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ABSTRACT

To study finite Markov chains, we begin with the theory of order
relations to classify states and chains, Then we define various
functions on the chain and use the theory of probability and statisties
to find their means and variances, Throughout the whole study, however,
the connection with matrix theory is built-in since a finite Markov
chain can be represented as a stochastic matrix,

Many questions concerning finite Markov chains can be answered,
directly or indirectly, by investigating only two kinds of chains:
absorbing Markov chains and regulazr Markov chains .- Though these
chains are different, the studies of these chains offer many

striking similarities,
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CHAPTER I

INTRODUCTION

% I; Basic.conzepts and definitions,

In the study of an experiwent which takes place in stages, we
usually indicate the possible outcomes by a treé-shaped diagram,
Each possible sequence of outcomes may be identified with a path
through the tree, Each path consists of line segmwents called branches,
We can assign probabilities to the branches and call them branch
probabilities since it is assumed that the probability for each outcome
at a given stage is known when the previous stages are knowm, The
weight of a path is just the product of the probabilities assigned
to the components of the path,: For each j, we obtain a trese Uj which
indicates all possible outcomes of the first j stages, The set of
all paths of this tree may be considered a suitable probability space
for any statement whose truth value depends on the outcome of the
first j experiments,

Iet Uh be the set of all paths of a tree for an n stage experiment,
Iet fj be a function with domain Un and value the outcome at the j-th
stage, Then the functions‘fi, fz,. « +, T, are called ouﬁcome functions,
The set of functions fy,e + », f,, is called a finite stochastic
process,

For two statements p and q relative to the same probability space,
let p A q denote the statement that is true if both p and q are

true, The conditional probability of p given q is denoted by Pr[p|{].

e
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Definition 1,1 A finite Markov process is a finite stochastic precess

such that, for any statement P whose truth value depends only on the
outcomes before the n-th,
Prlf, = sjl(fn_1 =S;)A F] = Pr[f_ = sjl fpoq =551

For a finite Markov process, theréfore, we can define the n~th
step transition probability, denoted by Pij(n)’ to be

Definition 1.2 A finite Markov chain is a finite Markov process such

that the transition probabilities Pij(n) do not depend on n, We denote
then by Pij and call any possible outcome a state,

Definition 1,3 A matrix is called nonnegative if all the entries ate

nonnegative real numbers, If B ='{bij} is a nonnegative m x n matrix

such that
n

E bij=1, i=1,con.mo

J=1
then B is stochastic,
Thebrem 1,1 If A and B are stochastic matrices and A.B is defined, then

A+B is stochastic,

Definition 1.4 Iet f be a function with domain U= {ug,eer, [
probability space and range R = {jri,--., rn:} , another probability space
for the same experiment, The induced measure for f is the probability
measure on the set R given by Pr[f = r;l ,i=1,...,n

§ 2, Matrix representation of a finite lMarkov chain,

Definition 1,5 The transition matrix for a finite Markov chain is the

matrix P with entries Pij’ the transition probabilities,

We see immediately, by Definition 1,3, that any transition matrix



is a stochastic matrix/

Definition 1.6 The initial probability vector is the row vector

T, = {Pj(o)} = {Pr [f, = Sj]} vhere f is the outcome function
with value the initial position,
§ 3. Basic comnection with matrix theory,

The matrix representation of a finite Markov chain is clearly
Justified by the following two important theorems:
Théorem 1.2 let i‘n be the outcome function at n-th stage for a finite

Markov process involving r states, then
' r
Pr [fn &= S'V_] = u-zi Pr [fn-l = Su] oPuv(n).

Proof: Iet Q be the set of finite sequences of n positive integers
chosen from 1 to r such that ij, k, oee, 1&5 Q if and only if

Ssy Spe ***, Sy, Sy form a path through the tree U Clearly, we have

j’

Pr[f =5,] ={j,§k,.--,u;gg Pr[£,=55 AL =8y A voee ATy 4=S A TS, ]
> B [£4555 ALy=Sy Aeeee A By =Sy ]

—{j,k,O",U}EQ
el £ =5, | £S5 pAveee A £y g=5,
Since we are dealing with Markov processes, By Definition 1,1, this is

