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ABSTRACT

The purpose of this dissertation is to examine the structural 

properties of matrices whose entries are either 0 or 1. There are 

three main results. In Theorem 1, the author shows that the maximal 

number of positive entries (arcs) in an n x n nearly reducible matrix 

(minimally connected graph with n vertices) is 2(n - 1) and the matrix 

has a canonical form. In Theorem 2, he argues that the maximal number 

of positive entries in a nearly decomposable n x n matrix is 3(n - 1) 

and is obtained uniquely at a canonical matrix. In Theorem 3, he 

examines the structure of those nearly decomposable (0,l)-matrices 

whose permanent equals cr(A) - 2n + 2 where o(A).is the number of 

positive entries in A.
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CHAPTER I

HISTORICAL BACKGROUND AND DEFINITIONS

In order to argue inductively on the number of positive entries in a 

fully indecomposable matrix, Knopp and Sinkhorn developed in [8] a canon­

ical form for a fully indecomposable matrix which becomes partly decompos­

able when any positive entry is replaced by a zero. They called such 

matrices nearly decomposable and when in canonical form, such matrices are 

easily adaptable to Inductive arguments on their dimension. They used their 

canonical form to prove that if A is a fully indecomposable matrix all of 

whose- positive diagonals are equal, then there is a unique positive matrix B 

such that it has rank one and a.. = b.. if a > 0. This author used their 
ij iJ

form in [7] to prove an analogous theorem for a fully indecomposable matrix 

each of whose positive diagonals has the same sum. Sinkhorn used the canon­

ical form in [14] to argue that if A is an n x n (0,1)-matrix with exactly 

three ones in each row and column, then perA > n. Mine used the canonical 

form in [11] to argue that

Theorem A. If A is an n x n fully indecomposable (0,1)-matrix, then 

cr(A) - 2n + 2 < perA.

where o(A) is the number of positive entries in A and perA is the permanent 

of A. At this point. Sinkhorn and this author began to study the structure 

of an irreducible matrix which becomes reducible when any positive entry is 

replaced by a zero. In analogy to nearly decomposable matrices, they called 

such an irreducible matrix nearly reducible. They derived in [6] a canonical 

form for a nearly reducible matrix which plays the same role in the class 

of irreducible matrices as the canonical form for a nearly decomposable
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matrix does in the class of fully indecomposable matrices. Using this 

canonical form, they showed in [6] that if A is a nearly reducible 

(0,1)-matrix, then perA < 1. This author then discovered that by

Theorem B. If A is an n x n (0,1)-matrix xvith a positive main diagonal, 

then A = A1 + I is fully indecomposable if and only if A' 

is irreducible.

(where I is the n x n identity matrix) of Brualdi, Farter, and Schneider 

[2], he could trivially prove

Theorem C. If A is an n x n nearly decomposable (0,1)-matrix with a positive 

main diagonal, then A = A* + I where A1 is nearly reducible.

At this point, Hartfiel found in the literature that an irreducible matrix 

was the same thing as a strongly connected graph [15, p. 20]. He also found 

that nearly reducible matrices had been studied using graph techniques under 

the name of minimally connected graphs [1, pp. 122-4]. Using a theorem on 

minimally connected graphs, Hartfiel derived a canonical form for a nearly 

reducible matrix. Using this canonical form and Theorem C, he derived a 

canonical form for a nearly decomposable matrix. Both of these forms in 

[5] were refinements of the previously mentioned ones. Using his forms, he 

simplified in [5] the proofs of the previously mentioned theorems in [14] 

and [ . 6].

Thus the author studies the structural properties of these matrices in 

the hope that such information will inhance their usefulness. There are 

three main results. In Theorem 1, the author shows that the maximal number 

of positive entries (arcs) in an n x n nearly reducible matrix (minimally 

connected graph with n vertices) is 2(n - 1) and the matrix has a canonical 



form. In Theorem 2, he argues that the maximal number of positive entries 

in a nearly decomposable n x n matrix is 3(n - 1) and is obtained uniquely 
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at a canonical matrix. In Theorem 3, he examines the structure of those 

nearly decomposable matrices for which Mine's inequality in Theorem A is 

equality.

Most of the matrix terminology can be found in [10] and the graph 

terminology in [1]. Since the author does not make use of graph theoretic 

terms in the proofs of his main results and since the dissertation can be 

read by simply suppressing the references to graph theory, the author will 

not explicitly define the graph terminology. He has included these refer­

ences in order to acquaint the reader with the connections that do exist.

As the author explains his terminology, he will indicate certain facts 

which are trivial but crucial.

A (0,l)-matrix is a matrix all of whose entries are 0 or 1. Let 

denote the n x n matrix which has 1 in the (i,j) position and zeros else­

where. Let A be an n x n matrix and let a be a nonempty, proper subset of 

{l,...,n} ordered increasingly. ThenA[a|o') denotes the submatrix of A whose 

rows are indexed by a and whose columns are indexed by the complement of a?

