
R DATA-FLOW ANALYSIS METHOD

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements of the Degree

Master of Science

by

Kwang Cook Lim

December 1976



ACKNOWLEDGMENT

I would like to express my gratitude to Dr. Jung-Chang Huang for 

his invaluable guidance throughout the development of this material. 

My appreciation is also extended to Dr. Olin Johnson and Dr. Betty Barr 

for their interest and participation in this project. Finally, a 

special thanks is extended to my wife, Goon Hi Lim, for her assistance 

in typing this material.



A DATA-FLOW ANALYSIS METHOD

An Abstract of a Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements of the Degree

Master of Science 

by

Kwang Cook Lim

December 1976



ABSTRACT

Presented in this thesis is a method by which one can determine 

for a given program graph (1) what data definitions reach each node 

in the graph, (2) what data items have an upward exposed use at each 

node, and (3) what data definitions are "live" on each edge in the 

graph. The method is developed based on the topological sorting of 

edges and the acyclic image of a program graph. It is conceptually 

simple and easy to implement.



TABLE OF CONTENTS

Page

CHAPTER I INTRODUCTION 1

1.1 Application to Object Code. Optimization 2

1.2 Application to Software Reliability 6

CHAPTER II DATA-FLOW ANALYSIS OF LOOP-FREE PROGRAM 7

CHAPTER III GENERAL DATA-FLOW ANALYSIS 19

3.1 Introduction 19

3.2 Basic Concepts 22

3.3 Analysis of Data Flow 26

3.4 Analysis of Data Use 32

CHAPTER IV SUMMARY AND PROBLEMS FOR FUTURE RESEARCH 37

BIBLIOGRAPHY 39



1

CHAPTER I

INTRODUCTION

Presented in this thesis is a systematical method for extracting 

information concerning data-flow in a computer program.

The primary objective of data-flow analysis is to produce infor­

mation that can be used in program optimization. In fact it has been 

applied to optimize object code in 08/360 FORTRAN H compiler. It has 

been shown that the optimization process using data-flow analysis can 

be bypassed to obtain a 40 percent reduction in compilation time. 

However, the use of this optimization process generally will result in 

a 25 percent reduction in the length of object codes and a two third 

reduction in execution time Q/] .

Not only can data-flow analysis be utilized to optimize a program 

but L.D. Fosdick and L.J. Osterweil [8] recently have shown that the 

technique can be used to detect certain types of anomalies in a program 

and thus data-flow analysis can also be applied to improve software 

reliability.

Before we proceed to describe the data-flow analysis method, we 

shall use simple examples to illustrate possible application of data­

flow analysis in the following.



2

1.1 APPLICATION TO OBJECT CODE OPTIMIZATION

To see how the technique of data-flow analysis can be utilized 

in object code optimization, let us consider the FORTRAN program 

shown in Fig. 1.1. This program computes the mean value AVG and the 

greatest common divisor LAG of integers X and Y.

PROGRAM GCD (X,Y)

IMPLICIT INTEGER (A-Z)

LAG = X

SML = Y

2 AVG = (X + Y) / 2

IF(LAG.GE.SML) GO TO 4

COPY = LAG

LAG = SML

SML = COPY

IF(SML.EQ.O) GO TO 5

4 LAG = LAG - SML

GO TO 2

5 WRITE X,Y, AVG, LAG

RETURN

END

Fig. 1.1 Example Program



3

In order to optimize the object code of this program in compila­

tion, we need to know where in the program the variables are defined 

and referenced. This can be accomplished by performing a data-flow 

analysis on the program.

The analysis can be facilitated by decomposing it into program 

blocks f 4 ] and representing it as a program graph as shown in 

Fig. 1.2. Note that I/O statements have been deleted because we 

wish to emphasize optimization of the computational object codes at 

this point.

Fig. 1.2 Program graph GCD(X,Y) to be used for data-flow analysis.