- PI‘[for_SjAolocA fn_l-.:SuJOPuv(n).
{Jrkv"° Yy UreR

By keeping u fixed and sumuing over the remaining indices, we obtain
r

Prf, =5;] = ; Pr(f,_; =5, 1P, (n). This completes the proof,

Theorem 1,3 Iet T, be the induced measure for the outcome function

f, for a finite Yarkov chain with initial probability vector TS and

n
transition matrix P, Then Trn = ’TTO « P,



b
: (n) (n) (n)
Proof: et P, = Prlt, = sj] , then T_= 9Py ", ves, B, .
By the previous theorem, we have for n=> 1, T, = TTn_ioP(n) where
. P(n) = -{Pij(n)}- « Apply this result successively, we obtain
M, = ﬁ; e P(1)e P(2) ees P(n), If the Markov process is actually a

Markov dhain, then all the P(n)'s are the same and we have

n

ﬂg = TL - P
In addition to basic connection with matrix theory established

by these two theorems, we neesd the following definitions and theorems

to see further connections,

Definition 1,7 A square matrix with each entry 0 or 1 is called a

permutation matrix if there is only one non-zero entry in each row
and sach column,

Definition 1,8 A nonnegative square matrix A is reducible if there

exists a permtation matrix P such that PAPT = [:g g j] whers B

and D are square, Otherwise, A is irreducible,

_Definition 1.9 An irreducible matrix A is said to be primitive if it
has a characteristic root r with the broperty tﬁat, if 4 is any
characteristic root of A other than r, then jd|<:|11.

Theorem 1.4 A nonnégative square matrix is frimitive if and only if

AP is a positive matrix for some positive integer p.

Dofinition 1,10 Iet both A = { aij} and B = {bij} bs r x s matrices,

Then A > B means that ai.?_. b

3 i,j for 211 i and j.



CHAPTER II

EXTERNAL STRUCTURE OF THE THEORY

As basically a part of the theory of probability and statistics,
finite Markov chain theory also relies on the theory of matrices and
the theory of order relations,

g 1. Theory of order relations,

1ot T be a weak ordering defined on a finite set U, then T is
reflexive and transitive, but not:necessarily symmetric for every pair
of elements in U, Thus we can obtain an equivalence relation T by
letting x"l\‘/y if and only if xTy and yTx. Consider the set T of all
equi;éience classes resulting fromeﬁ For eech pair of classes u and v
in ﬁ: let uf; hold if every element of u bears the relation T to every
element of v, Then T¥is a weak ordering that is never symmetric for each
pair of classes in 6: Therefore, T is actually a partial ordering on’ﬁ?
and we have minimal and maximal elements of T in U,

let U =:{u1,....,un} be the set of states of a finite Markov
chain, Let uiTuj mean that the process can go from state u; to state
u; or that w=u;, THen Tipartitions U into equivalemce classes where
two states are in the same class if the process can go from either one
of them to the other, Moreover, T*partially orders all equivalence
classes so that we can classify the states of a chain through the
following definition,

Definition 2,1 The minimal elements of the partial ordering T of

equivalence classes obtained from T are called ergodic sets, The
remaining elements are called transient sets, The elements of a

transient set are called transient states, The elements of an ergodic

— 5



set are called ergodic stales, If an ergodic set has only one state,
then that state is called an absorbing state,

For every finite Markov chain; there must be at least one ergodic
sot since a finite partial ordering must have at least one minimal
elerent, Certainly, it is possible for a chain to have no transient
set, Therefore, we reach the following preliminary classification,

(1) Ergodic chains, These chains consist of a single ergodic
set, If a chain does not have any transient set but has more than

" one ergodic set, it may be studied separately as several ergodic chain§
insomuch that there is no interaction between them,

(2) Absorbing chains, A chain all of whose non;transient states
are absorbing is called an absorbing chain, As will be seen in
Theorem 3,1, for such a chain the process is eventually trapped in
a single (absorbing) state, In general, in any chain having transient
sets, the process moves toward the ergodic sets; and it can not leave
an ergodic set once entered it, Therefore, questions concerning the
behavior of the chain after entering an ergodic set can be answered
by considering that particular ergodic set as an ergodic chain, If
we are only concerned about its behavior up to the moment that it enters

_an erondic set  wa mav rediuca tha shain tn an nhgmr-}ﬁng ana har walrdne

T oTmrmm— =l

all ergodic states into aﬁéofbing states since the nature of the ergodic
states is entirely irrelevant to our concern, -