T in {l,...,n} ordered increasingly. The transpose of A, denoted by A , is 

the n x n matrix whose (i,j) entry is the (j,i) entry of A,

A diagonal of a square matrix is a set of entries from the matrix, one 

from each row and one from each column. If g is a permutation of {l,...,n}.

then the diagonal associated with g is a1P(D ,a ... Every diagonal ng(n)

corresponds to a permutation. The permutation matrix corresponding to p is

the matrix which has ones in the (1, p(l))., (n, j3(n)) positions and zeros

elsewhere. A positive diagonal is a diagonal in which a
iP(i)

> 0.for all i.
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The product of the diagonal P is the product of the through anp^n^ •

The permanent of A, denoted by perA, is obtained by taking the product of 

each diagonal in A and then taking the sum of these products.

An n x n nonnegative matrix A is partly decomposable if there is an 

s x t zero submatrix where s + t = n. By convention, the 1x1 zero ma­

trix (0) is partly decomposable. An n x n nonnegative matrix A is fully 

indecomposable if A is not partly decomposable. An n x n fully indecom­

posable matrix A is nearly decomposable if A - is partly decompos­

able for each a.. > 0.
ij

An n x n nonnegative matrix A is reducible if there is a nonempty, 

proper subset a. of {l,...,n} such that A [o' of) =0. An n x n nonnegative 

matrix A is irreducible if A is not reducible. An n x n irreducible matrix

A is nearly reducible if A - a. .E. . is reducible for each a,. > 0. (In -1,----------------- 13 13 13

graph theory, minimally connected graph with n vertices corresponds to an

n x n nearly reducible matrix and arc corresponds to positive entry.) 

Let A = be an n x n nonnegative matrix. The nonzero matrix A

has doubly stochastic pattern if every positive entry lies on a positive

diagonal. Two positive entries a . and a . are chainable if there is 
11J1 kJk

a sequence a. . ,...,a . of distinct positive entries of A such that for
1131 Vk

1 < r < k, i = i or j = j ,  ; and if 1 < h+1 < p < k, then i, i and = = ’ r r+1 Jr Jr+1 = ’ h p

7^ j . Such a sequence is called a chain. Two different chains are dis­

joint chains if, with the possible exception of the endpoints, it is true 

that a^ is a term of one if and only if k is not the row index and m is 

not the column index of any term of the other. The concept can be visu­

alized by the movements of a rook with stationary positions on positive 

entries of A. Observe that the rook moves only once in each row (column) 

and that once it leaves a row (column) it cannot return to that row (column).
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Let

connects

entries of Apositive

observation which we shall use below and in the proof of Theorem

that there is a nonempty, proper subset ot of [1,

path.

Let A be an n x n nonnegative matrix. be connectedThe i-th row can

by a path to the j-th column if there is a With the

only if (2) every row and column contains at least one positive entryand

and two positive entries can be connected by a path if and only ifevery

(3) (2) implies (3) is im-every

mediate. and

cannot be

j e ct and p i a .which can

By definitionLet k e a

diction.

reducible if and only if the directed graph corresponding to it is strongly

and a. .

(1) and that a.. > 0 
ij

there is some a , >C rk

connected.) We shall use the above equivalences in the proofs of Propositions

and m 4. ct and assume a.km

an n x n nonnegative matrix. There is a path which

n] such that A[q'| o?) = 0 

result follows

To show (3) implies (2), consider a„ > 0

•••’ark'

row can be connected to any column. That

connected. (This condition is usually stated, by saying that a matrix is ir-

above definitions, one can argue that for

there is a path a., ,...,a jk’ ’ mp

implies (1) follows from our

a > 0. By (3), pq

is a path. That (2)

a^ is a path. Then if i £ (X, q £ a. The 

immediately by induction on the number of terms in the

0 by a path. Let a -

a. . of
Vk 

make an

a. . > 0 if there is a sequence a. . ,...
Vk Vi

such that j = i ,, for 1 < r < k. We nowJ r r+1

Hence a..,a.. ,...,a ,a ij’ jk’ mp’ pq

above observation. Assume

path a. ,..,,a .F i-p qj

n > 1, (1) A is irreducible if

A = (a .) be

connected to a
pq

be connected to a by a path}. Observe that

3. Assume

there is a path a£j»

Hence aa a, is a path. Thus m e a which is a contra- ij’ ’ rk km r
Thus a^m = 0 or A[o'jo') = 0 which contradicts (1). Hence (1) implies

(2). Because of (2) and (3), an irreducible matrix is said to be strongly

3 and 4.



