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Abstract

Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously 

developed a high-throughput assay that employs an SMN2-luciferase reporter allowing 

identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the 

SMN protein. We describe optimization and characterization of an analog suitable for in vivo 

testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and 

brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by 

reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro 

properties and a promising mouse PK profile, making it suitable for in vivo testing. This series 

post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy 

inhibition, revealing a novel therapeutic mechanism that should complement other modalities for 

treatment of SMA.
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INTRODUCTION

Spinal muscular atrophy (SMA) is one of the most frequent heritable causes of infant 

mortality that afflict all populations throughout the world.1, 2 Approximately 1 in 40 

asymptomatic adults is a carrier of this autosomal recessive disease.3, 4 Infants with the most 

severe form of SMA (type I) typically show normal strength at birth but exhibit weakness 

within a few weeks or months. There is progressive motor insufficiency as the infant gains 

weight, and death due to respiratory failure often ensues within 2 years. Patients with types 

II and III SMA present weakness in early childhood, and type IV SMA is a milder, adult-

onset form. These observations imply that motor neuron dysfunction and clinical symptoms 

develop and progress after a variable latent period. This is important as it signifies a 

temporal window for therapeutic intervention and stabilization or reversal of motor 

dysfunction.5–7

SMA was mapped to chromosome 5q13.6, 8, 9 This region contains a 500 kilobase inverted 

repeat and is a hotspot for chromosomal rearrangement. Within this locus are two nearly 

identical SMN genes: telomeric SMN1 and centromeric SMN2,6, 10, 11 which encode the 

identical survival motor neuron (SMN) protein. SMA carriers with one copy of SMN1 are 

unaffected; rather, SMA is manifested when both copies of SMN1 are deleted, disrupted, or 

converted to SMN2 by homologous recombination.12–15 A large amount of human mapping 

and correlative studies has unequivocally documented that SMA results from reduced levels 

of SMN protein [18–21].16–19 The SMN2 mRNA undergoes alternative splicing such that 

the majority (~90%) of its transcripts skip exon 7 to produce an unstable truncated SMN 

protein, while the remaining ~10% encode full-length SMN protein.20, 21 Although the level 

of SMN needed to maintain motor neurons is not known, doubling the amount of full-length 

SMN protein from the SMN2 gene should be clinically significant.22, 23 Several repurposed 

drugs, such as riluzole, phenylbutyrate, valproic acid, albuterol, and hydroxyurea, have 

advanced into clinical trials, but none of them have elicited convincing improvement in 

muscle function or survival in SMA.24, 25

There are five small molecules currently in phase I to phase III clinical trials for SMA.26 

Olesoxime27 is a neuroprotective compound that retards mitochondrial permeability 

transition pore opening in neurons under cellular stress. After successful in vitro and 

extensive in vivo studies, olesoxime advanced into clinical trials for evaluation of its effects 

on laboratory values, vital signs, and electrocardiogram parameters in SMA patients. 

CK-212710728 is a fast skeletal muscle troponin activator developed by Cytokinetics in 

collaboration with Astellas Pharma that is currently being tested in a phase II clinical trial 
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with SMA types II–IV patients. The other three small molecules in clinical trials upregulate 

SMN2-derived SMN protein through different SMA-specific pathways (Figure 1). A high-

throughput screen for compounds that stimulate SMN2 transcription and subsequent 

structure–activity relationship (SAR) studies led to the identification of a series of 2,4-

diaminoquinazolines that increased total SMN2 transcripts. After further medicinal 

chemistry optimization, this screen was developed into a lead compound, RG3039 (1).29 

Repligen, Inc., and then Pfizer, Inc., acquired the rights to 1. While efficacy in a mouse 

model of SMA was observed and a phase I clinical trial suggested an acceptable safety 

profile, development of 1 is on hold because of unclear activity and mechanism, as elevated 

SMN protein levels were not detected.30, 31 PTC Therapeutics, in collaboration with Roche, 

developed a series of compounds that induce SMN2 exon 7 inclusion.32, 33 Clinical trials 

involving the lead compound, RG780032 (2), were suspended over concerns regarding an 

ophthalmologic side effect that developed in long-term animal studies, and it has been 

replaced with an alternative candidate, RG7916,34 which is currently enrolling for a phase II 

trial. Novartis Inc. identified a series of small molecules that increased exon 7 inclusion of 

SMN2, notably LMI07034 (3), through stabilization of the U1 snRNP complex. Although 

clinical trials were initiated to evaluate the safety of compound 3 in SMA type I patients, it 

presently is on hold for enrolling new patients due to toxicities in chronically exposed 

animals.35 Beyond small molecules, human clinical trials are evaluating the use of antisense 

oligonucleotides and adenovirus associated (AAV) SMN expression vectors.36–38 

Nusinersen (Spinraza),39 an antisense oligonucleotide, recently became the first FDA 

approved therapy for SMA.

There is a clear need for multiple drug candidates with novel and distinct mechanisms of 

action.24, 40 We pioneered a cell-based SMN2 reporter assay to identify inducers of SMN 

expression, and we discovered two hit compounds: LDN-75654 (4) and LDN-76070 (5).
41, 42 We demonstrated that these two series have different mechanisms of action. 

Compound 5 acts in a transcriptional manner, while compound 4 increases the SMN protein 

independent of SMN2 transcription. In vivo studies established that compound 5 increases 

SMN protein and the survival of severe SMA mice (SMNΔ7). Although compound 4 
promoted increases in SMN expression in SMA-derived fibroblast, is compliant with 

Lipinski’s rules43 for drug-like molecules, and has physicochemical properties considered 

suitable for blood–brain barrier (BBB) penetration (MW = 283, cLogP = 3.4, PSA = 51 A2, 

one H-bond donor and two H-bond acceptors44–47), we found it to be inactive in vivo. 

Compound 4 had poor aqueous solubility (6 µM at pH 7.4) and a short half-life in mouse 

liver microsomes (T1/2 = 5 min). Presumably, this lack of metabolic stability and poor 

solubility account for its poor performance in vivo. Nevertheless, we considered 4 to be a 

good lead for further optimization (Figure 2). In this publication, we describe the 

optimization and preliminary characterization of compounds derived from isoxazole 4. The 

optimization of compounds derived from the 3,4-dihydroquinolinone 5 will be described 

elsewhere.
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CHEMISTRY

To investigate the SAR of the aryl ring, commercially available 5-isopropylisoxazole-3-

carboxylic acid (6) was coupled with the appropriate aniline or amino-heterocycle in the 

presence of the coupling agent 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-

b]pyridinium 3-oxide hexafluorophosphate (HATU) and produced the desired amides (4–4x) 

in moderate to good yields (Scheme 1). Similarly, variations to the 5-position of the 

isoxazole were examined (e.g., 8a–i), following HATU coupling of the appropriately 5-

substituted isoxazole (7a–i) with 3-chloro-4-fluoroaniline.

The preparations of compounds with modified linkers between the aryl and isoxazole ring 

are depicted in Scheme 2. Reaction of the hit 4 with sodium hydride and iodomethane in 

THF gave the N-methylated amide (9) in 82% yield. Treatment of the amide (4) with 

Lawesson’s reagent proceeded smoothly to give the thioamide (10) in 75% yield. Reduction 

of the amide (4) to the amine (11) was accomplished in 57% yield, following lithium 

aluminum hydride treatment in refluxing THF. The ester (13) was prepared from the 

succinate ester derivative of acid (6) and reaction with 3-chloro-4-fluorophenol (12). The 

reverse amide analog (16) was prepared by a standard amide coupling reaction between 

commercially available 5-isopropylisoxazol-3-amine (14) and 3-chloro-4-fluorobenzoic acid 

(15) in moderate yield. The urea (19) was prepared from the commercially available 

isocyanate (17) and 3-chloro-4-fluoroaniline (18) in 63% yield.

The synthesis of the 4-methyl substituted isoxazole (23) is outlined in Scheme 3. Treatment 

of commercially available methyl 5-isopropylisoxazole-3-carboxylate (20) with NBS in 

DMF gave the 4-bromoisoxazole (21) in 23% yield. Palladium-catalyzed coupling of 21 
with trimethylboroxine and PdCl2dppf introduced the methyl group to the 4-position, 

although the yield was low because of competing debromination. Hydrolysis of the ester 

with aqueous sodium hydroxide gave the corresponding carboxylic acid, and coupling with 

3-chloro-4-fluoroaniline (18), using bromotripyrrolidinophosphonium hexafluorophosphate 

(PyBroP), gave the 4-methylisoxazole 23.

RESULTS AND DISCUSSION

Each compound was first evaluated for activity in a luciferase (luc) reporter assay that 

combines the SMN2 promoter, SMN exons 1–6 cDNA, followed by a splicing cassette 

containing introns 6, exon 7, intron 7, and exon 8.41 The terminal codon of exon 7 was 

changed such that when spliced onto exon 8, SMN-firefly luciferase, engineered into the 

latter exon, is in frame. If exon 7 is skipped, no SMN-luciferase is produced. This assay can 

identify compounds that increase SMN protein levels by three mechanisms: modulating 

alternative splicing of SMN2 exon 7; increasing transcription from the SMN2 promoter; 

stabilizing the full-length SMN fusion protein or mRNA. Six-point dose–response curves of 

each compound were generated by 3-fold serial dilutions with a final maximal concentration 

of 10 or 30 µM to determine EC50 values and percent maximum increases in SMN2 
expression for each compound. Unless otherwise stated, all values are the mean ± SEM of at 

least three separate experiments. Compounds with less than 150% SMN reporter induction 
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and >1 µM EC50 and inactive (IA) compounds defined as less than 50% SMN reporter 

induction were screened on two separate occasions in duplicate.

