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ABSTRACT

A hardware divider for fixed-integer divisors is designed. It 

uses a direct table-look-up technique with read-only memory. The divi

dend is partitioned into several groups, each group is processed by a 

small ROM. The ROM is designed in a special way so that the final 

divider is formed by directly linking these small ROM’s.

Three examples of the application, including BCD-to-Binary 

and Binary-to-BCD converters, are given.
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A HARDWARE DIVIDER FOR FIXED-INTEGER DIVISORS 
WHICH USES READ-ONLY MEMORIES

Introduction

In certain operations, such as code conversion and the location 

of elements in a multidimensional list, it will be valuable to have 

a fast hardware divider that uses a fixed-integer divisor and yields 

both an exact quotient and an exact remainder.

This thesis will describe such a divider which is both fast 

and economical in the size of the memory required. It uses a direct 

table-look—Up technique with read-only memory in order to achieve its 

speed and accuracy. The memory needed is kept to a practical size by 

a new arrangement that is the subject of this thesis.

It will prove helpful to review two prior contributions to the 

solution of the problem of division by a fixed-integer divisor.
In 1967, IBM^l) presented an efficient division algorithm for 

use on the IBM 360/Model 91. In this algorithm, the divisor and divi

dend are considered to be the denominator and numerator of a fraction. 

On each iteration, the numerator and denominator are both multiplied 

by a common factor, Rr, so that the denominator converges quadratically 

toward the quotient which is desired.

A detailed description of this IBM algorithm is given in 

reference (1). However, a brief outline of this algorithm is given 

here so that it can be compared with the division technique which is 

the subject of this thesis. This outline follows:

1
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(1) Bit-normalize the divisor and shift the divident accord

ingly to get H. 5. D < 1 (D is the divisor) .

(2) Determine the first multiplier, R, by a table look-up 

which inspects the first seven bits of the divisor to guarantee 

that D x R has seven similar bits to the right of the binary 

point.

(3) Multiply D by R forming D^.

(4) Multiply the numerator N by R forming N^.

(5) Truncate Dr and complement to form multiplier Rr.

(6) Multiply Dr by Rr forming D n.

(7) Multiply Nr by Rr forming Nn -.K t _L
(8) Iterate on (5), (6), and (7) until D^ , -> andk T n
(9) This brings ^R + n Quotient.

This and other high-speed division algorithms can be applied 

to the problem of division by fixed-integer divisors. However, in 

this application, there are at least two points of difficulty when one 

tries to implement this in a small system. First, these algorithms do 

not supply the remainder, which might be of great importance in some 

applications. Second, the cost of the hardware needed to implement 

these algorithms is high. At a minimum, the hardware required in

cludes a shift counter, a subtractor (or a superfast multiplier )f 

IBM’s algorithm is used), and a complex control unit.

In 1972, David H. Jacobsohn presented a cominatorial division 

algorithm for fixed-integer divisors. In his algorithm, division is 

performed by multiplying the dividend by the reciprocal of the divi

sor. The reciprocal is, in all nontrivial cases, a repeating, binary 

fraction. The quotient and the remainder are then extracted from the 
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product of an integer and a repeating binary fraction. One disadvan

tage of this method is that the quotient and the remainder have to be 

derived from the product which in turn is the result of a time

consuming multiplication procedure.

Table-look-up procedures for division by fixed-integer divi

sors can use read-only memories efficiently when the dividends are 

small. For larger dividends, they become impractical because the ROM 

space size tends to increase exponentially. For example, a system 

which yields a 16-bit quotient and 5-bit remainder from a 20-bit 
20 dividend requires a ROM look-up table with 2 addresses with each 

address having 21 bits. A single ROM of this capability is, obviously 

impractical. If many small memories are interconnected to achieve 

this size, the cost becomes prohibitive. However, this thesis will 

present a mthod of building a memory that is much smaller than this 

but which performs just as well as the larger one.

A New Approach

If the dividend can be partitioned into several groups and the 

highest-order group is regarded as a partial-dividend, a much smaller 

ROM can be built and used as a look-up table for the highest-order 

partial-dividend. If this ROM contains enough information to link 

with the next-order group as another partial-dividend, an equivalent 

table-look-up divider can be built by cascading these smaller ROM’s. 

The following section outlines this approach for N/D, assuming that 

D is a nontrivial m-bit fixed integer divisor and N is any J?.-bit 

integer dividend.
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The Algorithm for N/D

(1) Choose a proper number j. (j is selected by the user; it 

can be larger than, equal to or smaller than m, the basic ROM 

size will be determined by m + j)

(2) Starting from the least significant bit, partition the 

dividend into j-bit groups. Example: 1 100 011 110 for j = 3.

(3) Add at least one leading zero bit to the dividend to make 

an m-bit most significant group. Call this group m^. Example: 

,01 100, 011 110 for the same example as in (2) for j = 3 and
™N

m = 5.

