aims to show the influence of the populations with each

other.

• The existence of stubborn users in a social network is integrated in the proposed

MFG models. Stubborn users refer to social network users that are less susceptible to

change their initial opinions on a social topic and issue. Consequently, the resulting
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models indicate how these users affect the behavior of the populations.

• Simulations are provided to demonstrate the purpose and benefits of the proposed

MFG models in estimating and predicting the distribution of opinions of social network

users. First, theoretical results from implementing the proposed models are shown.

These results are important in showcasing the theoretical aspect of the MFG-based

belief and opinion evolution. Then, the proposed models are tested using a social

evolution dataset [30]. The results provide insights on the effectiveness of the proposed

MFG-based models.

The second work in Chapter 3 concentrates on the MFTG approach to computation

offloading in MECN. The main contributions of this work are summarized as follows.

• Computation offloading is proposed and formulated as a non-cooperative MFTG prob-

lem where each computing node minimizes its own cost function subject to the state

dynamics of the network. In the non-cooperative approach, the computing nodes

operate in a decentralized manner where each computing node can compute its own

computation offloading strategy without full knowledge of the strategies of other com-

puting nodes.

• A cooperative MFTG problem of computation offloading is proposed and formulated

where the computing nodes jointly minimize a global cost function subject to the state

dynamics of the network. In the cooperative approach, the computing nodes operate

in a centralized manner where the network determines the offloading strategy of each

computing node that minimizes the cost incurred by the edge network.

• The optimal computation offloading control profile that minimizes the cost in each

case is solved using a direct approach proposed in the literature. This approach does

not require solving coupled partial differential equations that complicate the problem.

Instead, it involves calculation of mean-field terms that represent the behavior of the
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entire network.

• The non-cooperative and cooperative MFTG computation offloading algorithms are

designed based on the direct approach of solving MFTG computation offloading prob-

lems. The non-cooperative algorithm is implemented in a decentralized manner while

the cooperative algorithm is implemented in a centralized manner.

• Simulations are presented to demonstrate the effectiveness of the proposed MFTG-

based algorithms as well as the computation offloading behavior of a computing node

under varying conditions. Moreover, the proposed non-cooperative and cooperative

MFTG computation offloading algorithms are compared with typical computation

offloading algorithms.

The third work in Chapter 4 emphasizes a dynamic hierarchical modeling of resource

allocation and economics in network virtualization. The main contributions of this work

are summarized as follows.

• A unified mathematical framework based on the prey-predator food chain model is

proposed to represent the economics in an NV system. An analysis of this model

is provided, as well as its properties and equilibrium point. This equilibrium point

stands as the resource strategies at each level of the NV system given the economic

dynamics of the system.

• Economic models are formulated based on the dynamics in the NV system to emulate

the relationship between the total demand for the network resources and the total

supply of the network resources.

• Simulations are provided to show the variations in the behavior of the NV system when

the dynamics within the system have changed. Furthermore, results are presented to

illustrate the relationship of the demand and supply of network resources between the

EUs and the SPs and between the SPs and the InPs.
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The organization of this dissertation is as follows. Chapter 2 presents the MFG-based

modeling of belief and opinion evolution in multiple-population social networks. Then,

Chapter 3 discusses the MFTG-based approaches to computation offloading in MECN.

Meanwhile, Chapter 4 provides an introduction to a dynamic hierarchical modeling of

resource allocation and economics in NV. Finally, Chapter 5 offers the conclusions and

proposed future works.

12



Chapter 2

Multiple-Population Mean Field Belief and

Opinion Evolution in Social Networks

The number of users engaged in social media through social networks continues to grow

as people become more passionate on current social topics and issues. When social network

users share similar characteristics such political orientation, age, and gender, they can be

grouped and analyzed according to these similarities. Meanwhile, the behavior of users in

a social network setting can be extracted from their belief and opinions regarding social

topics and issues. Understanding user behavior has been a priority of network service

providers in order to learn the evolution of traffic patterns, estimate or predict the users

behavior, and enhance the experience of network users. Integrating the idea of user behavior

modeling to a multiple-group social network, a multiple-population mean field game (MFG)

approach is proposed to analyze and model the belief and opinion evolution of users in a

social network. Through the proposed model, information can be gained on the behavior of

social network users belonging to different groups. Specifically, the proposed model can be

utilized to estimate and predict how a social network group affects the belief and opinion

of other groups. Simulations are provided to show the belief and opinion evolution of

users in a multiple-population setting. Theoretical results and experimental results using

a social evolution dataset are presented to demonstrate the effectiveness of the proposed

MFG approach.
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2.1 System Model

In this section, the opinion dynamics equation that characterizes the change or update

of opinion of a user in a single-population social network is derived. By single population,

it is assumed that the users share a common characteristic (e.g., age, gender, and political

orientation). Then, the cost function that each user is facing in a social network is described.

In the following derivations, consider a social network with n users denoted by graph

G = (V, E), where V is the set of all social network users and E ⊆ V × V is the set of all

links between two distinct users in V. Two distinct users that are linked are neighbors,

and hence the neighborhood of a user refers to the set of all its neighbors. Also, denote

xi, i = 1, . . . , n as the state or scalar opinion of user i in a social network.

2.1.1 Opinion Dynamics Equation

The state or opinion xi of user i evolves with time k depending on the opinions of its

neighbors. In this work, the following opinion dynamics equation is adapted where at each

stage k = 0, 1, . . . , the opinion of user i evolves according to

xi(k + 1) =

∑n
j=1 αijxj(k)∑n

j=1 αij
+ βiui. (2.1)

The first term refers to the Hegselmann-Krause (HK) model of opinion evolution [31] where

αij denotes the adjacency between users i and j, with αij = 1 if users i and j are connected

and αij = 0 if they are not connected. Therefore, αij determines the neighbors of user

i. The second term has been added to reflect the change in opinion based on the control

effort ui = ui(xi, k) with βi as a constant [32]. Fig. 2.1a shows the system model for a

single-population social network. The blue-colored users belong to the neighborhood of user

i while the gray-colored users are outside its neighborhood.

Social network users can be stubborn which means they consider their initial belief or

opinion together with the belief or opinion of their neighbors. A popular social network
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Figure 2.1: An illustration of a social network with single and multiple populations.

dynamic model that considers stubborn agents is the FJ model [33]. In the FJ model,

the influence of neighbor j to user i is quantified by the interpersonal influence wij , which

refers to the strength of influence of between social network users i and j. Moreover, the

willingness of user i to external influence is denoted by λi, which refers to the likeliness of

user i to change from its prejudice or initial opinion xi,0. The evolution of opinion of user

i according to the FJ model is given by

xi(k + 1) = λi

n∑
j=1

wijxj(k) + (1− λi)xi,0. (2.2)

In this work, the HK model in (2.1) is integrated to (2.2) such that the opinion of user i

depends on the average of the opinion of its neighbors. Thus, the opinion dynamics equation

for social networks with stubborn agents in (2.1) is equivalent to

xi(k + 1) = λi

∑n
j=1 αijxj(k)∑n

j=1 αij
+ (1− λi)xi,0 + βiui, (2.3)

where the interpersonal influence wij in (2.2) has been expressed as wij = αij/
∑
αij .

In continuous time, the corresponding opinion dynamics equation for social networks
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without stubborn agent and with stubborn agents are, respectively,

xi(t+ h)− xi(t)
h

=
1

h

(∑n
j=1 αijxj(t)∑n

j=1 αij
− xi(t) + βiui

)
, (2.4)

and
xi(t+ h)− xi(t)

h
=

1

h

(
λi

∑n
j=1 αijxj(t)∑n

j=1 αij
+ (1− λi)xi,0 − xi(t) + βiui

)
. (2.5)

Getting the limit of (2.4) and (2.5) as h→ 0 yields the continuous-time opinion dynamics,

dxi =
1

h

(∑n
j=1 αijxj∑n
j=1 αij

− xi + βiui

)
dt = fi(xi, ui) dt, (2.6)

and dxi =
1

h

(
λi

∑n
j=1 αijxj∑n
j=1 αij

+ (1− λi)xi,0 − xi + βiui

)
dt = fi(xi, ui) dt. (2.7)

2.1.2 Cost Function

Let ui = ui(xi, t) be the control or influence effort of user i with opinion xi at time t. In

a social network, a user can influence anybody in the network through various ways such

as friendship links, advertisements, and social network posts. By controlling ui, user i can

minimize its own local cost function Ji(xi, ui) that refers to the accumulation of the running

cost Li(xi, ui) from t = 0 to T ,

Ji(xi, ui) =

∫ T

0
Li(xi, ui) dt. (2.8)

The running cost Li(xi, ui) consists of the following: the control effort cost associated

with the influence ui(xi, t); the popularity cost corresponding to the cost or reward when

user i has different or the same opinion as other users; and the opinion cost that depends

on how far opinion xi is from the desired or ideal opinion xd of the population. Therefore,

Li(xi, ui) = c1u
2
i + c2

(
1

n

n∑
j=1

δxj=xi

)
+ c3 ‖xi − xd‖ , (2.9)

where δ = 1 if xj = xi and δ = 0 if xj 6= xi, and c1, c2, and c3 are constants. When stubborn

agents are considered, the cost function will include a trade-off between the distance of
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opinion xi to the ideal or target opinion xd and to the initial opinion xi,0. Thus,

Li(xi, ui) = c1u
2
i + c2

(
1

n

n∑
j=1

δxj=xi

)
+ c3λi ‖xi − xd‖+ c4(1− λi) ‖xi − xi,0‖ , (2.10)

where c4 is a constant.

The goal of each social network user i is to vary its control ui to minimize its cost

Ji(xi, ui) subject to its opinion dynamics dxi,

min
ui∈Ui

Ji(xi, ui),

subject to dxi = fi(xi, ui) dt.

(2.11)

In the following section, the concepts and motivation behind MFGs are introduced.

Then, the opinion dynamics and cost functions are reformulated using an MFG framework.

2.2 Mean Field Game with Single Population

2.2.1 Background and Motivation

Consider a non-cooperative game with n players. The goal of each player i is to find

the control ui = ui(xi, t) that minimizes its cost Ji(xi, ui) subject to the state dynamics

equation dxi,

min
ui∈Ui

Ji(xi, ui) = E
[ ∫ T

0
L(xi, ui) dt+ Ψi(xi, T )

]
,

subject to dxi = fi(xi, ui) dt+ σi dwi(t).

(2.12)

Any control u∗i = ui(x
∗
i , t) that solves the optimization problem in (2.12) is called an

optimal control of player i where x∗i is a solution to dxi. An optimal control u∗i is a solution
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to (2.12) that minimizes the cost function subject to the state dynamics constraint. The

formal definition of optimal control is stated as follows.

Definition 1. Let the value function vi(xi, t) be defined mathematically as

vi(xi, t) = min
ui∈Ui

Ji(xi, ui),

∀t ∈ [0, T ]. Then, the optimal control u∗i satisfies

Ji(xi, u
∗
i ) = E

[ ∫ T

0
L(xi, u

∗
i ) dt+ Ψi(xi, T )

]
= vi(xi, t),

∀t ∈ [0, T ].

Meanwhile, if the value function vi(xi, t) associated with the optimization problem in

(2.12) is smooth enough (i.e., has continuous first-order derivative), then it is a viscosity

solution of the Hamilton-Jacobi-Bellman (HJB) equation [34],

∂vi
∂t

(xi, t) +H(xi, pi) =
σ2
i

2
D2vi(x, t), (2.13)

where Hi(xi, pi) is called the Hamiltonian and is defined mathematically as

H(xi, pi) = min
ui∈Ui

Li(xi, ui) + pifi(xi, ui), (2.14)

and pi = ∂vi
∂xi

(xi, t).

When every player i faces the optimization problem in (2.12) and hence the corresponding

HJB equation in (2.13), the resulting game is called a differential game [11]. Furthermore,

when every player i solves its optimal control u∗i , then it yields a solution to the game called

Nash equilibrium. A Nash equilibrium is a solution concept to a game where no player can

achieve a lesser cost by deviating from its optimal control given that other players maintain

their optimal controls. A formal definition is given as follows.

Definition 2. Let (u∗i , u
∗
−i) be the control profile consisting of the control of player i and

the controls u−i of other users. Then, the control profile (u∗i , u
∗
−i) is a Nash equilibrium if
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and only if

Ji(u
∗
i , u
∗
−i) ≤ Ji(ui, u∗−i), ∀ui ∈ U ,

for every player i in the game.

The calculation of the Nash equilibrium of a differential game with n players involves

solving n coupled HJB equations in (2.13). Hence, it becomes more complicated due to

increased interactions and coupling between the players. Consequently, mean field game

(MFG) is proposed to reformulate the game problem. MFG is introduced by Lasry and Lions

in [13] and has been applied in many applications in economics and engineering. MFG can

be utilized when the number of players is large and when the players are indistinguishable yet

can have heterogeneous states. In MFG, the aggregate effect of all the players is considered

rather than the individual effect of each player.

A MFG can be characterized by a pair of partial differential equations, a HJB equation

and a Fokker-Planck-Kolmogorov (FPK) equation. This is in contrast with a differential

game that is characterized by n coupled HJB equations. Since the number of players in a

MFG is large and the players are indistinguishable, the game is taken from the point of view

of a representative or reference player playing against the aggregate or collective behavior

of other players. Thus, MFG can be expressed as a pair of HJB and FPK equations,

−∂v
∂t

(x, t)−H(x,m, p) =
σ2

2
D2v(x, t),

∂m

∂t
(x, t) + div(f(x,m, u)m(x, t)) =

σ2

2
D2m(x, t),

(2.15)

where H(x,m, p) is called the Hamiltonian and is defined mathematically as

H(x,m, p) = min
u∈U

L(x,m, u) + pf(x,m, u), (2.16)

and p = ∂v
∂x(x, t), with boundary conditions v(x, T ) = Ψ(x, T ) and m(x, 0) = m0(x). The

first equation in (2.15) is the HJB equation that characterizes the optimized reaction of
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a player with the mean field while the second equation in (2.15) is the FPK equation

that describes the evolution of the population that behaves optimally [20]. Note that in

single-population MFG, the subscripts i have been dropped to imply that the players are

indistinguishable from each other.

Meanwhile, the optimal control u∗ is the solution to the partial differential equation

f(x,m, u∗) =
∂H

∂p
(x,m, p). (2.17)

The function m = m(x, t) refers to the mean field and it corresponds to the distribution

of the states of the players with respect to time. The formal definition of m(x, t) is given

as follows.

Definition 3. The mean field m(x, t) denotes the probability distribution of the players with

state x at time t. Mathematically,

m(x, t) = lim
n→∞

1

n

( n∑
i=1

δxi=x

)
, (2.18)

where δ = 1 if xi = x and δ = 0 if xi 6= x.

The following theorem summarizes the mathematical framework of a MFG. A brief proof

is provided as well. For more comprehensive proof, the reader may refer to [20] and [35].

Theorem 1. Consider a non-cooperative game among large number of indistinguishable

players. If every player faces the optimization problem

min
u∈U

J(x,m, u) = E
[ ∫ T

0
L(x,m, u) dt+ Ψ(x, T )

]
,

subject to dx = f(x,m, u) dt+ σ dw(t),

then the equivalent non-cooperative mean field game is the pair of HJB and FPK equations,

−∂v
∂t

(x, t)−H(x,m, p) =
σ2

2
D2v(x, t),

∂m

∂t
(x, t) + div(f(x,m, u)m(x, t)) =

σ2

2
D2m(x, t),

(2.19)
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where the Hamiltonian H(x,m, p) = minu∈U L(x,m, u) + pf(x,m, u) and boundary condi-

tions v(x, T ) = Ψ(x, T ) and m(x, 0) = m0(x). In addition, the optimal control u∗ = u(x∗, t)

is the solution to the equation

f(x,m, u∗) =
∂H

∂p
(x,m, p),

where x∗ is a solution to state dynamic equation dx = f(x,m, u) dt+ σ dw(t).

Proof. Let the value function v(x, t) = minu∈U J(x,m, u). Then, applying the dynamic

programming principle for stochastic optimal control,

v(x, t) = min
u∈U

E
[ ∫ t+h

t
L(x,m(x, s), u(x, s)) ds+ v(x, t+ h)

]
,

dividing the result by h and getting the limit as h→ 0 yields

−∂v
∂t

(x, t)− L(x,m, u)− f(x,m, u)
∂v

∂x
(x, t) =

σ2

2
D2v(x, t),

which is equivalent to the HJB equation in (2.19). Meanwhile, let φ(x) be twice differentiable

with compact support. Then,

dφ(x) =

(
f(x,m, u)Dφ(x) +

σ2

2
D2φ(x)

)
dt+Dφ(x)σ dw(t).

Dividing by dt and taking the expectation yields

E
[
dφ(x)

dt

]
= E

[
f(x,m, u)Dφ(x) +

σ2

2
D2φ(x)

]
.

Rewriting in terms of m(x, t) and using integration by parts results to the FPK equation

in (2.19).

The following subsection is devoted to applying the single-population MFG to social

network belief and opinion evolution. Through MFG, the evolution with time of the opinions

of the users in a huge social network can be characterized by a pair of HJB and FPK

equations.
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2.2.2 Mean Field Game Problem for Single-Population Social Network

Given the definition of the mean field m(x, t) in (2.18), the running cost functions (2.9)

and (2.10) become

L(x,m, u) = c1u
2 + c2m+ c3 ‖x− xd‖ , (2.20)

and L(x,m, u) = c1u
2 + c2m+ c3λ ‖x− xd‖+ c4(1− λ) ‖x− x̄0‖ , (2.21)

where x̄0 denotes the average initial opinion. The subscript i has been dropped to imply

that the users are indistinguishable from each other.

To be able to derive the opinion dynamics in terms of the mean field m(x, t), an important

concept in probability theory known as the law of large numbers [36] is necessary.

Theorem 2. Let X1, X2, . . . be a sequence of independent and identically distributed ran-

dom variables, each having the same finite mean µ. Then,

P
(

lim
n→∞

1

n
(X1 +X2 + · · ·+Xn) = µ

)
= 1.

In words, the partial averages 1
n(X1 +X2 + · · ·Xn) converges almost surely to µ.

Consequently, based on Theorem 2, the opinion dynamics in (2.6) can be written as

dx =

(
ā

∫
X
xm(x, t) dx+ ax+ bu

)
dt+ σ dw(t),

=
(
āx̄+ ax+ bu

)
dt+ σ dw(t) = f(x,m, u) dt+ σ dw(t),

(2.22)

where x̄ = x̄N /α is the average population opinion, x̄N =
∑n

j=1 αijxj(t)/
∑n

j=1 αij is the

average neighborhood opinion, α is an adjacency parameter, and ā, a, and b are constants.

The third term in (2.22) is added to capture the opinion change due to uncertainty or random

phenomenon with σ as the diffusion constant and w(t) as a standard Wiener process.
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Similarly, for social networks with stubborn agents, the opinion dynamics in (2.7) be-

comes

dx = ā

(
λ

∫
X
xm(x, t) dx+ (1− λ)

∫
X
xm0(x) dx

)
dt+ (ax+ bu) dt+ σ dw(t),

=
(
ā(λx̄+ (1− λ)x̄0) + ax+ bu

)
dt+ σ dw(t) = f(x,m, u) dt+ σ dw(t).

(2.23)

Fig. 2.1b shows an illustration of a single-population MFG social network where the

aggregate effect of other users to a representative user is taken into account rather than

the individual effect of each other user. The social network problem solved through MFG

is formally stated by following.

Problem 1. Consider a non-cooperative social network game with large number of indis-

tinguishable users. In this game, a user tries to minimize its cost J(x,m, u) subject to the

opinion evolution dx. Denote v(x, t) = minu∈U J(x,m, u) and u = u(x, t) as the value and

control functions of a user, respectively. Let m = m(x, t) correspond to the distribution of

users according to opinion x at time t. Then, a social network user views the game as a

mean field game where the evolution of v(x, t) and m(x, t) with time are represented by the

pair of HJB and FPK equations,

−∂v
∂t

(x, t)− L(x,m, u∗)− f(x,m, u∗)
∂v

∂t
(x, t) =

σ2

2
D2v(x, t),

∂m

∂t
(x, t) + div(f(x,m, u)m(x, t)) =

σ2

2
D2m(x, t),

(2.24)

with boundary conditions v(x, T ) = 0 and m(x, 0) = m0(x). The drift f(x,m, u) is given by

f(x,m, u) = āx̄+ ax+ bu,

and f(x,m, u) = ā(λx̄+ (1− λ)x̄0) + ax+ bu,

when there is absence and presence of stubborn agents, respectively. Meanwhile, the optimal

control u∗ = u(x∗, t) is the solution to the equation

f(x,m, u∗) =
∂H

∂p
(x,m, p),
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where the Hamiltonian is defined as H(x,m, p) = minu∈U L(x,m, u) + pf(x,m, u) and p =

∂v
∂t (x, t).

In a single population, MFG focuses on the Nash equilibrium (i.e., a solution in which

no player gains anything by changing only its own strategy) among the players in the

group. The same point of view can be extended to scenarios with several populations. In

the following section, an extension of MFG to scenarios involving several populations is

discussed. Then, the methodology is applied to social networks when users can be grouped

into several populations.

2.3 Mean Field Game with Several Populations

In this section, the multiple-population framework of MFG presented in [14] is intro-

duced. This MFG framework will be used in the next section to model the belief and

opinion dynamics in social networks.

2.3.1 Background and Motivation

Consider a non-cooperative game among a large number of players that can be divided

into P populations. Let the state x ∈ Rd. Denote mean field vector m = (mi)
>
i=1,...,P and

control vector u = (ui)
>
i=1,...,P . Assume that each population considers that the distribution

of all populations are fixed or predictable and tries to minimize its own individual cost. The

goal of a player in population i is to minimize the population cost Ji(x,m, ui) subject to

the population state dynamics dx.

