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ABSTRACT 

 

Alzheimer’s disease is progressively degenerative with a characteristic of memory loss, mood 

and behavior changes, and deepening confusion about time and place. It is estimated that 

about   50 million people are affected by AD worldwide. AD's lifetime per patient care cost is 

estimated to be about $250k, and the total cost of care of AD patients could exceed $1 trillion 

by 2050.  

In this research, we use novel data reduction techniques in determining functional brain 

connectivity from Resting-State fMRI data and show that small Machine Leaning models can 

with good accuracy classify subjects with respect to Alzheimer’s disease (AD) or Mild 

Cognitive Impairment (MCI) or being Cognitive Normal (CN). In fMRI, brain activity is 

captured from Blood Oxygen Level-Dependent (BOLD) magnetization detected by the MRI 

scanner.  The functional connectivity is inferred from correlations of the observed BOLD 

signals from typically cubic voxels with sides in the 3 – 4 mm range. The BOLD signals are 

typically sampled every 2 – 3 seconds for a duration of five to six minutes, generating a data 

set of 5 – 10 million voxel BOLD signal values per subject. Classification is typically carried 

out based on signal aggregates for anatomical regions defined in brain atlases to reduce the 

computational effort.   In this research, we use the 90 region Automated Anatomical Labeling 

atlas, AAL-90, in establishing Regions of Interest, ROIs that are subsets of voxels in the 

AAL-90 atlas. The functional connectivity is measured by the correlation of BOLD signal 

aggregates for the ROIs. 
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In the data reduction step, we represent the 4D data set for a region with a vector that on 

average reduces the data set for a region from about 100,000 voxel signal values to 100 to 200 

values in our spatial representation and in the order of 15,000 – 30,000 in our spatial-temporal 

representation.  We show that a small Convolutional Neural Network (CNN) with a model 

size of about 168 kiB and a Transformer model of only 37 kiB yields classification accuracies 

of 80 – 90% for AD, MCI, and CN subject classification. We further show that our region 

data aggregation technique is more robust to BOLD signal artifacts than the commonly used 

aggregation technique. The training time for the CNN and Transformer on a data set of 551 

subjects required 184 and 23.73 seconds respectively. The experiments are conducted on the 

Opuntia Cluster using Pytorch.1.5.0, Python 3.7.7, and CUDA 10.1 on a 2.8GHz Intel Xeon 

E5-2670v2 processor with 2 CPU sockets and 20 cores, and NVIDIA K40 GPU.  
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 1 

 

1. INTRODUCTION 

 
Alzheimer’s disease is progressively degenerative with a character of memory loss, mood and 

behavior changes, and deepening confusion about time and place. Alzheimer’s disease is 

thought to begin 20 years or more before symptoms arise [1] with minor changes in the brain 

that are unnoticeable to the person affected. The cause of the disease is that neurons involved 

in thinking, learning, and memory have been damaged or destroyed [2]. It is estimated that 

worldwide, about 50 million people are affected by AD, but that only about 25% of those 

affected have been diagnosed with AD. The lifetime per patient care cost of AD is estimated 

to be about $250k [3], and the total cost of care of AD patients could exceed $1 trillion by 

2050. Alzheimer’s disease is generally viewed as degraded communication between brain 

regions termed functional connectivity.  “The idea that the human mind/brain is made up of 

highly specialized components began with the Viennese physician Franz Joseph Gall (1758–

1828). Gall proposed that the brain is the seat of the mind, that the mind is composed of 

distinct mental faculties, and that each mental faculty resides in a specific brain organ. A 

heated debate on localization of function in the brain raged over the next century. By the early 

20th century, a consensus merged that at least basic sensory and motor functions reside in 

specialized brain regions” [4].  

Because of the brain complexity, accurately defining the brain regions and mapping their 

functions and connections is exceptionally challenging. Brain parcellation methods subdivide 

the brain into individual regions that can be used to build a network to study its structure and 

function. Using anatomical or functional connectivity or hierarchal clustering methods aims to 

offer a meaningful parcellation of the brain at each level of granularity.  



 

 2 

Korbinian Brodmann parcellated the human cerebral cortex based on cytoarchitectonic, 

resulting in regions with similar microarchitecture, distribution, and arrangement of cell 

bodies in the grey matter [5]. Since then, there have been numerous attempts to identify 

functionally meaningful regions based on different properties such as anatomy [6], [7], 

microarchitecture (chemo-architectonic features) [8], and more recently, function [9]. 

Different brain atlases arise depending on the particular property, the most common listed 

below [7][10]. 

1) AAL[7]: Automated Anatomical Labeling of Activations in Statistical Parameter Mapping 

(SPM) software package [11] using a Macroscopic Anatomical Parcellation of the Montreal 

Neurological Institute (MNI) MRI Single-Subject Brain. 

An anatomical parcellation of the spatially normalized single-subject high-resolution T1 

volume provided by the MNI[12] was performed. “The MNI single-subject main sulci were 

first delineated and further used as landmarks for the 3D definition of 45 anatomical volumes 

of interest (AVOI) in each hemisphere.  This procedure was performed using dedicated 

software, which allowed a 3D following of the sulci course on the edited brain. Regions of 

interest were then drawn manually with the same software every 2 mm on the axial slices of 

the high-resolution MNI single subject. The 90 AVOI were reconstructed and assigned a label 

“ [7]. 

2) Brainnetome Atlas [10]: Brainnetome Atlas, with 210 cortical and 36 subcortical 

subregions, is built upon a connectivity-based parcellation framework containing information 

on anatomical and functional connections. It is an open resource for researchers for the 

analysis of whole-brain parcellation, connections, and functions. Brainnetome Atlas provides 

fine-grained brain sub-regions, which revealed numerous anatomical subdivisions which were 



 

 3 

missed in previous brain atlases. Moreover, there are detailed functional connectivity patterns 

for each area in Brainnetome Atlas.  

 

3) Harvard-Oxford [13]: Probabilistic atlases covering 48 cortical and 21 subcortical 

structural areas, derived from structural data and segmentations kindly provided by the 

Harvard Center for Morphometric Analysis. “T1-weighted images of 21 healthy male and 16 

healthy female subjects (ages 18-50) were individually segmented by the CMA using semi-

automated tools developed in-house. The T1-weighted images were affine-registered to 

MNI152 space using FLIRT (FSL) [14], and the transforms were then applied to the 

individual labels. Finally, these were combined across subjects to form population probability 

maps for each label” [13].  

 Atlases are derived by statistically summarizing, e.g., averaging, voxel-wise, regional, or 

global brain MRI measures from several individuals, and they may be used in research as 

registration targets for functional activation, segmentation, and statistical mapping, for 

example, in the analysis of population imaging datasets 

The International Consortium of Brain Mapping (ICBM) has created a few standard brain 

templates onto which individual subjects' brains are mapped to compare observations from 

different individuals.  The templates are available from the Montreal Neurological Institute 

(MNI) [7].  In this work, we use the MNI-152 [15] brain template commonly used in 

population brain studies. 

“Talairach coordinates [16], also known as Talairach space, is a 3-dimensional coordinate 

system (known as an 'atlas') of the human brain, which is used to map the location of brain 
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structures independent from individual differences in the size and overall shape of the brain. It 

is still common to use Talairach coordinates in functional brain imaging studies and to target 

transcranial stimulation of brain regions. However, alternative methods such as the MNI 

Coordinate system (originated at the Montreal Neurological Institute and Hospital) have 

largely replaced Talairach” [17]. “Talairach brain is the brain dissected and photographed for 

the famous Talairach and Tournoux atlas. The atlas has Brodmann's areas labeled, albeit in a 

rather approximate way. What the authors did was to look at pictures of the Brodmann map 

and estimate where the same place was on their brain” [16]. 

The MNI wanted to define a brain that is more representative of the population. Therefore, the 

MNI defined a new standard brain by using a large series of MRI scans on normal controls. 

The MNI305 was the first MNI template. The current standard MNI template is the 

ICBM152, which is the average of 152 normal MRI scans that have been matched to the 

MNI305 using a 9-parameter affine transform.  

Brain activity for AD classification is captured by functional Magnetic Resonance Imaging 

(fMRI) that measures Blood Oxygen Level-Dependent (BOLD) magnetization. When an area 

of the brain is active, the flow of oxygen-rich blood to that region increases, affecting the 

blood magnetic properties through the binding of oxygen to hemoglobin, thus causing 

oxygen-rich blood to have a stronger MRI signal. The functional connectivity is inferred from 

correlations of the observed BOLD signals. The spatial (voxel) resolution in fMRI for AD 

classification typically is 2 – 4 mm.  With female and male brain volumes on average being 

1130 cm3 and 1260 cm3, respectively, an fMRI brain scan for AD classification purposes 

contains in the order of 104 to 105 voxels. The sampling rate typically is 0,5 – 2 Hz  [18][1] 
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for a duration of five to six minutes, creating a 4D data set of ten’s of thousands of time series 

(one per voxel) each of 100 – 200 samples.   

Functional connectivity can be assessed using stimuli, task-based observations, or without 

stimuli, resting-state observation.  In recent years, it has become clear that resting-state 

networks (RSN) provide sufficient information for the good classification of AD and MCI 

patients [19][20].  In this work, we use resting-state BOLD signals to assess functional 

connectivity and patient classification. 

With the understanding that different regions of the brain are responsible for different 

functions, it is common to reduce the computational complexity in classification by clustering 

voxel signals into Regions-Of-Interest (ROIs). The ROIs are commonly taken as anatomical 

regions [21]. However, ROIs have also been formed based on spatial proximity to selected 

seed voxels [9], the strength of the BOLD signal correlations with some cut-off criteria [9] 

which may result in regions of arbitrary shape and size that may not be spatially localized. 

Methods not based on spatial proximity such as principal component analysis (PCA) [22] and 

independent component analysis (ICA) [23], or graph theoretical approaches such as 

clustering coefficients, node degree, betweenness, path lengths, local efficiency, global 

efficiency, and modularity have been used for reducing the computational effort in 

classification [24][25][26] [27][28][29].  

In this research, we use the 90 regions Automated Anatomic Labeling (AAL) software 

package and digital atlas [7] to form ROIs. This software package, which is often used in 

functional neuroimaging, maps voxels as obtained in MRI scans to 90 anatomical regions of 

the brain. 
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Most of the studies on AD classification use the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) data set [30], while some other studies use their in-house collected data. 

ADNI is a longitudinal multicenter study designed to develop clinical, imaging, genetic, 

and biochemical biomarkers for the early detection and tracking of Alzheimer’s disease 

(AD).  

Machine learning can build a model based on sample data to make decisions without being 

explicitly programmed to do so. We use Deep Learning algorithms like Convolutional Neural 

Network and Transformer for AD classification. Unlike machine learning algorithms like 

SVM, which needs feature engineering, deep learning does not require feature engineering. It 

can identify multivariate feature combinations that best predict an outcome of interest. 

Moreover, it can work on high-dimensional connectome data.  
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2. RELATED WORK 
 

As represented in Figure 1, in previous work, some studies use the brain connection network, 

and some studies use 2D slices of fMRI/MRI images as input for machine learning 

approaches. For extracting functional connectivity in group studies, fMRI images from 

different subjects need to be preprocessed before any group analysis. Before mapping each 

subject’s brain to any anatomical atlas to extract Regions Of Interest for pairwise correlation, 

slice timing correction, realignment, registration, normalization, resampling, and smoothing is 

done on each subject’s fMRI image to make sure activation in similar locations of the brain 

from different subjects have overlap and easily comparable. The preprocessing steps for 

previous studies are reported in Table 2. After preprocessing fMRI data and extracting ROIs 

by mapping each subject’s brain on the AAL90 atlas, a brain connectivity map is defined, 

which is a temporal correlation among time series BOLD signals of different ROIs. The 

correlation matrix, which is the connectivity map, is input to the ML algorithms. Different 

ML approaches like SVM, logistic regression, and random neural networks are trained on 

correlation matrices and classify and predict test subjects. For 2D slices of fMRI images, they 

use deep learning approaches like Convolution Neural Network as it is used for RGB images. 

In this case, CNN is trained on pixel values, and for that, 2D slices of fMRI images need to be 

normalized and converted to PNG format for processing. After conversion, 2D slices of fMRI 

images are used for training convolution neural networks. For each subject based on the 

dataset as an example, we have 150 volumes, and each volume has 48 slices, which results in 

7200 2D slices. 

For 200 subjects, there would be 1,440,000 2D slices of fMRI image. The data size in our 

case is approximately equal to the size of ImageNet training data, around 1,200,000. If we use 
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ResNet [31] for training 1,440,000 2D slices of fMRI image for the AD classification task, we 

can assume it will take approximately the same time as training ResNet with 1,200,000 

ImageNet [32] data. Based on [33], with 8 NVIDIA A100 GPUs, it takes around 36 minutes. 

This is at least 80 times slower than our reported training time in Table 16. We use only one 

NVIDIA K40 GPU for training the proposed Transformer mode. Based on different 

applications and measurements reported in Table 1, the most significant regions are reported 

below in Tables 3-7.  