4

A variable is called a data item in the data-flow analysis, 

A data definition is an expression or that part of an expression 

which modifies a data item, A data use is an expression which 

references a data item without modifying it. For example, an 

assignment statement of the form X<-Y constitutes a data definition 

of the data item X and a data use of the data item Y. A data 

definition is said to be 1ive on a path in the program if it is 

used subsequently. The heavy lines in Fig, 1.3 indicate the paths 

on which the definitions of LAG are live.

Fig. 1,3 Data flow of a data item LAG



5

The purpose of data-flow analysis is to determine what data 

definitions are available at any given point in a program graph, and 

where they are live or used. The information obtained can be used 

in object-code optimization as outlined below:

(1) Register Allocation

If a data item is assigned to a register and the data definition 

is live at the exit of a program block, then the corresponding store 

and load instructions may be omitted for obvious reasons.

(2) Loop Independent Computation

A data item is a constant in a loop if it is not defined anywhere 

in the loop. Any computation involving only such data items are said 

to be loop independent and can be moved out of the loop. For instant, 

TEMP<-X + Y in Fig. 1.1 may be moved out of the loop if TEMP is not 

redefined elsewhere in the same loop. Note that if TEMP<-X + Y moved 

backward out of the loop, then AVG<-TEMP/2 also becomes loop independent, 

and thus can be moved backward out of the loop also. The loop independent 

computation can be identified by the result of a data-flow analysis.

(3) Subsumption

A data item X is said to be subsumed by a data item Y, if references 

to X can be replaced by references to Y. If X is subsumed by Y on a path. 



6

then an expression of the form X*-Y may be eliminated provided we 

replaced all references to X by a reference to Y. The relation 

of subsumption can be determined by means of data-flow analysis.

1.1 APPLICATION TO SOFTWARE RELIABILITY

Recently, Fosdick and Osterweil suggest that data-flow 

analysis can also be used to detect data-flow anomalies in a program.

Data flow anomalies are caused by the abnormal pattern of data 

definitions and uses. For example, in Fig. 1.4, data item A is 

redefined in the second program block without any use of the first 

definition in the predecessor block. In other words, the first 

definition of A is not live on the path. The presence of a "dead" 

data definition in a program reflects a programming error, and can be 

detected by means of a data-flow analysis.

Fig. 1.4 Data Flow Anomaly



7

CHAPTER II

DATA-FLOW ANALYSIS OF LOOP-FREE PROGRAMS

In this chapter we shall discuss how to analyze data flow in a 

loop-free program.

For convenience, we shall be working with the control-flow graph 

of a program (or, program graph for short) in which each node corres­

ponds to a basic program block [3,4,7] rather than a single statement. 

A basic (program) block is a linear sequence of program statements 

having the property that, if any statement in the sequence is executed 

it entails that all other statements in the sequence are also executed 

Each basic block will be labelled by a positive integer for reference. 

Since there is a one-to-one correspondence between a basic program 

block and a node in the control-flow graph, we shall use the words 

"block" and "node" interchangeably. Thus we may speak of block i 

being a successor block of block j if in the control-flow graph 

node i is a successor of node j in the graph-theoretical sense.

Three types of useful information may be derived from each basic 

block for the purpose of global data-flow analysis.

For any basic block i, the first type of useful information is 

a set, DBp of data definitions locally available in the block.



8

A locally available definttion for a basic block is the last 

definition of a data item in the basic block. For example, DB^ = 

j , Y-j } for the basic block shown in Fig. 2.1. Note that a data 

definition is denoted by the name of the data item indexed by the 

block label. This notational convention will be used throughout 

this work.

Fig. 2.1 The i^ program block

The second type of information that can be derived from a basic

block is a set, UB.,of data items having an exposed use locally. A data item 

is said to have a locally exposed use if it is used in the block and 

its use is not preceded by a definition in the block. For example, 

data item X has a locally exposed use in Fig. 2.1 because it appears 

on the right-hand side of the first assignment statement. Note, 

however, that its use in the right-hand side of the second assignment 

statement is not locally exposed because it is preceded by a definition 

of X (i.e., X«-X + 1) in the block. Hence UB^ =|x, Zfor the basic 

block shown in Fig. 2.1.