A MFG problem with P populations is to find (m∗, u∗) where u∗ = (u∗i )
>
i=1,...,P is a Nash

equilibrium for the cost functions

Ji(x,m, ui) = E
[ ∫ T

0
Li(x,m

∗, ui) dt+ Ψi(x,m
∗(x, T )) dx

]
, (2.25)
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and m∗ = (m∗i )
>
i=1,...,P satisfies

∂mi

∂t
(x, t) + div

(
fi(x,m, u

∗
i )mi(x, t)

)
=
σ2
i

2
D2mi(x, t). (2.26)

Thus, population i faces the problem of finding ui that solves

min
ui∈Ui

Ji(x,m, ui) = E
[ ∫ T

0
Li(x,m

∗, ui) dt+ Ψi(x,m
∗(x, T ))

]
,

subject to
∂mi

∂t
(x, t) + div

(
fi(x,m

∗, ui)mi(x, t)
)

=
σ2
i

2
D2mi(x, t),

∂mp

∂t
(x, t) + div

(
fp(x,m

∗, u∗p)mp(x, t)
)

=
σ2
p

2
D2mp(x, t),

(2.27)

for p 6= i, with initial conditions mi(x, 0) = mi,0(x), i = 1, . . . , P .

The pair (mi, ui) that solves (2.27) is also a solution of the system of partial differential

equations

−∂vi
∂t

(x, t)−Hi(x,m,Dvi) =
σ2
i

2
D2vi(x, t),

∂mi

∂t
(x, t) + div

(
∂Hi

∂pi
(x,m,Dui)mi(x, t)

)
=
σ2
i

2
D2mi(x, t),

(2.28)

with boundary conditions vi(x, T ) = Ψi(x,m(x, T )) and mi(x, 0) = mi,0(x). Also, the

Hamiltonian is defined as

Hi(x,m,Dvi) = min
ui∈Ui

Li(x,m, ui) + pifi(x,m, ui), (2.29)

where pi = ∂vi
∂t (x, t).

The following theorem is the extension of Theorem 1 to MFG with several populations.

For more detailed proof, please refer to [14] and the references therein.

Theorem 3. Consider a non-cooperative game among large a number of indistinguishable
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players. If population i faces the optimization problem

min
ui∈Ui

Ji(x,m, ui) = E
[ ∫ T

0
Li(x,m

∗, ui) dt+ Ψi(x,m
∗(x, T ))

]
,

subject to
∂mp

∂t
(x, t) + div

(
fp(x,m, u

∗
p)mp(x, t)

)
=
σ2
p

2
D2mp(x, t),

p = 1, . . . , P , with boundary conditions vi(x, T ) = Ψi(x,m(x, T )) and mi(x, 0) = mi,0(x),

then the equivalent non-cooperative mean field game consists of the HJB and FPK equation,

−∂vi
∂t

(x, t)−Hi(x,m,Dvi) =
σ2
i

2
D2vi(x, t),

∂mi

∂t
(x, t) + div

(
∂Hi

∂pi
(x,m,Dui)mi(x, t)

)
=
σ2
i

2
D2mi(x, t).

(2.30)

Meanwhile, the optimal control u∗i = ui(x
∗, t) is the solution to the equation

fi(x,m, u
∗
i ) =

∂Hi

∂pi
(x,m, pi),

where x∗ is a solution to state dynamic equation dx = fi(x,m, ui) dt+ σi dwi(t).

Proof. Let the value function vi(x, t) = minui∈Ui Ji(x,m, ui). Then, applying the dynamic

programming principle for stochastic optimal control,

vi(x, t) = min
ui∈Ui

E
[ ∫ t+h

t
Li(x,m(x, s), ui(x, s)) ds+ vi(x, t+ h)

]
,

dividing the result by h and getting the limit as h→ 0 yields

−∂vi
∂t

(x, t)− Li(x,m, ui)− fi(x,m, ui)
∂vi
∂x

(x, t) =
σ2
i

2
D2vi(x, t),

which is equivalent to the HJB equation in (2.30). Meanwhile, let φi(x) be twice differen-

tiable with compact support. Then,

dφi(x) =

(
fi(x,m, ui)Dφi(x) +

σ2
i

2
D2φi(x)

)
dt+Dφi(x)σi dwi(t).
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Dividing by dt and taking the expectation yields

E
[
dφi(x)

dt

]
= E

[
fi(x,m, ui)Dφi(x) +

σ2
i

2
D2φi(x)

]
.

Rewriting in terms of mi(x, t) and using integration by parts results to the FPK equation

in (2.30).

2.3.2 Mean Field Game Problem for Multiple-Population Social Network

In this section, the MFG model in the previous section is applied to a social network

consisting of multiple populations where the users can be divided into several populations

and the users in the same population or group share a common characteristic.

The running cost function Li(x,m, ui) of a social network user in population i is propor-

tional to the influence effort ui = ui(x, t) it exerts to minimize its own cost. In addition, a

user is rewarded (or penalized) if it influences users from any population. In other words, the

cost decreases (or increases) if the mean fields of the populations mp = mp(x, t), p = 1, . . . , P

are higher (or lower). If xi,d denotes the ideal or desired opinion of population i, then each

user must minimize the distance of its opinion to the ideal opinion, ‖x− xi,d‖. In addition,

when the social network users have a degree of stubbornness, the distance to the average

initial opinion is also affects the cost, ‖x− x̄i,0‖. Therefore, the running cost functions

Li(x,m, ui) in (2.20) and (2.21) can be written mathematically as

Li(x,m, ui) = c1u
2
i +

P∑
p=1

c2,pmp + c3 ‖x− xi,d‖ , (2.31)

and Li(x,m, ui) = c1u
2
i +

P∑
p=1

c2,pmp + c3λi ‖x− xi,d‖+ c4(1− λi) ‖x− x̄i,0‖ . (2.32)

Consequently, the average running cost of a user in population i is given by

Ji(x,m, ui) = E
[ ∫ T

0
Li(x,m, ui) dt

]
. (2.33)
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Since the users can be divided into P distinct populations, the opinion dynamics equation

in (2.22) for population i becomes

dx =

( P∑
p=1

ηpāi,px̄p + aix+ biui

)
dt+ σi dwi(t) = fi(x,m, ui) dt+ σi dwi(t), (2.34)

where ηp refers to the ratio of the size of population p and the total population, x̄p =

x̄N ,p/αi,p is the average opinion at population p, αi,p is the average adjacency to population

p in population i, āi,p = ā/αi,p, bi is a control constant, σi is the diffusion constant, and

wi(t) is a standard Wiener process.

When there are stubborn agents, the opinion dynamics equation in (2.23) for population

i becomes

dx =

(
λi

P∑
p=1

ηpāi,px̄p + (1− λi)āi,ix̄i,0 + aix+ biui

)
dt+ σi dwi(t),

= fi(x,m, ui) dt+ σi dwi(t),

(2.35)

where λi is the average susceptibility of a user in population i. The following problem states

the multiple-population opinion evolution on social network modeled using MFG.

Problem 2. Consider a non-cooperative game among P distinct populations in a social

network. Assume that each population consists of large number of indistinguishable users.

In this game, a user in population i tries to minimize the population cost Ji(x,m, ui) subject

to the opinion evolution dx. Denote vi(x, t) = minui∈Ui Ji(x,m, ui) and ui = ui(x, t) as

the value and control functions of a user in population i, respectively. Let mi = mi(x, t)

correspond to the distribution of users at population i according to opinion x at time t.

Then, a social network user at population i views the game as a mean field game where the

evolution of vi(x, t) and mi(x, t) with time are represented by the pair of HJB and FPK
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equations,

−∂vi
∂t

(x, t)−Hi(x,m,Dvi) =
σ2
i

2
D2vi(x, t),

∂mi

∂t
(x, t) + div

(
∂Hi

∂pi
(x,m,Dui)mi(x, t)

)
=
σ2
i

2
D2mi(x, t),

(2.36)

with boundary conditions vi(x, T ) = 0 and mi(x, 0) = mi,0(x). The drift fi(x,m, ui) of

population i is given by

fi(x,m, ui) =
P∑
p=1

ηpāi,px̄p + aix+ biui,

and fi(x,m, ui) = λi

P∑
p=1

ηpāi,px̄p + (1− λi)āi,ix̄i,0 + aix+ biui,

when there is absence and presence of stubborn agents, respectively. Meanwhile, the optimal

control u∗i = ui(x
∗, t) of a user in population i is the solution to the equation

fi(x,m, u
∗
i ) =

∂Hi

∂pi
(x,m, pi),

where the Hamiltonian is defined as Hi(x,m, pi) = minui∈Ui Li(x,m, ui)+pifi(x,m, ui) and

pi = ∂vi
∂t (x, t).

In the next section, an analytical method to solve the pair of partial differential equations

in (2.30) is presented. Then, this method is applied to the proposed social network problem.

2.4 Adjoint Method for Mean Field Games with Several Pop-

ulations

An adjoint method was proposed in [35] to solve the HJB-FPK pair associated with a

single-population MFG. In this section, this methodology is extended to multiple-population

MFG and solve the HJB-FPK pair (2.30) for population i. Afterwards, the result of applying

the methodology to social network belief and opinion evolution is presented.
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2.4.1 Background

The method starts with introducing an adjoint variable, vi(x, t) that also corresponds to

the value function

vi(x, t) = min
ui∈Ui

Ji(x,m, ui). (2.37)

Using this adjoint variable, the FPK equation is appended to the original cost function

Ji(x,m, ui). Thus, the resulting MFG problem optimizes the extended cost function

Ji(ui,mi, vi) = Ji(x,m, ui) + vi(x, t)

[
− ∂mi

∂t
(x, t)− div

(
∂Hi

∂pi
(x,m,Dui)mi(x, t)

)

+
σ2
i

2
D2mi(x, t)

]
.

(2.38)

There exists a pair (mi, ui) that minimizes the extended cost function in (2.38) if there is

a vi such that (mi, ui, vi) is a stationary solution. Thus, the following optimality conditions

are necessary:

∂Ji
∂ui

= 0,
∂Ji
∂mi

= 0, and
∂Ji
∂vi

= 0. (2.39)

Now, consider the optimal control problem

min
mi,ui

Ji(x,m, ui) = E
[ ∫ T

0
Li(x,m

∗, ui) dt+ Ψi(x,m
∗(x, T ))

]
,

subject to
∂mp

∂t
(x, t) + div

(
fp(x,m, up)mp(x, t)

)
=
σ2
p

2
D2mp(x, t),

(2.40)

for all p = 1, . . . , P . The corresponding extended cost function is

Ji(mi, ui, vi) =

∫ T

0

∫
Rn

Li(x,m, ui)mi(x, t) dxdt+

∫
Rn

Ψi(x,m(x, T ))mi(x, T ) dx

+

P∑
p=1

∫ T

0

∫
Rn

vp(x, t)

(
− ∂mp

∂t
(x, t)− div

(
fp(x,m, up)mp(x, t)

)

+
σ2
p

2
D2mp(x, t)

)
dxdt.

(2.41)
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Solving ∂Ji
∂ui

= 0 yields

mi(x, t)
∂Li
∂ui

(x,m, ui) +mi(x, t)Dvi(x, t)
∂fi
∂ui

(x,m, ui) +mi(x, t)
∂

∂ui

(
σ2
i

2
D2vi(x, t)

)
= 0.

(2.42)

Meanwhile, ∂Ji
∂mi

= 0 results to

Li(x,m, ui) +mi
∂Li
∂mi

(x,m, ui) +
∂vi
∂t

(x, t) + fi(x,m, ui)Dvi(x, t)

+
P∑
p=1

(
mp

∂fp
∂mi

(x,m, up)Dvp(x, t)

)
+
σ2
i

2
D2vi(x, t) = 0,

(2.43)

which can be written as

−∂vi
∂t

(x, t)−Hi(x,m,Dvi) =
σ2
i

2
D2vi(x, t) +mi

∂Li
∂mi

(x,m, ui)

+
P∑
p=1

(
mp

∂fp
∂mi

(x,m, up)Dvp(x, t)

)
.

(2.44)

Finally, ∂Ji
∂vi

= 0 yields

∂mi

∂t
(x, t) + div

(
fi(x,m, ui)mi(x, t)

)
=
σ2
i

2
D2mi(x, t). (2.45)

In summary, (2.42), (2.44), and (2.45) are solved iteratively to find the stationary solution

(mi, ui, vi).
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2.4.2 Adjoint Method for the Social Network Problems

For a social network without stubborn agents, the extended cost function can be written

as

Ji(mi, ui, vi) =

∫ T

0

∫
Rn

Li(x,m, ui)mi(x, t) dxdt

+
P∑
p=1

∫ T

0

∫
Rn

vp(x, t)

(
− ∂mp

∂t
(x, t)− div

(( Q∑
q=1

ηqāp,qx̄q + apx

+ bpup

)
mp(x, t)

)
+
σ2
p

2
D2mp(x, t)

)
dxdt.

(2.46)

Applying the optimality conditions in (2.39) to (2.46) result to the following equations:

∂Ji
∂ui

= mi(x, t)
∂Li
∂ui

(x,m(x, t), ui(x, t)) + bimi(x, t)Dvi(x, t), (2.47)

∂Ji
∂mi

=
∂vi
∂t

(x, t) +Hi(x,m,Dvi) +
σ2
i

2
D2vi(x, t) (2.48)

+ c2,imi +
1

2
ηiāi,ix

2
P∑
p=1

mpDvp(x, t),

and
∂Ji
∂vi

=
∂mi

∂t
(x, t) + div

(
fi(x,m, ui)mi(x, t)

)
− σ2

i

2
D2mi(x, t). (2.49)

Meanwhile, for a social network with stubborn agents, the extended cost function can

be written as

Ji(mi, ui, vi) =

∫ T

0

∫
Rn

Li(x,m, ui)mi(x, t) dxdt+

P∑
p=1

∫ T

0

∫
Rn

vp(x, t)

(
− ∂mp

∂t
(x, t)

− div

((
λp

Q∑
q=1

ηqāp,qx̄q + (1− λp)āp,px̄p,0 + apx+ bpup

)
mp(x, t)

)

+
σ2
p

2
D2mp(x, t)

)
dxdt.

(2.50)
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Applying the optimality conditions in (2.39) to (2.50) result to the following equations:

∂Ji
∂ui

= mi(x, t)
∂Li
∂ui

(x,m, ui) + bimi(x, t)Dvi(x, t), (2.51)

∂Ji
∂mi

=
∂vi
∂t

(x, t) +Hi(x,m,Dvi) +
σ2
i

2
D2vi(x, t) + c2,imi (2.52)

+
1

2

(
λiηiāi,ix

2 + (1− λi)āi,ix2
) P∑
p=1

mpDvp(x, t),

and
∂Ji
∂vi

=
∂mi

∂t
(x, t) + div

(
fi(x,m, ui)mi(x, t)

)
− σ2

i

2
D2mi(x, t). (2.53)

In the next section, a numerical method to solve the optimality conditions in (2.42),

(2.44), and (2.45) is presented.

2.5 Numerical Method for Mean Field Games with Several

Populations

To calculate the stationary solution (mi, ui, vi) corresponding to the optimality condi-

tions in (2.42), (2.44), and (2.45), a well-known numerical method called finite difference

method is implemented. In this method, the partial differential equations (PDEs) are con-

verted into their equivalent discrete-time difference equations. In addition to finite differ-

ence method, a numerical scheme called the Lax-Friedrichs scheme is discussed. Afterwards,

these numerical techniques are applied to solve the MFG problems presented in the previous

sections.

2.5.1 Background

Consider a bounded region [0, Xmax]× [0, Tmax] over which independent variables x and t

of the PDEs are defined. In order to implement a numerical method to solve the PDEs, the

region is converted into a finite grid of points. Given positive integers M and N , a space
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step is defined as ∆x = Xmax
M and a time step is defined as ∆t = Tmax

N . Hence, the grid of

points are defined by

xj = j∆x, j = 0, ...,M and tk = k∆t, k = 0, ..., N. (2.54)

Furthermore, for any function ρ defined over the space-time region, ρkj = ρ(xj , tk).

The finite difference (FD) method is a numerical method to approximate and solve

PDEs. This method uses finite differences to approximate derivatives. For the first-order

derivatives in x, the forward, backward, and central differences are defined as

∂ρ

∂x
=
ρk+1
j − ρkj

∆x
,

∂ρ

∂x
=
ρkj − ρ

k−1
j

∆x
, and

∂ρ

∂x
=
ρk+1
j − ρk−1

j

2∆x
, (2.55)

where ∆x = xj+1 − xj = xj − xj−1. For the second-order derivatives in x, the symmetric

difference approximation is defined as

∂2ρ

∂x2
=
ρkj+1 − 2ρkj + ρkj−1

(∆x)2
. (2.56)

These definitions apply in a similar fashion to derivatives in t.

In order to discretize the extended Lagrangian in (2.41), consider a one-dimensional

Fokker-Planck equation

∂mi

∂t
(x, t) +

∂φi
∂x

(mi(x, t)) = εi
∂2mi

∂x∂x
(x, t), (2.57)

where εi = σ2
i /2. This FPK equation can be approximated as

mk+1
i,j −mk

i,j

∆t
+
ρi(m

k
i,j ,m

k
i,j+1)− ρi(mk

i,j−1,m
k
i,j)

∆x
= εi

mk
i,j+1 − 2mk

i,j +mk
i,j−1

(∆x)2
, (2.58)

where ρi(m,m) is a consistent numerical flow for φi(m), ρi(m,m) = φi(m), ∀m ∈ R.
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Using the FD method, the extended Lagrangian in (2.41) becomes

Ji(mk
i,j , u

k
i,j , v

k
i,j) = ∆x∆t

M,N∑
j,k

Lki,jm
k
i,j + ∆x

M∑
j

ΨN
i,j + ∆x∆t

P∑
p=1

M,N∑
j,k

−vkp,j
mk+1
p,j −mk

p,j

∆t

− vkp,j
ρp(m

k
p,j ,m

k
p,j+1)− ρp(mk

p,j−1,m
k
p,j)

2∆x

+ εpv
k
p,j

mk
p,j+1 − 2mk

p,j +mk
p,j−1

(∆x)2
,

(2.59)

where the numerical flow ρp(m
k
p,j ,m

k
p,j+1) = ρk

p,j+ 1
2

and ρp(m
k
p,j−1,m

k
p,j) = ρk

p,j− 1
2

.

To preserve the sign of mk
i,j in (2.58), a monotone numerical scheme such as the Lax-

Friedrichs scheme should be utilized. Given the Lax-Friedrichs flux

ρ(m,n) =
1

2
(φ(m) + φ(n)) +

∆t

2∆x
(m− n), (2.60)

the Lax-Friedrichs scheme for (2.58) is

mk+1
i,j =

1

2
(mk

i,j+1 +mk
i,j−1)− ∆t

2∆x

(
φki,j+1 − φki,j−1

)
+ εi

∆t

(∆x)2
(mk

i,j+1 − 2mk
i,j +mk

i,j−1).

(2.61)

Consequently, the discrete extended Lagrangian in (2.59) becomes

Ji(mk
i,j , u

k
i,j , v

k
i,j) = ∆x∆t

M,N∑
j,k

Lki,jm
k
i,j + ∆x

M∑
j

ΨN
j

+ ∆x∆t

P∑
p=1

M,N∑
j,k

−vkp,j
mk+1
p,j − 0.5(mk

p,j+1 +mk
p,j−1)

∆t

− vkp,j
φkp,j+1 − φkp,j−1

2∆x
+ εpv

k
p,j

mk
p,j+1 − 2mk

p,j +mk
p,j−1

(∆x)2
.

(2.62)

Applying the optimality conditions in (2.39) to the discrete extended Lagrangian in

(2.62) yields

∂Ji
∂uki,j

= mk
i,j

∂Lki,j

∂uki,j
−
∂φki,j

∂uki,j

vki,j−1 − vki,j+1

2∆x
, (2.63)
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∂Ji
∂mk

i,j

= Lki,j +mk
i,j

∂Lki,j

∂mk
i,j

−
vk−1
i,j − 0.5(vki,j−1 + vki,j+1)

∆t
− fki,j

vki,j−1 − vki,j+1

2∆x
(2.64)

−
P∑
p=1

mk
p,j

∂fp

∂mk
i,j

vkp,j−1 − vkp,j+1

2∆x
+ εi

vki,j−1 − 2vki,j + vki,j+1

(∆x)2
,

and
∂Ji
∂vki,j

=
mk+1
i,j − 0.5(mk

i,j+1 +mk
i,j−1)

∆t
+
φki,j+1 − φki,j−1

2∆x
− εi

mk
i,j+1 − 2mk

i,j +mk
i,j−1

(∆x)2
.

(2.65)

2.5.2 Numerical Method for the Social Network Problems

From (2.65), the update rule for the mean field mk+1
i,j for the social network problems

with and without stubborn agents is

mk+1
i,j = 0.5(mk

i,j+1 +mk
i,j−1) + ∆t

(
−
φki,j+1 − φki,j−1

2∆x
+ εi

mk
i,j+1 − 2mk

i,j +mk
i,j−1

(∆x)2

)
.

(2.66)

Furthermore, from (2.64), the update rule for the value function is

vk−1
i,j = 0.5(vki,j−1 + vki,j+1) + ∆t

(
Lki,j +mk

i,j

∂Lki,j

∂mk
i,j

− fki,j
vki,j−1 − vki,j+1

2∆x

− ∂fi

∂mk
i,j

P∑
p=1

mk
p,j

vkp,j−1 − vkp,j+1

2∆x
+ εi

vki,j−1 − 2vki,j + vki,j+1

(∆x)2

)
.

(2.67)

Lastly, the following update rule is implemented for the control function uki,j for both

social network problems,

uki,j ←
w

1 + w
uki,j −

1

1 + w

∂Li

∂uki,j
, (2.68)

where w is a constant.

