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ABSTRACT

To study finite 1'fiarkov chains, we begin with the theory of order 

relations to classify states and chains. Then we define various 

functions on the chain and use the theory of probability and statistics 

to find their means and variances. Throughout the whole study, however, 

the connection viith matrix theory is built-in since a finite Markov 

chain can be represented as a stochastic matrix.

Many questions concerning finite Markov chains can be answered, 

directly or indirectly, by investigating only two kinds of chains: 

absorbing Markov chains and regular 1-fe.rkov chains. Though these 

chains are different, the studies of these chains offer many 

striking similarities.
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CHAPTER I

INTRODUCTION

I. Basic.concepts and definitions.

In the study of an experiment which takes place in stages, we 

usually indicate the possible outcomes by a tree-shaped diagram. 

Each possible sequence of outcomes may be identified with a path 

through the tree. Each path consists of line segments called branches, 

Vfe can assign probabilities to the branches and call them branch 

probabilities since it is assumed that the probability for each outcome 

at a given stage is known when the previous stages are knovm. The 

weight of a path is just the product of the probabilities assigned 

to the components of the path,- For each j, we obtain a tree idiich 

indicates all possible outcomes of the first j stages. The set of 

all paths of this tree ray be considered a suitable probability space 

for any statement whose truth value depends on the outcome of the 

first j experiments.

Let Un be the set of all paths of a tree for an n stage experiment, 

let f. be a function with domain U and value the outcome at the j-th 3 n
stage. Then the functions’f^, f^,*  • •, fn are called outcome functions. 

The set of functions f• • •, fn is called a finite stochastic 

process.

For two statements p and q relative to the same probability space, 

let p q denote the statement that is true if both p and q are 

true. The conditional probability of p given q is denoted by Pr[p|q].

—1—
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Definition 1.1 A finite Markov process is a finite stochastic precess 

such that, for any statement P tdiose truth value depends only on the 

outconss before the n-th.

= Si) A PJ = frEf„ = Sj| - Sj] .

For a finite Markov process, therefore, we can define the n-th

step transition probability, denoted by to be

P„(n) = Pr[In = Sj | = Sj .

Definition 1.2 A finite 1-^.rkov chain is a finite Markov process such 

that the transition probabilities P^^(n) do not depend on n. We denote 

them by P^j and call any possible outcome a state.

Definition 1.3 A matrix is called nonnegative if all the entries ate 

nonnegative real numbers. If B = A b. . V is a nonnegative m x n matrix
I J 

such that 
n

b^ = 1, i = 1,. . ., m. 
j=l

then B is stochastic.

Theorem 1.1 If A and B are stochastic matrices and A«B is defined, then

A*B  is stochastic.

Definition 1.4 Let f be a function with domain U = A u^, • • •, uk I • a

probability space and range R = j rl’“*»  rn ' another probability space

for the same experiment. The induced measure for f is the probability 

measure on the set R given by PrjjT = r/] , i = 1,..., n.

§ 2, Matrix representation of a finite l^rkov chain.

Definition 1.5 The transition matrix for a finite l&rkov chain is the

matrix P with entries P. , the transition probabilities.

We see immediately, by Definition 1.3, that any transition matrix 
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is a stochastic matrix/

Definition 1.6 The initial probability vector is the row vector

where f is the outcome functiono 
with value the initial position.

3. Basic connection with matrix theory.

The matrix representation of a finite Markov chain is clearly

justified by the following two important theorems:

Theorem 1,2 Let f be the outcome function at n-th stage for a finite

Markov process involving r states, then

Pr « sv~] = r^n-1 “ •^uv^31^* *

Proof: Let Q be the set of finite sequences of n positive integers 
chosen from 1 to r such that j, k, u^£ Q if and only if 

Sj, Sj,, •••, Su, Sv form a path through the tree Un. Clearly, vre have

Cfn “ Svl Z E^o^j ^^1“^ A * • *e A ^n-l^u^ ^n^v^p,k,**»,ujEQ

= .. —» E^o^j Afl:=Sk A*,e* ^n-l^u^

• Pr [jt*n=Sv f0=S j A * * * * A ^n-

Since we are dealing with Markov processes, Ey Definition 1.1, this is
/** -x Pr tZ^o38 j A •e *e A ^n-l^ul] * Puv^n^ •

By keeping u fixed and summing over the remaining indices, we obtain 
r

Pr [2fn = SyJ g C ^E-^n-l 45 Su^l ^uv^^* This completes the proof.

