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  Abstract 

 

Software Defined Networks are currently the most promising researched area in the field of  

computer networking. Many research implementation is undergoing in making advances in the field 

of Software Defined networks. The rise of demand for moving from traditional networks to SDNs 

has given rise to many challenges. Software-defined Networks are continuously advancing, which 

demands the need to solve the issues of scalability, transmission delays, and packet loss. The large  

the network, more the delay as with the increase in the network causes network congestion and  

transmission delays. In larger networks, single controller architecture will be inefficient to manage  

the network. To tackle this issue, Software Defined Architecture with multiple controllers has been  

introduced in the recent researches.  

 

Multiple controller SDN architectures will be efficient to manage larger networks, decrease  

transmission loss and avoid fault tolerance. As the network expands the load on the single controller  

increases, so it becomes difficult for single controller architecture to efficiently manage the network.  

Multiple controllers do not help to balance the load between them, it will tackle the network 

congestion issue by distributing the load between them. 

 

In this paper, we evaluate the performance of Multiple controller SDN architectures in comparison  

to single controller SDN architecture. The Multiple controller architectures have better load  

management, less transmission delay, and less packet loss ratio. The multicontroller SDN  

architecture is a more efficient solution than single controller architecture when it comes to wider 

networks. In the experiment, we have used POX SDN controller to implement the Software Defined 
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Architecture, mininet[2] as a network emulator to test complex topologies and D-ITG to test the 

result of intense network traffic on topologies in different SDN architectures. 
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Introduction 
 

1.1 Background and Motivation 
 

In SDN[1] control plane and data plane are separated  in order to provide open interfaces. Software  

defined Architecture can be defined into three layers namely Application layer, Control Plane layer, 

and data plane layer. The SDN architecture enables the network control directly programmable  

and it's centrally managed through SDN Controllers which maintains a global view of the entire  

network.  

 

There are two different interfaces in the SDN architecture namely northbound interfaces and 

southbound interfaces. Northbound helps to communicate within controller with the APIs on how 

the network service or device should be. It enables different applications on the SDN architecture. 

 

The other SDN interface i.e. southbound which provides the communication between the network 

plane and control plane.  It gives an opportunity to automate the networking tasks by providing some 

enormous possibilities for network programming.  SDN will eventually advance in the creativity and 

flexibility in the field of networking.   

 

The most important and critical requirements are not fulfilled in the early proposed single controller 

SDN architectures which are efficiency which is not enough in just one centralized a controller as it 

will not be able to manage the load and data in an effective manner, high availability will be an issue 

in single controller architecture as bigger the network less available the controller which will lead to 
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redundancy and security issues. The scalability is also one of the reasons to move to multiple 

controllers architecture.  

 

The whole network performance will be jeopardized with the single controller architecture. If the 

controller fails the control plane will lose the connectivity with the whole network, thereby making 

the whole fail. Clearly, multiple controllers will help to overcome these issues. Multiple controllers will 

provide better availability, better performance, and effective load balancing. 

 

Many researchers have worked in the field of SDN to enhance the traditional single controller SDN 

architecture to push to multiple controller SDN architectures to solve these issues. In this thesis, we 

are evaluating the performance of the two different architecture to support the hypothesis that 

multiple controllers architecture handles the network better than single controller architecture.  We 

will be focusing on providing the evaluation of the results of the analysis between Single controller 

SDN architecture and Multiple controller architectures. 

 

 

1.2 Objective 
 

The three most critical requirements- efficiency, scalability, and availability, are unachievable in an 

SDN-enabled centralized network, which was the main objective of the early proposed SDN 

architectures, using just one controller. These issues can be resolved with multicontroller architecture. 

The ulticontroller architecture can be efficiently used to avoid failure issue which is very significant 

with a single controller. Clearly, multiple controllers can team up to understand the network issues 
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and even if one controller fails, other controller or controllers will be there to take over the network 

traffic.  

The purpose is to experimentally prove the reasons to move to the multiple controller architectures 

as the network widens. With our evaluation, we want to highlight the benefits of multicontroller 

architecture over single controller architecture. The POX SDN controller is used to evaluate the 

performance. The topology has been set up in mininet using miniedit. To understand the network 

traffic performance D-ITG is used to fill the capacity of the network. We have analyzed the various 

merits like load jitter, average delay, bitrates to understand the difference in performance of the single 

controller SDN architecture and multiple controller SDN architecture.  

 

 

 

1.3 Contributions 
 

 

The thesis presents the review of SDN architectures and their drawbacks. The deep understanding of 

contributions in the field of Software Defined Networks is done to support the proposed hypothesis. 

Then the reasons push us to think that multicontroller topology is better than single controller 

topology explained and justifies using experimental setup. So, we have done the complete evaluation 

of both the architectures that will present detailed different aspects that will emphasize the benefits of 

multicontroller architecture over Single controllers. 
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1.4 Thesis Organization 

 

Chapter 2 will present the background of the work done in the related field that leads the way for the 

reason to work on the evaluation of single controller and multiple controller architectures. 

 

Chapter 3 provides the architecture and different topology, explains the controllers used in order 

formulate SDN architecture, the methodology used to implement the experimental setup. 

 

Chapter 4 explains the experimental setup and testbed to perform the network analysis on the system 

and there presenting the evaluation of the experiment in the further chapters  

 

Chapter 5 and Chapter 6 will provide results and analysis of comparison of two architectures 

to showcase the needs of moving to multicontroller scenario. 

