FULLY INDECOMPOSABLE MATRICES

A Dissertation Presented to the Faculty of the Department of Mathematics University of Houston

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy
by

Mark Blondeau Hedrick
August 1972

An Abstract
Presented to the Faculty of the
Department of Mathematics
University of Houston

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
by
Mark Blondeau Hedrick
August 1972

Abstract

The purpose of this dissertation is to examine the structural properties of matrices whose entries are either 0 or 1 . There are three main results. In Theorem 1, the author shows that the maximal number of positive entries (arcs) in an $n \times n$ nearly reducible matrix (minimally connected graph with n vertices) is $2(n-1)$ and the matrix has a canonical form. In Theorem 2, he argues that the maximal number of positive entries in a nearly decomposable $n \times n$ matrix is $3(n-1)$ and is obtained uniquely at a canonical matrix. In Theorem 3, he examines the structure of those nearly decomposable (0,1)-matrices whose permanent equals $\sigma(A)-2 n+2$ where $\sigma(A)$ is the number of positive entries in A.

TABLE OF CONTENTS

CHAPTER PAGE
I. HISTORICAL BACKGROUND AND DEFINITIONS 1
History of Problems Considered 1
Statement of Results 2
Definitions 3
II. REPHRASING OF CURRENT RESULTS IN THE LITERATURE, TERMINOLOGY, AND PRELTMINARY RESULTS 6
Rephrasing of Current Results and Terminology 6
Preliminary Results 9
III. MAIN RESULTS 15
Theorem 1 15
Theorem 2 16
Theorem 3 19
IV. CONJECTURES AND CONNECTIONS BETWEEN THIS RESEARCH AND OTHER INVESTIGATIONS 22
BIBLIOGRAPHY. 26
INDEX 27
NOTATION. 28

CHAPTER I

HISTORICAL BACKGROUND AND DEFINITIONS

In order to argue inductively on the number of positive entries in a fully indecomposable matrix, Knopp and Sinkhorn developed in [8] a canonical form for a fully indecomposable matrix which becomes partly decomposable when any positive entry is replaced by a zero. They called such matrices nearly decomposable and when in canonical form, such matrices are easily adaptable to inductive arguments on their dimension. They used their canonical form to prove that if A is a fully indecomposable matrix all of whose positive diagonals are equal, then there is a unique positive matrix B such that it has rank one and $a_{i j}=b_{i j}$ if $a_{i j}>0$. This author used their form in [7] to prove an analogous theorem for a fully indecomposable matrix each of whose positive diagonals has the same sum. Sinkhorn used the canonical form in [14] to argue that if A is an $n \times n(0,1)$-matrix with exactly three ones in each row and column, then perA $\geqq n$. Minc used the canonical form in [11] to argue that

Theorem A. If A is an $n \times n$ fully indecomposable (0,1) -matrix, then

$$
\sigma(A)-2 n+2 \leqq \operatorname{per} A
$$

where $\sigma(A)$ is the number of positive entries in A and perA is the permanent of A. At this point, Sinkhorn and this author began to study the structure of an irreducible matrix which becomes reducible when any positive entry is replaced by a zero. In analogy to nearly decomposable matrices, they called such an irreducible matrix nearly reducible. They derived in [6] a canonical form for a nearly reducible matrix which plays the same role in the class of irreducible matrices as the canonical form for a nearly decomposable
matrix does in the class of fully indecomposable matrices. Using this canonical form, they showed in [6] that if A is a nearly reducible $(0,1)$-matrix, then perA $\leqq 1$. This author then discovered that by

Theorem B. If A is an $n \times n(0,1)$-matrix with a positive main diagonal, then $A=A^{\prime}+I_{n}$ is fully indecomposable if and only if A^{\prime} is irreducible.
(where I_{n} is the $n x n$ identity matrix) of Brualdi, Parter, and Schneider [2], he could trivially prove

Theorem C. If A is an $n \times n$ nearly decomposable (0,1)-matrix with a positive main diagonal, then $A=A^{\prime}+I_{n}$ where A^{\prime} is nearly reducible.

At this point, Hartfiel found in the literature that an irreducible matrix was the same thing as a strongly connected graph [15, p. 20]. He also found that nearly reducible matrices had been studied using graph techniques under the name of minimally connected graphs [1, pp. 122-4]. Using a theorem on minimally connected graphs, Hartfiel derived a canonical form for a nearly reducible matrix. Using this canonical form and Theorem C, he derived a canonical form for a nearly decomposable matrix. Both of these forms in [5] were refinements of the previously mentioned ones. Using his forms, he simplified in [5] the proofs of the previously mentioned theorems in [14] and [6].

Thus the author studies the structural properties of these matrices in the hope that such information will inhance their usefulness. There are three main results. In Theorem 1 , the author shows that the maximal number of positive entries (arcs) in an $n x n$ nearly reducible matrix (minimally connected graph with n vertices) is $2(n-1)$ and the matrix has a canonical
form. In Theorem 2, he argues that the maximal number of positive entries in a nearly decomposable $n \times n$ matrix is $3(n-1)$ and is obtained uniquely at a canonical matrix. In Theorem 3, he examines the structure of those nearly decomposable matrices for which Minc's inequality in Theorem A is equality.

Most of the matrix terminology can be found in [10] and the graph terminology in [1]. Since the author does not make use of graph theoretic terms in the proofs of his main results and since the dissertation can be read by simply suppressing the references to graph theory, the author will not explicitly define the graph terminology. He has included these references in order to acquaint the reader with the connections that do exist. As the author explains his terminology, he will indicate certain facts which are trivial but crucial.

A (0,1)-matrix is a matrix all of whose entries are 0 or 1 . Let $E_{i j}$ denote the $n \times n$ matrix which has 1 in the (i, j) position and zeros elsewhere. Let A be an $n x n$ matrix and let α be a nonempty, proper subset of $\{1, \ldots, n\}$ ordered increasingly. Then $A[\alpha \mid \alpha)$ denotes the submatrix of A whose rows are indexed by α and whose columns are indexed by the complement of α in $\{1, \ldots, n\}$ ordered increasingly. The transpose of A, denoted by A^{T}, is the $n \times n$ matrix whose (i, j) entry is the (j, i) entry of A.