Theorem 1.3 Let TTn be the induced measure for the outcome function 

fn for a finite Markov chain with initial probability vector 7^ and 
transition matrix P. Then = 1TO • pn.



P(n) =

Proof: Let P ' = Pr Tfn = S.] , then 7T = p.^^, .... P (n) (
J n i * xj

permutation matrix if there is only one non-zero entry in each row 

and each column.

Definition 1,8 A nonnegative square matrix A is reducible if there
T BO exists a permutation matrix P such that PAP # where B

and D are square. Otherwise, A is irreducible.

Definition 1,9 An irreducible matrix A is said to be primitive if it

has a characteristic root r with the property that, if d is any 

characteristic root of A other than r, then jd| < |r|.

Theorem 1,4 A nonnegative square matrix is primitive if and only if 
p
A is a positive matrix for some positive integer p.
Definition 1,10 Let both A = aij} ani^ ® ~ be r x s matrices.

Then A> B means that a. bjj for all i and j.

Ely the previous theorem, we have for n> 1, 7Tn = "^n_j‘P(n) where

Apply this result successively, we obtain

l>n = "ITq • P(l)« P(2) ••• P(n). If the Markov process is actually a

Markov chain, then all the P(n)’s are the same and we have

TT = 7T . pn. 
n o 1 •

In addition to basic connection with matrix theory established

by these two theorems, we need the following definitions and theorems 

to see further connections.

Definition 1,7 A square matrix with each entry 0 or 1 is called a



CHAPTER II

EXTERNAL STRUCTURE OF THE THEORY

As basically a part of the theory of probability and statistics, 

finite Markov chain theory also relies on the theory of matrices and 

the theory of order relations.

§ 1. Theory of order relations.

Let T be a weak ordering defined on a finite set U, then T is 

reflexive and transitive, but not^necessarily symmetric for every pair 

of elements in U. Thus we can obtain an equivalence relation T by 

letting xTy if and only if xTy and yTx. Consider the set U of all 

equivalence classes resulting from't'. For each pair of classes u and v 
/v *in U, let uTv hold if every element of u bears the relation T to every 

element of v. Then T*is  a weak ordering that is never symmetric for each 

pair of classes in U. Therefore, is actually a partial ordering onV; 

and we have minimal and maximal elements of T*in  U.

Let U = £ui,....,unJ be the set of states of a finite Markov 

chain. Let u-jluj mean that the process can go from state u^ to state 

Uj or that Uj =Uj. Then.'.Tj'partitions U into equivalemce classes where 

two states are in the same class if the process can go from either one 

of them to the other. Moreover, T partially orders all equivalence 

classes so that we can classify the states of a chain through the 

following definition.

Definition 2.1 The minimal elements of the partial ordering of 

equivalence classes obtained from T are called ergodic sets. The 

remaining elements are called transient sets. The elements of a 

transient set are called transient states. The elements of an ergodic
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set are called ergodic states. If an ergodic set has only one state, 

then that state is called an absorbing state.

For every finite Markov chain, there must be at least one ergodic 

set since a finite partial ordering must have at least one minimal 

element. Certainly, it is possible for a chain to have no transient 

set. Therefore, we reach the following preliminary classification.

(1) Ergodic chains. These chains consist of a single ergodic 

set. If a chain does not have any transient set but has more than

one ergodic set, it may be studied separately as several ergodic chains 

insomuch that there is no interaction between them.

(2) Absorbing chains, A chain all of whose non-transient states 

are absorbing is called an absorbing chain. As will be seen in 

Theorem 3.1, for such a chain the process is eventually trapped in

a single (absorbing) state. In general, in any chain having transient 

sets, the process moves toward the ergodic sets; and it can not leave 

an ergodic set once entered it. Therefore, questions concerning the 

behavior of the chain after entering an ergodic set can be answered 

by considering that particular ergodic set as an ergodic chain. If 

we are only concerned about its behavior up to the moment that it enters 

An eT*crndici  set wa may reduee the nhA-in tn an AhsnnMnCT Uy '"'•Icing 

all ergodic states into absorbing states since the nature of the ergodic 

states is entirely irrelevant to our concern.