In the first series of compounds, both the 5-isopropyl group and isoxazole core were kept 

constant and the aryl group was modified (Table 1). Compared to compound 4, deletion of 

the 3-chloro had little effect on activity (4a), whereas deletion of the 4-fluoro substituent 

gave an increase in potency (4b), and deletion of both the 3-chloro and 4-fluoro substituents 

gave a significant boost in potency (4c). A fluoro substituent was well-tolerated at either the 

2- or 3-position (4d or 4e), and these analogs were of comparable activity to the 

unsubstituted analog (4c). Conversely, substitution with other electron withdrawing or 

donating substituents (e.g., chloro, methyl, or methoxy 4f–l) at each of the available ring 

positions, in general, led to a loss in activity. On the basis of the analogs studied, 

unsubstituted phenyl and 2- or 3-fluorophenyl were the optimal aryl groups in terms of 

increasing SMN2 expression.

The effect of replacing the phenyl ring, by a heterocyclic ring on SMN2 expression, was 

next investigated (Table 2). The 5-isopropylisoxazole core and amide linker were unchanged 

to allow comparison between new compounds and unsubstituted phenyl analog (4c). The 2-

pyridyl analog (4m) was of comparable activity as the unsubstituted phenyl analog (4c); 

however, the 3-pyridy analog 4n was considerably less active, and the 4-pyridyl analog (4o) 

was devoid of activity. The 2-thiazole analog (4q) was ~2-fold less potent than the 2-pyridyl 

analog (4m), although the 2-oxazole (4r) was inactive. The benzimidazole (4r) and 

benzothiazole (4t) analogs were of comparable activity as the 2-pyridyl analog (4m); 

however, the N-methylbenzimidazole (4s) and the indane (4u) were significantly less active. 

In general, analogs with a heteroatom at the 2-position maintained activity, but analogs with 

a heteroatom at the 3- or 4-position (e.g., 4n and 4m) were less active in the SMN-luc 

reporter gene assay.

Variations to the 5-position of the isoxazole were next examined, and the effect on SMN2 
expression is summarized in Table 3. Both the 3-chloro-4-fluorophenyl and the isoxazole 

core were retained to allow comparison between compounds. First, unsubstituted (8a), 

methyl (8b), and ethyl (8c) groups at the 5-position were investigated and resulted in a 

significant loss in activity. The more bulky sec-butyl (8d) and tert-butyl (8e) analogs were of 

comparable activity to 4, but the two cycloalkyl analogs (8f and 8g), the phenyl analog (8h), 

and the benzyl analog (8i) were not active. On the basis of the compounds studied, the 

original isopropyl group was the optimal 5-substituent in terms of increasing SMN2 
expression.

The effects of modifications to the linker between the isoxazole and the aryl group are 

summarized in Table 4. The 3-chloro-4-fluorophenyl and the 5-isopropylisoxazole core were 

kept unchanged (except for the unsubstituted indane 4v) to allow comparison between 

compounds in the table. N-Methylation (e.g., 9) and replacement of the amide by an ester 

(13) abolished activity, whereas cyclic constraint of the amide NH to the ortho-position of 

the aryl ring gave the indane (4v) and an improvement in activity. The activity of the 

indoline indicates that H-bonding is not required for activity. The thioamide (10), amine 

(11), reverse amide (16), and urea (19) were considerably less active than compound 4.
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In the final set of compounds, the effects of both reversal of the amide group and different 

N-linked heterocycles on activity in the SMN-luc reporter gene assay were investigated 

(Table 5). The reverse amide 16 (EC50 = 9.9 µM) was significantly less active than the 

original hit 4 (EC50 = 1.8 µM). Replacing the isoxazole core by a thiazole restored activity 

and the 2-amino-4-cyclobutyl analogs 26 and 27 had significantly improved activities in the 

SMN-luc reporter gene assay.

In order to prioritize compounds for mouse PK studies, a number of promising analogs were 

evaluated for stability in mouse liver microsomes and for kinetic solubility at pH 7.4 (Table 

6). In comparison to lead compound 4, these analogs all displayed greater aqueous 

solubility; however, in the isoxazole series, only the 2-pyridyl analog (4m) had a favorable 

stability in mouse liver microsomes. In addition, the 5-cyclobutyl alcohol substituted 

thiazole (27) had good solubility and microsomal stability.

On the basis of their activity in the SMN-luc reporter gene assay and promising stability in 

mouse liver microsomes and aqueous solubility, compounds 4m and 27 were selected for 

evaluation of their effects on the human SMN protein expression using fibroblasts from 

SMA patients. SMN genes are ubiquitously expressed, and even one copy of the human 

SMN1 gene will mask the effects of compounds on expression from the SMN2 gene. SMN 

null cells are not viable. The current standard is to use a human cell line derived from a 

severe SMA patient. The fibroblast strain 3813 (Coriell GM03813) is SMN1 null with three 

copies of SMN2. The 3814 cells from the carrier parent (SMN1 ± with five copies of SMN2) 

express more full-length SMN protein than 3813 cells.26 We used hTERT immortalized 

3813T and 3814T cell clones that circumvent the problem of cell senescence.48

Patient 3813T fibroblasts were exposed to the indicated doses of 4m and 27. Analysis of 

SMN protein levels revealed a dose-dependent increase in SMN protein levels (Figure 3). 

Both compounds gave approximately a 2-fold increase in SMN protein levels at a dose of 2 

µM.

Upon these encouraging results, the synthesis of 4m was scaled up for preliminary mouse 

PK and efficacy experiments. Compound 4m was soluble in 40% PEG 400 + 60% water and 

was dosed ip to mice at 20 mg/kg. Surprisingly, 4m was detected in only very low levels in 

the plasma (Cmax = 2 ng/mL) and brains (Cmax = 5 ng/mL) of the mice and was below the 

levels of detection after 30 min (Table 7). To investigate the unexpected plasma and brain 

exposure, we evaluated 4m for stability in mouse plasma. Compound 4m was incubated in 

heparin sodium treated mouse plasma at 37 °C for 60 min. It became apparent that 4m was 

unstable in mouse plasma (T1/2 < 5 min). Presumably, the amide bond of compound 4m was 

susceptible to hydrolysis in mouse plasma. We, therefore, studied the effects of substituents 

located on either side of the amide bond on plasma stability (Table 8). Replacing the 2-

pyridyl of 4m by phenyl (e.g., 4 or 4c) gave a very modest improvement in plasma stability, 

while locating a substituent on the amide nitrogen (e.g., 9 or 4v) had no effect. Introduction 

of a methyl substituent at the 4-position of the isoxazole (e.g., 23) resulted in a significant 

increase in plasma stability (T1/2 = 76 min). Presumably, the methyl group adjacent to the 

amide bond sterically hindered and retarded the hydrolysis. This modification resulted in a 

boost in activity in the SMN2 luciferase reporter gene assay, although its stability in mouse 
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liver microsomes was poor (Table 6). Reversal of the orientation of the amide group was 

investigated next and resulted in a significant increase in plasma stability for both isoxazole 

(16, T1/2 = 76 min) and thiazole (27, T1/2 = 326 min) analogs.

Compound 27 had minimal effects on luc levels expressed from a minimal SV40 promoter 

and in vitro on recombinant luciferase protein (Figure 4A). It showed good activity in the 

SMN-luc reporter gene assay (Figure 4A) and for increasing human SMN protein expression 

in fibroblasts derived from SMA patients. Compound 27 had promising solubility, 

microsomal stability, and plasma stability and was advanced to further testing. Measurement 

of the plasma protein binding in mouse and human plasma indicated free fractions for 27 of 

4.7% free in mouse plasma and 3.5% free in human plasma. Adequate permeability (Papp(A 

to B) = 15 × 10−6 cm/s) was established in the human intestinal epithelial cell line Caco-2 

model. There was no effect of 27 on the viability of SH5Y5Y cells up to the maximal tested 

dose of 100× its EC50 after 48 h of treatment (Figure 4A). On the basis of its in vitro 

potency, microsomal, and plasma stability, 27 was selected for preliminary mouse PK 

experiments. Compound 27 demonstrated good plasma (Cmax = 23 µM) and brain (Cmax = 

41 µM) levels following ip dosing at 20 mg/kg with a plasma half-life (T1/2) of 2.2 h. 

However, when administered orally at 20 mg/kg in adult mice, moderate plasma (Cmax = 0.9 

µM) and brain (Cmax = 1.4 µM) levels were achieved (Table 7). The poor oral exposure 

could be due to the acid instability of 27. To evaluate this possibility, we tested the stability 

of 27 in 0.1 and 1 N HCL at 37 °C for 24 h. Aliquots were removed (1, 2, 4, 6, and 24 h) and 

analyzed by LCMS. There was less than 5% degradation of 27 at each time point. The poor 

oral exposure of compound 27 is likely the result of its low solubility (~10 µg/mL at pH 7.4).