(4) Using m^ and the highest order j-bit group as the partial 

dividend, compute the j-bit partial quotient and the m-bit 

partial remainder. The partial quotient will be the first 

j-bit group of the final quotient. Example: 01 100 011 is 

the first partial-dividend for the same example as in (3).

(5) Write j-bit group next to the right of the partial re

mainder. Call this new number M.

(6) Using M as the new partial dividend, compute the new 

partial remainder by the same method as in step (4).

(7) Repeat step (5) and (6) to compute the next partial 

quotient and partial remainder.

(8) The last partial remainder will be the final remainder, 

and the quotient is obtained by directly assembling all the 

partial quotients in order.

Proof of the Algorithm

The above algorithm can be proved mathematically as follows:
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Given an m-bit fixed-integer divisor

where dm is the most significant bit of D, and any /.-bit 

dividend

N = n£-l nZ-2 no

where m = 1 or 0 for i = 5,-1, 5,-2,-----0

(i is a subscript).

By partitioning the dividend into j-bit groups as selected by 

the user, N can be represented as:

<t-1 . , M-1 M"2
m bits p-th j-bit group

nij"2 n(i-Dj. ,nj-l nj-2~~ nln0 , 
i-th j-bit group first j-bit group

Since each group has j bits and the LSB of the first group is 

ng, the LSB of the second group is n^ and the LSB of the i-th group

is n,. n, .. The p-th group is the highest order j-bit group which is

not included in the m-bit group.

e is the smallest integer that can satisfy both of the fol

lowing two conditions:

(1) 5, + e - m can be evenly divided by j.

(2) e > 1.

Let the i-th j-bit group be denoted by ^N, i.e.,

= n.. t n.. ----nz. -x. and the one m-bit group denoted byi ij-1 ii-2 (i-Dl

that is

= 00--0nn_1----
m bits
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where the superscripts j and m denote the maximum bit number of the 

groups represented; the subscript i denotes the i-th j-bit group; and 

have

and D

Hence

2. — (1)

is an m+j bit number and “’n < InD (mN has at least oneSince P

leading zero bit)

we have

2

is an m-bit remainder and of

course P

then

221N

again let

2 (4)

D

= 3, 
P

j N 
P-1

iN

where isP

= p-1

j N.2(P-3)j 
P-2

an j-bit quotient,

m^ denotes the most significant m-bit group. With this notation, we 

jQ-2 
P

P-1

1N
------ (3)

+ + iN.2(P-2)j

(2)

P P-1

+ 3N-2^k-1^ +-- + Jn-23 + |n

j 2(p-2)J
। P"1

we have
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m R*2^ + N_N_ = j 2(p-l)j + j Q.2(p-2)j + P-1 P"21N ,2(p-3)j
P p-1 IDy

1N+-- + —2:------------------------------------- (5)
™D

By repeating the same procedure, we get

_N_ = jQ.2(p-Dj + j Q.2(P-2)j +---+ jQ.2(k-1)j
P p-1 kx

+ + jq + -2--------------------------------------------- (6)

Recognizing that for each term on the right hand side of the equal

sign of equation (6), the maximum bit number possible is j, and the 

order difference between two consecutive terms of (6) is 2^, we get

—— = jQ \Q \Q----jq----jq + —--------------- (7)
my px p-1x p-2x kx lx nip

In other words, the final quotient q of N/D is

q = iq i n i q — Jqx px p-1 p-2x 1

and the final remainder R of N/D is

Parallel Look-Up Implementation

Step (4) of the division algorithm described above can be 
implemented with a read-only memory of 2m+^ words of m + j bits each. 

For each m + j bit subdividend, the j-bit partial quotient and the 

m-bit partial remainder are stored in the ROM addressed m + j as 

shown in Figure 1.
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2m + j 
address

m bit 
remainder

'—v------- - '—
J bit 

quotient
Figure 1: A basic building block

2m + -5 x (m + j) ROM

1

1

1
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Using this ROM as a basic building block, the division of N/D 

can be implemented as shown in Figure 2.

Discussion of the Parallel Look-Up
Implementation

1. For an n-bit dividend, an m-bit divisor and a selected j 

value, the total number of ROMs needed is r n +1 - m

where [ ] denotes the smallest integer which is greater than 

or equal to the value of the expression enclosed.
2. Since each ROM unit has 2m + ^ words of m + j bits per word 

the total number of bits is

n + 1 - m . „m + j . . . x --- j----  ] x 2 J x ( m + j )

3. Figure 5 lists the number of ROM units needed and the ROM

size for various values of j when m = 5, and N = 16, 24 and 

32 respectively. Figure 7 lists the ROM requirements for 

m = 8.

4. Comparing Figure 5 and Figure 7, we see that for a selec

ted value j, the total number of ROMs needed increases almost 

linearly with n, rather than exponentially as the case that

a single big ROM is used as a direct look-up table.