To reach further classification, let us consider again the equiva­

lence relation T which partitions the states of a chain into equivalence 

classes, means of a number-theoretical result, it can be shown that 

a given equivalence class consists of one or more cyclic classes. The-
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process moves cyclically from class to class. After sufficient time 

has elapsed, the process can be in any state of the one cyclic class 

to which the originating state belongs.

This result is obtained, however, by forbidding the process to 

leave the equivalence class in which we are concerned. Therefore, 

we can apply this result unconditionally to any ergodic set since the 

process will never leave the set once entered. Accordingly, we subdivide 

ergodic chains via following definitions.

Definition 2,2 A regular Markov chain is an ergodic chain containing 

only one cyclic class. For such a chain, its transition matrix is 

called a regular transition matrix.

Definition 2,3 A cyclic terkov chain is an ergodic chain having more 

than one cyclic classes.

We observe immediately that an ergodic chain is regular if and 

only if there exists nonzero entries on the main diagonal. On the 

other hand, the transition matrix of an ergodic chain has all zeros 

down the main diagonal only in case the chain is cyclic.

Regualr chains can be interpreted as a special case of cyclic 

chains by taking the number of cyclic classes to be 1. This special 

case, however, turns out to be the most important case of cyclic chains. 

Theoretical problems concerning cyclic chains are much easier to handle 

if the chain happens to be a regular one. Moreover, results obtained 

in this manner can be easily generalized and become applicable to any 

ergodic chains (techniques of generalization will not be discussed 
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in this paper).

If we coinbine this result with our preliminary classification, 

we see that regular chains and absorbing chains should be investigated 

first in more detail.

§ 2. Theory of probability and statistics.

To investigate the behavior of a chain, we have to define suitable 

functions on the set of all states and find means and variances of these 

functions. Results from probability and statistics make up the bulk of 

the theory.

^3. Connections with matrix theory.

V7e can put the transition matrix of a chain containing transient 

sets into a canonical form that is much easier to deal with. The idea 

is to simultaneously permute the rows and columns of a transition 

matrix so that the ergodic states come first. In other words, there 

is a permutation matrix H such that

r-s s

where P is the transition matrix of a chain containing s transient 

states and r-s ergodic states. The region 0 must consist entirely 

of 0’s since all states involved in the region S are ergodic, and 

the process never goes from an ergodic set to a transient one, Ry 

definition 1.8, P is a reducible matrix.

If we explore the reducibility of S and Q successively, P can 

be brought into the following form which is usually called the canon­
ical form of a reducible matrix, Ql, p. 7^ .
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Ai ! 0 . . . 0 0 . . . 0

0 A9 o . . . 0 0 . . . 0

Ag+1,1 Ag+1,2 * • • Ag+l,g Ag+l,g+l * * * Ag+l,n

T the transpose of the probability eigenvector of P corresponding

^,1 An,2 * * * An,g An,g+1 e * * ^.n

where A^ is irreducible for k = 1,• • •, n. A^ is called an isolated 

block if 1 < i g. It is interesting to note that the states involved 

in an isolated block must form an ergodic set, wiiile those involved in 

non-isolated blocks must be transient states.

Of course, the transition matrix of an ergodic chain is irreducible. 

Therefore, our observation on transition matrices concerning their being 

stochastic and their reducibility has been fruitful enough to warrant 

believing there is a strong connection between finite Markov chain 

theory and the theory of matrices.

For example, it follows from Theorems 1.3 and 1.4 that a regular 

transition matrix must be primitive since a chain is regular if and 

only if it is possible to be in any state after a certain number of 

steps regardless of the starting state.

As will be seen in Theorem 3*3,  the limiting vector for a regular 

rferkov chain is the unique probability vector such thatc^P =c\ where
T T

P is the transition matrix of this regular chain. Since = (c\P)
T Tb P , this theorem merely states that the limiting vector is actually 
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to the eigenvalue 1. Naturally,.the probability eigenvector is defined

to be the eigenvector whose entries add up to 1. 1 is certainly an 
rp 'f

eigenvalue for P and P since P is stochastic, and P and P are similar 

matrices.