9

Finally, the third type of information that can be obtained 

from a basic block is a set, PB^, of data items whose definitions 

are locally preserved. Definitions of a data item is said to be 

preserved through the block if that data item is not redefined in 

the block. Thus PB. = 1Z I for the basic block shown in Fig. 2.1.
ill 3

The three types of information described above can be utilized 

to analyze the flow of data definitions on a path in the control- 

flow graph.

A definition d in basic block i is said to reach basic block 

k if (1) d is a locally available definition from basic block i, 

(2) block k is a successor of block i, and (3) there is at 

least one path from block i to block k such that there is not a 

basic block on the path containing a redefinition of the same data 

item.

Any definition of a data item in the basic block is said to kill 

all previous definitions of the same data item. On the other hand, 

if a basic block does not contain a definition of a data item, then 

all previous definitions of this data item that reach the basic block 

are said to be preserved.Thus, for example, data definitions X. and 

Xj (i.e., X ■*-1 and X *- 2, respectively) in Fig. 2.2 are killed 

by the redefinition X^ (i.e., X <-3) while data definitions X^



10

and Xj in Fig. 2.3 are preserved through basic block k.

Fig 2.2

Fig 2.3



11

For each node in the control-flow graph of a program, we are 

interested in knowing what data definitions reach that node and 

what data definitions are available from that node.

Let denote the set of data definitions that reach node i, 

and let A- denote, the set of data definitions available from node 

i. Evidently, all data definitions available from the immediate 

predecessors of node i reach that node. That is,

Ri = v Ap (2.1)

P
for all node p which is an immediate predecessor of node i. The 

question now is ; how do we compute the set of data definitions 

available from a node to its immediate successors ? Obviously, by 

our definition, any data definition locally available in node i is 

also available to its immediate successors. In addition, any data 

definition that reaches node i and is preserved through the node 

is also available to its immediate successors. Thus

Aj = RPi kJ DBi (2.2)

where

RP^ jd | d e R^ and d is a definition of data item X 

and X PB. | (2.3)

The sets R. and A. defined above characterize the forward 

data flow in the control-flow graph of a program. What we would 



12

like to accomplish here, among other things, is to devise an effec­

tive method to compute the membership of R. and for each node 

i in terms of DB^ and PB..

If node i is an entry node, then = 0 since an entry node 

does not have any predecessor. Consequently, by (2.2), = DB^.

This result can then be used to compute the sets associated with its 

immediate successors. And by repeating the same process, we can compute 

R.j and IX. for all nodes in the graph. To illustrate, we compute the 

forward data flow of the program shown in Fig 2.4 as listed in Table 

2.1.

Fig 2.4



13

Tab. 2.1 Forward data flow by set representation

Node DBj PBi Ri Ai

1 X1 Y, 2 0 X1

2 Y2 X, Z X1 XpYg

3 X3 Y, Z Xl- Y2 Y2, X3

4 Y4 X, z

1 X X co ro
** x1,x3,x4

5 Z5 X, Y X1>X3, Y4 X1,X3,Y4,X5

If the method is to be implemented by using a computer, then the 

computations involved can be greatly facilitated by encoding all quan­

tities involved as follows. We shall represent a set by a binary string 

of length equal to the total number of data definitions in the program 

to be analyzed. Each bit position corresponds to a particular data 

definition. For a set of data definitions, the i-th bit in its binary­

string representation will be equal to 1 if and only if it contains 

the i-th data definition as its member; otherwise it is equal to 0. 

For a set od data items, if it contains a data item, say, X as its 



14

member, then all bit positions in its bit-string representation 

corresponding to a definition of X will be equal to 1. Otherwise 

they will be equal to 0.

By using the above coding scheme, we can readily compute

and as indicated below :

Rj = ® Aj p is the set of immediate predecessor of i (2.4)

J€P

RPi = R1 © PBi

Ai = RP.©DB., 

(2.5)

(2.6)

where @and ® denote bit-wise AND and OR operations, respectively.

Thus the forward data flow of the program shown in Fig. 2.4 can be 

computed as illustrated in Tables 2.2 and 2.3.

