
A HARDWARE DIVIDER FOR FIXED-INTEGER DIVISORS
WHICH USES READ-ONLY MEMORIES

A Thesis

Presented to

The Faculty of the Department of Electrical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Chin-Chuong Ko

December, 1977

ACKNOWLEDGEMENT

The author would like to express his deep gratitude for the

guidance and discussion to Dr. T. N. Whitaker, his advisor, as well

as to Dr. J. D. Bargainer and Dr. A. H. White who served on the com

mittee. The author also wishes to thank his wife, Yuh-Shang, and

his parents for their encouragement.

ii

A HARDWARE DIVIDER FOR FIXED-INTEGER DIVISORS
WHICH USES READ-ONLY MEMORIES

An Abstract of a Thesis

Presented to

The Faculty of the Department of Electrical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Chin-Chuong Ko

December, 1977

ABSTRACT

A hardware divider for fixed-integer divisors is designed. It

uses a direct table-look-up technique with read-only memory. The divi

dend is partitioned into several groups, each group is processed by a

small ROM. The ROM is designed in a special way so that the final

divider is formed by directly linking these small ROM’s.

Three examples of the application, including BCD-to-Binary

and Binary-to-BCD converters, are given.

TABLE OF CONTENTS

Introduction ... 1

A New Approach.. 3

The Algorithm for N/D . . 4

Proof of the Algorithm.. 4

Parallel Look-Up Implementation 7

Discussion of the Parallel Look-Up Implementation 9

An Example.. 11

Sequential Look-Up Implementation 19

Discussion of the Sequential Look-Up Implementation 24

Look-Up-Add Implementation of the Basic Building

Block.. . 27

Discussion of the Look-Up-Add Implementation 30

Hardware Divider for Small Variable-Integer Divisors 33

Applications ... 37

BCD-to-Binary Converter ... 37

Binary-to-BCD Converter ... 39

Conclusion.. 42

iv

LIST OF FIGURES

FIGURES PAGE

1. A Basic Building Block x(nH-j) ROM)............... 8

2. Implementation of a Divider for Fixed-Integer Divisors

by Cascading the Basic x(nH-j) ROMs............. 10

3. A Basic Building Block for Division by 13, Choosing j=2 12

4. An Example Showing 1127/13 = 86 + 9/13 13

5. The Total Number of ROM’s Needed and the ROM Size Tabu

lated for N = 16, 24, 32 and for Selected j Values

From 2 to 10 for m = 5................................ 14a

6. The Ratio as a Function of j............................14b

7. The Total Number of ROMs Needed and the ROM Size Tabu

lated for N = 16, 24, 32 and for Selected j Values

From 2 to 10 for m = 8......................... . . 15

8. The Implementation Cost and Propagation Delay for a

5-Bit Divisor When j is Chosen to be 3. The Basic

Building Unit Used in this Example is the TI 74S471 . 17

9. The Implementation Cost and Propagation Delay for an
8-Bit Divisor, Choosing j = 2. A 210 x 8 PROM 82S181

and a 2^® x 4 PROM 82S137 are combined to Serve as a

Basic ROM Unit...................................... 18

10. Sequential Implementation of a Hardware Divider for

Fixed-Integer Divisors................ 21

11. Timing Example for Figure 10.Assuming Every Signal is

High-Active or Positive-Trigger 22

v

FIGURES PAGE

12. Hardwired Rotate Left j Bits.t is the Total Number of

of the Storage Register............................ 23

13. The Intermediate Output of the Shift Register and the

Basic ROM by the Sequential Implementation of 1127/13.

Refer to Figure 4 for Comparison................. 25

14. Comparison of Sequential Implementation Versus Para

llel Implementation for an Eight Bit Divisor . . . 26

15. Look-Up-Add Implementation of the Basic Building Block 29

16. Example Showing Look-Up-Add Implementation for

3027 213 .. 31

17. Parallel Implementation of a General Purpose Hardware

Divider for Small Variable-Divisors. Refer to Figure

2 for Symbol Definition 35

18. Sequential Implementation of a General Purpose Hard

ware Divider for Small Variable Divisors 36

19. A 6 Decade BCD to Binary Converter................. 40

vi

A HARDWARE DIVIDER FOR FIXED-INTEGER DIVISORS
WHICH USES READ-ONLY MEMORIES

Introduction

In certain operations, such as code conversion and the location

of elements in a multidimensional list, it will be valuable to have

a fast hardware divider that uses a fixed-integer divisor and yields

both an exact quotient and an exact remainder.

This thesis will describe such a divider which is both fast

and economical in the size of the memory required. It uses a direct

table-look—Up technique with read-only memory in order to achieve its

speed and accuracy. The memory needed is kept to a practical size by

a new arrangement that is the subject of this thesis.

It will prove helpful to review two prior contributions to the

solution of the problem of division by a fixed-integer divisor.
In 1967, IBM^l) presented an efficient division algorithm for

use on the IBM 360/Model 91. In this algorithm, the divisor and divi

dend are considered to be the denominator and numerator of a fraction.

On each iteration, the numerator and denominator are both multiplied

by a common factor, Rr, so that the denominator converges quadratically

toward the quotient which is desired.

A detailed description of this IBM algorithm is given in

reference (1). However, a brief outline of this algorithm is given

here so that it can be compared with the division technique which is

the subject of this thesis. This outline follows:

1

2

(1) Bit-normalize the divisor and shift the divident accord

ingly to get H. 5. D < 1 (D is the divisor) .