Another striking connection with matrix theory lies in the follow­

ing theorem which is of essential importance in deriving most of our 

formulas.
Theorem 2,1- For a square matrix A, if lim An = 0, the zero matrix, 
----------- n-»oo 

oo
-1 kthen (I-A) has an inverse and (I-A) = / „ A ,

k=0
n-1

Proof: hypothesis, lim (I-An) s= I, but I~An = (I-A) • A ----(1)
n-»co k_0

Since det(l) = 1, there exists a positive integer N such that
/ N-1 \ N-1M ii x * k \ X—, kdet(I-A ) / 0. Hence, 0 / det I (I-A) • / A ] = det(I-A) *det(  / , A ) 
\ k=0 ) k=0

which implies that det(I-A) != 0. Therefore I-A has an inverse.

Multiply both sides of (1) by (l-A) , we have

n-1
(l-A) • (I-An) = A , and also

k=0 
00 1A^ = lim (I-A) , (I-An) = (I-A) • lim (l-A ) = (l-A) which
k=0 n->»o

completes the proof.



CHAPTER III

INTERNAL STRUCTURE OF THE THEORY

As was pointed out in closing §1 of chapter II, there are mainly 

two kinds of chains to be studied; absorbing 14arkov chains and regular 

Markov chains. It is quite surprising, as will be seen, that the 

process of our investigation into both chains are structurally the 

same.

§ 1, Asking legitimate questions.

Questions that could possibly be answered differ widely from chain 

to chain. Asking legitimate questions constitute?a part of the theory 

which is just as important as are the answers to these questions.

In a regular chain, the process keeps moving through all the states 

no matter where it starts. Thus given any pair of states and S^,

it does make sense to study the length of time to go from to S.. for

the first time.

Definition 3.1 For a regular Markov chain, the first passage of time 

f^ is a function whose value is the number of steps before entering

for the first time after the initial position.

We can find the mean and variance of the function f^ and put the

results in matrix form.

is the matrix

computed at S^.

The mean first passage matrix, denoted by M,

< M. [f■ where Mz [f H is the mean of f. 
I -L u 3J xuj4 j

More often than not the first passage of time function is undefined

on an absorbing chain, because the transition of S. to Sj may never be

accomplished. We do know, however, that the process will eventually be 

trapped by an ergodic set. Therefore, it is legitimate to ask how many 

—11—
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steps are needed for absorption in a process starting in a transient 

state.

This problem can be easily solved as a byproduct of another important 

result which furnishes us the most important information about an absorbing

This concerns the matrix is the meanchain, where

of the function n. evaluated at S., We define n. to be the function 
J i J

giving the total number of times that the process is in S^.

§2. Fundamental theorems.

The folloifing two theorems. Theorem 3.1 and 3.2, are of fundamental 

importance in developing theories of absorbing chains and regular chains 

respectively.

Theorem 3.1 In any finite Markov chain, no matter where the process 

starts, the probability after n steps that the process is in an ergodic 

state tends to 1 as n tends to infinity.

Proof: If the process starts in an ergodic state, then it can never

leave that ergodic set to idiich the initial position belongs. The 

theorem holds trivially in this case. Suppose the process starts in

a transient state, P/ Definition 2.1, this state belongs to an equiva­

lence class (resulting from T) which is not a minimal element of the
*partial ordering T . Therefore, it must be possible to reach one of

the minimal elements, i.e, ergodic sets. For each transient state S^, 

let h^ be the number of steps after which the process'has a possibility 

to reach an ergodic set starting in S^. Put h = max h^ S^, a 
transient state^ . For each transient state S^, let p^ be the proba­

bility to reach an ergodic set in h steps starting in S^. Put

p = min S^, a transient state
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Therefor’e, from any transient state, the probability of entering an

ergodic state in at most h steps is at least p. For each transient

state S^, let 

in n steps. Let dn

be the probability of not reaching an ergodic state

max is, a transient state

clearly a monotonically decreasing sequence which is bounded below by 0.
Hence, converges. Since d^ = 1 - p, we have d^ = (l-p)^ for each

positive integer k. Thus lira d,, = lim (l~p) = 0. We have found a 
k-»oo k-»oo

subsequence of jdn> converges to 0, Therefore, lim d = 0 which completes oo ti

the proof.