To investigate whether the mechanism of 27 was similar to the parent analog 4, the effects of 

27, in combination with 4 (Figure 4B) or 5 (Figure 4C), were investigated in a constant ratio 

experiment using the SMN2 reporter cells. We observed that combined exposure of 27 and 4 
did not result in additive or above additive levels of SMN2-luc compared to their individual 

effects (Figure 4B). However, when cells were exposed to 27 in combination with the 

transcriptional activator 5, an activation above the theoretical additive was observed, 

indicating that these compounds act via different mechanisms (Figure 4C). We used 

quantitative reverse transcriptase PCR (qRT-PCR) to analyze SMN-luciferase mRNA 

expression from control and compound treated SMN2-luciferase cells. We previously found 

that 4 did not alter SMN mRNA expression or exon 7 inclusion,42 an effect that also was 

observed for 27 (Figure 5A). To investigate if these molecules stabilize SMN protein, we 

assessed whether 4 alters the SMN protein half-life. Blinded compounds (10 µM) and the 

proteasome inhibitor MG-132 (10 µM) were investigated for their effect on SMN protein 

half-life in a pulse-chase experiment. It was observed that SMN protein half-life increased 

by treatment with presence of 4 and MG-132 but not by the transcriptional activator 5 
(Figure 5B). In a subsequent experiment to examine the effect of 4 and 27 on SMN protein 

stability, reporter cells were challenged simultaneously with cycloheximide (10 µM) to 

inhibit protein synthesis in the presence of compounds or DMSO. SMN-luc and Renilla-luc 

activities were measured at the indicated time points (Figure 5C, Figure 5D). Compounds 4 
and 27 stabilized the SMN-luc fusion but not the renilla luciferase protein. Neither DMSO, 

SAHA (suberoylanilide hydroxamic acid, 10 µM), nor 5 altered stability of SMN-luc or 
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renilla proteins. SAHA, an HDAC inhibitor, and compound 5 previously were found to 

increase SMN protein by increasing its transcription42, 49 and were used here as positive 

controls. Given the minimal activities on SV40 firefly luciferase and renilla luciferase and 

given that the “chase” experiments in the reporter cells, we conclude that compound 27 
stabilization occurs via the SMN protein portion of the fusion and is not a result of effects on 

the luciferase moiety.

One possible mechanism to explain these observations is that these compounds 

nonspecifically block protein degradation by the proteasome. To address proteasome 

inhibition, we studied the effects of 27 in comparison to the proteasome inhibitor MG-132 

on polyubiquitinated proteins in HEK293 cells (Figure 6). As expected, both 1 and 10 µM 

MG-132 increased the amount of polyubiquitinated proteins, while 27 had no effect on the 

basal level of polyubiquitinated proteins. To further evaluate potential changes in the amount 

of polyubiquitinated proteins, we pretreated HEK293 cells with 27 or MG-132 for 2 h 

followed by exposure to cycloheximide (10 µM) to inhibit new protein synthesis. 

Cycloheximide reduced basal level of polyubiquitinated proteins, an effect that was inhibited 

by MG-132 but not 27. Consistent with this interpretation, 27 did not alter cellular levels of 

short-lived proteins, including p53 and p21-Cip1, alone or after inhibition of protein 

synthesis with cycloheximide (Figure 7A,B). We also took advantage of the p53 in vitro 

degradation assay, which is a well-characterized reaction mediated by human papillomavirus 

(HPV) type 16 E6 and which is dependent on ubiquitination of p53 and its destruction by the 

proteasome.50 There was no inhibition of MBP-HPV-16 E6 mediated degradation of p53 

after preincubation of the rabbit reticulocyte lysates with 27 (Figure 7C). The second 

classical pathway to destroy proteins is autophagy. The protein levels of microtubule-

associated protein 1A/1B-light chain 3 (LC3-I and LC-3 II) and p62 levels are considered to 

be suitable markers of autophagic activity.51 Chloroquine was used as a positive control for 

autophagy inhibition and compared to the effects of 27 on the protein levels of LC3-I/II and 

p62 in HEK293 cells. Chloroquine led to increased p62 and LC-3 II protein levels, while 27 
did not alter their levels (Figure 7D). Compound 27 also was screened in a 58 kinase panel 

(Nanosyn) and showed <50% inhibition at 10 µM. A similar result was found when 27 was 

screened in a 64 target broad panel screen (PerkinElmer). In addition, safety profiling of 27 
at 10 µM showed <50% inhibition of six CYP isozymes (CYP1A2, CYP2A6, CYP2C19, 

CYP2C9, CYP2D6, and CYP 3A4) or hERG activity.

CONCLUSION

We optimized the isoxazole series of compounds for potency and physicochemical 

properties that predicted good PK properties. However, the most promising in vitro 

compound 4m had unfavorable PK characteristics. We determined that plasma stability was 

the key contributor to poor brain and plasma exposure, and we attributed this outcome to 

hydrolysis of its amide bond. Compounds with the reverse amide group showed improved 

plasma stability. One of these compounds is 27, which had excellent plasma stability. This 

compound showed good brain and plasma exposure upon a 20 mg/kg dose by ip, while the 

oral availability of this compound was not favorable. This compound series stabilized SMN 

protein independent of changes to SMN mRNA levels and was not due to general inhibition 
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of the proteasome, as 27 did not enrich polyubiquitinated proteins or stabilize 

polyubiquitinated proteins after inhibition of protein synthesis. In addition, 27 did not enrich 

p62 or LC-3 II levels, indicating that inhibition of autophagy is unlikely to contribute to the 

effects on protein stabilization. Compound 27 did not interact significantly (<50% inhibition 

at 10 µM) with 58 kinases, 64 other targets (e.g., GPCRs and ion channels), or six CYP 

isozymes. In summary, we have identified a suitably selective small molecule probe to 

investigate the post-translational stabilization of the SMN protein for the treatment of SMA. 

The in vivo efficacy of 27 in two mouse models of SMA will be reported elsewhere in due 

course.

EXPERIMENTAL SECTION

Materials and Antibodies

MG-132, cycloheximide, chloroquine, and DMSO were purchased from Sigma-Aldrich. 

Only chloroquine was solubilized in Milli-Q water. The following antibodies were used: 

anti-SMN (1:2000, 2F1, Cell Signaling Technologies); anti-p53 (PAb1801, Ref); p21 (F-5, 

Santa Cruz); anti-ubiquitin (FL-76, Santa Cruz); p62 (P0067, Sigma-Aldrich); LC3 (L7543, 

Sigma-Aldrich); anti-tubulin (DM1α, 1:4000, Sigma-Aldrich); and anti-β-actin (AC-74, 

1:4000, Sigma-Aldrich).

Cell Culture

Human telomerase-immortalized SMA patient fibroblasts (GM003813) and parent 

fibroblasts (GM003814), HEK293, SH5Y-5Y cells, and SMN2 reporter cell line were 

cultured in high-glucose DMEM supplemented with 10% (v/v) fetal bovine serum (FBS) 

and 1× Pen/Strep.41, 52 Reporter cells medium was supplemented with hygromycin during 

maintenance. All cells were maintained at 37 and 5 °C CO2.

Reporter Assay

The SMN2-luc reporter cell line was seeded in 96-well white tissue culture plates at 25 000 

cells per well and incubated overnight.41 Cells were exposed to six different doses of each 

compound by 3-fold serial dilutions, with a final maximal concentration of 10 or 30 µM or 

DMSO for 24 h. The final DMSO concentration was kept constant at 0.1% (v/v). Firefly and 

renilla luciferase expression was assayed with DualGlo (Promega E2920) and was measured 

on a PHERAstar FS microplate reader (BMG Labtech). Relative light units were normalized 

to DMSO control and expressed as a percentage. Unless otherwise stated, all values are the 

mean ± SEM of at least three separate trials. Synergy experiments were conducted as 

described previously with a constant DMSO of 0.2% (v/v).42 SMN-luc protein stability 

assays were assessed after simultaneous treatment with cycloheximide (10 µM) and DMSO, 

SAHA, 5, 4, or 27 (10 µM). Cells were lysed at the indicated time points and analyzed for 

SMN2-luc activity and Renilla-luc activity. Counterscreens were performed as described 

before.41, 42 In addition, recombinant luciferase activity was measured using QuantiLum 

recombinant luciferase according to the manufacturer’s instructions. In brief, an amount of 2 

µL of compound was mixed with 1 mL of complete DMEM, and 15 µL of this mix was 

incubated with 15 µL of recombinant luciferase diluted at 1:10 000 in 1× passive lysis buffer 

with 1 mg/mL BSA. Activity was assayed with 30 µL of SteadyLite PE.
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Cell Viability

Lead compounds were analyzed for their effect on cell viability of SH5Y-5Y cells. SH5Y-5Y 

cells were seeded at a density of 10 000 cells per well in a NuncEdge 96-well plate. On the 

following day, cells were treated with different doses of the compounds in duplicate and 

incubated for 48 h. At 4 h prior to the end of the experiment, CellTiter 96 AQueous One 

Solution Cell Proliferation Assay (Promega) was added and analyzed as per manufacturer’s 

instructions. Positive control for cell toxicity was cycloheximide (200 ng/mL), and the 

DMSO concentration was held constant at 0.2% (v/v).

