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ABSTRACT 

Relative biological effectiveness (RBE) is used to measure the biological effect 

of treatment plans in Intensity modulated proton therapy (IMPT). However, this 

approach is challenging because of considerable model uncertainties for clinical 

tissues. Therefore, the primary goal of this dissertation research is to develop 

biological effectiveness incorporated optimization approaches to enhance 

understanding of the biological impact of IMPT in radiation therapy research. 

First, our work considers LET as a physical surrogate of biological effect in 

treatment planning. By maximizing dose-averaged LET in the target and minimizing it 

on OARs, the method not only can produce satisfactory dose distributions but also 

achieve reduced LET distributions in critical structures as well as an increased LET in 

the target volume. Then, we develop a new mathematical model to increase the 

biological effect in radioresistant tumors in such a way that a robust biological effect 

distribution can be achieved. To accomplish this purpose, the sum of the differences 

between the highest and the lowest biological effect in each voxel, approximated by 

the product of dose and LET, is penalized. After that, we noticed that using LET as a 

surrogate will increase the model complexity and ignore the difference between dose 

and LET distribution, which is a more fundamental property. A study focuses on the 

potential benefits of LET keeps going up after the physical dose Bragg Peak is come 

up with to improve the biological effect performance. avoid high values of LET in 

critical structures located within or near the target and increase LET in the tumor area, 

without compromising the target coverage. In the final work, the impact of BAOpt on 

the biological effect in IMPT is investigated.  
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Chapter 1  

Introduction of radiation therapy 

1.1 Background 

In 2018, an estimated 1,735,350 new cases of cancer were diagnosed in the 

United States and 609,640 people diedh from the disease. Cancer remains the second 

most common cause of death in the United States, exceeded only by heart disease, 

accounting for nearly one in every four deaths [1].  

There are many types of cancer treatment. The types of treatment that patients 

receive will depend on the type of cancer and patients’ health condition. Usually, 

surgery, radiation therapy, chemotherapy, immunotherapy, targeted therapy, hormone 

therapy, stem cell transplant, and targeted medicines are the main current treatment 

methods. Among these methods, more than half of cancer patients will receive 

radiotherapy in addition to surgery or chemotherapy. For some particular types of 

cancer, i.e. early head and neck cancer, it may be used alone [2], [3]. 

Radiation therapy (also called radiotherapy) is the use of high-energy radiation to 

damage tumor cells’ DNA and cause double strand break. Meanwhile, health cells’ 

DNA also receive double strand break. But, the normal cells are less sensitive to the 

radiation compared to the tumor cells, which means the normal cells can heal better 

than the tumor cells. Radiation therapy does not kill cancer cells right away. It takes 

days or weeks of treatment before DNA is damaged enough for cancer cells to die. 

Then, cancer cells keep dying for weeks or months after radiation therapy ends. Since 

radiation can damage both cancer cells and healthy cells, the aim of radiation therapy 

https://www.cancer.gov/about-cancer/treatment/types/immunotherapy
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is to maximize tumor cell kill while minimizing toxic effects on surrounding healthy 

tissues. Radiation therapy can be used alone or in combination with other treatment 

methods. And it most often uses X-rays, but protons, carbon ion or other types of 

energy also can be used. 

There are two main types of radiation therapy, internal radiation therapy and 

external beam radiation therapy. Internal radiation therapy is a treatment in which a 

source of radiation is put inside the patient’s body. The radiation source can be solid 

or liquid. External beam radiation therapy comes from a machine that aims radiation at 

patient’s cancer. The machine is large and may be noisy. It does not touch patient’s 

body, but can move around, sending radiation to a part of body from many directions. 

There are different systems that can produce different types of radiation for external 

beam therapy, such as x-ray machines, Cobalt-60 machines, linear accelerators, proton 

beam machines, and neutron beam machines. External beam therapy is the most 

widely used radiation therapy treatment in the world. 

Before the beginning of radiation treatment, radiation therapy team consisting of 

radiation oncologists, radiation therapists, medical physicists, and medical dosimetrists 

need carefully plan patient’s treatment. At the beginning period, the patient body 

structure will be simulated into a cube with three-dimensions. The simulation allows 

the radiation oncologist to define the exact location and configuration of the treatment 

for your cancer or tumor. In order to accomplish this, CT images will be taken in the 

radiation oncology department. Sometimes, the other image techniques such as 

magnetic resonance imaging (MRI) and positron emission tomography (PET) are also 

used to get more precise images to identify the structures. Those diagnostic images 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046345&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046751&version=Patient&language=English
http://training.seer.cancer.gov/glossary.html#Proton
http://training.seer.cancer.gov/glossary.html#Neutron
https://en.wikipedia.org/wiki/Radiation_oncologist
https://en.wikipedia.org/wiki/Radiation_therapist
https://en.wikipedia.org/wiki/Medical_physics
https://en.wikipedia.org/w/index.php?title=Dosimetrist&action=edit&redlink=1
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then help physicians determine the geometry information, such as organ locations, 

organ sizes, and isocenter. Along with the contour of these structures, the physician 

will also prescribe objective doses to the target volumes and constraints to OARs, 

which is defined as treatment “protocol”. Next, optimization techniques are utilized to 

determine, intensity profiles from each treatment beam angles and required parameters 

of treatment delivery machines, to generate a treatment plan for the patient. 

Generally, to help the normal cells’ recover, the total prescribed dose of radiation 

is divided into many small doses and given in multiple treatment sessions, which is 

known as “fractionation”. The total dose is fractionated (spread out over time) for 

several important reasons. Tumor cells are generally less efficient in repair between 

fractions than normal cells, so fractionation gives health tissues more time to recover 

which means reduce the damage. Fractionation also avoids tumor cells were in a 

relatively radio-resistant phase of the cell cycle during the treatment and allow them to 

cycle into a sensitive phase of the cycle [4]. 

The more formal optimization process is typically referred to as forward planning 

and inverse planning. In forward planning, the required decisions include how many 

radiation beams to use, which angles each will be delivered from, whether attenuating 

wedges be used and which multi-leaf collimators configuration will be used to shape 

the radiation from each beam. Forward planning is usually applied in three-

dimensional conformal radiation therapy (3DCRT) and passive scattering proton 

therapy (PSPT). However, the quality of inverse planning highly depends on the 

experience of  planners. To make the therapy delivery modalities more flexible and 

https://en.wikipedia.org/w/index.php?title=Wedge_(radiotherapy)&action=edit&redlink=1
https://en.wikipedia.org/wiki/Multileaf_collimator
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precise, new technology such as Intensity-modulated radiation therapy (IMRT) and 

Intensity-modulated proton therapy (IMPT) were come up with. These types of 

treatment planning are called inverse planning. In these radiation treatment plans, 

planner specifies the desired requirement, such as prescribed dose of the tumor voxels, 

max tolerance of OARs into the model, the optimization algorithms will try to 

determine all the parameters to achieve the requirements as good as possible. In this 

thesis, we focus on IMPT treatment planning. 

 

Figure 1.1: Intensity-modulated radiation therapy (IMRT).  

1.2 Intensity Modulated Proton Therapy (IMPT) 

Proton beams have the ability to deposit dose over a confined distance at the end 

of the beam range, namely the Bragg peak, and almost no dose is released beyond the 

peak. This characteristic of proton beams provides an accurate localization of dose in 
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three dimensions compared with intensity-modulated radiation therapy (IMRT) and 

passive scattering proton therapy (PSPT). As a result, intensity-modulated proton 

therapy (IMPT) delivered by pencil-beam scanning can generate highly conformal and 

homogeneous doses to target volumes with complex shapes while minimizing the 

undesired dose to adjacent organs at risk (OARs) [5]. A new study from researchers at 

The University of Texas MD Anderson Proton Therapy Center found that the use of 

feeding tubes in oropharyngeal carcinoma (OPC) cancer patients treated with intensity 

modulated proton therapy (IMPT) decreased by more than 50 percent compared to 

patients treated with intensity modulated radiation therapy (IMRT). This suggests that 

proton therapy may offer vital quality of life benefits for patients with tumors 

occurring at the back of the throat (MD Anderson News, 2013). 

 

Figure 1.2: Depth-dose curves of a photon beam (red), a proton spread-out Bragg peak 

(blue, thick), and the proton pencil beams constituting the spread-out Bragg 

peak (blue, thin).  
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There are mainly two strategies have been proposed to generate IMPT plans 

when multiple beam angles are used to deliver IMPT: (1) the signal-field optimization 

(SFO-IMPT), in which of each beam is optimized individually to deliver the uniform 

prescribed dose to the target while respecting the dose tolerance of normal tissues [6]; 

(2) the multi-field optimization (MFO-IMPT), in which all spots from all fields are 

optimized simultaneously to generate a homogeneous total dose distribution [7]. 

MFO-IMPT allows for superior dose distributions compared with either PSPT or 

SFO-IMPT. Due to the increase of the degree of freedom in the optimization process, 

MFO-IMPT has the greatest flexibility to produce optimum dose distribution patterns, 

especially for complex anatomic geometries. Our research is focused on the MFO-

IMPT. For brevity, we will use the term IMPT to refer to MFO-IMPT in the remainder 

of the document unless otherwise necessary for clarity. 

1.3 Uncertainties in Radiation Therapy 

Optimization problems are typically considered with precisely specified 

parameters. The solutions to such problems may be highly sensitive to errors in the 

parameter values: if the true values differ from those used during the optimization, the 

solution may, in fact, be far from optimal. There are many sources of uncertainty that 

need to be taken into account in the course of the treatment planning process. The 

segmentation of the tumor and the critical structures based on medical images is 

inherently uncertain and error prone. Furthermore, patient positioning uncertainties are 

relevant because the patient needs to be set up in the same position every day over the 

course of the treatment. Motion effects constitute another class of uncertainty. 
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There is no measurement (or procedure) in the radiation treatment process that 

can be performed perfectly. The main uncertainties we take into consideration in this 

research are as follows: 

1) Setup uncertainty: this uncertainty is due to such factors as errors in the 

positioning of the patient and mechanical inaccuracies in the delivery.  

2) Range uncertainty: it may arise from inaccuracies in the computed tomography 

(CT) imaging.  

3) Anatomical change uncertainty: this error is caused by the motion of tumor and 

organs in the human body during a treatment session, tumor size and shape change and 

gain or loss weight.  

Depending on the nature of the uncertainties, different approaches for taking 

them into account are preferable. Commonly, uncertainties are handled by using 

margins: The clinical target volume (CTV) is expanded into a planning target volume 

(PTV) and planning is performed to irradiate the latter. Margins are employed to 

combat everything from setup uncertainty to the motion to imaging artifacts. Their 

ubiquity in treatment planning is a testament to their effectiveness, relative ease of 

implementation, but also lack of dominant substitutes.  
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Figure 1.3: Clinical targets.  

As alternatives to geometric margins, robust optimization methods that take 

uncertainties into account explicitly have been proposed. In these methods, dose 

distributions for multiple error scenarios are computed and the treatment plans are 

optimized with respect to all of these scenarios simultaneously. The methods differ in 

how they take the dose distributions into account: expected value optimization 

minimized the expectation of the objective value over the scenario doses [8]–[10], 

composite worst optimization minimizes the objective value of the worst case scenario 

[11], and voxelwise worst-case optimization  minimizes the objective function applied 

to a worst-case dose distribution defined as the worst scenario dose to each voxel 

considered independently [12]. While these methods can produce robust plans also for 

sites of heterogeneous density, they result in qualitatively different plans than margin-

based planning, even in situations where the static dose cloud approximation holds.   
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1.4 Biological Optimization 

The current practice of proton therapy uses a constant relative biological 

effectiveness (RBE) value of 1.1 to account for biological effect in the treatment, as 

recommended by the International Commission on Radiation Units and Measurement 

(ICRU) [13]. This assumes that protons are 10% more effective than photons. 

Furthermore, it has been evidenced that RBE varies along the treatment field, i.e. with 

linear energy transfer (LET), the values of tissue-specific parameters defined by (α/β)x 

as well as the dose per fraction [14], [15]. But the use of variable RBE is hindered 

because of considerable model uncertainties for clinical tissues, mostly owing to the 

existing experimental biological data are insufficient to define a clear correlation 

between RBE and dose per fraction or (α/β)x for in vivo endpoints, included in RBE 

models [15]–[18]. If treatment planning objectives for target coverage are evaluated 

only in terms of variable RBE weighted dose, such methods typically lead to lower 

physical doses in parts of the target, based  on the assumption that the RBE is larger 

than 1.1 in areas of high LET [19]. On the other hand, this could lead to overdosage to 

the critical structures if the RBE is underestimated [20].  

Although the RBE-LET relationship depends on tissue type, endpoint, and dose, 

one can assume that the biological effectiveness increases with increasing LET [14], 

[21]–[24]. Unlike other biological parameters, LET can be calculated with high 

accuracy through analytical methods or Monte Carlo simulations [25]–[27]. Previous 

studies have demonstrated that active scanning offers the possibility of influencing the 

distribution of dose-averaged LET (i.e., the biological effect) without significantly 
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altering the distribution of physical dose. This can be explained as IMPT has a much 

higher degree of freedom for modulation than passively scattered proton therapy 

(PSPT) and single field optimized intensity modulated proton therapy (SFO-IMPT) 

[28]. Therefore, combining physical dose optimization with the goal of additionally 

influencing the LET distribution  has been addressed to optimize biological dose in 

recent studies [16], [20], [21], [28]–[32]. Their primary focus was on increasing LET 

in radioresistant tumors or reducing it in critical normal tissues to achieve a better 

biological effect. However, they did not consider the robustness of physical dose and 

biological effect.  

1.5 Objectives and Overview 

The aim of this dissertation research is to develop biological effectiveness 

incorporated optimization approaches to improve the quality and robustness of 

biological effect meanwhile maintaining the coverage of physical dose.  

In chapter 3, a LET-guided optimization method to study the feasibility of 

improving LET distribution in target volumes and reducing LET distribution in critical 

structures while keeping the physical dose distribution coverage. In this study, we 

considered LET as a physical surrogate of biological effect in treatment planning 

according to the approximated linear relationship between LET and RBE. 

In chapter 4, a new mathematical model was come up with to increase the 

biological effect in radioresistant tumors and critical structures in such a way that a 

robust biological effect distribution can be achieved. In this method, the sum of the 

differences between the highest and the lowest biological effect in each voxel, 
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approximated by the product of dose and LET, was penalized to improve the 

robustness of biological effect distribution. Besides, an extra benefit of reduced 

biological effect distribution was achieved in the organs at risk. 

In chapter 5, an influence index to quantify the contribution of the biological 

effect from each scanning spot on the basis of its topological relationship to different 

organs of interest. This method could be especially beneficial for patient cases where 

critical structures are adjacent to the target area. In addition, the DEAOpt approach is 

less complex computationally and therefore faster than the LETOpt approach. 

As an important supplement, we proposed the LETBAO algorithm to investigate 

the impact of LETBAOpt on the biological effect of IMPT. BAO in IMPT has much 

high freedom than FMO because the evulation of each beam angle combination 

requires to fully solve an FMO model. Thus, it is feasible for LETBAO to generate a 

biological effect advanced treatment plan compared to biological effect-guided 

optimization in IMPT. 
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Chapter 2  

Literature Review 

2.1 Fluence Map Optimization problem 

The fluence map optimization (FMO) is the core problem in radiation therapy 

treatment planning optimization. The objective of FMO problem is to optimize the 

optimal intensity map of beamlets to deliver a homogenous prescribed dose to the 

target while minimizing the radiation dose on critical structures, which is inherently 

contradictory because the targets and critical structures are near each other or 

overlapped. Usually, the objective function is used to penalize the difference between 

the prescribed dose distribution and the current dose distribution. However, there are 

many formulations have been proposed in FMO previous studies.  

In FMO optimization, the most commonly used objective functions are dose 

based and dose-volume based objective functions [33]–[36]. The advantage of these 

objective functions is they are straightforward for the treatment plan evaluation. Wu 

and Mohan [37] proposed an objective function based on the equivalent uniform dose 

(EUD) for radiation therapy optimization. This objective function uses the biologically 

equivalent dose to evaluate the plan quality. Linear programming models also have 

been used to formulate the FMO problem [38].  

To solve the FMO problem, a great number of algorithms have been proposed to 

find the optimal beamlets intensity profiles. These strategies can be grossly classified 

into two groups: global optimization (GO) and local optimization (LO). GO 
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approaches include linear programming [39], [40], mixed integer programming [41], 

[42], simulated annealing and genetic algorithms [43]–[45]. These approaches are 

designed to reach a global optimal solution. However, they all require an excessive 

amount of time for optimization, which is not practical in clinical treatment planning. 

In addition, the performance of these approaches depends heavily on the choice of 

parameters [39]. For example, simulated annealing and genetic algorithms, have the 

advantages of avoiding getting trapped in local minima in principle, they are slow and 

may also get trapped in local minima if the thermal cooling process is too fast in the 

case of simulated annealing, or if the population evolution is not realistic in the case of 

genetic algorithms. Linear programming methods can incorporate constraints and 

guarantee to have an optimal solution. However, they are limited to linear objective 

functions, which are poor indicators of the response of tumors and healthy tissue to 

radiation. On the other hand, LO approaches include gradient-based algorithms [12], 

[37], [46], [47], local neighborhood search [48] and iterative methods [49]. Due to the 

LO approaches are designed to obtain usable solutions within a clinically acceptable 

planning time window. So, LO approaches have been commonly used for clinical 

treatment planning optimization. However, it has been reported in the IMRT treatment 

planning literature that the gradient-based optimization methods, it can be easily 

trapped in local minima [50]–[53]. As noted by  Llacer et al [54], the commonly used 

gradient-based methods often result in different solutions when different starting 

points are used. Due to the IMPT has even more degree of freedom (i.e., multiple 

energy layers) compare to IMRT. This can lead to a higher chance of being trapped in 

a local minimum, as was pointed out by Albertini et al [55].  
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Despite the fact that many solution approaches have been proposed to solve the 

FMO problem, solving the FMO problem is computationally difficult in practice due 

to the presence of uncertainties in radiation therapy.   

2.2 Robust Optimization for Radiation Therapy 

In the standard radiation treatment regime, the spatial and temporal dose 

distribution is optimized assuming the patient geometry is static over the course of 

treatment and a fixed dose of radiation is delivered in every treatment fraction. 

However, during the course of treatment, the patient geometry may deviate from the 

one observed in the image on which a treatment plan is based. These uncertainties add 

complexity to the inherent trade-off between minimizing the healthy tissue dose (or 

probability of side effects) and ensuring that the tumor receives a sufficient dosage of 

radiation. 