 

Chapter 7 concludes the thesis and discusses possible future work in this area.  
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Chapter 2 
 

2.1 Background 

 

2.1.1 SDN Architecture  

 

The traditional single SDN architecture has 6 major components explained in the below section 

 

Management plane is the first is the management plane, which is a set of network applications that 

manage the control logic of a software-defined network. SDN-enabled networks use programmability 

instead of command line interface to give flexibility and easiness for implementing new applications 

and services, which includes routing, load balancing, policy enforcement, or a custom application from 

a service provider. Orchestration and automation of the network are also possible via existing API[4]. 

 

The control plane is the second and the most intelligent and important component layer of a basic 

SDN architecture. This layer contains a controller, that manages the whole packet transfer by 

forwarding various rules and policies to the infrastructure layer through the one of the interface 

Southbound interface [4]. 

 

The third layer is an infrastructure layer which is also called as data plane , represents the forwarding 

devices on the network (routers, switches, load balancers, etc.). It uses the southbound APIs to interact 

with the control plane by receiving the forwarding rules and policies to apply them to the 

corresponding devices [3]. 

 

https://www.hindawi.com/journals/jcnc/2016/9396525/#B1
https://www.hindawi.com/journals/jcnc/2016/9396525/#B1
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Fourth, the northbound interfaces are mostly a set of open source application programming 

interfaces(APIs) that allows communication between the control layer and the management layer [3]. 

The east-west interfaces are the fifth component of the SDN architecture but are not yet standardized. 

The east-west interface is one of the components will be important for multiple controllers of different 

SDN architectures to communicate between them. They use notification system or messaging or 

distributed routing protocols like BGP and OSPF. 

 

The southbound interfaces are the sixth and the last component of the SDN architecture which allow 

interaction in between data plane and control plane which is a most important element for the 

functioning of SDN networks. The southbound interfaces can be defined as protocols i.e OpenFlow 

protocols, that permit the controller to push policies to the forwarding plane. The OpenFlow 

protocols are the southbound API for SDN-enabled networks are most widely accepted and used.  

https://www.hindawi.com/journals/jcnc/2016/9396525/#B1
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2.1.1 OpenFlow 
 

Open Networking Foundation (ONF) [5], which is backed by the IT industry leaders like Facebook, 

Cisco, Google, HP, and others have normalized OpenFlow. This is the reason it’s important to 

understand the OpenFlow to grasp the notion of SDN. OpenFlow is nothing but just an instantiation 

of SDN, as there are lot many present and some under development southbound APIs, available for 

SDN. OpFlex [6], is one of the which distributes some of the complexity of managing the network to 

the infrastructure layer to improve the scalability. On the other hand, ForCES [7] proposes a flexible 

method to ameliorate the management of traditional networks without using a logically centralized 

controller, while ROFL [8], which relies on OpenFlow, provides an API for software developers to 

enable full development of new applications [1]. 

https://www.hindawi.com/journals/jcnc/2016/9396525/#B2
https://www.hindawi.com/journals/jcnc/2016/9396525/#B6
https://www.hindawi.com/journals/jcnc/2016/9396525/#B7
https://www.hindawi.com/journals/jcnc/2016/9396525/#B8
https://www.hindawi.com/journals/jcnc/2016/9396525/#B1
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2.2 Literature Review 
 

In SDN, various research has been done and in progress to implement the multiple controller 

architecture. In multicontroller architecture, more than one controllers are used to perform the task 

of networking to achieve some level of scalability. Another idea was proposed [10] before 

implementing multiple controllers, which is installing replicated controllers to remove the single point 

of failure. Nevertheless, this method has many disadvantages such as using passive controllers that 

will be active, just in case the main controller fails. In a logically centralized architecture, all the 

controllers have the same responsibilities, and they split the charge equally. They are always aware of 

every change in the network, and they share the same information instantly, thanks to the network 

synchronization.   

Further I would describe all different works being done in the field of multicontroller Software 

Defined enhancement. Physically distributed architecture corresponds to the multicontroller platform 

to enhance the basic SDN architecture and it varies on the placement of the controllers and how they 

are communicating between them. 

The approach of implementing replicated controller [3] before multicontroller approach was 

introduced to overcome single point of failure issue. This approach has several disadvantages like 

redundancy of controllers as the passive controllers are being used as active to make sure the controller 

can be swapped.  All the controllers have same responsibilities. They are always aware of every change 

in the network, and they share the same information instantly, thanks to the network synchronization. 

A physically distributed architecture can be either logically centralized or logically distributed. Logically 

centralized means that we take advantage of the concept of a multicontroller design, but at the same 

https://www.hindawi.com/journals/jcnc/2016/9396525/#B4
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time, we always consider that we have a single controller. In other words, we take the charge, and we 

distribute it among the multiple controllers; however, for the underlying layer, it is like there is just 

one controller that commands the whole network.  

When we talk about distributed controller, ONIX [13] is one the controllers is most talked about 

because of its distributed controller plane with cluster of physical servers. ONIX has 4 different 

components for network control, namely; physical infrastructure like routers, switches, etc., the 

connectivity infrastructure, the control logic which is dependent on top of ONIS’s API, and lastly 

ONIX which provides the control logic programmatic access to the entire network.  