CHAPTER II

REPHRASING OF CURRENT RESULTS IN THE LITERATURE, 

TERMINOLOGY, AND PRELIMINARY RESULTS

Since we will be concerned with structural properties of matrices, we 

shall assume that for the remainder of this dissertation all of the matrices 

are (0,1)-matrices.

We shall use

Theorem D. Assume A is an n x n (n > 1) matrix which has the form

a^ 0 ... 0 EjJ 

1 1
e2 a2 '** ° °

A = .....................................
0 0 ... a1 0

1
= 0 for 1 < i < p, e^ > 0 for 2

are 1 x (n-p) and (n-p) x 1 matrices, respectively, each of 

which contains a single positive entry.

(n-p) irreducible matrix. Then A is irreducible [5].

Observe that if A is an n x n matrix with n > 1 which has the form of 

Theorem D and a positive main diagonal, then it follows by Theorem B that A 

is fully indecomposable. We shall make use of this observation in the proof 

of Theorem 2.

P
0 0 ... e\. k 

p+1 1

where 1 a.
1

1 V11 525 Ep+1

and A^ is an (n-p) x
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We shall need the following two theorems and notation.

Theorem E. If A is an n x n nearly reducible matrix with n > 2, then there

is a permutation matrix P such that

T PAP

aj 0 ... 0

e| ... 0 0

where a} = 0 for 1 < i < p. :
------— 2. ----- = = rl

1 1e. > 0 for 2 < i < pn ; E, andi ----- = =1 1 -----

are 1 x (n-p^) and (n-p^) x 1 matrices, respectively.E1 Ep1+1

each of which contains a single positive entry; and A^ is an 

(n-pp x (n-pp nearly reducible matrix [5J.

If A^ is 1 x 1, we shall call A the trivial nearly reducible matrix and 

say that A has 0 decompositions. If A^ is not 1 x 1, then we can place A^

Tin the form of Theorem E without destroying the form of PAP . Assume A^ has

T Tthe form of PAP and is indexed as PAP is with 2 replacing the superscript

1, the subscript 1 on p, and the subscript 1 on A^, etc.., for A^, .,A^ where

A^ is a trivial matrix. If we assume that each of these matrices, A^,..., 

has been placed in the form of Theorem E, then we shall say that A is in ca 

nonical form with k decompositions.

Because of
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Theorem F. If A is an n x n nearly decomposable matrix (n >2), then there 

are permutation matrices P and Q such that PAQ = A' + I where 

A’ is a nearly reducible matrix which has the form of Theorem E 

and A^ in PAQ is nearly decomposable [5 J.,

we shall also use the terminology which follows Theorem E for nearly decom­

posable matrices.

Let us outline a proof of Theorem F. Assume a > 0. By

Theorem G. A matrix A is fully indecomposable if and only if it is chain­

able and has doubly stochastic pattern [8].,

T it follows that there is a positive diagonal d which contains apq- Let P 

be the n x n permutation matrix corresponding to d. Then PA has a posi­

tive main diagonal (which contains a^^). Since n > 2, by Theorems C and

TE, there is an n x n permutation matrix Q such that Q(PA - In)Q has the 

form of Theorem E, Thus we need only to argue that A^ is nearly decompos-

T able in Q(PA)Q . By Theorem B, it is fully indecomposable. If there is 

some a„ in A^ such that the matrix obtained by replacing a^ > 0 with zero 

is fully indecomposable, then by our remarks after Theorem D, A - a£jE.j is 

fully indecomposable which contradicts our assumption that A is nearly de­

composable. Hence A^ is nearly decomposable.

We shall let cr(A) denote the number of positive entries in the matrix

A. If A is an n x n irreducible matrix with n > 1, then each row and column 

must contain at least one positive entry. Hence a(A) > n, if p(A) = n, then 

A is nearly reducible. Thus there is an n x n permutation matrix Q such

T 
that QAQ has the form.of Theorem E. Since there is only one positive entry 

in each row and column, A^ must be 1 x 1. Hence if cr(A) = n, QAQT is the 
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trivial matrix. If A is an n x n fully indecomposable matrix with n > 2,

then every row and column has at least two positive entries. Hence 2n <

<j(A). If 0(A) = 2n, then A is nearly decomposable. Thus by a similar argu­

ment to the one above, if o(A) = 2n, then PAQ is the trivial nearly decom­

posable matrix.

In examining Theorem G, this author wondered how the two properties 

behaved in A - a.,E.. = B for a,. > 0.
1J

By using the Frobenius-Konig Theorem

that every positive entry of an n x n matrix lies on a positive diagonal if

and only if there does not exist an s x t zero submatrix such that s + t = 

n + 1 and the Birkhoff Theorem that a matrix has doubly stochastic pattern 

if and only if every positive entry lies on a positive diagonal (for proofs 

see [10, pp. 97-8] ), he could trivially prove that if A is an n x n nearly 

decomposable matrix, then B does not have doubly stochastic pattern. How­

ever he discovered (Proposition 2) that chainability was invariant. First 

let us prove a preliminary result which is of interest in its own right.