(2) Determine the first multiplier, R, by a table look-up

which inspects the first seven bits of the divisor to guarantee

that D x R has seven similar bits to the right of the binary

point.

(3) Multiply D by R forming D^.

(4) Multiply the numerator N by R forming N^.

(5) Truncate Dr and complement to form multiplier Rr.

(6) Multiply Dr by Rr forming D n.

(7) Multiply Nr by Rr forming Nn -.K t _L
(8) Iterate on (5), (6), and (7) until D^ , -> andk T n
(9) This brings ^R + n Quotient.

This and other high-speed division algorithms can be applied

to the problem of division by fixed-integer divisors. However, in

this application, there are at least two points of difficulty when one

tries to implement this in a small system. First, these algorithms do

not supply the remainder, which might be of great importance in some

applications. Second, the cost of the hardware needed to implement

these algorithms is high. At a minimum, the hardware required in

cludes a shift counter, a subtractor (or a superfast multiplier)f

IBM’s algorithm is used), and a complex control unit.

In 1972, David H. Jacobsohn presented a cominatorial division

algorithm for fixed-integer divisors. In his algorithm, division is

performed by multiplying the dividend by the reciprocal of the divi

sor. The reciprocal is, in all nontrivial cases, a repeating, binary

fraction. The quotient and the remainder are then extracted from the

3

product of an integer and a repeating binary fraction. One disadvan

tage of this method is that the quotient and the remainder have to be

derived from the product which in turn is the result of a time

consuming multiplication procedure.

Table-look-up procedures for division by fixed-integer divi

sors can use read-only memories efficiently when the dividends are

small. For larger dividends, they become impractical because the ROM

space size tends to increase exponentially. For example, a system

which yields a 16-bit quotient and 5-bit remainder from a 20-bit
20 dividend requires a ROM look-up table with 2 addresses with each

address having 21 bits. A single ROM of this capability is, obviously

impractical. If many small memories are interconnected to achieve

this size, the cost becomes prohibitive. However, this thesis will

present a mthod of building a memory that is much smaller than this

but which performs just as well as the larger one.

A New Approach

If the dividend can be partitioned into several groups and the

highest-order group is regarded as a partial-dividend, a much smaller

ROM can be built and used as a look-up table for the highest-order

partial-dividend. If this ROM contains enough information to link

with the next-order group as another partial-dividend, an equivalent

table-look-up divider can be built by cascading these smaller ROM’s.

The following section outlines this approach for N/D, assuming that

D is a nontrivial m-bit fixed integer divisor and N is any J?.-bit

integer dividend.

4

The Algorithm for N/D

(1) Choose a proper number j. (j is selected by the user; it

can be larger than, equal to or smaller than m, the basic ROM

size will be determined by m + j)

(2) Starting from the least significant bit, partition the

dividend into j-bit groups. Example: 1 100 011 110 for j = 3.

(3) Add at least one leading zero bit to the dividend to make

an m-bit most significant group. Call this group m^. Example:

,01 100, 011 110 for the same example as in (2) for j = 3 and
™N

m = 5.

(4) Using m^ and the highest order j-bit group as the partial

dividend, compute the j-bit partial quotient and the m-bit

partial remainder. The partial quotient will be the first

j-bit group of the final quotient. Example: 01 100 011 is

the first partial-dividend for the same example as in (3).

(5) Write j-bit group next to the right of the partial re

mainder. Call this new number M.

(6) Using M as the new partial dividend, compute the new

partial remainder by the same method as in step (4).

(7) Repeat step (5) and (6) to compute the next partial

quotient and partial remainder.

(8) The last partial remainder will be the final remainder,

and the quotient is obtained by directly assembling all the

partial quotients in order.

Proof of the Algorithm

The above algorithm can be proved mathematically as follows:

5

Given an m-bit fixed-integer divisor

where dm is the most significant bit of D, and any /.-bit

dividend

N = n£-l nZ-2 no

where m = 1 or 0 for i = 5,-1, 5,-2,-----0

(i is a subscript).

By partitioning the dividend into j-bit groups as selected by

the user, N can be represented as:

<t-1 . , M-1 M"2
m bits p-th j-bit group

nij"2 n(i-Dj. ,nj-l nj-2~~ nln0 ,
i-th j-bit group first j-bit group

Since each group has j bits and the LSB of the first group is

ng, the LSB of the second group is n^ and the LSB of the i-th group

is n,. n, .. The p-th group is the highest order j-bit group which is

not included in the m-bit group.

e is the smallest integer that can satisfy both of the fol

lowing two conditions:

(1) 5, + e - m can be evenly divided by j.

(2) e > 1.