A diagonal of a square matrix is a set of entries from the matrix, one from each row and one from each column. If β is a permutation of $\{1, \ldots, n\}$, then the diagonal associated with β is $a_{1 \beta(1)}, \ldots, a_{n_{\beta}(n)}$. Every diagonal corresponds to a permutation. The permutation matrix corresponding to β is the matrix which has ones in the $(1, \beta(1)), \ldots,(n, \beta(n))$ positions and zeros elsewhere. A positive diagonal is a diagonal in which $a_{i \beta(i)}>0$ for all i.

The product of the diagonal β is the product of the $a_{1 \beta(1)}$ through $a_{n \beta(n)}$. The permanent of A, denoted by perA, is obtained by taking the product of each diagonal in A and then taking the sum of these products.

An $n x n$ nonnegative matrix A is partly decomposable if there is an $s \mathrm{x} t$ zero submatrix where $s+t=n$. By convention, the $1 \times I$ zero matrix (0) is partly decomposable. An $n \times n$ nonnegative matrix A is fully indecomposable if A is not partly decomposable. An $n \times n$ fully indecomposable matrix A is nearly decomposable if $A-a_{i j} E_{i j}$ is partly decomposable for each $a_{i j}>0$.

An $n \times n$ nonnegative matrix A is reducible if there is a nonempty, proper subset α of $\{1, \ldots, n\}$ such that $A[\alpha \mid \alpha)=0$. An $n \times n$ nonnegative matrix A is irreducible if A is not reducible. An $n x n$ irreducible matrix A is nearly reducible if $A-a_{i j} E_{i j}$ is reducible for each $a_{i j}>0$. (In graph theory, minimally connected graph with n vertices corresponds to an $\mathrm{n} x \mathrm{n}$ nearly reducible matrix and arc corresponds to positive entry.)

Let $A=\left(a_{i j}\right)$ be an $n x$ nonnegative matrix. The nonzero matrix A has doubly stochastic pattern if every positive entry lies on a positive diagonal. Two positive entries $a_{i_{1}} j_{1}$ and $a_{i_{k}} j_{k}$ are chainable if there is a sequence $a_{i_{1} j_{1}}, \ldots, a_{i_{k}} j_{k}$ of distinct positive entries of A such that for $1 \leqq r \leqq k, i_{r}=i_{r+1}$ or $j_{r}=j_{r+1}$; and if $1<h+1<p \leqq k$, then $i_{h} \neq i_{p}$ and $j_{h} \neq j_{p}$. Such a sequence is called a chain. Two different chains are disjoint chains if, with the possible exception of the endpoints, it is true that $a_{k m}$ is a term of one if and only if k is not the row index and m is not the column index of any term of the other. The concept can be visualized by the movements of a rook with stationary positions on positive entries of A. Observe that the rook moves only once in each row (column) and that once it leaves a row (column) it cannot return to that row (column).

Let $A=\left(a_{i j}\right)$ be an $n \times n$ nonnegative matrix. There is a path which connects $a_{i_{1}} j_{1}>0$ to $a_{i_{k} j_{k}}>0$ if there is a sequence $a_{i_{1}} j_{1}, \ldots, a_{i_{k}} j_{k}$ of positive entries of A such that $j_{r}=i_{r+1}$ for $1 \leqq r<k$. We now make an observation which we shall use below and in the proof of Theorem 3. Assume that there is a nonempty, proper subset α of $\{1, \ldots, n\}$ such that $A[\alpha \mid \alpha)=0$ and $a_{i j}, \ldots, a_{p q}$ is a path. Then if $i \varepsilon \alpha, q \varepsilon \alpha$. The result follows immediately by induction on the number of terms in the path.

Let A be an $n \times n$ nonnegative matrix. The $i-t h$ row can be connected by a path to the j-th column if there is a path $a_{i p}, \ldots, a_{q j}$. With the above definitions, one can argue that for $n>1$, (1) A is irreducible if and only if (2) every row and column contains at least one positive entry and every two positive entries can be connected by a path if and only if (3) every row can be connected to any column. That (2) implies (3) is immediate. To show (3) implies (2), consider $a_{i j}>0$ and $a_{p q}>0$. By (3), there is a path $a_{j k}, \ldots, a_{m p}$. Hence $a_{i j}, a_{j k}, \ldots, a_{m p}, a_{p q}$ is a path. That (2) implies (1) follows from our above observation. Assume (1) and that $a_{i j}>0$ cannot be connected to $a_{p q}>0$ by a path. Let $\alpha=\left\{k \mid\right.$ there is some $a_{r k}>0$ which can be connected to $a_{i j}$ by a path\}. Observe that $j \in \alpha$ and $p \& \alpha$. Let $k \in \alpha$ and $m \& \alpha$ and assume $a_{k m}>0$. By definition, there is a path $a_{i j}$, $\ldots, a_{r k}$. Hence $a_{i j}, \ldots, a_{r k}, a_{k m}$ is a path. Thus $m \in \alpha$ which is a contradiction. Thus $a_{k m}=0$ or $\mathrm{A}[\alpha \mid \alpha)=0$ which contradicts (1). Hence (1) implies (2). Because of (2) and (3), an irreducible matrix is said to be strongly connected. (This condition is usually stated by saying that a matrix is irreducible if and only if the directed graph corresponding to it is strongly connected.) We shall use the above equivalences in the proofs of Propositions 3 and 4.

CHAPTER II

REPHRASING OF CURRENT RESULTS IN THE LITERATURE, TERMINOLOGY, AND PRELIMINARY RESULTS

Since we will be concerned with structural properties of matrices, we shall assume that for the remainder of this dissertation all of the matrices are (0,1)-matrices.

We shall use

Theorem D. Assume A is an $n \times n(n>1)$ matrix which has the form

$$
A=\left[\begin{array}{ccccc}
a_{1}^{1} & 0 & \ldots & 0 & E_{1}^{1} \\
e_{2}^{1} & a_{2}^{1} & \ldots & 0 & 0 \\
\cdot & \cdot & \ldots & . & 0 \\
0 & 0 & \ldots & a_{p}^{1} & 0 \\
0 & 0 & \ldots & E_{p+1}^{1} & A_{1}
\end{array}\right]
$$

where $a_{i}^{1}=0$ for $1 \leqq i \leqq p, e_{i}^{1}>0$ for $2 \leqq i \leqq p, E_{1}^{1}$ and E_{p+1}^{1}
are $1 \times(n-p)$ and ($n-p$) $\times 1$ matrices, respectively, each of which contains a single positive entry, and A_{1} is an ($n \sim p$) \times ($n-p$) irreducible matrix. Then A is irreducible [5].