Proposition 1. If A is an n x n fully indecomposable matrix, then every 

two positive entries a^ and a^ are chainable by two disjoint chains.

Proof: The proposition is true for n = 1. Assume n > 2. We shall prove 

the conjecture by induction on o(A). By our previous remarks, o(A) > 2n. 

If o(A) = 2n, A is the trivial matrix. In this case, the choice is obvious. 

Assume the conjecture is true for all fully indecomposable n x n matrices B 

such that 2n < o(B) < o(A). We need to consider two cases - (1) there is 

some a„ > 0 such that A - a.£jE^j is fully indecomposable or (2) A is nearly 

decomposable. Let us consider (1). By the induction hypothesis, the prop­

osition is true for A - a. .E. ,. Thus we need only to argue that for a > 0 
ij PH
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fully

+ i.

which

b which connects

then we are finished

must cross one of them

The

true

canonicalis in the trivial matrix

Hence n-^

one takes a chain in

Theorem G) and the appro-which joins a (which we know to exist by

priate elements outside

nonical form) similar

argument to the one which

by choosing

the desired disjoint chains

The reader should observe that one can Proposition 1 and the methoduse

a 
pq

a 
pq

and a 
us

chain formed by taking the terms a^^ b and the terms a tu

connect a.is

By the induction hypothesis, there are two disjoint

entries in

a . and a 
rj

If neither a^

one in (1), one can find two disjoint chains -

F, we can assume that A

where (p,q) "f (i,j), there are two disjoint chains which connect a_ and

nor are disjoint from b, then b

r-th row and e^

chains a^ and a^

a of vw

Assume it is true for 1 < m < n. By Theorem

If a,. and a are both not in An 
ij pq 1

indecomposable, there are positive entries a^g and

and b or a^ and b are disjoint chains

a. . and a are 
ij pq

form. Since o(A) > 2n, A cannot be

of a^ is disjoint from a^

be the first terms in a^ and b, respectively, such that t = v or u = w

Assume a.. is not in A. and a is. Then by a ij 1 pq

the obvious elements not in A^, one obtains

connects a and a and one which connects 
pq rt

In case (2), we use induction on n. If A is 2

first. Assume b crosses a, first. Let a and a1 tu vw

Thus A^ satisfies the induction hypothesis. Hence if

x 2, the proposition is

of A^ (the choice is uniquely determined by the ca-

of proof in case (1) with the a-pa2> an<^ to show that for any three

and ej be the

; e"*" ,. lies in the 
p.j+1

t be two positive us r

both in A., we are finished. Let e'*" , 
1 Pt+1

11 positive entries in and E^, respectively. Assume

lies in the s-th column. Let a and a

a . Since A is 
pq

a .» s j and r rj ' J

and a . By Theorem G, there is a chain 
pq

and a . Then us

. If a.
pq i
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different positive entries c^, c^, and of a fully indecomposable matrix, 

one can find a chain which connects c^ and c^ and contains c^.

One might conjecture from the above paragraph that there are two dis­

joint chains which connect c^ and c^, one of which contains Unfortu­

nately such a conjecture is false. Consider a^^, a^, and a^^ in the following 

fully indecomposable matrix:

10 10

110 1
A = 0 110

0 0 11

Proposition 2. Let A be an n x n fully indecomposable matrix. Then

A - a.-E,. is chaihable for a...> 0.
ij ij ------------------------------------------ ij

Proof: Since every two positive entries of A are the endpoints of two dis­

joint chains, the removal of any other positive entry of A cannot destroy 

their chainability.

The author now proves a proposition which he could not find in the liter­

ature. He will not use the proposition in the remainder of the dissertation. 

It arose from an analogous conjecture for nearly decomposable matrices which 

he will mention at the end of the dissertation.

Proposition 3. If B is an m x m (m > 1) irreducible, principal submatrix of 

an n x n nearly reducible matrix A, then B is nearly reducible.

Proof: Assume that there is some positive a such that the matrix B' ob- 
pq

tained from B by replacing a by 0 is irreducible. Let A' = A - a E
pq pq pq
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Let and c be two positive entries in A'. If they are in B', then since

B is strongly connected, there is a path in A1 which connects a to c.

Assume that a1 and c are not in B Since A is strongly connected, there

is a path a^,...,a^ = c in A. If no entry of the path is in B, a^ and c 

can be connected in A’. Assume that some term of the path is in B. Let a^ 

and a^ be the first and last members of the path in B, respectively. Assume 

that a lies in the i-th row and a lies in the j-th column. Since B1 is 

strongly connected, there is a path b^,....,b^_ in B* which connects the i-th 

row to the j-th column. Thus a,,...,a ,,b’,...,b‘ a ,_,...,a, = c is a 1’ ’ r-1’ 1’ ’ t’ s+1’ ’ k

path in A* which connects a^ to c. By a similar argument, if a^ or c is in 

B1 and the other is not, then there is a path in A* which connects them.