To date, robust optimization is widely used to incorporate different uncertainties 

into the optimization process to improve the robustness of treatment plans. Many 

robust optimization models for radiation treatment planning were developed by 

researchers. Chu et al [56] proposed a robust optimization approach accounted for 

patient interfraction motion and setup uncertainties for IMRT. The results 

demonstrated that robust solution achieved better healthy tissue sparing than a clinical 

margin solution without compromising tumor coverage and robustness. Ólafsson and 

Wright [57] considered dose matrices calculation error and interfraction position 

uncertainties into an IMRT treatment planning problem formulation,  and showed that 

a robust solution outperforms nominal solution (one which assumes a dose matrix in 
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known with certainty) in terms of tumor coverage and improved healthy tissue sparing 

when compared with margin solution. Li and Xing [58] use a three-dimensional 

Gaussian distribution function to simulate random organ motion for IMRT planning. 

Bortfeld et al [59] introduced a robust methodology for IMRT treatment planning 

under uncertainty and considered the specific case of intrafractional uncertainty 

induced by breathing motion. They incorporated the uncertainty in the probability 

mass function of breathing motion into the inverse planning optimization and ensured 

that all target voxels received sufficient expected dose for all probability distributions 

within a polyhedral set. Chan et al [60] generalized the robust optimization framework 

for IMRT planning without considering the probability distribution of uncertainties.   

Worst case robust optimization is another main approach to consider 

uncertainties. Pflugfelder et al [12] proposed a “worst case” optimization method for 

IMPT by considering both setup uncertainty and range uncertainty. In this approach, 

the worst case dose in each voxel was calculated to evaluate the objective function.  

Fredriksson et al [11] use a minimax robust optimization method to handle setup and 

range uncertainties in IMPT planning. The worst scenario among the nominal and 

uncertainty cases was punished by optimization algorithm. Both of these approaches 

can work with a linear programming (LP) model [61] and a nonlinear programming 

(NLP) model [62]. The results of all these papers show that the robustness of IMPT 

plan can be significantly improved by robust optimization, while without loss nominal 

case target coverage and OAR sparing. 
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2.3 Linear Energy Transfer (LET) – Guided Optimization  

The present study demonstrated that the LET-incorporated IMPT optimization 

can create preferred dose-averaged LET distributions while maintaining satisfactory 

dose distributions. The goal of LET-guided optimization is to maximization in target 

volumes and minimization in critical normal tissues is expected to boost the 

differential benefits of increasing the biological effect of protons in tumor and/or 

reducing it in healthy tissues compared to the current standard for brain tumor cases. 

Within dose-exposed volumes, evaluation of LET can be used as another measure of 

plan quality, in addition to dose. Moreover, one can also choose to use radiobiological 

models as additional indicators of plan quality, such as the linear quadratic (LQ) cell 

survival model, tumor control probability (TCP), normal tissue complication 

probability (NCTP), and RBE models.  

 LET painting approaches have been investigated for ion [29] and proton [30] 

therapies, in which planning methods such as splitting targets or adopting opposite 

beam arrangements are used to allocate the high LET protons within target instead of 

normal tissues. However, those techniques may require greater effort in planning, 

quality assurance, and delivery than does the current practice because they use more 

planning volumes and beam angles. In contrast, incorporating LET directly into the 

optimization process may have certain practical advantages over the LET painting 

techniques and it could be easily implemented in clinical settings.  

One recent study discussed a multi-criteria optimization approach in which a set 

of IMPT plans were created using various dose based objectives and constraints, then 
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plans with superior dose and LET distributions were selected [16]. While the 

advantage of this method is that multiple competing plans can be generated, the 

disadvantage is that the performance on finding improved LET distributions may be 

compromised because LET criteria are not included in optimization.  

In another recent study, a two-step prioritized optimization approach was 

proposed: first a plan was optimized using conventional dose criteria, and, in the 

second step, the plan was optimized solely based on the product of LET and dose as a 

surrogate of variable RBE weighted dose with constraints to limit the change to 

physical dose distribution from the first step [20]. Prioritized optimization may be an 

effective approach to managing the trade-off effect between dose and LET [28]. 

However, the optimality of LET optimization may be affected by the local minimum 

problem in nonconvex optimization, as the second round of prioritized optimization 

uses a warm start.  

An et al [31] proposed a LET-guided robust planning model that simultaneously 

considered proton range and patient setup uncertainties and spares high RBE in the 

OARs. However, this study did not discuss if increasing LET in target could be 

achieved at the same time. 

2.4 Monitor Unit Constraints 

IMPT is currently performed using the active spot scanning technique. In this 

modality, a proton pencil beam can be scanned magnetically in two-dimensional 

directions perpendicular to the beam direction in order to form an irradiating field. 

Monoenergetic pencil beams with different energies can then be used to produce the 
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desired dose distributions to cover the three-dimensional tumor target [63]. By 

individually modulating the intensity of each scanning spot, an IMPT plan can thus be 

delivered [64]. The scanning schemecan be either continuous or discrete. The 

continuous scanning system sweeps a beam in a raster manner, whereas the discrete 

scanning system employs a stop-and-shoot process whereby the beam is turned off 

between spots [65]. The spot scanning system used at The University of Texas MD 

Anderson Cancer Center employs the discrete scanning scheme and is capable of 

generating protons with 94 non-equispaced energies from 72.5 to 221.8MeV using a 

scanning nozzle (Hitachi, Ltd, Tokyo, Japan and Hitachi America Ltd, Tarrytown, NY, 

USA) [64]. Proton beams range from 4 to 30.6 cm in steps of 1 mm for lower energies 

and up to 6mm for higher energies. This study focuses on the discrete scanning system 

at MD Anderson, although other discrete scanning systems would function on similar 

principles. 

Smaller spot spacing has been shown to increase target dose homogeneity and 

lower the organ-at-risk (OAR) dose, but it also results in many low-intensity spots and 

reduces plan optimality [64]. There are minimum monitor unit (MU) constraints for 

delivering each pencil beam (spot) for the scanning spot system. A MU is defined by a 

fixed number of output pulses from the main dose monitor ion chamber in the 

scanning nozzle; hence, one M U value is used to represent spot intensity and its 

resolution at MD Anderson is 0.0001. To ensure delivery accuracy, the minimum MU 

(0.005 at MD Anderson) must be selected while taking into account two 

considerations: (1) the spot dose should be higher than the expected delayed dose, 

which is the dose delivered after the scanning termination signal is sent; and (2) the 
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accuracy of spot position measurement would be reduced if a lower minimum MU 

were used [66]. Note that at the Bragg peak, the dose delivered by a single spot with 

0.005 MU is approximately 0.2 to 0.55 Gy, depending on different energies. However, 

deliverable minimum MU constraints are not considered in the current TPS. Instead, a 

post- processing procedure is performed to satisfy those constraints. MU values over 

0.0025 are rounded up to 0.005 and MU values below 0.0025 are rounded down to 0. 

Rounding errors in this procedure can result in significant distortion from the 

optimized dose distributions to the delivered dose distributions [64]. Distortion is 

exacerbated when there are more spots with small MU values, which can be caused by 

small spot spacing. Therefore, when designing a treatment plan, a threshold value for 

spot spacing needs to be set in order to resolve the tradeoff between the dosimetric 

advantage and delivery constraints; hence, using spot spacings smaller than the 

threshold value is to be avoided when designing IMPT plans owing to the dose 

distribution deterioration caused by rounding errors.  

Whereas the incorporation of MU constraints into inverse treatment planning for 

IMPT has not been much discussed thus far, the problem of limiting excessive MUs 

has been extensively studied in inverse treatment planning for intensity modulated 

radiation therapy with photons (IMXT). Most previous studies have focused on 

including beam segmentation constraints in the IMXT optimization process so that 

more continuous fluence maps can be generated in an optimized plan [67]–[69]. 

Coselmon et al [70] specifically discussed a strategy that assigns maximum intensity 

limits in IMXT optimization to improve delivery efficiency without significantly 

degrading plan quality. Overall, approaches proposed for IMXT optimization have to 
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address the question of deliverability with a multi-leaf collimator and are therefore not 

applicable to IMPT, in which intensities for all proton scanning spots can be 

modulated independently. A previously described method by Cao et al [32], regarding 

incorporating minimum deliverable MU constraint into the optimization, introduced a 

two stages optimization method. In the first stage, they performed an optimization 

using linear programming to find an intermediately optimized IMPT plan without the 

deliverable minimum MU constraints considered. In the second stage, they performed 

a boundary-constrained optimization, in which the optimizer would enforce lower 

bound constraints for every beamlet that has positive intensity after the first stage. All 

the beamlets with intensity less than the lower bound after the first stage would be turn 

off in the second stage. Therefore, the resultant plan might not be a local optimal 

solution to the original problem. 

2.5 Beam Angle Optimization 

The beam angle optimization (BAO) problem in radiotherapy treatment planning 

is a typical combinatorial optimization problem [61]. The optimization of beam 

irradiation directions can substantially improve treatment plan quality [71], [72]. 

However, the clinical use of equispaced beam angle ensembles is chanllenged by 

solving the BAO problem, a nonconvex problem with many local minima on a vast 

search space [73]. 

Usually, the BAO problem is guided by the optimal value of the fluence map 

optimization (FMO)—the problem of obtaining the most appropriate radiation 

intensities for each beam direction [74]. A combinatorial BAO formulation can be 
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obtained by considering a discrete subset of all possible angle directions in [0,360]. 

Many different algorithms have been used to address the combinatorial BAO problem, 

including gradient search [73], neighborhood search [48], [61], [75], response surface 

approaches [76], branch-and-prune [48], hybrid approaches [77], [78], genetic 

algorithms [78]–[80], artificial neural network [81], simulated annealing [82], or 

matheuristic approaches [83]. Alternative approaches consider all possible (continuous) 

angles resulting in a continuous BAO formulation [84], [85]. 

Most of the mentioned approaches applied sequential combination of two 

algorithms, where one algorithm solves for beam angles and the other algorithm 

approximates the beam intensities. These approaches involve many approximations in 

solving subproblems as well as the relaxation of integer constraints, which may lead to 

inefficient searching directions 
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Chapter 3  

Linear Energy Transfer Incorporated Optimization for 

Intensity-Modulated Proton Therapy 

3.1 Introduction 

By using pencil beam scanning technique for treatment, intensity modulated 

proton therapy(IMPT) can modulate the intensity of beamlets independently. IMPT is 

more effective in delivering conformal dose distributions than conventional beam 

radiation therapy, such as IMRT, because it can set nonuniform intensities for 

different beamlets flexibly. However, there are problems arising in the stage of 

treatment planning and delivery of IMPT. Among them, how to measure the biological 

effect and improve it are two prominent issues.  

The relative biological effectiveness (RBE), defined as the ratio of the photon 

(reference) dose and the proton dose necessary to cause the same level of effect, is 

used to calculate the biological effect of IMPT. The current practice of proton therapy 

applies a constant RBE value of 1.1 to account for the biological effect of the 

treatment, as recommended by the International Commission on Radiation Units and 

Measurements [13]. The constant RBE value reflects the basic assumption that protons 

are 10% more biologically effective than photons.  

Although it is well known that RBE depends on the type of the particle, the dose-

averaged linear energy transfer (LETd), the tissue type ((α/β)x ratio) and the dose level 

[19], it is hard to predict an accurate RBE value because of conspicuous model 

uncertainties for clinically relevant tissues, due to the lack of experimental data to 
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conclude precise (α/β)x values [16].There is research shows that (α/β)x values for 

many tissue types are often accompanied by more than 50% uncertainty [17]. If 

treatment planning objectives for target coverage are evaluated based on variable RBE, 

Therefore, use of these variable RBE models to evaluate proton treatment plans may 

lead to unwanted clinical consequences. For example, if the calculation of the target 

dose coverage is based on a variable RBE-weighted dose, the patient will be at risk of 

receiving a lower physical dose in parts of the tumor because variable RBE is assumed 

to be greater than 1.1 in areas of high LET. Critical structures are in danger of being 

exposed to a higher physical dose when the variable RBE is underestimated [20], [86]. 

RBE increases with increasing LET, whereas it decreases with increasing dose 

and (α/β)x. Experimental data show that proton RBE increases with increasing LET 

[14], [21]–[24]. Therefore, LET could be used as a good surrogate for indirect RBE 

optimization to avoid the controversy to calculate RBE from LET in proton therapy 

[20]. Previous studies have proven that IMPT has the ability to produce equivalent 

physical dose distributions but greatly different LET distributions [16], [87]. Therefore, 

recent studies begin to include both dose and LETd into objectives to study the 

method’s feasibility and examine the tradeoff between doses and LETd values [16], 

[20], [21], [28]–[31], [88]. Unkelbach et al [20] proposed a prioritized optimization 

method to reoptimize IMPT plans in terms of their LET distributions while limiting 

the degradation of the best possible physical dose distribution. Cao et al [28] 

introduced a LET-incorporated IMPT optimization method, which was able to produce 

clinically satisfactory dose distributions while increasing dose-averaged LET in target 

volumes and reducing it in critical normal tissues for five selected brain tumor patient 
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cases. But, all these researches did not consider the uncertainties in IMPT. An et al [31] 

proposed a LET-guided robust planning model that simultaneously considered proton 

range and patient setup uncertainties and spares high RBE in the OARs.  

This research aimed to investigate the impact of incorporating LET criteria 

directly into IMPT optimization. First, we would like to verify that both dose and LET 

distributions could be optimized simultaneously. The goal of this optimization was set 

to not only produce satisfactory dose distributions but also to achieve reduced LET 

distributions in critical structures and increased LET in target volumes. 

3.2 Method and Materials 

3.2.1 Linear energy transfer incorporated optimization 

For each patient, two optimization approaches were evaluated in this study: 

conventional optimization, and LET-incorporated optimization. The goal of LET-

incorporated optimization was to optimize dose and LET distributions simultaneously. 

The additive objectives of LET were, straightforwardly, maximization of LET in 

tumor targets and minimization of LET in critical tissues and normal tissues. 

During IMPT, the patient receives irradiation in multiple proton beams with 

different incident angles. Each beam can be divided into thousands of beamlets and we 

used 𝑗 as the index of beamlet. 𝑤𝑗
2 denotes the intensity of beamlet 𝑗 to preserve the 

nonnegativity. With 𝐷𝑖𝑗  as the physical dose deposited to voxel 𝑖 by beamlet 𝑗 with 

unit intensity (so-called influence matrix), the physical dose of voxel 𝐷𝑖 is calculated 

by: 
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 𝐷𝑖 = ∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗 ,                                                     (3.1) 

where 𝑁𝐵  denotes the total number of beamlets. The LET delivered to voxel 𝑖  by 

beamlet 𝑗 in unit intensity are indicated 𝐿𝑖𝑗 . By defining the dose-averaged LET 𝐿𝑖 

over all pencil beam contributions as follow: 

𝐿𝑖 =
∑ 𝐷𝑖𝑗𝐿𝑖𝑗𝑤𝑗

2𝑁𝐵
𝑗

∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗

.                                                      (3.2) 

The conventional optimization model in IMPT we used in this research is as 

below:  

𝐹𝑃(𝑤𝑗) = 𝑝𝑇
1

𝑁𝑇
∑ (𝐷𝑖 − 𝐷0,𝑇)

2𝑁𝑇
𝑖=1 + 𝑝𝑂𝐴𝑅

1

𝑁𝑂𝐴𝑅
∑ 𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅) ×

𝑁𝑂𝑅𝐴
𝑖=1

(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅)
2
,                                                                  (3.3) 

where 𝑁𝑇, and 𝑁𝑂𝐴𝑅 are sets of voxels in target volumes and OARs, respectively. 𝑝 

terms denote the penalty weights of the corresponding organs to control the priorities 

between competing objectives. 𝐷0  terms are the prescribed doses required by the 

treatment plans. The heavy-side step function 𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅)  is a discontinuous 

function whose value is 0 for a nonpositive argument and 1 for a positive argument. 

By adding two terms for maximizing dose-averaged LET in the target and 

minimizing it in OARs, the cost function for LET-incorporated optimization (LETOpt) 

was formulated as shown below:  

𝐹𝐿(𝑤𝑗) = 𝐹𝑃(𝑤𝑗) − 𝑝𝑇,𝐿
1

𝑁𝑇
∑ 𝐿𝑖

2𝑁𝑇
𝑖=1 + 𝑝𝑂𝐴𝑅,𝐿

1

𝑁𝑂𝐴𝑅
∑ 𝐿𝑖

2𝑁𝑂𝑅𝐴
𝑖=1 .            (3.4) 

The derivative function of Formulation 3.4 can be written as follow: 

 

https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Function_(mathematics)
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𝐹′
𝐿(𝑤𝑗) = 4 ∗ 𝑝𝑇

1

𝑁𝑇
∑ (∑ 𝐷𝑖,𝑗𝑤𝑗

2𝑚
𝑗=1 − 𝐷𝑝,𝑇)𝐷𝑖,𝑗𝑤𝑗

𝑁𝑇
𝑖=1 + 4 ∗

𝑝𝑂𝐴𝑅
1

𝑁𝑂𝐴𝑅
∑ 𝐻(∑ 𝐷𝑖,𝑗𝑤𝑗

2𝑚
𝑗=1 − 𝐷𝑝,𝑂) × (∑ 𝐷𝑖,𝑗𝑤𝑗

2𝑚
𝑗=1 − 𝐷𝑝,𝑂)𝐷𝑖,𝑗𝑤𝑗

𝑁𝑂𝐴𝑅
𝑖=1 − 4 ∗

𝑝𝑇,𝐿
1

𝑁𝑇
∑ (

∑ 𝐷𝑖,𝑗𝐿𝑖,𝑗𝑤𝑗
2𝑚

𝑗=1

∑ 𝐷𝑖,𝑗𝑤𝑗
2𝑚

𝑗=1

) ( 
𝐷𝑖,𝑗𝐿𝑖,𝑗𝑤𝑗 ∑ 𝐷𝑖,𝑗𝑤𝑗

2𝑚
𝑗=1 −𝐷𝑖,𝑗𝑤𝑗 ∑ 𝐷𝑖,𝑗𝐿𝑖,𝑗𝑤𝑗

2𝑚
𝑗=1

(∑ 𝐷𝑖,𝑗𝑤𝑗
2)𝑚

𝑗=1
2 )

𝑁𝑇
𝑖=1 +  4 ∗

𝑝𝑂,𝐿
1

𝑁𝑂𝐴𝑅
∑ (

∑ 𝐷𝑖,𝑗𝐿𝑖,𝑗𝑤𝑗
2𝑚

𝑗=1

∑ 𝐷𝑖,𝑗𝑤𝑗
2𝑚

𝑗=1

) ( 
𝐷𝑖,𝑗𝐿𝑖,𝑗𝑤𝑗 ∑ 𝐷𝑖,𝑗𝑤𝑗

2𝑚
𝑗=1 −𝐷𝑖,𝑗𝑤𝑗 ∑ 𝐷𝑖,𝑗𝐿𝑖,𝑗𝑤𝑗

2𝑚
𝑗=1

(∑ 𝐷𝑖,𝑗𝑤𝑗
2)𝑚

𝑗=1
2 )

𝑁𝑂𝐴𝑅
𝑖=1 . 