Algorithm 1 provides the procedure of solving (2.47), (2.48), and (2.49) for the multiple-

population social network belief and opinion evolution. In the algorithm, K is the maximum

number of iterations and w is the control update parameter.
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Algorithm 1 Solving the Mean Field Game Problem for Several Populations

Set: c1, c2, c3, w, ε, σi, ηi, αi, ai∀i ∈ {1, . . . , P}

Initialize: m0
i,j , v

N
i,j , u

0
i,j , ∀i ∈ {1, . . . , P},∀j ∈ {1, . . . , N}

while n ≤ nmax or error ≤ ε do

for i = 1, . . . , P do

for k = 1, . . . , N do

Solve the mean field mk+1
i,j using (2.66).

Solve the value vk−1
i,j using (2.67).

Update uki,j using (2.68).

end for

end for

end while

2.6 Simulation Results

2.6.1 Theoretical Results

The following simulations demonstrate the theoretical aspects of the evolution of opin-

ion in a social network consisting of single and multiple groups of users. The mean field

mi(x, t) refers to the distribution of opinion x at population i at time t. To calculate the

solution (mi, vi, ui) of the MFG-based belief and opinion evolution models, Algorithm 1 is

implemented using MATLAB.

Consider a social network consisting of users that can be divided into two separate

populations, i = 1, 2. Let the state or opinion of a user be x ∈ [0, 1] and time be t ∈ [0, 1].

Let the initial mean fields mi(x, 0) be N (0.25, 0.1) and N (0.75, 0.1) for populations 1 and

2, respectively. Also, assume a 50%-50% ratio between the two populations (i.e., η1 = η2 =

0.5). The opinion dynamics equation parameters are set at āi = 0.001, ai = −0.001, and

37



(a) Two independent populations (b) Two dependent populations

Figure 2.2: The mean field at specific times.

σi = 0.01. Meanwhile, the cost function parameters are c1 = 0.5, c2 = 1, c3 = 2, c4 =

1, x0,1 = 0.25, x0,2 = 0.75. Finally, w = 1, 000, K = 2, 000 and ε = 1× 10−6.

Fig. 2.2 shows the mean field mi(x, t) at t = 0, 0.5, 1 for populations i = 1, 2 in blue and

red, respectively: (a) independent and formulated as two single-population MFG; and (b)

dependent and formulated as a two-population MFG. Based on the figure, the presence of

another population affects the distribution of opinion of the other population. Specifically,

the populations hold on to the their initial distributions with much ease in the presence of

a competing population.

The effect of social network user stubbornness is presented in Fig. 2.3. When users

are more susceptible to neighbor opinions, or have low stubbornness, more users are likely

to achieve the population target or ideal opinion, as shown in Fig. 2.3a with λi = 0.9.
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(a) λi = 0.9 (b) λi = 0.1

Figure 2.3: The effect of stubbornness to the mean field.

However, as users become less susceptible to neighbor opinions, or have high stubbornness,

more users are likely to stay with the initial population opinion, as shown in Fig. 2.3b with

λi = 0.1.

The effect of other parameters to the mean field mi(x, t) of population i are shown in Fig.

2.4. In Fig. 2.4a, population i = 1 with a higher percentage (i.e., 90% of total population)

achieves a larger variance than population i = 2 with a lower percentage (i.e., 10% of

total population). Meanwhile, in Fig. 2.4b, the distance between the means µi introduces

variations in the mean field mi(x, t), as shown by the asymmetrical plots of mi(x, t).

2.6.2 Experimental Results Using a Social Evolution Dataset

The following simulations test the effectiveness of the proposed MFG-based algorithm

in modeling the opinion evolution of a social network with multiple populations. The

experiments use the social evolution dataset published in [30].
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(a) η1 = 0.9, η2 = 0.1 (b) µ1 = 0.45, µ2 = 0.55

Figure 2.4: The effect of population fraction and mean state to the mean field.

Description of the dataset

The social evolution dataset consists of the political parties and opinions of 80 subjects as

well as the relationship among them. The subjects were college students living in the same

housing facility at MIT. One of the attributes of the subjects was their political party or

affiliation (i.e., Democratic Party or Republican Party). The students were surveyed three

times, March, April, and June 2009, about their opinion (i.e., approval or satisfaction level)

of U.S. President Obama as the head of the state and the government. In each survey, they

were asked whether they “strongly disapprove,” “disapprove,” “don’t know,” “approve,” or

“strongly approve,” of President Obama. Moreover, they were asked about the extent of

their relationship with other students involved in the survey. A relationship between two

students exists if they are close friends, have had political discussions, and are involved

together in social activities as well as social media networks such as the Facebook, Twitter,

blog and live journal posts.

Processing of the dataset

To be able to utilize the dataset for the proposed MFG-based method, the opinions and

relationship links are converted into their numerical equivalent. For the state or opinion x of

40



a student, “strongly disapprove” = 0.1, “disapprove” = 0.3, “don’t know” = 0.5, “approve”

= 0.7, and “strongly approve” = 0.9. Meanwhile, the control or number of interactions u

of a student refers to the total number of relationships it has had during the month. Then,

the number of relationships are normalized between [umin, umax] and centered at u = 0.

The state dynamics and cost function parameters are calculated and estimated from

the dataset. The expectation of the state dynamics for political party i in (2.23) can be

rewritten as

E
[
dx

dt

]
= E[ẋ] = E

[
āi(λix̄+ (1− λi)x̄i,0) + aix+ biui

]
= E

[
ωsẋ+ ωcẋ

]
, (2.69)

where x̄ is the average opinion of all the students, x̄i,0 is the average opinion of students

at t = 0, ωs is the portion of ẋ due to state x and ωc is the portion of ẋ due to control

ui. Note that, from the definition of a standard Wiener process, E[dwi(t)] = 0. Thus, the

parameters of the state dynamics in (2.23) can be calculated from the dataset as

āi =
ωsE[ẋ]

E[λix̄+ (1− λi)x̄i,0 − x]
and bi =

ωcE[ẋ]

E[ui]
, (2.70)

where the expectation is taken with respect to all the students in the survey. Since the

dataset contains only the political opinions of the students, the values of the cost function

parameters in (2.31) and (2.32) are estimated until the theoretical mean field mi(x, 1) fits

the calculated mean field Mi(x, t) from the dataset.

Procedure of the experiment

In the following simulations, i = 1 for the Democratic Party and i = 2 for the Repub-

lican Party while t = 0 for March 2009, t = 1 for April 2009, and t = 2 for June 2009.

Given the political opinions for March, April, and June 2009, the distribution Mi(x, t) of

opinions of political party i is calculated for each month. The goal of the simulations is to

use the MFG-based algorithm to model and predict the evolution of distribution of opin-

ions of the students regarding President Obama. Hence, given Mi(x, 0), the mean field
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(a) April 2009 (b) June 2009

Figure 2.5: Estimated distribution of student opinions regarding U.S. President Obama.

mi(x, 1) is predicted using the proposed MFG-based model and compared with the calcu-

lated Mi(x, 1). Similarly, given Mi(x, 1), the mean field mi(x, 2) is predicted and compared

with the calculated Mi(x, 2).

Performance analysis

Fig. 2.5 shows the results of estimating the opinion distribution for the Democratic

Party (DP) and Republican Party (RP) from the dataset. The performance is evaluated by

calculating the average absolute error between the estimated mean field mi(x, t) from the

proposed MFG-based algorithm and the calculated mean field Mi(x, t) from the dataset.

In Fig. 2.5a, the data for March 2009 is used to estimate the distribution of opinions for

April 2009. The accuracy of the estimation is 97.25%. Meanwhile, in Fig. 2.5b, the data

for April 2009 is used to estimate the distribution of opinions for June 2009. The accuracy

of the estimation is 96.93%.

Finally, Fig. 2.6 presents the prediction of opinion distribution for May and August

2009. The prediction for May 2009 uses the data collected during April 2009, as shown in

Fig. 2.6a, while the prediction for August 2009 uses the data collected during June 2009,

as shown in Fig. 2.6b. It can be concluded from these results that the distribution of
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(a) May 2009 (b) August 2009

Figure 2.6: Predicted distribution of student opinions regarding U.S. President Obama.

opinions are affected by the social dynamics (i.e., opinion change and relationships) of the

students. Furthermore, the MFG-based algorithm can estimate and predict the distribution

of opinions of the students.

2.7 Related Works

Belief and opinion dynamics determine how social network users influence each other.

Specifically, these models dictate how a user changes or updates its opinion based not only

on its initial opinion but also on the opinions of the neighboring users. Well-known models

of belief and opinion evolution are the DeGroot (DG) model [37], the Friedkin-Johnsen

(FJ) model [33], and the Hegselmann-Krause (HK) model [31]. The DG model states that

the current opinion of a user is the weighted sum of the opinions of the neighboring users,

whereas the HK model states that the current opinion of a user is based on the average

opinion of the neighboring users. Meanwhile, the FJ model builds on the DG model where

the current opinion of a user is calculated by imposing a trade-off between the weighted

sum of the neighboring opinions and the user’s initial opinion. Variations of these models

as well as other opinion dynamics models can be found in [10], [38], [39], and [40].
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Since social networks are populated with a large number of interacting users, mean field

analysis has been utilized in a few works. In [41], the authors developed a model of social

belief and opinion evolution. They derived a Fokker-Planck (FP) equation representing

how the probability density of the users in the belief-personality space varies with time.

Meanwhile, the authors of [42] proposed an MFG approach to model emulation, mimicry,

and herding behaviors that can be observed when a large number of social groups interact.

Also, this work considered social networks with a large number of groups. MFG was utilized

in [43] to describe the propagation of opinion in social network according to a stochastic

averaging process in the presence of an adversarial disturbance.

Other mathematical frameworks have been proposed as tools to model opinion dynamics

in social networks. The authors of [44] proposed the evolution of opinions as well as their

uncertainties in social networks as a fuzzy opinion network. The evolution of opinions on

several interdependent topics as well as the convergence of mutually dependent opinions

were investigated in [45]. Community detection, or finding connected users with similar

opinion, was formulated as a multi-objective optimization problem through a graph K-

means framework in [46]. A measurement analysis of user behavior in popular OSNs was

implemented in [47]. The authors addressed two issues in OSNs, the characterization of

user activities and usage patterns and found out that these issues can be represented by

well-known probability distributions.

2.8 Conclusion

Social networks have been an important platform for social media users to express their

opinion on social topics and events. Meanwhile, social network service providers aim to

improve their service despite the growing number of demand from the network users. One

way of improving their service is to gain information and predict the behavior of the net-

work users. Thus, belief and opinion evolution in social networks has gained the interest
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of researchers. Since the number of social network users has grown recently, an appropri-

ate mathematical framework is necessary in order to analyze and model the behavior of

social network users. Consequently, this work has proposed the application of a multiple-

population mean field game (MFG) to gain knowledge about the belief and opinion evolu-

tion of social network users. Based on the simulations, the proposed MFG-based framework

provides insights on how users and populations behave on a multiple-population social net-

work. Using a social evolution dataset as a benchmark, the proposed MFG-based method

allows for an effective approach to estimate and predict the distribution of opinions of social

network users on a social topic.
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Chapter 3

Mean-Field-Type Game Approach to Computation

Offloading in Multi-Access Edge Computing

Networks

Multi-access edge computing (MEC) has been proposed to reduce the latency inherent

in traditional cloud computing. One of the services offered in an MEC network (MECN)

is computation offloading in which computing nodes, with limited capabilities and perfor-

mance, can offload computation-intensive tasks to other computing nodes in the network.

Meanwhile, mean-field-type game (MFTG) has been recently applied in engineering appli-

cations where the number of decision makers is finite and a decision maker can be distin-

guishable from other decision makers and have a non-negligible effect on the total utility of

the network. Since MECNs are implemented through a finite number of computing nodes

and the computing capability of a computing node can affect the state (i.e., the number

of computation tasks) of the network, non-cooperative and cooperative MFTG approaches

are proposed in this work to formulate the computation offloading problems in an MECN.

In these scenarios, the goal of each computing node is to offload a portion of the aggregate

computation tasks from the network that minimizes a specific cost. Then, a direct approach

is utilized to calculate the optimal computation offloading solution (i.e., optimal portion of

the aggregate computation tasks) of a computing node. Furthermore, non-cooperative and

cooperative MFTG-based algorithms are proposed to implement computation offloading in

an MECN. Finally, simulations are presented to show the significance and advantage of the

proposed MFTG-based computation offloading algorithms over the traditional methods.
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3.1 System Model

Fig. 3.1 shows the system model proposed in this work. The end user (EU) devices

offload computation-intensive tasks that cannot be performed locally to the task aggregator

(TA) in the area or cell the EU is located. Each EU decides to offload based on algorithms

presented in the literature such as in [48]. Then, the TA combines all the computation tasks

submitted by the EUs in the area. It organizes the computation tasks to reduce redundancy

and overloading of computation tasks. Moreover, it performs a portion of the tasks and

directly sends the results to the corresponding EUs. Afterwards, the TA offloads parts of

the remaining aggregate computation tasks to the edge computing nodes (ECNs) in the

cell. Each ECN is capable of performing computation-intensive task and is more powerful

than a typical mobile EU equipment. For instance, a typical ECN has a computing power

of about 10,000 to 100,000 times that of a mobile phone [49]. After the ECNs perform their

respective offloaded computation tasks, the results are transmitted to the requesting EUs.

Consider a cell of an MECN consisting of one TA and a finite set N of ECNs with

|N | = N . The time horizon defined as t ∈ [0, T ] is finite, where T > 0 is the terminal

time. Let the network state x(t) be the number of aggregate computation tasks to be

offloaded by the TA to the ECNs at time t. In addition, denote the network state dynamics

ẋ(t) = dx(t)/dt as the change or evolution of the number of aggregate computation tasks

with respect to time. Also, let the admissible computation offloading control ui(t) be the

portion of x(t) offloaded by ECN i from the TA at time t. The goal of each ECN i ∈ N

is to determine its optimal control u∗i (t) that minimizes its cost, defined by a cost function

Ji, subject to the network state dynamics ẋ(t).

In the following subsections, the cost function and network state dynamics equation are

discussed. Important parameters that influence the optimal control of an ECN are also

introduced.
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Figure 3.1: The proposed system model for computation offloading in MECNs.

3.1.1 Cost Functions

In this work, the ECNs are assumed to follow a quadratic cost function because of its

desirable economic properties such as monotonicity, concavity, non-decreasing [50].

Let the consumed energy of ECN i per CPU cycle be εi = κe,if
2
i [51], where κe,i is

a constant depending on the architecture of the CPU of ECN i and fi is the computing

capability (i.e., the number of CPU cycles per unit time) of ECN i. To calculate the cost

associated with the energy consumed by a certain number of computation tasks, define the

energy cost coefficient ei as the cost (per unit time) of energy spent by computing node i

per squared number of CPU cycles,

ei = we,iε
2
i = we,i(κe,if

2
i )2, (3.1)

where the constant we,i is the weight or significance assigned to energy consumption cost.

A higher value of we,i means that an ECN prioritizes minimizing its energy consumption.

Meanwhile, to calculate the cost corresponding to the execution or computation time of

a certain number of computation task, define the computation time cost coefficient τi as the

cost (per unit time) associated with execution time spent by ECN i per squared number of
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CPU cycles,

τi =
wd,i
f2
i

, (3.2)

where the constant wd,i is the weight assigned by ECN i to the computation time cost. A

higher value of wd,i means that ECN i prioritizes minimizing the cost from computation

time.

Lastly, to quantify the cost earned by the TA from offloading computation task to ECN

i, define the offloading cost coefficient ρi as the cost (per unit time) incurred by the TA

per squared number of aggregate computation task. It takes into account the cost not

associated with computation by an ECN i such as processing and transmission from the

TA to ECN i.

Combining these cost coefficients with the network state x(t) and the control ui(t) yields

the running cost function that tells how much the cost increases or decreases with time,

Li(x(t), ui(t), t) =
1

2

[
ρix

2(t) + (τi + ei)u
2
i (t)
]
. (3.3)

Since the goal of computation offloading is to offload tasks from the TA to the ECNs, the

number of computation tasks x(t) that remains at the TA at terminal time T is penalized.

That is, x(T ) is considered as a part of the cost to be minimized. Since the cost at terminal

time T is proportional to the number of computation tasks x(T ), the terminal cost function

for ECN i is stated as

Φi(x(T ), T ) =
1

2
ρix

2(T ). (3.4)

In other words, it computes the cost incurred by ECN i based on the network state x(t) at

t = T .

3.1.2 Network State Dynamics Equation

The network state dynamics ẋ(t) refers to the evolution of the network state x(t) with

respect to time t. In our computation offloading system model, ẋ(t) refers to the dynamics
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or change in the number of aggregate computation tasks at the TA with time. Let qin(t) be

the incoming rate of the computation tasks to the TA. The number of computation tasks

x(t) at the TA is related according to qin(t) = r0x(t), where r0 is the frequency at which

computation tasks arrive at the TA and is defined as

r0 =
R0

C0
=

1

C0

M∑
j=1

Bj log2(1 + γj) =
1

C0

M∑
j=1

Bj

(
1 +

Pjg0,j

N0 + Ij

)
, (3.5)

with R0 as the maximum incoming rate of computation tasks the TA handle and C0 as the

capacity or the maximum number of computation tasks the TA can store. Furthermore, R0

is the sum of the rates the TA receives from M EUs, Bj is the channel bandwidth for EU j,

and γj is the signal-to-interference-plus-noise (SINR) ratio between the TA and EU j, with

Pj as the EU j transmit power, gj,i as the channel gain between the TA and EU j, N0 as

the background noise power, and Ij as the interference noise power experience by EU j.

On the other hand, the outgoing rate qout(t) of computation task from the TA is affected

by the computation offloading control ui(t) of ECN i ∈ N . Hence, qout(t) =
∑N

i=1 riui(t),

where ri is the frequency at which computation tasks arrive at ECN i and is defined as

ri =
Ri
Ci

=
Bi log2(1 + γi)

Ci
=
Bi
Ci

log2

(
1 +

Pigi,0
N0 + Ii

)
, (3.6)

with Ri as the maximum outgoing rate of computation tasks to ECN i and Ci as the capacity

or the maximum number of computation tasks ECN i can handle. In addition, Bi is the

channel bandwidth of ECN i and γi is the SINR between the TA and ECN i, with Pi as

the transmit power of ECN i, gi,0 as the channel gain between the TA and ECN i, N0 as

the background noise power, and Ii as the interference power experienced by ECN i.

Since the total rate of computation task ẋ(t) = qin(t) − qout(t), then the network state

dynamics equation can be written as

dx(t) =

(
r0x(t)−

N∑
i=1

riui(t)

)
dt, (3.7)
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which is similar in form to the state dynamics equation used in [52].

To summarize, the cost function is affected by ui(t) since the the cost depends on the

number of tasks ECN i offloads from the TA. On the other hand, the state dynamic equation

is affected by riui(t) since the change in the number of x(t) depends on the rate riui(t) at

which tasks are offloaded to ECN i.

In the next section, these formulations are extended to be able to adapt an MFTG

approach. The main feature of this method is the addition of mean field terms x̄(t) and

ū(t) in the cost functions and the state dynamics equation. Consequently, each ECN now

aims to compute its optimal control u∗i (t) given the mean field terms x̄(t) and ū(t) and the

difference x(t)− x̄(t) and u(t)− ū(t).

3.2 Mean-Field-Type Game Problem Formulation

The theory of mean field game (MFG), introduced in [13], [53], [54], and [55], has been

used in a variety of applications formulated as games among a large number of decision

makers that aim to optimize their own payoffs or cost functions subject to a state dynamic

equation. The main concept behind MFG is that each decision maker determines its optimal

strategy (i.e., the strategy or action that optimizes its payoff or cost function) based on an

aggregate information about the states of other decision makers. In other words, a decision

maker computes its optimal strategy based on a statistical distribution of the states of other

decision makers (i.e., a mean-field term) instead on a full knowledge of the states of other

decision makers.

According to [56], most MFG models share the following assumptions: (i) there are in-

finitely many decision makers, (ii) the decision makers are indistinguishable, and (iii) a de-

cision maker has negligible effect on the global utility. However, in engineering applications,

these assumptions may be difficult to prove. Consequently, a more relaxed mean-field-type

game (MFTG) has been proposed in the literature. In MFTG, the number of decision
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makers may be infinite or finite, the decision makers may not be indistinguishable, and

finally, a decision maker may have a significant effect on the global utility. Applications

of MFTG include distributed power networks [57], network security [58], and multilevel

building evacuation [59].

In this section, computation offloading in MECN is formulated as an MFTG. First,

the cost functions to be minimized by an ECN are derived. Then, the state dynamics, the

differential equation constraint of the minimization problem, is formulated. The MFTG cost

functions and state dynamic equation contain mean field terms that quantify the behavior

or strategy of all the computing nodes. Lastly, the two MFTG computation offloading

problems are stated, a non-cooperative MFTG problem where the ECNs minimize their own

cost function independently and a cooperative MFTG problem where the ECNs minimize

a single global cost function.

3.2.1 Preliminaries

The network state or state of the TA x(t) refers to the number of aggregate computation

tasks to be offloaded to the ECNs. An admissible computation offloading control or strategy

ui(t) of ECN i refers to a portion of x(t) it can offload from the TA, while the set Ui denotes

the set of all admissible controls of ECN i. Vector u(t) = [ui(t)]i∈N contains the control of

all the ECNs in the cell, while the vector u−i(t) = [ui(t)]i∈N\i contains the control of all

ECNs in the cell except ECN i.