Observe that if A is an $n \times n$ matrix with $n>1$ which has the form of Theorem D and a positive main diagonal, then it follows by Theorem B that A is fully indecomposable. We shall make use of this observation in the proof of Theorem 2 .

We shall need the following two theorems and notation.

Theorem E. If A is an $n \times n$ nearly reducible matrix with $n \geqq 2$, then there is a permutation matrix P such that
$\operatorname{PAP}^{T}=\left[\begin{array}{ccccc}a_{1}^{I} & 0 & \ldots & 0 & E_{1}^{1} \\ e_{2}^{I} & a_{2}^{1} & \ldots & 0 & 0 \\ \cdot & \cdot & \ldots & 0 & \cdot \\ 0 & 0 & \ldots & a_{p_{1}}^{1} & 0 \\ 0 & 0 & \ldots & E_{p_{1}+1}^{1} & A_{1}\end{array}\right]$
where $a_{i}^{1}=0$ for $1 \leqq i \leqq p_{1} ; e_{i}^{1}>0$ for $2 \leqq i \leqq p_{1} ; E_{1}^{1}$ and $\mathrm{E}_{\mathrm{p}_{1}+1}^{1}$ are $1 \times\left(\mathrm{n}-\mathrm{p}_{1}\right)$ and $\left(\mathrm{n}-\mathrm{p}_{1}\right) \times 1$ matrices, respectively, each of which contains a single positive entry; and A_{1} is an $\left(n-F_{1}\right) \times\left(n-p_{1}\right)$ nearly reducible matrix $[5]$.

If A_{1} is 1×1, we shall call A the trivial nearly reducible matrix and say that A has 0 decompositions. If A_{1} is not $I \times I$, then we can place A_{1} in the form of Theorem E without destroying the form of PAPT. Assume A_{1} has the form of $P A P^{T}$ and is indexed as $P A P^{T}$ is with 2 replacing the superscript 1 , the subscript I on p, and the subscript 1 on A_{1}, etc., for A_{2}, \ldots, A_{k} where A_{k} is a trivial matrix. If we assume that each of these matrices, A_{1}, \ldots, A_{k}, has been placed in the form of Theorem E, then we shall say that A is in canonical form with k decompositions.

Theorem F. If A is an $n \times n$ nearly decomposable matrix ($n \geqq 2$), then there are permutation matrices P and Q such that $P A Q=A^{\prime}+I_{n}$ where A^{\prime} is a nearly reducible matrix which has the form of Theorem E and A_{1} in PAQ is nearly decomposable [5].,
we shall also use the terminology which follows Theorem E for nearly decomposable matrices.

Let us outline a proof of Theorem F. Assume $a_{p q}>0$. By

Theorem G. A matrix A is fully indecomposable if and only if it is chainable and has doubly stochastic pattern [8].,
it follows that there is a positive diagonal d which contains $a_{p q}$. Let P^{T} be the $\mathrm{n} \times \mathrm{n}$ permutation matrix corresponding to d . Then PA has a positive main diagonal (which contains $a_{p q}$). Since $n \geqq 2$, by Theorems C and E, there is an $n \times n$ permutation matrix Q such that $Q\left(P A-I_{n}\right) Q^{T}$ has the form of Theorem E. Thus we need only to argue that A_{1} is nearly decomposable in $Q(P A) Q^{T}$. By Theorem B, it is fully indecomposable. If there is some $a_{i j}$ in A_{1} such that the matrix obtained by replacing $a_{i j}>0$ with zero is fully indecomposable, then by our remarks after Theorem $D, A-a_{i j} E_{i j}$ is fully indecomposable which contradicts our assumption that A is nearly decomposable. Hence A_{1} is nearly decomposable.

We shall let $\sigma(A)$ denote the number of positive entries in the matrix A. If A is an $n \times n$ irreducible matrix with $n>1$, then each row and column must contain at least one positive entry. Hence $\sigma(A) \geqq n$. If $\sigma(A)=n$, then A is nearly reducible. Thus there is an $n \times n$ permutation matrix Q such that $Q A Q^{T}$ has the form of Theorem E. Since there is only one positive entry in each row and column, A_{1} must be 1×1. Hence if $\sigma(A)=n, Q A Q^{T}$ is the
trivial matrix. If A is an $n \times n$ fully indecomposable matrix with $n \geq 2$, then every row and column has at least two positive entries. Hence $2 \mathrm{n} \leqq$ $\sigma(\mathrm{A})$. If $\sigma(\mathrm{A})=2 \mathrm{n}$, then A is nearly decomposable. Thus by a similar argument to the one above, if $\sigma(A)=2 n$, then PAQ is the trivial nearly decomposable matrix.

In examining Theorem G, this author wondered how the two properties behaved in $A-a_{i j} E_{i j}=B$ for $a_{i j}>0$. By using the Frobenius-Konig Theorem that every positive entry of an $n \times n$ matrix lies on a positive diagonal if and only if there does not exist an $s \times t$ zero submatrix such that $s+t=$ $n+1$ and the Birkhoff Theorem that a matrix has doubly stochastic pattern if and only if every positive entry lies on a positive diagonal (for proofs see [10, pp. 97-8]), he could trivially prove that if A is an $n \times n$ nearly decomposable matrix, then B does not have doubly stochastic pattern. However he discovered (Proposition 2) that chainability was invariant. First let us prove a preliminary result which is of interest in its own right.

Proposition 1. If A is an $n \times n$ fully indecomposable matrix, then every two positive entries $a_{i j}$ and $a_{p q}$ are chainable by two disjoint chains.