Quantitative Reverse Transcriptase PCR (qRT-PCR)

Total mRNA was isolated using Trizol, treated with DNase I, and reversed transcribed as 

previously described. mRNA levels of SMN exon 7 included transcript, SMN full-length 

transcripts, and GAPDH were analyzed by qPCR using Sybr Green with primers previously 

described.41, 42, 53

SMN Protein Detection

SMN protein levels were analyzed after exposure to different doses of compounds in 

semiquantitative immunoblots to assess activity. Cells were seeded in 96-well plates at a 

density of 6000 cells per well. The next day, cells were exposed to the indicated 

concentrations of compounds and a final DMSO concentration, which was kept constant at 

0.1% (v/v) for 48 h.

Cells Lysis and Immunoblotting

At the end of the indicated incubation periods, medium was aspirated, and cells were washed 

twice with cold PBS. Remaining PBS was aspirated, and cells were lysed in boiling lysis 

buffer (150 mM NaCl, 10 mM Tris-HCl, pH 8.0, 2% SDS, and 1× SigmaFAST EDTA free 

protease inhibitor cocktail). Lysates were boiled for 10 min, and insoluble particles were 

removed by centrifugation. Total protein concentration was measured, and proteins were 

separated by SDS–PAGE (10%). Protein levels were normalized to housekeeping proteins 

tubulin or actin as indicated and expressed as fold changes over DMSO control levels. Data 

are expressed as SEM and were analyzed by one-way ANOVA with post hoc analysis 

(Dunnett).

SMN Protein Half-Life

SMN protein half-life was determined by pulse-chase experiment in HEK293 cells with 

compounds 4 and 5 (10 µM) and the proteasome inhibitor MG-132 (10 µM) as previously 

described.54, 55

HPV16 E6 Mediated p53 Degradation Assay

MBP-16E6 and p53 proteins were purified as described.56 In brief, compound 27 or DMSO 

was incubated in assay buffer (25 mM Tris-HCl, pH 7.5, 100 mM NaCl, 2 mM DTT, 2.5 

mM ATP) containing 1 µL of rabbit reticulocyte lysate (RRL) and p53 for 30 min. E6 

proteins (0.1 µM) or E6 buffer was added, incubated for 2 h at 25 °C, and stopped by 

incubation at 75 °C. Proteins were separated on 10% SDS–PAGE, transferred onto PVDF 
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membrane, and blotted for p53 using Pab1801 antibody and for 16E6 using anti-HPV-16 E6 

antibody (ArborVita Inc.).

Chemistry, General

Melting points were determined using a capillary melting apparatus and were uncorrected. 

Elemental analyses were obtained for all new compounds and were within 0.4% of 

theoretical C, H, and N. 1H NMR spectra were recorded in deuteriochloroform (unless 

otherwise noted), with tetramethylsilane as the internal standard at 400 MHz. Coupling 

constants (J values) are quoted to the nearest 0.5 Hz. 13C NMR spectra were recorded in 

deuterated DMSO or deuteriochloroform (unless otherwise noted) at 100 MHz. Mass spectra 

were recorded on a VG 70SE magnetic sector mass spectrometer. Organic solutions were 

dried using anhydrous magnesium sulfate and concentrated by rotary evaporation. Analytical 

thin layer chromatography (TLC) was carried out on Camlab Polygram SIL G/UV254 

plates. Unless otherwise stated, preparative column chromatography was carried out on 60H 

silica gel (Merck 9385). Compositions of solvent mixtures are quoted as ratios of volume. 

Known compounds gave spectral and analytical data consistent with literature values. 

Analytical HPLC, used to determine the purity of target compounds, was conducted using 

two different methods. Method 1: Analyses were performed using a 2790 HT-Alliance 

HPLC system (Waters Corporation, Milford, MA) and a Waters 996 diode array detector 

interfaced to a Waters Quattro Micro mass spectrometer. HPLC conditions: column, 4.6 mm 

× 150 mm, Waters XBridge C18, 5 µm; column temperature, 30 °C; UV, 254 nm; scan rate, 

10 points/s; flow rate, 1.0 mL/min; injection volume, 20 µL; mobile phase A, water with 

0.1% formic acid; mobile phase B, methanol; gradient, 10% B (0–1 min), 10–100% B (1–12 

min), 100% B (12–19 min), 10% B (19.1 min); run time, 22 min. Method 2: Analyses were 

performed using an Acquity ultraperformance liquid chromatography (UPLC) system 

(Waters Corporation, Milford, MA) and a Waters Acquity PDA detector interfaced to a 

Waters ZQ mass spectrometer. HPLC conditions: column, 2.0 mm × 50 mm, Phenomenex 

Luna C18(2), 2.5 µm; column temperature, 30 °C; UV, 254 nm; scan rate, 10 points/s; flow 

rate, 0.6 mL/min; injection volume, 5 µL; mobile phase A, 95% water, 5% acetonitrile with 

0.1% ammonium hydroxide; mobile phase B, 5% water, 95% acetonitrile with 0.1% 

ammonium hydroxide; gradient, 5% B (0–2 min), 5–100% B (2–7 min), 100% B (7–9.5 

min), 5% B (9.51 min); run time, 10 min. All final compounds had purity of >95% by both 

methods.

Representative Synthesis of N-(3-Chloro-4-fluorophenyl)-3-isopropylisoxazole-5-
carboxamide Using HATU (4)

5-Isopropyl-isoxazole-3-carboxylic acid (6) (50 mg, 0.32 mmol) was added to a solution of 

3-chloro-4-fluoroaniline (46 mg, 0.32 mmol), N,N-diisopropylethylamine (DIPEA) (113 µL, 

0.65 mmol), HATU (133 mg, 0.35 mmol) in dichloromethane (4.0 mL). The resulting 

mixture was stirred at room temperature for 12 h. The mixture was concentrated and purified 

by silica gel column chromatography (elution with a 40:60% cyclohexane/ethyl acetate 

gradient) and gave the title compound (4) (80 mg, 88%). MS 283 (M + 1). 1H NMR 

(CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 3.11–3.20 (m, 1H), 6.51 (s, 1H), 7.14 (t, J = 9.0 Hz, 

1H), 7.45 (ddd, J = 3.0, 4.0, 9.0 Hz, 1H), 7.86 (dd, J = 3.0, 7.0 Hz, 1H), 8.48 (s, 1H). Mp 
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98–100.5 °C. HRMS calcd for C13H12ClFN2O2 283.0650 [M + H+], found 283.0646 [M + 

H+].

The following compounds were prepared using the same general procedure.

N-(4-Fluorophenyl)-5-isopropylisoxazole-3-carboxamide (4a)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 3.10–3.20 (m, 1H), 6.51 (s, 1H), 7.06 (t, J = 

8.5 Hz, 2H), 7.62 (dd, J = 5.0, 8.5 Hz, 2H), 8.49 (s, 1H). HRMS calcd for C13H13FN2O2 

249.1039 [M + H+], found 249.1034 [M + H+].

N-(3-Chlorophenyl)-5-isopropylisoxazole-3-carboxamide (4b)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 3.10–3.20 (m, 1H), 6.51 (s, 1H), 7.14 (ddd, J 
= 1.0, 2.0, 8.0 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H), 7.48 (ddd, J = 1.0, 2.0, 8.0 Hz, 1H), 7.79 (t, 

J = 2.0 Hz, 1H), 8.52 (s, 1H). HRMS calcd for C13H13ClN2O2 265.0744 [M + H+], found 

265.0750 [M + H+].

5-Isopropyl-N-phenylisoxazole-3-carboxamide (4c)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 3.10–3.20 (m, 1H), 6.52 (s, 1H), 7.17 (t, J = 

7.5 Hz, 1H), 7.38 (t, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 8.51 (s, 1H). Mp 83.1–

84.1 °C. HRMS calcd for C13H14N2O2 231.1134 [M + H+], found 231.1126 [M + H+].

N-(2-Fluorophenyl)-5-isopropylisoxazole-3-carboxamide (4d)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 3.10–3.20 (m, 1H), 6.51 (s, 1H), 6.84–6.89 

(m, 1H), 7.26–7.34 (m, 2H), 7.63 (dt, J = 2.0, 10.5 Hz, 1H), 8.57 (s, 1H). HRMS calcd for 

C13H13FN2O2 249.1039 [M + H+], found 249.1041 [M + H+].

N-(3-Fluorophenyl)-5-isopropylisoxazole-3-carboxamide (4e)
1H NMR (CDCl3) δ: 1.33 (d, J = 7.0 Hz, 6H), 3.07–3.17 (m, 1H), 6.49 (s, 1H), 6.81–6.86 

(m, 1H), 7.24–7.31 (m, 2H), 7.60 (dt, J = 2.0, 10.5 Hz, 1H), 8.57 (s, 1H). Mp 55.5–57.8 °C. 

HRMS calcd for C13H13FN2O2 249.1039 [M + H+], found 249.1034 [M + H+].