ONIX provides three methods to improve the scalability of its network. First is by partitioning the 

network logically, in other words, by distributing the workload on multiple ONIX instances. Second, 

ONIX can allow multiple nodes to show up as a single node in the upper layer, which is called 

aggregation. Third, ONIX allows data state applications that can be used to improve the consistency 

and the durability of the network.  

 

In a logically distributed architecture, the controllers are physically and logically distributed. 

Additionally, every controller has just a view of the domain it is responsible for, and it can take 

decisions for it, unlike a logically centralized design, where each controller decides based on the global 

network view. In a word, a logically centralized architecture stays near to the initial tendency of SDN, 

which is using a single controller, or a multicore controller to improve the performance. On the other 

hand, a logically distributed architecture goes away from the first tendency of SDN, by making several 

controllers have several responsibilities inside the network. Controllers like Beacon [10] and NOX 

[11] have used multithreading techniques to split a single controller logically to increase its 

performance. In this case, it is so obvious, since we have a single controller, that we are not talking 

about a multicontroller architecture. 

https://www.hindawi.com/journals/jcnc/2016/9396525/#B10
https://www.hindawi.com/journals/jcnc/2016/9396525/#B11
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Some researchers have proposed BalanceFlow[11], a controller load balancing architecture for wide-

area OpenFlow networks. BalanceFlow approach undertakes the use of CONTROLLER X for 

switches and cross-controller communication and selects a controller to be a super controller to 

smoothly distribute the flow requests thereby avoiding transmission delay.  BalanceFlow can adjust a 

load of each controller dynamically. The problem with BalanceFlow is the centralized control problem 

due to the extreme need of a super controller. Also, when there the stress of load balancing increases 

on the super controller, it reduces the performance of  

 

In the lieu of BalanceFlow, researchers proposed HybridFlow approach to overcome the scalability 

issue on the super controller [12].  HybridFlow integrates the method of distributing the load and 

centralized control by managing a cluster of controllers using a super controller. Each cluster contains 

multiple controller and switches which oversee the controller in the cluster. Each cluster shares the 

information with the super controller. Super controller based on the load on the cluster divide the 

flow between the internal cluster and external cluster per the threshold. Hybrid Flow method is best 

amongst the approach but it doesn’t provide the solution of the super controller fails. Once the super 

controller is stops responding it will break the centralized control. The distributed load balancing is 

done on Multipath routing algorithm. In this method, every controller uses an algorithm to make a 

routing decision. The algorithm uses the estimated bandwidth of flow usage and the amount of free 

bandwidth. It tests the bandwidth of the system on various parameters. Before load balancing, it does 

a lot of calculation to make the load balancing work. The effect of the bandwidth. HyperFlow uses a 

“publish/subscribe” messaging paradigm to propagate information in the control plane. It makes sure 

to keep the ordering of events published by the same controller. Also, to have less overhead it 

minimizes the traffic required for intercontrollers. This “publish/subscribe” system runs on the top 

of WheelFS [20], which is a distributed file system and can deliver flexible wide area storage for 
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distributed application. 

 
 

ONOS [21] 

ONOS is one of the distributed SDN controller which two different prototypes. The first prototype 

has global view of the network, the fault tolerance, and the scalability. The network view has three 

components namely Titan [22] which is graph database, Cassandra [23] a key value store and a graph 

API to expose network state i.e. Blueprint [24]. ONOS can reassign the work to other instances and 

can add supplementary instances in case of failure or to distribute for better scalability. The second 

prototype was proposed to improve the previous one. The global network is intact but the effort has 

been made to solve excessive data storage by making remote operations fast, another approach by 

focusing on reducing the number of approaches. RAMCloud [25], has been introduced following the 

previous approach to implement Titan/Cassandra system with Blueprints graph on top of it. To 

remove the intercontrollers notification problems they adopted based on Hazelcast [26], in which 

communications will go through the channels installed at the top of all instances of the control plane. 

 

Inter-SDN controller communication 

 

Communication intercontrollers are the method used to allow exchanging information among the 

multiple controllers of a software-defined networks. Intercontroller communication can be 

implemented in different ways. One is horizontal approach which is SDN east-west interface. SDN 

east-west interface is used to exchange information between SDN domains that are under the control 

of single or multiple network operators. A session needs to be established between the two controllers 

by using either BGP or Session Initiation Protocol (SIP) over Transmission Control Protocol (TCP) 

to exchange information [9]. BGP can help inter-SDN communication for east-west type interface. 
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BGP is feasible for the peer SDN data. BGP is one of the solutions for load balancing between 

multiple controllers but the only feasible east-west interface. BGP is feasible for the peer SDN data. 

It cannot be used when it must communicate with more than just neighboring controllers.  To 

establish session SIP i.e. Session Initiation Protocol can be used. SIP is a request- response protocol 

for initiating and managing communication.  SIP is most likely to handle multimedia messages; thus, 

text-based messages are difficult to retrieve when integrated with SDN controller. Even though BGP 

is better than SIP approach, it's not achievable with other than east-west inter SDN interface.  

SDNi[29] is one of the project under implementation by TCS (Tata consultancy Services) to 

implement the intercontroller communication. This aims at developing the communication between 

controllers which is deployable on Opendaylight-helium controller using BGP4 protocol. 

 

DISCO [22] 

DISCO is a distributed multi domain SDN controller which has two parts as an intradomain and an 

interdomain. The intradomain handles monitoring of the network and managing the flow 

prioritization. Intradomain tackle multiple network issue with the set of modules. The interdomain 

provides the communication among the multiple controllers and has two modules. First is the 

Messenger module to build channels between controllers to share information amongst each other. 

