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Abstract
High-resolution images provide more information for better post-processing such as de-

tection, recognition, segmentation, identification, and visualization. The need for high-

resolution images occurs in health care, where the physician needs a high-quality image

of the patient in order to make better decisions or to perform surgery. Breath-holding MRI

scanners have high-acquisition speed and collect a large number of low-quality frames;

similarly, some surveillance cameras have low acquisition speed and collect low quality

images, due to the storage space restrictions or limited network bandwidth to transfer the

data. It is hard to perform satisfactory image processing on low-quality images. Image

reconstruction models, e.g., multi-frame fusion, and single image super-resolution, have

been successfully used in image processing and computer vision to improve the quality of

the image. Many algorithms have been proposed to fuse multiple low-quality images in

order to get a single high-resolution image, or to train the model on the training images and

to use that model to improve the quality of the single input image. The goal of this disser-

tation is to study previous approaches related to image quality, find their limitations, and

introduce new approaches to solve them. Since it is difficult to design a single algorithm

that will work for all types of images, such as MRI images and images obtained by surveil-

lance cameras, we divide the problem into sub-problems. We introduce new algorithms

to address the following objectives: (i) to fuse multiple low-resolution frames acquired by

an MRI scanner, (ii) to improve the quality of a single image by adding information from

training images, and (iii) to perform better recognition on facial images.
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Chapter 1

Introduction

1.1 Motivation

In image processing, there is a high demand for the input image to be processed to be

high-resolution, due to the fact that when the input image has high-resolution, more infor-

mation can be retrieved from the image for post processing such as identification, verifica-

tion, recognition, segmentation, detection, etc. For example, nowadays, when we go to the

Department of Public Safety to get a driving license, the clerk asks the applicant to remove

glasses, scarf, etc., and stand still with no expression to take the picture of the applicant.

Then, the specific type of camera takes the high-resolution picture of the applicant where

it is stored in the database. The purpose of taking a high-resolution image of the applicant

is not just to print it on the ID, it also has other purposes, such as: detecting license and ID

frauds from the facial images (duplicates under different name), recognition during crim-

inal investigations, etc. [30]. Similar cases can be found at airports. Another example for
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the need for high-resolution are traffic violators. When the input image has low-resolution,

we might identify the made, model and the color of the car, which is not enough to find

the violators, but if we have a high-resolution image of the car, we might get license plate

information, where each car has a unique license plate. Different examples for the need

for high-resolution image can be found in health care, where the doctor needs a better

image quality of the patient in order to make better decision, or perform surgery [45].

Similar cases can be found in dentistry, where the dentist needs to see the depth of a cavity

from the X-ray image before he/she starts the treatment. Many examples can be found

for the need for high-resolution image for processing. However, there are cases where we

cannot acquire high-resolution images, such as in surveillance cameras. There are many

reasons for the acquired image from the surveillance camera to be low-resolution [50].

One of them is due to the network bandwidth to transfer frames from the camera to the

storage device. Another factor is the storage, where high-resolution images will require

larger storage space. Assuming that some criminal activity was captured on one of the

low-resolution surveillance cameras, this is sometimes the reason why we see on the news

that if we know or can identify the person on the low-quality picture, we should call the

police. When we enlarge the low-resolution image, then the enlarged image will result in a

blurred image, and it will pose more difficulty for a person being to identify [14]. In such

cases, preprocessing of the image is required in order to improve the quality of the image.

Super-resolution reconstruction is an approach that enhances the resolution of an im-

age [2]. Resolution can have many meanings such as: number of independent pixels, total

number of pixels, covered distance (aerial imaging), number of photons (microscopy), etc.,

and there is no generic super-resolution algorithm that could solve all constraints. Thus,
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most of the super-resolution algorithms are domain specific [76].

1.2 Objectives

In this section we will describe the objectives, and briefly explain the proposed solutions

for the objectives.

Super-resolution (SR) is divided into two categories: multi-frame super-resolution and

single image super-resolution. In multi-frame-based SR, multiple frames are fused to

obtain a single super-resolution image. Single-frame-based super-resolution uses training

images to obtain higher-resolution images.

1.2.1 Objective I: Multi-frame Reconstruction from MRI images

Cardiac gating or breath-hold MRI acquisition is challenging. In particular, data collected

in a short amount of time might be insufficient for the diagnosis of patients with impaired

breath-holding capabilities and/or arrhythmia. A major challenge in cardiac MRI is the

motion of the heart itself, the pulsate blood flow, and the respiratory motion. Furthermore,

the motion of the diaphragm in the chest moving up and down gets translated to the heart

when a patient breathes. Therefore, artifacts arise due to the changes in signal intensity or

phase as a function of time, resulting in blurry images.

Assuming that we can collect multiple frames of MRI images of an internal organ over

time, we need an algorithm to fuse these multiple frames to obtain a better quality image.

This will be our first objective. For the first objective, we propose a novel reconstruction
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strategy for real-time cardiac MRI without requiring the use of an electro-cardiogram or of

breath holding [8]. In this research we focus on automation and evaluation of the perfor-

mance of our proposed method in real-time MRI data to ensure a good basis for the signal

extraction. Hence, it assists in the reconstruction. The proposed method enables one to ex-

tract cardiac beating waveforms directly from real-time cardiac MRI series collected from

freely breathing patients and without cardiac gating. Our method only requires minimal

user involvement as an initialization step. Thereafter, the method follows the registered

area in every frame and updates itself. We evaluate different basis functions, varying lev-

els of decomposition, and multiple methods for coefficient fusion, so as to maximize the

benefit of the better quality image for the task of higher MRI image acquisition. We have

used the ordinary Discrete Wavelet Transform (DWT) to denoise the signal, and K-Spaces

of the image in order to fuse them. To evaluate them, we used a synthetic dataset. Exper-

iments are designed and results reported across both synthetic datasets and real MRI data

acquired from five different patients in order to determine the limitations of multi-frame

diastole/systole reconstructions.

1.2.2 Objective II: Speed-up Super-resolution Reconstruction

Some of the surveillance cameras have low acquisition speed (frames per second), due to

the storage space to store or the bandwidth of the network to transfer the data. Thus, usu-

ally we obtain only a few frames of an object or a subject. We need an algorithm to estimate

a higher-resolution image from a single-frame image. This will be our second objective.

Obtaining a super-resolution image from a single low-resolution image is a difficult task
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and will require additional information during reconstruction. Most of the single-frame-

based super-resolution algorithms utilize training images to train an algorithm, or build a

dataset that can be used during reconstruction.

We propose a novel approach to obtain super-resolution images from low-resolution

images with the goal of improving the quality of the input image [9]. Our approach is

motivated by the observation that high-frequency information in images plays a significant

role in the formation of the high-resolution image. However, it is not sufficient by itself

to get higher-resolution. Therefore, we propose to recover an SR image of a given low-

resolution image by adding high-frequency components from the training datasets.

When the parameters of the camera settings (point-spread-function, (PSF), motion,

and pose) of the input LR image are known a priori , then specific databases can be used

to create an SR image. By this method, a better SR output is accomplished, since there

are fewer constraints to satisfy. If there is no information about camera settings, motion,

and pose, then the training database should be very large to include all images for various

constraints. Thus, it will be difficult to estimate an SR image, as well as computationally

expensive, when there are too many unknowns. However, instead of reconstructing the

full image, one can reconstruct the SR patches and stitch them together to obtain a full SR

image.

Our proposed algorithm reconstructs a super-resolution image from a given low-resolution

image, by adding high-frequency information that is extracted from natural high-resolution

images in the training dataset. The selection of the high-frequency information from the

training dataset is accomplished in two steps: a nearest-neighbor search algorithm is used

to select the closest images from the training dataset, which can be implemented in the
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GPU, and a sparse-representation algorithm is used to estimate a weight parameter to

combine the high-frequency information of selected images. The weights are determined

through manifold learning via sparse representation techniques. This simple but very pow-

erful super-resolution algorithm can produce state-of-the-art results.

1.2.3 Objective III: Face Recognition

Face recognition is a challenging research topic, especially when the training (gallery)

and recognition (probe) images are acquired using different cameras under varying con-

ditions. Even a small noise or occlusion in the images can compromise the accuracy of

recognition. Lately, sparse encoding-based classification algorithms have given promising

results for such uncontrollable scenarios. We propose a novel methodology by modeling

the sparse encoding with weighted patches to increase the robustness of face recognition

even further [10]. In the training phase, we define a mask (i.e., weight matrix) using

a sparse representation selecting the facial regions, and in the recognition phase, we per-

form comparison on selected facial regions. The algorithm is evaluated both quantitatively

and qualitatively using two comprehensive facial image databases, i.e., Face99 [55] and

YFace [19], with the results clearly superior to common state-of-the-art methodologies in

different scenarios.
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1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows: the proposed algorithm for MR image

reconstruction to obtain better quality images is presented in Chapter 2. The new extension

to the super-resolution algorithm is presented in Chapter 3. The proposed face-recognition

method is presented in Chapter 4. Finally, Chapter 5 concludes the dissertation with our

findings.
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Chapter 2

Objective I: Cardiac MRI

Reconstruction

In this chapter we describe a novel reconstruction strategy for real-time cardiac MRI with-

out requiring the use of an electro-cardiogram or of breath holding. The proposed method

enables one to extract cardiac beating waveforms directly from real-time cardiac MRI se-

ries collected from freely breathing patients and without cardiac gating. Our method only

requires minimal user involvement as initialization step. Thereafter, the method follows

the registered area in every frame and updates itself.

Cardiac gating or breath-hold MRI acquisition is challenging. In particular, data col-

lected in a short amount of time might be insufficient for the diagnosis of patients with

impaired breath-holding capabilities and/or arrhythmia [77]. A major challenge in car-

diac MRI is the motion of the heart itself, the pulsate blood flow, and the respiratory

motion [46]. Furthermore, the motion of the diaphragm in the chest moving up and down
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gets translated to the heart when a patient breathes. Therefore, artifacts arise due to the

changes in signal intensity or phase as a function of time, resulting in blurry images [66].

In our research we focused on automation and evaluation of the performance of our pro-

posed method in real-time MRI data to ensure a good basis for the signal extraction [78].

Hence, it assists in the reconstruction.