            (4.4) 

The calculation of 𝐷𝑖𝑗  and 𝐿𝑖𝑗  was carried out by a previously validated fast 

Monte Carlo system [89]. 

3.2.2 Patient cases and treatment planning 

For the LETOpt study, we selected five brain tumor patients which had been 

treated with proton therapy at UT MD Anderson, including one glioblastoma, one 

anaplastic astrocytoma and three ependymoma cases. In all these cases, one or more 

critical structures, e.g. brainstem or optic chiasm, were adjacent to or overlapped with 

gross target volumes (GTVs) and clinical target volumes (CTVs). The prescriptions to 

target volumes and field arrangements were the same as those used in the clinical 

treatments. The doses prescribed to all OARs are set to zero in optimization. Table 3.1 

lists patient information and specific treatment planning parameters. 
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Table 3.1: Patient information and treatment planning parameters.  

Patient  

# 

Prescription 

Dose (Gy) 

Number 

of 

Fractions 

Beam Angle 

(Couch, Gantry) 

OARs included in 

Optimization 

1 1.8 (CTV) 

 

30 (10,260), 

(350,100), 

(0,180) 

Brainstem, Brain 

2 1.85 (CTV) 32 (90,265), (0,100), 

(0,260), (0,180) 

Brainstem, Spinal Cord, Brain 

3 1.85 (CTV) 32 (0,180), (350,95), 

(10,265) 

Brainstem, Spinal Cord, Brain 

4 1.8 (CTV) 

 

30 (0,180), (0,250), 

(0,110) 

Brainstem, Brain 

5 1.8 (CTV) 

 

30 (355,105), 

(5,255), (95,290) 

Brainstem, Brain 

 

3.3 Results 

The statistics of the dose and LETd distribution of five cases were summarized in 

Table 3.2. Compare to DoseOPT, the LETOpt plans can significantly reduce the LET 

value in the brainstems. For example, in case 1, the mean value of LET in the 

brainstem was reduced from 6.18 keV/um  to 4.13 keV/um. Meanwhile, the LETd5% 

and LETd2% of LET distribution also show the same result. The LETd in the target 

volumes was markedly improved by the LETOpt approach for most of the cases. 

However, for case 2, we noticed that the LETd98%  of LETd distribution in CTV 

slightly decreased from 1.36 keV/um to 1.21 keV/um. But the LETd2% increased from 

2.87 keV/um to 4.22 keV/um. Meanwhile, the difference of dose distributions by these 

two methods in five cases were kept in a very small range. Table 3.2 and Figure 3.1 
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shows that the tradeoff effect between dose and LETd metrics happened in all patient 

cases, while its magnitude and sensitivity to changing optimization priorities varied 

among cases 

Table 3.2: Statistics of dose (Gy) and LETd (keV/um) of the IMPT plans optimized by 

DoseOpt and LETOpt for the five brain tumor patients.  

 

Patient 

 

Plan 
  

CTV  Brainstem 

98% 2%  5% 2% Mean 

1 

DoseOpt 
Dose 54.00  58.04   52.63  54.06  27.08  

LETd 3.16 5.14  9.21 9.68 6.18 

LETOpt 
Dose 54.00  58.47   52.85  54.32  29.97  

LETd 3.85  5.07  5.85 6.14 4.13 

2 

DoseOpt 
Dose 59.20  63.97   60.47  61.74  28.64  

LETd 1.36  2.87   4.57  5.21  2.44  

LETOpt 
Dose 59.20  64.96   60.80  62.08  32.00  

LETd 1.21  4.22   2.20  2.47  1.02  

3 

DoseOpt 
Dose 59.20  64.24   57.85  59.87  22.54  

LETd 1.64  4.44   6.61  7.08  4.35  

LETOpt 
Dose 59.20  64.95   57.84  59.87  23.34  

LETd 1.70  3.79   3.96  4.43  2.45  

4 

DoseOpt 
Dose 54.00  58.48   53.72  55.68  29.10  

LETd 2.63  4.18   4.43  4.77  3.02  

LETOpt 
Dose 54.00  59.06   53.72  55.97  30.09  

LETd 2.95  4.36   4.04  4.33  2.66  

5 

DoseOpt 
Dose 54.00  57.62   55.39  56.23  33.69  

LETd 2.55  4.48   6.09  6.58  4.06  

LETOpt 
Dose 54.00  58.20   55.39  56.24  35.53  

LETd 3.02  5.84   4.98  5.27  3.10  

 

Figure 3.1 shows the DVH, LETd and cLETxD volume histogram for the CTV 

and the brainstem for the two differently optimized IMPT plans in the five brain tumor 

case. Solid lines were for DoseOpt and dash lines were for LETOpt. The DVH for the 

CTV and brainstem were at the same level for the DoseOpt and LETOpt plans, 

indicating that LETOpt plan can generate almost equal physical dose distribution 

compared to DoseOpt plan. In contrast, the LETd and c LETxD distribution in the 
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CTV was markedly improved and in the brainstem was significantly reduced by the 

LETOpt approach. 

 

Figure 3.1: Comparison of DoseOpt and LETOpt plans for five patients. Dose, LET 

and cLETxD-volume histograms for the target (red contour), and brainstem 

(black contour) were shown in each column. Solid lines were for DoseOpt 

and dash lines were for LETOpt.  
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Figure 3.2 further illustrates the difference of LET distributions of the DoseOpt 

and the LETOpt for case 1 (one typical head and neck cancer patient). Figures 3.2(a) 

and (b) show the dose distribution of DoseOpt and LETOpt assuming a fixed RBE of 

1.1; Figures 4.2 (d) and (e) show the distribution of LET, respectively; Figures 3.2 (c) 

and (f) show the difference of two plans in dose and LET. There is almost no 

difference between these two plans in dose distribution. But compared with DoseOpt, 

LETOpt plan forced the high LET distribution part from the target area to the 

brainstem area.  

 
Figure 3.2: Comparison between DoseOpt and LETOpt plans for patient case 1. GTV, 

CTV, brain, and brainstem are contoured in green, cyan, blue, and black.  
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3.4 Discussion 

 

 
Figure 3.3: Comparison of each beam between DoseOpt and LETOpt plans for patient 

case 1. GTV, CTV, brain, and brainstem are contoured in green, cyan, blue, 

and black. 

By analysing of the dose and LET distributions in each beam of the DoseOpt and 

LETOpt plans, we found out the dose contribution from beam 3 in the LETOpt plan 
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was reduced compared to the DoseOpt plan. Since the LET is calculated by the 

method of dose-average LET, the total LET inside the brainstem was reduced because 

the weighting factor (dose) for the LET in beam 3 decreased. Even though the LET 

distribution in each beam was similar for the DoseOpt and LETOpt plans, the change 

of dose distribution could impact the total dose-average LET distribution significantly 

(Figure 3.3). 

 
Figure 3.4: Scaled LET-weighted (cLETxD) dose comparison in the target volume for 

the DoseOpt and LETOpt plans. The bar chart shows the mean (red line) 

and range of the difference of c LETxD in each voxel of target volume 

between the DoseOpt and LETOpt plans. 
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Figure 3.5: Scaled LET-weighted dose (cLETxD) comparison in the brainstem volume 

for the DoseOpt and LETOpt plans. The bar chart shows the mean (red line) 

and range of the difference of c LETxD in each voxel of brainstem volume 

between the DoseOpt and LETOpt plans. 

As shown in Figure 3.4 and 3.5, the difference of cLETxD between the DoseOpt 

and LETOpt methods is negative for all the five patients in the target volume, which 

means the biological effect in the target volume for the DoseOpt plans is higher than 

for the LETOpt plans. And the positive difference between the DoseOpt and LETOpt 

approachs indicates the biological effect in the brainstem for the DoseOpt plans is 

lower than for the LETOpt plans. 
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Figure 3.6: Dose volume histograms (per fraction) based on different RBE models of 

the DoseOpt (solid lines) and LETOpt (dashed lines) optimized plans for 

patient 5. The RBEs of constant 1.1, Carabe, Wedenberg, and McNamara 

are indicated in red, blue, black and green, respectively. 

Current RBE models are imprecise because of the considerable uncertainties in 

predicating the (α/β)x. However, the RBE value has an almost linear relationship with 

the LET. As shown by Figure 3.6, the variable RBE weighted dose volume histograms 

calculated by Carabe, Wendenberg, and McNamara models in the target for the 

LETOpt plan were all higher than for the DoseOpt plan. We do not know which 

variable RBE model is more accurate, but they all show the same phenomena that 

increase LET in the target can improve the biological effect. 

Here, the effect of adding two terms for maximizing dose-averaged LET in the 

target and minimizing it in OARs to voxel-based worst-case RO model (Formulation 

4.5) was also investigated. The new model is shown as LETRO. The results for a 

prostate tumor case and a brain tumor case are shown in Figure 3,7 and 3.8. The 

differences in dose and LETxD distributions among the three IMPT plans were similar 

for the prostate and brain tumor cases. Thus, we proved that optimizing dose-averaged 

LET directely works for robust optimization. 
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Figure 3.7: Dose-volume histograms (DVHs) for the clinical target volume (CTV) and 

the bladder for three IMPT plans in a prostate tumor patient case. The 

DVH bands were constructed on the basis of nine uncertainty scenarios 

with various range shifts and setup errors. The bold lines indicate the 

nominal distributions. 
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Figure 3.8: Dose-volume histograms (DVHs) for the clinical target volume (CTV) and 

the brainstem for three IMPT plans in a brain tumor patient case. The DVH 

bands were constructed on the basis of nine uncertainty scenarios with 

various range shifts and setup errors. The bold lines indicate the nominal 

distributions. 
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3.4 Conclusion 

In this work, the LET-incorporated method was introduced to conventional dose-

based optimization. This method was able to simultaneously optimize dose and LET. 

No matter if we take uncertainties into consideration, this method was able to hedge 

against high LET in OARs and improve the low LET in the targets while maintaining 

adequate dose coverage and robustness.   
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Chapter 4  

Robust Optimization to Reduce the Impact of Biological 

Effect Variation from Physical Uncertainties 

4.1 Introduction 

Proton beams have the ability to deposit dose over a confined distance at the end 

of the beam range, namely the Bragg peak, and almost no dose is released beyond the 

peak. This characteristic of proton beams provides an accurate localization of dose in 

three dimensions. As a result, intensity-modulated proton therapy (IMPT) delivered by 

pencil-beam scanning can generate highly conformal and homogeneous doses to target 

volumes with complex shapes while minimizing the undesired dose to adjacent organs 

at risk (OARs) [5]. However, proton beams are more sensitive to uncertainties that 

arise during treatment than are photon beams [90]. Indeed, in the most advanced form 

of IMPT, multifield optimized IMPT, the final dose distribution is obtained by 

superimposing all individual inhomogeneous proton fields, which may make IMPT 

even more sensitive to uncertainties than conventional proton modalities such as 

passive scattering proton therapy (PSPT) or single field uniform dose (SFUD) IMPT 

[91]. To address this issue of uncertainty, robust optimization (RO) is commonly used 

in IMPT treatment planning [8], [10]–[12], [92]–[94].   

The current practice of proton therapy uses a constant relative biological 

effectiveness (RBE) value of 1.1 to account for the biological effect of the treatment, 

as recommended by the International Commission on Radiation Units and 

Measurements [13]. This value reflects the basic assumption that protons are 10% 
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more biologically effective than photons. However, RBE varies along the treatment 

field, for instance with linear energy transfer (LET), tissue-specific parameters 

(defined by α and β), dose per fraction, and other factors [14], [15]. The use of 

variable RBE in treatment planning is challenging because of considerable model 

uncertainties for clinical tissues; existing experimental biological data are insufficient 

to clearly correlate RBE and dose per fraction or (α/β)x for in vivo endpoints [15]–

[18]. Moreover, treatment plans that use a variable RBE-weighted dose often deliver 

low physical doses in parts of the target because they assume that RBE is greater than 

1.1 in areas of high LET [19]. On the other hand, if RBE is underestimated, critical 

structures may receive overdosage [20].  

Although factors such as tissue type, endpoint, and dose affect the relationship of 

RBE to LET, generally, biological effectiveness increases as LET increases [14], 

[21]–[24]. Unlike other biological parameters, LET can be calculated with high 

accuracy using analytical methods or Monte Carlo simulations [25]–[27]. Previous 

studies have demonstrated that active scanning can shape the distribution of dose-

averaged LET (i.e., the biological effect) without significantly altering the distribution 

of physical dose [16], [21] because IMPT has a much higher degree of freedom for 

modulation than do other proton therapy modalities [28]. Therefore, recent studies 

have attempted to optimize biological dose by simultaneously optimizing physical 

dose and  LET distribution [16], [20], [21], [28]–[31], [88]. The primary focus of these 

studies was on increasing LET in radioresistant tumors or reducing it in critical normal 

tissues. However, the impact of IMPT delivery uncertainties on biological effect has 

not been carefully evaluated or included in optimization.  
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The aim of this work is: (1) introduce an RO model for IMPT treatment plans that 

can achieve a robust biological effect distribution while maintaining satisfactory 

robust dose coverage in target volumes and sparing of critical structures; (2) use 

nominal optimization and RO to compare the robustness of variable RBE weighted 

dose, and try to prove physical dose based robust optimization will also make the 

biological dose robust and homogeneous. 

4.2 Method and Materials 

In IMPT, each beam consists of multiple beamlets that irradiate the tumor volume. 

The physical dose and LET delivered to voxel 𝑖  by beamlet 𝑗 in unit intensity are 

indicated as 𝐷𝑖𝑗 and 𝐿𝑖𝑗. 𝑤𝑗
2 was used to denote the intensity of beamlet 𝑗 to preserve 

the nonnegativity. Thus, for beamlet set 𝑁𝐵, the total dose 𝐷𝑖, dose-averaged LET 𝐿𝑖, 

and LET-weighted dose (LETxD) 𝐿𝐷𝑖 in voxel 𝑖 can be calculated as follows: 

𝐷𝑖 = ∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗 ,                                                        (4.1) 

𝐿𝑖 =
∑ 𝐷𝑖𝑗𝐿𝑖𝑗𝑤𝑗

2𝑁𝐵
𝑗

∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗

,                                                         (4.2) 

and 

𝐿𝐷𝑖 = ∑ 𝐷𝑖𝑗𝐿𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗 .                                                   (4.3) 

A research treatment planning platform, matRad [95], was used to calculate 𝐷𝑖𝑗 

and 𝐿𝑖𝑗 using a singular value decomposed pencil beam algorithm [96]. 
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Commonly, IMPT uncertainties are handled by using margins. The clinical target 

volume (CTV) is expanded into the planning target volume (PTV), and planning is 

performed to irradiate the latter [11], [94], [97]. For PTV-based optimization, a 

standard quadratic objective function is minimized as follows [98]: 

𝐹𝑃(𝑤𝑗) = 𝑝𝑇
1

𝑁𝑇
∑ (𝐷𝑖 − 𝐷0,𝑇)

2𝑁𝑇
𝑖=1 + 𝑝𝑂𝐴𝑅

1

𝑁𝑂𝐴𝑅
∑ 𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅) ×

𝑁𝑂𝑅𝐴
𝑖=1

(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅)
2
,                                                                  (4.4) 

where 𝑁𝑇, and 𝑁𝑂𝐴𝑅 are sets of voxels in target volumes and OARs, respectively. 𝑝 

terms denote the penalty weights of the corresponding organs to control the priorities 

between competing objectives. 𝐷0  terms are the prescribed doses required by the 

treatment plans. The heavy-side step function 𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅)  is a discontinuous 

function whose value is 0 for a nonpositive argument and 1 for a positive argument. 

As alternatives to geometric margins, optimization methods that explicitly take 

setup and range uncertainties into account have been proposed [8], [11], [62], [99], 

[100]. In these methods, dose distributions for multiple uncertainty scenarios are 

computed, and treatment plans are optimized with respect to all of the scenarios 

simultaneously. In this study, a voxel-based worst-case RO [62] method was used to 

penalize excessively high and low doses to target volumes and excessively high doses 

to OARs: 

𝐹𝑅(𝑤𝑗) = 𝑝𝑇,𝑚𝑎𝑥
1

𝑁𝑇
∑ (𝐷𝑖,𝑚𝑎𝑥 − 𝐷0,𝑇)

2𝑁𝑇
𝑖=1 + 𝑝𝑇,𝑚𝑖𝑛

1

𝑁𝑇
∑ (𝐷𝑖,𝑚𝑖𝑛 − 𝐷0,𝑇)

2𝑁𝑇
𝑖=1                      

https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Function_(mathematics)
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+ 𝑝𝑂𝐴𝑅
1

𝑁𝑂𝐴𝑅
∑ 𝐻(𝐷𝑖,𝑚𝑎𝑥 − 𝐷0,𝑂𝐴𝑅) × (𝐷𝑖,𝑚𝑎𝑥 − 𝐷0,𝑂𝐴𝑅)

2𝑁𝑂𝑅𝐴
𝑖=1 .   (4.5) 

Note that 𝐷𝑖,𝑚𝑎𝑥 = max(𝐷𝑖,𝑚)  and 𝐷𝑖,𝑚𝑖𝑛 = min(𝐷𝑖,𝑚)  indicate the maximum 

and minimum dose, respectively, among 𝑚 possible scenarios of voxel 𝑖. 