In this approach the AMPQ [28] protocol has been used which provides routing, prioritized querying, 

and messaging with orientation.   
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Chapter 3 System Architecture 
 

We developed two different topologies using mininet and miniedit. The topology as we discussed 

has been created with POX controller as the remote controller to establish an SDN framework. 

After that we developed topology with more than one controller using python programming in 

mininet. We have created the topology using mininet and running 2 remote pox controllers one on 

10.0.0.49:6633 and other on 10.0.0.50:6634.  

To achieve the goal of implementing the distributed framework in SDN we created a 

communication channel in between the two POX controllers. The outbound communication has 

been implemented using the native messenger component of POX. The messenger component 

creates a system to inform one POX controller about the other and able to exchange the messages 

encoded in JSON. The messenger supports a straightforward TCP socket transport and an HTTP 

transport.  Connections are established when there is a request to check and its temporary, which 

gets deleted when there is no communication. 

 

3.1 SDN Architecture with Communication Channel  
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Figure 3.1 Distributed SDN System Architecture 

 
In this architecture, all the requests from different hosts will be sent to the respective switches. Now 

all the different requests accumulated in the switches s1, s2, and s3 will be sent to the controllers. The 

advantage of this topology is that there are two controllers to handle all the load. The load is divided 

between the two controllers and have less load on a single controller. The controller is POX controller 

and the switches are OpenFlow switches in mininet. The hosts are in the kernel of the mininet which 

helps to simulate the test bed. 
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3.2 Mininet Topology using python script 
 

 
 
Three directly connected switches plus two host for each switch: 
 
   host --- switch --- switch --- host 
 
Adding the 'topos' dict with a key/value pair to generate our newly defined 
topology enables one to pass in '--topo=mytopo' from the command line. 
""" 
 
from mininet.topo import Topo 
 
class MyTopo( Topo ): 
    "Simple topology example." 
 
    def __init__( self ): 
        "Create custom topo." 
 
        # Initialize topology 
        Topo.__init__( self ) 
 
        # Add hosts and switches 
        leftHost = self.addHost( 'h1' ) 
        rightHost = self.addHost( 'h2' ) 
        leftSwitch = self.addSwitch( 's3' ) 
        rightSwitch = self.addSwitch( 's4' ) 
 
        # Add links 
        self.addLink( leftHost, leftSwitch ) 
        self.addLink( leftSwitch, rightSwitch ) 
        self.addLink( rightSwitch, rightHost ) 
 
 
topos = { 'mytopo': ( lambda: MyTopo() ) } 
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Chapter 4 
 

Testbed 
 

4.1 Experimental Setup 
 

We have set up experimental testbed on mininet network emulator. We have used POX [14] SDN 

controller to make the SDN topology. The mininet uses a python script to simulate the different 

topology. We have used two different topologies to evaluate the performance between single 

controller SDN architecture and multiple controller SDN architecture. The miniedit has been used to 

implement the GUI of the topology. In the topology, three openVswitches are used to setup the 

OpenFlow protocol. To check the network performance, 6 different clients have been set up to 

transfer the data and evaluate the performance of the network. POX controller instances have been 

used to simulate the SDN network. The emulator helps to generate network traffic using different 

tools. D-ITG, a network traffic generator, and the monitor is used to fill the network capacity. 

 

The network performance is analyzed taking into consideration different parameters like transmission 

delay, Load jitter, packet loss rate. The performance between the different architectures has been 

evaluated using D-ITG traffic generator and monitor tool.  

 

The testbed is simulated using VM [15] workstation player. The VM i.e. a virtual machine helps to  

download the Ubuntu operating system to implement the architecture on a windows machine. The 

virtual machine creates the instance of the operating system on the other operating system without 

affecting the configuration of the primary operating system. We have used 3 different servers to 

emulate the two controllers and one mininet topology. 
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4.2 Mininet 
 

Mininet is used to emulate the network. Mininet is perhaps a network emulation orchestration system 

which runs router, SDN switches, different end-hosts, and links between all the devices on a Linux 

kernel system. It is used for emulating all the SDN system the hosts in mininet behaves nothing but 

like a real machine in which you can run different arbitrary programs. We can also SSH into the 

mininet using putty and bridge the network to the hosts. It uses lightweight virtualization to make a 

single system look like a complete network, running the same kernel, system, and user code.  

 

Mininet is designed to easily create virtual software-defined networks consisting of an OpenFlow 

controller, a flat Ethernet network of multiple OpenFlow-enabled Ethernet switches, and multiple 

hosts connected to those switches. It has built-in functions that support using different types of 

controllers and switches. We can create also complex custom scenarios using the Mininet Python 

API. Compared to any other network emulator mininet is easy to use and open source. Due to its’ 

many inbuilt features, it makes it favorable for research work in the field of SDN. We don’t have 

any other emulator with the capability of developing python programs to implement the topology.  

 

There are other emulators like Emulab [24], VINI [25], GENI [26], FIRE [27] which provides a 

global implementation of the SDN architecture. Though it's not very suitable for experimental and 

research purposes as it is heavy on the system and difficult to implement the infrastructure. While 

Mininet runs surprisingly well on a single laptop by leveraging Linux features (processes and virtual 

Ethernet pairs in network namespaces) to launch networks with gigabits of bandwidth and hundreds 

of nodes (switches, hosts, and controllers). 
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4.2.1 Single Controller Mininet Topology 

For testing purposes, we created two topologies. We created single controller topology using  

Miniedit[17]. We have used POX remote controller c0 to establish SDN architecture the SDN in the 

miniedit. The switches are the OpenFlow switches s1, s2, s3. There are 6 ghosts naming h1, h2, h3, h4, 

h5, and h6. In the single controller, all the OpenFlow switches are communicating with the single 

controller. 