 

Figure 1: Summary of previous studies in AD classification 

Table 1: Comparison of preprocessing steps in our study and related work 

Work Voxel Size Software Brain Size 
Time 

Samples 
Brain 
Geom 

Resampling 
(Voxel Size) 

Smoothing Samples Used 

(1)[34] [3 3 4] SPM8 [64 64 33] 150 MNI [3 3 3] Gauss 8 
145(first 10 

removed) 

(2)[35] [3.13 3.13 5] None [64 64 30] 140 MNI [4 4 4] Gauss 5 130 (last 10) 

(3)[36] 
[3.31 3.31 

3.31] 
None [64 64 48] 140 MNI None Gauss 4 130 (last 10) 

(4)[29] [ 3 3 2.5] SPM8 [64 64 32] 220 None None Gauss 8 216 (first 4) 

(5)[27] [3.75 3.75 4] ADNI [64 64 36] 180 Talairach None None 175 (first 5) 

(6)[37] None 
DPARSF 

 
[64 64 48] None None None None First 10 

(7) [38] [? ? 3.13] 
DPARSF, 

SPM5 

 

[? ? 48] 140 MNI [3 3 3] Gauss 4 133 (first 7) 

Our 

Study 

[3.3 3.3 3.3], 

[4 4 4] 

 

SPM12 

[64 64 48] 

[64 64 36] 

 

 

46 -200 

164 
 

MNI [3 3 3] Gauss 8 
46-200 

164 
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Table 2: Related work summary 

Paper ACC SE SP 
Data 

Set 
Atlas Map ML Approach ROI Signal Modality 

(1) 

[34] 
85.8 83.5 83.5 Own 116-AAL DNN 

Average of 

node voxels 
fMRI 

(2) 

[35] 
99.99   ADNI None CNN 

Transform 

4D fMRI to 

2D PNG 

format 

MRI+ 

fMRI 

(3) 

[36] 
92.9 100 86.67 ADNI 

Common 

activity 

voxels 

SVM  fMRI 

(4) 

[29] 

MCI vs 

AD 80%, 

NC vs 

MCI 75% 

MCI vs 

AD 90%, 

NC vs 

MCI 50% 

MCI vs AD 

80%, 

NC vs MCI 

100% 

Own 82-AAL 

Bayesian 

Gaussian 

process 

logistic 

regression 

Sum of 

region 

voxels 

fMRI 

(5) 

[27] 

AD vs 

CN87%               

MCI vs 

CN 95% 

AD vs CN 

85%               

MCI vs 

CN 93% 

AD vs CN 

80%                 

MCI vs CN 

90% 

Own 116-AAL 

Fisher linear 

discriminant 

analysis 

Avg of 

region 

voxels 

fMRI 

(6) 

[37] 
92.31   Own 90-AAL 

Random 

Neural 

Network 

Cluster 

Avg of 

region 

voxels 

fMRI 

(7) [26] 100 100 100 Own 90-AAL SVM 

Avg of 

region 

voxels 

fMRI 

(8) [38] 83.2 

MCI-CN-

AD 

70,96,70 

MCI-CN-

AD 

100,73,96 

Own 90-AAL SVM 

Avg of 

region 

voxels 

fMRI 

(9)[39] 

AD vs CN 

80%               

MCI vs 

AD 99% 

AD vs CN 

91%               

MCI vs 

AD 99% 

AD vs CN 

83%                 

MCI vs AD 

99% 

Own None ResNet18 

Transform 

4D fMRI to 

2D PNG 

format 

fMRI 

Our CNN-B 

AD-CN 

89% 

AD-CN 

85% 

AD-CN 

93% 

ADNI 

Segments 

of Hilbert 

Curve 

around 90-

AAL 

Center 

points 

CNN 
Spatial-

Temporal 
fMRI MCI-CN 

90% 

MCI-CN 

90% 

MCI-CN 

91% 

MCI-AD 

87% 

MCI-AD 

82% 

MCI-AD 

91% 

Our 

Transformer 

AD-CN 

87% 

AD-CN 

85% 

AD-CN 

89% 

ADNI 

Segments 

of Hilbert 

Curve 

around 90-

AAL 

Center 

points 

Transformer 
Spatial-

Temporal 
fMRI MCI-CN 

89% 

MCI-CN 

89% 

MCI-CN 

90% 

MCI-AD 

87% 

MCI-AD 

85% 

MCI-AD 

89% 
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Table 3: Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory [26] 

 

 

Table 4: The identification of Alzheimer's disease using functional connectivity between activity voxels in resting-state fMRI 

data [36] 

 

 

 

 

 

Brain Regions Domain 

Regions with the best 

discrimination ability 

(AAL16) 

Dorsolateral of Frontal Gyrus Sup L 

Dorsolateral of Frontal Gyrus Sup R 

Frontal Gyrus Middle L 

Orbital Frontal Gyrus Middle L 

Opercular Frontal Gyrus Inferior R 

Orbital Frontal Gyrus Inferior L 

Olfactory Cortex R 

Frontal Gyrus Sup Medial , R 

Insula R 

Posterior Cingulate Gyrus R 

Calcarine Fissure and Surrounding Cortex L 

Lingual Gyrus R 

Supramarginal Gyrus R 

Caudate Nucleus L 

Temporal Gyrus Middle L 

Temporal Gyrus Middle R 

Brain Regions  Domain % Active Voxels 

AAL12 

Frontal Sup L 2.04 

Frontal Sup R 1.47 

Frontal Mid L 2.9 

Frontal Mid R 2.12 

Frontal Sup Medial L 1.18 

Frontal Sup Medial R 1.72 

Coneus L 2.9 

Parietal Sup R 1.7 

Preconeus L 1.3 

Preconeus R 2.03 

Temporal Pole Sup L 5.24 

Temporal Pole Sup R 2.75 
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Table 5: Analysis of Alzheimer’s disease based on random neural network cluster in fMRI [37] 

 

 

 

 

 

 

Brain Regions Domain Weight 

AAL23 

The number of features related to a 

certain region is considered as the 

weight 

 

Precentral Gyrus L 19 

Middle Frontal Gyrus L  

Olfactory Cortex L  

Orbital Sup Frontal Gyrus R 18 

Triangular Inferior Frontal Gyrus L  

Supplementary Motor Area L  

Orbital Sup Frontal Gyrus L 17 

Orbital Middle Frontal Gyrus L  

Precentral Gyrus R 16 

Dorsolateral Sup Frontal Gyrus R  

Orbital Middle Frontal Gyrus R  

Orbital Inferior Frontal Gyrus L  

Orbital Inferior Frontal Gyrus R  

Olfactory Cortex R  

Middle Frontal Gyrus R 15 

Rolandic Operculum L  

Rolandic Operculum R  

Dorsolateral Sup Frontal Gyrus L 14 

Opercular Inferior Frontal Gyrus L  

Opercular Inferior Frontal Gyrus R  

Triangular Inferior Frontal Gyrus R  

Supplementary Motor Area R  

Medial Sup Frontal Gyrus L  
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Table 6: Application of advanced machine learning methods on resting-state fMRI network for identification of mild 

cognitive impairment and Alzheimer’s disease [38] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary of methods used in Tables 3-7 for AD classification, ACC, SE, SP, and ML 

approaches are reported in Table 2 and Table 8. 

 

 

 

 

 

 

 

 

 

 

Brain Regions Domain 

AAL (19) + 4 others of 264 regions 

 
 

Lingual R 

Cerebelum Crus1 R 

Temporal Inf R 

Postcentral L 

Paracentral Lobule L 

Area 50 of 264 

Postcentral R 

Lingual L 

Precuneus R 

Fusiform R 

Temporal Pole Middle R 

Precuneus L 

Area 151 of 264 

Occipital Mid L 

Frontal Mid R 

Putamen L 

Area 230 of 264 

Thalamus L 

Thalamus R 

Area 237 of 264 

Putamen R 

Temporal Mid L 

Cerebelum 6 R 
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Table 7: Gaussian process classification of Alzheimer’s disease and mild cognitive impairment from resting state fMRI [29] 

Brain Regions Domain Inverse Length Scale 

AAAL-43 
For the linear ARD covariance 

function, inverse length scale of d is a 

direct measure of how much feature d, 

contributes to the classification 

 

The larger is inverse length scale 

Parameter is, the greater the 

contribution feature d makes to the 

predictive function. 

 

mmse bl 53,392.8 
Frontal inf orb L ↔ temporal Inf R 32,874.0 
Frontal inf orb L ↔ temporal Inf L 12,573.6 
Frontal sup orb R ↔ occipital inf R 9,251.4 

Frontal sup R ↔ fusiform L 6,914.3 
Frontal sup L ↔ occipital inf R 5,426.2 

Occipital inf L ↔ temporal inf R 3,371.7 
Frontal sup R ↔ fusiform R 2,663.3 

Frontal sup orb R ↔ occipital Inf L 339.5 
Frontal sup medial L ↔ parietal sup R 117.1 

Rectus L ↔ temporal inf L 64.4 
Occipital inf R ↔ parietal sup R 47.3 

Frontal mid L ↔ frontal inf orb R 49.7 
Occipital inf R ↔ temporal inf L 49.3 

Frontal sup orb L ↔ temporal inf R 48.6 
Frontal sup orb R ↔ fusiform L 44.7 

Rectus L ↔ temporal inf L 64.4 
Occipital inf R ↔ parietal sup R 47.3 

Frontal inf orb R ↔ temporal inf R 29.8 
Frontal sup medial L ↔ temporal inf R 24.5 

Temporal inf L ↔ temporal inf R 20.1 
Occipital inf L ↔ temporal inf L 15.4 
Frontal mid L ↔ occipital Inf R 13.0 
Frontal sup R ↔ occipital inf L 9.8 
Frontal mid R ↔ occipital inf R 7.5 

Rectus L ↔ fusiform L 6.4 
Rectus L ↔ temporal inf R 5.7 

Frontal sup orb R ↔ temporal inf R 5.0 
Frontal mid R ↔ temporal inf R 3.5 
Frontal sup orb R ↔ fusiform R 3.1 

Rectus R ↔ temporal inf L 2.8 
Rectus L ↔ fusiform R 2.7 

Frontal sup medial R ↔ temporal inf R 2.6 
Frontal sup L ↔ frontal inf orb R 2.5 

Frontal sup L ↔ fusiform R 2.2 
Frontal sup medial R ↔ occipital inf R 1.8 

Fusiform L ↔ paracentral lobule L 1.5 
Frontal sup medial L ↔ occipital inf L 1.5 

Frontal mid L ↔ fusiform R 1.3 
Frontal sup R ↔ temporal inf L 1.3 

Occipital inf L ↔ temporal mid R 1.0 
Frontal sup orb L ↔ occipital inf L 1.0 

Frontal sup medial L ↔ occipital inf R 0.7 
Occipital inf R ↔ temporal inf R 0.7 

Frontal mid R ↔ fusiform L 0.7 
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Table 8: Summary of methods used in Tables 3-7 for AD classification, ACC, SE, SP, and ML approaches are reported in 

Table2 

 

Previous 

Work 
AD-MC-CN Method 

Table 7 

27-AD 

50-MC 

30-CN 

Each subject's rsfMRI scan is converted to a brain region connectivity 

feature vector defined as the variance-covariance in BOLD signals 

between 82 anatomically distinct regions of interest (ROIs). 

The covariance between each ROI was calculated. 

Define the most relevant features to the GP-LR model by analyzing 

the strength of optimized covariance function length-scale parameters 

ld. 

Table 6 

 

34-AD 

89-MC 

45-CN 

 

1) Brain Local functional network features 

2)Brain Global functional network features 

Total 44 Features 

Fisher score is used to reduce the number of features and take the 

most discriminative features 

 

Table 3 
20-AD 

20-CN 

1) Brain Local functional network features 

2)Brain Global functional network features 
Total 21 Features 

Fisher score 

To reduce the number of features and take the most discriminative 

features 

 

Table 5 
25-AD 

36-CN 

The image is divided into 90 regions defined by AAL brain atlas. The 

Pearson correlation coefficient is defined between two regions as 

functional connectivity 

The number of features related to a certain region is considered as the 

weight 

 

Table 4 

67-AD 

76-CN 

 

Implement ICA on a single subject (with V voxels and T time points) 

calculate the location set of activity voxels in the ICs of each subject 

at a given threshold θ, 

Obtain the location sets of common activity voxels of subjects in the 

HC and AD group 

ours 
298-AD 

97-MCI 

253-CN 

The image is divided into 90 regions by extracting 201,101 length 

segments of 64x64x64 Hilbert Curve around 90-AAL center points or 

random points. 

Taking Pearson correlation between V*T Hilbert Curve ordered 

voxels of every pair of regions. (V total number of voxels in the 

region). 

T is number of time points for each Voxel. 
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There are multiple ML approaches for different purposes. Language modeling is the task of 

predicting what word/letter comes next in a sequence model. Unlike CNN, in sequence 

modeling, the current output is dependent on the previous input, and the length of the input is 

not fixed. Encoder-Decoder architecture is used for sequence modeling. The final hidden state 

vector contains all encoded information from the previous hidden representation and previous 

inputs in the encoder. For example, RNN acts as an encoder. The encoded information is 

passed to the decoder, which decodes into probability distribution of the next possible word. 

Encoder-decoder is used for image captioning, in which image is passed to CNN and features 

are extracted in the form of a feature representation vector. The encoded vector/features are 

passed through the RNN or LSTM to generate the caption. In machine translation, each 

character or input is fed into RNN. At the last step of the encoder, the final hidden state 

representation of all previous inputs will be passed to the decoder. The decoder can be an 

RNN or LSTM network that decodes the step representation vector and gives the probability 

distribution of each character. 

A Generative Adversarial Network (GANs) is an unsupervised learning method in machine 

learning that involves automatically discovering and learning the regularities or patterns in 

input data in such a way that model can be used to generate or output new examples that 

plausibly could have been drawn from the original dataset. GANs are used in a range of 

applications such as image, video, and sound generation. 

A Convolution Neural network or ConvNet can capture temporal and spatial dependencies in 

an image through the application of relevant filters. It is most commonly applied to analyze 

visual imagery. ConvNet reduces the image into a form that is easier to process without losing 

features which are critical for getting good predictions. CNN is an architecture that is not only 
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good at learning features but also scalable to the massive datasets. CNNs have applications in 

image and video recognition, recommender system, image classification, image segmentation, 

medical image analysis, natural language processing. 

In image classification, a CNN is trained on pixel values of images, and kernels learn 

temporal and spatial dependencies in short-range (3x3 FOV). In our study, our input is 2D 

correlation matrices with values in the range of -1 to 1 without any sequence dependencies as 

language models. We use CNNs for AD classification since our input is similar to 2D images 

used in image classification, and convolution can learn temporal and spatial decencies among 

correlation values by using different kernels. 
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3. BOLD SIGNAL REPRESENTATION FOR MACHINE LEARNING  
 

Our goal is to design computationally efficient Machine Learning (ML) models for accurate 

AD, MCI, and CN classification.  To reach this goal, we base our ML models on ROI-to-ROI 

correlation of ROI vectors of values derived from the 2D image intensity values generated 

from the BOLD signals in 2D slice MRI scans of the brain. Each 2D slice is “2.5” D since it 

corresponds to a 3D brain volume with the “0,5” dimension being the voxel extent in the 

dimension perpendicular to the 2D image plane. For forming the ROIs, the “2.5D” slices are 

assembled into a 3D brain.  Pearson correlation [40] is used for ROI-to-ROI correlation. 

Commonly, ML applied to image classification directly uses the 2D intensity images, which 

generally results in large models for good accuracy, as, for instance, was reported for AD 

classification in [39].  

Most ML approaches to AD classification reported in the literature also use ROI-to-ROI 

correlation matrices.  However, we form ROIs in unique ways, with on average fewer voxels 

per ROI than approaches using anatomical regions as ROIs. For example, compared to ROIs 

inferred by the AAL-90 regions, our ROIs with up to 5x fewer voxels per ROI result in 

classification accuracies comparable to published works using anatomical regions as ROIs. 

Further, we derive the ROI vector values in unique ways compared to how ROI image 

intensity values are derived in published works. Below we first describe how we form ROIs, 

then how ROI vectors are formed. 

3.1 ROI formation 

Unlike other works, we form spatially localized ROIs based on segments of a Hilbert curve 

traversing a bounding box of the MNI-152 brain template.  The choice of a curve for mapping 
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3D subdomains to 1D with preserved locality was based on the successful use of Hilbert 

curves for classification in prior work in the Appendix to this dissertation. 

We use a 64x64x64 bounding box for the MNI-152 brain template using 3x3x3 mm voxels. 

Adult brains typically contain about 42,000 (female) to 47,000 (male) voxels of this size. For 

Hilbert curve segments representing an ROI, we used segment lengths in the range 51 to 301 

voxels. The segments were formed with equal length subsegments from a center-voxel, as 

illustrated in Figure 2.    Hilbert curve segments of length 51 did not yield correlation matrices 

that resulted in acceptable accuracy.  Hilbert curve segments longer than 201 did not yield 

correlation matrices that resulted in classification accuracies that were statistically at best 

marginally better than matrices based on 201 segment lengths.  