5. The second column from the right in Figure 5 and Figure 6 

shows the total number of bits in all ROMs as a function of 

the chosen value of j when the dividend has 16 bits. The 

last column gives the ratio of the total number of bits 

required by this algorithm to the total number of bits if a 
single big ROM of 2"*"^ x 17 (5 bit remainder and 12 bit quo

tient) were to be used for the same 16 bit dividend.
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Figure 2: Implementation of a divider for fixed-integer divisors 
by cascading the basic 2m + ^ x (in + j) ROMs.



AN EXAMPLE: a 12-bit dividend divided by 13 (decimal).

In this case, a 12-bit binary integer is to be divided by the 

fixed-divisor 13. Since 13 is a 4-bit binary number, m = 4. If one 

chooses j = 2, the basic building block ROM will have 64 x 6 bits 

with the contents illustrated in Figure 3.

Using this ROM as a basic unit, a hardware divider for a 

12-bit dividend can be implemented by cascading four basic units as 

shown in Figure 4. Also shown in Figure 4 is the immediate partial

dividends and partial-remainders for an arbitrarily-selected divi

dend 1127 (decimal) which is equivalent to the binary number 

010001100111.

11
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ADDRESS OUTPUT ADDRESS
DECI
MAL

BINARY DECI
MAL

BINARY
qi qo

uuirui
r r t r3 2 rl r0A5 A4 A3 A2 A1 A0 qi qo r3 r2 rl ro > 

Ln
 > 

4>
- >
U>
> 

lJ>
 

t>
 

O

0 0 0 0 0 0 0 0 0 0 0 0 0 32 1 0 0 0 0 0 1 0 0 110
1 0 0 0 0 0 1 0 0 0 0 0 1 33 1 0 0 0 0 1 1 0 0 111-
2 0 0 0 0 1 0 0 0 0 0 10 34 1 0 0 0 1 0 1 0 10 0 0
3 0 0 0 0 1 1 0 0 0 0 11 35 1 0 0 0 1 1 1 0 10 0 1
4 0 0 0 1 0 0 0 0 0 10 0 36 10 0 10 0 1 0 10 10
5 0 0 0 1 0 1 0 0 0 10 1 37 10 0 10 1 1 0 10 11
6 0 0 0 1 1 0 0 0 0 110 38 10 0 110 1 0 110 0
7 0 0 0 1 1 1 0 0 0 111 39 10 0 111 1 1 0 0 0 0
8 0 0 1 0 0 0 0 0 10 0 0 40 10 10 0 0 1 1 0 0 0 1
9 0 0 1 0 0 1 0 0 10 0 1 41 10 10 0 1 1 1 0 0 10

10 0 0 10 10 0 0 1 0 1 0 42 10 10 10 1 1 0 0 11
11 0 0 10 11 0 0 10 11 43 10 10 11 1 1 0 10 0
12 0 0 110 0 0 0 110 0 44 10 110 0 1 1 0 10 1
13 0 0 110 1 0 1 0 0 0 0 45 10 110 1 1 1 0 110
14 0 0 1110 0 1 0 0 0 1 46 10 1110 1 1 0 111
15 0 0 1111 0 1 0 0 10 47 10 1111 1 1 10 0 0
16 0 1 0 0 0 0 0 1 0 0 11 48 1 1 0 0 0 0 1 1 10 0 1
17 0 1 0 0 0 1 0 1 0 10 0 49 1 1 0 0 0 1 1 1 10 10
18 0 10 0 10 0 ,1 0 10 1 50 110 0 10 1 1 10 11
19 0 10 0 11 0 1 0 110 51 110 0 11 1 1 110 0
20 0 10 10 0 0 1 0 111 52 110 10 0 X X X X X X
21 0 10 10 1 0 1 10 0 0 53 110 10 1 X X X X X X
22 0 10 110 0 1 10 0 1 54 110 110 X X X X X X
23 0 10 111 0 1 10 10 55 110 111 X X X X X X
24 0 110 0 0 0 1 10 11 56 1110 0 0 X X X X X X
25 0 110 0 1 0 1 110 0 57 1110 0 1 X X X X X X
26 0 110 10 1 0 1111 58 1110 10 X X X X X X
27 0 110 11 1 0 0 0 0 1 59 1110 11 X X X X X X
28 0 1110 0 1 0 0 0 10 60 11110 0 X X X X X X
29 0 1110 1 1 0 0 0 11 61 1. 1 1 1 0 1 X X X X X X
30 0 11110 1 0 0 10 0 62 111110 X X X X X X
31 0 11111 1 0 0 10 1 63 111111 X X X X X X

X: Don’t Care

Figure 3: A basic Building Block for Division by 13, Choosing j = 2
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Figure 4: An example showing 1127/13 = 86 + 9/13
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Value 
of j 
selected