To reach further classification, let us consider again the equiva-
lence relation T which partitions the states of a chain into equivalence
classes, By means of a number-theoretical result, it can be shown that

a given equivalence class consists of one or more cyclic classes, The-



process moves cyclically from class to class, After sufficient time
has elapsed, the process can be in any state of the one cyclic class
to which the originating state belongs;

This result is obtained, however,'by forbidding the process to
leave the equivalence class in which we are concerned, Therefore,
we can apply this result unconditionally to any ergodic set since the
process will never leave the set once entered, Accordingly, we subdivide

ergodic chains via following definitions;

Definition 2,2 A regular Markov chain is an ergodic chain containing

only one cyclic class, For such a chain, its transition matrix is

called a regular transition matrix,

Definition é.3 A cyclic Markov chain is an ergodic chain having more

than one cyclic classes,

We observe immediately that an ergodic chain is regular if and
only if there exists nonzero entries on the main diagonal, On the
other hand, the transition matrix of an ergodic chain has all zeros
down the main diagonal only in case the chain is cyelic,

Regualr chains can be interpreted as a special case of cyclic
chains by taking the number of cyeclic classes to be 1, This special
case, however, turns out to be the most important case of cyclic chains,
Theoretical problems concerning cyclic chains are much easier to handle
if the chain happens to be a regular one, Moreover, results obtained
in this manner can be easily generalized and become applicable to any

ergodic chains (techniques of generalization will not be discussed



in this paper),

If we combine this result with our preliminary classification,
we see that regular chains and absorbing chains should be investigated
first in more detail,

32, Theory of probability and statistics,

To investigate the behavior of a chain, we have to define suitable
functions on the set of all states and find means and variances of these
functions. Results from probability and statistics make up the bulk of
the theory,
§3. Commections with matrix theory,

We can put the transition matrix of a chain containing transient
sets into a canonical form that is much easier to deal with., The idea
is to simltaneously permute the rows and columms of a transition
matrix so that the ergodic states come first, In other words, there

is a permutation matrix H such that

r-s s
— — .
. S O }r-s
HPH™ =
R Q)
where P is the transition matrix of a chain containing s transient
states and r-s ergodic states, The region O must consist entirely
of O's since all states involved in the region S are ergodic, and
the process never goes from an ergodic set to a transient one, By
definition 1.8, P is a reducible matrix,
If we explore the reducibility of S and Q successively, P can
be brought into the following form which is usually called the canon-
ical form of a reducible matrix, [}, D. 7QJ .



Al,i 0 e ¢ o 0 0 ¢ o o 0
0 Az’z ¢ o @ 0 0 e o o 0
0 e o o ¢ o o
0 beg O 0
Ag+1,1 Ag+1,2 M Ag+1,g Ag+1,g+1 © e Ag*i,n
LAI],:[ An'z o o o An’g All,g-}-i e o o A}]’n N

where Ak,k is irreducible for k = 1,¢ « «, n, Aii is called an isolated
“block if 1 £i =g, It is interesting to note that the states involved
in an isolated block must form an ergodic set, while those invelved in
non-isolated blocks rmst be transient states,

Of course, the transition matrix of an ergodic chain is irreducible,
Therefore, our observation on transition matrices concerning their being
stochastic and their reducibility has been fruitful enough to warrant
believing tﬁére is a strong connecti?n between finite Markov chain
theory and the theory of matrices,

For example, it follows from Theorems 1.3 and 1,4 that a regular
transition matrix must be primitive since a chain is regular if and
only if it is possible to be in any state after a certain number of
stefs regardless of the starting state,

As will be seen in Theorenm 3,3, the limiting vector ¢} for a regular
Markov chain is the unique probability vector such that AP =d where
P is the transition matrix of this regular chain, Since A = (AP).
= P?d?, this theorem merely s;ates that the limiting vector is actualJy:

the transpose of the probability eigenvector of P’T corresponding
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to the eigenvalue i, Naturally,.the probability eigenvector is defined
to be the eigenvector whose.entries,add up to 1. 1 is certainly an
eigenvalue for P and P' since P is stochastic, and P and PT are similar
matrices,

Another striking connection with matrix theory lies in the follow-
ing theorem which is of essential importance in deriving most of our
formulas,

Theorem 2,1 For a square matrix A, if %im A" = 0, the zero matrix,
2NCOL DT Lo = o0