 

Figure 2: Segments of Hilbert curve around AAL-90 center voxels to form ROIs 

Hilbert curve ROI segment center-voxels were selected in two ways: 1) as the center voxel of 

the respective AAL-90 regions as defined by the MNI-152 temple 2) as a uniformly randomly 

selected voxel within the MNI-152 brain template. The latter selection was made to study the 
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sensitivity to the center-voxel selection on the classification accuracy.  For 1) ROIs based on 

Hilbert curve segments of length up to 201 did not overlap.  For 2) only non-overlapping 

Hilbert curve segments were accepted for forming ROIs. 

3.2 ROI vector values 

Our classification of subjects with respect to having Alzheimer’s disease (AD) or Mild 

Cognitive Impairment (MCI) or being Cognitive Normal (CN) is based on intensity 

magnitude values in BOLD signal reconstructed images.   We use two novel ways to derive 

ROI vector values from image intensity magnitude values.   

• spatial: the ROI vectors consist of time-averaged voxel intensity values for the 

ROI Hilbert curve segment voxels.  

• spatial-temporal: the ROI vectors consist of all time-series intensity values for 

all ROI Hilbert curve segment voxels are concatenated for all the voxels for a 

Hilbert curve segment representing an ROI.   

Below we define the spatial and spatial-temporal ROI vectors precisely.  The voxel intensity 

value for voxel i, i =  1, 2, … , N, where N is the Hilbert curve segment length, at time j, j =

 1, 2, … . , M where M is the number of time samples in region r, r = 1,2, … . R is denoted 

S(i, j, r). 

For ROI r, the spatial ROI vector entry i, V(i,r) is  

V(i, r) =
1

M
∑ S(i, j, r)

M

j=1

 for i ∈ [1, N] and r ∈ [1, R] 

The spatial ROI vector for ROI r is of length L=N.  The formation of the voxel intensity 

vector for the spatial representation is illustrated in Figure 3. 
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Figure 3: Time-averaged voxel BOLD signals traversed along the Hilbert curve 

For ROI r, the spatial-temporal ROI vector is of length L = N ∗ M. The voxel intensity values 

S(i, j, r) are mapped to a vector V(k, r)   

V(k,r) = S(k,r) with 𝑘 =  𝑖 + 𝑁 ∗ 𝑗 𝑓𝑜𝑟 𝑖 =  1, … , 𝑁 𝑎𝑛𝑑 𝑗 = 1, … , 𝑀 (𝑘 = 1, … , 𝑁 ∗

𝑀) 𝑓𝑜𝑟 𝑟 =  1, … , 𝑅)  

(column major order with voxel time series forming rows).  

The formation of the spatial-temporal ROI vectors is illustrated in Figure 4.  

 

Figure 4: Illustration of the formation of spatial-temporal ROI vectors 
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Conventionally, ROI vectors are formed by spatially averaging the time series intensity values 

S(i,j,r), creating temporal ROI vectors of length L=M, as shown below  

V(j, r) =
1

N
∑ S(i, j, r) for j ∈ [1, M] and r ∈ [1, R]

N

i=1

 

The formation of the temporal ROI vectors is illustrated in Figure 5. 

 

Figure 5: Averaged Time series over all voxels within ROI 

3.3 Functional connectivity – Pearson correlation 

With the above notation the Pearson correlation for population of ROIs ρ(n, m) [40], n, m =

 1,2, … , R can be expressed as  

ρ(n, m) =
1

(L − 1)
∑

(V(l, n) − μ(n))(V(l, m) − μ(m))

σ(n)σ(m)

L

l=1

 for n, m ∈ [1, R] 

μ(r) =
1

L
∑ V(l, r)   for r

L

l=1

∈ [1, R] 

σ(r) = sqrt(
1

L
∑(V(l, r) − μ(n))

2
   for r

L

l=1

∈ [1, R] 
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4. DATA SETS FOR ASSESSMENT OF ROI IMAGE INTENSITY 

REPRESENTATION AND ML CLASSIFICATION ACCURACY AND 

COMPUTATIONAL EFFICIENCY 

 

For our assessment of the effectiveness of ROI image intensity representation for 

classification accuracy using small  CNN and Transformer ML  models for binary AD, MCI, 

and CN  subject classification we created three data sets from the ADNI 

(http://adni.loni.ucla.edu)  and OASIS [41] Resting-State fMRI data sets; one set from each of 

the ADNI and OASIS data sets and a third by combining the two data sets to create a larger 

data set to assess the impact of data set size on the accuracy of our ML models. The ADNI 

data set of 302 subjects contain all three classes of subjects with 101 AD subjects (33%), 97 

MCI subject (32%), and 104 CN subjects (34%). The OASIS dataset contains no MCI 

subjects. In this data set, 149 (43%) of the subjects were classified as AD subjects.  The 

combined data (Mixed) set of 648 subjects has 250 (39%) AD subjects, 97 (15%) MCI 

subjects, and 301 (46%) CN subjects. Table 9 summarizes the sociodemographic information 

of the subjects in the two data sets. 

 
Table 9: MRI parameters during scanning for the ADNI and OASIS [41] datasets 

Data Set Imaging 
Time 

Samples 
TR(s) TE (ms) 

Flip 

Angle 

Slice 

Resolution 
#Slices Voxel Size 

OASIS 

Single-shot gradient 

echo planar imaging 

(EPI) 

164 2.2 27 90 64 x 64 36 4x4x4 

ADNI 
Gradient echo (GR) 

pulse 
46-200 3 30 80 64 x 64 48 3.3x3.3x3.3 
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Table 10: Summary of sociodemographic information of subjects in our three data sets. 

 

 

 

 

 

 

 

 

 

 

 

 The ADNI dataset  (http://adni.loni.ucla.edu) was acquired with a slice resolution of 64 x 64, 

3.3 x 3.3 mm voxels of 3.3 mm thickness with 48 slices to cover the brain volume and 46 to 

200 time samples using Gradient echo (GR) pulses, with 3s repetition time (TR) (total 

duration varies from 138s to 600s), a 30s echo time (TE) and 80-degree flip angle (FA). The 

OASIS dataset  [41] was acquired with slice resolution 64 x 64, 4 x 4 mm voxels of 4 mm 

thickness with 36 slices to cover the brain volume, and 164 whole-brain time samples using a 

repetition time (TR) of 2.2s (total duration 360 seconds) using single-shot gradient echo-

planar imaging (EPI)  with  27 ms echo time (TE) and 90-degree flip angle (FA). Both RS-

fMRI data sets were acquired using 3 Tesla Siemens scanners. Table 10 summarizes the data 

acquisition parameters for the ADNI and OASIS data sets.   

 

OASIS Data Set 

 AD MCI CN Total 

Number 149 0 197 346 

Male/Female 79/70 0 70/127 149/197 

Age 74±10.4  66±10.4 69±9.7 

ADNI Data Set 

 AD MCI CN Total 

Number 101 97 104 302 

Male/Female 35/66 45/52 47/57 127/175 

Age 75±7.69 74±8.6 76±7.19 75±7.8 

Combined Data Set (OASIS + ADNI) 

 AD MCI CN Total 

Number 250 97 301 648 

Male/Female 114/136 45/52 117/184  

Age 74.5±9.15 74±8.6 72±8.8  
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4.1 Data preprocessing 

The BOLD signals for the whole-brain are acquired as a sequence of 2D adjacent slices (36 

and 48 in case of the ADNI and OASIS data sets respectively) during the repetition time, as 

shown in Figure 6.  For the classification, we use voxel intensity values derived from the 

magnitude and phase values of the BOLD signal.  

 

Figure 6: 4D fMRI BOLD signal acquisition in space and time, fMRI data consist of BOLD signals from M volumes, one for 

each of M time samples. Each brain volume is constructed from Z “2D” slices of a thickness equal to scan voxel thickness 

along the z-axis.   In both the ADNI and OASIS data sets, the “2D” slices have 64x64 voxels. The number of slices in the 

ADNI data set is 48 (slice thickness 3.3mm), covering a z-axis range of 158 mm, and in the OASIS data set, it is 36 (slice 

thickness 4mm), covering a z-axis range of 144m. 
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In the pre-processing, as represented in Figure 7, the 2D slice acquisition times  are adjusted  

to a common reference time for each whole-brain scan by simply adjusting the actual 

acquisition time tk for slice k in the brain scan by shifting the sampling time to that of the 

middle slice by linear interpolation giving an adjusted time (Z/2 + 1 − k) x TR/Z, with k =

1, … Z where Z is the number of slices and TR is the repletion time for a whole-brain scan. 

 

Figure 7: Slice timing correction for fMRI preprocessing 

In the preprocessing functional (fMRI) images are first aligned with a structural (MRI) image 

for each subject, called co-registration, then co-registered fMRI images are mapped to a 

template brain used for all subjects, the MNI-152 brain in our case. The second step is known 

as normalization. The co-registration and normalization processes are represented in Figure 8. 

We use the SPM12-V7771 software package  [11] for co-registration and normalization 

involving affine transformations (rotation, translation, shear, scaling).  

The SPM12-V7771 software package uses an entropy and normalized mutual information-

based objective function for co-registration, equation (1) [42]. In equation (1)  I(X, Y) is the 
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mutual information between X and Y, and  H(. ) denotes entropy. For the alignment, 

misalignment tolerances are given for translation, rotation, scaling, and shear, which in our 

case are (0.02, 0.001, 0.01, 0.001) 

NMI =
I(X, Y)

√H(X)H(Y)
 

 

Figure 8: Normalization and co-registration of functional and anatomical image for each subject 

As represented in Figure 9, for group studies, the brains of all subjects are normalized to a 

common space. The normalization uses a tissue probability map containing prior probabilities 

of all the tissues found in the image. The prior probabilities of different tissue classes at each 

location in the brain are constructed from a large number of brains mapped to the MNI-152 

template. For normalization, we use the log-likelihood criteria that have been proved effective 

[43].  To compare our findings with previous AD classification studies as reported in Table 2, 

we use the same 3x3x3 mm voxel size reported in previous studies for comparison requiring a 

resampling of the ADNI and OASIS voxel sizes in our data sets.  The resampling is made as a 

(1) 
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3D nearest-neighbor interpolation of the voxel intensity values from the 3.3x3.3x3.3 mm 

ADNI and the 4x4x4 mm OASIS scanner voxel sizes.  

 

Figure 9: Registration of brains to a common space 

After time alignment, co-registration, normalization, and signal interpolation for voxel size, as 

represented in Figure 10, spatial smoothing of the 2D slices of 3D fMRI image was made 

using a Gaussian filter with the Full Width at Half Maximum (FWHM) of 8 mm to enhance 

the signal to noise ratio.  

 
Figure 10: Smoothing 2D slices of fMRI images with a Gaussian kernel size 8 

As represented in Figure 11, fMRI data are characterized by small activation fluctuations with 

superimposed motion, physiological and temporal artifacts [44][45]  in addition to scanner 
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imperfections. Spontaneous neuronal oscillations or low-frequency oscillations have 

frequencies in the 0.01 to 0.1 Hz range, respiratory signal contributions are in the 0.1-0.5Hz 

range, and cardiac activities in the 0.6 to 1.2 Hz range. Numerous physiological noise removal 

techniques, broadly grouped into reference-based models and data-driven approaches [46], are 

currently widely used. These techniques would selectively remove all artifacts. Low pass 

filtering cannot entirely remove these artifacts as it would remove neuronal signals as well 

[47].  For our studies, we report the preprocessing steps in Table 1; we do not apply any 

temporal or spatial filtering for artifact removal, nor do we use any data-driven or reference-

based model to remove artifacts.  

 

Figure 11: different source of artifact in rs-fMRI and their frequency range [48]  
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5. MACHINE LEARNING MODELS 

 

A Convolution Neural Network (CNN) is a deep learning algorithm used mostly for computer 

vision tasks. In a Convolution Neural Network, there are multiple learnable parameters called 

filters that slide along the input features and output translation equivariant output called 

feature maps in each convolution layer.  In a CNN, they can capture spatial and temporal 

dependencies in images. 

The convolution layer can extract low-level to high-level features from the input image. For 

example, low-level features such as edges and color are captured in the first layers. As the 

network gets deeper it captures high-level features to the end. They are also known as shift 

invariant or space invariant artificial neural networks (SIANN). 

A sequence to sequence architecture, transformers are used primarily in natural language tasks 

and have recently been applied in computer vision tasks. The Seq2seq model consists of an 

encoder and decoder. The encoder takes the input sequence and maps it to high-dimensional 

space. That vector is then fed into the decoder, turning into an output sequence.  

The Transformer does the same with the help of a self-attention layer.  In a transformer, by 

the attention mechanism, the relationship between every part of the sentence or sequence 

(token) is measured and provides relevant information about different tokens. For images, the 

smallest unit of analysis is a pixel. In an image with size 224x224, there are 50,176 pixels. 

Suppose we want to input a sequence of 50,176 tokens to the transformer, for the dot product 

in the self-attention layer. In that case, we need at least 2.5 Billion operations which is not 

efficient regarding memory and computation. Instead of using pixels for analysis, the image is 

divided into sections called patches. These patches with positional embedding are used as an 

input sequence for the transformer. If we use a patch size 14x14 for a 224x224 image, the 
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sequence length decreases from 50,176 to 256. The sequence with 256 tokens is passed 

through a positional encoding first to give every token a relative position to other tokens since 

we need to know the order of tokens in the sequence. At the next step, it passes through a 

linear layer called the encoding layer to embed into a lower-dimensional space. After 

embedding the tokens, they are passed through layers of encoders. 

 

5.1 CNN models 

 
 

Figure 12: Proposed CNN-A, (Top) and CNN-B (below) architecture 

As represented in Figure 12, the input to the CNNs we study is the 90x90 ROI correlation 

matrices for each subject with one channel, the voxel intensity values.  The number of output 

channels for the convolution layers in CNN-A are 4,8,16, respectively, with each having 3x3 

filters. The fourth layer is a fully-connected layer with 32 output channels, and the last layer is 

a fully-connected layer with two output channels. The last fully-connected layer gets the input 
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tensor of size (B,32) and maps it to (B,2) tensor, which is the final output. The CNN-B has 

one convolution layer with 4 output channels and a fully connected layer with 8 output 

channels, and the last layer is a fully-connected layer with 2 channels. The first fully 

connected layer gets the input (B,44*44*4,8) which is flattened after the last convolution 

layer and maps it to (B,8) tensor, which is the input to the last fully connected layer. The last 

fully-connected layer gets a tensor of size (B,8) and outputs a tensor of size (B,2), the final 

output.   The total number of parameters for a convolution layer using K × K filters having  Ci 

input channels and Co output channels are K × K × Ci × Co. Thus, in CNN-A, the first 

convolution layer with 1 input channel and 4 output channels has 3x3x1x4 = 36 parameters, 

the second convolution layer has 288 parameters, and the third convolution layer has 1,152 

parameters. The fourth fully connected layer with 32 output channels has 16x9x9x32=41,472 

parameters, and the last layer has 64 parameters. The total number of parameters is 43,012 

(36+288+1,152+41,472 +64). With single-precision floating-point IEEE data representation 

(FP32), the CNN-A model size is about 172 kiB. The CNN-B has 

3×3×4+44×44×4×8+8x2=62004 parameters. Thus, with the FP32 data representation, the 

CNN-B model size is about 242 kiB. Thus both CNN models are considerably smaller than 

many other CNN models for image classification [32].  