# of ROM needed Words 
per 
ROM

Bits 
per 
word

Total 
bits for 
N = 16 Ratio

N = 16 N= 24 N = 32

j =2 6 10 14 27 7 5376 .00482

j =3 4 7 10 28 8 8192 .00735

j=4 3 5 7 29 9 13824 .0124

j =5 3 4 6 210 10 30720 .0275

j = 6 2 4 5 211 11 45056 .0404

3=7 2 3 4 212 12 98304 .0882

3=8 2 3 4 213 13 212992 .1911

3=9 2 3 4 214 14 458752 .4117

3 =10 2 2 3 215 15 983040 .8823

Figure 5: The total number of ROM’s needed and the ROM size 
tabulated for N = 16, 24, 32 and for selected j 
values from 2 to 10 for m = 5.
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Figure 6: The ratio as a function of j.
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divisor bit lengths = 8

Value 
of j 
selected

# of ROM needed
Words 
per 
ROM

Bits 
per 
word

N= 16 N = 24 N= 32

j =2 5 9 12 2io 10

j =3 3 6 9 211 11

j =4 3 5 7 212 12

j =5 2 4 5 213 13

j = 6 2 3 5 214 14

j=7 2 3 4 215 15

Figure 7: The total number of ROMs needed and the 
ROM size tabulated for N = 16, 24, 32 and 
for selected j values from 2 to 10 for 
m = 8.
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6. The ratio shown in the last column of Figure 5 is drawn 

as a function of j in Figure 6. It is obvious from Figure 6 

that the ratio and thus the total number of bits increase with 

the selected j value.—

7. The implementation cost and propagation delay for a 5-bit 

divisor, choosing j =3, is listed in Figure 8.

TI 74S471 PROM is used, as an example, for the 256 x 8 basic 

building unit.

8. The implementation cost and propagation delay for an 8-bit 

divisor, choosing j =2, is listed in Figure 9. Since there 
is no single package PROM with 2^^ x 10 bit organization, a 

2"*"^ x 4 PROM 82S137 are combined to serve as a basic building 

block. The cost per package, based on a 25-99 purchase, is 

taken from the Signetics price list published May, 1977. MOS 

Memory were to be used, this cost could be cut down by half. 

However, this reduction in cost would be paid for by a longer 

propagation delay.

9. Since the size of the ROM used as the basic building block 

still tends to increase exponentially with the divisor bit 

length m, the cost of parallel implementation will increase 

exponentially with the bit number of the divisor. If a large 

divisor is to be implemented, it is necessary to modify this 

parallel implementation. Two methods that can be used to 

improve the parallel implementation for larger divisors are 

presented in sections which follow.
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N=16 N=24 N=32

Basic ROM Size 256 x8 256x8 256 x 8

# of Package Required 4 7 10

Cost per Package 4.95 4.95 4.95

Access Time (ns)/pkg. 50 50 50

Total Cost 19.80 34.65 49.5

Total Delay Time (ns) 200 350 500

Figure 8: The implementation cost and propagation delay for a 
5-bit divisor when j is chosen to be 3. The basic 
building unit used in this example is the TI 74S471 
PROM.
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N=16 ‘ N=24 N=32

Basic ROM Size 1024x10 1024x10 1024x10

IC’s used as basic unit 82S181 &
82S137

same same

# of basic units required 5 9 12

cost per 82S181 ($) 31.50 31.50 31.50

cost per 82S137 ($) 11.78 11.78 11.78

cost per basic unit ($) 43.28 43.28 43.28

access time (ns)/basic 
unit 50 50 50

Total Cost ($) 216.40 389.52 519.36

Total Delay Time (ns) 250 450 600

Figure 9: The implementation cost and propagation delay for 
an 8-bit divisor, choosing j =2. A 2"*"® x 8 PROM 
82S181 and a 2^^ x 4 PROM 82S137 are combined to 

serve as a basic ROM unit
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Sequential Look-Up Implementation

When the divisor is long, the cost of the individual ROM can 

be great if a straight table-look-up scheme is implemented. The size 

of the individual ROM increases exponentially with the number of bits 

used in the divisor. When this fact is combined with the fact that 

the number of these ROMs needed in a parallel table-look-up implemen

tation increases almost linearly with the size of the dividend, it 

becomes clear that the total cost of such an implementation can be 

quite large, indeed. A different implementation can provide some 

reduction in the size of the system. This implementation is designated 

as the look-up-add implementation instead of the straight-look-up 

scheme that has been described up to this time. This look-up-add 

implementation uses some of the memory in a sequential manner, thus 

resulting in considerable economy when the divisor and dividend are 

both large.

Since each of the basic ROM modules used in building the sys

tem has the same size and same bit pattern as the others, the same 

ROM can be used over and over in a sequential mode. The remainder of 

each operation along with the next j-bit group of the dividend is 

shifted left j-bits at a time, so that it will be in the proper place 

for the next part of the table-look-up. Furthermore, if the output 

quotient of the ROM is right-rotated back to the shift register, that 

register will contain both the quotient and the remainder when the 

divide process is completed.