-
then (I-A) has an inverse and (I-A)'-1 = ZE: Ak.
k=0

n-1
Proof: Iy hypothesis, lim (1-2") = T, but 1-A" = (1-4) * 2, AX ceo(1)
> k=0
Since det(I) = 1, thers exists a positive integer N such that
N / Ny Ny
det(I-A') # 0., Hence, 0 { det <:(I-A) e > A% ) = det(I-A) *det( . AC)
k=0 k=0

which implies that det(I-A) £ 0, Therefore I-A has an inverse,

-1 '
Multiply both sides of (1) by (I-A) , we have

n-1

- k
(I-4) ! . (I—An) = z: A, and also
k=0 .
o0 -1 - _
ST A% - 1im (-0 (@A) = @A) e in (247) = (@A) whion
k=0 ' n-=re ' n-> o

completes the proof,



CHAPTER III

INTERNAL STRUCTURE OF THE THEORY

As was pointed out in closing &1 of chapter II, there are mainly
two kinds of chains to be studied: absorbing Markov chains and regular
Markov chains, It is quite surprising, as will be seen, that the
process of our investigation into both chains are structurally the
same,

8 1. Asking legitimate questions,

Questions that could possibly be answered differ widely from chain
to chain; Asking legitimate questions constitutesa part oFf the thebry
vwhich is just as important as are the answers to these questions,

In a regular chain, the process keeps moving through all the states
no matter where it starts, Thus given any pair of states Si and Sj’
it doos make sense to study the length of time to go from Si to Sj for
the first time,

Definition 3,1 For a regular Markov chain, the first passage of time

fi. is a function whose value is the number of éteps before entering
Sk for the first time after the initial position,

We can find the mean and variance of the function f, and put the
results in matrix form, The mean first passage matrix, deonoted by M,

is the matrix {mla} = { M, l'_fj']} where M, [fj] is the mean &f fj
computed at Si’

More often than not the first passage of time function is undefined
on an absorbing chain, because the transition of Si to Sj may never be
accomplished, We do know, however, that the process will eventually be

trapped by an ergedic set, Thereforé, it is legitimate to ask how mani

e—tiem
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steps are needed for absorption in a process starting in a transient
state,

This problem can be easily solved as a byproduct of another important
result which furnishes us the most important information about an absorbing
chain, This concerns the matrix { Mi[:nj]} where Mi[:nj] is the mean
of the function nj evaluated at Si’ We define nj to be the function
giving the total number of times that the process is in Sj'

_ § 2, Fundamental theorems,

The following two theorems, Theorem 3,1 and 3;2, are of fundamental
importance in developing theories of absorbing chains and regular chalns
respectively, |
Theorem 3,1 In any finite Markov chain, no matter where the process
starts, the probability after n steps that the process is in an ergodic
state tends to 1 as n tends to infinity.

Proof: If the process starts in an ergodic state, then it can never
leave that ergodic set to which the initial position belongs.> The
theorem holds trivially in this case, Supposevthe process starts in

a transient state, By Definition 2,1, this state belongs to an equiva-
Jence class (resulting fromff) which is not a minimal element of the
partial ordering . Therefore, it must be possible to reach one of

the ﬁinimal elements, i,e, ergodic sets, For each transiont state 5,
let hi be the number of steps after which the process-has a possibility

S

30 @

to reach an ergedic set starting in Si' Put h = max {.hi

transient state;} . For each transient state S;, let Py be the proba~
bility to reach an ergodic set in h steps starting in Si' Put

P = min { pi Si’ a transient stat{} .
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Therefore, from any transient state, the probability of entering an
ergodic state in at most h steps is at least p, For each transient

sfate S;, 1ot qi(n) be the probability of not reaching an ergodic state

in n steps, Iet dn = max{%(n) S;, a transient state} o Then {dn} is

clearly a monotonically decreasing sequence which is bounded below by 0,

Hence, { dn} converges, Since d, =1 - p, we have dy = (1-p)k for each
ceso s . . k
positive integer k, Thus limdy, = 1lim (1-p) = 0, We have found a
k- k-
subsequence of { d} converges to O, Therefore, 1im d_ = O which completes
n N>occ N

the proof.,

n
Corollary There are numbers b > 0, 0 <e¢ < 1 such that Pij(n)_é beec
for any pair of transient states Si and Sj and any nonnegative integer n,
1/h 1 h

and b = iz = ¢, where p and h are as defined

Proof: Choose ¢ = (1-p)
in the above proof, For each nonnegatiye integer n, n = kh + n, for some

nonnegative integer k and 0 < n, < h, Clearly,

. 1
k n-nq ~h n n
dn.<_ dyy, = (1-p) =c¢c X ¢ *c¢c =bec since {dn} is non-increasing,
The corollary follows by noticing that Pign)s dn for any pair of transient
states Si' S 3 and any nonnegative integer n,