The CNN-A and CNN-B model characteristics for inference are summarized in Tables 11 and 

12.  
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Table 11: Proposed CNN-A architecture, and model characteristics 

 

Table 12: Proposed CNN-B architecture, and model characteristics 

 

Table 13 summarizes the computational and memory requirements with parameters 

represented as FP32 numbers 

 
Table 13: Computational and memory requirements with parameters represented as FP32 numbers 

 

Model #Params #MAC Memory Footprint 

CNN-A 43,012 2,797,472 168 KB 

CNN-B 62,004 707,136 242 KB 

 

 

Layer Name Input Output #Params #MAC 

Conv (B,90,90,1) (B,90,90,4) 4x1x3x3 = 36 9x2x1x4x90x90 = 583,200 

MAX pooling (B,90,90,4) (B,44,44,4)   

Conv (B,44,44,4) (B,44,44,8) 4x8x3x3 = 288 9x2x8x4x44x44 = 1,115,136 

MAX pooling (B,44,44,8) (B,21,21,4)   

Conv (B,21,21,8) (B,21,21,16) 8x16x3x3 = 1152 9x2x8x16x21x21 = 1,016,064 

MAX pooling (B,21,21,16) (B,9,9,16)   

Flatten and Reshape (B,9,9,16) (B,9x9x16)  0 

Linear (B,1296) (B,32) 1296*32= 41,472 2x1296*32 = 82,944 

Linear (B,32) (B,2) 32x2 = 64 2x32x2=128 

Total   43,012 2,797,472 

Layer Name Input Output #Params #MAC 

Conv (B,90,90,1) (B,90,90,4) 4x1x3x3 = 36 9x2x1x4x90x90 = 583,200 

MAX pooling (B,90,90,4) (B,44,44,4)   

Flatten and Reshape (B,44,44,4) (B,44x44x4)  0 

Linear (B,7744) (B,8) 7745x8 = 61,952 2x7744x8 = 123,904 

Linear (B,8) (B,2) 8x2 = 16 2x8x2=32 

Total   62,004 707,136 
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5.2 Transformer model 

 
Figure 13: Proposed Transformer architecture 

 

Transformer enables modeling long dependencies between input sequence elements. 

“Different from convolutional networks, transformers require minimal inductive biases for 

their design and are naturally suited as set functions “ [49].  As represented in Figure 13, 

Transformer architectures are based on a self-attention mechanism that learns the relationship 

between elements of the sequence; thus, they can attend to complete sequences, thereby 

learning long-range relationships. There is no need for inductive bias in a transformer, unlike 

a convolution neural network. An inductive bias is a design choice when creating a learning 

algorithm that relies on an assumption about data being processed. In computer vision, 

convolution neural networks are translational invariant; thus, they can recognize features 

regardless of position or angle within an image. However, it results in some undesirable 

behavior in some cases.  
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“Transformers has two advantages. First, when applied to images, it has been shown that the 

attention mechanism is a generalized case of convolution. That means transformers can learn 

to mimic convolutions. Secondly, transformers can learn the complex spatial relationships 

between high-level image features. Together, these advantages allow transformers to address 

the limitations of translation invariance while still being flexible enough to learn operations 

that can produce a state of the art performance.”[50] 

 An important feature of these models is their scalability to high complexity models and large-

scale datasets.  In this section, we explore the proposed transformer's architecture and 

compare it with a convolution neural network. 

Transformers lack the inductive biases of Convolution Neural Networks (CNN), such as 

translation invariance and a locally restricted receptive field. Invariance means that an object 

in an image can be recognized even if its appearance or position varies. Translation in 

computer vision means that each pixel has been moved by a fixed amount in a particular 

direction. Moreover, convolution is a linear local operator, and only neighbor values indicated 

by the kernel can be seen. On the other hand, a transformer is by design permutation invariant, 

so it cannot process grid structure data. So, a sequence is needed, and non-sequential spatial 

data should be converted to a sequence. The proposed architecture for our study is inspired by 

this work [51].  

To create a sequence of 2d structures, the 90x90 correlation matrices are split into patches. 

The patches are flattened to a 1D vector, positional embedding is added, and the final 

sequence is fed to the transformer encoder as input. Positional embedding is used to keep the 

notion of order. Positioned embeddings are constant numbers added to the embedding vector 

before the self-attention layer.  The encoder block is identical to the original transformer 
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proposed in [52] for NLP tasks. The number of encoders or the depth of the encoder stack 

change according to the complexity of the task and dataset size. Transformers are composed 

of linear and fully connected layers, but the fundamental building block of a transformer is 

self-attention. Self-attention enables ML to find correlations between different input words   

that indicate the synthetic and contextual structure of the sentence. In the context of fMRI and 

brain connectome, we believe that self-attention enables ML to find correlations between 

different brain regions to capture, map, and understand the organization of neural interactions 

within the brain.  

To feed 2D data to the Transformer encoder, each 2D data set is split into linearized patches. 

For example, with a 1x1 patch size, the sequence length would be 1x8100, while with a 6x6 

patch size, the sequence length would be 225x36, and with a 9x9 patch size, the sequence 

length would be 81x100. The resulting vector is passed to a linear layer to be embedded in a 

lower dimension. The Transformer linear layer includes a matrix multiplication operation, in 

which the sequence from patches is multiplied with a learnable weight. With our focus on 

computational and memory efficiency, we chose patch sizes that result in square-like 

matrices. Specifically, we chose 10x10 patches for the correlation matrix, which results in   81 

x 100 sequences. With 81 entities (tokens), the proposed Transformer model will have fewer 

parameters than 90 or 100 entities. The sequence is fed into a linear layer and embedded to 

size 16.  
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Figure 14: Extracting patches from correlation matrices to feed a sequence of data to the transformer 

 

As represented in Figure14, the correlation matrices are rearranged into 81x100 sequences fed 

into a Transformer linear layer. The sequence is embedded in  d = 16 dimensions. After the 

linear layer, the sequence has 81 entities of size d = 16. The sequence of size 81x16 is added 

to the position embedding vector. The position vector is a vector of constant numbers added 

to the sequence to keep the order of entities in the sequence. Our Transformer model has one 

encoder, with the most important components being a self-attention layer and a feed-forward 

layer. The goal of self-attention is to capture the interaction among all 81 entities (tokens) by 

encoding each entity in terms of global contextual information. This is done by defining three 

learnable weight matrices to transform Queries (WQ ∈ Rd×dq ), Keys (WK ∈ Rd×dk ), and 

Values (WV ∈ Rd×dv ),  where dq = dk. The input sequence X ∈ R81×16 is first projected onto 

these weight matrices to get Q = XWQ,  K = XWK, V = XWV. The output Z ∈ Rn×dv  of the 

self-attention layer is, Z = softmax(
QKT

√dq
)V. For a given entity in the sequence, the self-

attention computes the dot-product of the query with all keys, which is then normalized using 

the SoftMax [53] operator to get the attention scores. Each entity then becomes the weighted 
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sum of all entities in the sequence, where weights are given by the attention scores (Figure 15) 

[49]. In order to capsulate multiple complex relationships among different elements in the 

sequence, the multi-head attention is comprised of multi self-attention blocks. Each block has 

its own set of learnable weight matrices {WQi, WKi , WVi} where i = 0, . . h. In our model h =

2 and  dq = dk = dv = 8. The outputs from two heads are concatenated into a single matrix 

and projected onto a weight matrix via a linear layer (Figure 14). Transformer filters are 

dynamically calculated unlike CNN filters which stay the same for any input.  

 

Figure 15: Self-attention for encoder layer of Transformer 
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The Transformer model characteristics are summarized in Table 14. 

 

Table 14: Proposed Transformer architecture 

Layer Name  Input Output #Params #MAC 

Rearrange  (B,90,90,1) (B,81,100) 0 0 

Linear  (B,81,100) (B,81,16) 101x16 = 1616 2x81x16x100 = 259,200 

Pos 

Embedding 
 (B,81,16) (B,81,16) 82x16 = 1312 0 

Stack 1 (Begin) 

Normalization  (B,81,16) (B,81,16) 2x16 = 32  

Multi-Head 

Attention 

Linear (B,81,16) (B,81,3x2x8) 8x16x3x2 = 768 2x81x48x16 = 124,416 

Dot Product 

(Q, K) 
(B,81,16) (B,2,81,81)  2 (heads)x 2x81x81x8 = 

209,952 

Attn= 

SoftMax 
(B,2,81,81) (B,2,81,81)   

Dot Product 

(attn, V) 
(B,2,81,81) (B,2,81,81)  2 (heads)x2x81x81x8 = 

209,952 

Rearrange (B,2,81,81) (B,81,16)   

Linear (B,81,16) (B,81,16) 17x16 = 272 2x81x16x16 = 41,472 

Normalization  (B,81,16) (B,81,16) 2x16 = 32  

Feedforward 

Linear + 

GELU 
(B,81,16) (B,81,8) 17x8=136 2x81x8x16 = 20,736 

Linear (B,81,8) (B,81,16) 9x16=144 2x81x8x16 = 20,736 

End of Stack    (Depth=1)x1384 (Depth=1) x886,464 

Flatten and 

reshape 
 (B,81,16) (B,1296)  0 

Normalization  (B,1296) (B,1296) 2x1296=2592  

Linear  (B,1296) (B,2) 1297x2=2594 2x1296x2=5184 

Total    9,498 891,648 
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5.3 Comparison of CNN and Transformer models computational and memory 

requirements. 

 

The Transformer model has considerably fewer parameters than both CNN models, as seen 

from Table 15. It requires about 26% more MACs than the CNN-B model but far fewer 

MACs than the CNN-A model.  We will later compare the accuracies achieved with the three 

models. 

Table 15: Comparison of CNNs and Transformer architecture regarding memory footprint, and number of MACs 

Model #Params #MAC FP32 Parameter Memory 

CNN-A 43,012 2,797,472 168 KB 

CNN-B 62,004 707,136 242 KB 

Transformer 9498 891,648 37.10 KB 

Factor of Reduction  

Transformer / CNN-A 
4.52X 3.137X  

Factor of Reduction 

Transformer / CNN-B 
6.52X 0.79X  
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6.  DATA SETS FOR STATISTICAL MODEL EVALUATION  

To evaluate the classification accuracy achieved by our CNNs, five classification experiments 

were carried out: AD-CN-Mixed, AD-CN-OASIS, AD-CN-ADNI, MCI-CN-ADNI, MCI-

AD-ADNI. In the triplet notation, the first two denote the binary classification carried out, and 

the last data set used for the classification experiment. The respective dataset is divided into 

training and testing in all five experiments based on the 80/20 Pareto Principle [54]. The 20% 

subjects for the test sets were uniformly randomly chosen from the data set, and the remaining 

subjects in the data set were used for training. To keep the size of the two classes in the 

training sets approximately balanced, randomly created experimental training/test sets that 

had a larger than 20% difference between the two classes in the training set were discarded.  

Thirty training/test sets satisfying these conditions were generated for each of the five 

classification experiments.  

In the first experiment (AD-CN-Mixed), the 97 MCI subjects were excluded from our data 

set, resulting in a set with 551 subjects with 111subjects in the test set and 440 subjects in the 

training set. In the second experiment, AD-CN-OASIS, of the 346 subjects in the OASIS data 

set, the test set had 70 subjects, and the training sets had 276 subjects.  In the third 

experiment, AD-CN-ADNI, of the subset of ADNI data set in which subjects were classified 

as either AD or CN subjects (set size 205), the test sets had 41 subjects, and the training sets 

164 subjects In the fourth experiment, MCI-CN-ADNI, the ADNI subset with AD subjects 

excluded is of size 201 with the test sets having 40 subjects and the training sets 161 Subjects. 

In the fifth experiment, MCI-AD-ADNI, the ADNI subset with subjects classified as either 

AD or MCI is of size 198, with the test sets having 39 subjects and 159 Subjects  
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7 TRAINING 

7.1 Training procedure 

We use the Adam Optimizer [55] with a fixed learning rate of 0.001 for the CNNs and the 

Transformer models. Both models are trained with no data augmentation in any of the 

experiments. We train the models for 15 epochs. On every epoch, one batch of four matrices 

is picked with batches picked in order to ensure every matrix is used only once. In each 

epoch, we shuffle the training set, so a different batch of matrices are input to the network in 

every epoch.  

7.2 Training performance 

 

Our two CNNs, CNN-A and CNN-B, and the Transformer network were implemented in 

Pytorch 1.5.0 with Python 3.7.7 and timings obtained on an NVIDIA K40 GPU. 

The training times for the five classification experiments AD-CN-Mixed, AD-CN-ADNI, 

AD-CN-OASIS, MCI-CN-ADNI, MCI-AD-ADNI for three models, CNN-A, CNN-B, and 

Transformer, are reported in Table 16. For all five experiments, the Transformer architecture 

converges faster than the CNN models as expected from the model characteristics in Table 15. 

The Transformer model requires 14%, 14%, 11%, 7%, and 10% of the training time of the 

CNN-A model for the AD-CN-Mixed, AD-CN-OASIS, AD-CN-ADNI, MCI-CN-ADNI, 

MCI-AD-ADNI classification experiments, respectively.  

Compared to the CNN-B model, the Transformer model requires 13%, 14%, 9%, 10%, and 

10% of the CNN-B training time for the AD-CN-Mixed, AD-CN-OASIS, AD-CN-ADNI, 

MCI-CN-ADNI, MCI-AD-ADNI classification experiments, respectively.  
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Table 16: Training time for the CNN-A, CNN-B, and  Transformer models for the AD-CN-Mixed, AD-CN-OASIS, AD-CN-

ADNI, MCI-CN-ADNI, and MCI-AD-ADNI classification experiments 

 Training Time (Sec)  Std 

Data Set CNN-B CNN-A Transformer 

Factor of reduction 

Transformer to  

CNN-B 

CNN-B CNN-A Transformer 

AD-CN-Mixed 201.72 188.88 27.41 6.71X 12.49 21.47 8.40 

AD-CN-OASIS 121 119.81 17.11 7.07X 8.7 9.30 7.7 

AD-CN-ANDI 65.10 53.29 5.96 10.92X 10.05 22.26 0.78 

MCI-CN-ADNI 66.80 93.48 6.75 9.89X 5.06 6.33 1.68 

MCI-AD-ADNI 63.70 68.96 6.9 9.23X 10.04 3.67 1.65 

 

7.3 Parameter sparsity 

By sparsity, we refer to the property that a subset of the model parameters has sufficiently 

small values approximating zero. With zero parameter values, multiplication and addition 

(which dominate neural network computation) can be optimized.  Further, models can be 

stored and transmitted in a sparse format. It has been shown that neural networks can tolerate 

high levels of sparsity [56].  The smallest positive subnormal number represented in the IEEE 

FP32 standard is 2−149. Subnormal numbers are the subset of denormalized numbers that fill 

the underflow gap around zero. In evaluating sparsity, we approximate any value smaller than 

2−149 with zero. We measure the sparsity level of each convolution layer in our CNNs and 

Transformer models. The results are shown in Tables 17 and 18 for CNN-A, CNN-B. Based 

on Figure 12 in the proposed CNN-B, there are one convolution and two fully connected 

layers, and in the proposed CNN-A, there are three convolution and two fully connected 

layers. For each layer, we measure the sparsity of the input, input gradient (delta), weight, and 

weight gradient. In the CNN-B model, for the last fully connected layer, the sparsity level is 

all zeros; however, for the convolution and first fully connected layer, we observe some 

sparsity levels. For the convolution layer, the sparsity level of the input delta changes around 

83% to 79%. The sparsity level of weight gradient and input change between 16% to 0.02% 
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and 34% to 29% for the first fully connected layer. For the proposed Transformer model, the 

sparsity level of different layers is zero. 