MRI is a safe, noninvasive test that creates detailed images of organs and tissues [38].

Cardiac MRI creates both still and moving images of the heart and major blood vessels [18,

36, 48]. To overcome the challenges due to motion, two approaches are being commonly

used [28, 41].

The first approach uses the breath-hold acquisition. In this acquisition technique, the

MRI technician collects data only when patient holds his breath [18]. Hence, one can

only collect MRI data for a short amount of time. However, the collected data might not

be sufficient for a physician to perform proper diagnosis. The second approach refers to

a technique called “gating” [69]. The system identifies the quiet period between breaths

and then outputs a trigger each time the heart beats. The moment the patient starts to take

a breath, the system stops triggering and waits for the next quiet period to improve the

quality of the scans [27]. In order to get viable signals, patients need to be outfitted with

probes. For instance, the cardiac motion can be synchronized using the ECG. However,

using ECG inside the MRI machine can be challenging since the magnetic field induces

differential voltages in the leads of the probes [18, 36].

Several works [48, 25, 57] have been done recently to alleviate the motion artifacts and

deterioration of image quality. The method to extract the surface area reported in [79] has
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Figure 2.1: Depiction of a proposed pipeline.

a higher computational load and works well with cine MRI, but has limitations in real-

time MRI due to the noise effects, and does not provide a statistical evaluation. In this

work, we propose an approach that is more efficient than the combination of level set and

wavelet decomposition [65]. Our proposed reconstruction pipeline takes multiple stacks of

cardiac MRI sequences acquired from a freely breathing patient as an input, then performs

segmentation for each image, and extracts the heart beat signal; then the reconstruction is

performed to get systole and diastole images to guide the reconstruction (Figure 2.1).

2.1 Methodology

Let xi ∈ Rm×n be an ith MR image of an image sequence X = {x0 . . . xN}, s ∈ RN×1

be a heart beat signal corresponding to the image sequence X , and y be an image that

represents the exact systole or diastole position which we need to reconstruct from X . To

estimate y from the given image set X and a heart beat signal s, the Bayesian equation can

be utilized [12]:

P (y|s,X ) = P (s,X|y)P (y)P (X )
P (X|s)P (s)

, (2.1)

where P (s,X|y) is the likelihood of getting the signal and the sequence from a given

image y, P (s) is the prior knowledge of the heart beat signal, P (y) is the prior knowledge
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of the exact diastole/systole image, and P (X|s) is the likelihood of getting the sequence

from the heart beat signal. Let us take the negative logarithm (−ln(.)) on both sides of

Eq. 2.1, and denote lnP (y|s,X ) by L(y, s,X ), then Eq. 2.1 can be written as:

L(y, s,X ) ≈ lnP (s,X|y) + lnP (y) + lnP (X )− lnP (X|s)− lnP (s) , (2.2)

where L(.) is the function that we need to minimize. The likelihood P (X|s) can be esti-

mated as:

P (X|s) ≈
N∏
i=0

P (Xi)P (si|Xi) , (2.3)

where the prior knowledge P (Xi) and the likelihood P (si|Xi) are written as:

P (Xi) = e

∥∥∥Eext(fXi
)−Eint(fXi

)
∥∥∥2
2
/σ2

2 , P (si|Xi) = e−‖si−f(Xi)‖22/σ2
1 . (2.4)

In Eq. 2.4, Eint(.) and Eext(.) are the internal and external energy [52] of the function

(.), fXi
is the contour that encircles the region of interest in the MR image Xi, and σ1,2

are the distribution values (||σ1,2||22 > 0). Since in Eq. 2.4, we are estimating the heart

beat signal from the image sequence X , we have a priori knowledge of the signal, and we

know that it should be periodic [5]. The output signal can be filtered out with a band pass

filter [55], but a major problem is that we can’t design such a filter without knowing the

cutoff frequencies. Here is an alternative solution:

P (s) =
N∏
i=0

P (si) =
N∏
i=0

e−‖W(si)‖22/σ2
3 , (2.5)

where W(.) is the wavelet denoising function [12,13], and σ3 is the distribution value.

Using wavelet denoising we remove the high variation signal and preserve the low vari-

ation signal. To formulate the likelihood P (s,X|y), we need to define the function that

11



can extract the image y from the given image sequence X and heart rate signal s. Assum-

ing that during the MR image acquisition, first raw k − space data is collected for each

image Xi, and then forward-FFT with post-processing is performed to acquire the dicom

images [19, 44]. Given the raw data (k-space columns) of an image sequence X and heart

beat signal s, we can select the k − space columns that fall into the peak of the heart rate

signal s, and combine them (G(Xi, si) in Eq. 2.6). Let r(si) be a function that returns a

mask vector ([0 . . . 1 . . . 0]), which is used to select the columns (k − space columns) of

2D Fourier Transformed X ∗i (Eq. 2.7):

G(Xi, si) =
N⋃
i=0

X ∗i r(si) (2.6)

X ∗i (u, v) =
K−1∑
k=0

L−1∑
l=0

X i
k,le
−j2π(uk/K+vl/L) . (2.7)

The likelihood P (s,X|y) can be written as:

P (s,X|y) =
N∏
i=0

P (si,Xi|y) = e‖G(Xi,si)−y‖22/σ2
4 . (2.8)

By combining Eq. 2.2, 2.4, 2.5, 2.6 and 2.8, the minimization function will be:

y = argmin
y,f(Xi),s

∥∥∥⋃N
i=0X ∗i r(si)− y

∥∥∥2
2
+ ‖si − f(Xi)‖22

+
∥∥∥Eext(fXi

)− Eint(fXi
)
∥∥∥2
2
+
∥∥∥∑N

i=0w(si)
∥∥∥2
2

. (2.9)

It is hard to minimize the function in Eq. 2.9 [58]. However, we can minimize functions

by separating them into multiple small minimization functions based on the arguments,

∂L/∂y:

y = argmin
y

∥∥∥∥∥
N⋃
i=0

X ∗i r(si)− y

∥∥∥∥∥
2

2

, (2.10)
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(a) (b)

Figure 2.2: Depiction of MRI image. a) Original MRI image, and b) the yellow region is zoomed for better

visualization.

and s can be estimated from:

s = argmin
fXi

,s

∥∥∥Eext(fXi
)− Eint(fXi

)
∥∥∥2
2
+ ‖si − fXi

‖22 +

∥∥∥∥∥
N∑
i=0

W(si)

∥∥∥∥∥
2

2

. (2.11)

2.2 Implementation Details and Results

As discussed above, first we need to extract the heart beat signal from the MR image

sequence (Figure 2.2). We can break Eq. 2.11 into three parts, segmentation, signal ex-

traction and denoising, and reconstruction. In each subsections we will describe the details

of the implementation.
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2.2.1 Segmentation

Segmentation of an object can be divided into two categories: edge-based segmenta-

tion [35] and region-based segmentation [23]. In general, edge-based models rely on the

quality of the edges on the bounders of the object, where these edges are used to attract

the contour. On the other hand, the region-based segmentation has a better performance

than edge-based segmentation, since it relies on the intensity homogeneity; in other words,

region-based segmentation assumes the image intensities within the region are homoge-

neous [35].

In order to segment the regions of interest, we used the Chan-Vesse algorithm proposed

by Chan et al. [13]. This algorithm is a type of active contours to detect or segment objects

in a given image, based on techniques of curve evolution, the MumfordShah problem [17].

The most important aspect of this model is that with it we can segment the regions whose

boundaries are not necessarily defined by gradient. In MRI images to be able to stop at the

boundaries is the most challenging part.

The global fitting term of Chan-Vesse algorithm is:

f(c0, c1, C) = λ0

∫
in

(Xi − c0x,y)
2
dxdy + λ1

∫
out

(Xi − c1x,y)
2
dxdy + λ2 |C| (2.12)

where C is the contour of segmentation, Xi is an MRI image, c0 and c1 are two constants

that best approximate the image intensities inside (in(C)) and outside (out(C)) of contour

C, and |C| is the length of the contour C. The terms λ0, λ1, and λ2 are nonnegative

constant values. They are used as regularization parameters. Eq. 2.12 can be solved using

the energy minimization algorithm [13], where the function is iteratively minimized until it

reaches a stop criterion or the maximum number of iterations. The contour Ci at different
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Figure 2.3: Depiction of segmentation at iteration: 1, 2, 3, 4, 7, 10, 15, 149. In the first iterations the contour

grows fast, which is the approximation of the segmentation region, and in the latest iterations the

contour grows slow, which is fine tuning the segmented region.

iterations for the frame Xi is depicted in Figure 2.3.

The first term
∫
in
(Xi − c0x,y)

2
dxdy in the Eq. 2.12 is called global fitting energy. This is

the term which makes the model not sensitive to the seed point (Figure 2.4). Figure 2.4(a)

depicts the 16th frame of the MRI image sequence. The resolution of the image is 254 ×

184 pixels, and we selected the region of interest (box marked in white in Figure 2.4(a));

Figure 2.4(b) depicts the selected region. In this figure, the red round markers and green

star marker are the seed points for the segmentation experiment, to test if it will depend

the initial seed position in the image.

The segmentation outputs of the red round markers in Figure 2.4 are depicted in Fig-

ure 2.5(a)-e, and the segmentation output of the star marker in Figure 2.4(b) is depicted in

Figure 2.5(f). As one can see, the segmentation output of the different seed points within

the boundary of the object is the same.
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(a) (b)

Figure 2.4: Depiction of a) MRI image, and b) zoomed in region. Round and star markers on the image are

the seed points for the segmentation.

However, when we select the boundary of the object as a seed point (star marker in

Figure 2.4(b)) then we will have a different segmentation output (Figure 2.5(f)). The rea-

son that we did not segment a complete region of two objects is that we set the maximum

number of iterations to 350. The question why we have segmented two regions instead of

one, we can answer as follows: since we have selected the peak region of the gradient as

depicted in Figure 2.6(a), the Chan-Vesse algorithm contracts the curve in 360◦, and since

the neighboring gradients are lower than the gradient in the selected location, the region

of segmentation will grow to the left and right (assuming 1D) of the selected seed point.