Thus if B is not nearly reducible, neither is A.

The author now proves two propositions which help to delineate the

structure of nearly reducible and nearly decomposable matrices.

Proposition 4. Let A be an n x n nearly reducible matrix in canonical form

with k decompositions where

containing e^ for 1 < i < k

k > 0. The row containing e^ 

do not intersect in any block.

and the column

which contains e^

Proof: Assume that the p-th row which contains e and the q-th column 
Pi+1

intersect in E^. There are three cases which can exist

(1) Assume 1 < t < p.. Since A is nearly reducible, there is a proper.

nonempty subset o' of [1, n] such that

(A " apqEpq)[ofla) = (A " etEpq)i:o;la) = °-

Since A is irreducible, pea? and q i a. However e1
Pi

i
61 is a path which

connects the p-th row and q-th column. Thus q e a (by remarks in Section 2



13

is an a such that

elEpr)C“la:) " 0(A

and pgo? and r 4 a.

is strongly connected

is not

to the

(3) Assumeq-th column.

in (2), one

o' implies q e o'.e

Proposition

form with k

main diagonal of A for 1

and

andlies in the p-th row

Let us show the above is true when A^cannot be 1 xl.

0 .. 0

.. 0 0
2

0 b0

i 
p.+l

A1

- E )[o'|o') = (A - 
pr pr 1

Then, as above, there

bl

b2

Since k > 0, A^

Proof: By Theorem C

C1

canonical form. Thus since A

is the trivial matrix. Let

in the q-th column, then p 7^ q.

5. Let A be an n x n nearly decomposable matrix in canonical

Proposition 4, we need only to argue that if e 

i t . e^ lies

i
’el

implies q e a which is a contradiction.

Recall that A. is in 
J

and the r-th column of A passes through A -, every

column index of A which passes through A. is not in a. Hence q 

in of. However e^ e?" is a path which connects the p-th row
p^+1 ’ 1

Hence p e o'

uses the fact that A  is strongly connected to

decompositions where k > 0. The row which contains e1 ,  and
—------------- ;— ---------------------------------- pj+i —

i ithe column which contains e, intersect neither in any E block nor on the ---------------------------------------------- 1 ------------------------------------------ t -----------------------------

of Chapter I) which is a contradiction. (2) Assume t = 1. Assume the r-th 

column contains e^

t = p .+1. As 
J

show that p
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A

is

positive diagonal

positive diagonal

indecomposable. By Theorem G and

Assume p = q where i = 1. We shall argue that A' =

A’ has doubly stochastic pattern.

•a. a 1 in A and e^,,.

Proposition 2, it

Observe that

.e'*" plus the b. except for a is a
P1+l r i PP

in A‘. Hence A* is fully indecomposable which is a con-

a E is fully 
PP PP 3

enough to argue that

1 a ,c, ....c is ap1’ 1’ m

plus the b^ except for a

tradiction. Thus p 4- q.

the dimension of

By the

Thus

only to

argue that p

a contradiction by showing that A1 has doubly stochasticshall obtain

which we know to exist

in A* .diagonal Since

there is a positive lies on a

be a positive

is a positive diagonal in A*

which contains a

A1

A^ which

is true for n = 4. Assume the proposition is true for 4

n-P1

Let d^ be the portion of such a

pattern. Let d^ be a positive diagonal in A^(p|p)(the submatrix of

4 q for i = 1. Assume p = q. As in the second paragraph, we

= 4, then n-p^ = 3 

the proposition

A^ satisfies the induction hypothesis. Hence we need

A^ is greater than or equal to three. Thus n > 4. If n

above paragraph, we can assume that A^ is not the trivial matrix.

positive diagonal d^ in A^.

and

We now use induction on n. By the above paragraph

Thus A^ is the trivial matrix and by the above paragraph

A*. Let a i 4 p or j 4 p, 

in a positive diagonal which contains app* 

diagonal in A^(p|p). Thus ep•••>ep ^3

Hence A1 has doubly stochastic pattern.

obtained by deleting the p-th row and p-th column)

by Theorem G. Thus e?",...,e'*" , d, is a positive 
1’ ■L

entry ap^» i 41 P, in

Hence a^,...^^ d^ is a positive diagonal in 

entry of A^ which is contained



CHAPTER III

MAIN RESULTS

Theorem 1. Let A be an n x n nearly reducible matrix in canonical form with 

k decompositions and with n > 2. Then cr(A) < 2(n-l) with equality if and 

only if 

where j = 1 for k = 0 (Aq = A) or 1 < j < k for k > 0 and A^ is 2 x 2.