According to Unkelbach et al [20], the RBE-weighted dose 𝑏𝑖 can be given using 

equation (4.6): 

𝑏𝑖 = ∑ (1 + 𝑐𝐿𝑖𝑗)𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗 = 𝐷𝑖 + 𝑐𝐿𝐷𝑖,                               (4.6) 

where 𝑐 is a scaling parameter set to 0.04 μm/keV. It consists of two components, a 

physical component (𝐷𝑖) and a biological component (𝑐𝐿𝐷𝑖). We consider the latter as 

an approximation of the biological effect from all incident proton fields for a given 

voxel. 𝐿𝐷𝑖,𝑚𝑎𝑥 = max(𝐿𝐷𝑖
𝑚)  and 𝐿𝐷𝑖,𝑚𝑖𝑛 = min(𝐿𝐷𝑖

𝑚)  denote the maximum and 

minimum LET-weighted dose, respectively, over all 𝑚 scenarios of voxel 𝑖. 

To reduce the variation in biological effect in each voxel 𝑖, we propose to add 

minimization of the uncertainty gap, i.e., 𝐿𝐷𝑖,𝑚𝑎𝑥 − 𝐿𝐷𝑖,𝑚𝑖𝑛, into the conventional RO 

model. This approach follows the principles of info-gap decision theory [101], [102], 

which seeks to maximize the robustness of a decision given minimum performance 

requirements. In other words, only the robustness of biological effect is optimized; 

biological effect itself is not maximized or minimized in either target or normal tissues.  

Therefore, we added the L2-norm of the uncertainty gap of biological effect to 

(4.5) to construct the quadratic objective function for the biological effect-based RO 

(BioRO): 
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𝐹𝐵(𝑤𝑗) = 𝐹𝑅(𝑤𝑗) + 𝑝𝑇,𝑔𝑎𝑝
1

𝑁𝑇
∑ (𝐿𝐷𝑖,𝑚𝑎𝑥 − 𝐿𝐷𝑖,𝑚𝑖𝑛)

2𝑁𝑇
𝑖=1 +

                                                  𝑝𝑂𝐴𝑅,𝑔𝑎𝑝
1

𝑁𝑂𝐴𝑅
∑ (𝐿𝐷𝑖,𝑚𝑎𝑥 − 𝐿𝐷𝑖,𝑚𝑖𝑛)

2𝑁𝑂𝐴𝑅
𝑖=1 .                   (4.7) 

In this study, PTV-based optimization, conventional RO, and BioRO models 

were solved by a quasi-Newton method, the limited-memory Broyden-Fletcher-

Goldfarb-Shanno algorithm [103]. We implemented each of the models in our in-

house IMPT treatment planning system [32]. Calculations of dose and LET using unit 

beamlet intensity were performed using matRad, as mentioned earlier. 

4.3 Biological effect-based robust optimization (BioRO) 

4.3.1 Patient cases and treatment planning 

Three IMPT plans were generated to illustrate the PTV-based, RO, and BioRO 

methods for three clinical cases: a brain tumor case, a prostate tumor case and a head 

& neck tumor case (Table 4.1). For the brain tumor case, three sets of angle 

combinations (gantry and couch) were used: (260°, 10°), (100°, 350°), and (180°, 0°). 

Setup uncertainties of ± 3 mm in three dimensions and range uncertainties of ± 3.5% 

of the nominal range were assumed. Two beams, (90°, 0°) and (270°, 0°), were used 

for the prostate tumor case, with setup uncertainties of ± 5 mm and range uncertainties 

of ± 3.5% of the nominal range. Similarly, setup uncertainties of ±3 mm and range 

uncertainties of ± 3.5% of the beams’ nominal range were assumed in the head and 

neck tumor case under three beams: (180°, 0°), (65°, 345°) and (300°, 20°). Therefore, 

both RO and BioRO considered nine scenarios, i.e., one nominal scenario (without the 
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consideration of uncertainties), and eight uncertainty scenarios, including six setup 

uncertainty scenarios by shifting the patient’s CT image [104] and two range 

uncertainty scenarios by scaling the nominal beamlet ranges [105]. The prescribed 

dose to target volumes and field arrangements were the same as those used in the 

clinical treatments. More planning details are listed in Table 4.1. The doses prescribed 

to all OARs were set to 0 in the optimizations. 

Table 4.1: Patients information and treatment planning parameters.  

Cancer 

type 

Prescription 

dose (Gy/fx) 

Number of 

fractions 

Beam angles 

(gantry, couch) 

Number of 

beamlets 
Volumes included in optimization 

Prostate 1.8 (CTV) 30 (90°, 0°) 5532 
CTV, PTV, bladder, femoral heads, 

rectum    (270°, 0°) 5525 

Brain 2 (CTV) 39 (260°, 10°) 3808 

CTV, PTV, brainstem, optic chiasm, 

spinal cord, brain 

   (100°, 350°) 3902 

   (180°, 0°) 3927 

H&N 2 (CTV) 33 (180°, 0°) 23758 

CTV, PTV, left parotid, right parotid, 

larynx, spinal cord, mandible, left cochlea, 

right cochlea, brainstem, esophagus 

   (65°, 345°) 25656 

   (300°, 20°) 25352 

Abbreviations: CTV, clinical target volume; PTV, planning target volume. 

Upon the completion of the optimization step for each of the three approaches, 

fixed RBE (1.1)-weighted dose (RWD) and LETxD were calculated for each of the 

nine scenarios. Note that each of the three plans was normalized to have 98% of the 

CTV covered by the prescribed dose. Dose-volume histograms (DVHs) and LETxD-

volume histograms for the nominal scenario were used to quantify the plans’ quality. 

To evaluate and compare the plan robustness, the envelope of all DVHs or LETxD-

volume histograms in band graphs [106] and maps of the uncertainty gap for all nine 
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scenarios were displayed. The difference between the worst and best value of a DVH 

point, such as Dv%, is considered as the bandwidth at Dv% for a given organ. 

4.3.2 Results 

Figure 4.1 shows the DVH and LETxD volume histogram bands for the CTV and 

the brainstem for the three differently optimized IMPT plans in the brain tumor case. 

The DVH bands for the CTV were narrower for the RO and BioRO plans than for the 

PTV-based plan, indicating that the RO and BioRO plans were less sensitive to setup 

and range uncertainties than was the PTV-based plan. As we expected, the BioRO 

approach was able to generate robust physical dose distributions in the target volume 

that were comparable to those generated by the RO approach. Moreover, the DVH 

bands for the brainstem were similar for all three optimization techniques. We should 

note that the mean dose to the brainstem increased from 25.9 Gy with the RO plan to 

27.8 Gy with the PTV-based plan and 28.3 Gy with the BioRO plan. However, the 

maximum dose to the brainstem was similar in all three plans; the maximum values 

(worst-case) of D2% were 57.9 Gy, 54.5 Gy, and 54.8 Gy for the PTV-based, RO, and 

BioRO plans, respectively (Table 4.2).  



 

46 

 

Figure 4.1: Dose-volume histograms (DVHs) and c LETxD-volume histograms of the 

clinical target volume (CTV) and the brainstem for three IMPT plans in a 

brain tumor patient case. The bold lines indicate the nominal distributions.  
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Table 4.2: Dose and LET-weighted dose (LETxD; scaled by c = 0.04 μm/keV) values 

in the clinical target volume (CTV) and the brainstem.  

Tissue Dosimetric  

Parameter 

PTV-based RO BioRO 

Nom  Max Min Nom  Max Min Nom  Max Min 

CTV D98% (Gy[RBE]) 54.0 55.0 49.6 54.0 54.4 51.4 54.0 54.8 51.3 

 
D2% (Gy[RBE]) 55.6 58.0 54.6 55.3 55.5 54.8 55.8 56.2 55.1 

 
c LETxD98% (Gy) 3.6 4.0 3.3 4.4 4.5 4.0 3.6 3.8 3.4 

 
c LETxD2% (Gy) 7.2 8.4 6.4 6.9 8.1 6.0 5.3 5.7 5.0 

Brainstem D2% (Gy[RBE]) 54.3 57.9 50.4 54.0 54.5 51.6 53.8 54. 8 51.2 

 Dmean (Gy[RBE]) 27.8 35.2 20.4 25.9 31.9 19.9 28.3 35.0 21.4 

 c LETxD2% (Gy) 9.4 10.2 7.6 8.0 8.6 7.0 4.9 5.3 4.6 

 c LETxDmean (Gy) 4.7 6.0 3.4 4.2 5.2 3.2 2.7 3.2 2.3 

Abbreviations: RBE, relative biological effectiveness; Nom, nominal 

In contrast, LETxD volume histogram bands of the three plans exhibited 

pronounced differences (Figure 4.1). The robustness of the LETxD distributions in 

both the CTV and the brainstem was markedly improved by the BioRO approach. For 

instance, the bandwidth at D98% of c LETxD in the CTV was 0.4 Gy for the BioRO 

plan, 0.7 Gy for the PTV-based plan, and 0.5 Gy for the RO plan. The bandwidth at 

D2% of c LETxD in the CTV was 0.7 Gy for the BioRO plan, but 2.0 Gy and 2.1 Gy 

for the PTV-based plan and the RO plan, respectively. Similarly, the bandwidth at D2% 

of c LETxD in the brainstem was 0.7 Gy for the BioRO plan, smaller than the 2.6 Gy 

and 1.6 Gy bandwidths for the PTV-based and RO plans. The bandwidth at the mean 

value of c LETxD in the brainstem was also lower for the BioRO plan, 0.9 Gy 

compared to 2.6 Gy and 2.0 Gy for the PTV-based plan and the RO plan, respectively 

(Table 4.2).  
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Figure 4.2: Dose-volume histograms (DVHs) and c LETxD-volume histograms of the 

clinical target volume (CTV) and the bladder for three IMPT plans in a 

prostate tumor patient case. The bold lines indicate the nominal 

distributions.   
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Table 4.3: Dose and LET-weighted dose (LETxD; scaled by c = 0.04 μm/keV) values 

in the clinical target volume (CTV), rectum, and bladder.  

Tissue Dosimetric Parameters PTV-based RO BioRO 

Nom  Max Min Nom  Max Min Nom  Max Min 

CTV D98% (Gy[RBE]) 78.0 80.0 68.2 78.0 78.8 73.5 78.0 78.7 73.5 

 
D2% (Gy[RBE]) 81.8 89.6 79.0 80.3 80.8 78.8 80.1 80.8 78.7 

 
c LETxD98% (Gy) 3.6 5.2 2.8 5.0 5.5 4.5 4.5 4.9 4.0 

 
c LETxD2% (Gy) 8.7 10.4 7.2 6.9 8.6 5.8 5.9 6.6 5.3 

Rectum D2% (Gy[RBE]) 72.0 81.2 49.7 71.9 78.4 51.1 71.7 78.2 52.1 

 D2% (Gy[RBE]) 72.0 81.2 49.7 71.9 78.4 51.1 71.7 78.2 52.1 

 c LETxD2% (Gy) 5.8 8.2 3.9 3.9 5.0 2.6 3.5 4.4 2.3 

 c LETxDmean (Gy) 0.7 1.2 0.3 0.4 0.7 0.2 0.4 0.6 0.2 

Bladder D2% (Gy[RBE]) 78.4 84.1 63.7 73.3 78.4 61.6 73.6 78.3 62.3 

 Dmean (Gy[RBE]) 8.7 12.0 5.7 7.6 10.4 5.1 7.8 10.6 5.3 

 c LETxD2% (Gy) 8.7 9.9 6.1 6.6 7.6 5.4 5.4 6.1 4.4 

 c LETxDmean (Gy) 0.9 1.2 0.5 0.7 1.0 0.5 0.6 0.8 0.4 

Abbreviations: RBE, relative biological effectiveness; Nom, nominal 

The results for the prostate tumor case are shown in Figure 4.2 and Table 4.3. 

The differences in dose and LETxD distributions among the three IMPT plans were 

similar for the prostate and brain tumor cases. Note that the improvement in the 

robustness of LETxD with the BioRO plan in the bladder and rectum was modestly 

lower than in the brainstem as shown by the brain tumor case because of the anatomy 

and the beam arrangement. The bandwidth at D2% of c LETxD in the bladder was 1.7 

Gy for the BioRO plan, smaller than the 3.8 Gy and 2.2 Gy bandwidths for the PTV-

based plan and the RO plan, respectively (Table 4.3). The bandwidth at the mean 

value of c LETxD in the bladder was 0.4 Gy for the BioRO plan, 0.5 Gy for the PTV-

based plan, and 0.7 Gy for the RO plan. In the rectum, the bandwidth at D2% of c 
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LETxD was 2.1 Gy for the BioRO plan, compared to 4.3 Gy and 2.4 Gy for the PTV-

based plan and the RO plan, respectively. The bandwidth at the mean value of c 

LETxD in the rectum was 0.4 Gy for the BioRO plan, compared to 0.5 Gy and 0.9 Gy 

for the PTV-based plan and the RO plan. 

The DVHs, c LETxD volume histograms and their statistics for the head and 

neck tumor case are shown in Figure 4.3, 4.4 and Table 4.4. The BioRO approach 

produced plan with more robust LETxD distribution than did the RO and PTV-based 

methods, and similar dose distribution compared to RO plan which is better than the 

PTV-based plan. The bandwidth at D2% of c LETxD in the larynx was 0.8 Gy for the 

BioRO plan, 2.1 Gy for the PTV-based plan, and 1.2 Gy for the RO plan. The 

bandwidth at the mean value of c LETxD in the larynx was 0.4 Gy for the BioRO plan, 

0.8 Gy for the PTV-based plan, and 1.0 Gy for the RO plan. In the parotid (right), the 

bandwidth at D2% of c LETxD was 0.8 Gy for the BioRO plan, smaller than the 1.5 

Gy and 1.2 Gy bandwidths for the PTV-based and RO plans; and the bandwidth at 

mean value of c LETxD was 0.4 Gy for the BioRO plan, smaller than the 0.7 Gy and 

0.6 Gy bandwidths for the PTV-based and RO plans. Similarly, the bandwidth at D2% 

of c LETxD in the parotid (left) was 1.1 Gy for the BioRO plan compared to 1.3 Gy 

for the PTV plan and 2.2 Gy for the RO plan; the bandwidth at mean value of c 

LETxD in the parotid (left) was 0.2 Gy for the BioRO plan compared to 0.2 Gy for the 

PTV plan and 0.3 Gy for the RO plan. 
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Figure 4.3: Dose-volume histograms (DVHs) and c LETxD-volume histograms of the 

clinical target volume (CTV) and the larynx for three IMPT plans in a head 

& neck tumor patient case. The bold lines indicate the nominal 

distributions.  
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Figure 4. 4: Dose-volume histograms (DVHs) and c LETxD-volume histograms of the 

parotid (right & left) for three IMPT plans in a head & neck tumor patient 

case. The bold lines indicate the nominal distributions.  
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Table 4.4: Dose and LET-weighted dose (LETxD; scaled by c = 0.04 μm/keV) values 

in the clinical target volume (CTV), larynx and parotid (right & left) for a 

H&N tumor case.  

Tissue Dosimetric Parameters PTV-based RO BioRO 

Nom  Max Min Nom  Max Min Nom  Max Min 

CTV D98% (Gy[RBE]) 66.0 67.0 63.8 66.0 66.5 64.5 66.0 66.5 64.9 

 
D2% (Gy[RBE]) 67.4 69.0 66.8 67.5 67.8 66.6 67.4 67.8 66.6 

 
c LETxD98% (Gy) 3.7 3.9 3.5 3.8 4.0 3.6 3.6 3.8 3.4 

 
c LETxD2% (Gy) 6.1 6.6 5.6 6.2 7.0 5.7 5.9 6.4 5.5 

Larynx D2% (Gy[RBE]) 66.5 69.3 64.5 65.6 66.4 63.8 65.4 66.2 63.6 

 Dmean (Gy[RBE]) 20.8 25.9 16.1 17.3 21.6 13.3 19.4 23.3 15.5 

 c LETxD2% (Gy) 6.9 7.9 5.8 6.1 6.5 5.3 4.8 5.1 4.3 

 c LETxDmean (Gy) 2.0 2.5 1.5 1.5 2.0 1.2 1.4 1.6 1.2 

Parotid_R D2% (Gy[RBE]) 66.3 67.7 64.8 66.4 66.8 65.8 66.4 66.8 65.8 

 Dmean (Gy[RBE]) 16.5 19.9 13.3 13.8 16.7 11.1 15.1 18.1 12.2 

 c LETxD2% (Gy) 5.3 6.1 4.6 5.0 5.7 4.5 4.6 5.0 4.2 

 c LETxDmean (Gy) 1.1 1.5 0.8 1.0 1.3 0.7 0.9 1.1 0.7 

Parotid_L Dmean (Gy[RBE]) 37.6 44.4 31.4 30.8 38.5 23.0 30.0 36.4 23.1 

 c LETxD2% (Gy) 6.1 8.7 4.0 3.0 4.8 1.8 3.0 4.5 1.9 

 c LETxDmean (Gy) 2.7 3.3 2.0 3.2 4.4 2.4 2.4 3.0 1.9 

 c LETxDmean (Gy) 0.4 0.5 0.3 0.3 0.5 0.2 0.3 0.4 0.2 

Abbreviations: RBE, relative biological effectiveness; Nom, nominal. 

Figure 4.4 shows uncertainty maps for the three plans for the brain tumor case. 

The top row shows the difference distributions for dose (based on a constant RBE of 

1.1). The bottom row shows difference distributions for LET weighted dose (LETxD) 

(scaled by c  =0.04 μm/keV). The RO method was the most robust in terms of physical 

dose distribution in the target and brainstem. Moreover, the RO plan was more robust 

than the PTV-based plan in terms of LETxD. The BioRO method, which minimized 

the variation in biological effect, led to a remarkable reduction of LETxD hot spots, 
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especially in the brainstem. Meanwhile, the robustness of the physical dose 

distribution for the BioRO plan was improved compared to the PTV-based plan. 

 

Figure 4.5: Distribution of differences between the maximum and minimum values in 

each voxel. The green and black contours indicate the clinical target 

volume (CTV) and brainstem, respectively.  

As shown in Figure 4.6, the biological effect in the nominal scenario was the 

lowest for the BioRO plan, especially in critical organs. Panels (a), (b), and (c) show 

dose distributions (based on a constant RBE of 1.1) for the nominal scenario for PTV-

based, RO, and BioRO plans , respectively. Panels (A), (B), and (C) show LET-

weighted dose (LETxD) distributions (scaled by c = 0.04μm/keV ) for the nominal 

scenario for PTV-based, RO, and BioRO plans, respectively. Panel (a – b) illustrates 

the absolute difference of (a) and (b), calculated by subtracting the value in (b) from 

the value in (a) for each voxel. The same method was applied for (a-c), (b-c), (A-B), 

(A-C), and (B-C). However, there was almost no difference among the three plans in 
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the physical dose distributions for the nominal scenario (see subfigure (a-b), (a-c) and 

(b-c)). 