Let the i-th j-bit group be denoted by ^N, i.e.,

= n.. t n.. ----nz. -x. and the one m-bit group denoted byi ij-1 ii-2 (i-Dl

that is

= 00--0nn_1----
m bits

6

where the superscripts j and m denote the maximum bit number of the

groups represented; the subscript i denotes the i-th j-bit group; and

have

and D

Hence

2. — (1)

is an m+j bit number and “’n < InD (mN has at least oneSince P

leading zero bit)

we have

2

is an m-bit remainder and of

course P

then

221N

again let

2 (4)

D

= 3,
P

j N
P-1

iN

where isP

= p-1

j N.2(P-3)j
P-2

an j-bit quotient,

m^ denotes the most significant m-bit group. With this notation, we

jQ-2
P

P-1

1N
------ (3)

+ + iN.2(P-2)j

(2)

P P-1

+ 3N-2^k-1^ +-- + Jn-23 + |n

j 2(p-2)J
। P"1

we have

7

m R*2^ + N_N_ = j 2(p-l)j + j Q.2(p-2)j + P-1 P"21N ,2(p-3)j
P p-1 IDy

1N+-- + —2:------------------------------------- (5)
™D

By repeating the same procedure, we get

N = jQ.2(p-Dj + j Q.2(P-2)j +---+ jQ.2(k-1)j
P p-1 kx

+ + jq + -2--- (6)

Recognizing that for each term on the right hand side of the equal

sign of equation (6), the maximum bit number possible is j, and the

order difference between two consecutive terms of (6) is 2^, we get

—— = jQ \Q \Q----jq----jq + —--------------- (7)
my px p-1x p-2x kx lx nip

In other words, the final quotient q of N/D is

q = iq i n i q — Jqx px p-1 p-2x 1

and the final remainder R of N/D is

Parallel Look-Up Implementation

Step (4) of the division algorithm described above can be
implemented with a read-only memory of 2m+^ words of m + j bits each.

For each m + j bit subdividend, the j-bit partial quotient and the

m-bit partial remainder are stored in the ROM addressed m + j as

shown in Figure 1.

8

2m + j
address

m bit
remainder

'—v------- - '—
J bit

quotient
Figure 1: A basic building block

2m + -5 x (m + j) ROM

1

1

1

9

Using this ROM as a basic building block, the division of N/D

can be implemented as shown in Figure 2.

Discussion of the Parallel Look-Up
Implementation

1. For an n-bit dividend, an m-bit divisor and a selected j

value, the total number of ROMs needed is r n +1 - m

where [] denotes the smallest integer which is greater than

or equal to the value of the expression enclosed.
2. Since each ROM unit has 2m + ^ words of m + j bits per word

the total number of bits is

n + 1 - m . „m + j . . . x --- j----] x 2 J x (m + j)

3. Figure 5 lists the number of ROM units needed and the ROM

size for various values of j when m = 5, and N = 16, 24 and

32 respectively. Figure 7 lists the ROM requirements for

m = 8.

4. Comparing Figure 5 and Figure 7, we see that for a selec

ted value j, the total number of ROMs needed increases almost

linearly with n, rather than exponentially as the case that

a single big ROM is used as a direct look-up table.

5. The second column from the right in Figure 5 and Figure 6

shows the total number of bits in all ROMs as a function of

the chosen value of j when the dividend has 16 bits. The

last column gives the ratio of the total number of bits

required by this algorithm to the total number of bits if a
single big ROM of 2"*"^ x 17 (5 bit remainder and 12 bit quo

tient) were to be used for the same 16 bit dividend.

10

Figure 2: Implementation of a divider for fixed-integer divisors
by cascading the basic 2m + ^ x (in + j) ROMs.

AN EXAMPLE: a 12-bit dividend divided by 13 (decimal).

In this case, a 12-bit binary integer is to be divided by the

fixed-divisor 13. Since 13 is a 4-bit binary number, m = 4. If one

chooses j = 2, the basic building block ROM will have 64 x 6 bits

with the contents illustrated in Figure 3.

Using this ROM as a basic unit, a hardware divider for a

12-bit dividend can be implemented by cascading four basic units as

shown in Figure 4. Also shown in Figure 4 is the immediate partial

dividends and partial-remainders for an arbitrarily-selected divi

dend 1127 (decimal) which is equivalent to the binary number

010001100111.

11

12

ADDRESS OUTPUT ADDRESS
DECI
MAL

BINARY DECI
MAL

BINARY
qi qo

uuirui
r r t r3 2 rl r0A5 A4 A3 A2 A1 A0 qi qo r3 r2 rl ro >

Ln
 >

4>
- >
U>
>

lJ>

t>

O

0 0 0 0 0 0 0 0 0 0 0 0 0 32 1 0 0 0 0 0 1 0 0 110
1 0 0 0 0 0 1 0 0 0 0 0 1 33 1 0 0 0 0 1 1 0 0 111-
2 0 0 0 0 1 0 0 0 0 0 10 34 1 0 0 0 1 0 1 0 10 0 0
3 0 0 0 0 1 1 0 0 0 0 11 35 1 0 0 0 1 1 1 0 10 0 1
4 0 0 0 1 0 0 0 0 0 10 0 36 10 0 10 0 1 0 10 10
5 0 0 0 1 0 1 0 0 0 10 1 37 10 0 10 1 1 0 10 11
6 0 0 0 1 1 0 0 0 0 110 38 10 0 110 1 0 110 0
7 0 0 0 1 1 1 0 0 0 111 39 10 0 111 1 1 0 0 0 0
8 0 0 1 0 0 0 0 0 10 0 0 40 10 10 0 0 1 1 0 0 0 1
9 0 0 1 0 0 1 0 0 10 0 1 41 10 10 0 1 1 1 0 0 10