N-(2-Chlorophenyl)-5-isopropylisoxazole-3-carboxamide (4f)
1H NMR (CDCl3) δ: 1.37 (d, J = 7.0 Hz, 6H), 3.11–3.21 (m, 1H), 6.52 (s, 1H), 7.10 (td, J = 

1.5, 7.5 Hz, 1H), 7.32 (td, J = 1.5, 7.5 Hz, 1H), 7.42 (dd, J = 1.5, 8.0 Hz, 1H), 8.48 (dd, J = 

1.5, 8.0 Hz, 1H), 9.13 (s, 1H). HRMS calcd for C13H13ClN2O2 265.0744 [M + H+], found 

265.0748 [M + H+].

N-(4-Chlorophenyl)-5-isopropylisoxazole-3-carboxamide (4g)
1H NMR (CDCl3) δ: 1.35 (d, J = 7.0 Hz, 6H), 3.09–3.20 (m, 1H), 6.50 (s, 1H), 7.33 (d, J = 

9.0 Hz, 2H), 7.61 (d, J = 9.0 Hz, 2H), 8.52 (s, 1H). HRMS calcd for C13H13ClN2O2 

265.0744 [M + H+], found 265.0743 [M + H+].
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5-Isopropyl-N-(2-methoxyphenyl)isoxazole-3-carboxamide (4h)
1H NMR (CDCl3) δ: 1.35 (d, J = 7.0 Hz, 6H), 3.09–3.19 (m, 1H), 3.91 (s, 3H), 6.50 (s, 1H), 

6.91 (dd, J = 1.0, 8.0 Hz, 1H), 6.99 (td, J = 1.0, 8.0 Hz, 1H), 7.09 (td, J = 1.5, 8.0 Hz, 1H), 

8.45 (dd, J = 1.5, 8.0 Hz, 1H), 9.16 (s, 1H). HRMS calcd for C14H16N2O3 261.1239 [M + H
+], found 261.1246 [M + H+].

5-Isopropyl-N-(3-methoxyphenyl)isoxazole-3-carboxamide (4i)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 3.10–3.20 (m, 1H), 3.83 (s, 3H), 6.51 (s, 1H), 

6.72 (dd, J = 2.5, 8.0 Hz, 1H), 7.13 (dd, J = 2.0, 8.0 Hz, 1H), 7.26 (t, J = 8.0 Hz, 1H), 7.40 (t, 

J = 2.5 Hz, 1H), 8.49 (s, 1H). HRMS calcd for C14H16N2O3 261.1239 [M + H+], found 

261.1237 [M + H+].

5-Isopropyl-N-(o-tolyl)isoxazole-3-carboxamide (4j)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 2.35 (s, 3H), 3.10–3.20 (m, 1H), 6.53 (s, 1H), 

7.12 (td, J = 1.0, 7.5 Hz, 1H), 7.22–7.27 (m, 2H), 8.01 (d, J = 7.5 Hz, 1H), 8.46 (s, 1H). 

HRMS calcd for C14H16N2O2 245.1290 [M + H+], found 245.1296 [M + H+].

5-Isopropyl-N-(m-tolyl)isoxazole-3-carboxamide (4k)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 2.37 (s, 3H), 3.09–3.20 (m, 1H), 6.51 (s, 1H), 

6.98 (d, J = 7.5 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.49 (s, 1H), 8.47 

(s, 1H). HRMS calcd for C14H16N2O2 245.1290 [M + H+], found 245.1293 [M + H+].

5-Isopropyl-N-(p-tolyl)isoxazole-3-carboxamide (4l)
1H NMR (CDCl3) δ: 1.35 (d, J = 7.0 Hz, 6H), 2.33 (s, 3H), 3.08–3.19 (m, 1H), 6.50 (s, 1H), 

7.17 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 8.49 (s, 1H). HRMS calcd for 

C14H16N2O2 245.1290 [M + H+], found 245.1282 [M + H+].

5-Isopropyl-N-(pyridin-2-yl)isoxazole-3-carboxamide (4m)
1H NMR (CDCl3) δ: 1.35 (d, J = 7.0 Hz, 6H), 3.08–3.19 (m, 1H), 6.50 (s, 1H), 7.09 (ddd, J 
= 1.0, 5.0, 7.5 Hz, 1H), 7.75 (ddd, J = 2.0, 7.5, 8.5 Hz, 1H), 8.29 (dd, J = 1.0, 8.5 Hz, 1H), 

8.33 (ddd, J = 1.0, 2.0, 5.0 Hz, 1H), 9.22 (s, 1H). HRMS calcd for C12H13N3O2 232.1086 

[M + H+], found 232.1093 [M + H+].

5-Isopropyl-N-(pyridin-3-yl)isoxazole-3-carboxamide (4n)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 3.11–3.21 (m, 1H), 6.52 (s, 1H), 7.33 (dd, J = 

4.5, 8.5 Hz, 1H), 8.23 (ddd, J = 1.5, 2.5, 8.5 Hz, 1H), 8.42 (dd, J = 1.5, 4.5 Hz, 1H), 8.58 (s, 

1H), 8.75 (d, J = 2.5 Hz, 1H). HRMS calcd for C12H13N3O2 232.1086 [M + H+], found 

232.1082 [M + H+].

5-Isopropyl-N-(pyridin-4-yl)isoxazole-3-carboxamide (4o)
1H NMR (CDCl3) δ: 1.34 (d, J = 7.0 Hz, 6H), 3.08–3.19 (m, 1H), 6.51 (s, 1H), 7.62 (dd, J = 

1.5, 5.0 Hz, 2H), 8.55 (dd, J = 1.5, 5.0 Hz, 2H), 8.81 (s, 1H). HRMS calcd for C12H13N3O2 

232.1086 [M + H+], found 232.1092 [M + H+].
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5-Isopropyl-N-(thiazol-2-yl)isoxazole-3-carboxamide (4p)
1H NMR (CDCl3) δ: 1.37 (d, J = 7.0 Hz, 6H), 3.11–3.22 (m, 1H), 6.54 (s, 1H), 7.05 (d, J = 

3.5 Hz, 1H), 7.69 (d, J = 3.5 Hz, 1H). HRMS calcd for C10H11N3O2S 238.0650 [M + H+], 

found 238.0656 [M + H+].

5-Isopropyl-N-(oxazol-2-yl)isoxazole-3-carboxamide (4q)
1H NMR (CDCl3) δ: 1.35 (d, J = 7.0 Hz, 6H), 3.09–3.20 (m, 1H), 6.53 (s, 1H), 7.21 (s, 1H), 

7.51 (s, 1H). HRMS calcd for C10H11N3O3 222.0879 [M + H+], found 222.0884 [M + H+].

N-(1H-Benzo[d]imidazol-2-yl)-5-isopropylisoxazole-3-car-boxamide (4r)
1H NMR (DMSO) δ: 1.29 (d, J = 7.0 Hz, 6H), 3.09–3.20 (m, 1H), 6.58 (s, 1H), 7.19 (dd, J = 

3.0, 6.0 Hz, 2H), 7.44 (dd, J = 3.0, 6.0 Hz, 2H). HRMS calcd for C14H14N4O2 271.1195 [M 

+ H+], found 271.1201 [M + H+].

5-Isopropyl-N-(1-methyl-1H-benzo[d]imidazol-2-yl)-isoxazole-3-carboxamide (4s)
1H NMR (CDCl3) δ: 1.33 (d, J = 7.0 Hz, 6H), 3.06–3.17 (m, 1H), 3.77 (s, 3H), 6.48 (s, 1H), 

7.25–7.33 (m, 3H), 7.41–7.43 (m, 1H). HRMS calcd for C15H16N4O2 285.1352 [M + H+], 

found 285.1350 [M + H+].

N-(Benzo[d]thiazol-2-yl)-5-isopropylisoxazole-3-carboxamide (4t)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 3.11–3.22 (m, 1H), 6.57 (s, 1H), 7.34 (t, J = 

7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.82 (dd, J = 8.0, 17.5 Hz, 2H). HRMS calcd for 

C14H13N3O2S 288.0807 [M + H+], found 288.0812 [M + H+].

N-(2,3-Dihydro-1H-inden-2-yl)-5-isopropylisoxazole-3-carboxamide (4u)
1H NMR (CDCl3) δ: 1.31 (d, J = 7.0 Hz, 6H), 2.92 (dd, J = 5.0, 16.0 Hz, 2H), 3.04–3.14 (m, 

1H), 3.38 (dd, J = 7.0, 16.0 Hz, 2H), 4.87–4.93 (m, 1H), 6.42 (s, 1H), 7.02 (s, 1H), 7.17–

7.20 (m, 2H), 7.21–7.24 (m, 2H). HRMS calcd for C16H18N2O2 271.1447 [M + H+], found 

271.1442 [M + H+].

Indolin-1-yl(5-isopropylisoxazol-3-yl)methanone (4v)
1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 6H), 3.09–3.19 (m, 1H), 3.22 (t, J = 8.5 Hz, 2H), 

4.52 (t, J = 8.5 Hz, 2H), 6.45 (s, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.24–7.28 (m, 2H), 8.31 (d, J 
= 8.0 Hz, 1H). HRMS calcd for C15H16N2O2 257.1290 [M + H+], found 257.1292 [M + H
+].

Compounds bearing different substituents at the 5-position of the isoxazole (8a–i) were 

prepared following HATU coupling of the appropriately 5-substituted isoxazole with 3-

chloro-4-fluoroaniline.