We have covered the segmentation of one frame; however we need to segment all of the

frames in the MRI image sequence in order to be able to reconstruct diastole/systole im-

ages. Selecting seed point for each image in the sequence would be time consuming [54].
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: Depiction of segmentation with a seed point a-e) for the round marks in Fig 2.4(b), and f) is the

segmentation with a seed point for the star marker.

One of the solutions might be to use the initial seed point for all images in the sequence.

This will work only in cases where the subject does not move. If the subjects move, the

segmentation algorithm will segment different regions. A better solution would be to use

the contour of the previous image as an initial contour to the current image. This has two

advantages over using one seed point for all images. First of all it will not require human

interaction for segmentation and even if the subject moves during acquisition, due to the

high rate of acquisition speed of the MRI, the displacement will be very low. We have

showed that the different seed point location within the boundary of the region will give

the same results (Figure 2.4 and Figure 2.5). However, if in the current frame the region

of interest is shrunk compared to the previous frame, then the contour might grow during
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(a) (b)

Figure 2.6: a) Region of interest, b) a 1D signal is extracted along the red line in (a), and its gradients are

plotted. The red round marker in (b) represents the seed point selected in the (a) (star marker).

segmentation instead of shrinking, as shows in Figure 2.5(f), because the initial contour

boundary might hit the peak gradient in the current frame, while it was within the bound-

ary of the region in the previous frame. One of the solutions to this can be to find the center

point q = 1
b−a

∫ b
a
fXi

dfXi
of the contour and use this as a seed point to the current frame

for segmentation. The drawback of this approach is that in each frame we will segment as

if we are performing segmentation for the first time, and we don’t have any knowledge of

the region, thus we will run full iterations for each frame in the sequence which will have

significant computation times. A better solution would be to use the information from the

previous frames, which should require fewer iterations.

We know that the global difference between consecutive frames is very small (small

body movement) due to the high speed frame acquisition and low variation of the body.

The highest variation of the body is the aorta in the heart region due to the heart beat,

but still the displacement of the center of the aorta will be very small, and the difference

between regions of the two consecutive frame of the aorta regions will be also very small

(Figure 2.7).
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(a) (b) (c)

Figure 2.7: Depiction of two consecutive frames in the MRI image sequence and their absolute difference.

Depiction a) 120th frame, b) 121th frame and c) the absolute difference between two frames.

The color bar on the right of the (c) is color representation of the absolute difference values.

With this knowledge about the images, we can find a solution that would satisfy our

objectives. The simplest solution is to shrink the contour of the previous frame and use

it as an initial contour for the current frame. Another solution would be to estimate the

radius of the contours in each previous frames and use a circle contour with mean radius

of the previous contours in the current frame. Both solutions will have low computation

cost.

2.2.2 Signal Extraction and Denoising

After finding the contours fXi
= C for each MR image, we need to extract signal si

(s ∈ R1×n) from each frame contours Ci. This can be done by minimizing ‖si − ξ(fXi
)‖22

with respect to si, where ξ(.) is the function that returns the signal value from the given
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Figure 2.8: Depiction of heart beat signal exacted from MRI images through segmentation. After integrating

over the contour, we will have the area inside of the segmented region, with is the total number

of pixels. The area for each frame is normalized by dividing the area of the region in the current

frame with the area of the initial frame.

fXi
contour. We propose to integrate over the contour fXi

, where the result will be the area

inside the contour. It can be written as:

si =
1

b− a

∫ b

a

fXi
dfXi

, (2.13)

where fXi
is the contour of the segmented region of ith MR image in the sequence, (a, b)

are the start and end points of the contour, and si is the signal value at time i. We have

normalized the signal by dividing the signal with the inital signal value, which is the

ratio between the area of the segmented region of the current frame and the initial frame

(si = si/s0).

After integrating over the contours fXi
, we will have a 1D signal which is the heart

beat signal of the subject. The signal extracted from MR images through segmentation

might be noisy (Figure 2.8).

To remove the noise from the heart beat signal we need to filter the signal. Since we
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have a priori knowledge of the signal (P (s)), we can easily denoise it. There are many

ways to denoise the signal, such as band pass filtering, wavelet filtering [34], etc. Since

we don’t know the cut off frequencies of the signal to filter out the noise part, we used a

wavelet transform to denoise the signal.

Figure 2.9 depicts the test of three levels of decomposition of a heart beat signal using

the Haar wavelet function [34]. Notice that when we use Haar wavelet functions (Fig-

ure 2.11(a)) to decompose the signal into three levels of decomposition, the details d1, d2,

d3 and the analysis a3 part of the signal are rectangular.

21



Figure 2.9: Depiction of three levels of decomposition using a Haar wavelet function. The top figure is the

original signal (s), the second figure is the analysis (a3) part of the signal after three levels of

decomposition, and d1, d2 and d3 are the detail parts of the signal at each level.

This is due to the Haar wavelet function operating on the consecutive neighboring

samples [49], where the detail and analysis parts of the signal will be rectangular with

sharp changes (locality). In other words, Haar wavelet functions do not take into account

the global shape of the signal. Notice that the lowest variation in the signal will be depicted

in the analysis part a3, and the highest variation in the signal will be depicted in the detail
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Figure 2.10: Depiction of discrete wavelet transform (DWT) using Daubechie (8) as a wavelet function.

part d1. By looking at the original signal s in Figure 2.9, it can be noticed that the original

signal (heart beat) values variates between 0.7-1, and the detail part at level two (d2) is the

most similar to the original signal. Thus, we need to perform two levels of decomposition

and remove the high variation (d2) and take the inverse Haar wavelet transform, where the

output will the be denoised signal. Figure 2.10 depicts the three levels of decomposition of

a heart beat signal using the Daubechie (8) wavelet function [33]. Notice that the analysis

and detail parts (except the high variations d1) of the Daubechie decomposition are smooth
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(a)

(b)

Figure 2.11: Depiction of scaling and wavelet functions for a) Haar and b) Daubechie (8).

compared to the analysis and detail parts of the Haar wavelet decomposition. This is

because the scaling and wavelet functions (Figure 2.11(b)) of the Daubechie (8) operate

on a higher range of the neighboring samples, where it takes into account the shape of the

signal. Performing the same steps as in the Haar wavelet transform to denoise the signal,

we can remove the noise. Figure 2.12(a) depicts the original signal and the output of the

denoising using Haar wavelets and two level of decomposition. Notice that the output is

still noisy after denoising it. Thus, we used Daubechie as a wavelet with a window size

of 8 (Figure 2.11(b)) and two levels of decomposition [13,15]. Figure 2.12(b) depicts the
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(a)

(b)

Figure 2.12: Depiction of original signal and output of denoising using a) Haar and b) Daubechie (8) wavelet

transform. Notice that the denoised output of the signal using Haar wavelet is worse compared

to the output of using Daubechie (8). This is because the Haar wavelet transform operates on

local (small neighboring range) samples, whereas the Daubechie (8) operates on more global

(higher neighboring range) samples which take into account the signal shape.

original signal (blue) and the denoised signal (red) after denoising using Daubechie (8)

wavelet decomposition.
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(a) (b)

Figure 2.13: Depiction of a) 500th MRI image at frame, and b) zoomed in on the yellow box in (a).

2.2.3 Reconstruction

The purpose of estimating the heart rate signal from the MR image sequence is that we

want to reconstruct a single image y from multiple images. This is a task similar to ob-

taining super-resolution from multiple images [29, 19]. In multi-frame super-resolution,

we assume that the object is not deformed, but has been displaced (affine transformation).

Thus, by registering the object by bringing it to the same position in the spatial domain, we

can apply algorithms that can combine multiple frames into one [29, 19]. In our project,

we have a different situation, since the object (aorta) is displaced as well as deformed due

to the blood pumping mechanism of the heart. This brings an additional challenge to the

existing challenges in multi-frame reconstruction [59]. However, we know that even if

the object (aorta) is deformed and displaced, it will come to the same position and the
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same shape (fXi
≈ fXi+k

) after some time, and we know that it will be repeated (peri-

odic) [65, 79]. The heart beat signal is estimated by calculating the area of the segmented

regions. Thus, from the heart beat signal we can only extract the information of the defor-

mation state (fXi
) of the aorta at the time sequence i. In order to perform super-resolution

or the fusion of multiple frames, we need the information of displacement of the aorta at

time i.

(a)

(b)

(c)

Figure 2.14: Depiction of tracking. a) The image inside the yellow dotted rectangle in Figure 2.13. It is

rotated for the display. b) The sum values along the column of the image in (a). c) First

derivative of the sum values. The red dot is the highest peak in the summed values, which is

the tracking point.
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Figure 2.15: Depiction of tracking points for the frames numbered 100 through 199.

One possible solution is to perform a non-rigid transformation on the frame Xi to esti-

mate the parameters [3], and by using these transformation parameters register the frame

Xi to the reference frame Xref . Non-rigid or elastic transformation-based registrations are

computationally expensive, thus we propose a different approach to avoid dealing with

deformational displacements. We track the region inside the body close to the aorta, and

by tracking the point we will have the displacement (x, y) of the aorta.

In Figure 2.13, we select the upper boundary of the torso region (yellow dotted rect-

angle) to track the gradient displacement. After selecting the region to track the point, we

calculate the location of the gradient change, which will be our tracking point. First we

extract the region (Figure 2.14(a)), let us denote it by Zi (Zi ∈ Xi), and let q ∈ R1×n be

the sum of the values along the vertical direction, calculated as:

q(x) =
∑

y=0..n
Z(x, y) ∀x . (2.14)

Figure 2.14(b) depicts the sum of the image along the column. The tracking point can

be calculated by finding the maximum value of ∂q/∂x which is depicted in Figure 2.14(c).

Figure 2.15 depicts the peak values of the gradient changes and their positions. Notice
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that using the proposed method for tracking, we will have only one peak point, which is

the highest gradient change in the selected region. In other words, it is the boundary of the

torso region. Tracking this region will give us the breath rate of the subject (low variation

signal). Figure 2.16 depicts the denoised heart beat signal and the breath rate signal. In

Figure 2.16(b), the blue line is the original signal (breath rate), and the red line is the

denoised signal using Daubechie (8) wavelet with one level of decomposition.

(a)

(b)

Figure 2.16: Depiction of extracted a) heart beat and b) breath rate signals. The blue line and the red line in

(b) are the original and denoised breath rate signals, respectively.