Proof: The proposition is true for $n=1$. Assume $n \geqq 2$. We shall prove the conjecture by induction on $\sigma(\mathrm{A})$. By our previous remarks, $\sigma(\mathrm{A}) \geqq 2 \mathrm{n}$. If $\sigma(A)=2 n, A$ is the trivial matrix. In this case, the choice is obvious. Assume the conjecture is true for all fully indecomposable $n \times n$ matrices B such that $2 \mathrm{n} \leqq \sigma(B)<\sigma(A)$. We need to consider two cases - (1) there is some $a_{i j}>0$ such that $A-a_{i j} E_{i j}$ is fully indecomposable or (2) A is nearly decomposable. Let us consider (1). By the induction hypothesis, the proposition is true for $A-a_{i j} E_{i j}$. Thus we need only to argue that for $a_{p q}>0$
where $(p, q) \neq(i, j)$, there are two disjoint chains which connect $a_{i j}$ and $a_{p q}$. Since A is fully indecomposable, there are positive entries $a_{i s}$ and $a_{r j}, s \neq j$ and $r \neq i$. By the induction hypothesis, there are two disjoint chains a_{1} and a_{2} which connect $a_{i s}$ and $a_{p q}$. By Theorem G, there is a chain b which connects $a_{r j}$ and $a_{p q}$. If a_{1} and b or a_{2} and b are disjoint chains, then we are finished. If neither a_{1} nor a_{2} are disjoint from b, then b must cross one of them first. Assume b crosses a_{1} first. Let $a_{t u}$ and $a_{v w}$ be the first terms in a_{1} and b, respectively, such that $t=v$ or $u=w$. The chain formed by taking the terms $a_{r j}, \ldots, a_{v w}$ of b and the terms $a_{t u}, \ldots$, $a_{p q}$ of a_{1} is disjoint from a_{2}.

In case (2), we use induction on n. If A is 2×2, the proposition is true. Assume it is true for $1 \leqq m<n$. By Theorem F, we can assume that A is in canonical form. Since $\sigma(\mathrm{A})>2 \mathrm{n}$, A cannot be the trivial matrix. Hence $n-p_{1}>1$. Thus A_{1} satisfies the induction hypothesis. Hence if $a_{i j}$ and $a_{p q}$ are both in A_{1}, we are finished. Let $e_{p_{1}+1}^{I}$ and e_{1}^{1} be the positive entries in $E_{P_{1}+1}^{1}$ and E_{1}^{1}, respectively. As sume $e_{p_{1}+1}^{1}$ lies in the r-th row and e_{1}^{I} lies in the $s-t h$ column. Let $a_{r t}$ and $a_{u s}$ be two positive entries in A_{1}. If $a_{i j}$ and $a_{p q}$ are both not in A_{1}, one takes a chain in A_{1} which joins $a_{r t}$ and $a_{u s}$ (which we know to exist by Theorem G) and the appropriate elements outside of A_{1} (the choice is uniquely determined by the canonical form). Assume $a_{i j}$ is not in A_{1} and $a_{p q}$ is. Then by a similar argument to the one in (1), one can find two disjoint chains - one which connects $a_{p q}$ and $a_{r t}$ and one which connects $a_{p q}$ and $a_{u s}$. Then by choosing the obvious elements not in A_{1}, one obtains the desired disjoint chains. The reader should observe that one can use Proposition 1 and the method of proof in case (1) with the a_{1}, a_{2}, and b to show that for any three,
different positive entries c_{1}, c_{2}, and c_{3} of a fully indecomposable matrix, one can find a chain which connects c_{1} and c_{3} and contains c_{2}.

One might conjecture from the above paragraph that there are two disjoint chains which connect c_{1}. and c_{3}, one of which contains c_{2}. Unfortunately such a conjecture is false. Consider a_{11}, a_{24}, and a_{32} in the following fully indecomposable matrix:

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \text {. }
$$

Proposition 2. Let A be an $n \times n$ fully indecomposable matrix. Then $A-a_{i j} E_{i j}$ is chainable for $a_{i j}>0$.

Proof: Since every two positive entries of A are the endpoints of two disjoint chains, the removal of any other positive entry of A cannot destroy their chainability.

The author now proves a proposition which he could not find in the literature. He will not use the proposition in the remainder of the dissertation. It arose from an analogous conjecture for nearly decomposable matrices which he will mention at the end of the dissertation.

Proposition 3. If B is an $m \times m(m>1)$ irreducible, principal submatrix of an $n \times n$ nearly reducible matrix A, then B is nearly reducible.

Proof: Assume that there is some positive $a_{p q}$ such that the matrix B^{\prime} obtained from B by replacing $a_{p q}$ by 0 is irreducible. Let $A^{\prime}=A-a_{p q}{ }^{E}{ }_{p q}$.

Let a_{1} and c be two positive entries in A^{\prime}. If they are in B^{\prime}, then since B^{\prime} is strongly connected, there is a path in A^{\prime} which connects a_{1} to c. Assume that a_{1} and c are not in B^{\prime}. Since A is strongly connected, there is a path $a_{1}, \ldots, a_{k}=c$ in A. If no entry of the path is in B, a_{1} and c can be connected in A^{\prime}. Assume that some term of the path is in B. Let a_{r} and a_{s} be the first and last members of the path in B, respectively, Assume that a_{r} lies in the $i-t h$ row and a_{s} lies in the j-th column. Since B^{\prime} is strongly connected, there is a path $b_{1}^{\prime}, \ldots, b_{t}^{\prime}$ in B^{\prime} which connects the i-th row to the j-th column. Thus $a_{1}, \ldots, a_{r-1}, b_{1}^{1}, \ldots, b_{t}^{\prime}, a_{s+1}, \ldots, a_{k}=c$ is a path in A^{\prime} which connects a_{1} to c. By a similar argument, if a_{1} or c is in B^{\prime} and the other is not, then there is a path in A^{\prime} which connects them. Thus if B is not nearly reducible, neither is A.

The author now proves two propositions which help to delineate the structure of nearly reducible and nearly decomposable matrices.

Proposition 4. Let A be an $n \times n$ nearly reducible matrix in canonical form with k decompositions where $k>0$. The row containing $e_{p_{i}}^{i}+1$ and the column containing e_{1}^{i} for $1 \leqq i \leqq k$ do not intersect in any E_{t}^{j} block.