N-(3-Chloro-4-fluorophenyl)isoxazole-3-carboxamide (8a)
1H NMR (CDCl3) δ: 6.92 (d, J = 1.5 Hz, 1H), 7.15 (t, J = 8.5 Hz, 1H), 7.47 (ddd, J = 2.5, 

4.0, 9.0 Hz, 1H), 7.87 (dd, J = 2.5, 6.5 Hz, 1H), 8.51–8.54 (m, 2H). HRMS calcd for 

C10H6ClFN2O2 241.0180 [M + H+], found 241.0177 [M + H+].
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N-(3-Chloro-4-fluorophenyl)-5-methylisoxazole-3-carboxamide (8b)
1H NMR (CDCl3) δ: 2.51 (s, 3H), 6.51 (s, 1H), 7.12 (t, J = 9.0 Hz, 1H), 7.45 (ddd, J = 2.5, 

4.0, 9.0 Hz, 1H), 7.85 (dd, J = 2.5, 6.5 Hz, 1H), 8.53 (s, 1H). HRMS calcd for 

C11H8ClFN2O2 255.0337 [M + H+], found 255.0340 [M + H+].

N-(3-Chloro-4-fluorophenyl)-5-ethylisoxazole-3-carboxamide (8c)
1H NMR (CDCl3) δ: 1.35 (t, J = 7.5 Hz, 3H), 2.85 (q, J = 7.5 Hz, 2H), 6.52 (s, 1H), 7.13 (t, J 
= 9.0 Hz, 1H), 7.45 (ddd, J = 2.5, 4.0, 9.0 Hz, 1H), 7.86 (dd, J = 2.5, 6.5 Hz, 1H), 8.51 (s, 

1H). HRMS calcd for C12H10ClFN2O2 269.0493 [M + H+], found 269.0498 [M + H+].

N-(3-Chloro-4-fluorophenyl)-5-isobutylisoxazole-3-carboxamide (8d)
1H NMR (CDCl3) δ: 1.00 (d, J = 6.5 Hz, 6H), 2.03–2.14 (m, 1H), 2.71 (d, J = 7.0 Hz, 2H), 

6.53 (s, 1H), 7.14 (t, J = 9.0 Hz, 1H), 7.46 (ddd, J = 2.5, 4.0, 9.0 Hz, 1H), 7.86 (dd, J = 2.5, 

6.5 Hz, 1H), 8.52 (s, 1H). HRMS calcd for C14H14ClFN2O2 297.0806 [M + H+], found 

297.0801 [M + H+].

5-(tert-Butyl)-N-(3-chloro-4-fluorophenyl)isoxazole-3-carboxamide (8e)
1H NMR (CDCl3) δ: 1.39 (s, 9H), 6.49 (s, 1H), 7.14 (t, J = 9.0 Hz, 1H), 7.46 (ddd, J = 2.5, 

4.0, 9.0 Hz, 1H), 7.85 (dd, J = 2.5, 6.5 Hz, 1H), 8.50 (s, 1H). HRMS calcd for 

C14H14ClFN2O2 297.0806 [M + H+], found 297.0811 [M + H+].

N-(3-Chloro-4-fluorophenyl)-5-cyclohexylisoxazole-3-carboxamide (8f)
1H NMR (CDCl3) δ: 1.25–1.34 (m, 1H), 1.37–1.5 (m, 4H), 1.72–1.77 (m, 1H), 1.81–1.86 

(m, 2H), 2.07–2.11 (m, 2H), 2.83–2.88 (m, 1H), 6.49 (s, 1H), 7.14 (t, J = 9.0 Hz, 1H), 7.45 

(ddt, J = 2.0, 4.0, 9.0 Hz, 1H), 7.86 (dd, J = 2.5, 6.5 Hz, 1H), 8.48 (s, 1H). HRMS calcd for 

C16H16ClFN2O2 323.0963 [M + H+], found 323.0957 [M + H+].

N-(3-Chloro-4-fluorophenyl)-5-cyclopentylisoxazole-3-carboxamide (8g)
1H NMR (CDCl3) δ: 1.70–1.82 (m, 6H), 2.10–2.17 (m, 2H), 3.24–3.30 (m, 1H), 6.50 (s, 

1H), 7.14 (t, J = 9.0 Hz, 1H), 7.45 (ddd, J = 2.5, 4.0, 9.0 Hz, 1H), 7.86 (dd, J = 2.5, 6.5 Hz, 

1H), 8.50 (s, 1H). HRMS calcd for C15H14ClFN2O2 309.0806 [M + H+], found 309.0811 

[M + H+].

N-(3-Chloro-4-fluorophenyl)-5-phenylisoxazole-3-carboxamide (8h)
1H NMR (DMSO) δ: 7.46 (t, J = 9.0 Hz, 1H), 7.51 (s, 1H), 7.56–7.60 (m, 3H), 7.79 (ddd, J 
= 2.5, 4.5, 9.0 Hz, 1H), 7.97–7.99 (m, 2H), 8.09 (dd, J = 2.5, 7.0 Hz, 1H), 11.0 (s, 1H). 

HRMS calcd for C16H10ClFN2O2 317.0493 [M + H+], found 317.0499 [M + H+].

5-Benzyl-N-(3-chloro-4-fluorophenyl)isoxazole-3-carboxamide (8i)
1H NMR (CDCl3) δ: 4.16 (s, 2H), 6.48 (s, 1H), 7.13 (t, J = 9.0 Hz, 1H), 7.27–7.37 (m, 5H), 

7.44 (ddd, J = 2.5, 4.0, 9.0 Hz, 1H), 7.83 (dd, J = 2.5, 6.5 Hz, 1H), 8.46 (s, 1H). HRMS 

calcd for C17H12ClFN2O2 331.0650 [M + H+], found 331.0654 [M + H+].
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N-(3-Chloro-4-fluorophenyl)-5-isopropyl-N-methylisoxa-zole-3-carboxamide (9)

Under an inert environment, N-(3-chloro-4-fluorophenyl)-5-isopropylisoxazole-3-

carboxamide (50 mg, 0.177 mmol) was dissolved in DMF (2.2 mL). Cesium carbonate (183 

mg, 0.562 mmol) then was added before the dropwise addition of iodomethane (16.9 µL, 

0.271 mmol). The reaction was stirred for 24 h at room temperature and concentrated down 

after the product was observed. The solution was purified by silica gel column 

chromatography (elution with a 75:25% cyclohexane/ethyl acetate gradient) to yield N-(3-

chloro-4-fluorophenyl)-5-isopropyl-N-methylisoxazole-3-carboxamide (9). 1H NMR 

(DMSO) δ: 1.17 (br, 6H), 2.95–3.1 (br, 1H), 3.35 (s, 3H), 6.29 (s, 1H), 7.36 (br, 2H) 7.65 (s, 

1H). HRMS calcd for C14H14ClFN2O2 297.0806 [M + H+], found 297.0806 [M + H+].

N-(3-Chloro-4-fluorophenyl)-5-isopropylisoxazole-3-carbo-thioamide (10)

N-(3-Chloro-4-fluorophenyl)-5-isopropylisoxazole-3-carboxamide 4 (50 mg, 0.18 mmol) 

was dissolved in anhydrous toluene (2 mL) under nitrogen. 2,4-Bis(4-

methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide (36 mg, 0.09 mmol) and sodium 

bicarbonate (15 mg, 0.18 mmol) were added to the solution. The reaction was refluxed for 

24 h. The reaction was washed with sodium bicarbonate and extracted with ethyl acetate. 

The organic layer then was washed with saturated sodium chloride, dried over sodium 

sulfate, and concentrated. The crude product was purified via silica gel column 

chromatography (elution with a 0:100% cyclohexane/ethyl acetate gradient) to give N-(3-

chloro-4-fluorophenyl)-5-isopropylisoxazole-3-carbothioamide (10). 1H NMR (CDCl3) δ: 

1.36 (d, J = 7.0 Hz, 6H), 3.07–3.18 (m, 1H), 6.67 (s, 1H), 7.20 (t, J = 9.0 Hz, 1H), 7.66 (ddd, 

J = 3.0, 4.0, 9.0 Hz, 1H), 8.08 (dd, J = 2.5, 6.5 Hz, 1H), 10.03 (s, 1H). HRMS calcd for 

C13H12ClFN2O2S 299.0421 [M + H+], found 299.0419 [M + H+].

3-Chloro-4-fluoro-N-((5-isopropylisoxazol-3-yl)methyl)-aniline (11)

N-(3-Chloro-4-fluorophenyl)-5-isopropylisoxazole-3-carboxamide (100 mg, 0.35 mmol) 

was dissolved in tetrahydrofuran (4.5 mL) before the addition of lithium aluminum hydride 

(20.2 mg, 0.53 mmol). The reaction was refluxed for 24 h. Once complete, the reaction was 

quenched with water. The product was extracted with ether, concentrated down, and purified 

by silica gel column chromatography (elution with a 30:70% cyclohexane/ethyl acetate 

gradient) to give 3-chloro-4-fluoro-N-((5-isopropylisoxazol-3-yl)-methyl)aniline (11). 1H 

NMR (CDCl3) δ: 1.29 (d, J = 7.0 Hz, 6H), 3.0–3.10 (m, 1H), 4.31 (s, 2H), 5.91 (s, 1H), 6.51 

(ddd, J = 3.0, 3.5, 9.0 Hz, 1H), 6.67 (dd, J = 3.0, 6.0 Hz, 1H), 6.96 (t, J = 9.0 Hz, 1H). 