The extracted heart beat signal si at frame i gives us the information of the shape of the
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Figure 2.17: Depiction of heart beat and breath rate signal extracted from MR images (Xi i = 100 . . . 250)

through segmentation. Top figure is the heart beat signal, and bottom figure is the breath rate

signal. Red stars (*) are the local maxima that the algorithm found.

aorta, and the breath rate signal at frame i gives us the information of the spatial position

of the aorta. After denoising the heart beat and breath rate signals, we find the peaks in

the heart beat signal which will be the diastole positions of the aorta. If we subtract the

original signal from its maximum value (s′i = max(s) − si ∀i), the output signal will be

the inverse of the original signal, and the peaks of the inverse signal will be the systole

positions of the aorta.

30



Figure 2.18: Depiction of breath rate signal (zoomed in on the black rectangle in Figure 2.17). The width of

the selection box (red transparent box) is defined by w, which is w/2 to the left and to the right

of the peak value (red dot).

Figure 2.19: Depiction of breath rate signal (zoomed in on the black rectangle in Figure 2.17), heart beat and

breath rate signal extracted from MR images (Xi, i = 100 . . . 250) through segmentation. Red

transparent rectangles are calculated from the breath rate signal, and are used to select heart

beat signals, which will be used for reconstruction.

Thus, all we need to do is to select the location in one period from the heart beat signal

and find a similar location in the periodic signal. We need to reconstruct the image for the
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Figure 2.20: Depiction of local maxima and neighboring frames. The red curve is the zoomed in region of

the selected region (rectangle with black borders) in Figure 2.17. The dark round point on the

curve is the local maximum which is the highest point in the region, the i and i + 1 are the

frame numbers, si and si+1 are the signal values in the ith and (i+ 1)th position.

diastole position, which is the maximum integral of the contour from segmentation, and

the systole position, which is the minimum integral of the contour (max(si) i ∈ S, S

is the neighboring region) from the segmentation. In other words, we need to find local

maxima in the signal first, and then invert the signal and find local maxima in the signal

again, which are actually the local minima of the signal. Figure 2.17 depicts the peaks of

the heart beat and breath rate signals estimated by our local maxima algorithm [64]. We

cannot select the frames for the reconstruction randomly, which would result in a blurred

image.

Figure 2.18 depict the zoomed in rectangle box in Figure 2.17. Notice that five points

near the peak (red dot) region have small differences in their y values (small h). The

vertical axis in the figure represents the displacement of the aorta in the spatial domain.
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Figure 2.21: Depiction segment selection. 2D FFT is performed on both of the images, and each transformed

image is segmented into n segments. Blue stars on the curve represent the center segment of

the transformed image, and the dark round point on the curve represents the highest point in the

region. The segment with the highest point on the curve is selected.

Thus, we select the width w of the windowing function where we include similar spatial

displacements of the aorta. The idea of having a window function is to select the frames

in which the aorta is in the same position in the spatial domain. After having the window

function with its width w defined, we select the frames from the heart beat signal. We

want to select the peak of the signals that fall into the window that we have calculated

from the breath rate signal. Figure 2.19 depicts the heart beat and breath rate signal that

is depicted in Figure 2.17, and the transparent red rectangle boxes are the windowing

functions, where the frames fall into the peak region on the heart beat signal that will be

selected for reconstruction.

Notice that in Eq. 2.10, the process of reconstruction is as follows. First we resample

the signal by using n times bicubic interpolation to preserve the signal structure. If we have

N MR images in the sequence, then we end up with s ∈ RN×1, by resampling the signal

s, it will be s ∈ RnN×1. We resample the signal to find the local maxima (Figure 2.17)
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(a) (b)

Figure 2.22: Depiction of our synthetic dataset. a) One cycle of a pure sinusoid signal, and marks are used

to calculate the radius of a circle to generate image with round circle inside. b) Depiction of

circle areas with different radii.

otherwise without resampling the local maximas (peaks) would always fall into one of the

frames. After finding the peaks in the heart beat signal, we pick the left (ith) and the right

(i+ 1th) frames (Figure 2.21).

We take a 2D Fourier transform of both images, and segment them into n uniform

segments along the column-wise. Since we have n samples between two signal points

(between si and si+1) due to resampling, all we need to do is to find the segment that

contains the peak of the signal (Figure 2.21), and place it into the output image based on

its location in the original image. In Figure 2.21, we have selected the second segment of

the i+1th frame, thus we place it on the second segment location on the output image. This

step is repeated for each peak (local maximum) in the signal. After filling in the output

image, and by taking the inverse 2D Fourier transform we get the reconstructed image for

diastole/systole.
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2.2.4 Experimental Results

To test the performance of the proposed method we conducted several experiments to

measure its accuracy, speed, and visual quality. For the first test, we tested the accuracy of

the proposed algorithm. The only way to test the accuracy of the algorithm is to measure

the difference between the ground truth image and the reconstructed image.

To ascertain the performance of our algorithm, we generated a synthetic dataset (Figure

2.22). First, we generated heart rate signal by using a pure sinusoid (range -/+1). For each

sample of the signal zi we calculate a radius Ri(Ri = (2 + zi) × c) where c is a constant

number (30), so the max radius of the circle is 90 pixels while the minimum radius of a

circle is 30 pixels.

After generating the synthetic dataset, we run our proposed algorithm to reconstruct

the systole and diastole images (images with maximum and minimum circles) on the syn-

thetic dataset. After generating the reconstructed images, we calculate the MSE (mean-

square-error) with the original images. For the original systole and diastole images we

generate the circles with maximum radius (90 pixels) and minimum radius (30 pixels). We

compared our algorithm against Farsiu et al.’s FRSR (Fast and Robust Super-Resolution)

algorithm [29]. The MSE for our algorithm is 0.89, while the MSE for FRSR is 4.63.

For the second test, we tested the speed of the reconstruction. We mentioned earlier

that the speed of the proposed method depends on the computation complexity of other

algorithms, such as auto seed point selection for the current frame from previous frame,

window size for the frame selection, resolution of the frame, total number of frames, etc.

We tested the effect of the resolution on the segmentation. Since the segmentation
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(a) (b)

Figure 2.23: Depiction of segmentation using a) original image, b) region of interest that is manually selected

between 75 and 175 pixels in vertical, 60 and 140 pixels in horizontal direction of the original

image. The maximum number of iterations for segmentation in the test is set to 950.

algorithm needs to compute the two-dimensional gradient on the whole image, to find

the exterior and interior forces of the contour, the higher the resolution, the higher the

computation cost will be. Figure 2.26 depicts the two different MRI images, with dif-

ferent resolutions, where Figure 2.26(a) is the original image size (25x184 pixels), and

for Figure 2.26(b) we selected the region of interest (100x80 pixels) which is between 75

to 175 pixels in the vertical direction, and 60 to 140 pixels in the horizontal direction.

Figure 2.24 depicts the computation time for different frames. Notice that the average

computation time for segmentation is 0.9 seconds when we use the whole image, and the

computation time for segmentation is lower (average 0.6s) when we use only the region

of interest. We wrote the segmentation code in MatLab 2011b, and performed the tests on

Intel i7 960 3.20Ghz with 9GB or RAM with Windows 64bit as Operating System.
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(a) (b)

Figure 2.24: Depiction of computation time for different MRI images when we set the maximum number of

iterations for segmentation to a) 950 and b) 350.

Assuming we have 1000 frames and we need to reconstruct the diastole/systole images

from them, the computation time difference would be 300 seconds between using the

original image and the region of interest image. The region of interest can be estimated

from the previous frame, where we already extracted the contour of the object. We have

mentioned earlier that the displacement of the aorta between two consecutive frames is

very small (Figure 2.17), and by using this assumption we can estimate the region of

interest.
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(a) (b)

Figure 2.25: Depiction of region of interest estimation, where after segmentation performed on the initial

frame we can compute the width and height of the contour. By using the estimated height and

width information we can extract the region of interest for the next frame segmentation.

It will be computationally very fast to get the maximum and minimum values of the

x and y positions of the contour, and by multiplying the width and height by 2 or 3, we

will get the region of interest that segmentation can operate on for the next frame (Fig-

ure 2.25). Another factor that affects the computational performance of the segmentation

is the maximum number of iterations. As is depicted in Figure 2.3, in the initial iterations

the contour contracts more to merge the boundaries of the object, and in later iterations

it fine tunes the contour. In Figure 2.24 we have set the maximum number of iterations

to 950, and in Figure 2.26 we set the maximum number of iterations to 350. Notice that

visually there is no difference between the two contours when we use 950 and 350 as a

maximum number of iterations. However, one can see that there is a huge difference in

the computation time of the segmentation (Figure 2.24).
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(a) (b)

Figure 2.26: Depiction of segmentation using a) original image, b) region of interest that is manually selected

between 75 and 175 pixels in vertical, 60 and 140 pixels in horizontal direction of original

image. The maximum number iterations for segmentation in the test is set to 350. Notice that

there is no difference between the output of Figure 2.26.

The average computation time for segmentation when we use the original image is

0.34 seconds, and when we use the segmentation on an image of size 100x80, the average

computation time is 0.24 seconds. If we take the same example of 1000 frames, then the

computation time difference between using the original image with 950 iteration and the

region of interest image with 350 iterations would be 560 seconds, just for the segmen-

tation. Signal extraction and denoising are computationally fast and don’t depend on any

parameters. As was mentioned earlier, we resample the heart beat signal (from R1×N to

R1×nN )to get finer approximation of the K-Spaces; this dramatically increases the compu-

tation time. Assuming that we have 1000 frames, the extracted heart beat signal will have

1000 samples, and by resizing it with the factor of n, which is the number of columns
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(a) (b)

Figure 2.27: Output of reconstruction for an exact a) diastole and b) systole MRI images

(width) of the frame (in our frames it is 184), we find the peak values from 184,000 sam-

ples points. The average computation time to reconstruct diastole or systole image is 14.6

seconds, 13.2 seconds of which is to find local maximas (peaks) in the resampled signal.

In addition, it was implemented in MatLab. It can be dramatically improved by using a

GPU and C++.