 

 

Fig 4.1 Single Controller Topology 
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4.2.1 Two and Three Controller Mininet Topology 
 

To compare the performance, we created another topology i.e. multiple controllers’ topology using 

miniedit. We have used POX remote controller c0, c1 and c2 to establish SDN architecture the SDN 

in the miniedit. The switches are the OpenFlow switches s1, s2, s3. There are 6 ghosts naming h1, 

h2, h3, h4, h5, and h6. In this topology, OpenFlow switches have two controllers to manage the 

network traffic. 

 

 

 

Fig 4.2 Multiple Controllers Topology 
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Figure 4.3 Three Controller Topology 

 

4.3 POX Controller 

POX is one of the many controllers developed for the SDN implementation. POX is a sister project 

of NOX and became more rapid than NOX[20]. POX is python based OpenFlow controller. It is an 

open source development platform. The main advantage if POX is that it is Python-based Software 

Defined Networking controller to develop networking applications. The reason we used POX is it's 

readily available, easy to learn and develop applications. It can run anywhere as it can bundle with 

PyPy[19] runtime which is an easy and free install. The POX is one of the controllers which is 

dedicated to creating an archetypal, modern Software Defined Controller. There are different SDN 
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controllers available to use like ONOS [21], Floodlight[22], NOX, etc. 

 

The reason we choose POX over other controllers as different controllers have a different 

requirement. Ryu [23] is one of the python based SDN controllers but cannot establish inter-controller 

communication. For future work Ryu controller, won’t be efficient and doesn’t support 

multicontroller architecture. ONOS is one of the controllers which supports distributed architecture 

but has a lot of dependencies. It’s still underdeveloped and makes it difficult develop new applications 

on top of it. Floodlight is one of the most widely used SDN controllers but the API is Java-based and 

cannot be developed using python. 

 

POX can be immediately used as a basic SDN controller by using the stock components that come 

bundled with it. POX frameworks are for both sides of OpenFlow, one is for switch side and another 

one is for controller side. The aggregator is a switch, allowing other controllers to connect to it and 

send it OpenFlow commands and so forth. But underneath, it implements this by controlling other 

OpenFlow switches.   

 

4.4 D-ITG Tool  
 

It’s a distributed Internet Traffic Generator tool which can support both IPv4[21] and IPv6[22] traffic 

generation. It can produce the traffic at the packet level. We have used D-ITG to fill the capacity of 

the switches to understand the behavior of the topology. It can replicate the appropriate stochastic 

processes for both IDT (Inter-Departure Time) and PS (Packet Size) random variables. The D-ITG 

tool is used as it helps to create multiple flows simultaneously which will affect the performance of 

the network. It can be used on each used for sending and receiving packets using xterm [23]. The ease 
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of the tool makes it more user-friendly and quick to learn. This tool is the best to prove the hypothesis. 

Also, it can be easily installed and used with mininet and give better results than any other traffic 

generator.  

The tool helps to send and receive the packets with following commands 

To simultaneously generate more than one flow, you have to prepare a script file like those 
shown in the following examples. Three UDP flows with different constant bit rate and 
remote log: 

1. start the log server on the log host: 

        $ ./ITGLog 

2. start the receiver on the destination host: 

        $ ./ITGRecv 

3. create the script file: 

        $ cat > script_file <<END 
        -a 10.0.0.3 -rp 10001 -C 1000 -c 512 -T UDP 
        -a 10.0.0.3 -rp 10002 -C 2000 -c 512 -T UDP 
        -a 10.0.0.3 -rp 10003 -C 3000 -c 512 -T UDP 
        END 
 
In the above example 10.0.0.3 is the destination of the packets 
10001 is the port number the receiver is listening. 
-C 1000 implies 1000 packets every second  
-c 512 says 512 bites and UDP is the time communication protocol between sender and 
receiver.   

4. start the sender: 

       $ ./ITGSend script_file -l send_log_file -L 10.0.0.4 UDP -X 10.0.0.4 UDP -x 
recv_log_file 

5. close the receiver by pressing Ctrl+C 
6. close the log server by pressing Ctrl+C 
7. decode the receiver log file on the log host: 

 