Table 2.2 Bit Position Table

Position Definition

1 X1

2 X3

3 V2

4 V4

5 Z5



15

Table 2.3 Bit string representation of forward data flow

Node DBi PB.1 R. 1 ! Ai .
1 10000 00111 00000 10000

2 00100 11001 10000 10100

3 01000 00111 10100 01100

4 00010 11001 11100 11010

5 00001 11110 11010 11011

A data item is said to have an upward exposed use in basic 

block i if either it has a locally exposed use in the block (cf. 

page 8 ) or there exists a path from node i to node k in the 

program graph such that (1) the data item has a locally exposed use 

in node k, and (2) there does not exist a node on the path that 

contains a definition of that data item.

The set of data items having an upward exposed use in block i 

is denoted by U.» and can be computed by scanning backward along the 

paths leading from node i. Specifically, for the exit node n, we 

have

un = UBn . (2.7)



16

and for any other node i.

Ui ’ ( U UJ PBi) f UB,,

j*s

where S is the set of immediate 

successors of i.

(2.8)

Set U. characterizes the backward flow of data, and can be 

represented by a binary string as described previously. Formula 

(2.8) can be rewritten as shown below :

Ui = (@ Uj ®PB.) ® UBi 

j feS

(2.9)

if all sets involved are given in the binary representation. The 

backward data flow of the program given in Fig. 2.4 is shown in 

Table 2.4 for illustration

Table 2.4 Backward data flow in binary representation

. Node UB1 PBi- ui

1 00000 00111 00001

2 11000 11001 11001

3 11000 11001 mu

4 11110 11001 mu

5 00001 mio 00001



17

It is natural for us to say that a data definition d of a 

data item X is 1ive at basic block i if d reaches this node and 

X has an upward exposed use at the node. Hence L.» the set of data 

definitions live at node i, can be formally defined as

L-j = jd j d c R. and d is a definition of data item X 

and X 6

In binary-string representation can be readily computed by

using the following relation :

Li = Ri ® U. (2.10)

In global data-flow analysis it is more convenient to consider 

live definition along a path rather than at a node. For that purpose, 

we need to consider L„, the set of data definitions that are livee
along an edge e. Formally, for an edge e that enamates from node p and 

terminates at node s .

L = j d I d€A„ and d is a definition of data 
eli p

item X and X 0$

The membership of Le in binary-string representation can be 

computed as follows :



18

e P s (2.11)

To illustrate, we shall compute, based on the information 

contained in Tables 2.3 and 2.4, the live data definitions on 

each edge in Fig. 2.4 as shown in Table 2.5.

Table 2.5 Live - Dead Analysis

Edge AP us Le

1 2 100QQ 11001 1000Q

2 3 1Q1QQ mu 10100

3 4 01100. Hill 01100

2 4 10100 11111 10100

4 5 11010 00001 00000

It is obvious from (2.10) and (2,11) that, to perform live- 

dead analysis, we need to compute the membership of R., , and

for each, node i tn the program graph. As demonstrated above, if the 

program to be analyzed is loop-free, then and A^ can be computed 

by scanning forward a path in the program graph while can be 

computed by scanning a path backward. However, if the program to be 

analyzed contains a loop, then the problem become more complicated. 

This is the subject of discussion in the next chapter.



19

CHAPTER III

GENERAL DATA-FLOW ANALYSIS

3.1. INTRODUCTION

In the preceding chapter we have shown that equations (2,4), 

(2,5), and (2,6) can be used to determine for each node in the 

program graph the data-definitions reaching that node. Note that 

we can accomplish this in a single pass through the graph if we can 

order the nodes in such a way that a node will not be visited until 

all of its predecessors are visited. This ordering can always be 

obtained for a loop-free program graph by performing a topological 

sort of the nodes{^6 J . However, this will not be the case for a 

program containing a loop.

To fix the idea, let us consider the program graph shown in

Fig. 3.1.

Fig. 3.1 A program graph with a loop



20

Obviously, the set of data definitions reaching node 2, the 

entry node of the loop, is the union of the set of definitions 

reaching through path a and that reaching through path abed. 