A sequential look-up implementation using this approach 

appears in Figure 10, where the dividend has been partitioned into 
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j-bit groups and at least one leading zero bit has been added to form 

the most significant m-bit group.

Figure 11 gives an example of the timing relationship between 

the control signals. First, the tri-state output of the input regis

ter is enabled and the input dividend is loaded into the input regis

ter and then into the shift register. After the input data is loaded 

into the shift register, the tri-state buffer of the input register is 

disabled and that of the ROM is enabled. After the maximum access 

time of the basic ROM, the highest order m + j bits of the shift regis

ter are updated by loading the m+j bits output of the ROM into the 

shift register. This is then followed by j fast-shift-right clock 

pulses to rotate the shift register by j bits. This process repeats 

cyclically until the final remainder appears as the most significant 

m bits of the shift register and the final quotient appears as the 

other bits of the shift register.

The shift register in Figure 10 can be replaced by a general 

storage register by properly hardwiring the output lines of the ROM 

and of the storage register to the input lines of the register as 

shown in Figure 12.The m-bit remainder of the ROM are fed back to the 

most significant m-bit inputs of the storage register. The j-bits of 

the ROM are applied as the least significant j-bits of the input. 

The output lines of the register, besides the highest order m + j 

lines which are fed to the ROM, are applied to the input of the 

register in between (see Figure 12).

The advantage of the hardwiring is two-fold. First, the 

j-bit shift operation can be replaced by a single loading operation. 

This speeds up the shift operation by a factor of j. Second, the
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Figure 10: Sequential implementation of a hardware divider for 
fixed-integer divisors.
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load signal of  
the input register

output enable of 
the input register ,

output enable 
of ROM

load clock of 
shift register

shift clock of 
shift register

J clock

Figure 11: Timing example for Figure 10 assuming 
every signal is high-active or positive
trigger.
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Figure 12: Hardwired rotate left j bits 
t is the total number of bits of the 
storage register.



■2A 

shift register can be replaced by a more inexpensive storage register 

and the timing circuitry is relatively simple. The implementation can 

be more economical.

Figure 13 illustrates the sequential look-up implementation in 

step-by-step manner. This example shows the intermediate output of 

the storage register and basic ROM for division of decimal numbers 

1127 by 13.

Discussion of the Sequential Look-Up 
Implementation

(1) The sequential look-up implementation process changes the 

hardware requirement from several identical basic modular 

ROMs to a single modular ROM with a simple timing circuit and 

a storage register. (The input register is not considered as 

an additional hardware requirement, since it is required in 

both cases, though it does not have to be tri-state in the 

parallel implementation.) This will reduce the implementation 

cost to a different extent according to the bit length of the 

dividend and divisor.

(2) Figure 14 gives a comparison of the total cost of imple

mentation and the total delay time of the sequential implemen

tation versus the parallel implementation when the divisor is 

eight bits long. The corresponding information for the 

parallel implementation is copied from Figure 9. A $40.00 

implementation cost is estimated for the timer. This, plus 

the cost per basic ROM ($43.28) and a few dollars for the 

storage registers, will make thg.estimated total cost of 

$90.00. Although any larger dividend takes more storage
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Loading Shift 
Register 0 1 0 0 0 1 10 0 111

Input
ROM 0 10 10 1

First
Shift

Register 0 10 0 10 0 1110 1

Rotate ROM 0 10 10 1

Second Shift 
Register 0 10 10 1 110 10 1

Rotate
ROM 0 110 0 0

Third Shift
Register 1 0 0 0 1 1 0 10 10 1

Rotate
ROM 10 10 0 1

Fourth Shift
Register 10 0 10 0 0 10 110

Rotate s---- v---- / x-----
Remainder quotient

Figure 13: The intermediate output of the shift register 
and the basic ROM by the sequential implemen
tation of 1127/13. Refer to Figure 4 for 
comparison.
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N = 16 N = 24 N = 32

Total 
Cost 
($)

Parallel 216.4 389.52 519.36

Sequential 90.0 85.0 85.0

Propagation 
Delay 
(ns)

Parallel 250 450 600

Sequential 375 675 950

Figure 14: Comparison of sequential implementation versus 
parallel implementation for an eight bit divisor.
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space, the cost of this storage is relatively small compared 

to other costs ($0.81 per 6-bit 74174 register). Hence, the 

same cost is assumed for all dividends.

(3) A propagation delay time of 25 ns for type 74174 regis

ters is added to the 50 ns delay time of the basic ROM to give 

the 75 ns delay time per rotating operation. The total delay 

time given in Figure 14 is calculated by multiplying the num

ber of rotating operations by 75 ns.

(4) It is obvious from Figure 14 that the sequential imple

mentation cost stays constant as N (the total number of bits 

of the dividend) increases.

(5) Sequential implementation has longer delay time.