 

Figure 4.6: Comparison of PTV-based, robust optimization (RO), and biological 

effect-based RO (BioRO) plans for the brain tumor patient case. The green 

and black contours indicate the clinical target volume (CTV) and brainstem, 

respectively.  

4.3.3 Discussion 

Three has been a growing interest in LET-based IMPT planning, including novel 

forward planning techniques and optimization methods [16], [20], [21], [28]–[31], 

[88]. The primary goal of LET-based planning is to place areas of higher LET to 

achieve a greater biological effect in radioresistant tumors while minimizing LET in 

critical structures to avoid unnecessary tissue damage. At the same time, LET-based 

planning keeps physical dose distributions as similar as possible to those currently 
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used in proton therapy with fixed RBE planning. These methods have demonstrated 

the potential of increasing LET in target regions and/or reducing LET in normal 

tissues without excessively compromising current dose requirements. However, the 

challenge of IMPT delivery uncertainties has been largely ignored. The BioRO 

approach to IMPT planning proposed in the present study focuses on minimizing the 

variation in biological effect attributable to physical uncertainties for both target and 

normal tissues. The uncertainty gap minimization method was effective in reducing 

the spread of LETxD-volume histogram bands in this study. In other words, this 

approach could produce treatment plans with a high certainty of biological effect with 

satisfactory physical dose plan quality. 

RO has been shown to deliver IMPT more safely than conventional PTV-based 

optimization [8], [11], [12], [62], [99]. RO provides dose distributions that are robust 

against delivery uncertainties, especially because it limits the impact of shifted Bragg 

peaks at the beam’s distal edge, close to the target boundary. Therefore, researchers 

have proposed that unlike PTV-based plans, RO plans may alleviate increased LET or 

LETxD in OARs adjacent to the target [107]. Our study confirmed that this is the case. 

For example, compared to the PTV-based plan, LETxD for 2% of the volume and 

mean LETxD for the brainstem were reduced by 15% and 11%, respectively, with RO. 

Similarly, LETxD for 2% of the volume and mean LETxD for the rectum were 

reduced by 33% and 43%, respectively. 

Interestingly, the BioRO plan further reduced LETxD in OARs than the RO plan 

for both patient cases. For example, for the brain tumor case, compared to the PTV-

based plan, LETxD for 2% of the volume and mean LETxD for the brainstem were 
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reduced by 48% and 43%, respectively. Similarly, for the prostate tumor case, LETxD 

for 2% of the volume and mean LETxD for the rectum were reduced by 40% and 43%, 

respectively. This finding may be nonintuitive, as the minimization of LETxD was not 

specified in the BioRO cost function. Instead, the uncertainty gap of LETxD was 

minimized. We conjecture that the reduction of LETxD in BioRO plans is attributable 

to the positive correlation between the uncertainty gap of LETxD and the nominal 

LETxD. For instance, a higher LETxD leads to a larger uncertainty gap, as either 

nominal LETxD or LETxD in various uncertainty scenarios is modulated by the same 

set of beamlet intensities, i.e., 𝐿𝐷𝑖 = ∑ 𝐷𝑖𝑗𝐿𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗 . In all patient cases, we found that 

the sum of all beamlet intensities for the BioRO plan was the lowest among the three 

plans. However, these reduced total intensities did not necessarily lead to a cold plan 

in terms of dose, as seen in this study, because of the solution degeneracy of IMPT 

optimization.  

We also note that our method is similar to ones proposed by Giantsoudi et al [107] 

and An et al [31] in which biological effect was included in the robust optimization 

framework. But our method is different in terms of its objectives that minimize the 

impact of physical uncertainties on biological effect, i.e., those uncertainty gap terms, 

instead of minimizing worst-case biological effect. The difference among methods is 

worth investigating in future studies. Moreover, the information gap concept could 

also be applied in the robust optimization of dose, compared to the worse case 

optimization strategies extensively used in the literature. However, this may require a 

comprehensive comparison study and is beyond the scope of this paper concerning 

biological effect robustness. 
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Moreover, the BioRO plan also reduced LETxD in the target for all patient cases. 

However, the reduction in the target dose was much smaller than it was in OARs. The 

main reason for this difference may be that the BioRO plan enforced the requirement 

of prescribed dose to the target, but not to OARs, for which there was no lower dose 

limit. One straightforward method to avoid the reduction of LETxD in the target could 

be to use an additional objective to maximize the nominal or minimum LETxD for 

target voxels. Such a method for managing the trade-off between optimality and 

robustness with regard to biological effect needs to be explored in future research. 

The gain in LET or LETxD while maintaining dose requirements is mainly 

achievable because IMPT provides a higher degree of freedom for optimization, i.e., 

intensity modulation. Our study demonstrated that plan robustness to biological effect 

can be improved by redistributing LETxD. Similarly, previous studies showed that 

LET and LETxD were improved by redistributing them [20], [28], [88]. Because large 

uncertainties in proton RBE models remain a challenge to implementing RBE-based 

optimization in clinical practice, LET- or LETxD-based optimization is a promising 

method for improving the current proton treatment by moving toward biological 

effect-based IMPT planning. 

4.3.4 Conclusion 

We presented a proof-of-concept study of biological effect-based IMPT robust 

optimization in order to reduce the impact of variation in protons’ biological effect 

while limiting the degradation of the physical dose distribution from a voxel-based 

worst-case RO plan. By minimizing the uncertainty gap of the biological effect 
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(approximated by the product of LET and physical dose) in each voxel, the BioRO 

approach provided robust distributions of biological effect to both target and critical 

structures. This approach does not depend on tissue parameters or variable RBE 

models, which are associated with large uncertainties. In addition, our three patient 

case studies demonstrated that BioRO can avoid elevating biological effect in critical 

structures. 

4.4 Impact of robust optimization on relative biological effectiveness  

4.4.1 Patient cases and treatment planning 

Two IMPT plans were generated to illustrate the CTV-based optimization and 

RO methods for two cases from MD Anderson Cancer Center (MDACC), e.g. a 

prostate cancer and a head-and-neck (HN) cancer. The uncertainties paramters used 

for the prostate case and head and neck (H&N) case are as same as we 4.3.2 section. 

The prescribed dose to target volumes and field arrangements were the same as those 

used in the clinical treatments. The doses prescribed to all OARs were set to 0 in the 

optimizations. More planning details are listed in Table 4.5.  
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Table 4.5: Patients information and treatment planning parameters. 

Cancer type Beam angle Number of beamlets Organs 
Number 

of voxels 

Prostate (90°, 0°) 5532 CTV 6716 

 (270°, 0°) 5525 Bladder 10087 

   Femoral heads 21686 

   Rectum 5614 

H&N (105°, 0°) 3808 CTV 12906 

 (180°. 0°) 3902 Brain 347816 

 (255°, 0°) 3927 Brainstem 2996 

   Optic chiasm 64 

Abbreviations: CTV, clinical target volume; PTV, planning target volume. 

4.4.2 Results 

4.4.2.1 Homogeneous of plans 

 

Figure 4.7: Physcial dose, LET and scaled LETxD histograms of prostate case. 

For the prostate case, as shown by the Figure 4.7, both Robust optimization and 

CTV-based optimization give the same dose volume histogram in the nominal 

scenario. But robust optimization gives a higher LET volume histogram in target, 
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which makes the LET weight dose distribution of robust optimization plan is more 

homogeneous. 

 

Figure 4.8: Physcial dose, LET and biological dose profiles of prostate case. The green 

lines show the region of the CTV. 

Compared to the CTV-based optimization plan, the profile of LET weighted dose 

in the RO plan will be more uniform due to the LET distribution is more homogeneous 

(see Figure 4.8). Thus, the variable RBE (McNamora model) [14] weighted dose for 

the CTV-based optimization plan has more hot points and cold points inside the CTV 

region, especially in the distal edge of the target (Figure 4.9). 
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Figure 4.9: Variable RBE (McNamara model) weighted dose profles of prostate case. 

The green lines show the region of the CTV. 

This can also be proved by the N&H case (4.10). 

 

Figure 4.10: Physcial dose, LET and biological dose profiles of prostate case. The 

green lines show the region of the CTV. 

4.4.2.2 Robustness of the plans 
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Figure 4.11: Physical dose and LET profiles of three cases over maximal value (dotted 

line), minimal value (dash line) and nominal scenarios (solid line). 

By comparing the profile of worst case, best case, and nominal case, we can 

easily find out the robust optimization will keep the physical dose (inside target region) 

in a narrow band (Figure 4.11, 4.12). At the same time, the LET band will also stay 

robust because he LET distribution will be impacted by dose distribution by the dose 

averaged ratio, even we do not optimize the LET factor. 

The robust optimization is approved to be more robust in the biological effect 

while achieving the physical dose robustness compared to the CTV-based 

optimization. The constant RBE weighted dose band and variable RBE (McNamara 

model) weighted dose band of two plans also show the same conclusion (Figure 4.12). 

The brain tumor case was optimized by CTV-based optimization and robust 
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optimization methods, both based on a constant RBE = 1.1. Then the results were 

compared based on the constant RBE band (blue) and variable RBE (McNamora 

model) band (red). As we saw, the variable RBE bands for the robust optimization 

plan keep the robustness compared to the variable RBE bands for the CTV-based 

optimization plan. More than that, we find out the variable RBE band was lower than 

the constant RBE band in the target and higher than the constant RBE band in the 

brainstem. This is because the (α/β)x ratios used for the target and OAR are different. 

For the brain tumor case, the variable RBE in the target and brainstem is usually 

evaluated by (α/β)x ratios 10 and 2. This indicated the lower (α/β)x ratio could result 

in a variable RBE value higher than 1.1.  
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Figure 4.12: Physical dose and variable RBE weighted dose band of N&H case. 

4.4.3 Conclusion 

The voxel-based worst-case RO method could enhance the variable RBE weight 

dose robustness compare to the CTV-based optimization approach. This is because 

RO plans show an advantage in the robustness of physical dose which plays the most 

important role in the variable RBE models. Furthermore, RO method also makes the 

LET distribution more comformal, which also promotes the the stability of variable 

RBE among all scenarios. The results of comparison between the RO method and 

PTV-based optimization method are listed in the Appendices A.  
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Chapter 5 

A Biological Effect-Guided Optimization Approach using 

Beam Distal-Edge Avoidance for Intensity-Modulated 

Proton Yherapy  

5.1 Introduction 

Proton beams deposit dose slowly along their incoming path before reaching a 

sharp peak known as the Bragg peak. Beyond the Bragg peak, the deposited dose 

rapidly falls to almost zero. This physical property of proton beams enables intensity-

modulated proton therapy (IMPT): delivery of a highly conformal dose enclosing the 

tumor while sparing adjacent normal tissue [5]. In addition, the biological effect of 

proton beams is greater than that of photons. The biological effect is usually measured 

by the relative biological effectiveness (RBE), i.e., the ratio of the doses of two types 

of ionizing radiation needed to reach the same biological effect [15], [108]. A constant 

RBE value of 1.1 (i.e., 10% more effective than a photon beam) is currently used in 

recommendations for clinical proton treatment planning from the International 

Commission on Radiation Units and Measurements [13]. 

RBE varies depending on linear energy transfer (LET), tissue-specific parameters 

(defined by α and β), dose per fraction, and other factors [14], [15], [23], [109], [110]. 

However, existing experimental biological data are insufficient to clearly correlate 

RBE and dose per fraction or (α/β)x for in vivo endpoints [15], [17], [107]. Therefore, 

the use of these variable RBE models to evaluate proton treatment plans may lead to 

unwanted clinical consequences. For example, if the calculation of the target dose 

https://en.wikipedia.org/wiki/Absorbed_dose
https://en.wikipedia.org/wiki/Ionizing_radiation
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coverage is based on a variable RBE-weighted dose, the patient will be at risk of 

receiving a lower physical dose in parts of the tumor because variable RBE is assumed 

to be greater than 1.1 in areas of high LET. Critical structures are in danger of being 

exposed to a higher physical dose when the variable RBE is underestimated [20], [86].  

To resolve this problem, recent studies have attempted to optimize a biological 

dose approximated by both physcial dose and LET. This is because the biological 

effectiveness of a proton beam increases with the increase in LET toward the end of 

the proton range [20], [30] and LET can be predicted precisely using analytical 

methods or Monte Carlo simulations [25]. Several studies have developed methods to 

take advantage of LET to maximize biological effectiveness in proton therapy. In 

order to increase LET to achieve a higher biological effect in radioresistant tumors, 

Bassler et al [29] introduced a “LET-painting” method that can generate mixed-

modality treatment plans using protons and carbon ions to shape a high-LET region 

throughout the planning target volume. Fager et al [30] used multiple radiation fields 

to cover different segments of the target so that the dose prescriptions could be 

reduced by the increased LET in the target. Tseung et al [111] took advantage of 

graphics processing unit acceleration to optimize the biological dose for head and neck 

cancer cases. To reduce the risk of normal tissue complications, Unkelbach et al [20] 

applied a two-step optimization method to avoid high scaled LET-weighted dose 

values in critical structures. To reduce LET and RBE in organs at risk (OARs), 

Traneus and Ödén [112] noticed the location of the proton track-end and added it into 

an objective function. 
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Various LET optimization techniques have also been developed to take care of 

the biological effect in both target volumes and critical structures, Giantsoudi et al [16] 

presented a multicriteria optimization method to find plans with higher dose-averaged 

LET in tumor targets and lower dose-averaged LET in normal tissue structures. 

Inaniwa et al [88] minimized the physical dose and dose-averaged LET based on 

prescribed values in a quadratic cost function, while Cao et al. added two terms for 

maximizing LET-weighted dose in the target and minimizing it in OARs without 

considering any prescription. To deal with plan robustness under proton range and 

patient setup uncertainties, An et al [113] minimized the highest LET in OARs while 

maintaining the same dose coverage and robustness in tumor targets as the 

conventional robust IMPT treatment plan model, while Bai et al [114] penalized the 

sum of the differences between the highest and lowest biological effect in each voxel, 

approximated by the product of dose and LET, to achieve the robust biological effect 

and physical dose distributions in both target and critical structures.  However, these 

approaches typically use optimization priorities to control the trade-off dynamic 

between dose and LET objectives. The intrinsic relationship between dose and LET of 

protons was not incorporated in the cost function.  

Notably, LET keeps increasing beyond the location of the Bragg peak in the 

patient volume. This property could be explicitly considered in the optimization. 

Therefore, we investigated the impact of directly including the scanning spot position 

in IMPT optimization. We introduced an influence index for each scanning spot based 

on its topological relationship to different organs of interest and added this index to a 
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conventional dose-based objective function. Both physical dose and LET distributions 

can be optimized simultaneously in the proposed approach.  

5.2 Methods and Materials 

This work evaluated the effectiveness of distal-edge avoidance-guided 

optimization (DEAOpt) by comparing its results with those of conventional dose-

based optimization (DoseOpt) and LET-incorporating optimization (LETOpt) using 

four clinical cases.  

5.2.1 Distal-edge avoidance-guided optimization (DEAOpt) 

IMPT treatment planning using the 3D spot scanning technique [115] can deposit 

physical dose 𝐷𝑖𝑗  and LET 𝐿𝑖𝑗  to voxel 𝑖 by the 𝑗𝑡ℎ beamlet with unit intensity. The 

total dose 𝐷𝑖, dose-averaged LET (LETd) 𝐿𝑖 , and LET-weighted dose (LETxD) 𝐿𝐷𝑖 in 

the voxel 𝑖 are calculated by: 

𝐷𝑖 = ∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗 ,                                                  (5.1) 

𝐿𝑖 =
∑ 𝐷𝑖𝑗𝐿𝑖𝑗𝑤𝑗

2𝑁𝐵
𝑗

∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗

,                                                  (5.2) 

and  

𝐿𝐷𝑖 = ∑ 𝐷𝑖𝑗𝐿𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗 ,                                            (5.3) 

respectively, where 𝑤𝑗
2 is the intensity of beamlet 𝑗 among beamlet set 𝑁𝐵 to preserve 

the nonnegativity. The dose and LET calculations in this study were performed with 
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an open-source treatment planning platform, matRad [95], using a singular-value 

decomposed pencil-beam algorithm [96]. 

For DoseOpt, a standard quadratic objective function was used to minimize the 

mean square deviation between the calculated dose distribution and the ideal 

prescription over the entire volume [116]. Different weighting factors, 𝜆𝑇 and 𝜆𝑂𝐴𝑅, 

and prescription values, 𝐷0,𝑇and 𝐷0,𝑂𝐴𝑅, for the structures were applied to control the 

balance between target coverage and critical structure sparing. The objective function 

is given by [117]: 

𝐹𝑁(𝑤𝑗) = 𝜆𝑇
1

𝑁𝑇
∑ (𝐷𝑖 − 𝐷0,𝑇)

2𝑁𝑇
𝑖=1 + 𝜆𝑂𝐴𝑅

1

𝑁𝑂𝐴𝑅
∑ 𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅) ×

𝑁𝑂𝐴𝑅
𝑖=1

(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅)
2
.                                                                   (5.4) 

Here, 𝑁𝑇  and 𝑁𝑂𝐴𝑅  are the sets of voxels in target volumes and OARs, 

respectively. The Heaviside function, denoted by 𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅), is a discontinuous 

function whose value is zero if 𝐷𝑖 ≤ 𝐷0,𝑂𝐴𝑅 and one if 𝐷𝑖 > 𝐷0,𝑂𝐴𝑅. 

Because the scaled LETxD  (c LETxD) can be regarded as the additional 

biological dose contributed by the LET effect [20], two LETxD terms were added to 

Function (4) to maximize the biological dose in the target and minimize it in the OARs 

for the LETOpt [20], [28], [88]. The optimization weighting factors for the two 

objective terms were 𝜃𝑇 and 𝜃𝑂𝐴𝑅. The cost function of LETOpt was formulated as 

shown in (5.5): 

𝐹𝐿(𝑤𝑗) = 𝐹𝑁(𝑤𝑗) − 𝜃𝑇
1

𝑁𝑇
∑ 𝐿𝐷𝑖

2𝑁𝑇
𝑖=1 + 𝜃𝑂𝐴𝑅

1

𝑁𝑂𝐴𝑅
∑ 𝐿𝐷𝑖

2𝑁𝑂𝐴𝑅
𝑖=1 .          (5.5) 

https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/0_(number)
https://en.wikipedia.org/wiki/1_(number)
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According to Unkelbach et al [20], a threshold value 𝐿𝐷𝑟𝑒𝑓 , such that 95% of the 

target volume receives 𝐿𝐷𝑖 values higher than 𝐿𝐷𝑟𝑒𝑓 , can be used for normal tissues. 