$ ./ITGDec recv_log_file 
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      ---------------------------------------------------------- 
      Flow number: 3 
      From 10.0.0.4:34775 
      To    10.0.0.3:10003 
      ---------------------------------------------------------- 
      Total time               =     10.016555 s 
      Total packets            =          6098 
      Minimum delay            =   3633.409810 s 
      Maximum delay            =   3634.259565 s 
      Average delay            =   3633.507249 s 
      Average jitter           =      0.002100 s 
      Delay standard deviation =      0.156419 s 
      Bytes received           =       3122176 
      Average bitrate          =   2493.612624 Kbit/s 
      Average packet rate      =    608.792145 pkt/s 
      Packets dropped          =         22216 (78.00 %) 
      ---------------------------------------------------------- 
      ---------------------------------------------------------- 
      Flow number: 1 
      From 10.0.0.4:34773 
      To    10.0.0.3:10001 
      ---------------------------------------------------------- 
      Total time               =      9.638360 s 
      Total packets            =          2269 
      Minimum delay            =   3633.402899 s 
      Maximum delay            =   3634.260524 s 
      Average delay            =   3633.461365 s 
      Average jitter           =      0.003114 s 
      Delay standard deviation =      0.135945 s 
      Bytes received           =       1161728 
      Average bitrate          =    964.253670 Kbit/s 
      Average packet rate      =    235.413494 pkt/s 
      Packets dropped          =          4274 (65.00 %) 
      ---------------------------------------------------------- 
      ---------------------------------------------------------- 
      Flow number: 2 
      From 10.0.0.4:34774 
      To    10.0.0.3:10002 
      ---------------------------------------------------------- 
      Total time               =     10.000351 s 
      Total packets            =          3136 
      Minimum delay            =   3633.407982 s 
      Maximum delay            =   3634.455203 s 
      Average delay            =   3633.514464 s 
      Average jitter           =      0.002740 s 
      Delay standard deviation =      0.221725 s 
      Bytes received           =       1605632 
      Average bitrate          =   1284.460515 Kbit/s 
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      Average packet rate      =    313.588993 pkt/s 
      Packets dropped          =         16864 (84.00 %) 
      ---------------------------------------------------------- 
 
      ****************  TOTAL RESULTS   ****************** 
      Number of flows          =             3 
      Total time               =     10.038005 s 
      Total packets            =         11503 
      Minimum delay            =   3633.402899 s 
      Maximum delay            =   3634.455203 s 
      Average delay            =   3633.500165 s 
      Average jitter           =      0.003291 s 
      Delay standard deviation =      0.417552 s 
      Bytes received           =       5889536 
      Average bitrate          =   4693.790051 Kbit/s 
      Average packet rate      =   1145.944837 pkt/s 
      Packets dropped          =         43354 (79.00 %) 
      Error lines              =             0 

 

 

  

 

 

4.5 Miniedit 

 

The miniedit is a simple GUI editor included in mininet. It helps to understand how mininet can be 

extended and how the topology looks like. MiniEdit has a simple user interface that presents a canvas 

with a row of tool icons on the left side of the window, and a menu bar along the top of the window. 

The user interface of miniedit GUI looks as in the image below: 



31 
 

  

  



32 
 

Chapter 5  
 

Evaluation of Results 
 

 

To evaluate the system, we created single controller topology and multiple controller topologies in 

mininet. We created a topology with three OpenFlow switches, 6 hosts and remote controllers using 

miniedit.  We are using a script to flood the capacity of the switches. After flooding the capacity, we 

analyzing the behavior of the switches with respect to the controller. For filling the capacity, we 

sending a different number of packets from hosts to different hosts simultaneously to understand the 

network behavior under the load.  

 

 

5.1 Single controller topology evaluation 

 

For the single controller, we configured the controller in miniedit with port no and IP address of the 

machine. Then we run the topology on the mininet folder. The port no. and IP address of the 

controller was set at 6633 and 10.0.0.49 (IP address of the host machine) as shown in figure 5.1. The 

IP addresses for the 6 hosts machine are set 10.0.0.1, 10.0.0.2, 10.0.0.3, 10.0.0.4, 10.0.0.5, and 10.0.0.6 

respectively. The POX controller is invoked using command “./pox.py forwarding.l2_pairs 

openflow.of_01 --port=6633” in one machine to establish the connection between the switch and the 

controller. After this, the mininet topology is started using miniedit which shows the switch, hosts and 

controller connection as shown in figure 5.3. 
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So, to evaluate the performance, we fill the capacity with a different number of packets. We flood 

switches by simultaneously sending different packets. Calculate the delay, average delay, and load jitter 

by observed the flow of the packets. We observe the switch controller communication to later 

compare it with the other topology. Once we start the traffic bridge between the hosts and client with 

the help of xterm and D-ITG tool we see how the controller responds and switch handles the traffic.  

 

 

 

Fig 5.1 Controller configuration in Single topology 
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   Fig 5.2 POX Controller with port no 6633 invoked 

Fig 5.3 Mininet CLI   
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5.2 Multiple controllers’ topology evaluation 

 

For multiple controllers, we configured the controllers in miniedit with port no and IP address of the 

machine. Then we run the topology on the mininet folder. The port no. and IP address for the first 

controller is set at 6634 and 10.0.0.49 (IP address of the one machine) and another controller is set at 

6634 and 10.0.0.50 as shown in figure 5.4 and 5.5 respectively. The IP addresses for the 6 hosts 

machine are set 10.0.0.1, 10.0.0.2, 10.0.0.3, 10.0.0.4, 10.0.0.5, and 10.0.0.6 respectively.  

 

After configuration, we fill the capacity with a different number of packets. We flood switches by 

simultaneously sending different packets. Calculate the delay, average delay, and load jitter and 

observed the flow of the packets. We observe the switch controller communication to later compare 

it with the other topology.  Now the switches in this topology communicate with two controllers to 

balance the load. The load in the multicontroller topology is balanced in a better way. Then we observe 

packets loss ratio, total delay, and load jitter on the xterm window to evaluate. 
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   Fig 5.4 First Controller c0 configuration 

 

Fig 5.5 Second controller c1 configuration 
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Fig 5.6 Two POX controllers invoked for multi-controller architecture 
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5.3 Traffic Generation 
 

We use D-ITG to generate simultaneous traffic. We send multiple packets from h1 to all the other 

hosts i.e. from h2 to h6 to check how different topology reacts to manage the traffic. We modify the 

emulator with a different number of packets from h1 to each other hosts. We send 1000, 2000, 3000, 

4000, and 5000 packets parallelly to all the hosts in the network. We repeat each experiment 

multiple times to efficiently collect the results. Then captured average values of packet loss, 

load jitter, delay and throughput for single controller topology and multiple controller 

topology. We send packets from h1 to h6 using the script in distributed traffic generator tool.  