 

 
Table 17: Sparsity level of different layers of the proposed CNN-A model 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Layer  Sparsity 

Convolution layer1 

Weight 0% 

Weight grad 0% 

Input 0% 

Input delta 90%-84% 

Convolution layer 2 

Weight 0% 

Weight grad 0.1%-0% 

Input 0% 

Input delta 88%-80% 

Convolution layer 3 

Weight 0% 

Weight grad 51%-0.06% 

Input 50%-12% 

Input delta 90%-83% 

FC1 

Weight 0% 

Weight grad 54%- 13% 

Input 58%-29% 

Input delta 0% 

FC2 

Weight 0% 

Weight grad 0% 

Input activation 0% 

Input delta 0% 
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Table 18: Sparsity level of different layers of the proposed CNN-B model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layer  Sparsity 

Convolution layer 

Weight 0% 

Weight grad 0% 

Input 0% 

Input delta 83%-79% 

FC1 

Weight 0% 

Weight grad 16%- 0.02% 

Input 34%-29% 

Input delta 0% 

FC2 

Weight 0% 

Weight grad 0% 

Input activation 0% 

Input delta 0% 
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8 EXPERIMENTAL RESULTS 

We studied the effectiveness of the ROI formation on the classification accuracy for each of 

our ML models on each of the five classification experiments.  For the ROI formation, we 

report the outcome for AAL-90 region center voxel used as center-voxel for the Hilbert curve 

segments of length 101 and 201 voxels.  Similarly, we report the outcome for randomly 

chosen Hilbert curve segment center-voxels for 101 and 201 segment lengths.  We also 

studied segments of lengths 51 and 301. Segment length 51 generally resulted in significantly 

lower accuracy, and we only include some of the results for this segment length. Segment 

lengths of 301 generally did not produce measurably better results than length 201 and are not 

included in reported results.  For each of these four cases, we report the results for the CNN-

A, CNN-B, and Transformer models for the AD-CN-Mixed, AD-CN-ADNI, AD-CN-OASIS, 

MCI-CN-ADNI, and MCI-AD-ADNI classification experiments. In addition, we report the 

average and standard deviation of True Positives (TP), True Negative (TN), False Positive 

(FP), False Negative (FN), Specificity (SP) TN/(TN+FP), Sensitivity (SE) TP/(TP+FN) and 

Accuracy (ACC) (TP+TN)/(TP+TN+FP+FN).  

8.1 AAL-90 region center-voxel based ROIs  

8.1.1 CNN models 

8.1.1.1 ROIs represented by vectors of time-averaged voxel intensity values (spatial) 

 

As is seen in Tables 19 and 20, the accuracy for the ROIs of size 101 and 201 is comparable 

for all five classification experiments and both CNN models.  However, generally, the 

accuracy for ROIs of size 101 and the CNN-B model is somewhat higher.  The results are 

similar for sensitivity and specificity, though the results are somewhat more favorable for the 
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ROIs of size 101 than size 102 and CNN-B than for CNN-A. For example, an accuracy of 

92% (the highest) was achieved for the MCI-CN-ADNI classification experiment using ROI 

size 101 and the CNN-B model.  The ROI of size 51 combined with the CNN-A model gave 

the lowest accuracy of 78%. 

The True Positives (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 

results are reported in Tables 21 and 22. 

Table 19: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for AD-

CN-OASIS, AD-CN-ADNI, and AD-CN-Mixed subjects for spatial correlation matrices 

 

 
Table 20: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for 

MCI-CN-ADNI and MCI-AD-ADNI subjects for spatial correlation matrices 

 

 

 

 

 

 

 

 

 

 
Table 21: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the MCI-CN-ADNI 

classification experiment for spatial correlation matrices 

 

 

 

 

 

 

 

  AD-CN-OASIS 

(276 Train 70Test) 

AD-CN -ADNI 

(164 Train 41 Test) 

AD-CN-Mixed 

(440 Train 111 Test) 

Network Path ACC SE SP ACC SE SP ACC SE SP 

CNN-A 

201 
85±4 82±7 88±5 78±5 79±9 78±9 85±3 84±5 86±4 

101 
86±5 82±9 90±7 86±5 82±10 92±6 86±3 83±6 89±4 

CNN-B 

201 
86±4 82±8 89±6 86±5 86±7 87±8 88±3 86±5 89±5 

101 
87±4 82±9 90 ±5 89±5 87±9 91±7 88±2 85±4 90±4 

  
MCI-CN-ADNI 

(161 Train 40Test) 
MCI-AD-ADNI 

(159 Train 39Test) 

Network Path ACC SE SP ACC SE SP 

CNN-A 

201 80±6 81±9 79±11 80±4 81±8 80±8 

101 92±4 93±6 91±6 82±5 80±8 85±10 

CNN-B 

201 84±5 83±9 85±9 83±4 84±8 84±6 

101 92±4 92±7 92±6 84±6 80±8 90±9 

  MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) 

Network Path TN TP FP FN 

CNN-A 
201 79±11 81±9 21±11 19±9 

101 91±6 93±6 9±6 7±6 

CNN-B 
201 85±9 83±9 15±9 17±9 

101 92±6 92±7 8±6 8±7 
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Table 22: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the AD-CN-Mixed, AD-

CN-OASIS, AD-CN-ADNI, and MCI-AD-ADNI classification experiments  for spatial correlation matrices 

 

 

8.1.1.2 ROIs represented by vectors of concatenated voxel intensity values (spatial-

temporal) 

 

The results for ROIs of size 101 and 201 and the CNN-A and CNN-B models for the five 

classification experiments for correlation matrices based on the spatial-temporal ROI vectors 

are reported in Tables 23, 24, 25, and 26. 

As is shown in Tables 23 and 24, the achieved accuracies are comparable for ROIs of sizes 

101 and 201. Though the difference is slight, correlation matrices based on ROI spatial-

temporal vectors of size 201 in a few cases result in higher accuracy than 101 size vectors for 

the CNN-B model. On the other hand, the 101-size vector-based correlation matrices for the 

CNN-A model generally result in slightly higher accuracy.  For sensitivity and specificity, the 

results are mixed as to which ROI vector size yields better results for the two CNN models. 

 

 

 

 

  
AD-CN-Mixed (54% vs 46%) 

(440 Train 111 Test) 

AD-CN-OASIS (56% vs 44%) 

(276 Train 70 Test) 

Network Path TN TP FP FN TN TP FP FN 

CNN-A 
201 86±4 84±5 14±4 16±5 88±5 82±7 12±5 18±7 

101 89±4 83±6 11±4 17±6 90±7 82±9 10±7 18±9 

CNN-B 
201 89±5 86±5 11±5 14±5 89±6 82±8 11±6 18±8 

101 90±4 85±5 10±4 15±5 90±5 82±9 10±5 18±9 

  
AD-CN-ADNI (52% vs 47%) 

(164 Train 41 Test) 

MCI-AD-ADNI (49% vs 50%) 

(156 Train 39 Test) 

Network Path TN TP FP FN TN TP FP FN 

CNN-A 
201 78±9 79±9 22±9 21±9 80±8 81±8 20±8 19±8 

101 92±6 82±10 8±6 18±10 85±10 80±8 15±10 20±8 

CNN-B 
201 87±8 86±7 13±8 14±7 84±6 84±8 16±6 16±8 

101 91±7 87±10 9±7 13±10 90±9 80±8 10±9 20±8 
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Table 23: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for  the  

AD-CN-Mixed, AD-CN-OASIS, and  AD-CN-ADNI classification experiments for correlation matrices based on spatial-

temporal ROI vectors 

 

 

 

 

 

 

 

 

 

 
Table 24: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

MCI-CN-ADNI and MCI-AD-ADNI  classification experiments for correlation matrices based on spatial-temporal ROI 

vectors 

 

 

 

 

 

 

 

 

 
Table 25: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the  AD-CN-Mixed, 

AD-CN-OASIS, AD-CN-ADNI, and MCI-AD-ADNI classification experiments for correlation matrices based on spatial-

temporal ROI vectors 

 

 

 

  AD-CN-OASIS 

(276 Train 70Test) 

AD-CN-ADNI 

(164 Train 41 Test) 

AD-CN-Mixed 

(440 Train 111 Test) 

Net 
work 

Path 
ACC SE SP ACC SE SP ACC SE SP 

CNN-
A 

201 
84±3 81±8 87±5 86±6 83±9 90±7 85±3 83±5 87±4 

101 
84±4 80±9 88±5 87±5 84±8 90±6 86±3 83±6 89±5 

CNN-

B 

201 
85±4 82±7 88±5 88±5 87±7 89±8 87±3 87±6 89±4 

101 
86±4 83±8 90±4 89±5 85±9 93±6 86±2 85±4 89±4 

  MCI-CN-ADNI 

(161 Train 40Test) 
MCI-AD-ADNI 

(159Train 39Test) 

Network Path ACC SE SP ACC SE SP 

CNN-A 
201 88±4 90±5 87±7 85±5 80±9 90±7 

101 89±4 89±7 90±5 86±4 82±9 90±8 

CNN-B 
201 90±3 90±7 91±5 88±4 84±7 92±5 

101 89±4 88±8 89±5 87±5 82±8 91±7 

  
AD-CN-Mixed (54% vs 46%) 

(440 Train 111 Test) 

AD-CN-OASIS (56% vs 44%) 

(276 Train 70 Test) 

Network Path TN TP FP FN TN TP FP FN 

CNN-A 
201 87±4.4 83±5.5 13±4.4 17±5.5 87±5.9 81±8.2 13±5.9 19±8.2 

101 89±5 83±6.2 11±5 17±6 88±5.4 80±9 12±5 20±9 

CNN-B 
201 89±4.3 87±6 11±4.3 13±6 88±5.6 82±7.8 12±5.6 18±7.8 

101 89±4 85±4 11±4 15±4.9 90±4.6 83±8.8 10±4.4 17±6.6 

  
AD-CN-ADNI (52% vs 47%) 

(164 Train 41 Test) 
MCI-AD-ADNI (49% vs 50%) 

(159 Train 39 Test) 

Network Path TN TP FP FN TN TP FP FN 

CNN-A 
201 90±7 84±9.7 10±7.2 16±9.7 90±7 80±9 10±7 20±9 

101 91±6.6 84±8.2 9±6.6 16±8.2 90±8 82±9 10±8 18±9 

CNN-B 
201 89±8.1 87±7.7 11±8 13±7 92±5 85±7.8 8±5.4 15±7.8 

101 93±6.2 85±8.8 7±6.2 15±8.8 92±7 83±8 8±7.6 17±8.3 



 

 49 

Table 26: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the MCI-CN-ADNI  

classification experiment for correlation matrices based on spatial-temporal ROI vectors 

 

 

 

 

 

 

 

 

8.1.1.3 ROIs represented by vectors of space averaged voxel intensity values (temporal) 

 

As is shown in Tables 27 and 28, accuracies are generally comparable for the two ROI sizes 

and the two CNN models. However, in most cases, the CNN-B model yields somewhat higher 

accuracy than the CNN-A model. In some cases, the 101 ROI size yields higher accuracy; in 

others, the 201 sizes, though generally, the difference is within the error tolerance. Sensitivity 

and specificity are also generally higher for the CNN-B model. 

The True Positives (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 

results are reported in Tables 29 and 30. 

Table 27: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

AD-CN-Mixed, AD-CN-OASIS, AD-CN-ADNI classification experiments for correlation matrices based on ROI temporal 

vectors 

 

 

 

 

 

 

 

 

  MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) 

Network Path TN TP FP FN 

CNN-A 
201 87±7 91±5 13±7 9±5 

101 90±5 90±7 10±5 10±7 

CNN-B 
201 91±5 90±7 9±5 10±7 

101 90±5 89±8 10±5 11±8 

  
AD-CN -OASIS 

(276 Train 70Test) 

AD-CN -ADNI 

(164 Train 41 Test) 

AD-CN -combined 

(440 Train 111 Test) 

Network Path ACC SE SP ACC SE SP ACC SE SP 

CNN-A 

201 69±4 60±10 76±7 64±8 66±12 65±15 67±4 62±9 72±7 

101 69±5 63±11 73±6 69±6 69±13 70±10 69±4 65±8 71±7 

CNN-B 

201 74±5 68±9 80±7 73±7 73±11 76±14 73±4 72±8 74±7 

101 75±5 69±8 79±7 71±6 71±12 73±9 73±4 69±6 75±5 
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Table 28: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

MCI-CN-ADNI and MCI-AD-ADNI classification experiments for correlation matrices based on ROI temporal vectors 

 

 

 

 

 

 

 

 

 

 
Table 29: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the AD-CN-Mixed, AD-

CN-OASIS, AD-CN-ADNI, and MCI-AD-ADNI classification experiments for correlation matrices based on ROI temporal 

vectors 

 

 
Table 30: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the MCI-CN-ADNI 

classification experiment for correlation matrices based on ROI temporal vectors. 