Proof: Assume that the p-th row which contains $e_{p_{i}}^{i}+1$ and the $q-t h$ column which contains e_{1}^{i} intersect in E_{t}^{j}. There are three cases which can exist. (1) Assume $1<t \leqq p_{j}$. Since A is nearly reducible, there is a proper, nonempty subset α of $\{1, \ldots, n\}$ such that

$$
\left(A-a_{p q} E_{p q}\right)[\alpha \mid \alpha)=\left(A-e_{t}^{j^{E}}{ }_{p q}\right)[\alpha \mid \alpha)=0
$$

Since A is irreducible, $p \in \alpha$ and $q \& \alpha$. However $e_{p_{i}}^{i}+\ldots, e_{1}^{i}$ is a path which connects the p-th row and q-th column. Thus $q \in \alpha$ (by remarks in Section 2
of Chapter I) which is a contradiction. (2) Assume $t=1$. Assume the $r-t h$ column contains e_{1}^{j}. Then, as above, there is an α such that

$$
\left(A-a_{p r} E_{p r}\right)[\alpha \mid \alpha)=\left(A-e_{1}^{j_{\mathrm{pr}}}\right)[\alpha \mid \alpha)=0
$$

and $p \in \alpha$ and $r d \alpha$. Recall that A_{j} is in canonical form. Thus since A_{j+1} is strongly connected and the r-th column of A passes through A_{j+1}, every column index of A which passes through A_{j+1} is not in α. Hence q is not in α. However $e_{p_{i}+1}^{i}, \ldots, e_{1}^{i}$ is a path which connects the p-th row to the q-th column. Hence $p \in \alpha$ implies $q \in \alpha$ which is a contradiction. (3) Assume $t=p_{j}+1$. As in (2), one uses the fact that A_{j+1} is strongly connected to show that $\mathrm{p} \varepsilon \alpha$ implies $\mathrm{q} \varepsilon \alpha$.

Proposition 5. Let A be an $n \times n$ nearly decomposable matrix in canonical form with k decompositions where $k>0$. The row which contains $e_{i}^{i}+1$ and the column which contains e_{1}^{i} intersect neither in any E_{t}^{j} block nor on the main diagonal of A for $1 \leqq i \leqq k$.

Proof: By Theorem C and Proposition 4, we need only to argue that if $e_{p_{i}}^{i}+1$ lies in the p-th row and e_{1}^{i} lies in the q-th column, then $p \neq q$. Since $k>0, A_{1}$ cannot be 1×1. Let us show the above is true when A_{1} is the trivial matrix. Let

$$
A_{1}=\left[\begin{array}{ccccc}
b_{1} & 0 & \ldots & 0 & c_{1} \\
c_{2} & b_{2} & \ldots & 0 & 0 \\
. & . & \ldots & . & . \\
0 & 0 & . & c_{m} & b_{m}
\end{array}\right]
$$

Assume $p=q$ where $i=1$. We shall argue that $A^{\prime}=A-a_{p p}{ }^{\prime}{ }_{p p}$ is fully indecomposable. By Theorem G and Proposition 2, it is enough to argue that A^{\prime} has doubly stochastic pattern. Observe that $a_{1}^{l}, \ldots, a_{p_{1}}^{1}, c_{1}, \ldots, c_{m}$ is a positive diagonal in A^{\prime} and $e_{1}^{1}, \ldots, e_{p_{1}+1}^{1}$ plus the b_{i} except for $a_{p p}$ is a positive diagonal in A^{\prime}. Hence A^{\prime} is fully indecomposable which is a contradiction. Thus $\mathrm{p} \neq \mathrm{q}$.

We now use induction on n. By the above paragraph, the dimension of A_{1} is greater than or equal to three. Thus $n \geqq 4$. If $n=4$, then $n-p_{1}=3$. Thus A_{1} is the trivial matrix and by the above paragraph the proposition is true for $n=4$. Assume the proposition is true for $4 \leqq m<n$. By the above paragraph, we can assume that A_{1} is not the trivial matrix. Thus $4 \leqq n-p_{1}$ and A_{1} satisfies the induction hypothesis. Hence we need only to argue that $p \neq q$ for $i=1$. Assume $p=q$. As in the second paragraph, we shall obtain a contradiction by showing that A^{\prime} has doubly stochastic pattern. Let d_{1} be a positive diagonal in $A_{I}(p \mid p)$ (the submatrix of A_{1} obtained by deleting the p-th row and p-th column) which we know to exist by Theorem G. Thus $e_{1}^{1}, \ldots, e_{p_{1}+1}^{1}, d_{1}$ is a positive diagonal in A^{\prime}. Since $n-p_{1}>1$, there is a positive entry $a_{p i}, i \neq p$, in A_{1} which lies on a positive diagonal d_{2} in A_{1}. Hence $a_{1}^{1}, \ldots, a_{p_{1}}^{1}, d_{2}$ is a positive diagonal in A^{\prime}. Let $a_{i j}, i \neq p$ or $j \neq p$, be a positive entry of A_{1} which is contained in a positive diagonal which contains $a_{p p}$. Let d_{3} be the portion of such a diagonal in $A_{1}(p \mid p)$. Thus $e_{1}^{1}, \ldots, e_{p_{1}+1}^{1}, d_{3}$ is a positive diagonal in A^{\prime} which contains $a_{i j}$. Hence A^{\prime} has doubly stochastic pattern.

CHAPTER III
MAIN RESULTS

Theorem 1. Let A be an $n \times n$ nearly reducible matrix in canonical form with k decompositions and with $n \geqq 2$. Then $\sigma(A) \leqq 2(n-1)$ with equality if and on1y if

$$
A_{j-1}=\left[\begin{array}{rr}
a_{1}^{j} & E_{I}^{j} \\
E_{2}^{j} & A_{j}
\end{array}\right]
$$

where $j=1$ for $k=0\left(A_{o}=A\right)$ or $1 \leqq j \leqq k$ for $k>0$ and A_{k} is 2×2.