We first xterm for which we have downloaded the xming[25] server. On the xterm window to send 

and receive packets on the host machines. D-ITG gives a summary of the packets received packets 

lost, average delay and load jitter which makes it easy to compare the different architectures.   

 

Fig 5.7 Xterm from Mininet 
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Chapter 6 Results 
 

After setting up the topologies and conducting the experiments we calculating the important 

parameters affecting the network traffic. We calculated the average delay to emphasize the behavior 

and differentiate between single and two controller topology network performance. The reason to 

choose parameter shown in the following section is that they are important to analyze the network 

performance. The delay in the most crucial factor while handling the incoming traffic in any 

networking scenario as we cannot afford too much delay. If the delay is beyond the tolerance limit it 

will make the network inefficient and the whole system will be jeopardized. By the following graphs, 

we understand that the with multiple controller architectures we can keep all these parameters in check 

making the system architecture more efficient and reliable. Another parameter we calculated is the 

average jitter. One of the important factors for networking infrastructure is to be able to handle the 

load in an effective manner. As the load in any network can be unpredictable and can any time reach 

the maximum. So, we calculated the average jitter to highlight the reaction of the topology. Per the 

results and graphs, we understand that the multicontroller architecture is more stable with the increase 

in the load.  We also observed the bitrate  

The values reported in the results are computed as follows: 

the Delay is computed as the difference between rxTime (the reception timestamp) and txTime(the 
transmission timestamp) of each packet. 

The jitter has been calculated using below formula where Si and Ri respectively correspond 
to txTime and rxTime. 

Di = (Ri - Si) - (Ri-1 - Si-1) 

Di = (Ri - Ri-1) - (Si - Si-1) 

AvgJitter = 
∑ |𝐷|𝑛
𝑖

𝑛
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6.1 Single Controller Evaluation Results 
 

We flooding the capacity of the switches with different flows. We sent multiple packets using D-ITG 

tool to different hosts, observed the flows, and plotted the graph for the different parameters affecting 

the network performance. We analyzed the output of the D_ITG tool and plotted a graph for different 

values.  

6.1.1 Average Delay 
 

Below the graph is of average delay for the value collected for different packets for a single controller. 

X-axis represents the number of packets for each experiment and y-axis represents the delay calculated 

for different packets in seconds 

 

Fig 6.1 Plot for Average Delay in Single Controller Architecture 

 

6.1.2 Maximum Delay 
 

Below the graph is a maximum delay for the value collected for different packets for a single controller. 
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X-axis represents the number of packets for each experiment and y-axis represents the delay calculated 

for different packets in seconds 

 

 

Fig 6.2 Plot for Maximum Delay in Single Controller Architecture 

 

 

6.1.3 Load Jitter 
 

Below is the graph of load jitter for the value collected for different packets for a single controller. 

X-axis represents the number of packets for each experiment and y-axis represents the average jitter 

calculated for different packets in seconds 
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Fig 6.3 Plot for Average Jitter for Single Controller architecture 

6.1.4 Average Bitrate 
 

Below is the graph of average bitrate for the value collected for different packets for a single controller. 

X-axis represents the number of packets for each experiment and y-axis represents the average bitrate 

calculated for different packets in bite. 

 

Fig 6.4 Plot for Average bit rate for Single Controller 

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

5000 10000 15000 20000 25000

Ti
m

e(
se

c)

Packets/sec

Avg Jitter (Single Ctrl)

0

1000

2000

3000

4000

5000

6000

7000

8000

5000 10000 15000 20000 25000

B
it

es
/s

ec

Packets/sec

Avg Bitrate (Single Ctrl)



43 
 

6.1.5 Average Loss-Burst size 
 

Below is the graph of average bitrate for the value collected for different packets for a single controller. 

X-axis represents the number of packets for each experiment and y-axis represents the number of 

packets lost. The average lost burst ratio is the average of the packet loss rate 

 

 

Fig 6.5 Plot for Average loss burst size for single controller 

 

6.2 Multiple Controller Evaluation Results 
Same as previous, we flooding the capacity of the switches with different flows. We sent multiple 

packets using D-ITG tool to different hosts, observed the flows and plotted the graph for the different 

parameters affecting the network performance. We analyzed the output of the D_ITG tool and 

plotted a graph for different values.  

 

6.2.1 Average Delay 
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Below is the graph of average delay for the value collected for different packets for two controllers. 

X-axis represents the number of packets for each experiment and y-axis represents the delay calculated 

for different packets in seconds. 

 

 

 

Fig 6.6 Plot for Average bit rate for Two Controller 

 

6.2.2 Maximum Delay 
 

Below is the graph of a maximum delay for the value collected for different packets for two controllers. 

X-axis represents the number of packets for each experiment and y-axis represents the delay calculated 

for different packets in seconds. 
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Fig 6.7 Plot for Average Delay in Two Controller Architecture 

6.2.3 Load Jitter 
Below is the  graph of the load jitter for the value collected for different packets for two controllers. 