Corollary There are numbers b > 0, 0 < c < 1 such that P. b • c11

for any pair of transient states and S, and any nonnegative integer n
V

Proof: Choose c = (1-p)^'^ and b = = c-^1, where p and h are as defined
1-p

in the above proof. For each nonnegatiye integer n, n = kh + n^ for some 

nonnegative integer k and 0 < n^.< h. Clearly,

k n-nl -h n n -
— ^kh - (1*P)  = c — c * c = b • c since idny is non-increasing.

The corollary follows by noticing that P. \ 1 d^ for any pair of transient 

states S^, Sj and any nonnegative integer n

Lemina Let P be an r x r transition matrix having no zero entries. Let 

be the smallest entry in P, Let x be any r-component column vector.

having maximum component Mq and minimum component mo, and let and

“l be the maximum and minimum components for the vector Px. Then
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<-Mo, mo, and (1-2e)• (Mo-mo).

Proof: Let x’ be the vector obtained from x by replacing all components, 

except one mQ component, by Mq. Since P is stochastic, each component 

of Px1 is of the form a. mQ + (l-a)» Mq = MQ - a(Md-mo) where a>e .

Thus each such component is less than or equal to MQ - €-(Mo-mo).

Since x ^x1, Px Px*  and is a component of Px, we have

^<1^ - e(Mo-mo) --------------- (1)

Apply this result to the vector -x, vre obtain

-m, <, -m - fc(-m +M ) ——------——(2)1 o x o o/ '

Adding (1) and (2), we have

< Mo - mo - 2e(M0-m0) = (1-26) .(Mo-mo).

Theorem 3.2 If P is a regular transition matrix, then

(i) lim P11 = A where A is stochastic, 
n-yoo

(ii) A =^c{ where £ is a column vector having all components equal 

to 1 and c\ is a probability vector,

(iii) The components of are positive.

Proof: We shall prove the theorem under two cases. Assume first that

P has no zero entries. Let € be the minimum entry. Let Pj be a column 

vector with a 1 in the j-th component and 0 in the remaining components.

Let and m^ be the maximum and minimum components of the vector
P11?^. Since PnP. = P. Pn"*̂e  P^, we have, from the previous lemma, that 

J J J
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............... .......... (i)

<  .......(2)

and M - m < (1-25) (M ,-m ) for n > 1, Since both > and
n n n-1 n-1 — / n

are bounded above and below by 1 and 0 respectively, it follows

from (1) and (2) that both sequences converge. Put d^ = 14*  - m , then

n nd**  ^(1-26) • do = (1-26) , Since P is stochastic, 0 < < 1/2 if P 

j" n)
has more than one entry. Thus the sequence -s(l-26) r converges to

zero. This makes also converge to 0 by the comparison test.

n
Therefore, lim M = lim m . In. other words, lim P P. exists and is 

n—poo n n—poo n n—>oo j

a column vector with all components the same for j = 1  r. Let 

a be this common value, then m < a for h = 1, 2, .... and
j n j n

j = 1, , r. In particular, 0 < m^ a^ Z. 1, j = 1, ,r.

This would prove (iii) if c/= (a^....ay...a^), where o'is the proba­

bility vector required in (ii). It turns out that we really have 

n n n
lim P = since P P. is actually the j-th column of P . Ety Theorem 1.1, 
n-*oo  J
n n
P is stochastic for n = 1, 2,» • •, lim P must also be stochastic. 

n-»oo

This completes the proof for the first case. Consider next the case

N
that P is only assumed to be regular. Let N be such that P has no 
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zero entries. Applying the first part of the proof, we have

, / k / N
^kN — ) where 6 is the smallest entry of P . Therefore, the

non-increasing sequence has a subsequence tending to zero. Thus

(d I tends to zero since jd 1 is bounded below. This reduces the 
L nJ I nJ
present case to the previous one and completes our proof.

The follovjing theorem is a direct consequence of the above one.