The following subsections present the cost functions and state dynamic equation in an

MFTG setting. The main difference in the formulations to follow is the inclusion of mean

field terms x̄(t) = E[x(t)] and ū(t) = E[u(t)]. Consequently, a tilde ∼ is put on top

of the MFTG cost function J̃i and state dynamic function f̃ to differentiate them from

their mean-field-free counterparts. Afterwards, the resulting MFTG-based computation

offloading problems are stated.
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3.2.2 Cost Functions

The total cost function J̃i(u) of ECN i consists of the running cost function L̃i(x, u, x̄, ū, t)

that corresponds to the accumulated cost of ECN i for performing a portion ui(t) of x(t)

and the terminal cost function Φ̃i(x, x̄, T ) that penalizes the computing node at terminal

time t = T depending on how far the network state x(t) is from a target state (e.g., x(t) = 0,

when all of the aggregate computation task are offloaded). Mathematically,

J̃i(u) = E
[ ∫ T

0
L̃i(x, u, x̄, ū, t) dt+ Φ̃i(x, x̄, T )

]
. (3.8)

However, the running cost L̃i(x, u, x̄, ū, t) for MFTG differs from that in (3.3) since L̃i

depends on the expected values of the network state x̄(t) and the control ū. The expected

values have been included in the cost function because these values are assumed to be known

(i.e., the MECN keeps track of them), and consequently, the difference to these expected

values, x(t)− x̄(t) and ui(t)− ūi(t). Hence,

E
[
L̃i(x, u, x̄, ū, t)

]
=

1

2
E
[
ρix

2(t) + ρ̄ix̄
2(t) + (τi + ei)u

2
i (t) + (τ̄i + ēi)ū

2
i (t)
]
,

=
1

2
E
[
ρi(x(t)− x̄(t))2 + (ρi + ρ̄i)x̄

2(t) + (τi + ei)(ui(t)− ūi(t))2

+ (τi + τ̄i + ei + ēi)ū
2
i (t)
]
,

=
1

2

(
ρivar[x(t)] + (ρi + ρ̄i)x̄

2(t) + (τi + ei)var[ui(t)]

+ (τi + τ̄i + ei + ēi)ū
2
i (t)
)
,

(3.9)

where ρ̄i, τ̄i and ēi refer to the mean of cost coefficients defined in Section 3.1.1.

Similarly, the terminal cost Φ̃i(x, x̄, T ) depends as well on the expected value of the
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network state at time T so that the goal of an ECN i is to minimize

E
[
Φ̃i(x, x̄, T )

]
=

1

2
E
[
ρix

2(T ) + ρ̄ix̄
2(T )

]
=

1

2
E
[
ρi(x(T )− x̄(T ))2 + (ρi + ρ̄i)x̄

2(T )
]
,

=
1

2

(
ρivar[x(T )] + (ρi + ρ̄i)x̄

2(T )
)
.

(3.10)

The quadratic cost functions presented in this work refer to the penalty incurred by the

network through the ECNs for executing a specific number of computation tasks. While

the ECNs are constrained in terms of their local energy consumption and execution time

through ei and τi, respectively, the penalty allows the ECNs follow a network-wide algorithm

that optimizes the network performance. Hence, the physical meaning of the costs refers

to the penalty set by the network to the ECNs. These penalties are based on physical

quantities the computing nodes spend when performing computation tasks. The number of

computation tasks offloaded by each ECN is limited by these penalties. Moreover, the costs

are also indicators of network performance since a low cost may indicate a low terminal

cost Φ̃i(x, x̄, T ) which means a low number of un-offloaded task remains in the TA; also,

a low cost may indicate a low running cost L̃i(x, u, x̄, ū, t) which means the ECNs execute

the number of computation tasks that satisfy their local energy and time constraints.

3.2.3 Network State Dynamics Equation

The network state dynamics ẋ(t) of refers to the evolution of the state x(t) of the TA

with respect to time t. In (3.7), the network state dynamics is affected by the current

network state x(t) and the controls ui(t), ∀i ∈ N . Like in the MFTG cost functions, the

expected values x̄ and ū are included in the MFTG state dynamic equation ẋ(t) so that

the evolution of the state can be formulated in terms of the deviation of x(t) and u(t) from

their respective expected values. Consequently, the updated network state dynamics of a
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computation offloading in an MFTG setting is

dx(t) = f̃(x, u, x̄, ū) dt+ σ dw(t), (3.11)

where w(t) is a standard Wiener process, σ is a coefficient that captures the randomness in

the state dynamics, the drift term f̃(x, u, x̄, ū, t) is given by

f̃(x, u, x̄, ū, t) = r0x(t) + r̄0x̄(t)−
( N∑
i=1

riui(t) +
N∑
i=1

r̄iūi(t)

)
, (3.12)

and the coefficients are defined as r̄0 = E[R0
C0

] and r̄i = E[Ri
Ci

] = E[Bi log2(1+γi)
Ci

]. The drift

term can be written in an equivalent form

f̃(x, u, x̄, ū, t) = r0(x(t)− x̄(t)) + (r0 + r̄0)x̄(t)

−
( N∑
i=1

ri(ui(t)− ūi(t)) +

N∑
i=1

(ri + r̄i)ūi(t)

)
,

(3.13)

that expresses the network state dynamics as the sum of the mean fields x̄(t) and ūi(t) and

the terms x(t) − x̄(t) and ui(t) − ūi(t). In the following computation offloading scenarios,

since the mean number of computation tasks x(t) is tracked, the difference x(t)− x̄(t) of the

current state x(t) from mean state x̄(t) can be easily known. The same principle is applied

with ui(t) and ūi(t).

3.2.4 Non-Cooperative Problem

Consider a MECN consisting of N ≥ 2 ECNs. Each ECN is capable of offloading and

performing computation tasks from the TA. In addition, suppose the MECN implements a

non-cooperative scenario where each ECN computes its offloading strategy by minimizing

its own cost function. If the cost function of ECN i is defined by (3.8), then in a non-
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cooperative setting each ECN i tries to solve the MFTG problem

inf
ui∈Ui

J̃i(u) =
1

2
E
[ ∫ T

0

[
ρi(x(t)− x̄(t))2 + (ρi + ρ̄i)x̄

2(t) + (τi + ei)(ui(t)− ūi(t))2

+ (τi + τ̄i + ei + ēi)ū
2
i (t)
]
dt

+ ρi(x(T )− x̄(T ))2 + (ρi + ρ̄i)x̄
2(T )

]
,

subject to dx(t) =

[
r0(x(t)− x̄(t)) + (r0 + r̄0)x̄(t)−

( N∑
i=1

ri(ui(t)− ūi(t))

+
N∑
i=1

(ri + r̄i)ūi(t)

)]
dt+ σ(t) dW (t),

x(0) = x0,

(3.14)

where x̄(t) < +∞. Any control u∗i (t) that satisfies (3.14) is the best-response of computing

node i to (u−i,E[x(t)]).

Definition 4. Any control u∗i (t) ∈ Ui satisfying (3.14) is called a risk-neutral best-response

control of computing node i to the control u−i ∈ Πj∈NUj of the other computing nodes j 6= i.

The set of best-response controls of computing node i is defined by BRi : Πj∈NUj → 2Ui ,

where 2Ui is the set of subsets of Ui. Using the concept of best-response control strategy, a

Nash equilibrium of (3.14) is (u∗i , u
∗
−i), where every ECN i solves their best-response control

u∗i .

Definition 5. A Nash equilibrium of the mean-field-type game in (3.14) is a control profile

(u∗i , u
∗
−i) such that for every computing node i,

J̃i(u
∗
i , u
∗
−i) ≤ J̃i(ui, u∗−i),∀ui ∈ Ui. (3.15)
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3.2.5 Cooperative Problem

Suppose the ECNs try to jointly minimize a global cost function J̃0(u) = E[
∑N

i=1 J̃i(u)]

where u = (u1, . . . , uN ) is the computation offloading control profile in a cooperative setting.

Then, the corresponding cooperative MFTG problem is given by

inf
ui∈Ui

J̃0(u) =
1

2
E
[ N∑
i=1

∫ T

0

[
ρi(x(t)− x̄(t))2 + (ρi + ρ̄i)x̄

2(t) + (τi + ei)(ui(t)− ūi(t))2

+ (τi + τ̄i + ei + ēi)ū
2
i (t)
]
dt

+ ρi(x(T )− x̄(T ))2 + (ρi + ρ̄i)x̄
2(T )

]
,

subject to dx(t) =

[
r0(x(t)− x̄(t)) + (r0 + r̄0)x̄(t)−

( N∑
i=1

ri(ui(t)− ūi(t))

+
N∑
i=1

(ri + r̄i)ūi(t)

)]
dt+ σ(t) dW (t),

x(0) = x0.

(3.16)

Any control profile u∗ = (u∗1, . . . , u
∗
N ) that satisfies (3.16) is a global optimum control profile

that minimizes the global cost function J̃0.

The next section provides the method proposed in [60] to solve for a solution of linear-

quadratic MFTGs such as (3.14) and (3.16).

3.3 Linear-Quadratic Mean-Field-Type Game Solution Us-

ing A Direct Method

The MFTG problems defined in (3.14) and (3.16) are called linear-quadratic MFTGs

(LQ-MFTG) since the cost functional is quadratic and the state dynamics is linear with
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respect to the state and control. Because of their special form, the authors in [60] proposed a

direct approach in computing the optimal control u∗i (t) of LQ-MFTG. The proposed method

can solve a LQ-MFTG without dealing with coupled partial differential equations. The

authors proved that the proposed direct approach to LQ-MFTG yields the same solution as

an analytical approach. Based on this method, the main concepts in deriving the solution

for the non-cooperative and cooperative MFTG problems are presented. The solution u∗i (t)

to each problem refers to the computation offloading control or the number of computation

tasks u∗i (t) ECN i must offload from the TA in order to minimize the corresponding cost

of the problem. In other words, the optimal control is the optimal number of computation

tasks to be offloaded by an ECN such that the penalties incurred by the network due to

the number of executed computation tasks by the ECN and the remaining tasks at the TA

are minimized.

3.3.1 Non-Cooperative Solution

The direct method for the LQ-MFTG problem starts with choosing a guess cost func-

tional φi(x, t). Since the cost functional Ji is quadratic, the corresponding φi(x, t) is

quadratic as well,

φi(x, t) =
1

2
αi(x− x̄)2 +

1

2
βix̄

2 + γix̄+ δi,

where αi, βi, γi, and δi are restricted to time-invariant coefficients for [0, T ].

Then, apply the Ito’s formula for a drift-diffusion process to φi(x, t) with t = T ,

φi(x(T ), T ) = φi(x(0), 0) +

∫ T

0

(
∂tφi + f̃(x, u, x̄, ū, t)∂xφi +

σ2

2
∂xxφi

)
dt

+

∫ T

0
σ(t)∂xφi dW (t).

(3.17)

The next step is to compute and substitute the partial derivatives ∂tφi, ∂xφi, and ∂xxφi

to φi(x(T ), T ) and take its expectation, E[φi(x(T ), T ) − φi(x(0), 0)]. Afterwards, the gap

J̃i − E[φi(x(0), 0)] is calculated.
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Finally, the optimal control u∗i is derived from minui∈Ui J̃i(u) using the appropriate

optimality principles. A control ui is called a feedback control if it is a function of time t and

the state x(t). To compute the best-response control u∗i of computing node i to feedback

strategies uj , j 6= i, complete the square of the gap J̃i − E[φi(x(0), 0)] to get

J̃i − E[φi(x(0), 0)] =
1

2
E
[ ∫ T

0
(τi + ei)

(
ui − ūi −

ri
τi + ei

αi(x− x̄)
)2
dt

]

+
1

2
E
[ ∫ T

0
(τi + τ̄i + ei + ēi)

(
ūi − βi

ri + r̄i
τi + τ̄i + ei + ēi

x̄
)2
dt

]

+
1

2
E
[ ∫ T

0
σ2αi dt

]
.

(3.18)

Consequently, the equivalent objective functional becomes

inf
ui∈Ui

J̃i =
1

2
αi(0)var[x(0)] +

1

2
βi(0)(E[x(0)])2 +

1

2
E
[ ∫ T

0
σ2(t)αi(t) dt

]
. (3.19)

Using this equivalent objective functional, the following theorem holds for the optimal

control u∗i .

Theorem 4. Let the cost functional J̃i(u) of a LQ-MFTG problem take the form φi(x, t) =

1
2αi(x − x̄)2 + 1

2βix̄
2 + γix̄ + δi, where αi, βi, γi, and δi are constants. Then, the optimal

control u∗i (t) associated with the problem is given by

u∗i (t) =
ri

τi + ei
αi(x− x̄) +

ri + r̄i
τi + τ̄i + ei + ēi

βix̄, (3.20)

where the constants αi and βi solve the following equations, respectively,

r2
i

τi + ei
α2
i + 2

( N∑
j=1,j 6=i

r2
j

τj + ej
αj − r0

)
αi − ρi = 0, (3.21)

and

(ri + r̄i)
2

τi + τ̄i + ei + ēi
β2
i + 2

( N∑
j=1,j 6=i

(rj + r̄j)
2

τj + τ̄j + ej + ēj
βj − (r0 + r̄0)

)
βi − (ρi + ρ̄i) = 0. (3.22)
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The mean field term x̄(t) is given by

x̄(t) = x̄(0) exp

(∫ t

0

(
(r0 + r̄0)−

N∑
i=1

βi(ri + r̄i)
2

τi + τ̄i + ei + ēi

)
ds

)
, (3.23)

and ūi is expressed as βi(ri + r̄i)/(τi + τ̄i + ei + ēi)x̄.

Proof. The optimal control u∗i is obtained by minimizing the following terms with respect

to control ui and ūi,

∂

∂ui

[
(τi + ei)

(
ui − ūi −

ri
τi + ei

αi(x− x̄)

)2

+ (τi + τ̄i + ei + ēi)

(
ūi − βi

ri + r̄i
τi + τ̄i + ei + ēi

x̄
)2
]

= 0,

which yields ui = ri
τi+ei

αi(x− x̄) + ūi, where ūi = βi(ri + r̄i)/(τi + τ̄i + ei + ēi)x̄. Meanwhile,

the mean field x̄(t) is derived by taking the expectation of the state dynamic equation in

(3.16) and then solving the resulting differential equation for x̄(t).

Theorem 1 states that the optimal number of computation tasks ECN i must offload

from the TA in a non-cooperative scenario is given in (3.20). This number minimizes the

cost incurred by ECN i where αi and βi satisfy the conditions (3.21) and (3.22), respectively,

and the mean field x̄(t) satisfies (3.23). It can be deduced that u∗i (t) not only depends on

x(t) but also on how much x(t) exceeds x̄(t). Moreover, αi and βi reflect the weights of how

much u∗i (t) depends on x(t)− x̄(t) and x̄(t), respectively.

3.3.2 Cooperative Solution

To obtain the global optimum solution to the cooperative LQ-MFTG problem in (3.16),

the procedure stated in the previous subsection is followed. Hence, the LQ-MFTG problem

in (3.16) is equivalent to

inf
u1,...,uN

J̃0 =
1

2
α0(0)var[x(0)] +

1

2
β0(0)(E[x(0)])2 +

1

2
E
[ ∫ T

0
σ2(t)α0(t) dt

]
. (3.24)
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The corresponding optimal control u∗i (t) is given by the following theorem.

Theorem 5. Let the cost functional J̃0(u) of a LQ-MFTG problem take the form φ0(x, t) =

1
2α0(x − x̄)2 + 1

2β0x̄
2, where α0 and β0, are constants. Then, the optimal control u∗i (t)

associated with the problem is given by

u∗i (t) =
ri

τi + ei
α0(x− x̄) +

ri + r̄i
τi + τ̄i + ei + ēi

β0x̄, (3.25)

where the constants α0 and β0 solve the following equations, respectively,

( N∑
i=1

r2
i

τi + ei

)
α2

0 − 2r0α0 − ρ0 = 0, (3.26)

and ( N∑
i=1

(ri + r̄i)
2

τi + τ̄i + ei + ēi

)
β2

0 − 2(r0 + r̄0)β0 − (ρ0 + ρ̄0) = 0. (3.27)

The mean field term x̄(t) is given by

x̄(t) = x̄(0) exp

(∫ t

0

(
(r0 + r̄0)− β0

N∑
i=1

(ri + r̄i)
2

τi + τ̄i + ei + ēi

)
ds

)
, (3.28)

and ūi is expressed as β0(ri + r̄i)/(τi + τ̄i + ei + ēi)x̄.

Proof. The optimal control u∗i is obtained by minimizing the following terms with respect

to control ui and ūi,

∂

∂ui

[
(τi + ei)

(
ui − ūi −

ri
τi + ei

α0(x− x̄)

)2

+ (τi + τ̄i + ei + ēi)

(
ūi − β0

ri + r̄i
τi + τ̄i + ei + ēi

x̄
)2
]

= 0,

which yields ui = ri
τi+ei

α0(x− x̄)+ ūi, where ūi = β0(ri+ r̄i)/(τi+ τ̄i+ei+ ēi)x̄. Meanwhile,

the mean field x̄(t) is derived by taking the expectation of the state dynamic equation in

(3.14) and then solving the resulting differential equation for x̄(t).
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Theorem 2 states that the optimal number of computation tasks ECN i must offload

from the TA in a cooperative scenario is given by (3.25). This number minimizes the cost

incurred by ECN i where α0 and β0 satisfy (3.26) and (3.27), respectively, and the mean

field x̄(t) satisfies (3.28). It can be deduced that u∗i (t) not only depends on x(t) but also

on how much x(t) exceeds x̄(t). Moreover, α0 and β0 capture how dependent u∗i (t) is on

x(t)− x̄(t) and x̄(t), respectively.

3.4 Mean-Field-Type-Game-Based Computation Offloading

Algorithms

This section presents the algorithms that implement the proposed MFTG-based compu-

tation offloading developed in the previous sections. A non-cooperative algorithm based on

Theorem 4 is designed to simulate a scenario when the ECNs decide to minimize their own

cost function. The algorithm can be implemented in a decentralized manner where each

ECN decides for itself the optimal number of task to offload from the TA. Meanwhile, a

cooperative algorithm based on Theorem 5 is designed for situations when the ECNs decide

to minimize a global cost function. The algorithm can be implemented in a centralized

manner where the TA decides for every ECN the optimal number of task to offload to

the ECN. The proposed MFTG-based algorithms calculate the optimal solution u∗i (t) that

corresponds to the portion of computation tasks that each ECN must offload in order to

optimize its cost. As illustrated later in Section 3.5, these algorithms improve the system

cost and benefit-cost ratio of the local computing and dynamic greedy algorithms for com-

putation offloading. Thus, the proposed MFTG-based algorithms can improve the targeted

network performance.

Fig. 3.2 illustrates the general procedure involved in the proposed algorithms. First,

each ECN i determines its own cost coefficients ri, τi, and ei. Then, in the non-cooperative
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Figure 3.2: An illustration of the proposed MFTG computation offloading algorithms.

setting, ECN i computes the state and mean-state coupling coefficients αi and βi, whereas

in the cooperative setting, the TA determines α0 and β0. These coefficients capture the

effect of the state and mean-state to the optimal computation offloading control. At the

same time, the TA determines the state x(t) and mean-state x̄(t). Finally, the TA offloads

the number of computation tasks to ECN i based on u∗i (t). The non-cooperative algorithm

emulates a decentralized approach where each ECN determines its own u∗i (t), while the

cooperative algorithm follows a centralized approach where the TA determines u∗i (t) of

each ECN.

These algorithms require a sample period Ts and number of samples M , instead of

a specified terminal time T . One main reason for this requirement is to avoid network

parameter updates every time t, which can now be done every Ts. In addition, the cell

dimension L and the number of ECNs N are required as well. The location of each node

in the cell is limited within the area defined by [0, L] × [0, L]. The TA is located at z0 =

[L/2, L/2], whereas the location zi of each ECN i is distributed randomly in the area. For
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each ECN i, its computing capability fi and cost weights wd,i and we,i are also defined.

3.4.1 Non-Cooperative Computation Offloading

Since the non-cooperative solution using the direct approach stated in Theorem 4 assumes

that each ECN has knowledge about the other ECNs, it has to be simplified in order to be

implemented more practically. Let

λ̄ =
1

N

∑
j∈N

r2
j

τj + ej
αj =

1

N

∑
j∈N

λj ,

and µ̄ =
1

N

∑
j∈N

(rj + r̄j)
2

τj + τ̄j + ej + ēj
βj =

1

N

∑
j∈N

µj .

Then, it follows that

∑
j∈N\i

λj = Nλ̄− λi, and
∑
j∈N\i

µj = Nµ̄− µi. (3.29)

Consequently, (3.21) and (3.22) can be rewritten as

r2
i

τi + ei
α2
i + 2

(
Nλ̄− λi − r0

)
αi − ρi = 0, (3.30)

and
(ri + r̄i)

2

τi + τ̄i + ei + ēi
β2
i + 2

(
Nµ̄− µi − (r0 + r̄0)

)
βi − (ρi + ρ̄i) = 0. (3.31)

Meanwhile, the mean values r̄i, τ̄i, ēi, and ρ̄i can be found using the law of large numbers.

It states that a sample average

S̄m =
1

m
(y1 + · · ·+ ym),

converges to the expected value ȳ = E[y] as m → ∞. Hence, the relationship between the

parameters ri, τi, ei, and ρi and their respective expected values is given by

lim
m→∞

1

m
(ri,1 + · · ·+ ri,m) = r̄i,

lim
m→∞

1

m
(τi,1 + · · ·+ τi,m) = τ̄i,
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lim
m→∞

1

m
(ei,1 + · · ·+ ei,m) = ēi,

and lim
m→∞

1

m
(ρi,1 + · · ·+ ρi,m) = ρ̄i,

∀i ∈ N .

Algorithm 2 Non-Cooperative MFTG Computation Offloading

Set M , Ts, L, N , zi, fi, we,i, and wd,i, ∀i ∈ N .