10 0 0 10 10 0 0 1 0 1 0 42 10 10 10 1 1 0 0 11
11 0 0 10 11 0 0 10 11 43 10 10 11 1 1 0 10 0
12 0 0 110 0 0 0 110 0 44 10 110 0 1 1 0 10 1
13 0 0 110 1 0 1 0 0 0 0 45 10 110 1 1 1 0 110
14 0 0 1110 0 1 0 0 0 1 46 10 1110 1 1 0 111
15 0 0 1111 0 1 0 0 10 47 10 1111 1 1 10 0 0
16 0 1 0 0 0 0 0 1 0 0 11 48 1 1 0 0 0 0 1 1 10 0 1
17 0 1 0 0 0 1 0 1 0 10 0 49 1 1 0 0 0 1 1 1 10 10
18 0 10 0 10 0 ,1 0 10 1 50 110 0 10 1 1 10 11
19 0 10 0 11 0 1 0 110 51 110 0 11 1 1 110 0
20 0 10 10 0 0 1 0 111 52 110 10 0 X X X X X X
21 0 10 10 1 0 1 10 0 0 53 110 10 1 X X X X X X
22 0 10 110 0 1 10 0 1 54 110 110 X X X X X X
23 0 10 111 0 1 10 10 55 110 111 X X X X X X
24 0 110 0 0 0 1 10 11 56 1110 0 0 X X X X X X
25 0 110 0 1 0 1 110 0 57 1110 0 1 X X X X X X
26 0 110 10 1 0 1111 58 1110 10 X X X X X X
27 0 110 11 1 0 0 0 0 1 59 1110 11 X X X X X X
28 0 1110 0 1 0 0 0 10 60 11110 0 X X X X X X
29 0 1110 1 1 0 0 0 11 61 1. 1 1 1 0 1 X X X X X X
30 0 11110 1 0 0 10 0 62 111110 X X X X X X
31 0 11111 1 0 0 10 1 63 111111 X X X X X X

X: Don’t Care

Figure 3: A basic Building Block for Division by 13, Choosing j = 2

13

Figure 4: An example showing 1127/13 = 86 + 9/13

14(a)

Value
of j
selected

of ROM needed Words
per
ROM

Bits
per
word

Total
bits for
N = 16 Ratio

N = 16 N= 24 N = 32

j =2 6 10 14 27 7 5376 .00482

j =3 4 7 10 28 8 8192 .00735

j=4 3 5 7 29 9 13824 .0124

j =5 3 4 6 210 10 30720 .0275

j = 6 2 4 5 211 11 45056 .0404

3=7 2 3 4 212 12 98304 .0882

3=8 2 3 4 213 13 212992 .1911

3=9 2 3 4 214 14 458752 .4117

3 =10 2 2 3 215 15 983040 .8823

Figure 5: The total number of ROM’s needed and the ROM size
tabulated for N = 16, 24, 32 and for selected j
values from 2 to 10 for m = 5.

14(b)

Figure 6: The ratio as a function of j.

15

divisor bit lengths = 8

Value
of j
selected

of ROM needed
Words
per
ROM

Bits
per
word

N= 16 N = 24 N= 32

j =2 5 9 12 2io 10

j =3 3 6 9 211 11

j =4 3 5 7 212 12

j =5 2 4 5 213 13

j = 6 2 3 5 214 14

j=7 2 3 4 215 15

Figure 7: The total number of ROMs needed and the
ROM size tabulated for N = 16, 24, 32 and
for selected j values from 2 to 10 for
m = 8.

16

6. The ratio shown in the last column of Figure 5 is drawn

as a function of j in Figure 6. It is obvious from Figure 6

that the ratio and thus the total number of bits increase with

the selected j value.—

7. The implementation cost and propagation delay for a 5-bit

divisor, choosing j =3, is listed in Figure 8.

TI 74S471 PROM is used, as an example, for the 256 x 8 basic

building unit.

8. The implementation cost and propagation delay for an 8-bit

divisor, choosing j =2, is listed in Figure 9. Since there
is no single package PROM with 2^^ x 10 bit organization, a

2"*"^ x 4 PROM 82S137 are combined to serve as a basic building

block. The cost per package, based on a 25-99 purchase, is

taken from the Signetics price list published May, 1977. MOS

Memory were to be used, this cost could be cut down by half.

However, this reduction in cost would be paid for by a longer

propagation delay.

9. Since the size of the ROM used as the basic building block

still tends to increase exponentially with the divisor bit

length m, the cost of parallel implementation will increase

exponentially with the bit number of the divisor. If a large

divisor is to be implemented, it is necessary to modify this

parallel implementation. Two methods that can be used to

improve the parallel implementation for larger divisors are

presented in sections which follow.

17

N=16 N=24 N=32

Basic ROM Size 256 x8 256x8 256 x 8

of Package Required 4 7 10

Cost per Package 4.95 4.95 4.95

Access Time (ns)/pkg. 50 50 50

Total Cost 19.80 34.65 49.5

Total Delay Time (ns) 200 350 500

Figure 8: The implementation cost and propagation delay for a
5-bit divisor when j is chosen to be 3. The basic
building unit used in this example is the TI 74S471
PROM.