HRMS calcd for C13H14ClFN2O 269.0857 [M + H+], found 269.0859 [M + H+].

3-Chloro-4-fluorophenyl-5-isopropylisoxazole-3-carboxylate (13)

5-Isopropylisoxazole-3-carboyxlic acid 6 (250 mg, 1.61 mmol), N-hydroxysuccinimide (276 

mg, 2.41 mmol), and dimethylaminopyridine (15 µL) were dissolved in dichloromethane (10 

mL). The solution was cooled to 0 °C, and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDCI) (372 mg, 2.41 mmol) was added. The mixture was stirred for 12 h, warming to room 

temperature before washing with water (2 × 10 mL) and saturated ammonium chloride (10 

mL). The solution was dried over magnesium sulfate and evaporated to give 2,5-

dioxopyrrolidin-1-yl 5-isopropylisoxazole-3-carboxylate (245 mg, 60%), which was used 
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directly in the next step. 3-Chloro-4-fluorophenol (12) (60 mg, 0.40 mmol) and sodium 

hydroxide (48 mg, 0.60 mmol) were dissolved in dichloromethane (2 mL) and stirred for 15 

min. The resulting solution was added to 2,5-dioxopyrrolidin-1-yl-5-isopropylisoxazole-3-

carboxylate (100 mg, 0.40 mmol) in dichloromethane (2 mL). The solution was stirred at 

room temperature for 24 h. The solution was evaporated and purified by silica gel column 

chromatography (elution with a 0:100% cyclohexane/ethyl acetate gradient) to give the title 

compound (13) (94 mg, 93%). MS 284 (M + 1). 1H NMR (CDCl3) δ: 1.36 (d, J = 7.0 Hz, 

6H), 3.12–3.23 (m, 1H), 6.50 (s, 1H), 7.11–7.21 (m, 2H), 7.33 (dd, J = 2.5, 6.0 Hz, 1H). 

HRMS calcd for C13H11ClFNO3 284.0490 [M + H+], found 284.0488 [M + H+].

3-Chloro-4-fluoro-N-(5-isopropylisoxazol-3-yl)benzamide (16)

16 was prepared by the representative HATU procedure described above. MS 283 (M + 1). 
1H NMR (CDCl3) δ: 1.31 (d, J = 7.0 Hz, 6H), 3.0–3.10 (m, 1H), 6.42 (s, 1H), 7.30 (t, J = 8.5 

Hz, 1H), 7.79 (ddd, J = 2.5, 4.5, 8.5 Hz, 1H), 8.0 (dd, J = 2.5, 7.0 Hz, 1H), 8.61 (s, 1H). 

HRMS calcd for C13H12ClFN2O2 283.0650 [M + H+], found 283.0654 [M + H+].

1-(3-Chloro-4-fluorophenyl)-3-(5-isopropylisoxazol-3-yl)-urea (19)

A stirred mixture of 3-chloro-4-fluoroaniline (36 mg, 0.25 mmol) and 5-isopropyl-3-

isoxazolyl isocyanate (38 mg, 0.25 mmol) in THF (1 mL) was heated at 50 °C for 15 h. 

After cooling, the reaction was concentrated under reduced pressure and purified by silica 

gel flash chromatography (elution with a 0:100% cyclohexane/ethyl acetate gradient) to give 

the title compound (19) (47 mg, 63%). 1H NMR (CDCl3) δ: 1.33 (d, J = 7.0 Hz, 6H), 3.02–

3.08 (m, 1H), 5.83 (s, 1H), 7.10 (t, J = 9.0 Hz, 1H), 7.32 (ddd, J = 2.5, 4.0, 9.0 Hz, 1H), 7.74 

(dd, J = 2.5, 6.5 Hz, 1H), 7.84 (s, 1H), 9.41 (s, 1H). HRMS calcd for C13H13ClFN3O2 

298.0759 [M + H+], found 298.0756 [M + H+].

Methyl 4-Bromo-5-isopropylisoxazole-3-carboxylate (21)

Methyl 5-isopropyl-3-isoxazolecarboxylate (20) (625 mg, 3.7 mmol) and N-

bromosuccinimide (7.92 g, 22.1 mmol) were dissolved in DMF (12 mL) and stirred at room 

temperature for 12 h. The mixture then was washed with sodium thiosulfate (3 × 10 mL) and 

ethyl acetate (10 mL) and dried over sodium sulfate. The mixture was concentrated and 

purified by silica gel column chromatography (elution with a 90:10% cyclohexane/ethyl 

acetate gradient) to give the title compound (21) (212 mg, 23%). MS 348 (M + 1). 1H NMR 

(CDCl3) δ: 1.34 (d, J = 7.0 Hz, 6H), 3.21–3.32 (m, 1H), 3.96 (s, 3H).

Methyl 5-Isopropyl-4-methylisoxazole-3-carboxylate (22)

Methyl 4-bromo-5-isopropylisoxazole-3-carboxylate (21) (414 mg, 1.67 mmol), 

trimethylboroxine (0.70 mL, 5.0 mmol), and potassium carbonate (689 mg, 5.01 mmol) 

were dissolved in dry DMF (6 mL) and degassed under argon. [1,1′-
Bis(diphenylphosphino)ferrocene]-dichloropalladium(II) complex with dichloromethane 

(PdCl2dppf) (122 mg, 0.17 mmol) was added. The resulting mixture was heated to 80 °C 

and stirred under argon for 48 h. The mixture was washed with ethyl acetate (2 × 10 mL) 

and saturated sodium chloride solution (2 × 10 mL), dried over sodium sulfate, and 

concentrated. The mixture was purified by five (20 cm × 20 cm, 2000 µm) preparative TLC 
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plates and run in 80:20% cyclohexane/ethyl acetate solution to give the title compound (22) 

(65 mg, 22%). MS 184 (M + 1). 1H NMR (CDCl3) δ: 1.31 (d, J = 7.0 Hz, 6H), 2.14 (s, 3H), 

3.10–3.18 (m, 1H), 3.94 (s, 3H).

3-Chloro-4-fluorophenyl-5-isopropyl-4-methylisoxazole-3-carboxamide (23)

Methyl 5-isopropyl-4-methylisoxazole-3-carboxylate (22) (65 mg, 0.36 mmol) was 

dissolved in water (3.4 mL). Sodium hydroxide (15.6 mg, 0.39 mmol) was added, and the 

resulting mixture was stirred at room temperature for 12 h. 0.1 M hydrochloric acid was 

added until the reaction mixture was at pH 1. The mixture was extracted with ethyl acetate 

(3 × 5 mL) and concentrated to give the crude carboxylic acid (37 mg, 62%) that was used 

directly in the next step.

N,N-Diisopropylethylamine (DIPEA) (0.08 mL, 0.44 mmol) was added dropwise to a 

solution of bromotripyrrolidinophosphonium hexafluorophosphate (PyBroP) (122.6 mg, 

0.26 mmol) in tetrahydrofuran (1.1 mL). Crude 5-isopropyl-4-methylisoxazole-3-carboxylic 

acid (37 mg, 0.22 mmol) and 3-chloro-4-fluoroaniline (31.83 mg, 0.22 mmol) were added to 

the resulting solution, and the mixture was stirred at 75 °C for 12 h. The mixture was 

washed with a saturated solution of sodium bicarbonate (2 × 5 mL), ethyl acetate (2 × 5 

mL), and saturated sodium chloride solution (2 × 5 mL). The mixture was dried over sodium 

sulfate, concentrated, and purified via silica gel column chromatography (elution with a 

90:10% cyclohexane/ethyl acetate gradient) to give the title compound (23) (28 mg, 43%). 

MS 297 (M + 1). 1H NMR (CDCl3) δ: 1.34 (d, J = 7.0 Hz, 6H), 2.24 (s, 3H), 3.12–3.23 (m, 

1H), 7.13 (t, J = 9.0 Hz, 1H), 7.41 (ddd, J = 2.5, 4.0, 9.0 Hz, 1H), 7.88 (dd, J = 2.5, 6.5 Hz, 

1H), 8.50 (s, 1H). HRMS calcd for C14H14ClFN2O2 297.0806 [M + H+], found 297.0812 

[M + H+].

Compounds with different core heterocycles (24–27) were prepared following HATU 

coupling of the appropriate heterocyclic carboxylic acid with 3-chloro-4-fluoroaniline.

3-Chloro-4-fluoro-N-(3-isopropylisoxazol-5-yl)benzamide (24)
1H NMR (CDCl3) δ: 1.31 (d, J = 7.0 Hz, 6H), 3.00–3.10 (m, 1H), 6.42 (s, 1H), 7.30 (t, J = 

8.5 Hz, 1H), 7.80 (ddd, J = 2.5, 4.5, 8.5 Hz, 1H), 8.00 (dd, J = 2.5, 7.0 Hz, 1H), 8.66 (s, 1H). 

HRMS calcd for C13H12ClFN2O2 283.0650 [M + H+], found 283.0650 [M + H+].