Proof: We shall argue by induction on n. If $n=2$,

$$
A \quad=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text {. }
$$

Thus assume the proposition is true for $2 \leqq m<n$. If A is the trivial matrix, then $\sigma(A)=n$. However the $n \times n$ matrix

$$
\text { B } \quad=\left[\begin{array}{cccccc}
0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & \ldots & 0 & 1 & 0 \\
\ldots & \cdots & \ldots & \cdots & \cdots & . \\
0 & 0 & \ldots & 0 & 1 & 0 \\
1 & 1 & \ldots & 1 & 0 & 1 \\
0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right]
$$

which is irreducible by Theorem D and is nearly reducible by inspection
has $\sigma(B)=2(n-1)>n=\sigma(A)$ since $n>2$. If A is not the trivial matrix, then the dimension of A_{1} is greater than or equal to two. Let C be the $\mathrm{n} \times \mathrm{n}$ nearly reducible matrix in canonical form with ($n-\mathrm{p}_{1}$)-1 decompositions,
(which is nearly reducible for the same reasons as B) where the matrix C_{1} in the right-hand bottom corner has the same dimension $n-p_{1}$ as A_{1}. By the induction hypothesis, $\sigma\left(\mathrm{A}_{1}\right) \leqq 2\left(\mathrm{n}-\mathrm{p}_{1}\right)-2=\sigma\left(\mathrm{C}_{1}\right)$. Thus $\sigma(\mathrm{A})=\mathrm{p}_{1}+1+\sigma\left(\mathrm{A}_{1}\right)$ $\leqq \mathrm{p}_{1}+1+\sigma\left(\mathrm{C}_{1}\right)=\sigma(\mathrm{C})=\mathrm{p}_{1}+1+\left[2\left(\mathrm{n}-\mathrm{p}_{1}\right)-2\right] \leqq 2(\mathrm{n}-1)=\sigma(\mathrm{B})$. If $\mathrm{p}_{1} \neq 1$, then $\sigma(A) \leqq \sigma(C)<\sigma(B)$. Hence if equality is achieved; the matrix A must have the form of the proposition.

Since $\sigma(A)=2(n-1)$ when A has the form of Theorem 1 , we are finished.

Theorem 2. Let A be an $n \times n$ nearly decomposable matrix in canonical form with k decompositions and with $n \geqq 3$. Then $\sigma(A) \leqq 3(n-1)$ with equality if and only if

$$
A_{j-1}=\left[\begin{array}{rr}
a_{1}^{j} & E_{1}^{j} \\
E_{2}^{j} & A_{j}
\end{array}\right]
$$

the $e_{2}^{j}\left(e_{1}^{j}\right)$ lie in the same row (column) where $j=1$ for $k=0\left(A_{0}=A\right)$ or $1 \leqq j \leqq k$ for $k>0$ and A_{k} is 3×3.

Proof: We shall prove the proposition by induction on n. Observe that if A has the form of the theorem, $\sigma(A)=3(n-1)$. Since the only 3×3 nearly decomposable matrix in canonical form is

$$
A \quad=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

the induction step holds. Assume Theorem 2 is true for $3 \leqq m<n$. If A is the trivial matrix, the nearly decomposable $n \times n$ matrix

$$
\text { B }=\left[\begin{array}{ccccccc}
1 & 0 & \ldots & 0 & 0 & 1 & 0 \\
0 & 1 & \ldots & 0 & 0 & 1 & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & \ldots & 1 & 0 & 1 & 0 \\
1 & 1 & \ldots & 1 & 1 & 0 & 1 \\
0 & 0 & \ldots & 0 & 1 & 1 & 0 \\
0 & 0 & \ldots & 0 & 0 & 1 & 1
\end{array}\right]
$$

(which is fully indecomposable by our remarks after Theorem D and nearly decomposable since whenever $b_{i j}>0$, the i-th row or the j-th column has exactly two positive entries) has the property that $2 n=\sigma(A)<\sigma(B)=3(n-1)$ since $n>3$. If A is not the trivial matrix, then the dimension $n-p_{1}$ of A_{1} is greater than one. If $n-p_{1}=2$, the column which contains e_{1}^{1} and the row which contains $e_{p_{1}+1}^{1}$ intersect in a positive entry which is impossible by Proposition 5. Thus $n-p_{1} \geqq 3$. Let C be the nearly decomposable $n \times n$ matrix in canonical form with $\left(n-p_{1}\right)-2$ decompositions

$$
\mathrm{C}=\left[\begin{array}{cccccccccc}
1 & 0 & . & 0 & 0 & 0 & 0 & . & 0 & 1
\end{array}\right)
$$

(which is nearly decomposable for the same reasons as B is) where the submatrix C_{1} of C is $\left(n-p_{1}\right) \times\left(n-p_{1}\right)$. Thus by the induction hypothesis, $\sigma\left(\mathrm{A}_{1}\right) \leqq \sigma\left(\mathrm{C}_{1}\right)$. Hence $\sigma(\mathrm{A})=2 \mathrm{p}_{1}+1+\sigma\left(\mathrm{A}_{1}\right) \leqq 2 \mathrm{p}_{1}+1+\sigma\left(\mathrm{C}_{1}\right)=\sigma(\mathrm{C})$. However $\sigma(\mathrm{C})=2 \mathrm{p}_{1}+1+3\left(\mathrm{n}-\mathrm{p}_{1}\right)-3 \leqq 3(\mathrm{n}-1)=\sigma(\mathrm{B})$. If $\mathrm{p}_{1}>1$, then $\sigma(A) \leqq \sigma(C)<\sigma(B)$. Hence equality implies $p_{1}=1$ and A_{1} has the form of the proposition. Suppose e_{1}^{1} lies in the q_{1}-th column, $e_{p_{1}+1}^{1}$ lies in the q_{2}-th row, $e_{1}^{2}, \ldots, e_{1}^{k}$ lie in the r_{1}-th column, and $e_{2}^{2}, \ldots, e_{2}^{k}$ lie in the r_{2}-th row. If $q_{1}=r_{1}$ and $q_{2} \neq r_{2}$ or $q_{1} \neq r_{1}$ and $q_{2}=r_{2}$, then the entry in the $\left(q_{2}, q_{1}\right)$ position is positive which contradicts Proposition 5. If $q_{1} \neq r_{1}$ and $q_{2} \neq r_{2}$, then $\left(q_{2}, q_{1}\right)$ lies in an E_{t}^{j} block which contradicts Proposition 5. Hence $q_{1}=r_{1}$ and $q_{2}=r_{2}$.

It is interesting to observe that while the form of Theorem 2 is unique up to independent permutations on the rows and columns, the form of Theorem 1 is not. For instance, each of the matrices

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

has the form of Theorem 1.

Lemma. If A is an $n \times n(n \geqq 2)$ nearly decomposable matrix in canonical form such that perA $=\sigma(\mathrm{A})-2 \mathrm{n}+2$, then $\mathrm{e}_{1}^{1}, \ldots, \mathrm{e}_{\mathrm{p}_{1}+1}^{1}$ lie on exactly one positive diagonal.