18

N=16 ‘ N=24 N=32

Basic ROM Size 1024x10 1024x10 1024x10

IC’s used as basic unit 82S181 &
82S137

same same

of basic units required 5 9 12

cost per 82S181 ($) 31.50 31.50 31.50

cost per 82S137 ($) 11.78 11.78 11.78

cost per basic unit ($) 43.28 43.28 43.28

access time (ns)/basic
unit 50 50 50

Total Cost ($) 216.40 389.52 519.36

Total Delay Time (ns) 250 450 600

Figure 9: The implementation cost and propagation delay for
an 8-bit divisor, choosing j =2. A 2"*"® x 8 PROM
82S181 and a 2^^ x 4 PROM 82S137 are combined to

serve as a basic ROM unit

19

Sequential Look-Up Implementation

When the divisor is long, the cost of the individual ROM can

be great if a straight table-look-up scheme is implemented. The size

of the individual ROM increases exponentially with the number of bits

used in the divisor. When this fact is combined with the fact that

the number of these ROMs needed in a parallel table-look-up implemen

tation increases almost linearly with the size of the dividend, it

becomes clear that the total cost of such an implementation can be

quite large, indeed. A different implementation can provide some

reduction in the size of the system. This implementation is designated

as the look-up-add implementation instead of the straight-look-up

scheme that has been described up to this time. This look-up-add

implementation uses some of the memory in a sequential manner, thus

resulting in considerable economy when the divisor and dividend are

both large.

Since each of the basic ROM modules used in building the sys

tem has the same size and same bit pattern as the others, the same

ROM can be used over and over in a sequential mode. The remainder of

each operation along with the next j-bit group of the dividend is

shifted left j-bits at a time, so that it will be in the proper place

for the next part of the table-look-up. Furthermore, if the output

quotient of the ROM is right-rotated back to the shift register, that

register will contain both the quotient and the remainder when the

divide process is completed.

A sequential look-up implementation using this approach

appears in Figure 10, where the dividend has been partitioned into

20

j-bit groups and at least one leading zero bit has been added to form

the most significant m-bit group.

Figure 11 gives an example of the timing relationship between

the control signals. First, the tri-state output of the input regis

ter is enabled and the input dividend is loaded into the input regis

ter and then into the shift register. After the input data is loaded

into the shift register, the tri-state buffer of the input register is

disabled and that of the ROM is enabled. After the maximum access

time of the basic ROM, the highest order m + j bits of the shift regis

ter are updated by loading the m+j bits output of the ROM into the

shift register. This is then followed by j fast-shift-right clock

pulses to rotate the shift register by j bits. This process repeats

cyclically until the final remainder appears as the most significant

m bits of the shift register and the final quotient appears as the

other bits of the shift register.

The shift register in Figure 10 can be replaced by a general

storage register by properly hardwiring the output lines of the ROM

and of the storage register to the input lines of the register as

shown in Figure 12.The m-bit remainder of the ROM are fed back to the

most significant m-bit inputs of the storage register. The j-bits of

the ROM are applied as the least significant j-bits of the input.

The output lines of the register, besides the highest order m + j

lines which are fed to the ROM, are applied to the input of the

register in between (see Figure 12).

The advantage of the hardwiring is two-fold. First, the

j-bit shift operation can be replaced by a single loading operation.

This speeds up the shift operation by a factor of j. Second, the

21

Figure 10: Sequential implementation of a hardware divider for
fixed-integer divisors.

22

load signal of
the input register

output enable of
the input register ,

output enable
of ROM

load clock of
shift register

shift clock of
shift register

J clock

Figure 11: Timing example for Figure 10 assuming
every signal is high-active or positive
trigger.

23

Figure 12: Hardwired rotate left j bits
t is the total number of bits of the
storage register.

■2A

shift register can be replaced by a more inexpensive storage register

and the timing circuitry is relatively simple. The implementation can

be more economical.

Figure 13 illustrates the sequential look-up implementation in

step-by-step manner. This example shows the intermediate output of

the storage register and basic ROM for division of decimal numbers

1127 by 13.

Discussion of the Sequential Look-Up
Implementation

(1) The sequential look-up implementation process changes the

hardware requirement from several identical basic modular

ROMs to a single modular ROM with a simple timing circuit and

a storage register. (The input register is not considered as

an additional hardware requirement, since it is required in

both cases, though it does not have to be tri-state in the

parallel implementation.) This will reduce the implementation

cost to a different extent according to the bit length of the

dividend and divisor.

(2) Figure 14 gives a comparison of the total cost of imple

mentation and the total delay time of the sequential implemen

tation versus the parallel implementation when the divisor is

eight bits long. The corresponding information for the

parallel implementation is copied from Figure 9. A $40.00

implementation cost is estimated for the timer. This, plus

the cost per basic ROM ($43.28) and a few dollars for the

storage registers, will make thg.estimated total cost of

$90.00. Although any larger dividend takes more storage

25

Loading Shift
Register 0 1 0 0 0 1 10 0 111

Input
ROM 0 10 10 1

First
Shift

Register 0 10 0 10 0 1110 1

Rotate ROM 0 10 10 1

Second Shift
Register 0 10 10 1 110 10 1

Rotate
ROM 0 110 0 0

Third Shift
Register 1 0 0 0 1 1 0 10 10 1

Rotate
ROM 10 10 0 1

Fourth Shift
Register 10 0 10 0 0 10 110

Rotate s---- v---- / x-----
Remainder quotient

Figure 13: The intermediate output of the shift register
and the basic ROM by the sequential implemen
tation of 1127/13. Refer to Figure 4 for
comparison.

26

N = 16 N = 24 N = 32

Total
Cost
($)

Parallel 216.4 389.52 519.36

Sequential 90.0 85.0 85.0

Propagation
Delay
(ns)

Parallel 250 450 600

Sequential 375 675 950

Figure 14: Comparison of sequential implementation versus
parallel implementation for an eight bit divisor.