IJerma Iet P be an r x r transition matrix having no zero entries, let
€ be the smallest entry in P, let x be any r-component colurm vector,
having maximm cormponent M b and minimm component m, and let M1 and

m1 be the maximum and minimum components for the vector Px, Then
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My sMo, mg>m, and M; - ml.é (1-26)-(M°-m°).

Proof: Ist x! be the vector obtained from x by replacing all components,
except one my component, by Mo' Since P is stochastic, each component
of Px! is of the form as m  + (1-a). M =M - a(Mo-mo) vwhere a =e¢ ,
Thus each such component is less than or equal to M, - e(Mo-mo).

Since x =x', Px < Px! and M1 is a component of Px, we have

M <M - &(em ) (1)

Apply this result to the vector -x, we obtain

-my < -mg - e(-m°+Mo) (2)
Adding (1) and (2), we have
M -m=<M -n - Ze(Mo-mo) = (1-26)-(M°-mo).
Theoremn 3.2 If P is a regular transition matrix, then
(1) lim P" = A where A is stochastic,
n-—roo

(11) A =£d where & is a columm vector having all components equal
to 1 and ¢\ is a probability vector,

(1il) The components of o are positive,
Proof: We shall prove the theorem under two cases, Assume first that
P has no zero entries, Iet € be the minimum entry, Ist Pj be a column
vector with a 1 in the Jj~th component and 0 in the remaining components,
Let M, and m be the maximm and minimum components of the wvector

n-i

PnPj. Since PnP‘_j =Pe P 74 Pj, we have, from the previous lemma, that
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1412}1220000.0'0 -------- (1)
miémz_é-cocoooo --------- (2)
and Mn -n < (1-2¢€) (Mn-i-mn-i) for n > 1, Since both {Mn} and
{mn} are bounded above and below by 1 and 0 respectively, it follows
from (1) and (2) that both sequences converge, Put dn =M - n, then
n n
d <(1-26) + 4= (1-2€¢) . Since P is stochastic, 0 < £ < 1/2 if P
n
has more than one entry, Thus the sequence (1-2¢) converges to

zoro, This makes {dn} also converge to O by the comparison test,

n
Therefore, lim M = limm In other words, lim P P, exists and is

*
N—oo N n-—oo N n—soo J

a colum vector with all components the same for j = 1,,00e., re Iet

a . be this common value, then m < ajéMn forn=1,2, ,,.. and
J n

j - 1' seseee 1, In particula.r, 0< m1 éaj _<__M1< 1’ j = 1’ XTI

This would prove (iii) if o= (ai....aj....ar), where o is the proba-

bility vector required in (ii), It turns out that we really have

n n n
lim P = £o since P P;j is actually the j-th colurm of P, By Theorem 1.1,

n-—-»00
n : n

- P is stochastic for n =1, 2, ¢« ¢, 1im P rmst also be stochastic,
n—>o0

This completes the proof for the first case, Consider next the case

N
that P is only assumed to be regular, Iet N be such that P has no
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zero entries, Applying the first part of the proof, we have

de $(1-2e/)k where € is the smaliest entry of PN. Therefore, the
non-increasing sequence dn has a subsequence tending to zero, Thus
{dn} tends to zero since {dn} is bounded below, This reduces the
present case to the previous one and completes our proof,

The following theorem is a direct consequence of the above one,
Theorem 3,3 If P is a regular transition matrix and A and A are as
vgiven in Theoren 3,2, then

(1) For any probability vector Tr, n]_.’:lﬂTTPn =d,
(i1) The vector o, is the unique probability vector such that AP =H,
(1i1) PA = AP = A,

Definition 3,2 The matrix A and vectord, as given by Theorem 3.2 and

3.3, are called the limiting matrix and limiting vector for the Markov
chain determined by P,