3-Chloro-4-fluoro-N-(2-isopropylthiazol-4-yl)benzamide (25)
1H NMR (CDCl3) δ: 1.45 (d, J = 7.0 Hz, 6H), 3.30–3.36 (m, 1H), 7.13 (t, J = 9.0 Hz, 1H), 

7.55 (ddd, J = 2.5, 4.0, 9.0 Hz, 1H), 7.90 (dd, J = 2.5, 6.5 Hz, 1H), 8.08 (s, 1H), 9.20 (s, 1H). 

HRMS calcd for C13H12ClFN2OS 299.0421 [M + H+], found 299.0427 [M + H+].

3-Chloro-N-(5-cyclobutylthiazol-2-yl)-4-fluorobenzamide (26)
1H NMR (CDCl3) δ: 1.92–1.97 (m, 1H), 2.01–2.07 (m, 1H), 2.13–2.21 (m, 2H), 2.40–2.46 

(m, 2H), 3.63–3.69 (m, 1H), 6.87 (s, 1H), 7.23–7.31 (m, 1H), 7.99 (ddd, J = 2.5, 4.0, 9.0 Hz, 

1H), 8.18 (dd, J = 2.5, 7.0 Hz, 1H). HRMS calcd for C14H12ClFN2OS 311.0421 [M + H+], 

found 311.0421 [M + H+].
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3-Chloro-4-fluoro-N-(5-(1-hydroxycyclobutyl)thiazol-2-yl)-benzamide (27)
1H NMR (DMSO) δ: 1.62–1.71 (m, 1H), 1.78–1.84 (m, 1H), 2.30–2.39 (m, 4H), 5.97 (s, 

1H), 7.47 (s, 1H), 7.60 (t, J = 9.0 Hz, 1H), 8.10 (ddd, J = 2.5, 4.0, 9.0 Hz, 1H), 8.33 (d, J = 

7.0 Hz, 1H), 12.62 (s, 1H). HRMS calcd for C14H12ClFN2O2S 327.0370 [M + H+], found 

327.0364 [M + H+].
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ABBREVIATIONS USED

AAV adenovirus associated

BBB blood–brain barrier

CHX cycloheximide

CQ chloroquine

DIPEA N,N-diisopropylethylamine

DMSO dimethyl sulfoxide

FBS fetal bovine serum

HATU 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo-[4,5-b]pyridinium 3-

oxide hexafluorophosphate

HDAC histone deacetylase

HPV human papillomavirus

IA inactive

Luc luciferase

NA not applicable

PyBroP bromotripyrrolidinophosphonium hexafluorophosphate

qRT-PCR quantitative reverse transcriptase PCR

RRL rabbit reticulocyte lysate

SMA spinal muscular atrophy

SMN survival motor neuron
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SAHA suberoylanilide hydroxamic acid

SAR structure–activity relationship

T1/2 half-life

TLC thin layer chromatography

UPLC ultraperformance liquid chromatography
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Figure 1. 
Representative small molecules that have reached clinical trials for SMA treatment.
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Figure 2. 
Structures of hit molecules 4 and 5 and areas of 4 that are suitable for SAR exploration.
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Figure 3. 
Effect of 4m and 27 on SMN protein levels in hTERT-immortalized spinal muscular atrophy 

patient fibroblast (GM0003813). The 3813T cells were treated with the indicated doses of 

4m or 27 and DMSO (0.1% v/v). The 3814T cells were treated with DMSO. Cells were 

lysed after 48 h, proteins were separated by SDS–PAGE and immunoblotted with the 

indicated antibodies. (A, C) Representative immunoblot blotted with anti-SMN (Cell 

Signaling Technology; 2F1), anti-actin (Sigma-Aldrich; AC74), and anti-tubulin (Sigma-

Aldrich; DM1α). (B, D) Densitometric analysis of SMN protein expression expressed as 

fold change DMSO control. Data are expressed as SEM (n ≥ 3): (*) P < 0.05.
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Figure 4. 
Exposure of SMN reporter cells to constant ratios of 4, 27, and 5. (A) SMN2, SV40 reporter 

cells, and SH5Y5Y were analyzed in duplicate or triplicate, with indicated concentrations of 

27 for 24 or 48 h, respectively. SMN-luc (■; n = 3), Renilla luc (◆; n = 3), and SV40 luc 

activities (▲, n = 2) and cell viability (●; n = 3) were measured. Compound 27 was 

incubated with recombinant luciferase (▼, n = 2) at indicated doses, and luc activity was 

measured. (B) SMN reporter cells were treated with the indicated concentrations of 4 (blue) 

and 27 (red), individually or in combination (purple) for 24 h, and analyzed for SMN-luc 

activity. (C) SMN reporter cells were treated with the indicated concentrations of 5 (green) 

and 27 (red), individually or in combination (purple) for 24 h, and analyzed for SMN-luc 

activity. The theoretical additive was calculated by addition of the observed experimental 

activities of the individual drug exposures. Data are expressed as SEM (n ≥ 3).
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Figure 5. 
Effect of compounds on mRNA and protein expression. (A) SMN reporter cells were 

analyzed for SMN-luc mRNA expression after exposure to SAHA (10 µM), 5 (10 µM), 4 (10 

µM), and 27 (1, 10 µM) for 24 h. Expression of total SMN transcript and SMN exon 7-

included transcript was expressed as fold change over GAPDH mRNA expression. (B) 

Pulse-chase analysis of endogenous SMN protein half-life in HEK293 cells. Cells were 

exposed with DMSO, 4 (10 µM), 5 (10 µM), or MG-132 (10 µM) for the times indicated. (C, 

D) SMN2 reporter cells were exposed to the indicated concentrations of SAHA, 5, 4, and 27 
in combination with cycloheximide (10 µM). Cells were lysed at the indicated time points 

and analyzed for SMN2-luc activity (C) and Renilla-luc (D) activity. Data are expressed as 

SEM of n ≥ 3 independent experiments.
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Figure 6. 
Effect of 27 and MG-132 on the levels of polyubiquitinated proteins. HEK293 cells were 

pretreated with 27 (1 and 10 µM) and MG-132 (1 and 10 µM) for 2 h followed by addition 

of DMSO or cycloheximide (10 µM) and an additional incubation for 6 h. Final DMSO 

concentration was 0.2% (v/v). Cells were lysed, and proteins were separated on a gradient 

SDS–PAGE (4–15%). Polyubiquitinated proteins were identified using an anti-ubiquitin 

antibody. Tubulin was detected using an anti-tubulin antibody.
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Figure 7. 
Effect of 27 on targets of proteasomal or autophagic degradation. (A, B) HEK293 cells 

treated as indicated in corresponding schemes. Cycloheximide (CHX) was used to inhibit 

protein synthesis. After the indicated times, cells were lysed, and p21 and p53 proteins were 

identified by Western blot and normalized to tubulin. (C) p53 in vitro degradation assay 

using purified MBP-E6 protein. Lysates were incubated with DMSO or 27 for 30 min prior 

to the addition of MBP-E6 to initiate degradation of p53 protein. Western blot was used to 

determine p53 protein levels. (D) HEK293 cells were treated for 8 h with DMSO, 27, or 

chloroquine (CQ). Protein levels of the autophagy markers p62 and LC3-I/II were evaluated 

by immunoblot. Blots are representative results of three independent experiments.
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Scheme 1. Synthesis of 5-Isopropylisoxazole-3-carboxamides (4–4x) and 5-Substituted N-(3-
Chloro-4-fluorophenyl)isoxazole-3-carboxamides (8a–i)a
aReaction conditions and reagents: (i) ArNH2, HATU, Hunig’s base, CH2Cl2 (32–93%); (ii) 

3-chloro-4-fluoroaniline, HATU, Hunig’s base, CH2Cl2 (64–89%).
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Scheme 2. Syntheses of Analogs with Modified Linkersa

aReaction conditions and reagents: (i) NaH, MeI, THF (82%); (ii) Lawesson’s reagent, 

toluene (75%); (iii) LiAlH4, THF, reflux (57%); (iv) N-hydroxysuccinimide, EDCI, DMAP, 

CH2Cl2, 0 °C (60%); (v) NaOH, 12, CH2Cl2 (93%); (vi) HATU, Hunig’s base, 15, CH2Cl2 

(32%); (vii) 18, THF, reflux (63%).
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Scheme 3. Preparation of the 4-Methylisoxazole Analog (23)a
aReaction conditions and reagents: (i) NBS, DMF, 60 °C (23%); (ii) C3H9B3O3, DMF, 

PdCl2dppf, 80 °C, (22%); (iii) 1 M NaOH (62%); (iv) PyBrop, Hunig’s base, CH2Cl2, rt 

(43%).
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Table 5

Effects of Different N-Linked Heterocycles on Activity in the SMN-luc Reporter Gene Assaya

Compd # Het EC50 % Activation

16 9.9 ± 0.8 188 ± 13

24 5.5 ± 2.3 137 ± 13

25 1.6 ± 0.4 131 ± 11

26 0.5 ± 0.15 100 ± 16

27 0.29 ± 0.09 190 ± 11

a
Data are expressed as SEM. Compounds were analyzed in duplicate on two separate occasions, and compounds with >150% induction and EC50 

< 1 µM were repeated (n = 3).
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