In our case, we did not involve the prescriptions for the LETxD terms because there 

was a large difference in the LET distributions for different cases, and even for the 

same case with different beam angles. Our goal was to increase the biological dose in 

the target and reduce it in OARs as much as possible. Because increasing the 

biological dose in the target often comes at the cost of increasing the biological dose in 

the OARs, one can adjust the weighting factors (𝜃𝑇 and 𝜃𝑂𝐴𝑅) in Formulation (5.5) to 

find a balance between the target and the OARs. However, the threshold 𝐿𝐷𝑟𝑒𝑓can 

easily be added to Formulation (5.5) for both the target and critical structures. 

For each lateral position, the proton beam energy was chosen so that the Bragg 

peak of the depth dose curve coincided with the distal target edge [117]. Since LET 

keeps rising beyond the Bragg peak, the highest value of the LETxD appeared at 

position 𝑝𝑗 , which is a distance 𝑑𝑗  away from the scanning spot location 𝑠𝑗 along the 

beam direction 𝑏𝑗
⃗⃗⃗  . This distance depends on the beam energy and tissue type: 

𝑝𝑗 = 𝑠𝑗 + 𝑏𝑗
⃗⃗⃗  ∙ 𝑑𝑗.                                                (5.6) 

In order to limit the high biological dose in the target area and protect critical 

structures, we examined the topological relationship between the peak LETxD 

position, the target location, and the critical structure locations in four situations, 

shown in Figure 1. For Situation A, the position of the peak LETxD value 𝑝𝑗 falls into 

the OAR areas and outside the target region; a penalty 𝜃𝐴 was assigned to this beamlet. 

For Situation B, where 𝑝𝑗 is in the overlap area of the target and OAR, 𝜃𝐵 was the 
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assigned penalty. For Situation C, where a subregion formed by the center 𝑝𝑗  and 

semidiameter 𝑅𝑗  overlaps with an OAR but not the target area [118], the penalty 

was 𝜃𝐶 . Finally, in Situation D, where the subregion is outside the OAR and overlaps 

with the target volume, the penalty was 𝜃𝐷. 

 

Figure 5.1: Topological relationship between peak scaled linear energy transfer-

weighted dose location and different organs of interest. OAR, organ at risk. 

The semidiameter 𝑅𝑗 is the proximal 80% to distal width of the most distal peak 

of beamlet 𝑗 [94], [118]. The values of penalty 𝜃 were set based on Formulation (5.7) 

and case preferences. For example, if the treating physician preferred to maintain a 

high biological dose in the area where the target and OARs overlap, a low value of 

𝜃𝐵  was assigned according to the fomulation (5.7): 

𝜃𝐴 ≥ 𝜃𝐶 ≥ 𝜃𝐵 ≥ 𝜃𝐷.                                          (5.7) 

Thus, we added an L1-norm sparsity term, in which the penalty for beamlet 

intensity was based on the topological relationship shown above, to Formulation (5.4) 

to construct the objective function for the DEAOpt: 

𝐹𝑆(𝑤𝑗) = 𝐹𝑁(𝑤𝑗) +
1

𝑁𝐵
∑ 𝜃𝑗𝑤𝑗

2𝑁𝐵
𝑗=1 .                         (5.8) 
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In this paper, the DoseOpt, LETOpt, and DEAOpt models were solved by the 

interior-point optimizer package IPOPT [119]. which is a free software package for 

large-scale nonlinear optimization problems. 

5.2.2 Patient data and treatment planning 

Table 5.1: Patient information and treatment planning parameters.  

Tumor 

location 

Prescription 

dose (Gy/fx) 

Number of 

fractions 

Beam angles 

(gantry, 

couch) 

Number of 

beamlets 

Volumes included in 

optimization 

1. Brain 1.8 (CTV) 30 (260, 0) 1813 CTV, PTV, brainstem,  

optic chiasm, spinal cord, brain 

   

(100, 0) 1829    

(180, 0) 1826 

2. Brain 1.8 (CTV) 30 (265, 90) 1417 CTV, PTV, brainstem, 

optic chiasm, spinal cord, brain 

   

(260, 0) 1388    

(100, 0) 1410    

(180, 0) 1335 

3. H&N 2.0 (CTV) 33 (180, 0) 2505 CTV, parotid, larynx, spinal 

cord, mandible, cochlea, 

brainstem, esophagus 

   

(65, 345) 2800    

(300, 20) 2580 

4. H&N 2.0 (CTV) 33 (300, 15) 4123 CTV, parotid, larynx, spinal 

cord, mandible, cochlea, 

brainstem, esophagus 

   

(60, 345) 4217    

(180, 0) 4114 

Abbreviations: CTV, clinical target volume; PTV, planning target volume; H&N, head 
and neck. 

We implemented the proposed DEAOpt method, the conventional DoseOpt 

method, and the LETOpt method in four clinical cases retrospectively selected from 

our patient database: two patients with brain cancer and two with head-and-neck 

(H&N) cancer. For brain tumor patients, a prescribed dose of 1.8 Gy (RBE = 1.1) per 

fraction to the target volumes was planned in 30 fractions. The prescription dose of 2.0 

Gy (RBE = 1.1) per fraction to the target volumes was applied for H&N cancer 
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patients in 33 fractions. To simplify the problem, the doses prescribed to OARs were 

set to 0 in the optimizations. For all patients, beam angles were the same as those used 

in the clinical treatment. Although the target volume and location varied among the 

patient cases, at least one critical structure was close to or overlapped with the clinical 

target volumes (CTVs) or the planning target volumes (PTVs) in each case. More 

planning details are listed in Table 1. 

5.2.3 Plan evaluation 

To evaluate the quality of the treatment plans generated by the three optimization 

methods, fixed RBE (1.1)-weighted dose-volume histograms (DVHs) and c LETxD-

volume histograms were calculated and displayed. The D98% and D2% of the DVHs in 

the targets were used to reflect the dose coverage and homogeneity, meanwhile, the D2% 

and Dmean of the DVHs in the OARs were used to assess the risk of exposure. To 

measure the improvement in the tumor volume coverage and protection of the OARs 

due to the biological effect, c LETxD98%, c LETxD2%, and c LETxDmean of the LVHs 

were compared. All the plans were normalized to have 98% of the CTV covered by 

the prescribed dose. In this study, Dv% = d means the dose level d, for a given v% 

volume of a structure, receives a dose of d Gy or higher. 

5.3 Results 

Figure 5.2 shows the dose-, LETd-, and c LETxD-volume histograms of the CTV 

and brainstem for the IMPT plans optimized by DoseOpt, LETOpt, and DEAOpt in 

the brain tumor cases. The doses in the CTV and brainstem generated by the three 
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approaches were comparable. For case 1, the D2% in the CTV was 56.67 Gy for the 

DoseOpt plan, 56.71 Gy for the LETOpt plan, and 56.72 Gy for the DEAOpt plan. 

The D2% in the brainstem was 56.95 Gy for the DoseOpt plan, 56.73 Gy for the 

LETOpt plan, and 56.75 Gy for the DEAOpt plan. The mean dose in the brainstem 

was 23.80 Gy, 23.44 Gy, and 23.77 Gy for the DoseOpt, LETOpt, and DEAOpt plans, 

respectively (Table 5.2).  

 

Figure 5.2: Dose-volume histograms (first column), dose-averaged LET (LETd)-

volume histograms (second column), and scaled LET-weighted dose (c 

LETxD)-volume histograms (third column) of the clinical target volume 

(CTV; top row) and the brainstem (bottom row) for three intensity-

modulated proton therapy plans in brain tumor patient case 1. DoseOpt 

plan (green line), LETOpt plan (blue dashed line), and DEAOpt plan (red 

line).  
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Table 5.2: Dose and linear energy transfer (LET)-weighted dose (LETxD; scaled by c 

= 0.04 µm keV−1) values in the clinical target volume (CTV) and the 

brainstem for two brain tumor cases optimized by DoseOpt, LETOpt, and 

DEAOpt approaches.  

Tissue Dosimetric  

parameters 

Brain tumor case 1  Brain tumor case 2 

DoseOpt LETOpt DEAOpt  DoseOpt LETOpt DEAOpt 

CTV D98% (Gy[RBE]) 54.00  54.00  54.00   54.00  54.00  54.00  

D2% (Gy[RBE]) 56.67  56.71  56.72   55.24  55.65  55.76  

c LETxD98% (Gy) 5.36  6.08  5.63   4.97  5.94  5.33  

c LETxD2% (Gy) 9.06  9.59  9.63   7.30  7.75  8.79  

Brainstem D2% (Gy[RBE]) 56.95  56.73  56.75   56.54  56.73  57.97  

Dmean (Gy[RBE]) 23.80  23.44  23.77   36.42  36.83  35.57  

c LETxD2% (Gy) 12.31  11.22  10.99   9.66  7.53  8.51  

c LETxDmean (Gy) 4.76  3.70  3.19   5.21  3.27  3.45  

Calculation Time (s) 176.86  300.48  202.34   394.96  774.40  563.92  

Abbreviations: RBE, relative biological effectiveness. 

In terms of biological effect, both LETOpt and DEAOpt improved the LETd in 

the CTV and spared it in the brainstem. Since the dose distributions in the target and 

critical structures were similar for all three methods, the biological effect distributions 

had the same character as the LETd distributions. The c LETxD98% in the CTV was 

5.36 Gy for the DoseOpt plan, smaller than the 6.08 Gy for the LETOpt plan and 5.63 

Gy for the DEAOpt plan. The c LETxD2% in the CTV was 9.06 Gy for the DoseOpt 

plan, compared to 9.59 Gy and 9.63 Gy for the LETOpt plan and the DEAOpt plan, 

respectively. For the brainstem, the c LETxD2% was 12.31 Gy for the DoseOpt plan, 

11.22 Gy for the LETOpt plan, and 10.99 Gy for the DEAOpt plan. The mean value of 
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c LETxD was 4.76 Gy for the DoseOpt plan, higher than the 3.70 Gy for the LETOpt 

plan and 3.19 Gy for the DEAOpt plan (Table 5.2).  

Table 5.3: Dose and linear energy transfer(LET)-weighted dose (LETxD; scaled by c 

= 0.04 µm keV−1) values in the clinical target volume (CTV) and the 

organs at risk (OARs) for two head and neck (H&N) tumor cases 

optimized by DoseOpt, LETOpt, and DEAOpt approaches.  

Tissue Dosimetric 

parameters 

H&N tumor case 1  H&N tumor case 2 

DoseOpt LETOpt DEAOpt  DoseOpt LETOpt DEAOpt 

CTV D98% (Gy[RBE]) 66.00  66.00  66.00   66.00  66.00  66.00  

D2% (Gy[RBE]) 68.39  68.55  68.64   68.36  68.71  69.09  

c LETxD98% (Gy) 7.12  7.11  7.17   5.72  6.07  6.28  

c LETxD2% (Gy) 11.66  12.11  12.52   8.78  9.40  9.91  

Larynx D2% (Gy[RBE]) 53.13  52.90  53.43   66.45  66.69  66.72  

Dmean (Gy[RBE]) 5.37  5.12  5.11   10.84  10.92  11.12  

c LETxD2% (Gy) 7.13  6.54  6.49   9.90  8.39  8.36  

c LETxDmean (Gy) 0.96  0.81  0.78   1.76  1.38  1.25  

Right 

parotid 

D2% (Gy[RBE]) 67.21  67.16  67.22   71.09  71.85  72.27  

Dmean (Gy[RBE]) 6.74  6.67  7.06   17.90  17.99  18.34  

c LETxD2% (Gy) 8.38  8.26  8.56   10.94  10.93  10.63  

c LETxDmean (Gy) 0.81  0.81  0.80   2.43  2.39  2.12  

Left 

parotid 

D2% (Gy[RBE]) 10.01  9.57  9.29   0.14  0.13  0.07  

Dmean (Gy[RBE]) 0.77  0.70  0.67   0.02  0.02  0.02  

c LETxD2% (Gy) 0.93  0.76  0.63   0.01  0.01  0.01  

c LETxDmean (Gy) 0.07  0.06  0.05   0.01  0.01  0.00  

Calculation Time (s) 357.34  600.75  402.73   581.58  1044.14  746.23  

Abbreviation: RBE, relative biological effectiveness. 
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The results for brain tumor patient case 2 are shown in Figure 5.3 and Table 5.2. 

The differences in dose and c LETxD distributions among the three IMPT plans were 

similar for the two brain tumor cases.  

 

Figure 5.3: Dose-volume histograms (first column), dose-averaged LET (LETd)-

volume histograms (second column), and scaled LET-weighted dose (c 

LETxD)-volume histograms (third column) of the clinical target volume 

(CTV; top row) and the brainstem (bottom row) for three intensity-

modulated proton therapy.  

The improvement in the target coverage and reduction of c LETxD to the critical 

structures with the LETOpt and DEAOpt plans for the H&N cancer cases was 

modestly lower than for the brain tumor cases, as illustrated in Figure 5.4, 5.5, and 

Table 5.3. Compared with DoseOpt plans, the DEAOpt plans reduced the mean value 

of c LETxD by an average of 23.87% in the larynx for the H&N cancer cases and by 

an average of 33.38% in the brainstem for the brain tumor cases. Meanwhile, the 

DEAOpt plans increased the c LETxD98% by 5.25% and the c LETxD2% by 10.13% on 

average in the CTV for the H&N cancer cases, lower than the average increment rate 
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of 7.24% for the c LETxD98% and 13.35% for the c LETxD2% in the brain tumor cases. 

Thus, the DEAOpt plans improved the biological effect to the same degree as the 

LETOpt plans in both types of cases. However, the plans were not exactly the same. 

For example, the LETOpt plan increased the c LETxD2% in the CTV to 7.75 Gy, while 

the DEAOpt plan increased it to 8.79 Gy in brain tumor case 2. In this case, the 

LETOpt plan achieved a c LETxD98% value of 5.94 Gy in the CTV, higher than the 

5.33 Gy for the DEAOpt plan. 

 

Figure 5.4: Dose-volume histograms (first column), dose-averaged LET (LETd)-

volume histograms (second column), and scaled LET-weighted dose (c 

LETxD)-volume histograms (third column) of the clinical target volume 
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(CTV; top row) and parotid glands (bottom row) for three intensity-

modulated proton therapy plans in head and neck cancer patient case 

2:.DoseOpt plan (green line), LETOpt plan (blue dashed line), and 

DEAOpt plan (red line ).  

 

Figure 5.5: Dose-volume histograms (first column), dose-averaged LET (LETd)-

volume histograms (second column), and scaled LET-weighted dose (c 

LETxD)-volume histograms (third column) of the clinical target volume 

(CTV; top row) and the organs at risk (larynx, middle row; parotid gland, 

bottom row) for three intensity-modulated proton therapy plans in head and 

neck tumor patient case 1. DoseOpt plan (green line), LETOpt plan (blue 

dashed line), and DEAOpt plan (red line).  

Figure 5.6 shows the dose and biological effect distributions for brain tumor case 

1. For physical dose, there was no difference among the three plans. Both the DEAOpt 

plan and LETOpt plan avoided the hot spots of c LETxD in the overlap area of the 
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brainstem and the target. Comparison with the DoseOpt plan also shows that c LETxD 

in the target improved for both DEAOpt and LETOpt plans. However, it is noteworthy 

that the DEAOpt plan restricted the high biological effect inside the target border more 

effectively than did the LETOpt plan, which caused the normal tissue adjacent to the 

target to receive a lower biological effect. 

 
Figure 5. 6: Plan comparison for the brain tumor patient case 1. The top row shows the 

dose distributions (based on a constant RBE of 1.1). The bottom row shows 

the distributions of LET-weighted dose scaled by c = 0.04 µm keV−1 (c 

LETxD). The gross target volume, clinical target volume, planning target 

volume, and brainstem are contoured by green, black, cyan, and blue, 

respectively.  

5.4 Discussion 

Current LET-based optimization methods [20], [28], [30], [31], [88], [112] use 

LET as a surrogate for RBE optimization [20], [31] because of the considerable 

uncertainties in the validity of RBE models and the almost linear relationship between 
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LET and RBE [16]. In addition, the high degree of freedom of the IMPT plan makes it 

feasible to produce satisfactory dose distributions while achieving desirable LET 

distributions [28]. However, a drawback to the existing methods is that they use the 

inverse planning approach to optimize the LET distribution, which adds extra 

complexity [117]. To overcome this challenge, our method includes a regularization 

term for each scanning spot to reduce the complexity of the first and second 

derivatives. The runtime of the DEAOpt was, on average, 30.37% faster than that of 

LETOpt and 24.52% slower than that of DoseOpt (Table 5.2 and Table 5.3). The boost 

of computing time did not sacrifice plan quality; the DEAOpt plan’s biological effect 

and physical dose distributions were comparable with those of the LETOpt plan.   

In proton beams, LET continues to increase beyond the Bragg peak. We 

classified the scanning spots into four categories according to the topological 

relationship between their peak LETxD positions and different organs of interest 

(Figure 5.1). In Situation A, the peak LETxD position falls into the OAR area and 

outside the target region, meaning that the dose intensity in this scanning spot may 

aggravate toxicities in critical structures. Of course, this scanning spot also contributes 

to the dose in the border of the target, but it can be replaced by other scanning spots 

from different beams. In Situation B, where the peak LETxD position is in the overlap 

area of the target and OARs, the priority of treatment planning decides the penalty set. 

For example, if the first priority is to kill the tumor cells, we allow for a high 

biological effect in this area, which makes the penalty in this scanning spot close to 0; 

if protecting critical structures is the priority, a high penalty should be assigned to this 

scanning spot to restrain the biological effect in this area. For other situations, the peak 
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LETxD position’s radius may cover the edge of OARs or the target. When the 

irradiated region overlaps with the target, the corresponding scanning spot will 

guarantee the homogeneity and coverage of the physical dose in the tumor. Sometimes, 

when the overlap is with OARs, we should limit the intensity in this scanning spot. If 

the peak LETxD position is far away from all OARs, a high penalty should be set for 

this scanning spot to protect healthy tissues and promote the biological effect in the 

target.

 

Figure 5. 7: Comparisons of the intensity in each proton energy layer for three beams 

with the DEAOpt plan, LETOpt plan, and DoseOpt plan in head and neck 

tumor case 2.  