 

 

 

 

 

 

 

 

 

  
MCI-CN-ADNI 

(161 Train 40Test) 
MCI-AD-ADNI 

(159 Train 39Test) 

Network Path ACC SE SP ACC SE SP 

CNN-A 

201 70±6 73±11 69±9 73±5 72±11 75±9 

101 68±5 69±10 67±13 76±6 75±10 78±8 

CNN-B 

201 75±6 79±9 72±9 74±7 73±12 77±8 

101 71±4 73±8 69±10 74±8 73±11 76±11 

  
AD-CN-Mixed (54% vs 46%) 

(440 Train 111 Test) 

AD-CN-OASIS (56% vs 44%) 

(276 Train 70 Test) 

Network Path TN TP FP FN TN TP FP FN 

CNN-A 
201 72±7 62±9 28±7 38±9 76±7 60±10 24±7 40±10 

101 71±7 65±8 29±7 35±8 73±6 63±11 27±06 37±11 

CNN-B 201 74±7 72±8 26±7 28±8 80±7 68±9 20±7 32±9 

 101 75±5 69±6 25±5 31±6 79±7 69±8 21±7 31±8 

  
AD-CN-ADNI (52% vs 47%) 

(164 Train 41 Test) 
MCI-AD-ADNI (49% vs 50%) 

(159 Train 39 Test) 

Network Path TN TP FP FN TN TP FP FN 

CNN-A 
201 65±15 66±12 35±15 34±12 75±9 72±11 25±9 28±11 

101 70±10 69±13 30±10 31±13 78±8 75±10 22±8 25±10 

CNN-B 201 76±14 73±11 24±14 27±11 77±8 73±12 23±8 27±12 

 101 73±9 71±12 27±09 29±12 76±11 73±11 24±11 27±11 

  MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) 

Network Path TN TP FP FN 

CNN-A 
201 69±9 73±11 31±10 27±12 

101 67±13 69±10 33±13 31±10 

CNN-B 
201 72±9 79±9 28±9 21±10 

101 69±10 73±8 31±10 27±8 
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8.1.1.4 Discussion of ROI vector representation of voxel intensity values and CNN 

models 

 
Table 31: smROI, Summary of CNN model and ROI size for best accuracy, sensitivity, and specificity for the three types of 

ROI vectors for AD-CN-OASIS, AD-CN-ADNI, AD-CN-Mixed 

 

AD-CN-OASIS AD-CN-ADNI AD-CN-Mixed 

ACC SE SP ACC SE SP ACC SE SP 

spatial-temporal B/101 B/101 B/101 B/101 B/101 B/201 B/201 B/201 B/101/201 

spatial B/101 A/B/101/201 B/101 B/101 B/101 B/101 B/101 B/201 B/101 

temporal B/101 A/B/101/201 B/201 B/201 B/201 B/201 B/101/201 B/201 B/101 

 
 

Table 32: smROI, Summary of CNN model and ROI size for best accuracy, sensitivity, and specificity for the three types of 

ROI vectors for MCI-CN-ADNI, MCI-AD-ADNI 

 
MCI-CN-ADNI MCI-AD ADNI 

ACC SE SP ACC SE SP 

spatial-temporal B/201 A/201 B/201 B/101 B/101 B/101 

spatial B/101, A/201 A/101 B/101 B/101 B/201 B/101 

temporal B/201, A/101 B/201 B/201 A/101 A/101 A/101 

 

Tables 31 and 32, for smROI, represent the summary of CNN models and ROI sizes for best 

accuracy, sensitivity, and specificity for the three types of ROI vectors. 

 

As is seen from Tables 31 and 32, smROI for most classification experiments, the CNN-B 

model, and ROI vector size of 101 yielded the best results with respect to the accuracy, 

sensitivity, and specificity.  The corresponding percentages are summarized in Tables 33 and 

34, for smROI-2. 

Table 33: smROI-2, Summary of best accuracy, sensitivity, and specificity for the three types of ROI vectors and the two 

CNN models for AD-CN-OASIS, AD-CN-ADNI, AD-CN-Mixed 

 
AD-CN-OASIS AD-CN-ADNI AD-CN-Mixed 

ACC SE SP ACC SE SP ACC SE SP 

spatial-temporal 86/4 83/8 90/4 89/5 87/7 93/6 87/3 87/6 89/4 

spatial 87/4 82/7 90/5 89/5 87/9 92/6 88/2 86/5 90/4 

temporal 75/5 69/8 80/7 73/7 73/11 76/14 73/4 72/8 75/5 
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Table 34: smROI-2, Summary of best accuracy, sensitivity and specificity for the three types of ROI vectors and the two 

CNN models for MCI-CN-ADNI, MCI-AD-ADNI 

 

MCI-CN-ADNI MCI-AD-ADNI 

ACC SE SP ACC SE SP 

spatial-temporal 90/3 90/5 91/5 88/4 84/7 92/5 

spatial 92/4 93/6 92/6 84/6 84/8 90/9 

temporal 75/6 79/9 72/9 76/6 75/10 78/8 

 

 

As is seen from Tables 33 and 34, for smROI-2, both the spatial and spatial-temporal types of 

ROI vectors are superior with respect to the accuracy, sensitivity, and specificity compared to 

the conventional temporal type ROI vectors. Further, the differences between the spatial and 

spatial-temporal ROI vector results are slight. One or the other gives better results for the five 

classification experiments with no apparent pattern. 

Comparison of results for the five classification experiments based on correlation matrices 

generated from the three types of ROI vectors:  temporal (Solid Line), Spatial (Dash line), and 

spatial-temporal (Dot Line). The Spatial and spatial-temporal are represented in Figure 16. 

 

 
Figure 16: Comparison of results for the five classification experiments based on correlation matrices generated from the 

three types of ROI vectors:  temporal  (Solid Line), Spatial  (Dash line), and spatial-temporal  (Dot Line). The Spatial and 

spatial-temporal 
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8.1.2 The Transformer model 
 

8.1.2.1 ROIs represented by vectors of time-averaged voxel intensity values (spatial) 
 

As is seen in Tables 35 and 36, the accuracy for the ROIs of size 101 and 201 is comparable 

for all five classification experiments for the Transformer model. For MCI-CN-ADNI, with 

ROI size 201, we can achieve 100% accuracy, and with ROI size 101, the accuracy is 90%.  

However, generally, the accuracy for ROIs of size 101 is somewhat higher.  The results are 

similar for sensitivity and specificity, though the results are somewhat more favorable for the 

ROIs of size 101 than size 102. An accuracy of 100% (the highest) was achieved for the MCI-

CN-ADNI classification experiment using ROI size 201.   

The True Positives (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 

results are reported in Tables 37 and 38. 

Table 35: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

AD-CN-Mixed, AD-CN-OASIS, AD-CN-ADNI classification experiments for correlation matrices based on ROI spatial 

vectors with Transformer model 

 
Table 36: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

MCI-CN-ADNI, MCI-AD-ADNI classification experiments for correlation matrices based on ROI spatial vectors with 

Transformer model 

 

 

 

 

 

 

 

 

 

 

  
AD-CN -OASIS 

(276 Train 70Test) 

AD-CN -ADNI 

(164 Train 41 Test) 

AD-CN -combined 

(440 Train 111 Test) 

Network Path ACC SE SP ACC SE SP ACC SE SP 

Transformer 

201 86±4 84±7 87±7 85±5 87±8 84±7 87±3 85±8 89±8 

101 87±4 85±7 90±5 87±4 87±7 87±7 87±3 85±5 89±5 

  
MCI-CN-ADNI 

(161 Train 40Test) 
MCI-AD-ADNI 

(159 Train 39Test) 

Network Path ACC SE SP ACC SE SP 

Transformer 

201 100±0 100±0 100±0 85±5 80±10 91±7 

101 90±4 93±6 88±7 84±5 80±9 89±8 
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Table 37: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the AD-CN-Mixed, AD-

CN-OASIS, AD-CN-ADNI, and MCI-AD-ADNI classification experiments for correlation matrices based on ROI spatial 

vectors with Transformer model 

 

 
Table 38: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the MCI-CN-ADNI 

classification experiments for correlation matrices based on ROI spatial vectors with Transformer model 

 

 

 

 

 

 

 

 

8.1.2.2 ROIs represented by vectors of concatenated voxel intensity values (spatial-

temporal) 

 

The results for ROIs of size 101 and 201 and the Transformer model for the five classification 

experiments for correlation matrices based on the spatial-temporal ROI vectors are reported in 

Tables 39, 40, 41, and 42. 

As is shown in Tables 39 and 40, the achieved accuracies are comparable for ROIs of sizes 

101 and 201. Though the difference is negligible, the difference is slight in order of 1%-2%. 

However, for MCI-AD-ANDI classification, ROI size 201 results in 87% accuracy, and ROI 

size 101 results in 76% accuracy, which is at least 10% degradation in the accuracy.  For 

 
 

 

 
AD-CN-Mixed (54% vs 46%) 

(440 Train 111 Test) 

AD-CN-OASIS (56% vs 44%) 

(276 Train 70 Test) 

Network Path TN TP FP FN TN TP FP FN 

Transformer 
201 89±8 85±6 11±5 15±6 87±7 84±7 13±7 16±7 

101 89±5 85±5 11±5 15±5 90±5 85±7 10±5 15±7 

  
AD-CN-ADNI (52% vs 47%) 

(164 Train 41 Test) 

MCI-AD-ADNI (49% vs 50%) 

(159 Train 39 Test) 

Network Path TN TP FP FN TN TP FP FN 

Transformer 
201 84±7 87±7 16±7 13±8 91±7 80±10 9±7 20±10 

101 88±7 87±7 12±7 13±7 89±8 80±9 11±8 20±9 

  MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) 

Network Path TN TP FP FN 

Transformer 
201 100±0 100±6 0±0 0±0 

101 88±7 93±6 12±7 7±6 
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sensitivity and specificity, the results are mixed as to which ROI vector size yields better 

results. 

The True Positives (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 

results are reported in Tables 41 and 42. 

Table 39: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

AD-CN-Mixed, AD-CN-OASIS, AD-CN-ADNI classification experiments for correlation matrices based on ROI spatial-

temporal vectors with Transformer model  

 
Table 40: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

AD-MCI-CN-ADNI, MCI-AD-ADNI classification experiments for correlation matrices based on ROI spatial-temporal 

vectors with Transformer model 

 

 

 

 

 

 

 

 

 
Table 41: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the AD-CN-Mixed, AD-

CN-OASIS, AD-CN-ADNI, and MCI-AD-ADNI classification experiments for correlation matrices based on ROI spatial-

temporal vectors with Transformer model 

 

  
AD-CN -OASIS 

(276 Train 70Test) 

AD-CN -ADNI 

(164 Train 41 Test) 

AD-CN -combined 

(440 Train 111 Test) 

Network Path ACC SE SP ACC SE SP ACC SE SP 

Transformer 

201 86±4 83±7 88±6 86±5 87±9 85±8 88±3 87±5 89±4 

101 86±4 83±8 89±5 87±4 85±8 89±6 87±3 84±6 89±5 

  
MCI-CN-ADNI 

(161 Train 40Test) 
MCI-AD-ADNI 

(159 Train 39Test) 

Network Path ACC SE SP ACC SE SP 

Transformer 

201 89±4 89±7 90±6 87±5 85±9 89±8 

101 88±5 88±14 89±11 76±5 73±11 79±12 

 
 

AD-CN-Mixed (54% vs 46%) 

(440 Train 111 Test) 

AD-CN-OASIS (56% vs 44%) 

(276 Train 70 Test) 

Network Path TN TP FP FN TN TP FP FN 

Transformer 
201 89±4 87±5 11±4 13±5 88±6 83±7 12±6 17±7 

101 89±5 84±6 11±5 16±6 89±5 83±8 12±6 17±7 

  
AD-CN-ADNI (52% vs 47%) 

(164 Train 41 Test) 
MCI-AD-ADNI (49% vs 50%) 

(159 Train 39 Test) 

Network Path TN TP FP FN TN TP FP FN 

Transformer 
201 85±8 87±9 15±8 13±9 89±8 85±9 11±8 15±9 

101 89±6 85±8 11±6 15±8 79±12 73±11 21±12 27±11 
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Table 42: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the MCI-CN-ADNI 

classification experiments for correlation matrices based on ROI spatial-temporal vectors with Transformer model 

 

 

 

 

 

 

8.1.2.3 ROIs represented by vectors of space averaged voxel intensity values (temporal) 

Add results for Transformer on temporal ROI vectors 

 

As is shown in Tables 43 and 44, accuracies are generally comparable for the two ROI sizes 

and the Transformer model. In some cases, the 201 ROI size yields higher accuracy; in others, 

the 101 sizes, though generally, the difference is within the error tolerance.  

Table 43: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

AD-CN-Mixed, AD-CN-OASIS, AD-CN-ADNI classification experiments for correlation matrices based on ROI temporal 

vectors with Transformer model 

 

Table 44: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

MCI-CN-ADNI, MCI-AD-ADNI classification experiments for correlation matrices based on ROI temporal vectors with 

Transformer model 

 

 

 

 

 

 

 

 

The True Positives (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 

results are reported in Tables 45 and 46. 

 

  MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) 

Network Path TN TP FP FN 

Transformer 
201 89±11 88±14 11±11 12±4 

101 88±7 93±6 12±7 7±6 

  
AD-CN -OASIS 

(276 Train 70Test) 

AD-CN -ADNI 

(164 Train 41 Test) 

AD-CN -combined 

(440 Train 111 Test) 

Network Path ACC SE SP ACC SE SP ACC SE SP 

Transformer 

201 75±6 68±10 80±8 74±5 73±11 77±14 73±4 68±7 77±7 

101 77±5 73±10 79±6 74±8 74±18 74±8 73±4 71±7 75±6 

  
MCI-CN-ADNI 

(161 Train 40Test) 
MCI-AD-ADNI 

(159 Train 39Test) 

Network Path ACC SE SP ACC SE SP 

Transformer 

201 76±5 77±10 77±9 75±7 78±7 72±12 

101 74±5 77±9 73±13 73±8 74±11 72±12 
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Table 45: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the AD-CN-Mixed, AD-

CN-OASIS, AD-CN-ADNI, and MCI-AD-ADNI classification experiments for correlation matrices based on ROI temporal 

vectors with Transformer model 

 
Table 46: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for MCI-CN-ADNI 

classification experiments for correlation matrices based on ROI temporal vectors 

 

 

 

 

 

 

8.1.2.4 Comparison of Transformer results for different ROI vector types and sizes 

 

As seen from Table 47 and 48 smROI, ROI vector size of 101 yielded the best results with 

respect to the accuracy, sensitivity, and specificity for most classification experiments.  The 

corresponding percentages are summarized in Table 49 and 50, smROI-2 

Table 47: smROI, Summary ROI size for best accuracy, sensitivity, and specificity for the two types of ROI vectors with 

Transformer model for AD-CN-OASIS, AD-CN-ADNI, AD-CN-Mixed 

 

AD-CN-OASIS AD-CN-ADNI AD-CN-Mixed 

ACC SE SP ACC SE SP ACC SE SP 

spatial-temporal 101/201 101/201 101 101 201 101 201 201 101/201 

spatial 101 101 101 101 101 101 101/201 101/201 101/201 

temporal 101 101 201 101/201 101 201 101/201 101 201 

 

 

 

 

 

 

 

 
 

AD-CN-Mixed (54% vs 46%)  

(440 Train 111 Test) 

AD-CN-OASIS (56% vs 44%) 

 (276 Train 70 Test) 

Network Path TN TP FP FN TN TP FP FN 

Transformer 
201 77±7 68±7 23±7 32±7 80±8 68±10 20±8 32±10 

101 75±6 71±7 25±6 29±7 79±6 73±10 21±6 27±10 

  
AD-CN-ADNI (52% vs 47%) 

 (164 Train 41 Test) 
MCI-AD-ADNI (49% vs 50%)  

(159 Train 39 Test) 

Network Path TN TP FP FN TN TP FP FN 

Transformer 
201 77±14 73±10 23±14 27±11 72±12 78±7 28±12 22±7 

101 75±9 71±10 25±9 29±18 72±12 74±11 28±12 26±11 

  MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) 

Network Path TN TP FP FN 

Transformer 
201 77±9 77±10 23±9 23±10 

101 73±13 77±9 27±13 23±9 
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Table 48: smROI, Summary ROI size for best accuracy, sensitivity, and specificity for the two types of ROI vectors with 

Transformer model for MCI-CN-ADNI, MCI-AD-ADNI 

 MCI-CN-ADNI MCI-AD ADNI 

ACC SE SP ACC SE SP 

spatial-temporal 201 201 201 201 201 201 

spatial 201 201 201 201 101/201 201 

temporal 101 101 201 101/201 101 201 

 

As seen from Tables 47-50, smROI-2, both the spatial and spatial-temporal type of ROI 

vectors are superior with respect to the accuracy, sensitivity, and specificity compared to the 

conventional temporal type ROI vectors. Further, the differences between the spatial and 

spatial-temporal ROI vector results are slight. Therefore, one or the other gives better results 

for the five classification experiments with no apparent pattern. 