Thus the data definitions reaching nodes 2,3 and 4 can not be 

completely determined until the second pass through these nodes. 

In general, a node may have to be traversed more than twice if 

it is a part of a nested loop structure.

A natural solution to this problem would be first to compute 

R2*, the set of definitions reaching node 2 through path a.We then 

proceed to compute R2'1, the set of definitions reaching node 2 

through path abed by using the method described in the preceding 

chapter. We can then set (or, initialize) the value of R2, the 

true set of definitions reaching node 2, to be the union of R2'and 

R2", i.e., R2 = ' Once c*one» we can delete edge

d to obtain a loop-free representation of the program. The de­

finitions reaching nodes 3,4-,and 5 can now be determined by using 

the method described in the preceding chapter.

If the program to be analyzed contains nested loops, then the 

process described above can be repeatedly applied (inner loop first) 

until a completely loop-free representation is obtained.

To effectively carry out the process outlined above, we need



21

to be able to (1) identify a node being the entry of a loop, (such 

as node 2 in Fig. 3.1), and (2) find an ordering of the nodes that 

constitute the loop structure so that the method described in the 

preceding chapter can be applied to determine the data definitions? 

reaching the entry node through the loop structure. These two 

problems are not difficult in principle. The question here is : 

how can we do it with a minimal cost ?

A minimal-cost solution to the first problem has been suggested 

by Lowry and Medlock[7J by using the so-called predominance relation 

defined on the nodes of a graph. The second problem can be solved 

by using the interval analysis suggested by Allen and Cocke [3 j.

In the following we describe yet another method that can be 

used to solved both problems simultaneously with a minimal cost. 

Our method is believed to be more efficient than the methods of 

predominance relation and interval analysis in that our method does 

not require a rather inefficient search through the graph while the 

other two do at certain stages in their applications.



22

3.2 BASIC CONCEPTS

It is observed that, to use equations (2.4),(2.5), and (2.6) 

to compute the forward data flow on an edge (i,j) in the program 

graph, we need first to compute the definitions that reach node i 

through each and every edge terminating at node i. For this 

reason it is useful to order the edges by using the predominance 

relation.

Let x and y be two edges in the program graph. Edge x 

is said to predominate edge y if and only if, in a traversal 

of any path leading from the entry node that includes edges x and 

y, the first pass through edge x must precede the first pass 

through edge y. For example, in Fig. 3.2, edge a predominates 

edges b and c, edge c predominate edges d and e, and edge f 

predominates edge g.

Fig, 3,2 A program graph.



23

Note that the predominance relation defined above is different 

from that defined by Medlock [?] in that it is a binary relation 

defined on the set of edges rather than nodes.

It is easy to verify that the predominance relation is irre- 

flexive, asymmetric, and transitive, and therefore is a partial 

ordering [6j on the set of edges. Consequently, we can use this 

relation to sort the edges in a program graph topologically. For 

example, we can topologically sort the edges in Fig. 3.2 to yield 

the following ordering :

abcdefg

Next, we observe that in program optimization we will be most 

interested in the data items whose definitions remain to be the 

same while a loop is being iterated. For this reason, when we come 

to initialize the entry node of a loop, we need only to go through 

the loop structure exactly once. With this assumption we can 

greatly simplify the process of data-flow analysis by considering 

the acyclic representation of a (cyclic) graph.

Given a graph G‘, we can construct another graph G from G1, 

as follows :

(1) G contains all nodes in G',

(2) An edge (i,j) in G' is also an edge in G if and only if node



24

j is not on any path from the entry node to node i in G*.

(3) If there is an edge (i,j) in G*' such that node j is on some 

path from the entry node to node i, then add a copy of node 

j to G, and let edge (i,j) be tn G leading from node i to 

that copy of node j.

It is easy to verify that graph G constructed as described above 

is acyclic. Hence we shall refer to G as the acyclic image of G1 

throughout this work.

Figure 3.3 shows the acyclic image of the program graph given 

in Fig. 3.2. Note that a copy node is identified by a double 

circle in Fig. 3.3.