These fundamental theorems determine, both theoretically and
tochnically, the process of our investigation into both kinds of chains,
In fact, they clearly reveal the general behavior pattern and trend of
both kinds of chains. In an absorbing chain, the prﬁcess rioves toward
inevitable absorption, A regular chain, on the other hand, will
even’tua.lly reach a state oi‘ equilibrium-~though it never can stop once
the process started,

By Theorem 3,1 and its corollary, we can prove that MiLnj] and
Var;[n.], which were defined in§1, are finite,

Theorem 3,4 Ml[nj] is finite for any absorbing chain and any pair of

transient states Si and Sj‘
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. k .
Proof: Iet uj be a function, defined on the set of all states of an

absorbing chain, that is i if the process is in state Sj after k steps,
' e,k og= K
and is O otherwise, Then, M. [n.| = M ( u, ) = }I,[u. ].
ALAEL IO E DI ALY
Clearly, Mi[uﬁ is the probability that the process is in Sj on step
k starting in S,., Hence, N, [n ] = i P, (.k). By the corollary to
] 1 1= k=0 1]

Theorem 3,1, there are numbers b >0 and 0 < ¢ < 1 such that

Pi(k) <b- ck for k = 0, 1, ¢ ¢ o Thus

Z“’ K
Z P, (k)< i be ¢ =b L.c which is finite,
k=0 ¥ — k=0

Theorem 3,5 Vari[nj] is finite for any absorbing chain and any pair
of transient states Si and Sj'

2
. 2 . ‘o paos :
Proof: Since Var, [nj] =M [njl - M E‘IJ] and M [nJ] is finite, it

2 ®
remains to be showm that Mi[n, -\ is finite,

2| _ k2| _ °°°°ukC.L
M[:I I[k_o 3):\ Ml[kz—”osg) p uj]

. od k
= Z Z Mi[u. u.ﬂ .
k=0 940 JdJ
Clearly, Mi[ujk ujq"_] is the probability that the process is in state

S;j both on step k and @ starting in Si' Iet m = min {k, 9.}, d = |k-€L| H

then Mi Eljk ujg] is the probability of being in Sj after m steps, and



d
= (m)P.(. )o

=P
i 3

, :
of returning d steps later., Hence, Mi[uj ujil

the corollary to Theorem 3,1, there are numbers b > 0 and 0 < ¢ < 1%

" such th P(m)< ‘o™ and &) _ k
suc at 55 < be ¢ an ij <b*c, Thus
(%] cd
7 (m) (d)
= P P..
Ml[nJ %:o :A:—’a ij 733
~ d
<7D @™ (b o)
k=0 q:O
2 <O °<>, t
=b § Zc vhere t = max{k,q}
k=0 q:O
2 < t
=b° D (2t + 1) ¥ which is finite,
- =0

By virtue of thesc two theorems, the two matrices { Mi [nj]:} and

{Va,ri[nj]} can be found, Many other results on absorbing chains can

be easily obtained from the matrix {Mi[njﬂ. As an example, let bij

be the probability that the process starting in Sy ends up in an
absorbing state Sj.‘ We can show that{bi j} ={Mi['_nj]} +R where R is

that submatrix of the transition matrix such that ry 3 is an entry of

R only in case Si is transient and S;j is‘absorbing;‘
}

Unlike the finite feature of absorbing chains, most results on

regular chains appear in limiting form, Of course, this is due to

Theorem 3,2, the fundamental theorem of regular chains, The following

18

theorem, known as the lLaw of large Numbers, illustrates how the limiting
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process helps to give quantitative estimates concerning the behavior
of a regular chain,

Theorem 3,6 Given a regular lMarkov chain with limiting vector

A = (a1 2, ¢ o e ar), for any initial vectorw, lim M l:vj(nzl =a,_,
n

~»c0 J

(n)

where vj is the probability of passing Sj in first n steps (not
counting the initial position).

This theorem states, to ocur amazewment, that in the long run we
can expect about a fraction aj of the steps to be in Sj no matter what
initial probability vector we start with,

Iet §E(n) be the number of times that the process is in state Sj
in the first n steps including the initial position, In an attempt to
get a mean of this fu?ction §B(n), we obtain a better-than-ncthing

..n]

estimation of M 3 .