27

space, the cost of this storage is relatively small compared

to other costs ($0.81 per 6-bit 74174 register). Hence, the

same cost is assumed for all dividends.

(3) A propagation delay time of 25 ns for type 74174 regis

ters is added to the 50 ns delay time of the basic ROM to give

the 75 ns delay time per rotating operation. The total delay

time given in Figure 14 is calculated by multiplying the num

ber of rotating operations by 75 ns.

(4) It is obvious from Figure 14 that the sequential imple

mentation cost stays constant as N (the total number of bits

of the dividend) increases.

(5) Sequential implementation has longer delay time.

Look-Up-Add Implementation of the
Basic Building Block

The minimum size of the basic building block is 2m + ^ x (m + 1)

for an m-bit divisor in a straight look-up implementation. A 16-bit
divisor, would need a ROM of at least 2"*"^ x 17 to implement a basic

building block. Since a ROM of this size is impractical by today's

technology, another method must be sought in order to make the imple

mentation practical if the divisor is large.

Each basic building block has (m + j) address lines. These

(m + j) lines can be partitioned into two groups, the most significant

(j+1) bit group and the remaining least significant (m -1) bit group.

Thus the (m + j) bit dividend can be regarded as the sum of two com

ponents. The first component, component A, is an (m + j) bit number

and is formed by adding (m - 1) bits of 0's to the right of the (j+1)

28

bit group. The second component, B, is an (m -1) bit number and is

the same as the (m - 1) bit group.

By the division property of (A + B)/c = A/c + B/c, we know that

the final quotient and remainder can be computed from the quotient and

remainder of each component. Since component B is an (m - 1) bit num

ber, there is no quotient directly generated from component B. Com

ponent A, although it is an (m + j) bit number, has only (j +1)

significant bits. The quotient and remainder generated from component
A can thus be directly looked-up from a 2+ x (m + j) ROM. The

remainder from component A are then added to component B. The sum,

(sum S), is always less than twice the divisor, since both component

B and the remainder from component A are less than the divisor.

The final quotient and remainder can be derived from the sum S

and the quotient from component A as follows:

If sum S is less than the divisor, sum S itself is the final

remainder, and the quotient from component A is the final quotient.

If sum S is not less than the divisor, the final quotient is one plus

the quotient from component A, and the remainder can be extracted by

subtracting sum S by the divisor.

From the above introduction, it is clear that a basic building

block for large divisors can be implemented as shown in Figure 15.

The single line output from the comparator is fed to the carry input

of an j bit adder. The sum from the m bit adder is applied to the

minuend part of the subtractor. The subtrahend to the subtractor is

either zero or the divisor depending on the output of the comparator.

The look-up-add implementation for an 8-bit divisor 1101 0101

(decimal 213) is shown in Figure 16. A 12-bit number 1011 1101 0011

Figure 15 Look-up-add implementation of the basic building block.

30

(decimal 3027) is arbitrarily selected as the dividend. Since this is

an example of m = 8 and j = 4, the most significant 5 bits (10111) of

the dividend are applied to the address input of the 32 words by 12

bits ROM. The 4 bit quotient 1101 and the 8 bit remainder 1010 1111,

from the 12 bit component 1011 1000 0000, appear at the output part of

the ROM.

The subtractor in Figure 15 is replaced by an adder with the

addend lines hardwired as shown in Figure 16. The lines corresponding

to the "1" bit in the 2’s complement of the divisor are tied together

and connected to the comparator output. The lines corresponding to

the "0" bit are tied to ground. Hence, if the comparator output is 1,

the 2’s complement of the divisor is added to the sum of the first

m bit adder. If the comparator output is 0, nothing is added and the

sum of the first adder appears as the sum of the second adder and as

the final remainder.

Discussion of the Look-Up-Add Implementation

(1) For an m-bit divisor and a chosen value of j, the look

up-add method changes the hardware requirement from a
2m + ^ x (m + j) ROM to a smaller 2^ + x (m + j) ROM, two m-bit

adders, a j-bit incrementer and a (m + 1) bit comparator. This

reduces the ROM requirement by a factor of 2ni

(2) The word size of the new ROM is 2^ This is not a

function of the bit length of the divisor. Hence no matter

how large the divisor is, the ROM will have the same word

size.

0

Remainder

DIVISOR=11010101

Figure 16: Example showing look-up-add implementation for 3027 t213

32

(3) Besides the j-bit incrementer (or adder), the hardware

cost of the comparator and the adders is a linear function of
m. Since the cost of the 2^ x (m + j) ROM is also a linear

function of m. We can conclude that the look-up-add implemen

tation cost will increase nearly linearly rather than exponen

tially with increases in the bit length of the divisor.

(4) It was suggested that in the parallel look-up implementa

tion, a small j be selected to reduce the total number of bits.

(See Figure 5 and Figure 6). In the look-up-add implementa

tion, present technology permits the choice of a slightly

larger value, around 8. The ROM is not the major cost in the

basic building block and a larger value of j reduces the total

number of basic building blocks needed. For example, a 24-bit

dividend divided by a 16-bit fixed-integer divisor can be

processed by a single basic building block if j is chosen to

be 8. The total hardware requirement will be a 512 x 24 ROM,

two 16-bit binary adders, an 8-bit incrementer and a 17-bit

comparator. The division time is in the range of 200 ns, if

one uses an 82S141 for the 512 x 24 ROM, a type 7483 for the

adder and type 7485 for the comparator.