Table 49: smROI-2, Summary of best accuracy, sensitivity, and specificity for the two types of ROI vectors with the 

transformer model for AD-CN-OASIS, AD-CN-ADNI, AD-CN-Mixed 

 
AD-CN-OASIS AD-CN-ADNI AD-CN-Mixed 

ACC SE SP ACC SE SP ACC SE SP 

spatial-temporal 86/4 83/8 89/5 87/4 87/9 89/6 88/3 87/5 89/4 

spatial 87/4 85/7 90/5 87/4 87/7 87/7 87/3 85/5 89/5 

temporal 77/5 73/10 79/6 74/5 74/18 77/14 73/4 71/7 77/7 

 

Table 50: smROI-2, Summary of best accuracy, sensitivity, and specificity for the two types of ROI vectors and the 

transformer model for MCI-CN-ADNI, MCI-AD-ADNI 

 
MCI-CN-ADNI MCI-AD-ADNI 

ACC SE SP ACC SE SP 

spatial-temporal 89/4 89/7 90/6 87/5 85/9 89/8 

spatial 100/0 100/0 100/0 85/5 80/9 91/7 

temporal 77/5 73/10 80/8 74/5 74/18 77/14 
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8.2 Uniformly randomly selected center-voxels for ROI Hilbert curve segments 

 

For this experiment, we select 90 random voxels as center points, and we make ROIs around 

these voxels by using segments of the Hilbert curve with 100 voxels before and after the 

center voxel. The classification accuracies for 5 five different groups of subjects AD-CN-

Mixed, AD-CN-ADNI, AD-CN-OASIS, MCI-CN-ADNI, MCI-AD-ADNI with proposed 

Transformer and CNN-B model,  ROI size 201, spatial-temporal correlations with random 

seed voxels, and AAL90 seed voxels are reported in Tables 51 and 52.  The accuracy in 

classification of AD-CN-Mixed with 440 subjects in the training set and 111 subjects in the 

test set is 86%, 86% for AAL-90, and random center points, respectively. The accuracy in 

classification of AD-CN-OASIS with 276 subjects in the training set and 70 subjects in the 

test set is 88%, 85% for AAL-90, and random center points, respectively. The accuracy in 

classification of AD-CN-ADNI with 164 subjects in the training set and 41 subjects in the test 

set is 86%, 87% for AAL-90, and random center points, respectively. 

The accuracy in the classification of MCI-CN-ADNI with 161 subjects in the training set and 

40 subjects in the test set is 91%, 87% for AAL-90, and random center points, respectively. 

The accuracy in the classification of MCI-AD-ADNI with 159 subjects in the training set and 

39 subjects in the test set is 88%, 87% for AAL-90, and random center points, respectively. 

Random seed voxels' ROI-ROI spatial-temporal correlation can result in the same accuracy as 

AAL-90 seed voxels' ROI-ROI spatial-temporal correlation, with only 2% to 4% difference. 
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Table 51: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

AD-CN-Mixed, AD-CN-OASIS, AD-CN-ADNI classification experiments for groups of subjects for two different seed 

voxels 

 

Table 52: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

MCI-CN-ADNI and MCI-AD-ADNI classification experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
AD-CN -OASIS 

(276 Train 70Test) 

AD-CN -ADNI 

(164 Train 41 Test) 

AD-CN-Mixed 

(440 Train 111 Test) 

Network 
Seed 
voxel 

ACC SE SP ACC SE SP ACC SE SP 

Transformer 

Random 85±4 82±8 88±5 87±4 85±10 88±8 86±4 83±6 88±5 

AAL90 88±4 85±7 90±4 86±4 86±7 86±8 86±4 83±7 89±5 

CNN-B 

Random 87±4 83±10 90±6 88±4 87±8 88±8 87±3 85±8 89±8 

AAL90 85±4 82±9 88±5 86±5 86±9 86±5 87±3 85±6 89±5 

  
MCI-CN-ADNI 

(161 Train 40Test) 
MCI-AD-ADNI 

(159 Train 39Test) 

Network 
Seed 

voxel 
ACC SE SP ACC SE SP 

Transformer 

Random 87±4 88±7 86±9 87±4 84±8 92±6 

AAL90 91±4 92±8 91±6 88±5 84±8 92±8 

CNN-B 

Random 88±4 89±6 86±7 86±6 85±8 87±12 

AAL90 91±4 92±8 91±6 87±6 84±8 90±14 
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9 ARTIFACT INFLUENCE ON CLASSIFICATION ACCURACY 

 

9.1 Artifacts in fMRI 

In Resting-State fMRI, establishing brain functional connectivity from observed BOLD 

signals may be measurably affected by various artifacts contributing significantly to the 

signal.  Considerable efforts [57][58] have been devoted to reducing the impact of 

physiological signal contributions such as cardiac and pulmonary activities, head motion, 

temporal noise, and scanner imperfections on the observed BOLD signal.  Head motions tend 

to increase short-range BOLD signal correlation and weaken long-range correlations [45].  

Physiological contributions [44] to the BOLD signal contribute to BOLD signal correlation in 

space and time. Temporal noise [9], [44], [59], [60] is generally viewed as being uncorrelated 

with a Gaussian distribution [61]. Further, preprocessing such as voxel resampling from 

observed voxel sizes to the voxel size used for the reference brain, MNI-152 in our case, 

affect BOLD signal correlation, as does spatial smoothing [58].  Parallel imaging also impacts 

BOLD signal correlations [62][63]. Thus, there are many contributing factors to the BOLD 

signal correlation. Even though great care is taken to remove the impact of artifacts in signal 

acquisition and preprocessing, some influence will remain.  It has been shown that a better 

signal to noise is achieved by using small voxel sizes in combination with spatial smoothing 

rather than large voxels since the physiological signal contribution is small relative to 

temporal signal contribution for small voxels [64][65].  The smoothing reduces the temporal 

noise since it is uncorrelated. Larger voxels increase the physiological contributions to the 

BOLD signal relative to the temporal contribution since physiological signal contributions are 

spatially correlated. 
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In this dissertation, functional connectivity and classification are based on correlation 

matrices of image intensity magnitude values in brain reconstructed images obtained through 

inverse Fourier transforms.  The image intensity magnitude values generally have a non-

central Chi distribution [62]. They are computed as the square root of the sum of the image's 

squared real and imaginary components resulting from the inverse Fourier transform.   In the 

case of BOLD signals resulting from zero-mean Gaussian noise from multiple coils, the 

intensity magnitude has a central Chi distribution [55]. For a single coil, the intensity 

magnitude distribution is Rician, which becomes a Rayleigh distribution for a Gaussian zero-

mean BOLD signal [63]. The deviation from the Gaussian distribution of the image intensity 

magnitude values increases with the number of coils  [64] but decreases with the signal 

strength [66]. 

 

9.2 ROI intensity magnitude representation impact on Pearson correlation matrices 

Artifact contributions to the BOLD signals and the corresponding image intensity magnitude 

values influence the ROI vector types differently. The classification results regarding the 

accuracy, sensitivity, and specificity were better for correlation matrices based on ROI vectors 

of type spatial and spatial-temporal than for type temporal.  To relate this observation to 

properties of the Pearson correlation matrices, we computed the condition numbers of every 

temporal and spatial-temporal correlation matrix corresponding to each subject. 

The results are shown in Tables 53 and 54 for correlation matrices generated for four 

classification experiments: MCI-CN-ADNI, MCI-AD-ADNI, AD-CN-OASIS, and AD-CN-

ADNI.  The condition number of the spatial correlation matrix corresponding to each subject 

was very close to the condition number of the spatial-temporal correlation matrix of the 
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subject; thus, we do not include the condition number of spatial correlation matrices in Table 

53. 

. 

Table 53: Average, standard deviation, min, max of condition numbers for correlation matrices based on ROI vectors of type 

temporal and spatial-temporal  for all subjects in the MCI-CN-ADNI and MCI-AD-ADNI classification experiments 

 
MCI-CN-ADNI MCI-AD-ADNI 

spatial-temporal temporal spatial-temporal temporal 

Mean 2,460.84 1,583,423,949.13 2,390.24 1,208,911,902.08 

STD 601.52 14,143,448,524.59 660.86 10,609,540,371.99 

MAX 4,327.08 178,419,136,240.55 4,431.32 144,267,680,104.60 

MIN 885.52 5,252.91 382.71 8,330.48 

 

 

Table 54: Average, standard deviation, min, max of condition numbers for correlation matrices based on ROI vectors of type 

temporal and spatial-temporal for all subjects in the  AD-CN-OASIS and AD-CN-ADNI classification experiments 

 
AD-CN-OASIS AD-CN-ADNI 

spatial-temporal temporal spatial-temporal temporal 

Mean 3,892.32 39,230,928.99 2,445.08 128,748,047.03 

STD 35,775.26 728,786,129.86 655.03 1,320,772,115.64 

MAX 667,361.49 13,556,256,743.47 4,431.32 17,296,434,470.60 

MIN 848.25 7,480.35 382.71 5,252.91 

 

The condition numbers are smaller for the correlation matrices based on spatial-temporal ROI 

vectors. Given this fact, it is not surprising that using correlation matrices based on spatial-

temporal ROI vectors for classification yields higher accuracy. 

 

9.3 Noise impact on Pearson correlation matrices 

 

To assess the impact of noise on the classification accuracy, we evaluated the impact of 

artificial Gaussian noise added to the image intensity magnitude voxel values on the accuracy 

of the CNN-B model. The noise was generated using the randn MATLAB function, which 
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returns normally distributed random values with zero mean and a standard deviation of one.  

Two noise scenarios were investigated: a) noise spatially correlated within each ROI but 

uncorrelated between ROIs, b) noise uncorrelated within each ROI but correlated between 

ROIs. For case a) the same random value was added to the voxel intensity magnitude value 

for every voxel along the Hilbert curve segment representing an ROI with a different random 

number used for different ROIs.  For b) the same random number was added to corresponding 

Hilbert curve segment voxels in every ROI with different random numbers added to different 

voxels in the ROI segments. Thus, for a) 90 random numbers were used for each time instant, 

and for b) the number of random numbers for each time instant equaled the Hilbert curve 

segment length.  For each time instant, a new set of random numbers were generated in both 

cases.  

In addition to studying the impact of noise correlation, we also studied the impact of the 

magnitude of the added artificial noise by multiplying the randn generated numbers by 150, 

450, and 900.   

The voxel intensity magnitude characteristics for the four cases are summarized in Table 55 

for case a), artificial noise correlated within ROIs but uncorrelated between ROIs, and in 

Table 56 for case b), artificial noise uncorrelated within ROIs but correlated between ROIs. 

Table 55: Impact on voxel intensity statistics of artificial noise correlated within ROIs but uncorrelated between ROIs 

 

Measured 

voxel intensity 

Measured voxel intensity 

+ noise, scale factor 150 

Measured voxel intensity 

+ noise, scale factor 450 

Measured voxel intensity 

+ noise, scale factor 900 

Mean Max 
Std 

dev 
Mean Max 

Std 

dev 
Mean Max 

Std 

dev 
Mean Max 

Std 

dev 

ADNI 
1266 2794 1152 1274 3188 1133 2308 4329 1497 1274 6343 1130 

OASIS 
592 952 98 590 1495 103 590 2934 103 590 5183 85 
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Table 56: Impact on voxel intensity statistics of artificial noise uncorrelated within ROIs but correlated between ROIs 

 

Measured 

voxel intensity 

Measured voxel intensity 

+ noise, scale factor 150 

Measured voxel intensity 

+ noise, scale factor 450 

Measured voxel intensity 

+ noise, scale factor 900 

Mean Max 
Std 

dev 
Mean Max 

Std 

dev 
Mean Max 

Std 

dev 
Mean Max 

Std 

dev 

ADNI 1266 2794 1266 1813 2801 1648 1272 2810 1128 1224 2721 968 

OASIS 592 952 98 591 951 93 590 952 98 589 952 98 

 

The relative magnitude of the peak artificial noise to the mean and max voxel intensity for the 

ADNI and OASIS data sets are summarized in Table 57.  The voxel intensities for the ADNI 

data set are more than twice that of the OASIS data set, causing the artificial noise to impact 

the voxel intensities significantly.  For artificial noise with a 900-scale factor, the peak 

artificial noise is larger than the max measured voxel intensity. 

 

Table 57: Peak artificial noise magnitude relative to the mean and max voxel intensities for the ADNI and OASIS data sets 

 
Peak artificial noise 

150 

Peak artificial noise 

450 

Peak artificial noise 

900 

 ADNI 

Mean ADNI 11% 34% 69% 

Max ADNI 5% 16% 32% 

 OASIS 

Mean OASIS 25% 76% 106% 

Max OASIS 15% 47% 94% 

 

The noise magnitude relative to the voxel intensities of ADNI was varied between 

approximately 5%-32% percent of the max and 11%-69% percent of the mean voxel 

intensities of ADNI by scaling the randn numbers with 150, 450, and 900. 

The noise magnitude relative to the voxel intensities of OASIS was varied between 

approximately 15%-94% percent of the max and 25%-106% percent of the mean for OASIS 

dataset by scaling the randn numbers with 150, 450 and 900. 
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9.4 CNN-B classification accuracy with intra ROI (spatially local) correlated but inter 

ROI and time uncorrelated noise added to the measured Voxel intensity 
 

The data indicate that the accuracy of CNN-B classification based on ROI temporal vector 

correlation matrices degrades more significantly with intra ROI correlated and inter ROI 

uncorrelated noise than the accuracy of classification based on ROI spatial-temporal vector 

correlation matrices. 

As represented in Figure 17 and Tables 58 and 59, for AD-CN-ADNI subjects, with spatial-

temporal correlation,  accuracy drops from 88% to 87%, sensitivity drops from 87% to 85%, 

and specificity changes between 89% and 91%. However, with temporal correlation, 

accuracy, sensitivity, and specificity drops from 73% to 54%, 73% to 48%, and 76% to 63%.   

For AD-CN-OASIS subjects with spatial-temporal correlation, accuracy drops from 85% to 

69%, sensitivity drops from 82% to 46%, and specificity changes between 88% to 89%. With 

temporal correlation, accuracy drops from 74% to 51%, sensitivity drops from 68% to 26%, 

and specificity drops from 80% to 72%.  

Figure 18 represents the accuracy, sensitivity, and specificity of two different groups of 

subjects, MCI-CN-ADNI and MCI-AD-ADNI. The experiments are spatial-

temporal/temporal correlations between noise-free signals, spatial-temporal/temporal 

correlations between signals and artificially added noise inside ROIs in which noise peak is 

150, and spatial-temporal/temporal correlations between signals and artificially added noise 

inside ROIs in which noise peak is 450. 