Proof: We shall argue by induction on n. If n = 2,

A = 01
1 OJ .

Thus assume the proposition is true for 2 < m < n. If A is the trivial 

matrix, then o(A) = n. However the n x n matrix

0 0 0 10 

0 0 0 10

0 0 0 10

1 1 0 1

0 0 1 0

which is irreducible by Theorem D and is nearly reducible by inspection 
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has o(B) = 2(n-l) > n = a(A) since n > 2. If A is not the trivial matrix, 

then the dimension of A^ is greater than or equal to two. Let C be the 

n x n nearly reducible matrix in canonical form with (n-p^)-l decompositions.

C

0 0.00
10.00
0 1.00

0 0.10
0 0.00
0 0.00

0 0.00
0 0.01
0 0.00

0 0 .. 0 1 0
0 0 .. 0 0 0
0 0 .. 0 0 0

0 0 .. 0 0 0
0 0 .. 0
0 0 .. 0

0 0 .. 0

1 0
1 0

1 0
1 1 .. 1
0 0 .. 0

0 1
1 0

(which is nearly reducible for the same reasons as B) where the matrix in

the right-hand bottom corner has the same dimension n-p 
1 By the

induction hypothesis, o(A^) < 2(n-pp - 2 = a(C^). Thus a(A) = p^ + 1 + oXA^ 

< P1 + 1 + aC^) = o(C) = P1 + 1 + [2(n-P1) - 2] < 2(n-l) = o(B). If px * 1, 

then o(A) < a(C) < o(B). Hence if equality is achieved, the matrix A must 

have the form of the proposition.

Since o(A) = 2(n-l) when A has the form of Theorem 1, we are finished.

Theorem 2. Let A be an n x n nearly decomposable matrix in canonical form 

with k decompositions and with n > 3. Then cr(A) < 3(n-l) with equality if 

and only if
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3x3 nearly

decomposable matrix in canonical form is

A

is true for 3 < m If A is

the trivial matrix, the nearly decomposable matrixn n

B

(which is fully indecomposable by remarks after Theorem D and nearlyour

row or the j-th column has

< a(B) = 3(n-l)exactly two positive entries) the property that 2n = cr(A)

intersect in a positive entry which is impossible by

Let C be the nearly decomposable n x n

1
1
0

0
0

0
0

10 1
110
Oil

1
1

0
0

0
1
0
0

0
1
0 
0

1
0
1

0
1
1

1 0
0 1

If n-p1

0, the i-th

n-p1

matrix in canonical form with (n-p^) - 2 decompositions

the induction step holds. Assume Theorem 2

decomposable since whenever b^^ >

has

A has the form of the theorem, o(A) = 3(n-l). Since the only

Proof: We shall prove the proposition by induction on n. Observe that if

since n > 3. If A is not the

the e2(e^) lie in the same row (column) where 1=1 for k = 0 (A = A) or 
z 1 o . —

trivial matrix, then the dimension n-p^ of A^ 

=2, the column which contains e^ and the row

10 10
1
0
0

is greater than one. 

which contains e ,,
Pj^+1

Proposition 5. Thus
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C

1 0
1 1 
0 1

0 0
0 0
0 0

0 0
0 0
0 0

0 10 
0 0 0 
0 0 0

00.1 1 0 0 .. 0 0 0
0 0.0 Oil 0 .. 0 1 0
00.0001.. 010

0 0.0111 
0 0 . 0 0 0 0 
0 0 . 0 0 0 0

10 1
110
Oil

(which is nearly decomposable for the same reasons as B is) where the sub-

matrix of C is (n-p^) x (n-p^). Thus by the induction hypothesis 

o(A^) < o(cp. Hence o(A) = 2p^ + 1 + o(A^) < 2p^ + 1 + 0(0^) = o(C).

However o(C) = 2p^ + 1 + 3(n-p^) - 3 < 3(n-l) = o(B). If p^ > 1, then

form ofhas the

the proposition in the

r2~th

+1Hes

o(A) < cr(C) < cr(B). Hence equality implies p^ = 1 and 
1

Suppose e^ lies in the q^-th column.

2 
q2-th row, e^,

A1 

e1 
Pl 

k 2 ke^ lie in the r^-th column, and e^,...lie in the

row. If q_ = r1 and q + r_ or q + r and q = r , then the entry in the «L A* A* J- I. A* A*

^2’^1^ Posit:i-on i-s positive which contradicts Proposition 5. If q^ +

and q2 / r2, then (q2,q^) lies in an block which contradicts Proposition 

5. Hence q^ = r^ and q2 = r,?.

It is interesting to observe that while the form of Theorem 2 is unique 

up to independent permutations on the rows and columns, the form of Theorem 

1 is not. For instance, each of the matrices

0 0 10
0 0 10 
110 1
0 0 10

and

0 0 0 1
0 0 10
0 10 1
10 10

has the form of Theorem 1
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lie on exactly one

positive diagonal.

the p-th row. By

Thus by the canonical form, o(A) - 2n + 2 = (2p^ + 1) + cr(A^) -2n + 2 = 

[o(A^) - 2(n-p^) + 2] + 1 < perA^ + 1 < perA^ + perA(p|q) < o(A) -2n + 2 

which implies that perA(p]q) =1.