(5) One shortcoming with the look-up-add implementation is

that it increases the total chip count. It is not suited for

parallel implementation since the circuitry has to be dupli

cated in each basic building block. But when used in a

sequential implementation, it is a powerful method to process

very large dividends and divisors. For example, a 64-bit

dividend divided by a 32 bit divisor can be processed in

33

four sequences with j = 8. The division time is in the range

of 1.2 psec with an estimated 300 nsec delay time per sequence.

Hardware Divider for Small
Variable-Integer Divisors

Several methods of implementing a hardware divider for fixed-

integer divisors have been presented in the previous sections. An

interesting question arises at this point: "Can any of these methods

be modified to implement a general purpose hardware divider for any

variable divisors, or at least for small variable-integer divisors?"

An interesting tentative approach is to try adding the m bits

of the divisor to the address of each ROM in a parallel implementation.
The size of each ROM is hence enlarged by a factor of 2™ from 2m + ^

, o2m + -i , o2m + i , , j . „ nmwords to 2 J words. The 2 J words can be partitioned into 2
regions of 2™"*"^ words each. The region number is the most signifi

cant m bits of the address. The contents in each region will be the

quotient and the remainder of a division. The divisor of this divi

sion is the region number, the dividend is the less significant m + j

bits of the address.

To make the parallel implementation compatible with this

approach, a minor modification, (other than adding m bits to the

address of each ROM), must be made. This modification is associated

with the first stage ROM. We have assumed that a (m + j)-bit dividend

divided by an m-bit divisor will have an j-bit quotient. This is

true only under the condition that the most significant bit of the

m-bit divisor is a "1", and the (m + j)-bit dividend is less than the

divisor. If the divisor can be any m bit number including 000-- 01,

the quotient will have the same number of bits as the dividend in

34

the worst case. Hence a (m + j)-bit space must be reserved for the

quotient of the first stage ROM. This increases the size of the first
stage ROM to 22™"*"^ x (2m 4-j)

The m-bit remainder from the first state ROM will be less than

the divisor, hence a j bit space will be enough for the quotient of

the ROM's from the second stage and on.

A parallel implementation of a general purpose hardware divi
der is shown in Figure 17. The first stage ROM has 2^m + ^ x (2m+ j)

bits. The other stage ROM's have 2^™+ x (m + j) bits.

m = 16). This is not practical by today's technology.

Figure 18 shows the sequential implementation of a general

purpose hardware divider. The circuitry illustrated in Figure 10,

with the m bits of the divisor added to the address of the ROM, is

represented by the sequential divider block in Figure 18. The first

stage ROM is not included in this block, since it is different from

all other ROMs.

The proposed approach represents a simple means of implemen

ting a general purpose hardware divisor. It is very efficient for

small divisors and can be implemented either in parallel or sequen

tial configuration. For a divisor with medium length, sequential

implementation with the look-up-add method can reduce the size of
memory required for the basic building block from 2^ni+^ words to

2m + j +1 Words with the aid of two 8 bit adder, a 9 bit comparator

and a j bit incrementer. For a large divisor, say 16 bit, a basic
18 building block will require a ROM of 2 words at least. (j = 1,

Q

-^N
P

1N P-1

oN p-2

m bits
divisor

f

Figure 17: Parallel implementation of a general purpose hardware divider for small
variable-divisors. Refer to Figure 2 for symbol definition.

p-i”
o 2N p-2

1N

m bit
divisor

m + jQ
P

quotient
from

sequentia
divider

R

U)
O'

Figure 18: Sequential implementation of a general purpose hardware divider
for small variable divisors.

37

Applications

EXAMPLE 1: Sector Location in a Track-Organized Disk

In this example, it is desired to locate a physical sector in

a 19 sectors/track disk. The sectors are to be addressed contiguously

independent of track boundary. In total, the disk has 256 x 19

physical sectors. In order to move the head to a new physical sector,

the disk controller would have to divide this new address by a fixed

divisor 19 to translate to its corresponding track and sector number.

Since 256 x 19 has a 13-bit dividend and a 5-bit divisor, the

divider can be implemented using four 256 x 8 ROMs (choosing j = 3;

see Figure 5).

EXAMPLE 2: BCD-to-Binary Converter

The look-up-add method can be applied also for BCD-to-Binary

conversion. A 6 decade BCD number is selected here as an example to

illustrate the general algorithm. The result will be compared to the

74184 converter.

By partitioning the 24—bit BCD number into 3 bytes, the 6

decade number can be viewed as a sum of three components. The first

component is a 24 bit number and is formed by adding 2 bytes of 0’s

to the most significant byte. The second component is a 16 bit num

ber. It is formed by adding 1 byte of 0’s to the center byte. The

third component is the same as the least significant byte.

Each of the three components has only 8 bit significance. A

256 x 20 ROM can be programmed for the first component. Similarly

a 256 x 14 and a 256 x 7 ROM can be built for the second and the

38

third component respectively. By summing the output of the three

ROM's, we will have the final converted binary number.

Each ROM is a direct look-up table with the converted BCD

number stored. For example, if the converting BCD number is 129538,

the output from the 256 x 20 ROM will be 0001 1101 0100 1100 0000

which is the binary representation of decimal 120000. The output from

the 256 x 14 ROM is 100101 0001 1100 which is equal to decimal 9500.