Look-Up-Add Implementation of the 
Basic Building Block

The minimum size of the basic building block is 2m + ^ x (m + 1) 

for an m-bit divisor in a straight look-up implementation. A 16-bit 
divisor, would need a ROM of at least 2"*"^ x 17 to implement a basic 

building block. Since a ROM of this size is impractical by today's 

technology, another method must be sought in order to make the imple

mentation practical if the divisor is large.

Each basic building block has (m + j) address lines. These 

(m + j) lines can be partitioned into two groups, the most significant 

(j+1) bit group and the remaining least significant (m -1) bit group. 

Thus the (m + j) bit dividend can be regarded as the sum of two com

ponents. The first component, component A, is an (m + j) bit number 

and is formed by adding (m - 1) bits of 0's to the right of the (j+1) 
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bit group. The second component, B, is an (m -1) bit number and is 

the same as the (m - 1) bit group.

By the division property of (A + B)/c = A/c + B/c, we know that 

the final quotient and remainder can be computed from the quotient and 

remainder of each component. Since component B is an (m - 1) bit num

ber, there is no quotient directly generated from component B. Com

ponent A, although it is an (m + j) bit number, has only (j +1) 

significant bits. The quotient and remainder generated from component
A can thus be directly looked-up from a 2+ x (m + j) ROM. The 

remainder from component A are then added to component B. The sum, 

(sum S), is always less than twice the divisor, since both component

B and the remainder from component A are less than the divisor.

The final quotient and remainder can be derived from the sum S 

and the quotient from component A as follows:

If sum S is less than the divisor, sum S itself is the final 

remainder, and the quotient from component A is the final quotient. 

If sum S is not less than the divisor, the final quotient is one plus 

the quotient from component A, and the remainder can be extracted by 

subtracting sum S by the divisor.

From the above introduction, it is clear that a basic building 

block for large divisors can be implemented as shown in Figure 15. 

The single line output from the comparator is fed to the carry input 

of an j bit adder. The sum from the m bit adder is applied to the 

minuend part of the subtractor. The subtrahend to the subtractor is 

either zero or the divisor depending on the output of the comparator.

The look-up-add implementation for an 8-bit divisor 1101 0101 

(decimal 213) is shown in Figure 16. A 12-bit number 1011 1101 0011



Figure 15 Look-up-add implementation of the basic building block.
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(decimal 3027) is arbitrarily selected as the dividend. Since this is 

an example of m = 8 and j = 4, the most significant 5 bits (10111) of 

the dividend are applied to the address input of the 32 words by 12 

bits ROM. The 4 bit quotient 1101 and the 8 bit remainder 1010 1111, 

from the 12 bit component 1011 1000 0000, appear at the output part of 

the ROM.

The subtractor in Figure 15 is replaced by an adder with the 

addend lines hardwired as shown in Figure 16. The lines corresponding 

to the "1" bit in the 2’s complement of the divisor are tied together 

and connected to the comparator output. The lines corresponding to 

the "0" bit are tied to ground. Hence, if the comparator output is 1, 

the 2’s complement of the divisor is added to the sum of the first 

m bit adder. If the comparator output is 0, nothing is added and the 

sum of the first adder appears as the sum of the second adder and as 

the final remainder.

Discussion of the Look-Up-Add Implementation

(1) For an m-bit divisor and a chosen value of j, the look

up-add method changes the hardware requirement from a
2m + ^ x (m + j) ROM to a smaller 2^ + x (m + j) ROM, two m-bit 

adders, a j-bit incrementer and a (m + 1) bit comparator. This 

reduces the ROM requirement by a factor of 2ni

(2) The word size of the new ROM is 2^ This is not a 

function of the bit length of the divisor. Hence no matter 

how large the divisor is, the ROM will have the same word 

size.
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Figure 16: Example showing look-up-add implementation for 3027 t213
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(3) Besides the j-bit incrementer (or adder), the hardware 

cost of the comparator and the adders is a linear function of 
m. Since the cost of the 2^ x (m + j) ROM is also a linear 

function of m. We can conclude that the look-up-add implemen

tation cost will increase nearly linearly rather than exponen

tially with increases in the bit length of the divisor.

(4) It was suggested that in the parallel look-up implementa

tion, a small j be selected to reduce the total number of bits. 

(See Figure 5 and Figure 6). In the look-up-add implementa

tion, present technology permits the choice of a slightly 

larger value, around 8. The ROM is not the major cost in the 

basic building block and a larger value of j reduces the total 

number of basic building blocks needed. For example, a 24-bit 

dividend divided by a 16-bit fixed-integer divisor can be 

processed by a single basic building block if j is chosen to 

be 8. The total hardware requirement will be a 512 x 24 ROM, 

two 16-bit binary adders, an 8-bit incrementer and a 17-bit 

comparator. The division time is in the range of 200 ns, if 

one uses an 82S141 for the 512 x 24 ROM, a type 7483 for the 

adder and type 7485 for the comparator.