We used five real-time MRI sequence clips from five different patients. Each sequence

contains between 345 to 492 frames of dimension 256x184. The MRI sequences were

acquired with the 1.5T Siemens MRI scanner at Houston Methodist Hospital. Figure 2.27

depicts the visual output of our proposed method. Notice the difference between the di-

astole and systole image outputs. We have also implemented a user-friendly graphical

interface for this project (Figure 2.28).
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Figure 2.28: Depiction of the GUI that we have developed for this project.
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Chapter 3

Objective II: Speed-up Super-resolution

3.1 Introduction

In the field of digital imaging, a dependable algorithm for creating super-resolution (SR)

images is highly desirable [51, 6]. Such image reconstruction techniques can help over-

come the definition limitations caused by low-cost imaging equipment which makes those

methods highly useful in real-life applications such as biomedical and satellite imaging,

as well as security surveillance and biometrics recognition [39, 74, 62, 63]. Note that

hardware-based solutions require high-cost optics and sensors; this has been the main rea-

son that made software-based techniques a hot research topic [2]. Current methods for cre-

ating SR images can be basically divided into two categories, namely: (i) (conventional)

multiple-image SR, and (ii) machine learning (example)-based SR techniques [51, 20, 2].

The conventional methods require multiple low-resolution (LR) frames (images) of the

same scene at subpixel misalignments and solve the inverse problem of recovering the
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(a) (b) (c)

Figure 3.1: A sample SR image (a) obtained by combining a given (b) LR image, and (c) high-frequency

information estimated from a natural SR training dataset.

original SR images by combining those LR frames. Such conventional techniques have

been reported to increase resolution by a factor of less than 2 [22]. It is highly likely

that this low performance rate is caused by the fact that the inverse problem of recreating

the original image is ill-posed due to an insufficient number of input frames. Although

there have been some efforts to address the issue of finding a robust solution to the inver-

sion problem, the performance of those algorithms is far from giving stable results when

only a small number of images is available and a significant increase in resolution is re-

quired [61, 2]. Example-based techniques learn the “correspondence” between LR and

SR image patches from a database of LR and SR image pairs and apply this knowledge

to a new LR image to recover its most likely SR version. As one of the most prominent

methods, Freeman et al. [21] introduced a machine-learning based algorithm based on a

Markov Random Field (MRF) to learn this correspondence, which was later extended by

Sun et al. [60]. These techniques, however, require a large database of images to train the

MRF.

In this chapter we introduce a robust algorithm for obtaining super-resolution images
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by combining their low-resolution versions with high-frequency information extracted

from training images, as illustrated in Figure 3.1. Bilgazyev et al. showed that the high-

resolution image can be obtained by adding proper high-frequency information that is

estimated from training database to input low-resolution image [7]. They proved that it

improves the visual quality of the output image as well as the quantitatively outperforms

existing super-resolution for face recognition [40]. However, their method highly depends

on the size of the training database [67]. To reduce computation cost when the number of

images in the training database is high, Bilgazyev et al. extended the work of Yang et al.,

who built the compact dictionaries from patches to recover the high-resolution image [73].

This algorithm assumes, when we divide the whole training database into patches, that

the large number of the patches will be similar to each other. This is ‖xi − xj‖22 < ξ0

where xi and xj are the ith and jth patch in the training database, ξ0 is a nonnegative

value, and ‖.‖22 is the l2-norm [1]. This is true when ξ0 is high. For example, if we set

ξ0 very high, then this equation to measure the difference between patches will hold true

for all patches in the training database. If we set ξ0 to zero, then this will not hold true

for the patches in the training database unless there is zero overlap between two images.

In addition to removing the patches through sparse representation, Yang et al. performed

preprocessing on the patches to reduce the computation cost of the sparse representation.

They calculated the variance of gradients of each patch and removed those patches who

had very small number of variance. We use this idea in our approach, which will be ex-

plained in the implementation section; however, we do not reduce the size of the training

database by building compact dictionaries. Figure 3.2(a) is the original image in the train-

ing database; assuming that each image is 1024x1024 pixels, and we have 20 images, the
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total number of extracted patches of a size of 16x16 pixels through the sliding window will

be≈ 21×106, which will take 5GB of storage space (Figure 3.2(b)). By removing unnec-

essary patches, which are the patches that don’t contain any gradients (Figure 3.2(c)), we

reduce the storage space to 550MB, and by building a compact dictionary through sparse

representation we reduce the size of the training database to ≈ 0.5MB (256 × 2048) [68]

(Figure 3.2(d)), where 2048 is the parameter that one defines during dictionary building.

Figure 3.3 depicts the pipeline of the super-resolution algorithm that many algorithms use

[32, 70, 76, 31, 26]. Notice that the idea behind building a compact dictionary is to reduce

the size of the training database, because the computation time of the super-resolution

reconstruction heavily depends on it.

The size of the training database can be dramatically reduced by this method, but the

performance also will be reduced [68]. To overcome this issue, we propose a method

where we don’t build compact dictionaries; instead we use original images and search

inside the images. This will reduce the storage space bandwidth; using parallelization of

the code it can be implemented in a GPU to reduce the computation time of reconstruction.

To this end, we used (i) a nearest-neighbor-search algorithm to pick the closest images

from the training dataset, and (ii) compressed-sensing to determine a weight parameter to

combine the high-frequency information of the selected images. The main idea behind our

algorithm is that it searches for similar images from the database and uses the extracted

information from them rather than numerically predicting the output [15].

As shown in Figure 3.1, high-frequency data enables the algorithm to determine the

sharp edges on the reconstructed image.

45



(a) (b) (c) (d)

Figure 3.2: Depiction of building compact dictionary from high-resolution images by reducing the number

of patches. a) Original high-resolution image in the training database (20MB), b) patches from

sliding window on training images (5GB), c) number of patches reduced by removing the patches

with no or small gradients (550MB), and e) compact dictionary (0.5MB).

3.2 Methodology

Let Xi ∈ Rm×n be the ith image of the training dataset X = {Xi : i = 0...N}, and

xi,j ∈ Rk×l be the jth patch of an image Xi = {xi,j : j = 0...M}. The wavelet transform

of an image patch x will return low- and high-frequency information:

W (x) = [ϕ(x), ψ(x)] , (3.1)

where W is the forward wavelet transform, φ(x) is the low-frequency information, and

ψ(x) is the high-frequency information of an image patch x. Taking the inverse wavelet

transform of high- and low-frequency information of original image (without any process-

ing on them) will result in the original image:

x = W−1([ϕ(x), ψ(x)]) , (3.2)

where W−1 is the inverse wavelet transform. If we use a Haar wavelet transform with its

coefficients being 0.5 instead of
√
2 (nonquadratic-mirror-filter), then the low-frequency
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Table 3.1: Notations used in this chapter

Symbols Description

X Collection of training images

Xi ith training image (Rm×n)

xi,j jth patch of ith image (Rk×l)

ξ threshold value

αi sparse representation of ith patch

‖.‖p lp-norm

D Dictionary

W ,W−1 forward and inverse wavelet transforms

ψ, φ high- and low-frequencies of image

[. . . ] Concatenation or vectors or matrices

information of an image x will actually be a low-resolution version of an image x, where

four neighboring pixels are averaged; in other words, it is similar to down-sampling an

image x by a factor of 2 with nearest-neighbor interpolation, and the high-frequency in-

formation ψ(x) of an image x will be similar to the horizontal, vertical, and diagonal

gradients of x.

Assume that, for a given LR image patch yi which is the ith patch of an image y, we

can find a similar patch xj = {j = 0 . . . NM} from the natural image patches, then by

combining yi with the high-frequency information ψ(xj) of a high-resolution patch xj ,
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Figure 3.3: Depiction of the pipeline for the proposed SR algorithm.

and taking the inverse wavelet transform, we will get the SR y∗ (see Figure 3.1):

y∗i = W−1([yi, ψ(xj)]) , ‖yi − φ(xj)‖22 ≤ ξ0 , (3.3)

where ξ0 is a small nonnegative value.

It is not guaranteed that we will always find an xj such that ‖yi − φ(xj)‖22 ≤ ξ0, thus,

we introduce an approach to estimate a few closest LR patches (φ(xj)) from the training

dataset and then estimate a weight for each patch φ(xj) which will be used to combine

high-frequency information of the training patches ψ(xj).

To find closest matches to the LR input patch yi, we use a nearest-neighbor search

algorithm:

c = {ci : ci = ‖yi − ϕ(xci)‖
2
2 ≤ ξ1, ∀xci ∈ X} , (3.4)

where c is a vector containing the indexes (ci) of training patches of the closest matches

to input patch yi, and ξ1 is the radius threshold of a nearest-neighbor search. After selecting

the closest matches to yi, we build two dictionaries from the selected patches xj; the first

dictionary will be the joint of low-frequency information of training patches φ(xj) where
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it will be used to estimate a weight parameter, and the second dictionary will be the joint

of high-frequency information of training patches ψ(xj):

Dφ
i = {φ(xj) : j ∈ c} , Dψ

i = {ψ(xj) : j ∈ c} . (3.5)

We use a sparse representation algorithm [60] to estimate the weight parameter. The

sparse-representation αi of an input image patch yi with respect to the dictionary Dφ
i , is

used as a weight for the fusion of the high-frequency information of training patches (Dψ
i ):

αi = argmin
αi

∥∥∥yi −Dφ
i αi

∥∥∥
2
+ λ ‖αi‖1 . (3.6)

The sparse representation algorithm (Eq. 3.6) tries to estimate yi by fusing a few atoms

(columns) of the dictionary Dφ
i , by assigning non-zero weights to these atoms. The result

will be the sparse-representation αi, which has only a few non-zero elements. In other

words, the input image patch yi can be represented by combining a few atoms of Dφ
i (yi ≈

Dφ
i αi) with a weight parameter αi; similarly, the high-frequency information of training

patches Dψ
i can also be combined with the same weight parameter αi, to estimate the

unknown high-frequency information of an input image patch yi: y∗i = W−1([yi, D
ψ
i αi]) ,

where y∗i is the output (SR) image patch, and W −1 is the inverse wavelet transform.