X-axis represents the number of packets for each experiment and y-axis represents the average jitter 

calculated for different packets in seconds. 

 

 

Fig 6.8 Plot for Maximum Delay in Two Controller Architecture 
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6.2.4 Average Bitrate 
Below is the graph of average bitrate for the value collected for different packets for two controllers. 

X-axis represents the number of packets for each experiment and y-axis represents the average bitrate 

calculated for different packets in bite. 

 

Fig 6.9 Plot for Average Bitrate in Two Controller Architecture 
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Fig 6.10 Plot for Average Jitter in Two Controller Architecture 

 

 

6.3 Comparison of Single Controller v/s Multiple Controller 

Topology 
 

Using the experimental result of each topology we compared the performance of both the topologies. 

We calculated and compared the results and plotted a graph to understand which topology is better. 

After analyzing the results on the graph for throughput, delay, jitter, and bitrate we could understand 

the multicontroller topology can handle the load in a better way. 

 

We found that throughput for the multicontroller topology is better than the single controller 

topology. As the switches have two controllers to communicate and push the rules the load divided 

between the two controllers. Through the graphs, we can understand that as the network grows an 

SDN architecture with multiple controllers is always better over SDN architecture with a single 

controller.  
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6.3.1 Average Delay Graph 
 

The delay parameter is important in networking. The more the delay the less reliable the environment 

So we observed the delay by sending multiple packets simultaneously. The calculation of average delay 

explains that with the increase in the packets flow the delay increases and it’s much more than can be 

expected. While in the two-controller architecture, there is not much change in the delay in the results.  

 

Packets Avg Delay (Single Ctrl) Avg Delay (2 Ctrls) Avg Delay(3 ctrls) 

5000 0.000063 0.000035 0.000017 

10000 0.000076 0.000037 0.0000195 

15000 0.000081 0.000039 0.000021 

20000 0.000087 0.000041 0.000024 

25000 0.000093 0.000045 0.0000275 

 

 

Fig 6.11 Average Delay Single v/s multiple 
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6.3.2 Maximum Delay Graph 
 

The maximum delay for the single controller topology is way too high with the increase in the load.  

Packets 
MaxDelay(Single 
Ctrl) 

Max Delay(2 Ctrls) Max Delay(3 Ctrls) 

5000 0.006 0.0054 0.00200825 

10000 0.0073 0.0065 0.002857 

15000 0.0081 0.0073 0.00369 

20000 0.0096 0.0079 0.00445 

25000 0.0106 0.0084 0.0059 

 

 

 

Fig 6.12 Maximum Delay Single v/s Multiple 

 

6.3.3 Average Jitter  
 

After running the network for several times, we calculated the average as it affects the performance. 

We calculated the value of average jitter and recorded for different packets which prove that 

multicontroller architecture ca handle the load in a better way. We can imply that the two controllers 

can handle the load with the minimum issue. 
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Packets Avg Jitter (Single Ctrl) Avg Jitter (2 Ctrls) Avg Jitter (3 Ctrls) 

5000 0.000056 0.000032 0.000011 

10000 0.0000602 0.000034 0.0000145 

15000 0.000069 0.000037 0.0000175 

20000 0.000077 0.000039 0.0000205 

25000 0.00008 0.00004 0.000023 

 

 

Fig 6.13 Average Jitter Single v/s Multiple 

6.3.4 Average bitrate 
 

Packets 
Avg Bitrate (Single 
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Avg Bitrate (2 Ctrls) Avg Bitrate (3 Ctrls) 

5000 2100 2346 4750 
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Fig 6.14 Average Bitrate Single v/s Multiple 

 

6.3.5 Average loss burst size 
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Fig 6.15 Average Loss-Burst Size Single v/s Multiple 
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Chapter 7 Conclusion and Future Work 
 

7.1 Conclusion 
 

The Software Defined Networks are widely propagated and becoming the most promising technology. 

As the demand is increasing it's important to take into consideration the challenges. As we observed 

in the thesis that as the network grows the load on the controller increases. Thus, the single controller 

SDN architecture becomes incompetent. By observing the evaluation results we can clearly say the 

multicontroller architecture better handles the network traffic as compared to the single controller as 

the load is divided amongst the two controllers. 

 

With the help of the results of the experiment, we can understand the importance of having more 

than one controller to avoid issues presented in the hypothesis. As the delay increases the packet drop 

ratio increases. With the single controller architecture, the packet loss ratio is high making the system 

unreliable. As we move to two controller architecture the packet loss ratio is reduced and total 

transmission time is better thereby making it more reliable. 

 

Also, we observed that the throughput, transmission delay, and packet loss ratio is much better for 

multicontroller SDN architecture. We compared the results of Single and multicontroller architecture 

and understood that to deal with challenges of the wider network it's intelligent to move to 

multicontroller SDN architecture. 
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7.2 Future Work 
 

We can balance the load several ways in POX multicontroller architecture. 

We can implement neural network method between controllers to automate the load balancing based 

on the incoming packets and requests. We can train the networks based on how the inputs are coming 

such as the switches and controller communication will be automated to find the best shortest path. 

We can also use POX inbuilt messenger library to build a python program to apply different algorithms 

to establish communication between controllers in order to do the load balancing. The POX controller 

is python based and easy to program. We can also develop socket programming to develop 

communication between controllers. 
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