Lemma. If A is an n x n (n > 2) nearly decomposable matrix in canonical 

1 1 form such that perA = o(A) - 2n + 2, then e,,...,e 
-------------------------- ’ ------- 1’ ’ p.j+1 

1 1Proof: Let e1 lie in the q-th column and e lie in
1 P!+1

Theorem G, perA^ + 1 < perA^ + perA(p|q) = perA. Since A^ is fully inde­

composable, it follows by Theorem A that [o(A^) - 2(n-p^) + 2] + 1 < perA^ + 1.

Theorem 3. Let A be an n x n nearly decomposable matrix in canonical form 

with k decompositions and with n > 2. A necessary and sufficient condition 

for perA = o(A) - 2n + 2 is that a_ = 1 implies that the i-th row or j-th
1 •f

column has exactly two positive entries in it and e^,...,e lie on exactly

one positive diagonal in A^ where Ag = A for l<i<k + l.

Proof: We shall prove the condition is sufficient by induction on n. Since 

the only 2x2 fully indecomposable matrix is a positive matrix, the assertion 

is true for n = 2. Assume the condition is sufficient.for 2 < m < n. Since 

the assertion is true for the trivial matrix, assume A is not the trivial 

matrix. Thus (n-p^) > 2. Hence A^ satisfies the induction hypothesis. 

Thus perA^ = o(A^) - 2(n-p^) + 2. However, by the canonical form, cr(A) = 

2p^ + 1 + o(A^). Thus by the second part of the condition and the last two 

sentences, perA = perA^ + 1 = [cr(A^) + 2p^ + 1] - 2n + 2 = o(A) - 2n + 2.

Let us now prove the necessity of the condition. By using the Lemma on 

Aq,....,A^, we see that the second part of the condition is true. Thus we need 
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only to argue the first condition holds, which we shall do by induction on 

n. If n = 2, A is the positive matrix and the assertion is true. Assume 

the condition is necessary for 2 < m < n. If A is the trivial matrix, the 

assertion is true. Thus assume n-p^ >2. Thus A^ satisfies the induction 

hypothesis. Since A is in canonical form, we need only to examine the i-th

1 1row which contains e and the q-th column which contains e_. Assume thatP1+l 1

a„ = 1 and the j-th column contains at least three positive entries. Ob­

serve that since A^ is fully indecomposable and n-p^ > 2, the i-th row of 

A must contain at least three positive entries. If a.. is on the main dia- 

gonal, we can choose a = 1 where t j. Then proceeding as in the proof 

of Theorem F, we can place A in canonical form with a^ not on the main 

diagonal. Thus we shall assume that a„ is not on the main diagonal of A.

Since A is in canonical form, the fact that the j-th column contains at 

least three positive entries implies that there must be some e^ for 2 < r < k 

which lies in the j-th column. Since A - I is nearly reducible, there must

be a nonempty. proper subset of of [1,...,n] such that (A - a
ij

0.

By our remarks in Section II of Chapter I, we can assume a is the set of all

integersh such that either there is a path which connects the i-th row to the 

h-th column or there is no path which connects the h-th row to the j-th column.

Since A and A^ have doubly stochastic pattern by Theorem G, there is a

positive cycle g^ in

in A which contains r

tation sense). Thus

A which contains 1 1 . , e^,...,e^ and a positive cycle g£

r re ,...,e (where cycle is to be taken in the permu- 
^r

every member of g^(g2) can be connected by a path to
*| 22

e ,  (e_). Hence if a^ is a member of 
p^+1 1 tu

g^ is a cycle, there is some a^^ in g^.

g^, then u e o'. Likewise, since

Thus t g o' if a^ is a term of g, . tu 1

Similarly, if a is a member of g£, then t and u are not in a. Let d^ be the
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positive diagonal of A composed of and those entries on the main diagonal 

whose indices do not occur as row indices in g^. Let d£ be the positive 

diagonal of A composed of g,,g9, and the entries on the main diagonal whose 

indices do not occur as row indices in gq or g9. Thus e1,...,e  lie on■L, ZC Je

two positive diagonals which contradicts the Lemma. By a similar argument, 

we can prove the theorem for the q-th column.

It is interesting to observe that a nearly docomposable matrix which 

has the form of Theorem 2 satisfies the two conditions of Theorem 3. Hence 

the matrix which has the maximal number of positive entries has minimal 

permanent.