Theorem 3»3 If P is a regular transition matrix and A and o( are as

given in Theorem 3.2, then
(i) For any probability vector IT, lirnTTP 1 =c<.*

n->co
(ii) The vector^ is the unique probability vector such that <AP =<A.

(iii) PA = AP = A.

Definition 3.2 The matrix A and vectored , as given by Theorem 3.2 and

3.3, ar® called the limiting matrix and limiting vector for the Karkov 

chain determined by P.

These fundamental theorems determine, both theoretically and 

toclinically, the process of our investigation into both kinds of chains.

In fact, they clearly reveal the general behavior pattern and trend of 

both kinds of chains. In an absorbing chain, the process moves toward 

inevitable absorption. A regular chain, on the other hand, will 

eventually reach a state of equilibrium—though it never can stop once 

the process started.

By Theorem 3.1 and. its corollary, we can prove that and

Var^jjij] , which were defined in§l, are finite.

Theorem 3.^ [pj] is finite for any absorbing chain and any pair of 

transient states and S^.
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k starting in S.

are numbers b > 0 and 0 ■< c < 1 such thatTheorem 3.1, there

0, 1, Thus

k=0

3.5Theorem

of transient

is finite, itM.

is finiteremains to be shown that

kx2
k=0 1=0k=0

the probability that the process is in stateis

k and 1 starting in S. 1Let m = min • Ion step

probability of beingis the

Mi

S. both
J

1 u 
3

1 U.

p(k) 
id •

then M.1

< 7 . b 
k=0

u.11
3 J

in S^. after m steps, and

k
j ■

is the probability that the process is in S^. on step

k u 
J

9. u.J J

p (k) 
id

• k
Proof: let Uj be a function, defined on the set of all states of an 

absorbing chain, that is 1 if the process is in state after k steps 

u
d

k c

Var. fn.J is finite for any absorbing chain and any pair
•Lk Jr

states S. and S.,
3- J

k „c for k =

kM. u.1L a

Clearly, IL u^.k

Proof: Since Var. Tn .1 =11- jJ

k=0 1=0

Clearly, u^

(k)
. By the corollary to

k
I j dJ

= b z .c which is finite 
k=0

and is 0 otherwise. Then, IL [nJ] = u ,k
a k=o a
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the corollary to Theorem 3.1, there b > 0 and 0 < care numbers

CO

kcO q=0

oo

d(b*
k=0 q=0

k=0

is finite
t=0

Ey virtue of these two theorems, the two matrices and

can

be easily obtained from the matrix

be the probability that the

where R isshow that *R

an entry of

results on

is due to

Theorem 3.2, the fundamental theorem of regular chains The following

q u.

Pij

cm) (b

regular chains appear in limiting form. Of course, this

m (k) 
c and P., 

JJ

of returning d steps later. Hence,

(m) 
such that

(m) (d) 
= P P ij jj

2 
n.L 3 J

can be found. Many other results on absorbing chains

As an example, lot b. .
3-J

process starting in ends up in an

k
c . Thus

k 
M. u.iL 3

absorbing state S^. We can 

that submatrix of the transition matrix such that r^j is 

R only in case S. is transient and S. is absorbing, 
3 »

Unlike the finite feature of absorbing chains, most

/  c where t = 
q=0

(m) (d)
Pdj

theorem, known as the Law of Large Numbers, illustrates how the limiting
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process helps to give quantitative estimates concerning the behavior 

of a regular chain.

Theorem 3,6 Given a regular liarkov chain uith limiting vector

, for any initial vector tt, lim v
n—»oo

where v .xu, is the probability of passing S. in first n steps (not
J J

counting the initial position).

This theorem states, to our amazement, that in the long run we

■(n) =a,
0 J J

(a 1 a2 • • • ar>

can expect about a fraction a. of the steps to be in S. no matter what 
J J

initial probability vector we start with.

Let y. } be the number of times that the process is in state S.
J 3

in the first n steps including the initial position. In an attempt to
— (n)get a mean of this function y. , we obtain a better-than-ncthing

- (n)estimation of M y^ .

Theorem 3.7 For ary regular I-Jarkov chain and ary initial vectorTT, 

= tt Z - cA where o< is the limiting vector 

and Z is the fundamental matrix for a regular chain which will be 

introduced in next section

Theorem 3.8 lim IVar

_  zn\
To see how accurate this prediction about 'is, again we must 

appeal to limiting process to extablish the following result.