Initialize ē
(0)
i , τ̄

(0)
i , r̄

(0)
i , ρ̄

(0)
i , λ̄, and µ̄.

for m = 1 to M do

for each ECN i in N do

Compute ei, τi, ri using (3.1), (3.2), and (3.6), respectively. Compute αi, βi using

(3.30) and (3.31).

for each t in 0 ≤ t ≤ Ts do

Observe and measure x(t). Calculate x̄(t) using (3.23). Calculate u∗i (t) using

(3.20).

end for

Update

ē
(m)
i = 1

m(ei + (m− 1)ē
(m−1)
i ),

τ̄
(m)
i = 1

m(τi + (m− 1)τ̄
(m−1)
i ),

r̄
(m)
i = 1

m(ri + (m− 1)r̄
(m−1)
i ),

ρ̄
(m)
i = 1

m(ρi + (m− 1)ρ̄
(m−1)
i ).

Update λ̄ and µ̄ using (3.29).

end for

end for

As a result, Algorithm 2 shows the non-cooperative computation offloading algorithm

65



based on Theorem 4. After setting up some network parameters, each ECN i needs to

initialize r̄i, τ̄i, ēi, λ̄, and µ̄. Then, each ECN i determines ri, τi, and ei. Also, each ECN

i estimates αi and βi using (3.21) and (3.22). Meanwhile, the TA broadcasts x(t) and x̄(t)

to the ECNs. Consequently, each ECN i can now calculate and offload from the TA the

optimal offloading portion u∗i (t) that minimizes their own cost. Lastly, ECN i updates r̄i,

τ̄i, ēi, λ̄, and µ̄.

3.4.2 Cooperative Computation Offloading

Algorithm 3 implements the cooperative computation offloading based on Theorem 5. It

starts with setting up some network parameters. Then, each ECN i initializes parameters

such as r̄i, τ̄i, and ēi and transmits them to the TA. Next, the TA computes α0 and β0

based on (3.26) and (3.27). Afterwards, the TA can now compute the optimal offloading

control u∗i (t) of each ECN based on the values of x(t) and x̄(t). Then, the TA offloads the

corresponding number of computation task to each ECN i. Finally, the TA updates r̄i, τ̄i,

and ēi.

3.5 Performance Evaluation

3.5.1 Baseline Approaches

To be able to evaluate the performance of the proposed MFTG computation offloading

algorithms, they are compared with two typical algorithms in computation offloading. The

first algorithm is the local computing based on [61]. It finds the number of computation

tasks x0(t) that can be executed locally in the TA such that it satisfies the required deadline

d0, x0(t)/f0 < d0. The cost function of the TA for local computing is defined by

Jlo = E
[ ∫ T

0
(wd,0τlox0(t) + we,0elox0(t)) dt

]
, (3.32)
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Algorithm 3 Cooperative MFTG Computation Offloading

Set M , Ts, L, N , zi, fi, we,i, and wd,i, ∀i ∈ N .

Initialize ē
(0)
i , τ̄

(0)
i , and r̄

(0)
i .

for m = 1 to M do

for each ECN i in N do

Compute ei, τi, and ri using (3.1), (3.2), and (3.6), respectively. Compute α0 and

β0 using (3.26) and (3.27).

for each t in 0 ≤ t ≤ Ts do

Observe and measure x(t). Calculate x̄(t) using (3.28). Calculate u∗i (t) using

(3.25).

end for

Update

ē
(m)
i = 1

m(ei + (m− 1)ē
(m−1)
i ),

τ̄
(m)
i = 1

m(τi + (m− 1)τ̄
(m−1)
i ),

r̄
(m)
i = 1

m(ri + (m− 1)r̄
(m−1)
i ).

end for

end for
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where τlo = 1/f0 refers to the amount of time to execute a unit of computation task,

elo = κef
2
0 refers to the energy consumption per unit of computation task, and the constants

wd,0 and we,0 refer to the weights given by the TA to energy- and time-efficient optimization,

respectively.

Another baseline algorithm used in this work is the dynamic greedy algorithm based on

[61]. This algorithm finds the number of computation task xi(t) to be offloaded to ECN i

that satisfies xi(t)/fi < di where di is the deadline associated with xi(t). The cost function

of ECN i for dynamic greedy computing is defined by

Jdg,i = E
[ ∫ T

0
(wd,iτdg,ixi(t) + we,iedg,ixi(t)) dt

]
, (3.33)

where τdg,i = 1/fi refers to the number of time to execute a unit of computation task, edg,i =

κef
2
i refers to the energy consumption per unit of computation task, and the constants wd,i

and we,i refer to the weights given by ECN i to energy- and time-efficient optimization,

respectively.

To bridge the gap between the baseline algorithms with linear cost functions and the

proposed MFTG-based algorithms with quadratic cost functions, a quadratic term is added

to the linear costs so that

Jlo = E
[ ∫ T

0
(a1ξ0x0(t) + a2ξ

2
0x

2
0(t)) dt

]
, (3.34)

and Jdg,i = E
[ ∫ T

0
(a1ξixi(t) + a2ξ

2
i x

2
i (t)) dt

]
, (3.35)

where ξ0 = wd,0τlo +we,0elo, ξi = wd,iτdg,i +we,iedg,i, a1 and a2 as constants with a2 << a1.

3.5.2 Performance Metrics

The following metrics are calculated in order to compare the performance of the compu-

tation offloading approaches presented in this work.
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An offloading control fraction pi(t) is the ratio between the offloading control ui(t) and

the state x(t) of the TA, pi(t) = ui(t)/x(t). Consequently, an optimal offloading control

fraction p∗i (t) is written mathematically as

p∗i (t) =
u∗i (t)

x(t)
, (3.36)

where u∗i (t) is the optimal offloading control of ECN i.

The two main parameters in the MFTG formulation of computation offloading that limit

the control of an ECN are energy consumption and computation or execution time. Con-

sequently, the performance of the computation offloading methods are evaluated through

energy efficiency and time efficiency. In this work, efficiency refers to how much computa-

tion task are executed per unit of network resource. Hence, energy efficiency is defined as

the ratio between the number of computation tasks and the associated energy consumption.

For an MECN with N ECNs, the network energy efficiency is written as

ηe =
x(t)∑N

i=1 κe,if
2
i ui(t)

, (3.37)

where the ratio is taken between the total number of tasks at the TA and the total energy

consumed by all the ECNs.

Meanwhile, time efficiency refers to the ratio between the number of computation tasks

and the corresponding computation or execution time spent. For an MECN with N ECNs,

the network time efficiency is given by

ηd =
x(t)∑N
i=1

ui(t)
fi

, (3.38)

where the ratio is taken between the total number of tasks at the TA and the cumulative

computation time of the tasks through the ECNs.

System cost is another way of comparing the computation offloading methods. It consists

of the computation offloading cost and the overhead cost associated with each computation
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offloading algorithm. For both MFTG approaches, overhead exists between an ECN and

the TA. Thus, the system costs for the non-cooperative and cooperative MFTG methods

are given by

Cnc =
N∑
i=1

(
J̃i + 2δiθi,0

)
, and Cco = J̃0 +

N∑
i=1

2δiθi,0, (3.39)

where δi is the cost associated per overhead while θi,0 is the number of overhead between

ECN i and the TA. For the local computing algorithm, since the TA does not collaborate

with any computing nodes, the overhead is zero. In the dynamic greedy offloading, overhead

exists not only between the TA and ECNs but also between any two ECNs. Thus, the system

costs for these two baseline approaches are

Clo = Jlo, and Cdg =

N∑
i=1

(
Jdg,i +Nδdg,iθdg,i

)
, (3.40)

where δdg,i is the cost associated per overhead while θdg,i, is the number of overhead from

ECN i to another computing node. In this work, overhead refers to the delay associated

with the transmission time of overhead messages between any two computing nodes. For

an overhead message of length b, the transmission time is b/r, where r is the rate at which

the message is transmitted.

Lastly, to be able to compare the computational overhead and benefits of the proposed

algorithms, a benefit-cost analysis is performed on the proposed algorithms as well as the

typical algorithms in computation offloading. The metric used to compare the algorithms

is called the benefit-cost ratio B/C. The benefit B of each algorithm is the weighted sum

of the energy and time efficiencies,

B = wdηd + weηe, (3.41)

where the constants wd and we denote the weights given to the efficiencies and wd+we = 1.

The cost C used for each algorithm is the system cost defined in (3.39) and (3.40).
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(a) A sparse MECN with N = 5. (b) A dense MECN with N = 20.

Figure 3.3: The location of the ECNs.

3.6 Simulation Results

3.6.1 Simulation Setup

The simulations in this work can be extended to networks containing multiple cells

assuming that each cell operate independently of each other. That is, the TA of a cell can

offload task only to ECNs located in its cell. Moreover, the interference between cells are

minimized using techniques such as FDMA and SDMA. Each simulation has been performed

over 100 iterations and the average of the results has been drawn in each figure.

Consider one network cell with an area of 150 × 150 m2 containing one TA located at

the center of the cell. The number of ECNs has been varied from 2 to 20. The location

of each ECN is randomly distributed within the cell. Fig. 3.3 shows the locations of the

ECNs for the sparse MECN with N = 5 and the dense MECN with N = 20 utilized in the

following simulations. The end users are located randomly within the cell. The number of

end users is set at 50. The computation tasks arrive at the TA randomly, and the users are

assumed to submit an average of 5 Tcycles of computation tasks.

Assume that the TA has a transmit power of 100 mW, a maximum incoming rate of com-

putation task R0 = 10 Gbps, and a maximum capacity C0 of 10 Tb worth of computation
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Figure 3.4: The optimal offloading control of the ECNs.

task. Meanwhile, the computing nodes have a transmit power pi of 100 mW, capacity Ci of

100 Gb worth of computation task. The computing capability fi of each computing node

is randomly selected from 10, 12, and 14 Tcycles/s. The cost weights wd,i and we,i for the

computation time and energy consumption are both set to 0.5. For SINR γi computations,

the channel gain model used between any two nodes i and j is gi,j = d−αi,j where di,j denotes

the distance between the two nodes and the path loss exponent α = 4. Meanwhile, the

background noise N0 is set at −100 dBm. The quadratic cost constants for the baseline

algorithms are set at a1 = 0.9 and a2 = 0.1.

3.6.2 Optimal Offloading Control

In the first of part the simulations, the optimal offloading control u∗i (t) of ECN i based

on the feedback controls u∗−i(t) of other ECNs is computed using the MFTG computation

offloading algorithms. Fig. 3.4 shows the plots of u∗i (t) for the sparse MECN in both non-

cooperative and cooperative MFTG scenarios as well as the number of computation task

x(t) at the TA. It can be noted from this figure that the two MFTG algorithms divide the
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(a) Average percentage of computation task. (b) Average energy consumption of ECNs.

(c) Average computation time by ECNs.

Figure 3.5: The partition of aggregate computation task for each ECN.

computation tasks at the TA to the ECNs differently.

The partition of computation tasks among the ECNs is shown in Fig. 3.5 where each

color denotes the particular share of an ECN. Fig. 3.5a shows the average percentage of

offloaded computation task from the TA to each ECN i in the sparse and dense MECN. In

the sparse MECN, the non-cooperative MFTG approach distributed the tasks more evenly

than the cooperative approach. Meanwhile, in the dense MECN, the distribution of tasks is

almost similar between the two MFTG offloading algorithms. The figure also implies that

the offloading controls change accordingly when the number of ECNs is varied. Meanwhile,

Fig. 3.5b presents the energy consumption per cycle of each ECN and Fig. 3.5c shows the

computation time per cycle contributed by each ECN.
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(a) Non-cooperative MFTG. (b) Cooperative MFTG.

Figure 3.6: The effect of computing capability and cost weights to the optimal control.

Next, the effects of computing capability fi and the cost weights wd,i and we,i of ECN

i to its optimal control u∗i (t) are investigated. Even though Fig. 3.6 shows u∗i (t) as a

fraction of x(t) averaged over time for ECN 1, the analyses that follow can be generalized

to any ECNs. From the figure, it can be noticed that as the computing capability fi of

an ECN increases, the average percentage of aggregate computation task it offloads rises

up to a certain point and then decreases. The reason for this trend is the compromise

between minimizing computation time and energy consumption. When fi is low, the energy

consumption of ECN i is also low; however, the computation time to execute the offloaded

task is high. As fi becomes higher, the energy consumption of an ECN increases while the

computation time to execute the offloaded task becomes lesser.

Meanwhile, as computation time is given more weight by increasing its weight from 0.1

to 0.9, the curve shifts to the right. This means that as an ECN prioritizes minimizing

computation time, the computing capability at which it can afford to offload the highest

percentage of the aggregate computation task increases. However, as more weight is given

to energy consumption from 0.1 to 0.9, the curve shifts to the left. That is, to lower the

energy consumption of an ECN, the computing capability at which its offloading percentage

is at the highest decreases.
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(a) Average network energy efficiency. (b) Average network time efficiency.

Figure 3.7: The average network efficiency of computation offloading approaches.

In summary, an ECN with lower computing capability offloads more from the TA if

minimizing the energy consumption is more critical, as shown by the red curves. However, if

the priority is to minimize computation time, then an ECN with higher computing capability

offloads more from the TA, as shown by the blue curves.

3.6.3 Network Efficiency

The energy efficiency ηe using different computation offloading approaches are compared

in Fig. 3.7a. From the figure, the cooperative MFTG approach (CMFTG) has better ηe

than the non-cooperative MFTG (NCMFTG) approach. However, both MFTG algorithms

have higher ηe than the local and dynamic greedy algorithms. This is one of the reasons

that justifies the significance of computation offloading in MECN.

Meanwhile, the time efficiency ηd of the network under different computation offloading

approaches is displayed in Fig. 3.7b. It can be concluded from the figure that MFTG

computation offloading approaches maintain a competitive ηd against the dynamic greedy

algorithm.

Hence, the MFTG offloading algorithms can be as efficient as the dynamic greedy algo-

rithm which requires full knowledge of the characteristics of all the ECNs. In the following
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Figure 3.8: The average network cost caused by the computation offloading methods.

subsection, the system costs of the computation offloading algorithms are compared.

3.6.4 System Cost and Benefit-Cost Ratio

Fig. 3.8 presents the system cost sustained by each computation algorithm investigated in

this work. The system cost of the dynamic greedy approach is higher than both the MFTG

approaches because the overhead required to implement the greedy algorithm is larger than

the overhead required by the MFTG approaches. The system cost of the local computing

approach is shown for comparison purposes even though it does not require the use of ECNs.

Between the two MFTG approaches, the cooperative approach has lower system cost than

the non-cooperative approach when the number of ECNs is lower. However, as the number

of ECNs increases, the system cost of the non-cooperative approach becomes lower than

that of the cooperative approach.

Fig. 3.9 shows the benefit-cost ratio B/C for each computation offloading approaches.

It is evident that the non-cooperative MFTG approach has the best B/C, followed by the

cooperative MFTG approach. The benefit of the MFTG approaches are contributed by

the energy- and time-efficient partition of computation tasks as well as the low number of
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Figure 3.9: The benefit-cost ratio of the computation offloading approaches.

network overhead required to implement the offloading.

Moreover, the system cost and benefit-cost ratio of the local computing and dynamic

greedy algorithms with quadratic cost (QC) are almost equivalent to the system cost and

benefit-cost ratio of the original linear cost (LC). Therefore, the form of the cost function

does not affect the performance of the algorithms significantly since the main difference

between the cost functions of the proposed work and the baseline algorithms is the overhead

cost.

3.7 Related Works

Offloading of computation-intensive tasks from mobile devices to MECNs has garnered

a lot of interests in the research community. In this section, these computation offloading

methods are briefly described.

Various game theoretic methods have been applied to model computation offloading

among many computing units. In [62], the authors utilized a game theoretic approach to

computation offloading problem among mobile users in a multi-user, multi-channel wireless
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mobile edge computing network. Meanwhile, in order to utilize the computation resources

in the cloud, collaborative computation offloading between the centralized cloud server and

the MEC servers was studied in [63].

Many research have jointly optimized computation offloading with other network tech-

nologies and issues. The authors of [64] formulated computation offloading among mobile

devices as a joint optimization of the radio and computation resources that minimizes a

user’s energy consumption while satisfying latency requirements. An energy-efficient dy-

namic offloading and resource scheduling formulated as a minimization problem was inves-

tigated in [65]. In [66], interference management was integrated in computation offloading

and formulated together as an optimization problem. To reduce execution delay, compu-

tation offloading was integrated with cache placement in MEC to store and share popular

computation results to mobile users [67].

Several works have focused on integrating computation offloading feature in networks

involving wireless power. Computation offloading in mobile cloud computing powered by

wireless energy transfer was studied in [68]. The authors proposed the use of CPU-cycle

statistics information and channel state information to enforce policies that maximize the

probability of successful computation of data subject to the energy harvesting and latency

constraints. In [69], the authors combined the concepts of MEC with wireless power transfer

so that the MEC access point can transmit wireless power to mobile users which can be

used for local computing. Then, the authors of [61] proposed a Lyapunov optimization-

based dynamic algorithm for MEC with energy-harvesting devices that jointly decides on

the offloading, CPU frequency, and transmit power.

Energy-efficient computation offloading algorithms have been the focus of several works

as well. An energy-efficient computation offloading scheme was proposed in [70] where the

energy consumption of the offloading system was minimized while still satisfying the latency

requirements of the tasks. Meanwhile, energy-efficient task offloading in software defined

ultra-dense network was investigated in [71].
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Partial offloading in which only a part of an application is offloaded to computing entities

has been studied by several works. The authors of [72] considered partial offloading due to

limited bandwidth in wireless networks. Also, the authors of [73] proposed a cooperative

partial computation offloading between cloud computing and MEC-enabled IoT.

Before concluding this section, some works involving MFTGs are worth mentioning. In

[74], energy storage problem in a microgrid was formulated as an MFTG. The mean and

variance of the energy level were added to the cost function and used MFTG to keep track

and maintain the desired energy level in the microgrid. Meanwhile, MFTG was utilized as a

particle filter for video-based vehicular tracking in Intelligent Traffic Systems (ITS) [75]. A

mean field term was included in the formulation to provide accurate and robust state (i.e.,

vehicle position) prediction. In [76], MFTG was applied in blockchain token economics.

This work introduced variance in the utility function to capture the risk of cryptographic

tokens associated with the uncertainties of technology adoption, network security, regulatory

legislation, and market volatility.

The main difference of this work is that computation offloading in MECN has been for-

mulated as an MFTG in which each computing node has a desired level of computation

tasks it can handle. This level is dictated by the energy consumption and computing ca-

pability of the computing node. Moreover, this work utilizes a direct approach that does

not require solving coupled partial differential equations to calculate the optimal computa-

tion offloading strategy of each computing node. Lastly, non-cooperative and cooperative

scenarios among the computing nodes are both considered and investigated.

3.8 Conclusion

Multi-access edge computing networks (MECN) reduce the latency inherent in cloud

computing networks by performing the tasks in an edge network near the network users

rather than in a cloud network. Computation offloading is one of the services in an MECN in
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which computation-intensive tasks in a computing node may be offloaded to other comput-

ing nodes in the network. In this work, computation offloading problem has been formulated

using mean-field-type game (MFTG). Then, non-cooperative and cooperative computation

offloading algorithms have been proposed. These algorithms search for the optimal com-

putation offloading controls of each computing node in an MECN. The non-cooperative

algorithm is a decentralized approach since each computing node determine its own offload-

ing control. Nevertheless, the cooperative algorithm is a centralized approach in which the

network determines the offloading control of each computing node. Lastly, the simulation

results have indicated that MFTG is an effective way to model computation offloading in

MECNs.
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Chapter 4

Dynamic Hierarchical Game Model for Resource

Allocation and Economics in Network

Virtualization

Network virtualization (NV) allows multiple heterogeneous virtual networks (VNs) to

coexist and operate over the same physical network (PN) infrastructures. Some of the

benefits of this advancement include flexibility in VN topologies, heterogeneity in VN tech-

nologies, and modularity of network operations. However, there are a few areas such as

resource allocation and economics that challenge the implementation of NV. In this work,

the NV parameters that influence the resource allocation and economics of an NV system

are introduced. Next, an economic model for NV is formulated using the prey-predator

food chain model. This model takes into account the dynamics in an NV system such as

the service, payoff, failure, and competition rates involving the VNs and the PNs. The solu-

tion point to this model represents the resource strategy of the service provider (SP) given

the number of users trying to use its VN and the resource strategy of the infrastructure

provider (InP) given the strategy of the VN leasing its PN. In addition, economic models

that relate the capacities of the end users (EUs), the SPs, and the InPs are established.

Finally, simulations are provided to illustrate effectiveness of the prey-predator food chain

model in analyzing and modeling an NV system.
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Figure 4.1: A network virtualization architecture.

4.1 Network Virtualization

4.1.1 System Architecture

The NV architecture is shown in Fig. 4.1. It has three layers of abstraction: the InPs, the

SPs, and the EUs levels. An infrastructure provider (InP) provides and manages a physical

network (PN) infrastructure consisting of physical resources (PRs) such as physical nodes

and physical links. A service provider (SP) operates and manages a virtual network (VN)

which is composed of virtual resources (VRs) such as virtual nodes and virtual links. In

order to build and expand its VN, an SP needs to lease PRs from InPs. Through NV, one

or more SPs can lease the same PRs at the same time. In other words, multiple VRs may

reside at a single PR. Also, an SP may only lease a subset of the PN according to its VN

needs. The end users (EUs) can communicate with the network or to each other, as well as

use web applications, through the services provided by an SP.
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4.1.2 System Parameters

The focus of the system model presented in the next section is the distribution of band-

width in an NV system. Thus, the primary network resource of interest in this work is

bandwidth, and the terms “network resource” and “bandwidth” are used interchangeably,

unless otherwise stated. Other network resources such as CPU and memory are assumed to

have satisfied their respective constraints, and therefore are not affecting the distribution

of bandwidth in the system. As a consequence of these assumptions, the following system

parameters are related to the amount of bandwidth demand by or supply from a particular

entity (i.e., EUs, SPs, and InPs) in an NV system.