Fig. 3.3 The acyclic image of the graph shown in Fig. 3.2.



25

In constructing the acyclic image of a program graph we need 

to add a copy node only if there is a loop in the graph. Furthermore, 

a node for which we need to produce a copy is the entry node of a 

loop. If a program graph is loop-free then its acyclic image is 

identical to the original program graph. If a program graph contains 

a loop, then there is a copy of the loop-entry node for each path that 

constitutes the loop structure. Therefore, a node that has a copy 

in the acyclic image is the one that has to be initialized before data­

flow information can be determined globally.

The significance of a copy node in the acyclic image of a program 

graph is that we can use equations (2.4),(2.5), and (2.6) to system­

atically compute the definitions reaching that node. Specifically, 

if node i has k copies (k> 1) in the acyclic image of the program 

graph, then we can apply the three equations to compute R°, the set 

of definitions that reaches node i when it is entered for the first 

time, and the set of definitions reaching the j-th copy of node 

i, for all l£j< k. R_.,the set of definitions reaching node i, can 
then be properly initialized to R^ = R^°^R]uR^U -

Once this is done, the k copies of node i in the acyclic image of 

the program graph will no longer be of any use and thus can be deleted. 

Now if we repeat the above process to initialize all loop-entry nodes 

in the acyclic image of the program graph, we will be left with an 

acyclic graph without copy nodes. Based on this acyclic graph we can 



26

apply the technique described in the preceding chapter.to perform, 
data-flow analysis.

3.3 ANALYSIS OF DATA FLOW

It should be obvious now that when we work with the acyclic 

image of a program graph, the computation involved in initializing 

a loop-entry node is exactly the same as that involved in analyzing 

the forward data flow of a loop-free program. We sould note, 

however, that while we can compute and A^ for each node in a 

single pass through the graph, we can not initialize all loop-entry 

nodes in the same pass. To initialize a loop-entry node, we have to 

start the computation from the program entry. The computation is 

completed when the values of and A^ for all copies of the loop­

entry node in question are determined.

Having explained the basic strategy, we can now state our 

algorithm for forward data-flow analysis as follows : given a program 

graph G',

1. Topologically sort the edges in G' in accordance with the 

predominance relation to order the edges in the program graph.

2. Construct G, the acyclic image of G'.

3. Initialize R|r-0 and A-e DB. for each and every node in G.

4. Set (i,j) to be equal to the first edge in G.



27

5. Set

Rj<-Rj © A. and then

Aj4'Aj ® (Rj®

(all sets in binary - string representation)

6. If (i,j) is the last edge in G, the algorithm terminates.

7. If (1,j) terminates at a copy node in G, set c = j and delete 

this copy node from G. Otherwise set (i,j) to next edge

(in the order obtained in step 1) and go to step 5.

8. If there exists another copy of node c in G, then set (i,j) 

to next edge (in the order obtained in step 1) and go to step 

5. Otherwise go to step 4.

When the above algorithm terminates, we will be left with an 

acyclic graph without copy nodes, and all nodes are associated with 

proper values of R^ and A^. Thus we have obtained complete 

information on the flow of data definitions in the program graph.

To illustrate the idea involved, let us consider the program 

graph show in Fig. 3.4.

Note that the graphical structure of this program graph is 

identical to that of Fig. 3.2. Thus by topologically sorting the 

edge as described in Sec. 3.2 yield the following ordering of edges:

a,b,c,d,e,f,g.



28

Fig. 3.4 A program graph

or

(1,2),(2,4),(2,3),(3,4),(3,2),(4,2),(4,5)

Next, we construct the acyclic image of the program graph as

shown in Fig. 3.5.



29

Fig. 3.5 The acyclic image of Fig. 3.4.

Now if we encode the sets involved into binary strings in the 

sequence :

X1Y2Z2Y3X4Z5’

then the process of applying the algorithm to the program graph can 

be readily traced in Table 3.1. The last entries in each column 

contain the desired values of and A. for the corresponding node. 