Regardless of the optimization approach used to optimize the physical dose and 

LET, the objective is achieved mostly by shifting LET hot spots to other regions 

nearby or inside the target [20]. Conventional treatment planning usually places the 

Bragg peaks at the distal edge of the target to maintain the dose coverage, which 

inevitably causes the region of high LET to be located in the periphery of the target. 

To keep protons stopping within the target region, the location of the scanning spot at 

the distal edge of the target should be avoided. This would protect the normal tissue 

adjacent to the target from the risk of side effects associated with high LET. As shown 

in Figure 5.7, the DEAOpt plan deposits lower intensity at the last two proton energies 
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in each beam than do the LETOpt and DoseOpt plans. These two energy layers have 

the potential to release LET outside of the target. Nonetheless, there was no substantial 

difference in total intensity among the three plans, and their dose distributions were 

similar because the high degree of freedom of IMPT enables it to replenish each voxel 

with physical dose from multiple scanning spot combinations. 

Our research confirmed that biological effect optimization can be achieved by 

optimizing the location of scanning spots directly instead of using the inverse 

optimization method. The effectiveness of DEAOpt is highly dependent on the 

geometry of structures and the spot arrangement. As shown in Figure 5.7, our method 

tends to avoid spots in the beam distal edge because of the trade-off effect between 

dose and LET. In our H&N cancer cases, DEAOpt methods made a smaller difference 

than in our brain tumor cases because more OARs need to be protected during the 

irradiation of H&N tumors. This phenomenon was also observed with the LETOpt 

plans. 

5.5 Conclusion 

In this study, we proposed and developed a distal-edge avoidance-guided 

optimization method to optimize IMPT plans in terms of their c LETxD distributions 

without degrading the physical dose distributions, which are comparable to those of 

LET optimization plans. We used an influence index to quantify the contribution of 

the biological effect from each scanning spot on the basis of its topological 

relationship to different organs of interest. This method could be especially beneficial 

for patient cases where critical structures are adjacent to the target area. In addition, 
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the DEAOpt approach is less complex computationally and therefore faster than the 

LETOpt approach.  



 

86 

Chapter 6 

Biological Effect Incorporated Beam Angle Optimization for 

Intensity-Modulated Proton Therapy  

6.1 Introduction 

Design a treatment plan of intensity modulated proton therapy (IMPT) requires to 

optimize four parameters/variable: first, beam angles selection; second, proton energy 

level selection; third, optimization of scanning spot intensity, which is mentioned as 

fluence map optimization (FMO) in chapter 2; finally, spot size, spot space and 

scanning path. However, for most commercial treatment planning system, the proton 

energy level and scanning path are decided by the machine used for treatment. Spot 

size and spot space are consistant with the grid size, and there are not many options. In 

clinical practice, the FMO is based on the beam angles selected by the doctor or 

physicist according to their experience and patient cancer sites in clinical practice. 

Although initial studies have illustrated BAOpt for particle therapy treatment planning 

can significantly improve the plan quality [61], BAO methods incorporated biological 

effect has not yet been explored. 

The goal of this study is to investigate the impact of BAOpt on the biological 

effect of IMPT. BAO in IMPT has much high freedom than FMO because the 

evaluation of each beam angle combination requires to fully solve an FMO model. 

Thus, it is feasible for BAO to generate a biological effect advanced treatment plan 

compared to biological effect-guided optimization in IMPT.  
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6.2 Method and Materials 

The total dose 𝐷𝑖 , dose-averaged LET ( LETd ) 𝐿𝑖, and LET-weighted dose 

( LETxD ) 𝐿𝐷𝑖  deliverd to the voxel 𝑖  in beam angle optimization problem are 

formulated by:  

𝐷𝑖 = ∑ ∑ 𝐷𝑖𝑎𝑗𝑤𝑎𝑗
2𝑁𝑎

𝑗
A
𝑎 ,                                                  (6.1) 

𝐿𝑖 =
∑ ∑ 𝐷𝑖𝑎𝑗𝐿𝑖𝑎𝑗𝑤𝑎𝑗

2𝑁𝑎
𝑗

A
𝑎

∑ ∑ 𝐷𝑖𝑎𝑗𝑤𝑎𝑗
2𝑁𝑎

𝑗
N
𝑎

,                                                  (6.2) 

and  

𝐿𝐷𝑖 = ∑ ∑ 𝐷𝑖𝑎𝑗𝐿𝑖𝑎𝑗𝑤𝑎𝑗
2𝑁𝑎

𝑗
A
𝑎 ,                                            (6.3) 

respectively, where 𝐷𝑖𝑎𝑗  and 𝐿𝑖𝑎𝑗  denote the dose and LET contributions to voxel 𝑖 

from the beamlet 𝑗 in beam angle 𝑎 at the unit weight. 𝑤𝑎𝑗
2  is defined as the intensity 

of the beamlet 𝑗 in the beam angle 𝑎 and 𝑁𝑎 is defined as the beamlet set for the beam 

angle 𝑎 while the beam angle set is A. Here we use the square of 𝑤𝑎𝑗 instead of 𝑤𝑎𝑗 

itself to represent the intensity because the quadratic formation decision variable can 

preserve the nonnegativity. 

The dose and LET calculations in this study were performed with an open-source 

treatment planning platform, matRad [95], using a singular-value decomposed pencil-

beam algorithm [96]. 

6.2.1 Beam angle optimization model (BAO) 

For conventional dose-based optimization model (DoseOpt), a quadratic 

objective function is used to measure the treatment plan qualty under a given beam 
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angle set 𝐴𝑏(𝐴𝑏 ⊆ 𝐴) . The penalty factors, 𝜆𝑇  and 𝜆𝑂𝐴𝑅 , and prescription dose, 

𝐷0,𝑇 and 𝐷0,𝑂𝐴𝑅 ,  are applied to the target and critical structures, respectively. The 

priority of penalty factors can be used to control the balance between target coverage 

and critical structure sparing. The objective function is fomulated as below: 

𝐹𝐷(A𝑏 , 𝑤𝑎𝑗) = 𝜆𝑇
1

𝑁𝑇
∑ (𝐷𝑖 − 𝐷0,𝑇)

2𝑁𝑇
𝑖=1 + 𝜆𝑂𝐴𝑅

1

𝑁𝑂𝐴𝑅
∑ 𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅) ×

𝑁𝑂𝐴𝑅
𝑖=1

(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅)
2
,                                                                  (6.4) 

where 𝑁𝑇 and 𝑁𝑂𝐴𝑅 are the sets of voxels in target volumes and OARs. The Heaviside 

function, denoted by 𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅), is a discontinuous function whose value is zero 

if 𝐷𝑖 ≤ 𝐷0,𝑂𝐴𝑅 and one if 𝐷𝑖 > 𝐷0,𝑂𝐴𝑅. 

If all possible continuous beam angle combinations are considered for the treatment 

plan, the above DoseOpt model (Formulation 6.4) becomes a BAO model. Let 𝑛 be 

defined apriori by the treatment planner as the required number of beam irradiation 

directions for a treatment plan, and 𝑁 be defined as the total number of candidate 

beam angles. The BAO model can be given by: 

𝑚𝑖𝑛
𝐴𝑏 ,𝑤𝑎𝑗

{𝐹𝐷(𝐴1, 𝑤𝑎𝑗), 𝐹𝐷(𝐴2, 𝑤𝑎𝑗), 𝐹𝐷(𝐴3, 𝑤𝑎𝑗), … , 𝐹𝐷 (𝐴
(
𝑁
𝑛

)
, 𝑤𝑎𝑗)} ,   

𝑠. 𝑡.  (𝐴1, 𝐴2, 𝐴3, … , 𝐴
(
𝑁
𝑛

)
) ∈ 𝑅𝑛.                                                               (6.5) 

6.2.2 LET- incorporated beam angle optimization model (LETBAO) 

As introduced by chapter 3, the LET-incorporated optimization (LETOpt) model can 

be formulated by adding two terms for maximizing dose-averaged LET (LETd) in the 

target and minimizing it in OARs to DoseOpt model: 

https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/0_(number)
https://en.wikipedia.org/wiki/1_(number)
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𝐹𝐿(𝐴
𝑏 , 𝑤𝑎𝑗) = 𝐹𝐷(𝐴𝑏 , 𝑤𝑎𝑗) − 𝑝𝑇,𝑙

1

𝑁𝑇
∑ 𝐿𝑖

2𝑁𝑇
𝑖=1 + 𝑝𝑂𝐴𝑅,𝑙

1

𝑁𝑂𝐴𝑅
∑ 𝐿𝑖

2𝑁𝑂𝑅𝐴
𝑖=1 .         (6.6) 

Because the LET component in the above cost function is a ratio of two linear 

questions, we use LET-weighted dose (LETxD) to replce the dose-average LET 

(LETd) to simply the question [20], [28]. The new LETBAO model can be formed as:  

𝐹𝐿(𝐴
𝑏 , 𝑤𝑎𝑗) = 𝐹𝐷(𝐴𝑏 , 𝑤𝑎𝑗) − 𝑝𝑇,𝑙

1

𝑁𝑇
∑ 𝐿𝐷𝑖

2𝑁𝑇
𝑖=1 + 𝑝𝑂𝐴𝑅,𝑙

1

𝑁𝑂𝐴𝑅
∑ 𝐿𝐷𝑖

2𝑁𝑂𝑅𝐴
𝑖=1 .     (6.7) 

Use LETOpt model to evaluate the quality of the treatment plan, we can build the 

LETBAO model as below: 

𝑚𝑖𝑛
𝐴𝑏,𝑤𝑎𝑗

{𝐹𝐿(𝐴
1, 𝑤𝑎𝑗), 𝐹𝐿(𝐴

2, 𝑤𝑎𝑗), 𝐹𝐿(𝐴
3, 𝑤𝑎𝑗), … , 𝐹𝐿 (𝐴

(
𝑁
𝑛

)
, 𝑤𝑎𝑗)} ,   

𝑠. 𝑡.  (𝐴1, 𝐴2, 𝐴3, … , 𝐴
(
𝑁
𝑛

)
) ∈ 𝑅𝑛.                                                               (6.8) 

6.2.3 Local neighborhood search algorithm  

Solving the BAO and LETBAO models can be computationally challenging 

when there are a large number of candidate beam angles. In this study, we introduced 

a local neighborhood search (LNS) algorithm to find a local optimal solution subject 

to the neighborhood for a given initial feasible solution.  

The neighborhood of a beam angle set can be obtained by altering one or more 

angles of the set with a neighbor of the corresponding angles. However, allowing more 

angles to be exchanged at one time can introduce additional complexity to the problem 

due to the increased neighborhood size [48]. Thus, a one-angle-exchange algorithm 

[120], which only swaps one angle of the current set with another angle that is not in 

the set, was applied to this research to construct the neighborhood of the beam angle 
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set. Given an initial beam angle set �̅�, where �̅� ⊆ 𝐴, |�̅�| = 𝑛, the neighborhood of �̅� 

can be defined as below: 

𝑁(�̅�) = {�̅�′: �̅�′ = (�̅� ∪ {𝑎𝑣})\{𝑎𝜇}, for 𝑎𝑣 ∈ 𝛩(𝑎𝜇), 𝑎𝜇 ∈ �̅� },              (6.9) 

where the neighborhood of a fixed beam angle 𝑎𝜇 is defined as follow: 

𝛩(𝑎𝜇) = {𝑎𝜇
′ : 𝑎𝜇

′ = [𝑎𝜇 − 𝜃, 𝑎𝜇 + 𝜃], for 𝑎𝜇 ∈ 𝐴 𝑎𝑛𝑑 𝑎𝜇 ∉ �̅� } 𝑚𝑜𝑑 360𝑜.   

(6.10) 

We take modular arithmetic with 360 to keep the beam angle non-negative. 𝜃 is the 

user-defined parameter that decides the size of the neighborhood region. For example, 

if the solution pool 𝐴 = {0, 10, 20, . . . 350} and 𝜃 = 30, the neighbors of beam angle 

10 are located within its proximal region [10 − 30,10 + 30]𝑚𝑜𝑑 360, and 𝛩(10) =

{340, 350, 0, 20, 30, 40}. The size of the neighborhood set 𝑁(�̅�) is determined by 𝜃. 

The size of the neighborhood set 𝑁(�̅�)  is determined by 𝜃 . The process of LNS 

algorithm is explained as follows: 
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Local Neighborhood Search Algorithm 
0. Start; 

1. Set 𝑘 = 0, 𝐴0 ∈ [0,360]𝑛, 𝑜𝑏𝑗 = 𝑓(𝐴0), 𝑙𝑖𝑏 = 0; 

2. do{ 

(a). Generate neighborhood 𝑁(𝐴𝑘)𝑖, 𝑖 = 1, 2,3… . . |𝑁(𝐴𝑘)|; 
(b). for i =1:1: |𝑁(𝐴𝑘)| 

   if (𝑁(𝐴𝑘)𝑖 ∉ 𝑙𝑖𝑏) 

   if(𝑓(𝑁(𝐴𝑘)𝑖) < 𝑜𝑏𝑗) 

    𝑜𝑏𝑗 =  𝑓(𝑁(𝐴𝑘)𝑖);  

    𝐴𝑘+1 = 𝑁(𝐴𝑘)𝑖; 

end 

   𝑙𝑖𝑏 = [𝑙𝑖𝑏, 𝑁(𝐴𝑘)𝑖]; 
end 

end 

(c). 𝑜𝑏𝑗 =  𝑓(𝐴𝑘+1); 

(d). 𝑘 = 𝑘 + 1; 

} while (𝑓(𝐴𝑘−1) > 𝑓(𝐴𝑘)) 

3. Stop. The final local optimizal solution is 𝐴∗ = 𝐴𝑘−1. 
 

The starting solution 𝐴0 to the LNS algorithm can be any set of angles. Usually, a 

set of equally spaced beam angles is the simplest choice. Beyond that, a beam angles 

set selected by the doctor or heuristic model will be more effective [48]. 

6.2.4 Patient data and treatment planning 

Four IMPT plans were generated to illustrate the DoseOpt, BAO, LETOpt and 

LETBAO methods for one phantom case (AAPM,TG119, C-shape) [121], and two 

brain tumor cases selected from our patient database. For all the cases, 36 equispaced 

coplanar beam angles were considered as candidate beam angles for selecting a 

constant number of optimal treatment angles. For the phantom case, a prescribed dose 

of 2 Gy (RBE = 1.1) per fraction to the target volumes was planned in 25 fractions. 

The prescription dose of 1.8 Gy (RBE = 1.1) per fraction to the target volumes was 
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applied for brain cancer patients in 30 fractions. The doses prescribed to all OARs 

were set to 0 in the optimizations. More planning details are listed in Table 6.1. 

 
Figure 6.1: Geometry of the phantom case (AAPM,TG119, C-shape ) 

Table 6.1: Patients information and treatment planning parameters.  

Cancer Type 
Prescription 

dose (Gy/fx) 

Number of 

fractions 
Tissue Type 

Number of 

voxels 

Phantom 

(TG 119) 
2 (Target) 25 

Target 7429 

Core 1280 

Body 599440 

Brain case 1 1.8 (CTV) 30 

CTV 4332 

PTV 7440 

Brainstem 2304 

Optic Chiasm 56 

Brain case 2 1.8 (CTV) 30 

CTV 4308 

PTV 8729 

Brainstem 1047 

Optic Chiasm 49 

Abbreviations: CTV, clinical target volume; PTV, planning target volume. 
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6.3 Results 

For the brain tumor patients, three-beam plans were optimized based on the 

angles used in the clinical treatment. And the two-beam plan was applied to BAO and 

LETBAO optimization in the phantom case. Here we only consider the gantry angles 

and set all the couch angles to 0. Beam angles sets (92, 270), (95, 180, 265) ,and(100, 

180, 260) were used for the DoseOpt and LETOpt treatment planning, and initial 

solution of BAO and LETBAO, respectively. Note that all treatment plans were 

normalized to have 98% of the tartget or CTV covered by the prescribed dose. 

 

Figure 6.2: Dose-volume histograms (first row) and scaled LET-weighted dose (c 

LETxD)-volume histograms (second row) of the target volume and the 

core (critical structure) for the phantom case TG 119.  

Figure 6.2 compares dose and scaled LETxD volume histograms for the target 

and core for the plans with DoseOpt, BAO, LETOpt, and LETBAO in the phantom 

case. The doses in the target and core generated by the four methods were comparable, 

and the BAO method shows a slight adavantage in target homogeneity. The D2% in the 
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target was 51.87 Gy for the BAO plan, which is lower than 53.59 Gy for the DoseOpt 

plan, 53.66 Gy for the LETOpt plan, and 53.32 Gy for the LETBAO plan. The mean 

dose in the core was 17.17 Gy, 17.39 Gy, 16.33 Gy, and 15.69 Gy for the DoseOpt, 

BAO, LETOpt and LETBAO plans, respectively (Table 6.2).  

Table 6.2: Dose and linear energy transfer (LET)-weighted dose (LETxD; scaled by c 

= 0.04 µm keV−1) values in the target volume and the core for phantom 

case TG119 optimized by DoseOpt, BAO, LETOpt, and LETBAO 

approaches.  

Tissue Type Dosimetric 

parameters 

Phantom (TG 119) 

DoseOpt BAO LETOpt LETBAO 

Target D98% (Gy[RBE]) 50.00 50.00 50.00 50.00 

D2% (Gy[RBE]) 53.59 51.87 53.66 53.32 

c LETxD98% (Gy) 3.96 4.61 4.15 4.84 

c LETxD2% (Gy) 7.86 7.88 8.96 9.77 

Core D2% (Gy[RBE]) 26.04 25.52 25.93 25.96 

Dmean (Gy[RBE]) 17.17 17.39 16.34 15.69 

c LETxD2% (Gy) 4.85 4.92 3.27 3.46 

c LETxDmean (Gy) 1.91 1.90 1.18 1.21 

Beam Angles (90, 270) (100, 260) (90, 270) (80,260) 

 

For the biological effect, both LETOpt and LETBAO approaches can improve 

the c LETxD in the target and spared it in the core compared to DoseOpt and BAO 

approaches. And LETBAO method achieves the best results. The c LETxD98% in the 

target was 4.84 Gy for the LETBAO plan, 22% higher than the 3.96 Gy for the 

DoseOpt plan, 5% higher than the 5.63 Gy for the BAO plan, and 17% higher than the 

4.15 Gy for the LETOpt plan. The c LETxD2% in the target was 9.77 Gy for the 

LETBAO plan, which is 24%, 24%, 7% higher than the DoseOpt, BAO, and LETOpt 

plans, respectively. The mean value of c LETxD in the core was 1.21 Gy for the BAO  
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plan, 1.91 Gy for the DoseOpt plan, 1.90 Gy for the BAO plan and 1.18 Gy for the 

LETOpt plan (Table 6.2). The dose and biological effect distributions for the four 

plans are illustrated in Figure 6.3. The biological effect (c LETxD) distribution in the 

target area for the LETBAO plan is significantly higher than the other three plans.  