Next, the important frequencies or rates r(l) at each level l of the NV system are intro-

duced. The main players at each level l ∈ {1, 2, 3}, respectively, are

• the EUs in the metropolitan area (MA),

• the SPs, each managing a VN, and

• the InPs, each operating a PN.

Consider a metropolitan area where an SP is overlaying its VN and an InP has already

established its PN. Suppose the EUs who want to connect to and use the VN submit their

requests, or user requests (URs), to the SP. For simplicity, assume that a single EU can

only submit one UR at a time. If χ is the number of EUs trying to access the VN at time τ ,

then it is also the number of URs generated simultaneously in the area. Since bandwidth is

the network resource of interest, χ also refers to the number of unit EU bandwidth requests

generated in the area. For example, if χ = 10 and a unit EU bandwidth is 10 Mbps, then

there are 10 users requesting for 10 Mbps of bandwidth each. The quantity χ can also be

referred to as the resource (i.e., bandwidth) demand at the EU level. The arrival rate r
(1)
0

of these URs is the theoretical maximum increase rate of the number of URs χ generated
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in the network coverage area per EU,

r
(1)
0 =

1

χ

dχ

dτ
, (4.1)

where τ denotes time. Assuming the number of URs approaches a maximum limit κ(1), the

logistic model equation [77] can be used, then (4.1) becomes

r(1) =

1
χ
dχ
dτ

1− χ
κ(1)

, (4.2)

where κ(1) is the maximum number of EUs in the area. The term χ
κ1

signifies the percentage

of EUs trying to connect to and use the VN. The solution to (4.1) is called the logistic

function,

χ(τ) =
κ(1)

1 + (κ
(1)

χ0
− 1)e−r

(1)τ
, (4.3)

where χ0 is the initial value of χ(τ) at τ = τ0, κ(1) > 0 is the limiting value of χ(τ), and

r(1) > 0 for a logistic growth model.

In order to accommodate the additional VN users and lease a PR, the SP has to submit a

VR request (VRR) for a PR to the InP. If ψ is the number of VRRs generated simultaneously

in the area at time τ , then ψ also refers to the number of unit VR bandwidth requests

generated in the area. For example, if ψ = 5 and a unit VR bandwidth is 100 Mbps,

then there are 5 requests for a VR of 100 Mbps each. Moreover, ψ can be regarded as the

resource demand at the SP level. Also, let κ(2) as the total number of VRRs that can be

generated in the area. Assume that the SP can submit only one VRR per VR at a time.

Therefore, κ(2) also refers to the maximum number of VRs an SP can manage. Not all of

these VRRs can successfully turn into a VR. Hence, define the failure rate r(2) of VRRs as

the theoretical maximum VRR failures per unit time per VR. Mathematically, it is written

as

r(2) = − 1

ψ

dψ

dτ
. (4.4)
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For the InP, if ω is the number of active or operational PRs at time τ , then ω also

refers to the number of unit PR bandwidth requests. For instance, if ω = 2 and a unit PR

bandwidth is 1 Gbps, then there are 2 operational PR each with capacity of 1 Gbps. Also,

let κ(3) be the total number of PRs owned by the InP. Some of these active PRs may be

suddenly unavailable for lease. Thus, the unavailability rate r(3) of PRs is the number of

PRs z unavailable per unit time per PR. It can be shown mathematically as

r(3) = − 1

ω

dω

dτ
. (4.5)

Each UR, VRR, and PR corresponds to a request for a unit resource quantity at its

respective level. That is, χ, ψ, and ω represent an amount of network resource (i.e., band-

width). Thus, χ and ψ refer to the resource demand at the EUs and SP, respectively. On

the other hand, ω represents the resource supply at the InP.

There are other important parameters in NV. The network service availability s(l) is the

network user acceptance or service rate per VR (or PR). It measures how many users at

level l ∈ {1, 2} are being served by the network. The network payoff rate p(l) is regarded

as the network-user-to-network-income conversion rate per network user. It quantifies the

gain of network at level l ∈ {2, 3} from rendering services. The parameters s(l) and p(l) are

related. For the SP,

p(2) =
s(1)

n
, (4.6)

where n is the maximum allowable number of EUs per VR. For the InP,

p(3) =
s(2)

m
, (4.7)

where m is the maximum allowable number of VRs that can coexist per PR. Lastly, the

network congestion (or competition) rate q is defined as the VR (or PR) competition rate

per VR (or PR). Accordingly, it is a measure of how much the network traffic degrades the

network resources.
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If the service rate s is divided by the unit cost of service cs, the result is the per unit cost

service rate S. Likewise, dividing the payoff rate p by the unit income quantity cp yields the

per unit income payoff rate P . Also, getting the ratio of the congestion rate q to the unit

penalty from congestion cq gives the per unit penalty congestion rate Q. Mathematically,

these quantities are expressed as

S =
s

cs
, P =

p

cp
, and Q =

q

cq
. (4.8)

Table 4.1 summarizes the parameters discussed in this section.

4.2 System Model and Problem Formulation

The main goal of this work is to introduce a unified framework for the resource allocation

and economics problem in NV. In an NV system that consists of many users, SPs, and InPs,

two problems exist. One of the problems is how much resources an SP must own and allocate

to the EUs given the dynamics that exist in the NV system such as the amount of connection

requests it receives from the EUs, the intensity of competition it experiences from other SPs,

and the amount of resources it can request to and can be granted by an InP. Similarly, an

InP faces the same problem of how much resources it must operate and allocate to the

SPs that are trying to lease resources from it depending on factors such as the number of

requests it receives from the SPs, and the intensity of competition it experiences from other

InPs. In this work, these two NV system problems are modeled together in order to provide

a framework that covers the three levels of the NV system. The resulting system model,

based on the prey-predator food chain model, takes as input the NV system parameters

that characterize the dynamics in the system. Then, the resource strategies of the SPs and

InPs are computed where a resource strategy refers to the bandwidth capacity that an SP

or InP should own in order to support its users.

Three mathematical models, one for each configuration of a three-level NV system, are
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introduced and developed in this section. The first model is for a simple NV system that has

one SP and one InP. The second model is for an NV system with two SPs and one InP. Then,

a generalized model for NV systems with N -SPs and M -InPs is introduced. Each model

has finite number of EUs. The EUs that are granted with network connection communicate

with their respective SP through to its VN. Hence, an SP forms a star topology with its

EUs. Since an SP requests only for virtual nodes that are needed to support the EUs,

its VN capacity is assumed to be equal to the sum of the capacities of the virtual nodes.

Meanwhile, the SPs that are granted with lease of physical resources communicate with

their respective InP through its PN. Thus, an InP forms a star topology with the SPs that

are leasing its PN. Since an InP operated and manages only physical nodes that are needed

to support its client SPs, its PN capacity is assumed to be equal to the sum of the physical

node capacities. In each model, the utilities of the SPs and InPs are first modeled as the net

amount of cash per unit time they receive from their respective consumers. Since this work

focuses on the distribution of network resources (i.e., bandwidth) within the NV system,

the cash flows are converted to the amount of bandwidth the consumers are demanding

from their respective producers. These models can be implemented by a trusted central

authority that supervises and regulates the NV system in the coverage area.

The purpose of each model is to calculate the equilibrium point of the NV system which

signifies the resource strategy of each entity in the NV system and to simulate the economics

of the NV system. The results of each simulation demonstrate how the resource strategy

at each level and the relationship between demand and supply change with the network

parameters. The concept and analysis of equilibrium is discussed in the next section.

This section is organized as follows. First, models for a one-SP, one-InP NV system and

a two-SP, one-InP NV system are formulated. Then, the extension of this formulation to an

N -SP, M -InP NV system is developed in the following subsection. Finally, the key results

are summarized.
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4.2.1 One-SP, One-InP Network Virtualization System

Consider an NV system in a metropolitan area with multiple EUs, one SP, and one InP.

Let χ be the number of EUs trying to access the VN of the SP by submitting URs to the

SP. Assuming an EU submits only one UR at a time, the total number of URs submitted

to the SP is also χ. Moreover, χ is also related to the demand at the EU level. Meanwhile,

suppose ψ is the number of VRRs the SP submits to the InP. Hence, ψ also means the total

number of VRRs needed by the SP to realize its VN and support the demand of the EUs.

Lastly, let ω be the number of active PRs in the InP.

To formulate the mathematical model for the NV system, the flow of payment from

the EUs to the SP, and from the SP to the InP is followed. Let c(l) be the unit cost of

resources at each level l ∈ {1, 2, 3} of the NV system. Assign constants c(1) as the cost per

EU bandwidth, c(2) as the cost per VR bandwidth, and c(3) as the net cost incurred by the

InP per PR. Each EU with a successful VN connection pays the SP; hence, the SP earns

an amount proportional to the number of successful URs. Meanwhile, the SP has to pay

the InP an amount proportional to the number of VRs in its VN. The InP incurs a cost

proportional to the number of active PRs in its PN. Therefore, the EUs, the SP, and the

InP interact through these transactions. Based on the transactions just described, the rate

of change of the net income at each level can be formulated.

Suppose X = c(1)χ is the potential “revenue” at the EU level coming from all the URs,

Y = c(2)ψ is the potential revenue of the SP coming from all the VRRs, and Z = c(3)ω is the

potential revenue of the InP for leasing and operating its PN. Also, consider the quantities

K(1) = c(1)κ(1), S(l) =
s(l)

c(l+1)

∣∣∣∣
l∈{1,2}

, P (l) =
p(l)

c(l−1)

∣∣∣∣
l∈{2,3}

,

and Q(l) =
q(l)

c(l)

∣∣∣∣
l∈{2,3}

, (4.9)

where s, p, q, S, P , and Q are the network parameters defined in the previous section, with

indices l ∈ {1, 2, 3} indicating the EUs, the SP, and the InP levels, respectively. Referring to
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interaction between the EUs and the SP described in the previous paragraph, the revenue

rate at EU level 1
X
dX
dτ is reduced by the service cost S(1)Y charged by the SP. Thus, (4.2)

becomes an equation for net income,

1

X

dX

dτ
= r(1)

(
1− X

K(1)

)
− S(1)Y. (4.10)

Similarly, the net income rate 1
Y
dY
dτ of the SP is the sum of the failed VRR rate −r(2),

the payoff +P (2)X from the EUs, the cost of congestion −Q(2)Y among the VRRs in the

VN, and the cost of service availability −S(2)Z of the InP. Therefore, the net income rate

equation (4.4) for the SP becomes

1

Y

dY

dτ
= −r(2) + P (2)X −Q(2)Y − S(2)Z. (4.11)

Lastly, the net income rate 1
Z
dZ
dτ of the InP becomes the sum of the unavailable PR rate

−r(3), the payoff +P (3)Y from the SP, and the cost of congestion −Q(3)Z among active

PRs. Consequently, the net income equation in (4.5) for the InP becomes

1

Z

dZ

dτ
= −r(3) + P (3)Y −Q(3)Z. (4.12)

Dividing both sides of (4.10), (4.11), and (4.12) by their respective unit costs c(1), c(2),

and c(3), and applying the substitutions in (4.9) yield the following system of nonlinear

differential equations

dχ

dτ
= χ

(
r(1)

(
1− χ

κ(1)

)
− s(1)ψ

)
,

dψ

dτ
= ψ(−r(2) + p(2)χ− q(2)ψ − s(2)ω), (4.13)

and
dω

dτ
= ω(−r(3) + p(3)ψ − q(3)ω),

where s(1) and s(2) are the SP and InP service availability rates, p(2) = s(1)

n and p(3) = s(2)

m

are the SP and InP payoff rates, and q(2) and q(3) are the SP and InP congestion rates,

respectively.
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To make the analysis easier, reduce the number of parameters of system in (4.13) by

introducing the following substitutions: x = χ
κ(1)

, y = ψ
κ(2)

, z = ω
κ(3)

, and t = r(1)τ . Thus,

x, y, z and t represent the following quantities:

• x is the EU capacity demand;

• y is the VN capacity supply/demand;

• z is the PN capacity supply; and

• t is the dimensionless time.

The substitutions yield the following system of dimensionless equations representing the

one-SP, one-InP NV system model

dx

dt
= x(1− x− w1y) = xf(x, y, z),

dy

dt
= y(−w2 + w3x− w4y − w5z) = yg(x, y, z), (4.14)

and
dz

dt
= z(−w6 + w7y − w8z) = zh(x, y, z).

For convenience, it is assumed that the SPs and InPs approve and grant only the con-

nection requests they receive, and operate and manage only the nodes that are active.

Thus, their VNs and PNs capacities, y and z, respectively, are the same as the total vir-

tual/physical node capacities. That is, a network capacity is equal the sum of its node

capacities.

The parameters of (4.14) are listed in Table 4.2. Since it has been established in Section

4.1 that p(2) = s(1)

n for the SP and that p(3) = s(2)

m for the InP, then parameters w3 and w7

can also be expressed as

w3 =
w1

η(2)
and w7 =

w5

η(3)
, (4.15)

where

η(2) =
κ(2)

κ(1)/n
and η(3) =

κ(3)

κ(2)/m
, (4.16)
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are the network coverage ratios of the SP and the InP, respectively. These two quantities

represent the ratio of the maximum network resource supply to the maximum network

resource demand.

The association between the demand x and supply y can be derived using the chain rule,

dv
du = dv

dt ·
dt
du . Hence, it follows that

dy

dx
=
y(−w2 + w3x− w4y − w5z)

x(1− x− w1y)
. (4.17)

Likewise, the relationship between demand y and supply z can be written as

dz

dy
=

z(−w6 + w7y − w8z)

y(−w2 + w3x− w4y − w5z)
. (4.18)

For the one-SP, one-InP system in (4.14), the resource strategy is the positive equilibrium

point denoted by E(x∗, y∗, z∗). Meanwhile, the demand-supply relationships can be found

by solving for y = f(x) and z = g(y). The function f(x) indicates the behavior of the

VN capacity supply with respect to the EU capacity demand x, whereas the function g(y)

specifies the reaction of the PN capacity supply in terms of the VN capacity demand. Since

(4.17) and (4.18) are both first-order nonlinear differential equations (NDE), a numerical

method is used to graph f(x) and g(y).

4.2.2 Two-SP, One-InP Network Virtualization System

Based on the formulation in the previous subsection, the system model for an NV system

serviced by two SPs (N = 2) and one InP (M = 1) is expressed by the system of equations

dχ

dτ
= χ

(
r(1)

(
1− χ

κ(1)

)
− s(1)

1 ψ1 − s(1)
2 ψ2

)
,

dψ1

dτ
= ψ1(−r(2)

1 + p
(2)
1 χ− q(2)

11 ψ1 − q(2)
21 ψ2 − s(2)ω),

dψ2

dτ
= ψ2(−r(2)

2 + p
(2)
2 χ− q(2)

12 ψ1 − q(2)
22 ψ2 − s(2)ω), (4.19)
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and
dω

dτ
= ω(−r(3) + p(3)(ψ1 + ψ2)− q(3)ω),

where s
(1)
j , j ∈ {1, 2} is the SPj-to-EU service availability rate, s(2) is the InP-to-SP service

availability rate, p
(2)
j =

s
(1)
j

mj
is the EU-to-SPj payoff rate, p(3) = s(2)

n is the SP-to-InP payoff

rate, q
(2)
jj is the SPj congestion rate, q

(2)
Jj , j 6= J is the SPJ -to-SPj competition rate, and

q(3) is the InP congestion rate.

For analysis convenience, the dimensionless form of (4.19) for a two-SP, one-InP NV

system is given by

dx

dt
= x(1− x− w1y1 − w2y2) = xf(x, y1, y2, z),

dy1

dt
= y1(−w3 + w4x− w5y1 − w6y2 − w7z) = y1g1(x, y1, y2, z),

dy2

dt
= y2(−w8 + w9x− w10y1 − w11y2 − w7z) = y2g2(x, y1, y2, z), (4.20)

and
dz

dt
= z(−w12 + w13y1 + w14y2 − w15z) = zh(x, y, z),

where

• x is the EU capacity demand;

• yj , j ∈ {1, 2} is the VNj capacity supply/demand;

• z is the PN capacity supply; and

• t is the dimensionless time.

In this work, it is assumed that the SPs and InPs accept and allow only the connection

requests they receive, and operate and manage only the nodes that are active. Thus, their

VNs and PNs capacities, yj and z, respectively, are the same as the total virtual/physical

node capacities. That is, a network capacity is equal the sum of its node capacities.
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The parameters of (4.20) are listed in Table 4.3. Since it has been established in Section

4.1 that p
(2)
j =

s
(1)
j

mj
for SPj and that p(3) = s(2)

n for the sole InP, then

w4 =
w1

η
(2)
1

, w9 =
w2

η
(2)
2

, w13 =
w7

η
(3)
1

, and w14 =
w7

η
(3)
2

, (4.21)

where the quantities

η
(2)
j =

κ
(2)
j

κ(1)/nj
and η

(3)
j =

κ(3)

κ
(2)
j /m

, (4.22)

are the SP and InP network coverage ratios, respectively.

The relationship between the demand x and its supplies y1 and y2, as well as the demands

y1 and y2 and their supply z, are implicitly defined by the equations

dy1

dx
=
y1(−w3 + w4x− w5y1 − w6y2 − w7z)

x(1− x− w1y1 − w2y2)
, (4.23)

dy2

dx
=
y2(−w8 + w9x− w10y1 − w11y2 − w7z)

x(1− x− w1y1 − w2y2)
, (4.24)

dz

dy1
=

z(−w12 + w13y1 + w14y2 − w15z)

y1(−w3 + w4x− w5y1 − w6y2 − w7z)
, (4.25)

and
dz

dy2
=

z(−w12 + w13y1 + w14y2 − w15z)

y2(−w8 + w9x− w10y1 − w11y2 − w7z)
. (4.26)

4.2.3 N-SP, M-InP Network Virtualization System

In this subsection, the system model is generalized to an N -SP, M -InP NV system.

Consider an NV system in a metropolitan area with multiple EUs, N SPs, and M InPs. Let

χj be the number of EUs in the area that submits URs to SPj , j ∈ {1, 2, ..., N}. Assuming

an EU submits only one UR at a time, the total number of URs in the area is χ =
∑N

j=1 χj .

Meanwhile, suppose ψjk is the number of VRRs in SPj to any InPk, k ∈ {1, 2, ...,M}. Thus,

the total number of VRRs needed by SPj to realize its VN is ψj =
∑M

k=1 ψjk. Lastly, let ωk

be the number of active PRs in InPk. As in the previous subsection, the flow of payment

from the EUs to the SPs, and from the SPs to the InP is followed.
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Suppose X =
∑N

j=1 c
(1)
j χj is the potential “revenue” at the area from all the URs to

any SPj , Yj =
∑M

k=1 c
(2)
k ψjk is the potential revenue of SPj from all the VRRs to any InPk,

and Zk = c
(3)
k ωk is the potential revenue of the InPk for leasing and operating its PN.

The revenue at the area is reduced by the service cost charged by every SPj to the EUs,

S
(1)
11 Y1 + S

(1)
12 Y2 + ...+ S

(1)
1NYN , where the first subscript “1” refers to the metropolitan area

(i.e., i = 1) where the NV system is. Consequently, the net “income” rate 1
X
dX
dτ in (4.2)

can now be stated as

1

X

dX

dτ
= r(1)

(
1− X

K(1)

)
−

N∑
j=1

S
(1)
1j Yj . (4.27)

Meanwhile, the net income rate 1
Yj

dYj
dτ of SPj is now the sum of the failed VRR rate

r
(2)
j , the payoff P

(2)
j X from the EUs at the service area, the cost of congestion QjjYj

within SPj , the cost of competition Q
(2)
j1 Y1 + Q

(2)
j2 Y2 + ... + Q

(2)
jNYN from every other SPJ

J ∈ {1, 2, ..., N} \ j, and the cost service availability S
(2)
j1 Z1 + S

(2)
j2 Z2 + ... + S

(2)
jMZM from

every InPk. Therefore, the net income rate equation (4.4) for SPj becomes

1

Yj

dYj
dτ

= −r(2)
j + P

(2)
j X −

N∑
J=1

Q
(2)
jJ YJ −

M∑
k=1

S
(2)
jk Zk. (4.28)

Lastly, the net income rate 1
Zk

dZk
dτ of InPk becomes the sum of the unavailable PR rate

r
(3)
k , the payoff P

(3)
k1 Y1 +P

(3)
k2 Y2 + ...+P

(3)
kNYN from every SPj , the cost of congestion QkkZk

within InPk, and the cost of competition Q
(3)
k1 Z1 + Q

(3)
k2 Z2 + ... + Q

(3)
jJ ZN from every other

InPK , K ∈ {1, 2, ...,M} \ k. Hence, (4.5) for InPk can be written as

1

Zk

dZk
dτ

= −r(3)
k +

N∑
j=1

P
(3)
kj Yj −

M∑
K=1

Q
(3)
kKZK . (4.29)

Using the average VR bandwidth cost, c(2) =
(∑M

k c
(2)
k

)
/M , Yj ≈ c(2)ψj . Substi-

tuting K(1) = c(1)κ(1), P
(l)
{j,kj} = p

(l)
{j,kj}/c

(l−1), Q
(l)
{jJ,kK} = q

(l)
{jJ,kK}/c

(l), and S
(l)
{1j,jk} =
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s
(l)
{1j,jk}/c

(l+1) to (4.27), (4.28), and (4.29) yields the system of equations

dχ

dτ
= χ

r(1)
(

1− χ

κ(1)

)
−

N∑
j=1

s
(1)
1j ψj

 ,

dψj
dτ

= ψj

(
−r(2)

j + p
(2)
j χ−

N∑
J=1

q
(2)
jJ ψJ −

M∑
k=1

s
(2)
jk ωk

)
, (4.30)

and
dωk
dτ

= ωk

−r(3)
k +

N∑
j=1

p
(3)
kj ψj −

M∑
K=1

q
(3)
kKωK

 .