Figure 3.3 depicts the pipeline for the proposed algorithm. For the training step, from

high-resolution training images we extract patches, then we compute low-frequency (will

become LR training image patches) and high-frequency information for each patch in

the training dataset. For the reconstruction step, given an input LR image y, we extract

a patch yi, find nearest neighbors c within the given radius ξ1 (this can be speeded-up

using a GPU), then from the selected neighbors c, we construct low-frequency and high-

frequency dictionariesDϕ
i andDψ

i , where the low-frequency dictionary is used to estimate
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the sparse representation αi of the input low-resolution patch yi with respect to the selected

neighbors, and the high-frequency dictionary Dψ
i will be used to fuse its atoms (columns)

with a weight parameter, where the sparse representation αi will be used as a weight

parameter. Finally, by taking the inverse wavelet transform (W−1) of a given LR image

patch yi with fused high-frequency information, we will get the SR patch y∗. Iteratively

repeating the reconstruction step (red-dotted block in Figure 3.3) for each patch in the LR

image y, we will obtain the SR image y∗.

3.3 Implementation Details and Results

In this section we will explain the implementation details.

3.3.1 Space Reduction

We extract patches for each training image Xi = {xi,j : j = 0...M} with xi,j ∈ Rk×l. The

numberM depends on the window function, which determines how we would like to select

the patches. There are two ways to select the patches from the image; one by selecting

distinct patches from an image, where two consecutive patches don’t overlap, and the

other by selecting overlapped patches (sliding windows), where two consecutive patches

overlap. Since the l2-norm in a nearest-neighbor search is sensitive to the shift, we slide

the window by one pixel in the horizontal or vertical direction, where the two consecutive

patches will overlap each other by (k−1)×l or k×(l−1), where xi,j ∈ Rk×l. To store these

patches we will require an enormous amount of storage space,N×(m−k)×(n−l)×k×l,
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(a) (b) (c)

Figure 3.4: Depiction of a) original image, and b-c) two extracted patches from (a) (white rectangular boxes).

The variance of gradients of patch depicted (b) is 250.6, where the variance of gradients of patch

depicted in (c) is 0.2.

where N is the number of training images and Xi ∈ Rm×n. For example, if we have 1000

images natural images in the training dataset, and each has a resolution of 1000 × 1000

pixels, to store patches of size 40 × 40, we will require 1.34TB of storage space, which

would be inefficient and computationally expensive (Figure 3.2). To reduce the number of

patches, we removed patches which contain few gradients:

‖∇xi,j‖22 ≤ ξ2 , (3.7)

where ∇ is the sum of gradients along the vertical and horizontal directions (∇xi,j =

∂xi,j
∂x

+
∂xi,j
∂y

), and ξ2 is the threshold value to filter out the patches with less gradient vari-

ation. Figure 3.4 depicts the original image, and two patches extracted from the original

images (white rectangular boxes in Figure 3.4).

Similarly, we calculate the gradients on input LR patches (yi), and if they are below the

threshold ξ2, we upsample them using bicubic interpolation, where no SR reconstruction

will be performed on that patch. To improve the computation speed, the nearest-neighbor
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search can be carried out in the GPU, and since all given LR patches are calculated inde-

pendently of each other, multi-threaded processing can be used for each SR patch recon-

struction.

Figure 3.5: Depiction of two level Haar wavelet decomposition of image in Figure 3.4(a).

3.3.2 Wavelet Decomposition of Patches

In the wavelet transform, for the low-pass and high-pass filters we used [0.5, 0.5] and

[−0.5, 0.5], and 2D filters for the wavelet transform are created from them. These filters

are not quadratic-mirror-filters (nonorthogonal); thus, during the inverse wavelet transform

we need to multiply the output by 4. The reason for choosing these values for the filters

is that low-frequency information (analysis part) of the forward wavelet transform will be

the same as down-sampling the signal by a factor of 2 with nearest neighbor interpolation,
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which is used in the nearest-neighbor search. Figure 3.5 depicts the two-level decomposi-

tion using Haar wavelets of the image depicted in Figure 3.4(a). For one-level of wavelet

decomposition there will be four outputs, one analysis output which is the low-resolution

of original image (down-sampled by factor two), since we used a Haar wavelet, and three

details part, which contain horizontal, vertical and diagonal gradients. In two-level de-

composition there will be seven outputs, one analysis, which is the down-sampled version

of original image (down-sampled by factor 4), and six detail parts, two horizontal, two

vertical, and two diagonal images.

3.3.3 Color Images

During the experiments, all color images are converted to Y CbCr, where only the lumi-

nance component (Y ) is used (Figure 3.6). For the display, the blue- and red-difference

chroma components (Cb and Cr) of an input LR image are up-sampled and combined

with the SR image to obtain the color image y∗ .
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(a) (b)

(c) (d)

Figure 3.6: Depiction of a) original RGB image converted to YCbCr components. b) Chroma component,

c) red-difference component, and c) blue-difference component.

3.3.4 Parallelization of the Algorithm

Note that we can reduce the storage space for the patches effectively to zero, by extract-

ing the patches of the training images during reconstruction. This can be accomplished

by changing the neighbor-search algorithm, and can be implemented in the GPU. Dur-

ing the neighbor-searching, each GPU thread will be assigned to extract low-frequency

54



φ(xl,j) and high-frequency information ψ(xl,j) at an assigned position j of a training im-

age Xl; we compute the distance to the input LR image patch yi, and if the distance is

less than the threshold ξ2, then the GPU thread will return the high-frequency informa-

tion ψ(xl,j), where the returned high-frequency information will be used to construct Dψ
i :

Dψ
i = {ψ(ci) : ci = ‖yi − φ(xci)‖

2
2 ≤ ξ1,∀xci ∈ X} .

As a threshold (radius) value for the nearest-neighbor search algorithm we used 0.5

for natural images, and 0.3 for facial images. Both low-frequency information of training

image and input image patches are normalized before calculating Euclidean distance. We

selected these values experimentally: at these values we get highest SNR and lowest MSE.

The Euclidean distance (in our nearest-neighbor search) is sensitive to noise, but in our

approach, our main goal is to reduce the number of training patches which are close to

the input patch. Thus, we take a higher threshold value for the nearest-neighbor search,

where we select closest matches; then the sparse representation is performed on them.

Note that sparse representation estimation (Eq. 3.6) tends to estimate an input patch from

training patches, where noise is taken care of [42]. Reducing the storage space will slightly

increase the SR reconstruction time, since the wavelet transform will be computed during

the reconstruction.
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(a)

(b)

Figure 3.7: Depiction of Berkeley Segmentation Dataset 500 images used for (a) training and (b) testing the

SR algorithms.

3.3.5 Experiment Details

We performed experiments on a variety of images to test the performance of our approach

(HSR) against the following SR algorithms: BCI [60], SSR [73], and MSR [21], using

the Berkeley Segmentation Dataset 500 [43]. It contains natural images, where the natural

images are divided into two groups; the first group of images (Figure 3.7(a)) are used

to train SR algorithms (except BCI), and the second group of images (Figure 3.7(b)) are

used to test the performance of the SR algorithms. To measure the performance of the

algorithms, we use mean-square-error (MSE) and signal-to-noise ratio (SNR) as metrics.
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These algorithms measure the difference between the ground truth and the reconstructed

images.

3.3.6 Experimental Results

In Figure 3.8, we show the output of our proposed SR algorithm (HSR), and of BCI, SSR,

and MSR. The red rectangle is zoomed-in and displayed in the corner of the figure. In

this figure we focus on the effect of SR algorithms on low-level patterns (fur of the bear).

Most of the SR algorithms tend to improve the sharpness of the edges along the border

of the objects, which looks good to human eyes, and the low-level patterns are ignored.

One can see that the output of BCI is smooth (Figure 3.8(a)), and from the zoomed-in

region it can be noticed that the edges along the border of the object are smoothed, and

similarly, the pattern inside the regions is also smooth. This is because BCI interpolates

the neighboring pixel values in the lower-resolution to introduce a new pixel value in the

higher-resolution. This is the same as taking the inverse wavelet transform of a given LR

image with its high-frequency information being zero, thus the reconstructed image will

not contain any sharp edges. The result of MSR has sharp edges; however, it contains

block artifacts (Figure 3.8(c)). One can see that the edges around the border of an object

are sharp, but the patterns inside the region are smoothed, and block artifact are introduced.

On the other hand, the result of SSR doesn’t contain sharp edges along the border of the

object, but contain sharper patterns compared to BCI and MSR (Figure 3.8(d)). The result

of the proposed SR algorithm has sharp edges, sharp patterns, as well as fewer artifacts

compared to other methods (Figure 3.8(e)), and visually it looks more similar to the ground

truth image (Figure 3.8(f)).
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Figure 3.9 shows the performance of the SR algorithms on a different image with

fewer patterns. One can see that the output of BCI is still smooth along the borders,

and inside the region it is clearer. The output of MSR looks better for the images with

fewer patterns, where it tends to reconstruct the edges along the borders. In the output

of SSR, one can see that the edges on the borders are smooth, and inside the regions it

has ringing artifacts. The SSR algorithm builds dictionaries from high-resolution and LR

image patches by reducing the number of atoms (columns) of the dictionaries under a

constraint that these dictionaries can represent the image patches in the training dataset

with minimal difference. This is similar to compressing or dimension reduction, where we

try to preserve the structure of the signal, not the details of the signal, and sometimes we

get artifacts during the reconstruction.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Depiction of LR, SR and original high-resolution images. (a) original LR image, (b) output

of BCI, (c) output of SSR, (d) output of MSR, (e) output of our proposed algorithm, and (f)

original high-resolution image. The solid rectangle boxes in red color represents the region that

is magnified and displayed for better visualization. One can see that the output of the proposed

algorithm has sharper patterns compared to other SR algorithms.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Depiction of LR, SR and original high-resolution images. (a)original LR image, (b) output of

BCI, (c) output of SSR, (d) output of MSR, (e) output of our proposed algorithm, and (f) original

high-resolution image. The solid rectangle boxes in yellow and red colors represent the regions

that were magnified and displayed on the right side of each image for better visualization. One

can see that the output of the proposed algorithm has better visual quality compared to other SR

algorithms.