 
Figure 6.3: Plan comparison for the phantom case. The top two rows show the dose 

distributions (based on a constant RBE of 1.1). The bottom two rows show 

the distributions of LET-weighted dose scaled by c = 0.04 µm keV−1 (c 

LETxD). The target volume and core are contoured by the color white and 

purple.  
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Table 6.3: Dose and linear energy transfer (LET)-weighted dose (LETxD; scaled by c 

= 0.04 µm keV−1) values in the CTV and the brainstem for brain tumor 

case 1 optimized by DoseOpt, BAO, LETOpt, and LETBAO approaches.  

Tissue Type Dosimetric 

parameters 

Brain Case 1 

DoseOpt BAO LETOpt LETBAO 

CTV D98% (Gy[RBE]) 54.00 54.00 54.00 54.00 

D2% (Gy[RBE]) 56.70 56.41 56.94 56.98 

c LETxD98% (Gy) 5.26 4.95 7.14 7.15 

c LETxD2% (Gy) 9.42 9.37 13.86 15.04 

Brainstem D2% (Gy[RBE]) 56.23 56.15 56.41 56.61 

Dmean (Gy[RBE]) 18.81 18.38 18.93 19.01 

c LETxD2% (Gy) 10.89 12.46 10.59 10.65 

c LETxDmean (Gy) 3.50 4.01 3.18 3.04 

Beam Angles (95,180,265) (105,190,225) (95,180,265) (95,160,265) 

 

Table 6.4: Dose and linear energy transfer (LET)-weighted dose (LETxD; scaled by c 

= 0.04 µm keV−1) values in the CTV and the brainstem for brain tumor 

case 2 optimized by DoseOpt, BAO, LETOpt, and LETBAO approaches.  

Tissue Type Dosimetric 

parameters 

Brain Case 2 

DoseOpt BAO LETOpt LETBAO 

CTV D98% (Gy[RBE]) 54.00 54.00 54.00 54.00 

D2% (Gy[RBE]) 56.97 56.96 57.64 57.65 

c LETxD98% (Gy) 3.64 3.91 5.16 7.43 

c LETxD2% (Gy) 8.92 8.89 9.86 11.72 

Brainstem D2% (Gy[RBE]) 57.22 57.21 57.65 57.69 

Dmean (Gy[RBE]) 24.05 24.05 24.33 24.26 

c LETxD2% (Gy) 11.87 10.94 9.64 8.65 

c LETxDmean (Gy) 4.78 4.68 2.74 2.96 

Beam Angles (100,180,260) (90,180,270) (100,180,270) (70,180,290) 
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Figure 6.4: Dose-volume histograms (first row) and scaled LET-weighted dose (c 

LETxD)-volume histograms (second row) of the CTV and the brainstem 

for the brain tumor case 1.  

 

 

Figure 6.5: Dose-volume histograms (first row) and scaled LET-weighted dose (c 

LETxD)-volume histograms (second row) of the CTV and the brainstem 

for the brain tumor case 2.  

The DVHs, c LETxD volume histograms and their statistics for the head and 

neck tumor case are shown in Figure 6.4, 6.5 and Table 6.3, 6.4. The differences in 
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dose and c LETxD distributions among the four IMPT plans were similar for the two 

brain tumor cases compare to the phantom case. The LETBAO approach produced 

plans with higher quality LETxD distribution and machable dose coverage compared 

to the DoseOpt, LETOpt and BAO methods. For the brain tumor cases, the c LETxD98% 

in the CTV was improved by the LETBAO plans on an average of 70%, 67%, 22% 

compared with the DoseOpt, BAO and LETOpt plans, respectively. The average 

increase rate of c LETxD2%  by the LETBAO method in CTV was 46% for the 

DoseOpt method, 46% for the BAO method, and 14% for the LETOpt method. More 

than that, on average, the LETBAO approach can reduce the c LETxDmean in the 

brainstem by 51% and 31% for the DoseOpt and BAO approachs. However, LETOpt 

can reach the same effect in reducing the biological effect in the OARs for the brain 

tumor cases.  

Figure 6.6, 6.7 show the dose and biological effect distributions for brain tumor 

cases. For physical dose, there was nearly no difference between the four plans. Both 

the LETOpt plan and the LETBAO plan avoided the hot spots of c LETxD in the 

overlap area of the brainstem and the target. Comparison with the DoseOpt plan also 

shows that c LETxD in the target improved for both the LETOpt and the LETBAO 

plans. However, it is noteworthy that the improvement of the biological effec in the 

LETBAO plans is much higher than in the LETOpt plans. 
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Figure 6.6: Plan comparison for the brain tumor case 1. The top two rows show the 

dose distributions (based on a constant RBE of 1.1). The bottom two rows 

show the distributions of LET-weighted dose scaled by c = 0.04 µm keV−1 

(c LETxD). The CTV, PTV, and brainstem are contoured by the color 

green, purple and white, respectively.  
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Figure 6.7: Plan comparison for the brain tumor case 2. The top two rows show the 

dose distributions (based on a constant RBE of 1.1). The bottom two rows 

show the distributions of LET-weighted dose scaled by c = 0.04 µm keV−1 

(c LETxD). The CTV, PTV, and brainstem are contoured by the color blue, 

white and purple, respectively.  

6.4 Conclusion 

This study introduced a biological effect-incorporated BAO algorithm for IMPT. 

Compared with the clinical treatment planning methods DoseOpt and LETOpt we 

have used in the UT MD Anderson cancer center, our LETBAO method could achieve 

comparable treatment plans in terms of physical dose. More than that, we have 

demonstrated the LETBAO algorithm performed well in finding quality beam angles 

to improve the biological effect in target and spare it in the critical structure. However, 

future study is necessary to further validate the algorithm and understand the impact of 

biological effect for IMPT.   
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Chapter 7 

Conclusions  

7.1 Current Findings 

The LET-incorporated method was introduced to conventional dose-based 

optimization. This method was able to simultaneously optimize dose and LET. No 

matter if we take uncertainties into consideration, this method was able to hedge 

against high LET in OARs and improve the low LET in the targets while maintaining 

adequate dose coverage and robustness.  

Secondly, we presented a proof-of-concept study of biological effect-based IMPT 

robust optimization in order to reduce the impact of variation in protons’ biological 

effect while limiting the degradation of the physical dose distribution from a voxel-

based worst-case RO plan. By minimizing the uncertainty gap of the biological effect 

(approximated by the product of LET and physical dose) in each voxel, the BioRO 

approach provided robust distributions of biological effect to both target and critical 

structures. This approach does not depend on tissue parameters or variable RBE 

models, which are associated with large uncertainties. In addition, our three patient 

case studies demonstrated that BioRO can avoid elevating biological effect in critical 

structures. 

Thirdly, we proposed and developed a distal-edge avoidance-guided optimization 

method to optimize IMPT plans in terms of their c LETxD distributions without 

degrading the physical dose distributions, which are comparable to those of LET 

optimization plans. We used an influence index to quantify the contribution of the 
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biological effect from each scanning spot on the basis of its topological relationship to 

different organs of interest. This method could be especially beneficial for patient 

cases where critical structures are adjacent to the target area. In addition, the DEAOpt 

approach is less complex computationally and therefore faster than the LETOpt 

approach. 

Finally, we introduced a biological effect-incorporated BAO algorithm for IMPT. 

Compared with the clinical treatment planning methods DoseOpt and LETOpt we 

have used in the UT MD Anderson cancer center, our LETBAO method could achieve 

comparable treatment plans in terms of physical dose. More than that, we have 

demonstrated the LETBAO algorithm performed well in finding quality beam angles 

to improve the biological effect in target and spare it in the critical structure. However, 

future study is necessary to further validate the algorithm and understand the impact of 

biological effect for IMPT. 

7.2 Future Work 

7.2.1 Variable RBE optimization 

In the present study, variations in tissue oxygenation and its impact on RBE were 

not considered. It is known that oxygen enhancement ratio (OER) decreases with 

increasing LET [122], [123]. However, these changes seem to be relevant for LET 

values higher than the maximum LET values observed in this study. Because OER is 

usually not considered in radiation treatment planning for photons, we have used the 

same strategy for protons to get comparable results [124]. However, more robust and 
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clinically validated biological data are needed for accurate assessment of RBE 

variations within the target and late-responding tissues, especially for those located in 

the vicinity of high-dose targets. From the methodological perspective, a robust 

approach that reduces the model uncertainties in the variable RBE model should be 

discussed. Here, we come up with a general variable RBE optimization framwork. 

And this framwork should be extended to avoid the model uncertainties. 

The general (α/β)x ratio can be calculated by: 

α𝑖 =
∑ 𝛼(𝐿𝐸𝑇)𝑖𝑗𝐷𝑖𝑗𝑤𝑗

2𝑁
𝑗

∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁

𝑗

,                                             (7.1) 

and 

β𝑖 = (
∑ √𝛽(𝐿𝐸𝑇)𝑖𝑗𝐷𝑖𝑗𝑤𝑗

2𝑁
𝑗

∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁

𝑗

)

2

.                                   (7.2) 

Then the general variable RBE model can be formualted as: 

RBE𝑖 = −
1

2𝐷𝑖
(

𝛼

𝛽
)
𝑥
+ 

1

𝐷𝑖
 √

1

4
(

𝛼

𝛽
)
𝑥

2

+
𝛼𝑖

𝛽𝑥
𝐷𝑖 +

𝛽𝑖

𝛽𝑥
𝐷𝑖

2.                       (7.3) 

The objective function of general variable RBE optimization can be written as: 

𝑓𝑅(𝑤) = ∑ 𝜆𝑇(𝑅𝐵𝐸𝑖𝐷𝑖 − 𝐷𝑇,𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒)
2

𝑖∈Target + ∑ 𝜆𝑂𝐴𝑅𝐻(𝑅𝐵𝐸𝑖𝐷𝑖 −𝑖∈OARs

𝐷𝑂𝐴𝑅,𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒) × (𝑅𝐵𝐸𝑖𝐷𝑖 − 𝐷𝑂𝐴𝑅,𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒)
2.                                 (7.4) 

The derivative of the Formulation 7.4 is as below: 
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𝜕𝑓𝑅(𝑤)

𝜕𝑤𝑗
= ∑

[
 
 
 
 

2𝜆𝑇(𝑅𝐵𝐸𝑖𝐷𝑖 − 𝐷𝑇,𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒) ×𝑖∈Target

(𝛼(𝐿𝐸𝑇)𝑖𝑗𝐷𝑖𝑗𝑤𝑗+2(∑ √𝛽(𝐿𝐸𝑇)𝑖𝑗𝐷𝑖𝑗𝑤𝑗
2 𝑁

𝑗 )√𝛽(𝐿𝐸𝑇)𝑖𝑗𝐷𝑖𝑗𝑤𝑗)

β𝑖√
1

4
(
𝛼

𝛽
)
𝑥

2
+

𝛼𝑖
𝛽𝑥

𝐷𝑖+
𝛽𝑖
𝛽𝑥

𝐷𝑖
2

]
 
 
 
 

+ ∑
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.                                                  (7.5) 

Based on the general variable RBE optimization model, how to avoid the model 

uncertainties (especially in (α/β)x ratio) will be explored in future work. 

7.2.2 Analysis and modelling of treatment response and radiation-induced 

immunosuppression using machine learning techniques 

Under the background of biological and physical data interpretation, there is a 

seen rapid development of advanced technologies. It follows the trend of data science 

and its related subjects such as big data, machine learning, and artificial intelligence. 

In future work, we plan to analyze and model the treatment response and radiation-

induced immunosuppression in IMPT using machine learning techniques. 

Radiation therapy is effective in treating many types of cancers. However, it can 

be immunosuppressive due to treatment-induced lymphocytotoxicity. Lymphocytes 

are highly sensitive to radiation even at low doses. Absolute lymphocyte count (ALC) 

has been shown to be an independent predictor of survival from cancer, and severe 
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radiation-induced lymphopenia (RIL) has been shown to be associated with reduced 

survival. Recent retrospective analyses of esophagus data have demonstrated a 

significant survival advantage for protons over photons. Preliminary indication is that 

this is likely attributable to differences in RIL between the two modalities, which, in 

turn may be due to differences in “dose bath” between protons and photons. Compared 

with photons, proton dose distributions are more “compact”. A recent study in our 

group suggested a strong correlation of mean body dose (MBD) with high grade ALC 

nadir. However, MBD is a limited surrogate. There can be large uncertainties in 

estimating the MBD. Moreover, MBD does not reflect the fact lymphocyte killing is 

not linearly proportional to dose. Such issues may affect the strength of the 

associations observed. For instance, a substantial subset of proton patients had low 

MBD, but the still developed grade 4 RIL. Thus, there is a pressing need to consider 

other correlates (e.g., dose-volume indices, lymphocyte killing) in order to enhance 

our understanding of RIL. It is essential to develop an in-depth understanding of the 

correlation of dose distribution patterns and dose-volume indices derived for the body 

as well as for organs at risk (OARs) of RIL relevance with ALC nadirs and ALCs at 

various time points before, during and after radiotherapy.  
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APPENDICES 

A. Comparison between RO Method and PTV-based Optimization 

Method 

 

Table A.1:Parameters used for the PTV-based optimization method for a brain tumor 

case. Here, de and  od mean deviation and over dose. TG is the target. 

Structure objective type penalty dose Bio.model robustness 𝛂𝐱 𝛃𝐱 

PTV Squared-de TG 2000 2 1.1 none 0.5 0.05 

Brain Squared-od OAR 100 1 1.1 none 0.1 0.05 

Brainstem Squared-od OAR 200 1.2 1.1 none 0.1 0.05 

Ring Squared-od OAR 300 1.2 1.1 none 0.1 0.05 

 

 

 

Table A.2: Parameters used for the RO method for a brain tumor case. Here, de and  

od mean deviation and over dose. TG is the target. VWWC means it is a 

voxel-based worst-case RO method. 

Structure objective type penalty dose Bio.model robustness 𝛂𝐱 𝛃𝐱 

CTV+ Squared-od TG 500 2 1.1 VWWC 0.5 0.05 

CTV- Squared-ud TG 1500 2 1.1 VWWC 0.5 0.05 

Brain Squared-od OAR 100 1 1.1 VWWC 0.1 0.05 

Brainstem Squared-od OAR 200 1.2 1.1 VWWC 0.1 0.05 

Ring Squared-od OAR 300 1.2 1.1 VWWC 0.1 0.05 
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Figure A.1:Constant RBE (1.1)-weighted dose-volume histogram bands of the clinical 

target volume (CTV) and gross tumor volume (GTV) for the two IMPT 

plans in a brain tumor patient case. The bold lines indicate the nominal 

distributions. 
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Figure A.2: Constant RBE (1.1)-weighted dose-volume histogram bands of the 

planning target volume (PTV) and brain for the two IMPT plans in a brain 

tumor patient case. The bold lines indicate the nominal distributions. 
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Figure A.3: Constant RBE (1.1)-weighted dose-volume histogram bands of the 

brainstem and ring for the two IMPT plans in a brain tumor patient case. 

The bold lines indicate the nominal distributions. 
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Figure A.4: Variable RBE (McNamara)-weighted dose-volume histogram bands of the 

clinical target volume (CTV) and gross tumor volume (GTV) for the two 

IMPT plans in a brain tumor patient case. The bold lines indicate the 

nominal distributions. 
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Figure A.5: Variable RBE (McNamara)-weighted dose-volume histogram bands of the 

planning target volume (PTV) and brain for the two IMPT plans in a brain 

tumor patient case. The bold lines indicate the nominal distributions. 
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Figure A.6: Variable RBE (McNamara)-weighted dose-volume histogram bands of the 

brainstem and ring for the two IMPT plans in a brain tumor patient case. 

The bold lines indicate the nominal distributions. 
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Figure A.7: RBE-weighted dose-volume histogram bands for the PTV-based 

optimization plan. The blud bands were based on the constant RBE (1.1) 

and the red bands were recalculated based on the variable RBE model 

(McNamara). The bold lines indicate the nominal distributions. 
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Figure A.8: RBE-weighted dose-volume histogram bands for the RO plan. The blud 

bands were based on the constant RBE (1.1) and the red bands were 

recalculated based on the variable RBE model (McNamara). The bold lines 

indicate the nominal distribution. 
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Figure A.9: Constant RBE (1.1)-weighted dose-volume histogram bands comparison 

of the PTV based optimization plan (blue) and RO plan (red). The bold 

lines indicate the nominal distribution. 



 

136 

 

Figure A.10: Variable RBE (McNamara)-weighted dose-volume histogram bands 

comparison of the PTV based optimization plan (blue) and RO plan (red). 

The bold lines indicate the nominal distribution. 
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Figure A.11: Constant RBE (1.1)-weighted dose-volume histograms (nominal 

distribution) comparison of the PTV based optimization plan (blue) and 

RO plan (red).  
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Figure A. 12: Variable RBE (McNamara)-weighted dose-volume histograms (nominal 

distribution) comparison of the PTV based optimization plan (blue) and 

RO plan (red). 
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Figure A.13: Constant RBE (1.1)-weighted dose-volume histograms (worst 

distribution) comparison of the PTV based optimization plan (blue) and 

RO plan (red). 
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Figure A.14: Variable RBE (McNamara)-weighted dose-volume histograms (worst 

distribution) comparison of the PTV based optimization plan (blue) and 

RO plan (red). 

 



 

141 

 

Figure A.15: Standard deviation volume histograms of the constant RBE(1.1)-

weighted dose (blue) and variable RBE (McNamara)-weighted dose (red) 

for the PTV-based optimization plan. 
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Figure A.16: Standard deviation volume histograms of the constant RBE (1.1)-

weighted dose (blue) and variable RBE (McNamara)-weighted dose (red) 

for the RO plan. 
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Figure A.17: Standard deviation of the constant RBE (1.1)-weighted dose volume 

histograms comparison of the PTV-based optimization plan (blue) and 

the RO plan (red). 
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Figure A. 18: Standard deviation of the variable RBE (McNamara)-weighted dose 

volume histograms comparison of the PTV-based optimization plan 

(blue) and the RO plan (red). 

 

 

 