CHAPTER IV

CONJECTURES AND CONNECTIONS BETWEEN THIS

RESEARCH AND OTHER INVESTIGATIONS

Proposition 3 was motivated by

If B is an m.x m fully indecomposable, principal submatrix of an n x n 

nearly decomposable matrix A, then B is nearly decomposable.

which the author could not prove.

Indeed, E. J. Roberts has found the following counterexample:

A

0001 0 00001 
0100000001 
0110001000 
0011000000 
0001100000 
1000110000 
0000011000 
0000001100 
1000000110 
0000000011

Observe that A is chainable and the permutations (14376,10), (9,10), (9876,10), 

(1432), and (37654)(9,10) correspond to positive diagonals (where by (...6,10), 

we mean 6 goes into 10, etc.). Hence A is fully indecomposable by Theorem G, 

With the exception of a^y, if = 1, then either the i-th row or j-th 

column has exactly two positive entries. In the case of. the 5x5 

submatrix of A - a^yE^y composed of rows 1 through 5 and columns 1 and 6 

through 9 is zero. Thus A is nearly decomposable. Observe that the princi­

pal submatrix A(l| 1) is fully indecomposable by Theorem D since it is the 



23

trivial matrix with one additional entry. Thus the additional entry is 

removable.

The author believes

Conjecture. Assume A is an n x n nearly decomposable (0,1)-matrix. Then 

A has rank n-1 if and only if A is the trivial matrix and n is even. Other­

wise A has rank n.

is true but has been unable to prove it.

In light of Theorem C, the author would like to know what conditions 

must be placed on an n x n nearly reducible matrix B in order that A = B + I 

be nearly decomposable. The reader might conjecture that if B is an n x n 

nearly reducible matrix in canonical form such that A = B + I satisfies 

the conclusion of Proposition 5, then A is nearly decomposable. However 

such a conjecture is false. Consider the following 5x5 nearly reducible 

(0,l)-matrix in canonical form with 2 decompositions:

B 0 0 0 1
10 0 0
0 10 0
0 0 100

It is irreducible by Theorem D and nearly reducible by inspection. The 

matrix A = B + 1^ is fully indecomposable by Theorem B. However A - a^E^ 

is chainable and has doubly stochastic pattern. Thus by Theorem G, A is 

not nearly decomposable
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As mentioned in Chapter I, nearly decomposable and nearly reducible 

matrices have recently come under scrutiny.

E, J. Roberts of NASA’s Manned Spacecraft Center has independently 

discovered Proposition 2 [13, p. 35], Theorem 2 [13, pp. 67-68], and 

Theorem A [13, p. 73]. He called the author’s attention to the fact that 

if a matrix has a positive diagonal or equivalently, if the associated 

bipartite graph G has no isolated vertices, then the matrix is chainable 

if and only if the graph G is connected. (A graph is bipartite if its ver­

tex set can be written as the union of two disjoint sets S and T such that 

each edge of G has one endpoint in S and the other in T. See [4].) When 

the author told E. J. Roberts about Proposition 1, Doctor Roberts observed 

that one could also prove it by using his result that the associated bipartite 

graph of a fully indecomposable matrix is 2-connected [13, pp. 28-30] and 

the result in [1, p. 201] that if a graph contains neither loops nor isolated 

vertices, then it is 2-connected if and only if every two edges lie on an 

elementary cycle.(in the graph sense of cycle). One should note that by 

using the above result in [1, p. 201] and Proposition 1, he has another

proof that the associated bipartite graph of a fully indecomposable matrix

is 2-connected.

It is interesting to note that by using Theorems B and G, one can quickly

prove that if v is an arc from i to j where i + j in a strongly connected

graph H, then v lies on an elementary circuit in H. Let B be the irreducible

matrix corresponding to Ho By Theorem B, A = B + I is fully indecomposable.

By Theorem G, a. . lies on a positive diagonal in A. Since i + j. a, . lies 
ij

on a positive cycle (in the permutation sense) in B. Hence v lies on an

elementary circuit in H
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D. Hartfiel and J„ Crosby have independently proven Theorem A [3J. All 

of the authors of [3], [11], and [13] were motivated to consider and in 

their methods of proof of Theorem A by Professor Sinkhorn’s work (mentioned 

in the introduction) in [14].

After the author had finished his research, he received word that Mine 

has independently discovered Theorem 2 [12],
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Trivial matrix

nearly reducible. . . . . 

nearly decomposable 

Canonical form with k decompositions

nearly reducible

nearly decomposable  . ...................................

p. 7

p. 8, line 5

p. 7

p. 8, line 5
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NOTATION

SYMBOL

0(A) p. 1, line 20; p. 8, line 17

A^(p|p) p. 14, line 15