(5) One shortcoming with the look-up-add implementation is 

that it increases the total chip count. It is not suited for 

parallel implementation since the circuitry has to be dupli

cated in each basic building block. But when used in a 

sequential implementation, it is a powerful method to process 

very large dividends and divisors. For example, a 64-bit 

dividend divided by a 32 bit divisor can be processed in 
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four sequences with j = 8. The division time is in the range 

of 1.2 psec with an estimated 300 nsec delay time per sequence.

Hardware Divider for Small
Variable-Integer Divisors

Several methods of implementing a hardware divider for fixed- 

integer divisors have been presented in the previous sections. An 

interesting question arises at this point: "Can any of these methods 

be modified to implement a general purpose hardware divider for any 

variable divisors, or at least for small variable-integer divisors?"

An interesting tentative approach is to try adding the m bits 

of the divisor to the address of each ROM in a parallel implementation. 
The size of each ROM is hence enlarged by a factor of 2™ from 2m + ^ 

, o2m + -i , o2m + i , , j . „ nmwords to 2 J words. The 2 J words can be partitioned into 2 
regions of 2™"*"^ words each. The region number is the most signifi

cant m bits of the address. The contents in each region will be the 

quotient and the remainder of a division. The divisor of this divi

sion is the region number, the dividend is the less significant m + j 

bits of the address.

To make the parallel implementation compatible with this 

approach, a minor modification, (other than adding m bits to the 

address of each ROM), must be made. This modification is associated 

with the first stage ROM. We have assumed that a (m + j)-bit dividend 

divided by an m-bit divisor will have an j-bit quotient. This is 

true only under the condition that the most significant bit of the 

m-bit divisor is a "1", and the (m + j)-bit dividend is less than the 

divisor. If the divisor can be any m bit number including 000-- 01,

the quotient will have the same number of bits as the dividend in 
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the worst case. Hence a (m + j)-bit space must be reserved for the 

quotient of the first stage ROM. This increases the size of the first 
stage ROM to 22™"*"^ x (2m 4-j)

The m-bit remainder from the first state ROM will be less than 

the divisor, hence a j bit space will be enough for the quotient of 

the ROM's from the second stage and on.

A parallel implementation of a general purpose hardware divi
der is shown in Figure 17. The first stage ROM has 2^m + ^ x (2m+ j) 

bits. The other stage ROM's have 2^™+ x (m + j) bits.

m = 16). This is not practical by today's technology.

Figure 18 shows the sequential implementation of a general 

purpose hardware divider. The circuitry illustrated in Figure 10, 

with the m bits of the divisor added to the address of the ROM, is 

represented by the sequential divider block in Figure 18. The first 

stage ROM is not included in this block, since it is different from 

all other ROMs.

The proposed approach represents a simple means of implemen

ting a general purpose hardware divisor. It is very efficient for 

small divisors and can be implemented either in parallel or sequen

tial configuration. For a divisor with medium length, sequential 

implementation with the look-up-add method can reduce the size of 
memory required for the basic building block from 2^ni+^ words to 

2m + j +1 Words with the aid of two 8 bit adder, a 9 bit comparator 

and a j bit incrementer. For a large divisor, say 16 bit, a basic
18 building block will require a ROM of 2 words at least. (j = 1,
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Applications

EXAMPLE 1: Sector Location in a Track-Organized Disk

In this example, it is desired to locate a physical sector in 

a 19 sectors/track disk. The sectors are to be addressed contiguously 

independent of track boundary. In total, the disk has 256 x 19 

physical sectors. In order to move the head to a new physical sector, 

the disk controller would have to divide this new address by a fixed 

divisor 19 to translate to its corresponding track and sector number.

Since 256 x 19 has a 13-bit dividend and a 5-bit divisor, the 

divider can be implemented using four 256 x 8 ROMs (choosing j = 3; 

see Figure 5).

EXAMPLE 2: BCD-to-Binary Converter

The look-up-add method can be applied also for BCD-to-Binary 

conversion. A 6 decade BCD number is selected here as an example to 

illustrate the general algorithm. The result will be compared to the 

74184 converter.

By partitioning the 24—bit BCD number into 3 bytes, the 6 

decade number can be viewed as a sum of three components. The first 

component is a 24 bit number and is formed by adding 2 bytes of 0’s 

to the most significant byte. The second component is a 16 bit num

ber. It is formed by adding 1 byte of 0’s to the center byte. The 

third component is the same as the least significant byte.

Each of the three components has only 8 bit significance. A 

256 x 20 ROM can be programmed for the first component. Similarly 

a 256 x 14 and a 256 x 7 ROM can be built for the second and the 
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third component respectively. By summing the output of the three 

ROM's, we will have the final converted binary number.