Table 3.2: Experimental results

XXXXXXXXXXXXXXXXXXXX
Dist. Metric

SR Algorithms
BCI SSR MSR HSR

SNR (dB) 25.45 24.76 18.46 25.89

MSE 5.45 5.81 12.01 3.95
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We also computed the average SNR and MSE to quantitatively measure the perfor-

mance of the SR algorithms. Table 3.2 depicts the average SNR and MSE values for BCI,

MSR, SSR, and HSR. Notice that our proposed algorithm has the highest signal-to-noise

ratio and the lowest difference mean-square-error.
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Chapter 4

Objective III: Face Recognition

4.1 Introduction

Face recognition has acquired increased importance in several real-life applications, namely

video-based surveillance, human-machine interaction, biometric authentication, and oth-

ers, due to increased demand for higher security [47]. With the latest improvements in

image and video capturing device technology, the use of face recognition has become

even more advantageous compared to other methods such as fingerprinting and iris match-

ing [71]. In an environment where light, pose, facial expression, etc. can be controlled,

automatic face recognition can outperform human-eye recognition especially when deal-

ing with huge amounts of data [47]. On the other hand, in a typical surveillance scenario

the environment is usually unconstrained where random lighting, posing, different facial

expressions, make-up, weight gain or loss, aging, partial occlusions, and object motion are

almost completely imponderable, which brings several challenges and open problems to
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face recognition that need to be addressed [3, 5-7]. Lately, a wide range of different face

recognition approaches have been introduced to address those challenges owing to the ad-

vances in computer vision techniques and increased interest in the field [1, 3, 7-12]. One

of the most prominent algorithms for unsupervised face recognition is principal compo-

nent analysis (PCA), a statistical method that determines a subspace representing most of

the data variance [13, 14]. For supervised recognition, linear discriminant analysis (LDA)

can find a subspace that maps the samples of the same class to a single spot and different

classes as far apart from each other as possible [10, 14]. In this way the transformed low-

dimensional vector can contain most discriminative features. However, PCA and LDA are

very sensitive to noise in the images, which leads to a decrease in accuracy [10, 14]. Since

the existing literature in the field is vast, we only focus on a few, directly related efforts.

Compressive sensing has emerged as a powerful approach for statistical signal model-

ing in computer vision and image processing and found successful use in face recognition

[12, 15, 16]. The main idea behind compressive sensing, e.g., sparse representation, is to

represent the input sample as a combination of a few atoms (columns) of an over-complete

dictionary constructed from training samples. Recently, several methods have been pro-

posed to estimate a sparse representation for the use of face recognition [17, 18]. Wright

et al. introduced sparse representation-based classification to the face recognition area

[19]. The classification is performed on residuals between input signal and the reconstruc-

tion of a sparse representation. As an over-complete dictionary, Wright et al. used the

down-sampled images from the training dataset. Sparse representation-based classifica-

tion demonstrated high recognition accuracy and also performed well, even when some

facial features were occluded. This finding led others to investigate this approach further.
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Figure 4.1: Depiction of proposed pipeline to use masked regions for face recognition.

Yang et al. used Gabor features in sparse representation-based classification to reduce

computational complexity and improve recognition accuracy [20]. However, the main

shortcoming of these methods is that many training images are required for good recog-

nition performance, since the methods mentioned rely on the residuals, and thus use the

images from the training dataset as an over-complete dictionary.

In this chapter, we introduce a novel methodology by modeling the sparse encoding

with weighted patches to increase the robustness of face recognition even further. In the

training phase, we define a mask (i.e., weight matrix) using a sparse representation select-

ing the facial regions, and in the recognition phase, we perform comparison on selected

facial regions.

When the number of images in the training dataset is very large, the dictionary also
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becomes very large, which makes the sparse process computationally expensive and real-

time processing becomes very difficult. We present a novel approach to perform face

recognition by using overlapped patches of a facial image as shown in Figure 4.1. To

each patch we assign a weight that can maximize the recognition accuracy. Additionally,

we propose a new classification approach, where instead of using the residual of the re-

construction from the sparse representation, (i) we use a sparse representation of an input

image and a sparse representation of gallery images, and (ii) instead of constructing a

dictionary by stacking the transformed images from training dataset, we build a compact

dictionary [37]. This can result in faster recognition, where the reconstruction is indepen-

dent of the database size.

The algorithm was evaluated both quantitatively and qualitatively using two compre-

hensive facial image databases, i.e., Face99 [53] and YFace [4], with the results clearly

superior to common state-of-the-art methodologies in different scenarios.

4.2 Methodology

Table 4.1 summarizes the naming conventions used throughout the chapter. Let xi ∈

Rm×n denote a facial image of subject i, and let X be a collection of N facial images,

X = {xi : i = 1 . . . N}. Suppose that an image y can be represented as a weighted

combination of training images in X , such that:∥∥∥∥∥y −
N∑
i=1

αix
i

∥∥∥∥∥
2

≤ ε0 , (4.1)
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Table 4.1: Notations used in this chapter

Symbols Description

X Collection of gallery images

x Any image in X (Rm×n)

xi ith image in X

xi ith patch of image x

αi ith element of α (R1)

‖.‖p lp-norm

P Mask operator

D Compact dictionary

where α ∈ RN×1 is a weighting vector, and ε0 is a very small positive value. Ideally, we

would want to represent an image y using as few training images from X as possible, thus

an additional constraint is imposed:

min
α
‖α‖0 s.t.

∥∥∥∥∥y −
N∑
i=1

αix
i

∥∥∥∥∥
2

≤ ε0 . (4.2)

The optimization problem of Eq. 4.2 is extremely difficult (NP hard), due to the non-

convexity of the l0 norm [20]. Recent methods [19] suggest that as long as the desired

coefficients of α are sufficiently sparse, they can be efficiently recovered by minimizing

the l1 norm; using Lagrange multipliers, Eq. 4.2 can be written as follows:

α = min
α

∥∥∥y −∑αix
i
∥∥∥
2
+ λ ‖α‖1 , (4.3)

where the parameter λ balances the sparsity of the solution. The main disadvantage of this

method is that with the increase of the number of images (N ) in the training database X ,
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the computation time increases dramatically. A compact dictionary can be built from the

training images [37] such that each image x in the training database X can be represented

as:

x ∼= αD , (4.4)

where α is a vector with few nonzero elements, and D is a compact dictionary which is

estimated from the training database X as:

D = min
αi=1...N , D

∥∥∥∥∥
N∑
i=1

xi − αiD

∥∥∥∥∥
2

+ λ

∥∥∥∥∥
N∑
i=1

αi

∥∥∥∥∥
1

. (4.5)

Let Pi denote a mask operator that extracts the ith patch (xi = Pix); then Eq. 4.5 can be

written as:

α = min
α

∥∥∥⋃ i(x− αD)
∥∥∥
2
+ λ

∥∥∥⋃ iα
∥∥∥
1
. (4.6)

Since the patches overlap we use union instead of sum, where the union of patches xi is

the original image x (x =
⋃K
i=1Pix =

⋃K
i=1 xi, where K is the number of patches). We

need to assign a weight for each patch such that overall the representation α will be sparse.

Thus, we introduce a weight parameter wi for a patch operator Pi in Eq. 4.6:

α = min
α,w

∥∥∥⋃wiPi(x− αD)
∥∥∥
2
+ λ

∥∥∥⋃wiPiα
∥∥∥
1
. (4.7)

Instead of calculating the weights during the sparse representation estimation, we can

estimate them during the training step where we can estimate both compact dictionary D

and weight parameter w iteratively:

D, w,A = min
A,D,w

‖wP(X −AD)‖2 + λ ‖wPA‖1 . (4.8)
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whereA = {αi : i = 1 . . . N}. Since we build a compact dictionary to speed up the sparse

representation estimation, we cannot use the residual based recognition [75, 24]. Instead,

after building the compact dictionary D and estimating the weight w for each patch, we

will estimate αi for each image xi ∈ X .

Let y be an input image, let α∗ be its sparse representation, and let ξi = αi−α∗ be the

residual. We assume that ξi{i = 0 . . . N} is independently and identically distributed with

a variance σ0, and the maximum likelihood estimation Lσ0(ξ0 . . . ξN−1) of a distribution

is
∏N

i=0Fσ0(ξi) where Fσ0(.) is a probability distribution function with variance σ0. To

maximize the likelihood Lσ0 , we can take the negative logarithm of Lσ0 , (−ln), which will

be similar to objective minimization problem, where the output will be the ID of an input

image y:

min
i

N∑
i=1

‖αi − α∗‖2 s.t. ‖α∗‖1 . (4.9)
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4.3 Implementation Details and Experimental Results

Algorithm 1 Training

Input: Xi, i ∈ RN

Output: D, w, A

Pick landmarks of reference image xref

for each image Xi, i ∈ <N

Register Xi → xref

Extract patches for Xi (Xi =
⋃
PiXi)

end for

Compute D, w, and A from Xi i ∈ RN (Eq. 4.7)

Algorithm 2 Recognition

Input: y, D, w, Ai, i ∈ RN

Output: i

Register y → xref

Extract patches for y (y =
⋃
Piy)

Compute sparse representation α∗ of y (Eq. 4.8)

Estimate i for α∗ from Ai, i ∈ RN (Eq. 4.9)
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In the training step, all the facial images are registered to a reference facial image

using the detected landmarks by the Active Shape Model (see Section 4.3.2), and resized

to 60x60 pixels. Given the input LR image y, landmarks are detected and registered to

reference facial image, and resized. Algorithm 1 depicts the pseudo code for the training

step, and Algorithm 2 depicts the pseudo code for the recognition step.

4.3.1 Experimental Databases

To evaluate the performance of the proposed methods and other existing methods we used

two facial image datasets. We used two image datasets, namely Frontal Facial Dataset

(Face99) collected by Perona et al. at California Institute of Technology [53] and Yale

Face Database (YFace) collected by Belongie et al [4].
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(a)

(b)

Figure 4.2: Depiction of probe and gallery images from the Face99 dataset. (a) Images used as a gallery, and

(b) as a probe (testing).

Face99: Frontal face dataset collected by Markus Weber at California Institute of

Technology consists of total 450 facial images of 27 subjects captured under different

lighting, expressions, and backgrounds. Each image has 896 x 592 pixels and is stored

in JPEG format. We used normal images (without illumination and expression) of each
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subject for the gallery, and the rest of the images as a probe to test the face recognition

algorithms.