Proof: Let e_{1}^{1} lie in the $q-t h$ column and $e_{p_{1}+1}^{1}$ lie in the $p-t h$ row. By Theorem $G, \operatorname{perA}_{1}+1 \leqq \operatorname{perA}_{1}+\operatorname{perA}(p \mid q)=$ perA. Since A_{1} is fully indecomposable, it follows by Theorem A that $\left[\sigma\left(A_{1}\right)-2\left(n-p_{1}\right)+2\right]+1 \leqq \operatorname{perA}_{1}+1$. Thus by the canonical form, $\sigma(\mathrm{A})-2 \mathrm{n}+2=\left(2 \mathrm{p}_{1}+1\right)+\sigma\left(\mathrm{A}_{1}\right)-2 \mathrm{n}+2=$ $\left[\sigma\left(A_{1}\right)-2\left(n-p_{1}\right)+2\right]+1 \leqq \operatorname{perA}_{1}+1 \leqq \operatorname{perA}_{1}+\operatorname{perA}(p \mid q) \leqq \sigma(A)-2 n+2$ which implies that $\operatorname{perA}(p \mid q)=1$.

Theorem 3. Let A be an $n \times n$ nearly decomposable matrix in canonical form with k decompositions and with $n \geqq 2$. A necessary and sufficient condition for $\operatorname{per} A=\sigma(A)-2 n+2$ is that $a_{i j}=1$ implies that the i th row or j-th column has exactly two positive entries in it and $e_{1}^{i}, \ldots, e_{p_{i}}^{i}+1$ lie on exactly one positive diagonal in A_{i-1} where $A_{0}=A$ for $1 \leqq i \leqq k+1$.

Proof: We shall prove the condition is sufficient by induction on n. Since the only 2×2 fully indecomposable matrix is a positive matrix, the assertion is true for $n=2$. Assume the condition is sufficient. for $2 \leqq m<n$. Since the assertion is true for the trivial matrix, assume A is not the trivial matrix. Thus $\left(n-p_{1}\right) \geqq 2$. Hence A_{1} satisfies the induction hypothesis. Thus perA $=\sigma\left(A_{1}\right)-2\left(n-p_{1}\right)+2$. However, by the canonical form, $\sigma(\mathrm{A})=$ $2 \mathrm{p}_{1}+1+\sigma\left(\mathrm{A}_{1}\right)$. Thus by the second part of the condition and the last two sentences, $\operatorname{perA}=\operatorname{perA}_{1}+1=\left[\sigma\left(\mathrm{A}_{1}\right)+2 \mathrm{p}_{1}+1\right]-2 \mathrm{n}+2=\sigma(\mathrm{A})-2 \mathrm{n}+2$ 。

Let us now prove the necessity of the condition. By using the Lemma on A_{0}, \ldots, A_{k}, we see that the second part of the condition is true. Thus we need
only to argue the first condition holds, which we shall do by induction on n. If $n=2, A$ is the positive matrix and the assertion is true. Assume the condition is necessary for $2 \leqq m<n$. If A is the trivial matrix, the assertion is true. Thus assume $n-p_{1} \geqq 2$. Thus A_{1} satisfies the induction hypothesis. Since A is in canonical form, we need only to examine the i-th row which contains $e_{p_{1}+1}^{1}$ and the $q-t h$ column which contains e_{1}^{1}. Assume that $a_{i j}=1$ and the j-th column contains at least three positive entries. $O b-$ serve that since A_{1} is fully indecomposable and $n-p_{1} \geqq 2$, the i-th row of A must contain at least three positive entries. If $a_{i j}$ is on the main diagonal, we can choose $a_{i t}=1$ where $t \neq j$. Then proceeding as in the proof of Theorem F, we can place A in canonical form with $a_{i j}$ not on the main diagonal. Thus we shall assume that $a_{i j}$ is not on the main diagonal of A. Since A is in canonical form, the fact that the j-th column contains at least three positive entries implies that there must be some e_{1}^{r} for $2 \leqq r<k$ which lies in the j-th column. Since $A-I_{n}$ is nearly reducible, there must be a nonempty, proper subset α of $\{1, \ldots, n\}$ such that $\left(A-a_{i j} E_{i j}\right)[\alpha \mid \alpha)=0$. By our remarks in Section II of Chapter I, we can assume α is the set of all integersh such that either there is a path which connects the i-th row to the h-th column or there is no path which connects the h-th row to the j-th column. Since A and A_{r} have doubly stochastic pattern by Theorem G, there is a positive cycle g_{1} in A which contains $e_{1}^{1}, \ldots, e_{p_{1}+1}^{1}$ and a positive cycle g_{2} in A_{r} which contains $e_{1}^{r}, \ldots, e_{p_{r}}^{r}$ (where cycle is to be taken in the permutation sense). Thus every member of $g_{1}\left(g_{2}\right)$ can be connected by a path to $e_{p_{1}+1}^{1}\left(e_{1}^{r}\right)$. Hence if $a_{t u}$ is a member of g_{1}, then $u \in \alpha_{0}$ Likewise, since g_{1} is a cycle, there is some $a_{v t}$ in g_{1}. Thus $t \varepsilon \alpha$ if $a_{t u}$ is a term of g_{1} 。 Similarly, if $a_{t u}$ is a member of g_{2}, then t and u are not in α. Let d_{1} be the
positive diagonal of A composed of g_{1} and those entries on the main diagonal whose indices do not occur as row indices in g_{1}. Let d_{2} be the positive diagonal of A composed of g_{1}, g_{2}, and the entries on the main diagonal whose indices do not occur as row indices in g_{1} or g_{2}. Thus $e_{1}^{1}, \ldots, e_{p_{1}+1}^{1}$ lie on two positive diagonals which contradicts the Lemma. By a similar argument, we can prove the theorem for the q-th column.

It is interesting to observe that a nearly docomposable matrix which has the form of Theorem 2 satisfies the two conditions of Theorem 3. Hence the matrix which has the maximal number of positive entries has minimal permanent.

CHAPTER IV

CONJECTURES AND CONNECTIONS BETWEEN THIS
RESEARCH AND OTHER INVESTIGATIONS

Proposition 3 was motivated by

If B is an $m . \times m$ fully indecomposable, principal submatrix of an $n \times n$ nearly decomposable matrix A, then B is nearly decomposable.
which the author could not prove.