= . a. (2z.. - 1 - a )
J JD j
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§ 3. Fundamental matrices.

Let Q be the submatrix of the transition matrix of an absorbing

Iferkov chain such that is an entry of Q if and only if both and

S^. are transient states, Theorem 3.1, the process will inevitably 

be trapped by an absorbing state. Using matrix language which is made

available by Theorem 1.3, this says that Q tends to a zero matrix as

k tends to infinity,’ It follows from Theorem 2.1 that I-Q has an
QO »•1 —7 kinverse and (I-Q)- = / Q ,
k=0

Definition 3,3 For an absorbing Iferkov chain, we define the fundamental
-1matrix N to be (I-Q) .

For a square matrix A, let A^^ denote the square matrix that agrees 

with A on the main diagonal but is zero elsewhere. The matrix Ag^ is formed 

from A by squaring each entry.

Theorem 3,9

(i)

transient states.

= N, ' Varllnjl) = " Nsq vhere Si and Sj are

(ii) Let t be the function giving the number of steps (including the

original position) in which the process is in a transient state.
=T, ^Vari[t]J =.(2N-I)T- Tsq where 7'=

Then

This theorem, which we stated without proof, shows that most of 

the important quantities can be expressed in terms of the fundamental 

matrix N.'

For regular chains, there is a corresponding fundamental matrix 

xdiich is of similar importance.

Theorem 3.10 Let P be the transition matrix for a regular Markov chain. 
Let A be the limiting matrix. Then Z = (I - (P - A))“^ exists and
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Z = I +X (Pn - A).
n=l

2 kProof: Since A - A, A = A for any positive integer k.

, xn /n\ , xn-i i n-i
(P-A) = 2_> (-D P A

i=0

n 
P - A.

n 
P (by Theorem 3,3(iii))

Since lin (P - A) = 0, lira (P-A) =0. Py Theorem 2.1, I - (P-A) 
n-*co  n-^oo

eo o-O

. has an inverse and (I -(P-A)) (P-A) = I + \ (pn - A).
n=0 n=l

This completes the proof.

Definition 3.^ Let P be a regular transition matrix. The matrix

Z = (I -(P-A)) is called the fundamental matrix for the Markov chain 

determined by P.

Theorem 3.11 The mean first passage matrix M, •which was introduced 

immediately following Definition 3.1, is given by M = (I - Z + EZjg)D 

where D is the diagonal matrix with diagonal elements d^^ = 1/a^ and 

E is a square matrix with all entries 1.

Theorem 3.12 Let f^. be the first passage time function of a regular 

chain. Then

. Var^f = M (2ZdgD - I) + 2 (ZM - E (ZM)dg) - Msq.

These two theorems, together with Theorems 3.7 and 3.8, indicate 

how fundamental the matrix Z is in finding basic formulas for regular 

chains.



CHAPTER IV

APPLICATION OF PRELIMINARY RESULTS

It is very surprising to see that we can achieve a tremendous 

extension of our preliminary results on finite Markov chains without 

the help of any additional theorems. All we have to do is to define 

a suitable new chain on the original one and analyze the new chain 

with the theorems at our disposal. The following theorem is a typical 

example.

Theorem 4.1 Let S be a subset of transient states in an absorbing chain 

with transition matrix P. Let Q be the s x s submatrix of P corresponding 

to these states. Let the process start in S^, Then
(i) The ij component of N = (l-Q)"^ is the mean number of times the 

process is in Sj before leaving S.

(ii) The ij component of = N(2N^ - I) - is the variance of 

the same function.

(iii) The i-th component of N£ is the mean number of steps needed 

to leave S.

(iv) The i-th component of (2N - l)N£- (N£>) is the variance of
sq 

the same function.

Proof: We form a new process in which all states not in S are made 

absorbing states. Since S is a subset of transient statesJin the 

original process, from each element of S we can reach a state not in 

S which must be an absorbing state in the new chain. Hence, the new 

chain is absorbing and the elements of S must all be transient states 

in the new process. By applying Theorem 3.9 to the new chain, we get 

all four results.

—22—
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