The parameters in an N -SP, M -InP NV system in (4.30) are listed in Table 4.4. Mean-

while, the dimensionless form of (4.30) is

dx

dt
= x

1− x−
N∑
j=1

ws1jyj

 ,

dyj
dt

= yj

(
−wrj + wpjx−

N∑
J=1

wqjJyJ −
M∑
k=1

wsjkzk

)
, (4.31)

and
dzk
dt

= zk

−wrk +
N∑
j=1

wpkjyj −
M∑
K=1

wqkKzK

 ,

where the corresponding parameters are defined in Table 4.5.

4.2.4 Network Economics

The relationship between a capacity demand and a capacity supply in an NV system

can be found by combining their time rate equations through chain rule and solving the

resulting differential equation numerically. Specifically, if the interest is in the relationship

between the capacity demand x at the EU level and the capacity supply yj of SPj , then

find
dyj
dx and solve it numerically. Similarly, if the interest is in how the capacity supply zk

of InPk behaves with respect to the capacity demand yj of SPj , then determine dzk
dyj

and

solve it using a numerical method. In this work, the numerical method used to solve the

resulting differential equation is the 4th-order Runge-Kutta method [86].
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4.3 Properties and Analyses

The following section provides the properties of NV systems modeled as a prey-predator

food chain system. In addition, this section presents the derivation of the solution point of

an NV system. In a prey-predator food chain system, this solution point, also known as

the equilibrium point, refers to the state at which the number of agents at each level of the

chain does not change [78]. In NV, this equilibrium point refers to the resource strategy

(i.e., amount of resources) at each level of the NV system based on the system dynamics

such as service, payoff, failure, and congestion/competition rates. In other words, if the

dynamics of the NV system can be quantified, the resource strategy of each entity in an

NV system can be computed based on these dynamics using the prey-predator food chain

model.

This section also introduces the conditions at which the equilibrium point is stable. A

stable equilibrium point means that the state of the system goes back to its equilibrium after

a small perturbation in the number of agents. In NV, this means that the resource strategy

remains the same even after the introduction of a small change in the number of bandwidth

requests from the EUs the SPs or allocation from the InPs. For more comprehensive analysis

on the prey-predator food chain model, the reader may refer to [79], [80], and [81].

This section is organized as follows. First, the properties and analysis of a one-SP, one-

InP NV system is presented. Then, these properties are analyzed and extended to a two-SP,

one-InP NV system. Next, an analysis for an N -SP, M -InP NV system is presented. Finally,

a summary of this section is provided.

4.3.1 One-SP, One-InP Network Virtualization System

This subsection is devoted to the properties and analysis of the one-SP, one-InP NV

system in (4.14). These properties support the use of the prey-predator food chain model

to represent an NV system. The network parameters w1 through w8 described and derived
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in the previous section dictate the behavior and properties of a virtualized network. More-

over, an analysis to compute the solution point to the system in (4.14) is also discussed.

Theoretically, this solution (i.e., the positive equilibrium point) signifies the values of x, y,

and z for which the system is stable indefinitely with respect to time given that the system

parameters remain the same. In NV, this solution refers to the resource strategy at each

level given the economic dynamics of the NV system.

The prey-predator food chain model exhibits properties that an NV system also possess.

The following lemma states the effect of SP service availability to the entire system.

Lemma 1. If w1 = 0, and consequently, w3 = 0, then limt→∞ x(t) = 1 and limt→∞ y(t) =

limt→∞ z(t) = 0.

Proof. If w1 = w3 = 0 is substituted to (4.14), its first equation becomes dx
dt = x(1−x). The

solution of this differential equation is x(t) = x0
x0+(1−x0)e−t , where x0 = x(0). Evaluating its

limit yields limt→∞ x(t) = 1. Repeating this procedure to the second and third equations

of (4.14) results to limt→∞ y(t) = limt→∞ z(t) = 0.

That is, if the SP is unavailable, the EU demand still reaches maximum while the VN

supply/demand, and consequently, the PN supply eventually becomes zero.

Likewise, the statement regarding the availability of the InP is stated as follows.

Proposition 1. If w5 = 0, and hence, w7 = 0, then it follows that limt→∞ x(t) =

w1w2+w4
w1w3+w4

= x̄ > 0, limt→∞ y(t) = −w2+w3x̄
w4

= ȳ > 0, and limt→∞ z(t) = 0.

The following lemma states that if the payoff of the SP is high enough, it can continue

to demand from the InP, and hence, can continue to support the EUs.

Lemma 2. If w3 >
w2+w5z

x , then y > 0.

Proof. The solution to the second equation of (4.14) is y(t) = b1y0
b2y0+(b1−b2y0)e−b1t

, where

y0 = y(t = 0), b1 = −w2 + w3x − w5z and b2 = w4. Consequently, limt→∞ y(t) = b1
b2
> 0,

where it follows that w3 >
w2+w5z

x .
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A similar statement can be expressed for the InP as well.

Proposition 2. If w7 >
w6
y , then z > 0.

The analysis of the system in (4.14) starts with finding its equilibrium point. The

following statement expresses the definition of an equilibrium point.

Definition 6. The equilibrium points of a system U(t) =

[
x(t) y(t) z(t)

]>
are the solu-

tions to dU
dt = 0.

Consequently, the system defined by (4.14) has four equilibrium points:

• E0(0, 0, 0) indicates the absence of all the system levels;

• E1(1, 0, 0) shows that the EU will still reach its maximum capacity even in the absence

of VN and PN networks;

• E2(x̄, ȳ, 0) denotes the absence of the PN; and

• E3(x∗, y∗, z∗) specifies the strategies of the SP and the InP given the capacity demand

at the EUs.

The first three equilibrium points are irrelevant to our study of a fully functional NV

environment. Therefore, the focus is on the positive equilibrium point E3(x∗, y∗, z∗) or

simply E(x∗, y∗, z∗). The existence of this point is defined as follows.

Definition 7. The positive equilibrium point E(x∗, y∗, z∗) exists if there is a positive solu-

tion {(x∗, y∗, z∗)|x∗ > 0, y∗ > 0, z∗ > 0} to

dx

dt
=
dy

dt
=
dz

dt
= 0. (4.32)

Solving (4.32) simultaneously gives the respective resource strategy of the SP and the

InP

y∗ =
1− x∗

w1
, (4.33)
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and z∗ =
−w6 + w7y

∗

w8
. (4.34)

Since x∗, y∗, and z∗ > 0, it follows that

1− w1y
∗ > 0, w3w8 + w5w6 > w2w8, and w7y

∗ > w6. (4.35)

In order for the system in (4.14) to be stable near or at its equilibrium point E(x∗, y∗, z∗),

it must satisfy certain conditions. According to [82], a locally asymptotically stable system

is defined as follows:

Definition 8. A system U(t) =

[
x(t) y(t) z(t)

]>
is locally asymptotically stable near or

at an equilibrium point UE if there is a constant K > 0 such that ‖U(0)− UE‖ 6 K. Thus,

U(t)→ UE as t→∞.

To determine the behavior of the system near or at its equilibrium points, its Jacobian

matrix must be computed first. For a system of the form

dx

dt
= xf(x, y, z),

dy

dt
= yg(x, y, z), and

dz

dt
= zh(x, y, z), (4.36)

the Jacobian matrix is defined by

J(x∗, y∗, z∗) =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 =


x∂f∂x + f x∂f∂y x∂f∂z

y ∂g∂x y ∂g∂y + g y ∂g∂z

z ∂h∂x z ∂h∂y z ∂h∂z + h

 . (4.37)

The characteristic polynomial of J(x∗, y∗, z∗) is

pJ(λ) = λ3 +A2λ
2 +A1λ+A0, (4.38)

where A0 = −J11J22J33 + J11J23J32 + J12J21J33, A1 = J11J22 + J11J33 + J22J33 − J23J32 −

J12J21, A2 = −(J11 + J22 + J33).
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The Routh-Hurwitz stability criterion provides the necessary and sufficient condition for

the stability of linear time-invariant (LTI) systems [83], [84]. According to this criterion, a

third-order system characterized by its third-order characteristic polynomial (4.38) is locally

asymptotically stable near or its equilibrium point if A2 > 0, A0 > 0, and A2A1 > A0.

Lemma 3. If J11 < 0, J22 < 0, and J33 < 0, then the system in (4.14) is locally asymptoti-

cally stable near or at the equilibrium point E(x∗, y∗, z∗). That is, J11 = 1−2x∗−w1y
∗ < 0,

J22 = −w2 + w3x
∗ − 2w4y

∗ − w5z
∗ < 0, and J33 = −w6 + w7y

∗ − 2w8z
∗ < 0.

Proof. All the terms of A0 are greater than zero if and only if J11, J22, and J33 are all

less than zero. Similarly, A2 > 0 if and only if all of its terms are greater than zero.

Consequently, the condition A2A1 > A0 is also satisfied.

4.3.2 Two-SP, One-InP Network Virtualization System

The properties of the system in (4.14) can be extended for the system in (4.20). From

Lemma 1 about the SP availability, if w1 = w2 = 0, and consequently, w4 = w9 = 0,

then limt→∞ x(t) = 1 and limt→∞ y1(t) = limt→∞ y2(t) = limt→∞ z(t) = 0. Regarding the

InP availability, if w7 = 0, and consequently, w13 = w14 = 0, then, limt→∞ x(t) = x̄ > 0,

limt→∞ y1(t) = ȳ1 > 0, limt→∞ y2(t) = ȳ2 > 0, and limt→∞ z(t) = 0. Extending Lemma 2

to (4.20), the respective payoff of each SP must be high enough to continue supporting the

URs of the EUs. That is,

w4 >
w3 + w6y2 + w7z

x
and w9 >

w8 + w10y1 + w7z

x
. (4.39)

The positive equilibrium point E(x∗, y∗1, y
∗
2, z
∗) of (4.20) is found by letting

dx

dt
=
dy1

dt
=
dy2

dt
=
dz

dt
= 0. (4.40)

Hence, E(x∗, y∗1, y
∗
2, z
∗) is the solution to the system of equations

1− x− w1y1 − w2y2 = 0,
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−w3 + w4x− w5y1 − w6y2 − w7z = 0,

−w8 + w9x− w10y1 − w11y2 − w7z = 0, (4.41)

and −w12 + w13y1 + w14y2 − w15z = 0.

Solving (4.41) for x∗, y∗1, y
∗
2, and z∗ and setting x∗, y∗1, y

∗
2, and z∗ > 0 provide

the following conditions to be satisfied for the existence of the positive equilibrium point

E(x∗, y∗1, y
∗
2, z
∗)

w1y
∗
1 + w2y

∗
2 < 1,

(
w2w9 + w11 +

w7w14

w15

)(
−w3 + w4 +

w7w12

w15

)
>

(
w2w4 + w6 +

w7w14

w15

)(
−w8 + w9 +

w7w12

w15

)
,

(
w1w4 + w5 +

w7w13

w15

)(
−w8 + w9 +

w7w12

w15

)
> (4.42)

(
w1w9 + w10 +

w7w13

w15

)(
−w3 + w4 +

w7w12

w15

)
,

and w13y
∗
1 + w14y

∗
2 > w12.

The behavior of the system in (4.20) near or at E(x∗, y∗1, y
∗
2, z
∗) can be analyzed by

computing its Jacobian matrix J at E(x∗, y∗1, y
∗
2, z
∗). The characteristic polynomial of

J(x∗, y∗1, y
∗
2, z
∗) is

pJ(λ) = λ4 +A3λ
3 +A2λ

2 +A1λ+A0, (4.43)

where the leading coefficients are found by solving for the determinant

pJ(λ) = det(J − λI). (4.44)

For a fourth-degree polynomial pJ(λ), the conditions for stability are A3 > 0, A2 > 0,

A3A2 > A1 > 0, and (A3A2A1 −A2
1)/A2

3 > A0 > 0 [85].
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Lemma 4. If J11 < 0, J22 < 0, J33 < 0, and J44 < 0, then the system in (4.20) is

locally asymptotically stable near or at the equilibrium point E(x∗, y∗1, y
∗
2, z
∗). That is, J11 =

1 − 2x∗ − w1y
∗
1 − w2y

∗
2 < 0, J22 = −w3 + w4x

∗ − 2w5y
∗
1 − w6y

∗
2 − w7z

∗ < 0, J33 =

−w8 + w9x
∗ − w10y

∗
1 − 2w11y

∗
2 − w7z

∗, and J44 = −w12 + w13y
∗
1 + w14y

∗
2 − 2w15z

∗ < 0.

Proof. Based on (4.41), J11, J22, J33, and J44 < 0 when x∗, y∗1, y
∗
2, and z∗ > 0.

4.3.3 N-SP, M-InP Network Virtualization System

Referring to the previous subsection, the properties and analysis of (4.14) and (4.20) can

be generalized to a more general case of a N -SP, M -InP NV system. For instance, for an NV

system over one metropolitan area, the positive equilibrium point E∗(x∗, y∗1, ..., y
∗
N , z

∗
1 , ..., z

∗
M )

of (4.31) is the solution to the system of equations

dx

dt
=
dy1

dt
= ... =

dyN
dt

=
dz1

dt
= ... =

dzM
dt

= 0. (4.45)

Combining (4.31) and (4.45), the system has only one positive equilibrium point where

x, yj , zk > 0 since the resulting N +M + 1 simultaneous equations

1− x−
N∑
j=1

ws1jyj = 0,

−wrj + wpjx−
N∑
J=1

wqjJyJ −
M∑
k=1

wsjkzk = 0, (4.46)

and −wrk +
N∑
j=1

wpkjyj −
M∑
K=1

wqkKzK = 0,

are all linear in variables x, yj , and zk.

The stability analysis of the NV system involves computing for its (N +M + 1)× (N +

M + 1) Jacobian matrix at E∗(x∗, y∗1, ..., y
∗
N , z

∗
1 , ..., z

∗
M ), as well as conforming with the

Routh-Hurwitz stability criteria for a (N +M + 1)-degree characteristic polynomial.
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4.3.4 Network Resource Strategies

This section has focused on solving for the equilibrium point or resource strategies in an

NV system. From the first equation of (4.46), the strategy of SPj is

y∗j =
1

ws1j

(
1− x∗ −

N∑
J=1
J 6=j

ws1Jy
∗
J

)
. (4.47)

Meanwhile, the strategy of InPk can be derived from the third equation of (4.46),

z∗k =
1

wqkk

(
− wrk +

N∑
j=1

wpkjy
∗
j −

M∑
K=1
K 6=k

wqkKz
∗
K

)
. (4.48)

Equations (4.47) and (4.48) signify the optimal strategies of the SPs and the InPs given the

dynamics of the NV system. These are helpful in analyzing how the network parameters

affect the network resource strategies of the SPs and the InPs.

4.4 Simulation Results

In this section, numerical simulations that demonstrate the prey-predator food chain

model as a mathematical framework for NV are presented. For simplicity, it is assumed that

the VN/PN network capacities are the same as the total virtual/physical node capacities.

That is, a network capacity is equal the sum of its node capacities.

4.4.1 One-SP, One-InP Network Virtualization System

In this subsection, the economics of a simple one-SP, one-InP NV system is investigated.

Assume the following setup. Suppose that the number of URs (or EUs) in the serviced area

is limited to 1000. The sole SP can expand its VN up to a maximum of 50 virtual nodes

and allow 25 EUs per VR. In addition, the sole InP can scale its PN up to 50 physical nodes
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(a) The effect of VN payoff to the VN capacity supply.

(b) The effect of PN service availability to the VN capacity supply.

(c) The effect of PN payoff to the PN capacity supply.

Figure 4.2: The network economics of a one-SP, one-InP NV system.
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and allow 4 VRs to share a single PR. Let each virtual and physical node have a capacity of

25 and 100 Mbps, respectively. In each simulation, the values for w1 through w8 > 0 that

satisfy Lemma 3 and (4.35) are provided. Table 4.6 lists the values used in this subsection,

unless otherwise stated.

Network Resource Strategies

The following simulations shows the effect of NV parameters to the resource strategy

E(x∗, y∗, z∗) by solving the system defined by (4.14) using (4.32).

First, the influence of the VN service availability w1 to the SP resource strategy y∗ is

studied. Hence, w1 is set to four different values, 0.10, 0.50, 1.00, and 2.00. From (4.15) and

(4.16), increasing w1, while keeping other parameters the same, indicates that the SP has

either increased n or expanded k(2). The computed value for w7 is 0.125. The results of the

simulations are listed in Table 4.7. When w1 is increased from 0.10 to 2.00, while keeping

other parameters constant, especially the VN payoff w3 = w1
η2

, the SP adapts by decreasing

its VN capacity demand strategy y∗ from 0.70, or equivalently, 0.70 · 50 VR · 25 Mbps
VR = 875

Mbps to 0.31 or 388 Mbps. The reason is that the SP has no incentive to increase its

demand strategy from the InP when its payoff from the EU is not improving. Likewise, the

InP reduces its supply strategy z∗ in response to the lower VN demand.

Next, the effect of the PN payoff factor w7 to the InP resource strategy z∗ is investigated.

Thus, w7 is allowed to have the values 0.10, 0.15, 0.20, and 0.25. From (4.15) and (4.16),

the InP has to either reduce m or scale down k(3) to increase w7 while keeping the other

parameters constant. The computed value w3 is 0.40. The results are listed in Table 4.7.

Assume that the SP can only lease one portion of a PR. It follows that, there are 20 Mbps
PR .

When w7 = 0.10, z approaches z∗ = 0.45 · 50 PR · 25 Mbps
PR = 563 Mbps; however, when

w7 = 0.25, z∗ = 0.61 or 763 Mbps. That is, when the payoff w7 increases, especially with

PN service availability w5 = w5
η3

constant, the InP can afford to supply a higher additional

capacity z∗ to the SP. On the other hand, the resource strategy y∗ of the SP is to reduce its
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demand from the InP because as w7 becomes higher, n or k3 is reduced. Consequently, the

high payoff that the InP acquires will come from the larger share of resources, and hence

cost, the SP has to pay in return.

Network Economics

The relationship between the EU capacity demand and the VN capacity supply is ex-

plored through solving (4.17) by implementing a numerical method called the 4th-order

Runge-Kutta method [86].

First, the effect of the VN payoff factor w3 to the VN capacity supply is discovered.

Consider four different values for w3: 0.05, 0.50, 1.00, and 2.00. Also, set z = 0.50 and

w1 = 5.00. The results of this case is illustrated in Fig. 4.2a. As w3 increases from 0.05 to

2.00 at 50% EU activity (i.e., x = 0.50), the available VN supply decreases from y = 0.87

to 0.62 . This happens since an increase in w3 means that η(2) has been decreased, which is

caused by a small n or k(2). Hence, when a VR can accommodate lesser EUs or when the

SP can only manage a smaller VN, the SP adapts by decreasing its VN demand from the

InP, and thus, its VN supply to the EUs.

Now, the influence of the PN service availability w5 to the VN capacity supply is studied.

Assume w1 = 10.00, which is quite high just to accentuate the difference in the four curves

to be plotted, y0 = 0.30, and z = 0.50. Allow w5 to have these values: 0.10, 0.50, 1.00,

and 2.0. Fig. 4.2b shows the results of the simulation. Hence, a higher w5 allows the

SP to increase its VN demand from the InP, and hence, its VN supply to the EU, and

accommodate more EUs. For example, at x = 0.50, the VN capacity supply goes from

y = 0.32 to 0.82 when w5 varies from 0.10 to 2.00.

Lastly, consider the connection between the VN capacity demand and the PN capacity

supply through solving (4.18) using the Runge-Kutta method [86]. To investigate the con-

sequence of the PN payoff factor to its own capacity, vary w7 to these values: 0.05, 0.50,

106



(a) The effect of SP2-to-EU service availability to the VN1 capacity supply.

(b) The effect of SP2-to-SP1 competition to the VN1 capacity supply.

(c) The effect of SP2-to-InP payoff to the PN capacity supply.

Figure 4.3: The network economics of a two-SP, one-InP NV system.

107



1.00, and 2.00. Then, set x = 0.50, w3 = 0.05, and w5 = 2.00. The result is plotted in the

Fig. 4.2c. At y = 0.50, the PN supply decreases from 0.62 to 0.13 as w7 is increased from

0.05 to 2.00. It can be deduced from the definition of w7 that it increases when m or k(3)

is reduced. Thus, when w7 is high, the PN decreases its supply because n is low.

4.4.2 Two-SP, One-InP Network Virtualization System

In this subsection, the focus is on the effect of the existence of an additional SP in the

economics of an NV system. In the following simulations, the values in Table 4.8 are used,

unless otherwise stated. Entries labeled with ∗ are computed values using (4.21), while

those with + are varied. These values are chosen to satisfy Lemma 4 and (4.42).

Network Resource Strategies

The network strategy for a two-SP, one InP NV system of (4.20) is found by solving

(4.41). Table 4.9 shows the effect of the SP2 service availability w2 to the network strategies.

The values for w2 are 0.20, 0.25, 0.30, and 0.40, while the corresponding computed values

for w9 are 0.25, 0.31, 0.38, and 0.50. As w2 is increased from 0.20 to 0.40, the strategy of

SP2 increases from 0.15 to 0.91 (i.e., from 150 to 910 Mbps) due to higher demand from

EUs. However, the strategy of SP1 has diminished from 0.96 to 0.46 (i.e., from 960 to 460

Mbps) since EUs have an alternative SP.

Next, w9 assumes values of 0.25, 0.30, 0.40, and 0.50, and the computed values for w2

are 0.20, 0.24, 0.32, and 0.40. When SP2 has an increasing payoff w9 from 0.25 to 0.50, its

strategy also increases from 0.15 to 0.91 (i.e., from 150 to 910 Mbps). However, SP1, whose

payoff w4 remains constant at 0.40, decreases its strategy from 0.96 to 0.46 (i.e., from 960

to 460 Mbps). This conflicting behavior between the two SPs allows the EUs to still get

service even if one of the SPs is decreasing its strategy.
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(a) The effect of service availabilities to the VN1 capacity supply y1.