As represented in Figure 18 and Tables 58 and 60, for MCI-CN-ADNI subjects, with spatial-

temporal correlation,  accuracy drops from 90% to 82%, sensitivity drops from 90% to 84%, 

and specificity drops from 91% to 81%. With temporal correlation, accuracy drops from 75% 

to 57%, sensitivity drops from 79% to 45%, and specificity drops from 72% to 68%.   
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For MC-AD-ADNI subjects with spatial-temporal correlation, accuracy drops from 88% to 

86%, sensitivity changes between 84% to 78%, and specificity drops from 92% to 95%. With 

temporal correlation, accuracy drops from 74% to 48%, sensitivity drops from 73% to 53%, 

and specificity drops from 77% to 45%.   

Table 58: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the   

AD-CN-OASIS, AD-CN-ADNI, MCI-CN-ADNI, and MCI-AD-ADNI classification experiments for intra ROI correlated  

and inter ROI uncorrelated artificial noise with scale factors 150 and 450 for 201 ROI length In the table ST stands for 

spatial-temporal ROI vectors being used for correlation matrices 

 

Table 59: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for  the  AD-CN-OASIS, 

and AD-CN-ADNI classification experiments for intra ROI correlated  and inter ROI uncorrelated artificial noise with scale 

factors 150 and 450 for 201 ROI length In the table ST stands for spatial-temporal ROI vectors being used for correlation 

matrices 

 
AD-CN-OASIS 

(276 Train 70Test) 

AD-CN-ADNI 

(164 Train 41 Test) 

MCI-CN-ADNI 

(161 Train 40Test) 

MCI-AD-ADNI 

(159 Train 39 Test) 

Correlation ACC SE SP ACC SE SP ACC SE SP ACC SE SP 

Spatial-

Temporal 
85±4 82±7 88±5 88±5 87±7 89±8 90±3 90±7 91±5 88±4 84±7 92±5 

ST 

Noisy-150 
84±4 77±9 89±5 87±5 86±7 89±8 90±4 90±7 90±6 87±5 83±9 93±6 

ST 

Noisy-450 
69±5 46±16 88±10 87±6 85±8 91±8 82±6 84±8 81±12 86±5 78±8 95±5 

Temporal 74±5 68±9 80±7 73±7 73±11 76±14 75±6 79±9 72±9 74±7 73±12 77±8 

Temporal 

Noisy-150 
56±5 26±19 80±14 64±6 55±13 75±10 68±7 60±18 77±15 71±6 64±15 80±11 

Temporal 

Noisy-450 
51±5 27±17 72±17 54±5 48±15 63±14 57±8 45±11 68±18 48±6 53±18 45±21 

 AD-CN-OASIS (56% vs 44%) (276 Train 70 Test) AD-CN-ADNI (52% vs 47%) (164 Train 41 Test) 

Correlation TN TP FP FN TN TP FP FN 

ST 88±5 82±7 11±5 17±5 87±7 89±8 12±4 11±7 

ST 

Noisy-150 
89±5 77±9 11±5 23±9 89±8 86±7 11±8 14±7 

ST 

Noisy-450 
88±10 46±16 12±10 54±17 91±8 85±9 9±8 15±9 

 AD-CN-OASIS (56% vs 44%) (276 Train 70 Test) AD-CN-ADNI (52% vs 47%) (164 Train 41 Test) 

Correlation TN TP FP FN TN TP FP FN 

Temporal 80±7 68±9 20±7 32±9 76±14 73±11 24±14 27±11 

Temporal 

Noisy-150 
80±14 26±19 20±15 74±19 75±10 55±13 25±10 45±13 

Temporal 

Noisy-450 
72±18 27±18 28±18 73±18 63±15 48±15 37±15 52±15 
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Table 60: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for  the  MCI-CN-ADNI, 

and MCI-AD-ADNI classification experiments for intra ROI correlated  and inter ROI uncorrelated artificial noise with scale 

factors 

 

 

Figure 17: Accuracy, sensitivity, and specificity change for the AD-CN-ADNI and AD-CN-OASIS, AD-CN-Mixed 

classification experiments for correlation matrices based on no artificial noise added to voxel intensity values, and on ROI 

vectors with intra ROI correlated  and inter ROI uncorrelated artificial noise added to voxel intensity values with noise scale 

factors of 150 and 450 

 

 

 MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) MCI-AD-ADNI (49% vs 50%) (159 Train 39 Test) 

Correlation TN TP FP FN TN TP FP FN 

ST 91±5 90±7 9±5 10±7 92±5 85±7.8 8±5.4 15±7.8 

ST 

Noisy-150 
90±7 90±8 10±7 10±8 93±6 83±9 7±6 17±9 

ST 

Noisy-450 
81±12 84±8 19±12 15±8 95±5 78±8 5±5 22±8 

 MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) MCI-AD-ADNI (49% vs 50%) (159 Train 39 Test) 

Correlation TN TP FP FN TN TP FP FN 

Temporal 72±9 79±9 28±9 21±10 77±8 73±12 23±8 27±12 

Temporal 

Noisy-150 
77±15 60±18 23±15 40±18 80±11 64±15 20±12 36±15 

Temporal 

Noisy-450 
68±18 45±11 32±18 55±11 45±21 53±18 55±21 47±19 
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Figure 18: Accuracy, sensitivity, and specificity change for the MCI-CN-ADNI and MCI-AD-ADNI classification 

experiments for correlation matrices based on no artificial noise added to voxel intensity values and on ROI vectors with intra 

ROI correlated  and inter ROI uncorrelated artificial noise added to voxel intensity values with noise scale factors of 150 and 

450 

 

9.5 CNN-B classification accuracy with intra ROI and temporally uncorrelated but 

inter ROI correlated noise added to the measured voxel intensity 

 

 

With intra ROI uncorrelated and inter ROI correlated noise added to the voxel intensity 

values, the impact on classification accuracy is mixed with respect to basing correlation 

matrices on ROI spatial-temporal or temporal vectors.  For some classification experiments, 

the relative impact is greater for classification based on correlation matrices based on ROI 

spatial-temporal vectors; in other cases, the noise impact is the opposite with respect to the 

basis for the correlation matrices. 

 

As represented in Figure 19 and Tables 61 and 62, for AD-CN-ADNI subjects, with spatial-

temporal correlation, accuracy changes between 89% to 88%, sensitivity changes between 

88% and 87%, and specificity changes between 89% and 91%. However, with temporal 
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correlation, accuracy, sensitivity, and specificity drops from 73% to 68%, 73% to 68%, and 

76% to 69%. 

For AD-CN-OASIS subjects with spatial-temporal correlation, accuracy drops from 85% to 

75%, sensitivity drops from 82% to 64%, and specificity drops from 88% and 84%. With 

temporal correlation, accuracy drops from 74% to 69%, sensitivity drops from 68% to 53%, 

and specificity changes between 80% to 81%. 

Based on Figure 20 and Tables 61 and 63, for MCI-CN-ADNI subjects with spatial-temporal 

correlation, accuracy drops from 90% to 86%, sensitivity drops from 90% to 87%, and 

specificity drops from 91% to 86%. For temporal correlation, accuracy drops from 75% to 

74%, sensitivity changes between 79% and 78%, and specificity drops from 72% to 71%.   

For MCI-AD-ADNI subjects with spatial-temporal correlation, accuracy drops from 88% to 

86%, sensitivity changes between 84% and 82%, and specificity changes between 92% to 

91%. With temporal correlation, accuracy changes between 74% to 76%, sensitivity changes 

between 73% and 75%, and specificity changes between 78% to 77%.  

 

Table 61: Average (%) and standard deviation (%) of accuracy, sensitivity, and specificity on thirty different test sets for the 

AD-CN-OASIS, AD-CN-ADNI, MCI-CN-ADNI, and MCI-AD-ADNI classification experiments for intra ROI uncorrelated  

and inter ROI correlated artificial noise with scale factors 450 and 900  In the table ST stands for spatial-temporal ROI 

vectors being used for correlation matric 

 
AD-CN-OASIS 

(276 Train 70Test) 

AD-CN-ADNI 

(164 Train 41 Test) 
MCI-CN-ADNI 

(161 Train 40Test) 
MCI-AD-ADNI 

(159 Train 39 Test) 

Correlation ACC SE SP ACC SE SP ACC SE SP ACC SE SP 

Spatial-

Temporal 
85±4 82±7 88±5 88±5 87±7 89±8 90±3 90±7 91±5 88±4 84±7 92±5 

ST 

Noisy-450 
79±5 72±11 85±07 89±5 88±8 91±7 90±5 91±6 90±08 86±5 80±8 93±6 

ST 

Noisy-900 
75±5 64±8 84±7 89±6 88±7 90±10 86±5 87±7 86±9 86±5 82±9 92±6 

Temporal 74±5 68±9 80±7 73±7 73±11 76±14 75±6 79±9 72±9 74±7 73±12 77±8 

Temporal 

Noisy-450 
71±6 60±10 79±07 73±6 71±13 77±8 77±8 78±15 76±09 75±8 75±09 76±12 

Temporal 

Noisy-900 
69±5 53±10 81±8 68±7 68±13 69±10 74±7 78±12 71±11 76±8 75±10 78±11 



 

 71 

 

Table 62: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the  AD-CN-ADNI, and 

AD-CN-OASIS classification experiments for intra ROI uncorrelated  and inter ROI correlated artificial noise with scale 

factors 450 and 900 

 

Table 63: Average (%) and standard deviation (%) of TN, TP, FP, FN on thirty different test sets for the  MCI-CN-ADNI, 

and MCI-AD-ADNI classification experiments for intra ROI uncorrelated  and inter ROI correlated artificial noise with scale 

factors 450 and 900 

 

 
AD-CN-OASIS (56% vs 44%)  

(276 Train 70 Test) 

AD-CN-ADNI (52% vs 47%) 

 (164 Train 41 Test) 

Correlation TN TP FP FN TN TP FP FN 

ST 85±4 82±7 15±5 17±5 85±4 82±7 15±5 17±5 

ST 

Noisy-450 
85±07 72±11 15±7 28±11 91±7 88±8 09±7 12±8 

ST 

Noisy-900 
84±7 64±8 16±7 36±8 90±10 88±7 10±10 12±07 

 AD-CN-OASIS (56% vs 44%) (276 Train 70 Test) 
AD-CN-ADNI (52% vs 47%) (164 Train 41 

Test) 

Correlation TN TP FP FN TN TP FP FN 

Temporal 80±7 68±9 20±7 32±9 76±14 73±11 24±14 27±11 

Temporal 

Noisy-450 
79±07 60±10 21±07 40±10 77±8 71±13 23±08 29±13 

Temporal 

Noisy-900 
81±8 53±10 19±8 47±10 69±10 68±13 31±10 32±13 

 MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) MCI-AD-ADNI (49% vs 50%) (159 Train 39 Test) 

Correlation TN TP FP FN TN TP FP FN 

ST 91±5 90±7 9±5 10±7 92±5 85±7.8 8±5.4 15±7.8 

ST 

Noisy-450 
90±08 91±6 10±8 9±6 93±6 80±8 7±6 20±8 

ST 
Noisy-900 

86±9 87±7 14±9 13±7 92±6 82±9 8±6 18±9 

 MCI-CN-ADNI (47% vs 52%) (161 Train 40 Test) MCI-AD-ADNI (49% vs 50%) (159 Train 39 Test) 

Correlation TN TP FP FN TN TP FP FN 

Temporal 72±9 79±9 28±9 21±10 77±8 73±12 23±8 27±12 

Temporal 

Noisy-450 
76±09 78±15 24±09 22±15 76±12 75±09 24±12 25±09 

Temporal 
Noisy-900 

71±11 78±12 29±11 22±12 78±11 75±10 22±11 25±10 
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Figure 19: Accuracy, sensitivity, and specificity change for the AD-CN-ADNI, AD-CN-OASIS classification experiments for 

intra ROI uncorrelated and inter ROI correlated artificial noise with scale factors 450 and 900 

 

 

 

Figure 20: Accuracy, sensitivity, and specificity change for the MCI-CN-ADNI, and MCI-AD-ADNI classification 

experiments for intra ROI uncorrelated  and inter ROI correlated artificial noise with scale factors 450 and 900 
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9.6 Summary of the artificial noise study 

 

Generally, as expected, noise hurts classification accuracy. But it is interesting to note that in 

our artificial noise study intra ROI correlated and inter ROI uncorrelated noise appears to 

have a greater negative impact on classification accuracy than intra ROI uncorrelated but inter 

ROI correlated noise.  For intra ROI correlated and inter ROI uncorrelated noise, the largest 

negative impact on classification accuracy is for correlation matrices based on temporal ROI 

vectors.  For intra ROI uncorrelated and inter ROI correlated noise, the impact on 

classification accuracy is mixed with respect to which ROI vector type is used for the ROI-to-

ROI correlation matrices.  
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APPENDIX 

An adaptive space-filling curve for MRI based schizophrenia classification 

In [67], we successfully performed binary classification of subjects diagnosed with 

Schizophrenia vs. healthy subjects. The classification was based on voxel signals, with voxels 

ordered with spatial locality as a starting point in mapping brain voxels to a 1D vector.  Using 

locality-preserving space-filling curves to map higher-dimensional spaces to 1D has been 

used for many problems, such as e.g., ordering data array accesses to minimize DRAM page 

faults, partitioning data structures for minimizing communication network loads distributed 

computing environments, and data compression. In our work on MRI-based Schizophrenia 

classification, we developed an adaptive space-filling curve using a 3D Hilbert curve as the 

starting point for developing an adaptive space-filling curve (SFC) that minimizes the 

incremental squared signal differences in space traversal. 

First, we remove voxels outside the brain in the Hilbert curve traversing the bounding box 

enclosing the brain.  Figure 21 illustrates the pruning of the Hilbert curve with respect to 

voxels outside the brain volume.  
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Figure 21: a) Hilbert curve for a bounding box enclosing the brain, (b) a pruned Hilbert curve covering only the brain 

 

In a second step, we generate an SFC by a greedy approach. The neighbor voxel in a voxel’s 

3x3x3 neighborhood with the minimum absolute signal difference to the voxel is selected as 

the next voxel along the SFC unless it is already part of the SFC. For example, suppose all 

26 neighbors are already included in the SFC. In that case, the algorithm traverses back in 

the list of voxels selected for the adaptive SFC until one voxel is found for which a 

neighbor voxel can be included in the SFC. For the backtracking, we use a hash table with 

key value 1 if a voxel is included in the SFC; otherwise, the value is zero. A snapshot of an 

adaptive SFC obtained from an MRI image is presented in Figure 21. Figure 22 shows SFC 

segments of lengths 1000, 3000, 5000, and 7000 (in red color) overlaid on the full-length 

adaptive SFC (in gray color).  

The signal intensities and absolute signal intensity differences along with Hilbert and 

adaptive SFCs are shown in Figure 23. The adaptive SFC has a 50.5 times less total squared 

signal intensity difference than the Hilbert SFC, and it is 34% shorter. Using the adaptive 

SFC for classification resulted in higher accuracy than classification based on the Hilbert 

SFC [67] 
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Figure 22: Representation of fMRI brain activation traversal by the SFC for the last a) 1000, 3000, 5000 and 7000 voxels 

(red), overlaid on the total SFC trajectory (gray), representing a sample progression of the SFC trajectory during the last 

7000-voxel portion 
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Figure 23: Signal intensity along the trajectory for successive voxels 
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