For instance, the forward data flow at node 5 is characterized by 

Rk = 011110 and An = 010111.b b

The values of PBj, which remain constant throughout the process.

are included in the table to facilitate computation.



30

Table 3.1 Information obtained by applying the forward data-flow 

analysis algorithm to Fig. 3.4.

Fi
rs

t P
as

s

\^^Node
\i n i ti'aT—
N(alues D 

after\ Kj
edgefi.jK PBJ

\Ai 
is processed

1 2 3 4 5

000000
011101
100000

000000
100010
011000

000000
101011
000100

000000
011101
000010

000000
110110
000001

a
( 1.2 ) PBj 

Ai

100000
100010
111000

b Rj
( 2,4 ) PBj

Aj

111000
011101
011010

-

c RJ
( 2,3 ) PBj

AJ

111000
101011

101100

d R.

( 3,4 ) PBj

Ad

111100
011101
011110

e Rj
pB. 

( 3,2 ) 3
Ad

101100
100010
111000

fT PB.
( 4,2 ) J

AJ

111110

100010

111010

'—------



31

\ 2—^

a Rj 

( 1.2 ) PBj 

flJ

111110
100010

111010

b R.

( 2,4 ) PBj

AJ

111110
011101
011110

Se
co

nd
 Pa

ss C Rj 
( 2,3 ) PBj 

Aj

111010
101011
101110

d Rd
( 3,4 ) PBj

Ad

111110
011101
011110

9 Rd
(4,5) RBj

A.
J

011110
110110

010111



32

3.4 ANALYSIS OF DATA USE

Since an upward exposed use of a data item propagates backward 

along a path, we can compute the membership of U^, the set of data 

items having an upward exposed use at node i, only after we have 

computed the same for all of its successor nodes. This can be 

accomplished by processing the edges in the order opposite to that 

used in the forward data-flow analysis. Again, the loop-entry nodes 

have to be initialized before a global analysis can be performed. 

The computation involved in initializing the copy nodes is similar to 

that involved in the forward data-flow analysis except that it will 

be carried out in the reverse order.

Our algorithm for backward data-flow analysis can be stated as 

follows : given a program graph G',

1. Obtain an ordering of the edges in G' by first topologically 

sorting the edges using the predominance relation, and then 

reversing the order so obtained.

2. Construct G, the acyclic image of G‘.

3. Set = UB^ for each and every node in G.

4. Set (i,j) to be equal to the first edge (in G in the order obtain 

in Step 1).



33

5. SetUieUi © (U.®PB.).

6. If (i,j) is the last edge in G, the algorithm terminates.

7. If there does not exist a copy of node i then set (i,j) to next 

edge (in the order obtained in step 1) and go to step 5.

Otherwise set (k,i) to be equal to the first edge that terminates 

at a copy of node i.

8. Set © (U.© PB^) and delete this copy of node i as well •

as edge (k,i).

9. If there exists another edge (k,i) that terminates at a copy of 

node i, go to step 8. Otherwise go to step 4.

To illustrate the idea involved, we shall now apply this algo­

rithm to the program graph given in Fig. 3.4 to determine U., the 

set of data items having an upward exposed use at node i for all 

l£i£5. We shall use the same scheme to encode the sets involved. 

The edges are to be processed in the order :

gfedcba.

The results are shown in Table 3.2. The desired value of U. 

in to be found in the last entry of the corresponding column. For 

example, Ug =111111 and =010100 • Again, the values of PB^ are 

unchanged and are included in the table for the purpose of facilita­

ting the computation.



34

data-flow analysis algorithm to Fig. 3.4.

Table 3.2 Information obtained by applying the backward

'x^r^-^node 
xinitiaP^-^, 
\ values 

values \ (j.
after '\ 1
edge (i,j)\ PB. 
is processed\

1 2
1 ■
1 3 4 5

000000

011101

110110

100010

1 011101
1
1 101011

100010

.011101

100010

110110

g u.
( 4,5 PB^ )$1

100010
011101

f ui
( 4,2 ) PB1

ii
i

110110
011101

e Ui
( 3,2 ) PB.1

111111
101011

d U.
( 3,4 ) 1

PBi
111111
101011

c ui
( 2,3 ) PB.