Indeed, E. J. Roberts has found the following counterexample:

$$
A \quad=\left[\begin{array}{llllllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Observe that A is chainable and the permutations $(14376,10),(9,10),(9876,10)$, (1432), and (37654) $(9,10)$ correspond to positive diagonals (where by (...6,10), we mean 6 goes into 10 , etc.). Hence A is fully indecomposable by Theorem G. With the exception of a_{37}, if $a_{i j}=1$, then either the i-th row or j-th column has exactly two positive entries. In the case of. a_{37}, the 5×5 submatrix of $A-a_{37} E_{37}$ composed of rows 1 through 5 and columns 1 and 6 through 9 is zero. Thus A is nearly decomposable. Observe that the principal submatrix $A(1 \mid 1)$ is fully indecomposable by Theorem D since it is the
trivial matrix with one additional entry. Thus the additional entry is removable.

The author believes

Conjecture. Assume A is an $n \times n$ nearly decomposable (0,1)-matrix. Then A has rank $n-1$ if and only if A is the trivial matrix and n is even. Otherwise A has rank n.
is true but has been unable to prove it.
In light of Theorem C, the author would like to know what conditions must be placed on an $n \times n$ nearly reducible matrix B in order that $A=B+I_{n}$ be nearly decomposable. The reader might conjecture that if B is an $n \times n$ nearly reducible matrix in canonical form such that $A=B+I_{n}$ satisfies the conclusion of Proposition 5, then A is nearly decomposable. However such a conjecture is false. Consider the following 5×5 nearly reducible (0,1)-matrix in canonical form with 2 decompositions:

$$
\text { B }=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

It is irreducible by Theorem D and nearly reducible by inspection. The matrix $A=B+I_{n}$ is fully indecomposable by Theorem B. However $A-a_{55} E_{55}$ is chainable and has doubly stochastic pattern. Thus by Theorem G, A is not nearly decomposable

As mentioned in Chapter I, nearly decomposable and nearly reducible matrices have recently come under scrutiny.
E. J. Roberts of NASA's Manned Spacecraft Center has independently discovered Proposition 2 [13, p. 35], Theorem 2 [13, pp. 67-68], and Theorem A [13, p. 73]. He called the author's attention to the fact that if a matrix has a positive diagonal or equivalently, if the associated bipartite graph G has no isolated vertices, then the matrix is chainable if and only if the graph G is connected. (A graph is bipartite if its vertex set can be written as the union of two disjoint sets S and T such that each edge of G has one endpoint in S and the other in T. See [4].) When the author told E. J. Roberts about Proposition 1, Doctor Roberts observed that one could also prove it by using his result that the associated bipartite graph of a fully indecomposable matrix is $2-$ connected [13, pp. 28-30] and the result in [1, p. 201] that if a graph contains neither loops nor isolated vertices, then it is 2 -connected if and only if every two edges 1 ie on an elementary cycle. (in the graph sense of cycle). One should note that by using the above result in $[1$, P. 201] and Proposition 1 , he has another proof that the associated bipartite graph of a fully indecomposable matrix is 2-connected.

It is interesting to note that by using Theorems B and G, one can quick1y prove that if v is an arc from i to j where $i \neq j$ in a strongly connected graph H, then v lies on an elementary circuit in H. Let B be the irreducible matrix corresponding to H. By Theorem $B, A=B+I_{n}$ is fully indecomposable. By Theorem G, $a_{i j}$ lies on a positive diagonal in $A_{\text {c }}$ Since $i \neq j, a_{i j}$ lies on a positive cycle (in the permutation sense) in B. Hence v lies on an elementary circuit in H.
D. Hartfiel and J. Crosby have independently proven Theorem A [3]. A11 of the authors of [3], [11], and [13] were motivated to consider and in their methods of proof of Theorem A by Professor Sinkhorn's work (mentioned in the introduction) in [14].

After the author had finished his research, he received word that Minc has independently discovered Theorem 2 [12].

BIBLIOGRAPHY

1. Claude Berge, "The Theory of Graphs", John Wiley and Sons, Inc., New York, 1966.
2. Richard Brualdi , Seymour Parter, and Hans Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix, J. Math. Anal. App1. 16(1966), 31-50.
3. Jack Crosby and Darald Hartfiel, A lower bound for the permanent on $U_{n}(k, k)$, to appear.
4. Frank Harary ., "Graph Theory", Addison-Wesley, Reading, Mass., 1969.
5. Darald Hartfiel , A simplified form for nearly reducible and nearly decomposable matrices, Proc. Amer. Math. Soc. 24 (1970), 388-393.
6. Mark Hedrick , and Richard Sinkhorn, A special class of irreducible matrices - the nearly reducible matrices, J. Algebra 16(1970), 143-50.
7. Mark Hedrick , Nonnegative matrices each of whose positive diagonals has the same sum, to appear.
8. Paul Knopp . and Richard Sinkhorn, Problems involving diagonal products in nonnegative matrices, Trans. Amer. Math Soc. 136(1969), 67-76.
9. Marvin Marcus , and Henryk Minc, Disjoint pairs of sets and incidence matrices, Illinois J. Math. 7(1963), 137- •
10. ———"A Survey of Matrix Theory and Matrix Inequalities", Allyn and Bacon, Boston, Mass., 1964.
11. Henryk Minc , On lower bounds for permanents of (0,1)-matrices, Proc. Amer. Math. Soc., 22(1969), 117-123.
12. —, Nearly decomposable matrices, to appear in the J. Linear Algebra.
13. Edwin J. Roberts, "The Fully Indecomposable Matrix and its Associated Bipartite Graph - an Investigation of Combinatorial and Structural Properties", NASA Technical Memorandum TM X-58037, Jan., 1970.
14. Richard Sinkhorn , Concerning a conjecture of Marshall Hall, Proc. Amer. Math. Soc., 21 (1969), 197-201.
15. Richard Varga , "Matrix Iterative Analysis", Prentice-Hall, Englewood Cliff, N. J., 1962.

INDEX

Trivial matrix

> nearly reducible. p. 7
> nearly decomposable p. 8 , line 5

Canonical form with k decompositions
nearly reducible. p. 7
nearly decomposable 8, line 5

NOTATION

SYMBOL
$\sigma(\mathrm{A})$
$A_{1}(p \mid p)$
p. 1, Iine $20 ;$ p. 8 , IIne 17
p. 14, line 15