Theorem 3,7 For any regular Markov chain and any initial vector T,
. - (n) . TN

1im Moy, -~ nd |=72 - where o is the limiting vector

N-»ca J

and Z is the fundamental matrix for a regular chain which will be
introduced in next section,

(n)

To see how accurate this prediction about fr'j is, again we rust

appeal to limiting process to extablish the following result.

f 3_r_.(n)l )1 |

. J
Theorem 3,8 1lim |Var =la, (2z,. -1 - a
— n—awl o j {.‘J 33 3_5




20

§3. Fundamental matrices,

Iet Q be the submatrix of the transition matrix of an abserbing
}dapkov chain such that Pij is an entry of Q if and only if both S N and
Sj are transient states, By Theorem 3,1, the process will inevitebly
be trapped by an absorbing state, Using matrix language which is made
available by Theorem 1,3, this says that Qk tends to a zero matrix as
k tends to infinity, It follows from Theorem 2,1 that I-Q has an
inverse and (I—Q)-i = i Qk.
, k=0 :

ﬁe;finition 3.3 For an absorbing Markov chain, we define the fundamental

matrix N to be (I-Q) .

For a square matrix A, let Ad g denote the square matrix that agrees
with A on the main diagonal but is zero elsewhere, The matrix Asq is formed
from A by squaring each entry,

Théofem 3.9

(1) {Ml{_na']} = N, Vari[nj]} = N(Zng-I) - qu where 5; and Sj are
transient states,

(ii) 1Iet t be the function giving the nun;ber of steps (including the

original position) in which the process is in a transient state, Then

{Ig_[t]} =T, {Vari[t]} =-(2N-I)T- qu _whez_-e T= N§'.

' This theorem, which we stated without proof, shows that most of
the important quantities can be expressed in terms of the fundamental
matrix N,

For regular chains, there is a corresponding fundamental matrix
which is of similar importance,

Theorem 3,10 Iet P be the transition matrix for a regular Markov chain,

Iet A be the limiting matrix, Then Z = (T - (P - A))"} exists and



Z=T+>0 (B - ).

n=1
. 2 k cpao s
Proof: Since A =EdfA = €4 = A, A = A for any positive integer k,

(P-A) =) (n) i

i=0 \1

11

1

n-t 3
Pn + (n (-1)n lA (by Theorem 3,3(iii))

i=0\1

=P - A,

n ' n
Since 1lim (P - A) =0, lim (P-A) =0, By Theorem 2,1, I - (P-A)

n—>co n->
o o
- n
_has an inverse and (I -(P-A)) 1 = E : (P-A) =1 + § : (Pn - 4),
n=0 n=1

This completes the proof.

Definition 3.4 Iet P be a regular transition matrix, The matrix

-1
Z = (I -(P-4)) = is called the fundamental matrix for the Markov chain

determined by P.

Theorem 3,11 The mean first passage matrix M, which was introduced

imrediately following Definition 3,1, is given by M= (I - Z + Eng)D
where D is the diagonal matrix with diagonal elements dii = 1/9.:.L and

E is a square matrix with all entries 1.

Theoren 3,12 Iet fj be the first passage time function of a regular

chain, Then

{Va.ri[fj_]_} =M (2zng -I)+2 (ZM-E (zm)dg) - qu.

These two theorems, together with Theorems 3,7 and 3,8, indicate
how fundamental the matrix Z is in finding basic forrmlas for regular

chains,



CHAPIER IV

APPLICATION OF PRELIMINARY RESULTS

It is very surprising to see that we can achieve a tremendous
extension of our preliminary results on finite Markov chains without
the help of any additional theorems, All we have to do is to define
a suitable new chain on the original one and analyze the new chain
with the theorems at our disposal, The following theorem is a typical
example,

Theorem L,1 Iet S be a subset of transient states in an absorbing chain
with transition matrix P, Iet Q be the 5 x s submatrix of P corresponding
‘to these states, Iet the process start in S;. Then

(i) The ij component of N = (I--Q)-'1 is the mean number of times the
process is in Sj before leaving S, »

(11) The iJ component of N, = N(Zng - I)- qu is the variance of
the same function,

(iii) The i-th component of Né;is the mean number of steps needed
to leave S,

(iv) The i-th component of (2N - I)NE& - (Nz-i,)sq is the variance of
the same function,
Proof: We form a new process in which all states not in S are made
absorbing states, Siﬁce S is a subset of transient states:in.the
original process, from each element of S we can reach a state not in
S which must be an absorbing state in the new chain, Hence, the new
chain is absorbing and the elements of S must all be transient states
in the new process, By applying Theorem 3,9 to the new chain, we éet

all four results,

2l
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