(a)

(b)

Figure 4.3: Depiction of probe and gallery images from the YFace dataset. Images used (a) as a gallery, and

(b) as a probe (testing).

YFace: The Yale Face Database contains 165 images of 15 subjects stored as GIF

format. There are 11 images per subject, one for each of the following facial expressions
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or configurations: center-light, with glasses, happy, left-light, without glasses, normal,

right-light, sad, sleepy, surprised, and wink. We used normal images (without occlusion,

expression, and lighting conditions) as a gallery and rest of the fourteen images as a probe

to test the face recognition algorithms.

(a)

(b)

Figure 4.4: Depiction of Active Shape Model based facial landmark detection on facial images.
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(a) (b)

(c)

Figure 4.5: Sparse representation of the input image when face recognition: a) correctly identifies the sub-

ject, b) misidentifies the subject. When the input image is not a human, then the sparse represen-

tation will be random values, and the output will not be sparse. (c) Randomly generated output

gives this result.

74



4.3.2 Preprocessing

We leveraged the Active Shape Model (ASM) to detect key anatomical landmarks in each

image [16, 11, 56]. Figure 4.4 depicts the landmarks detected by the Active Shape Model

on facial images. ASM may not always give good results. In such cases, we manually

annotated the two eyes and the nose tip.

Using the feature points detected by ASM (or manually provided), we register all im-

ages to a reference image. To register all images to a reference image, scale, rotation and

translation parameters are estimated using Procrustes Analysis [19], and warped accord-

ingly. After registration all images are cropped and resized to 60x60 pixels.

4.3.3 Experimental Results

When the face recognition correctly identifies the subject, then the sparse representation of

the input low-resolution image will sparse; when the face recognition cannot identify the

subject the sparse representation of an input image will not be sparse, it will be distributed.

Figure 4.5 depicts the sparse representation output when the face recognition correctly

identifies the subject. Notice that the output is sparse. However, when the face recognition

fails to identify the subject, then the output of the sparse representation will not be sparse

(Figure 4.5(b)). We performed another test to see the output of the sparse representation

when we generate random image, and to use it as an input image. Figure 4.5(c) depicts

the output of the sparse representation when we use a random image. Notice that, when

the face recognition correctly identifies the subject, the sparse representation output is

sparse, and when it can not identify the subject, the output is partially sparse. However,
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when the input image is not a human facial image (random image), the output of sparse

representation is not sparse at all.

Figure 4.6: Depiction of weight matrix output during the training (two different iterations).

Figure 4.6 depicts the weight matrix that is used during the recognition stage. Since

we vectorize the input data into one dimension and work in one dimension, the weight pa-

rameter also becomes one dimensional. Notice that, at two different iterations, the weight

vector has only small change. Most interesting in this picture is the location of the high

weights. These weights (wi > 0) determine which region (indices) to trust, and how

much to trust; the zero weight regions are ignored, because they mislead the recognition

accuracy.

We exhaustively tested the performance of the proposed algorithm, henceforth referred
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to as WPFR (Weighted Patching-based Face Recognition), for recognition accuracy and

compared the results with the following standard face recognition algorithms: PCA [47]

and SRFR [72]. Figure 4.7(a) depicts the rank vs. recognition rate performance plot of

the proposed (WPFR) and the other FR methods for the Face99 dataset, and Figure 4.7(b)

depicts the results for the YFace dataset. Note that on average the recognition rates of all

FR methods are high on both datasets. This is because the resolution of probe and gallery

images is high. In addition, this might be because the acquisition times between probe

and gallery images are very small (acquired in the same week or month), and the number

of the images per subject in the gallery is more than one. However, one can see that

our proposed method, WPFR, outperforms the other FR algorithms, and has the highest

Rank-1 recognition rate.

In addition, we have captured the computation times for the proposed face recognition

algorithm. Overall, our algorithm is the slowest one among the PCA and SRFR due to the

use of sparse representation and iterations. As mentioned earlier, the sparse presentation

depends on the balancing parameter λ. When λ is low, then we run more iterations; if λ

is high, then we run fewer iterations to estimate the sparse representation. For λ = 0.1 it

took 0.18s, λ = 0.01 took 0.29s, and λ = 0.001 took 0.36s to identify one subject in the

dataset.
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(a)

(b)

Figure 4.7: Depiction of the Rank vs. Recognition Rate of face recognition algorithms on (a) Face99, and

(b) YFace datasets. The Rank-1 for PCA, SRFR and WPFR on the Face99 dataset are 56%,

78%, and 86%, and the Rank-1 on the YFace dataset are 63%, 70%, and 73%, respectively.
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Chapter 5

Conclusion

Image quality is an important role in image processing, computer vision, pattern recogni-

tion, etc. We have image quality.

In this dissertation we studied the image quality and its effects. We proposed a new

face recognition algorithm to improve the recognition accuracy. In addition, we proposed

a new algorithm to improve the resolution quality of the input low-resolution image where

the output (super-resolved) image has better visual quality, as well as higher resolution

compared to the input low-resolution image. We also proposed a new algorithm to recon-

struct diastole/systole images from a series of MRI images.

We studied the effect face recognition, where we could measure the difference be-

tween the original (ground truth) and input (probe) image; as a distance metric we used

face recognition. Our main focus in this research was to automatically recognize hu-

man subjects from a database under different image quality, occlusion, and expression.
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We have used a sparse representation method in our algorithm. The whole image in the

training database as well as input images are divided into patches, and the proposed face

recognition using sparse representation is performed using those patches. For each patch

we assigned a value (weight); based on the patch weight, the face recognition algorithm

makes a global decision. Basically, the weight for each patch tells the proposed face recog-

nition algorithm to focus on it more or less. If it is the region of interest, where it gives the

correct subject id most of the time, then it will have a high weight value, otherwise it will

be low. The weight parameter for each patch is computed from training images, where

we know the id’s of each subject in the training database. We tested the proposed face

recognition algorithm on two publicly available datasets [53, 4]. These datasets contain

high resolution facial images with varying lighting conditions, expression and occlusions.

In terms of computation time, the proposed face recognition algorithm is slower compared

to other face recognition algorithms, but the proposed face recognition algorithm performs

better in terms of Rank-1 recognition accuracy.

By introducing a new face recognition algorithm to improve the recognition accuracy,

we do not improve the resolution of the image for better visualization. First we studied

the limitation of the existing algorithms, then we proposed a new super-resolution algo-

rithm to improve the resolution of the input image, where the output image has higher

resolution compared to the input low-resolution image. The proposed algorithm can be

parallelized which can be implemented on a GPU, where the computation speed would

be fast. In addition, we proposed a new approach for this algorithm to reduce the stor-

age space for the training database, where we could reduce the computation time due to

the reduction of the bandwith and the small training database. The new super resolution
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algorithm adds high-frequency information that is extracted from natural high-resolution

images in the training dataset to the input image to get a super-resolution image. The

selection of the high-frequency information from the training dataset is accomplished in

two steps: a nearest-neighbor search algorithm is used to select similar images from the

training dataset, which can be implemented on the GPU, and a sparse-representation algo-

rithm is used to estimate a weight parameter to combine the high-frequency information

of selected images. Quantitatively and qualitatively we demonstrated the superiority of the

proposed super-resolution algorithm on various datasets.

In addition to the research on face recognition and super-resolution algorithms on nat-

ural and facial images, we performed research on medical images (e.g., MR images ac-

quired from a Siemens MRI scanner). We proposed a computationally efficient method

for MRI reconstruction [45]. Furthermore, it reduces the artifacts and mis-registrations.

The proposed method was first tested with a synthetic dataset and then using actual data

captured by and MRI scanner; its results were quantitatively validated. Also, the proposed

method effectively estimated the heart rate signal from the MR image sequence thereby

assisting in multi-frame reconstruction. In fact, this method could be used in clinical set-

tings as a diagnosis tool. Importantly, there are no additional peripheral probes required

during the MRI acquisition process. Knowledge of the cardiac motion patterns in real-

time can be extremely valuable during an intervention. A high degree of accuracy in the

reconstruction is particularly critical in the evaluation of any of existing cardiac disease. In

addition, this research opens up opportunities for future investigations for diagnosis such

as the assessment of patients with physiological or pathological irregularities.
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5.1 Future Work

We have introduced a new approach to reconstruct a diastole/systole images from the MRI

image sequence. However, we couldn’t test our algorithm on large datasets with data from

more than five patients. In addition, we want to compare our approach against recent state

of the art reconstruction algorithms.

We also would like to continue to improve the face recognition system. Currently, we

have tested it on two low-resolution datasets acquired by surveillance cameras. We would

like to test it on other challenging datasets and build better face recognition algorithm that

will not be tuned for the specific dataset. In addition, we would like to create a large facial

image dataset, which will include all publicly available facial datasets. This dataset will

be very large, and hardly any methods have been tested on this type of dataset. This might

be due to the large number of the training images in the database, where (i) computation

time will be very high, (ii) recognition accuracy will be low. To reduce the computation

time of our proposed face recognition algorithm, we will try to parallelize it so it can be

implemented on GPUs.
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Chapter 6

Publications during Ph.D. Study

1. E. Bilgazyev, I. Uyanik, M. Unan, D. Shah, N. V. Tsekos, and E. L. Leiss. ”Using
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tional Conference on Machine Vision, London, UK, Nov. 16-17 2013.

2. E. Bilgazyev, E. Yeniaras, I. Uyanik, M. Unan, and E. L. Leiss. ”Quality enhance-

ment of low-resolution image by using natural images”, In 6th International Con-

ference on Machine Vision, London, UK, Nov. 16-17 2013.

3. E. Bilgazyev, U. Kurkure, S. K. Shah, and I. A. Kakadiaris, ”ASIE: Application

specific image enhancement for face recognition”, In Proc. SPIE Biometric and

Surveillance Technology for Human and Activity Identication X, Baltimore, ND,

April 29 - May 3 2013.
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based super-resolution for face recognition at a distance”, In Proc. IEEE British

Machine Vision Conference, Dundee, UK, Aug. 29 - Sep. 2 , 2011.

8. E. Bilgazyev, S.K. Shah, and I.A. Kakadiaris, ”Comparative evaluation of wavelet
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