110110
100010

b u,
I2-4) PB,.

110110

100010

—__ v'
——— —---



35
------------------ ■----------------- --—-—-.—-

f ui
('4.2 ) PB1

110110
011101

e U
( 3,2 ) pB1

111111
101011

9 U,
( 4,5 ) pB

110110

011101

d Ui
( 3,4 ) PBi

nun
101011

c Ui

( 2,3 ) pB^
110110

100010

b U1

( 2,4 ) pB^

110110

100010

a U.
( 1,2 ) PBi

010100
011101

We shall conclude this section by using the results contained in 

Tables 3.1 and 3.2 to compute the set of live data definitions along 

each edge in Fig. 3.4 as shown in Table 3.3. Recall that" L^- , the

set of definition live on edge (i,j), can be computed by the formula:

as discussed previously (cf. (2.11)).



36

Table 3.3 The results of a live-dead analysis on Fig. 3.4

Edge 
(i,j)

Ai
(from Table 3.1)

ui 
(from Table 3.2)

L(i.j)

( 1,2 ) 100000 110110
X1 

100000

( 2,4 )
111010 110110

Xj,Y2»X^
110010

( 2,3 ) 111010 111111
x1,y2,z2,x4
111010

( 3,4 ) 10110 110110
X1’Y3’X4 
100110

( 3,2 ) 101110 110110

x1,Y3,X4

100110

( 4,2 ) 011110 110110

Y2’Y3’X4

010110

( 4,5 ) 011110 100010
X4 

000010



37

CHAPTER IV

SUMMARY AND PROBLEMS

FOR FUTURE RESEARCH

In this thesis we have presented a method by which we can 

determine for a given program graph,

1. . What data definitions reach each node in the graph.

2. What data items have an upward exposed use at each node.

3. What data definitions are "live" on each edge in the graph.

The method is developed based on the topological sorting of 

edges and the acyclic image of a program graph. It is conceptually 

much simpler than all known methods [^3,7,8] , and is thus more cost 

effective to implement. This is important because, as we have 

mentioned previously, the problems of data-flow analysis are not 

fundamentally difficult. The main interest is in the method that 

is simple and thus easy to implement.

The practical value of this method can be greatly enhanced if 

we further research into the problems of how to implement it on a 

computer with a minimal cost. For instance, what information struc­

tures are to be used to achieve our goal? What features of a pro­

gramming language (in which the program to be analyzed is written)



38

can be exploited to effectively construct the program graph and its 

acyclic image? These are important problems that need to be dealt 

with in the future.



39

bibliography



40

BIBLIOGRAPHY

* 1. Aho, A.V. and Ullman, J.D. The Theory of Parsing Translation,

and Compiling, Vol. 1, Prttice - Hall, Englewood Cliffs, 

N. J., 1973.

* 2. Aho, A.V. and Johnson, S.C., "Deterministic Parsing of Ambiguous

Grammar", CASH, Vol,. 18, No. 8, pp441-452. August, 1975.

3. Allen, F.E. and Cocke, J., "A program Data Flow Analysis Procedure"

CACM, Vol. 19, No. 3, pp 137-147, March, 1976.

4. Bauer, F.L., Compiler Construction, springer - Verlay Berlin,

Heidelberg, 1974.

* 5. Elson, Mark, Concepts of programming Languages, Science

• Research Associations, Chicago, 1973.

6. Knuth, D.E., The Art of Computer Programming, Vol. 1, Fundamental

Algorithm, Second Edition, Addison Wesley, Reading, Mass., 

1973.

7. Lowry, Edward S, and Medlock, C.W., "Object Code Optimization",

CACM, Vol. 12, No. 1, pp 13-22, January, 1969.



41

8. Osterweil, L.J. and Fosdick, L.D., "Data Flow Analysis in 

Software Reliability", Department of Computer Science 

Technical Report #CU-CS-087-76, University of Colorado, 

Boulder, Colorado, May 1976.

* References not cited in the text.