The output from the 256 x 7 ROM is 010 0110 which is decimal 38. The

sum of the three output is 0001 1110 1010 0000 0010, which is exactly

equal to decimal 129538.

From the above example, one might have observed that the

least significant 4 bits output of the 256 x 20 ROM and the least sig

nificant 2 bits output of the 256 x 14 ROM are 0’s. This is not a

particular outcome of this example but instead is a universal feature.

The proof is as follows:

The unit of the address of the 256 x 20 ROM is decimal 10000.

This is equivalent to binary 0010 0111 0001 0000. Since the least

significant four bits of the unit is 0000, any integer multiple of

the unit should keep this attribute. This argument applies for the

256 x 14 ROM.

Taking advantage of this feature, the 256 x 20 ROM can be

reduced to 256 x 16, and the 256 x 14 ROM can be reduced to 256 x 12.

Figure 19 shows a 6 decade BCD to binary converter. The

total hardware requirement is four 256 x 8 PROM's, one 256 x 4 PROM

and seven 4-bit binary adders. The total delay time is the sum of

the access time of the ROM's, the 12 bit binary addition time and the

16 bit binary addition time. If TI 74S471, TI 74S387 and 7483A are

39

used for the 256 x 8 ROM, the 256 x 4 ROM and the 4-bit binary adder,

respectively. The total delay time will be 136 nsec typically.

(50 nsec for 74S471, 43 nsec for adding two 12 bit or 16 bit words as

listed in the TI TTL and MEMORY DATABOOK).

Figure 20 gives a performance comparison between this look-up-

add method and the TTL 74184 method. It is obvious that the look-up

add method is much better than the TTL 74184. Its use reduces the

cost from $79.8 to $28.7, the delay time from 364 ns to 136 ns, and

the chip count from 28 to 12. Hence, it is strongly recommended that

the look-up-add method be used to replace the conventional TTL 74184

method.

EXAMPLE 3: Binary-to-BCD Converter

The look-up-add method can be applied to implement a binary

to BCD converter. A 16 bit binary number is selected as an example

to illustrate this method.

Again, the 16 bit number is split into two bytes. The 20 bit

BCD representation of the first component and the 10 bit BCD represen

tation of the second component are stored in a 256 x 20 and a 256 x 10

ROM, respectively. The first component is formed by adding one byte

of 0’s to the right of the high-order byte of the 16 bit number. The

second component is the same as the low-order byte.

The least significant of the 20 bit output from the first

component is always a zero. Since this one bit saving does not result

in any significant cost reduction, it is ignored in the following

descriptions.

The 20 bit output and the 10 bit output can be added decimally

by a 20 bit BCD adder. The sum will be the final answer.

40

Figure 19: A 6 decade BCD to binary converter

Co
nv

er
te

d
20

 b
it

 b
in

ar
y

nu
mb

er

41

FEATURES COMPARED 74184
method

look-up-add
method

factor
improved

of chips required
74184 ($2.85 each) 28
74S471 ($4.95 each) 4
74S387 ($3.65 each) — 1
7483A ($0.75 each) 7

total cost ($) 79.8 28.7 2.78

total delay time (ns) 364 136 2.68

total chip counts 28 12 2.33

Figure 20: Comparison between the 74184 converter and the
look-up-add converter for a 6 decade BCD to
binary conversion.

Figure 21 gives a comparison between this look-up-add method

and the conventional 74185 method. It shows that the look-up-add

method improves the typical delay time from 200 ns to 100 se and

reduces the chip count from 16 to 10. Although the figure shows that

the implementation cost is slightly higher, this is the result of the

high cost of the Signetics 82S83 4-bit BCD adder. The BCD adder is

more expensive than the binary adder mainly because of limited demand.

Conclusion

Several methods of implementing a hardware divider for fixed-

integer divisors have been demonstrated. For small divisors, these

methods can be expanded to implement a general purpose hardware

divider. The applications of these methods include BCD-to-binary

conversion and binary-to BCD conversion. The resulting converters

are simpler and faster than other parallel-conversion schemes and

the cost is much less for BCD-to-binary converter and slightly higher

for binary-to-BCD converter.

43

FEATURES COMPARED 74185
method

look-up-add
method

factor
improved

of chips required
74185 ($2.85 each) 16 —
74S471 ($4.95 each) 3 —

74S387 ($3.65 each) — 2 —
82S83 ($6.75 each) — 5

total cost ($) 45.6 54.4 .84

total delay time (ns) 200 96 2.08

total chip counts 16 10 1.60

Figure 21: Comparison between the 74185 method and the
look-up-add method for implementing a 16 bit
binary-1 o-BCD converter.

REFERENCES

(1) "The IBM System/360 Model 91: Floating Point Execution Unit,"
IBM Journal (January 1967).

(2) Jacobsohn, David H. "A Combinatoric Division Algorithm for Fixed-
Integer Divisors," IEEE Transactions on Computers (June
1972).

(3) "Making Small ROM’s Do Math Quickly, Cheaply and Easily," Elec
tronics (May 11, 1970).

(4) "Computing the Square Root of Binary Numbers," Computer Design
(August 1972).

(5) "Binary-to-BCD - Conversion with Complex IC," Computer Design
(Sept. 1970).

(6) "Type SN 54/74185 A Binary to BCD Converter," Databook. Texas
Instruments.

(7) Computer Design Development. (1976).

44