Each ROM is a direct look-up table with the converted BCD 

number stored. For example, if the converting BCD number is 129538, 

the output from the 256 x 20 ROM will be 0001 1101 0100 1100 0000 

which is the binary representation of decimal 120000. The output from 

the 256 x 14 ROM is 100101 0001 1100 which is equal to decimal 9500. 

The output from the 256 x 7 ROM is 010 0110 which is decimal 38. The 

sum of the three output is 0001 1110 1010 0000 0010, which is exactly 

equal to decimal 129538.

From the above example, one might have observed that the 

least significant 4 bits output of the 256 x 20 ROM and the least sig

nificant 2 bits output of the 256 x 14 ROM are 0’s. This is not a 

particular outcome of this example but instead is a universal feature. 

The proof is as follows:

The unit of the address of the 256 x 20 ROM is decimal 10000. 

This is equivalent to binary 0010 0111 0001 0000. Since the least 

significant four bits of the unit is 0000, any integer multiple of 

the unit should keep this attribute. This argument applies for the 

256 x 14 ROM.

Taking advantage of this feature, the 256 x 20 ROM can be 

reduced to 256 x 16, and the 256 x 14 ROM can be reduced to 256 x 12.

Figure 19 shows a 6 decade BCD to binary converter. The 

total hardware requirement is four 256 x 8 PROM's, one 256 x 4 PROM 

and seven 4-bit binary adders. The total delay time is the sum of 

the access time of the ROM's, the 12 bit binary addition time and the 

16 bit binary addition time. If TI 74S471, TI 74S387 and 7483A are 
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used for the 256 x 8 ROM, the 256 x 4 ROM and the 4-bit binary adder, 

respectively. The total delay time will be 136 nsec typically.

(50 nsec for 74S471, 43 nsec for adding two 12 bit or 16 bit words as 

listed in the TI TTL and MEMORY DATABOOK).

Figure 20 gives a performance comparison between this look-up- 

add method and the TTL 74184 method. It is obvious that the look-up

add method is much better than the TTL 74184. Its use reduces the 

cost from $79.8 to $28.7, the delay time from 364 ns to 136 ns, and 

the chip count from 28 to 12. Hence, it is strongly recommended that 

the look-up-add method be used to replace the conventional TTL 74184 

method.

EXAMPLE 3: Binary-to-BCD Converter

The look-up-add method can be applied to implement a binary 

to BCD converter. A 16 bit binary number is selected as an example 

to illustrate this method.

Again, the 16 bit number is split into two bytes. The 20 bit 

BCD representation of the first component and the 10 bit BCD represen

tation of the second component are stored in a 256 x 20 and a 256 x 10 

ROM, respectively. The first component is formed by adding one byte 

of 0’s to the right of the high-order byte of the 16 bit number. The 

second component is the same as the low-order byte.

The least significant of the 20 bit output from the first 

component is always a zero. Since this one bit saving does not result 

in any significant cost reduction, it is ignored in the following 

descriptions.

The 20 bit output and the 10 bit output can be added decimally 

by a 20 bit BCD adder. The sum will be the final answer.
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Figure 19: A 6 decade BCD to binary converter
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FEATURES COMPARED 74184 
method

look-up-add 
method

factor 
improved

# of chips required
74184 ($2.85 each) 28
74S471 ($4.95 each) 4
74S387 ($3.65 each) — 1
7483A ($0.75 each) 7

total cost ($) 79.8 28.7 2.78

total delay time (ns) 364 136 2.68

total chip counts 28 12 2.33

Figure 20: Comparison between the 74184 converter and the 
look-up-add converter for a 6 decade BCD to 
binary conversion.



Figure 21 gives a comparison between this look-up-add method 

and the conventional 74185 method. It shows that the look-up-add 

method improves the typical delay time from 200 ns to 100 se and 

reduces the chip count from 16 to 10. Although the figure shows that 

the implementation cost is slightly higher, this is the result of the 

high cost of the Signetics 82S83 4-bit BCD adder. The BCD adder is 

more expensive than the binary adder mainly because of limited demand.

Conclusion

Several methods of implementing a hardware divider for fixed- 

integer divisors have been demonstrated. For small divisors, these 

methods can be expanded to implement a general purpose hardware 

divider. The applications of these methods include BCD-to-binary 

conversion and binary-to BCD conversion. The resulting converters 

are simpler and faster than other parallel-conversion schemes and 

the cost is much less for BCD-to-binary converter and slightly higher 

for binary-to-BCD converter.
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FEATURES COMPARED 74185 
method

look-up-add 
method

factor 
improved

# of chips required
74185 ($2.85 each) 16 —
74S471 ($4.95 each) 3 —

74S387 ($3.65 each) — 2 —
82S83 ($6.75 each) — 5

total cost ($) 45.6 54.4 .84

total delay time (ns) 200 96 2.08

total chip counts 16 10 1.60

Figure 21: Comparison between the 74185 method and the 
look-up-add method for implementing a 16 bit 
binary-1 o-BCD converter.
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