(b) The effect of InP1 payoffs to the PN1 capacity supply.

Figure 4.4: The network economics of a three-SP, two-InP NV system.

Network Economics

Fig. 4.3a illustrates the effect of SP2 service availability w2 to the VN capacity of SP1 as

a result of solving (4.23) using the Runge-Kutta method. At x = 0.5 and as w2 is increased,

the VN capacity of SP1 y1 decreases from 0.83 to 0.72. That is, a more reachable competing

SP can accommodate more users, causing the demand for other SPs to decrease.

Likewise, from numerically solving (4.23), the influence of the SP2 competition w6 to the

VN capacity of SP1 is plotted in Fig. 4.3b. It shows that SP1 increases its VN capacity

when the effect of competition from SP2 w6 is greater. For instance, at x = 0.5, y1 goes

from 0.65 to 0.92. In other words, the SP1 will try to increase its capacity to satisfies its
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users.

Lastly, the PN capacity as a function of the VN1 capacity is found by solving (4.25). Fig.

4.3c shows the changes to the PN capacity with respect to the SP2-to-InP payoff w14, with

all initial capacities lowered to 0.10. At y1 = 0.5, as the payoff w14 of SP2 is increased, the

PN capacity supply z increases from 0.12 to 0.42 to keep up with the increasing demand

from SP2.

4.4.3 Three-SP, Two-InP Network Virtualization System

This section is concluded by showing the economics of a three-SP, two-InP NV system.

From (4.31), this configuration includes 36 network parameters. Consequently, for brevity,

only the values of parameters that vary in each setup are shown.

Network Resource Strategies

To show the effect of the service availabilities w2 and w3 of SP2 and SP3 to the equilibrium

point E∗(x, y∗1, y
∗
2, y
∗
3, z
∗
1z
∗
2), set w2 and w3 to 0.50, 0.55, 0.60, and 0.65 while keeping all

the other parameters constant. The results are tabulated in 4.10. Thus, when the service

availabilities of SP2 and SP3 increase, the resource strategy y∗1 of SP1 decreases. Moreover,

the resource strategies y∗2 of SP2 and y∗3 of SP3 also decrease.

Network Economics

The effect of service availabilities w2 and w3 of SP2 and SP3, respectively, to the VN

capacity supply of SP1 is shown in Fig. 4.4a. It is evident that as the other two SPs

become more available to the EUs, with w2 and w3 taking values 0.80, 1.00, 1.20, and 1.40,

the capacity supply of SP1 decreases. This may be attributed to the behavior of the EUs

having more choices for the SPs. However, the trend for VN1 capacity supply y1 stays the

same where it decreases with increasing EUs demand.
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In Fig. 4.4b, the effect of SP2-to-InP1 payoff w27 and SP3-to-InP1 payoff w28 to the PN

capacity supply of InP1 z1 is shown. As w27 and w28 increases, z1 increases with the demand

from SP1 as well. That is, InP1 can afford to increase its supply as long as its payoff for

doing so increases, no matter from which SP the increase in payoff comes from. Finally,

for networks with higher number of SP and InP, they can be analyzed and simulated in a

similar way.

4.5 Related Works

To the best of our knowledge, the prey-predator food chain model has not been used to

model the resource allocation and economics in an NV system. However, several related

research papers have inspired us to develop a new mathematical framework for NV. Some of

these works utilized game theory, contract theory, and queuing theory. These frameworks

have not only been applied to traditional NV but also to wireless NV and to network

function virtualization (NFV).

The authors of [87] proposed a non-cooperative game theoretic approach to bandwidth

allocation. They developed an algorithm that iteratively solved for the Nash equilibrium of

the game, and in turn, found the solution to the bandwidth allocation problem. Meanwhile,

the authors of [88] proposed a two-stage non-cooperative game for bandwidth allocation. In

the first stage, the bandwidth negotiation game, the SPs request bandwidth from multiple

InPs. In the second stage, the bandwidth provisioning game, the SPs sharing the same

physical link of an InP compete for bandwidth. Game theory was also used to improve the

utilization of resources. The authors of [89] proposed a two-stage Stackelberg game-based

mechanism that allows the InP to determine a reselling rate that maximizes its revenue and

enables the SP to calculate the amount of bandwidth that minimizes its expenses.

Virtualization in wireless networks, or wireless NV, allows multiple wireless networks

operated by different SPs to dynamically share a common physical infrastructure operated
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by mobile network operators (MNO) [90]. Game theory was also applied to wireless NV,

where the MNOs are responsible for dynamic wireless resource management, while the

SPs aim at providing proper bandwidth allocation to their users. In [91], the interactions

between the SPs and the NO were modeled as a stochastic game, since the demand of the

users of the SPs varies with time. However, since the resulting stochastic game has strong

dependency among SPs and on future actions, the authors utilized the Vickrey-Clarke-

Groves (VCG) auction mechanism and conjectural pricing to transform the game into a

series of independent games. Other papers that used game theory to formulate and solve

an NV resource allocation problem include [92], [93], [94], and [95].

In NFV, software implementations of network functions are decoupled from the hardware

[96]. Hence, multiple virtual network functions (VNFs) can be multiplexed in common

physical servers. The authors of [97] used mixed queuing model to allocate the resources

of the servers to VNFs. Each user of the network requires different combinations of VNFs,

or service chains. Thus, each VNF was modeled as a queue, and the model was designed

to minimize the waiting time of service chains. Since VNFs are normally “chained” to

each other, and thus may be utilized in succession by its users, effective placement and

scheduling of these VNF chains in physical servers have been proposed in [98] to achieve

high network resource utilization and low network response latency. The authors proposed

a priority-driven weighted algorithm to maximize the average resource utilization, and a

novel heuristic algorithm to minimize the average response latency. When the central offices

(COs), where physical servers are housed, are geo-distributed, assigning VNFs to servers

can be challenging. Consequently, to provide load balancing and cost efficiency, the authors

of [99] proposed a framework that selects a set of COs that minimizes the communication

cost within the set and then uses a shadow-routing approach that jointly optimizes VNF-CO

and VNF-server assignment.

Many other approaches have been used to model the allocation of resources in NV.

The authors of [100] proposed a parallel and distributed algorithm based on alternating
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direction method of multipliers (ADMM) for bandwidth allocation and routing problem

that minimizes the traffic that the SP encounters. Information asymmetry in wireless NV, a

situation where the NO has no access to private information about the SPs, was investigated

by the authors of [101]. They proposed a solution to the resource allocation problem using

contract theory, where the NO offers each SP a contract that allows each to maximize its

own payoff. In [102], when the SPs could not report their traffic, a traffic predictor was

integrated into the bandwidth allocation algorithm so that the InPs can supply accurate

amount of resources to the SPs. Other approaches to resource allocation in NV include

matching theory [103] [104], machine learning [105] [106], and fuzzy logic [107].

4.6 Conclusion

In this work, a novel approach to NV resource allocation and economics based on prey-

predator food chain model has been developed. Models for one-SP, one-InP and two-SP,

one-InP NV systems have been formulated, as well as the generalized N -SP, M -InP NV

system. The properties of these configurations have also been discussed. Furthermore, the

derivation of the equilibrium point of these models, as well as the conditions for its existence

and stability, have also been presented. Economic models that associate the EU demand

to the SP supply and the SP demand to the InP supply have been proposed. Numerical

simulations have been performed to demonstrate the characteristics of these models. The

results have indicated that the SP and the InP resource strategies depend on NV parameters

such as payoff, failure, service, and congestion factors. Therefore, the SP and InP can

control their resource strategies by changing the relevant network parameters. Moreover,

the capacity supplies of the SP and the InP as a function of their respective demand also

change with these network parameters.
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Table 4.1: Network Virtualization Parameters.

Symbol Definition

χ number of user requests (URs)

ψ number of virtual resource requests (VRRs)

ω number of active physical resources (PRs)

τ time

r(1) arrival rate of user requests (per unit time)

r(2) failure rate of virtual resource requests (per unit time)

r(3) unavailability rate of physical resources (per unit time)

κ(1) maximum number of user requests (URs)

κ(2) maximum number of virtual resource requests (VRRs)

κ(3) maximum number of physical resources (PRs)

s service rate (per unit time per VRR (or PR))

p payoff rate (per unit time per UR (or VRR))

q congestion/competition rate (per unit time per VRR (or PR))

n max. no. of EUs per VRRs (URs per VRR)

m max. no. of VRs per PR (VRRs per PR)
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Table 4.2: One-SP, One-InP NV Dimensionless Parameters.

Parameter Definition Name

x χ
κ(1)

EU capacity demand

y ψ
κ(2)

VN capacity supply/demand

z ω
κ(3)

PN capacity supply

t r(1)τ dimensionless time

w1
s(1)

r(1)/κ(2)
SP service availability ratio

w2
r(2)

r(1)
SP failure ratio

w3
p(2)

r(1)/κ(1)
SP payoff factor

w4
q(2)

r(1)/κ(2)
SP congestion factor

w5
s(2)

r(1)/κ(3)
InP service availability ratio

w6
r(3)

r(1)
InP unavailability ratio

w7
p(3)

r(1)/κ(2)
InP payoff factor

w8
q(3)

r(1)/κ(3)
InP congestion factor
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Table 4.3: Two-SP, One-InP NV Dimensionless Parameters.

Parameter Definition Name

x χ
κ(1)

EU capacity demand

yj
ψj

κ
(2)
j

VNj capacity supply/demand

z ω
κ(3)

PN capacity supply

t r(1)τ dimensionless time

w1
s
(1)
1

r(1)/κ
(2)
1

SP1-to-EU service availability factor

w2
s
(1)
2

r(1)/κ
(2)
2

SP2-to-EU service availability factor

w3
r
(2)
1

r(1)
SP1 failure ratio

w4
p
(2)
1

r(1)/κ(1)
EU-to-SP1 payoff factor

w5
q
(2)
1

r(1)/κ
(2)
1

SP1 congestion factor

w6
q
(2)
2

r(1)/κ
(2)
2

SP2-to-SP1 competition factor

w7
s(2)

r(1)/κ(3)
InP-to-SP service availability factor

w8
r
(2)
2

r(1)
SP2 failure ratio

w9
p
(2)
2

r(1)/κ(1)
EU-to-SP2 payoff factor

w10
q
(2)
1

r(1)/κ
(2)
1

SP1-to-SP2 competition factor

w11
q
(2)
2

r(1)/κ
(2)
2

SP2 congestion factor

w12
r(3)

r(1)
InP unavailability factor

w13
p(3)

r(1)/κ
(2)
1

SP1-to-InP payoff factor

w14
p(3)

r(1)/κ
(2)
2

SP2-to-InP payoff factor

w15
q(3)

r(1)/κ(3)
InP congestion factor
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Table 4.4: N -SP, M -InP NV System Parameters.

Symbol Definition

χ number of user requests (URs) at service area

ψj number of virtual resource requests (VRRs) at SPj

ωk number of active physical resources at InPk

τ time

r(1) arrival rate of URs at service area

r
(2)
j failure rate of VRRs at SPj

r
(3)
k unavailability rate of PRs at InPk

s
(1)
1j SPj-to-EU service rate

p
(2)
j EU-to-SPj payoff rate

q
(2)
jJ SPJ -to-SPj congestion/competition rate

s
(2)
jk InPk-to-SPj service rate

p
(3)
kj SPj-to-InPk payoff rate

q
(3)
kK InPK-to-InPk congestion/competition rate
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Table 4.5: N -SP, M -InP NV System Dimensionless Parameters.

Symbol Definition Name

x χi

κ
(1)
i

EU demand

yj
ψj

κ
(2)
j

VNj network demand

zk
ωk

κ
(3)
k

PNk network supply

t r(1)τ time

wrj
r
(2)
j

r(1)
failure rate of VRRs at SPj

wrk
r
(3)
k

r(1)
unavailability rate of PRs at InPk

ws1j
s
(1)
1j

r(1)/κ
(2)
j

SPj-to-EU service rate

wpj
p
(2)
j

r(1)/κ(1)
EU-to-SPj payoff rate

wqjJ
q
(2)
jJ

r(1)/κ
(2)
j

SPJ -to-SPj congestion/competition rate

wsjk
s
(2)
jk

r(1)/κ
(3)
k

InPk-to-SPj service rate

wpkj
p
(3)
kj

r(1)/κ
(2)
j

SPj-to-InPk payoff rate

wqkK
q
(3)
kK

r(1)/κ
(3)
k

InPK-to-InPk congestion/competition rate

118



Table 4.6: Parameter values for One-SP, One-InP NV System.

EU SP InP

Parameter Value Parameter Value Parameter Value

κ(1) 1000 κ(2) 50 κ(3) 50

n 25 m 4

w1 0.50 w5 0.50

w2 0.10 w6 0.10

w3 0.50 w7 0.50

w4 0.10 w8 0.10

x0 0.50 y0 0.50 z0 0.50

Table 4.7: The effect of VN service availability and PN payoff factor on the equilibrium.

E
w1 w7

0.10 0.50 1.00 2.00 0.10 0.15 0.20 0.25

x∗ 0.93 0.72 0.56 0.37 0.73 0.79 0.83 0.86

y∗ 0.70 0.55 0.44 0.31 0.55 0.42 0.34 0.28

z∗ 0.77 0.59 0.45 0.29 0.45 0.53 0.58 0.61
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Table 4.8: Parameter values for Two-SP, One-InP NV System.

EU SP1 SP2 InP

Parameter Value Parameter Value Parameter Value Parameter Value

κ(1) 1000 κ
(2)
1 50 κ

(2)
2 40 κ(3) 50

n1 25 n2 20 m 4

w1 0.50 w2
+ w7 0.20

w3 0.01 w8 0.01 w12 0.01

w4 0.40∗ w9
+ w13 0.05∗

w5 0.10 w11 0.10 w14 0.04∗

w6 0.01 w10 0.01 w15 0.10

x0 0.50 y1(0) 0.50 y2(0) 0.50 z0 0.50

Table 4.9: The effect of service availability and payoff factor on the equilibrium.

E
w2 w9

0.20 0.25 0.30 0.40 0.25 0.30 0.40 0.50

x∗ 0.49 0.48 0.47 0.41 0.49 0.49 0.46 0.41

y∗1 0.96 0.85 0.72 0.46 0.96 0.87 0.66 0.46

y∗2 0.15 0.38 0.59 0.91 0.15 0.33 0.66 0.91

z∗ 0.44 0.47 0.49 0.49 0.44 0.47 0.50 0.49
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Table 4.10: The effect of service availabilities on the equilibrium.

E
w2, w3

0.50 0.55 0.60 0.65

x∗ 0.7773 0.7621 0.7475 0.7332

y∗1 0.0589 0.0577 0.0565 0.0553

y∗2 0.1485 0.1459 0.1434 0.1411

y∗3 0.2380 0.2341 0.2304 0.2286

z∗1 1.0331 1.0125 0.9924 0.9731

z∗2 1.8463 1.8099 1.7747 1.7406
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this dissertation, the application of mean field games (MFGs) to future generation

of communication networks has been proposed. Based on the results of this work, MFG is

an excellent framework to analyze, model, and simulate these networks in order to address

their issues and features including massive connectivity, energy efficiency, low latency, and

improved network performance.

The first work deals with the analysis and modeling of user behavior in social networks.

A multiple-population MFG approach has been proposed to gain knowledge about the

belief and opinion evolution of social network users. Furthermore, the presence of stubborn

users, or users that are reluctant to change their initial opinion, has been integrated in the

MFG-based behavior modeling. The results have indicated that the proposed MFG-based

framework provides insights on how users and populations behave on a multiple-population

social network. Using a social evolution dataset as a benchmark, the proposed MFG-based

method has also allowed for an effective approach to estimate and predict the distribution

of opinions of social network users on a social topic.

The second work focuses on energy-efficient and low-latency computation offloading in

multi-access edge computing networks (MECN). The computation offloading problem has

been formulated as a mean-field-type game (MFTG), which is a relaxed version of MFG.

Then, non-cooperative and cooperative computation offloading algorithms have been pro-

posed. These algorithms compute the optimal offloading control or the optimal number

of computation tasks to be offloaded by each computing node from the MECN. The non-

cooperative algorithm is a decentralized approach where each computing node determines
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its own offloading control, whereas the cooperative algorithm is a centralized approach

where the MECN determines the offloading control of each computing node. The results

have proven that the MFTG-based algorithms are efficient and effective in implementing

computation offloading in MECNs.

Finally, the last work introduces a dynamic hierarchical game approach to resource

allocation and economics in network virtualization (NV). An NV system is a dynamic

hierarchical system that has three levels, the end users (EUs), the service providers (SPs),

and the infrastructure providers (InPs). The prey-predator food chain model has been

utilized to model the dynamic interactions that exist between these entities. Furthermore,

the proposed models have been used to determine the network resource strategies or the

amount of network resources demanded and/or supplied by each entity in an NV system.

The results have indicated that the network resource strategies of the SPs and the InPs

depend on NV parameters such as payoff, failure, service, and congestion factors. Therefore,

the SP and InP can control their resource strategies by changing the relevant network

parameters. This work is a preparation for a future work that integrates MFG into the

resource allocation and economics framework of an NV system.

5.2 Future Works

5.2.1 Unmanned Aerial Vehicle Networks

Unmanned aerial vehicles (UAVs) have played major roles in recent advances in commu-

nications, civil, and military applications [108]. UAVs in communication networks can be

utilized either as aerial base stations to extend the coverage, increase the capacity, and im-

prove the reliability and energy efficiency of wireless communication networks, or as mobile

access points to enable applications such as real-time video streaming and content deliv-

ery [109]. Meanwhile, UAVs can be integrated in civil services such as search and rescue
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operations, remote sensing, and security and surveillance due to their ease of deployment,

low maintenance cost, high-mobility, and ability to hover [110]. UAVs can speed-up search

and rescue operations in case of natural or man-made disasters, assist in gathering and

delivering data from ground sensors to base stations, and improve safety, coverage, range,

robustness, and efficiency of surveillance [111].

A special application of UAVs is pursuit and evasion games between pursuer UAVs

and target UAVs. This application is prevalent in security and surveillance operations

administered by the police, military, and private institutions. In a pursuit and evasion

game, the goal of a pursuer UAV is to follow and capture a target UAV while minimizing

the associated cost; the goal of a target UAV is to move away and prevent capture by

a pursuer UAV while minimizing the associated cost. Since UAVs have limited resources

such as energy supply and computation capability, they must be able to move according

to an optimizing strategy and must be able to do so through a computationally efficient

algorithm.

In a future work, the authors propose a special form of MFG to formulate and model

pursuit and evasion games involving a large number of UAVs. For games with Stackelberg

structure where leading players enforce strategies to a large number of following players

with each player performing based on their optimal control that minimizes their cost, a

mean-field Stackelberg game [112] can be used to find the optimal control of each player.

Consequently, for pursuit and evasion scenarios with one target UAV and a large number of

pursuer UAVs, the authors propose a mean-field Stackelberg game to determine the optimal

control of each UAV that minimizes their cost function.

5.2.2 Network Virtualization

In Chapter 4, a unique approach to analyzing and modeling of resource allocation and

economics in network virtualization (NV) has been introduced. NV is a dynamic system
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where the quantities of network resource trading between the consumers and the produc-

ers are changing with time. Due to these inter-level and intra-level interactions in NV,

a conventional game theoretical approach becomes more complicated. Thus, a dynamic

hierarchical game model has been proposed to capture these interactions in an NV system.

There are three levels in the dynamic hierarchical game model: the lowest level consists

of the end users (EUs); the middle level consists of the service providers (SPs); and the

top level consists of the infrastructure provider (InPs). An interaction between two levels

in the model is represented by service payment (e.g., money) in NV, while an interaction

within the same level in the model is represented by competition (e.g., loss) in NV. Thus,

the proposed dynamic hierarchical model represents the dynamic allocation of resources

between each level as well as the economics (i.e., transfer of wealth) in the NV system.

As part of a future work, the authors propose to integrate MFG in order to model the

resource allocation and economics of a virtualized network with large number of virtual

networks and users. Since the hierarchy denotes level of precedence among the entities (i.e.,

InPs have more influence than SPs and SPs have more influence than EUs), the authors

propose MFG with major and minor players [113]. In this MFG configuration, the major

players have non-negligible influence to the behavior of the system while minor players have

negligible individual effect to the system. In NV, the absence or presence of a few EUs

can have negligible effect on the SPs and the absence or presence of a few SPs can have

negligible effect on InPs. However, the InPs have non-negligible effect on the SPs and the

SPs have non-negligible effect on the EUs.

5.2.3 Internet of Things

The Internet of things (IoT) allows physical objects to communicate with each other,

make decisions and deliver smart services together [114]. It should be capable of intercon-

necting billions or trillions of heterogeneous objects through the internet. The emerging
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IoT applications include smart home, intelligent transportation system, smart city, indus-

trial, and smart healthcare [115]. In order to successfully implement these applications, the

key requirements include low deployment cost, long battery life, low device cost, extended

coverage area, support for massive number of connected devices (scalability), and security

and privacy.

Since IoT consists of a large number of heterogeneous devices that make network mod-

eling and optimization more complicated, the authors propose MFG as a method to model

and optimize such networks. MFG can help devices decide their strategies in order for an

IoT network to perform a specific functionality satisfactorily. Specifically, as in the first part

of this dissertation, MFG can be applied to model the behavior of a variety of IoT devices,

and hence help the network optimize its performance based on the estimated or predicted

behavior of the devices. Furthermore, MFG can also be used to provide solution to chal-

lenges that IoT is facing. For instance, in IoT security and privacy, an IoT device can base

its strategy (e.g., whether to continue communication with the network) on the perceived

level of network security. In this scenario, MFG can be used to estimate the perceived level

of security in the network given the behavior of other devices in the network.
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