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Abstract 

Analyzing high-dimensional data stands as a great challenge in machine learning. In order to deal 

with the curse of dimensionality, many effective and efficient feature-selection algorithms have 

been developed recently. However, most feature-selection algorithms assume independence of 

features; they identify relevant features mainly on their individual high correlation with the target 

concept. These algorithms can have good performance when the assumption of feature 

independence is true. But they may perform poorly in domains where there exist feature 

interactions. Due to the existence of feature interactions, a single feature with little correlation 

with the target concept can be in fact highly correlated when looked together with other features. 

Removal of these features can harm the performance of the classification model severely.  

In this thesis, we first present a general view of feature interaction. We formally define feature 

interaction in terms of information theory. We propose a practical algorithm to identify feature 

interactions and perform feature selection based on the identified feature interactions. After that, 

we compare the performance of our algorithm with some well-known feature selection algorithms 

that assume feature independence. By comparison, we show that by taking feature interactions 

into account, our feature selection algorithm can achieve better performance in datasets where 

interactions abound. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

Computers have become an indispensable part of our world. Computers capture and store huge 

amount of data every day. For example, there are millions of transactions stored in a bank system 

in a single day. The size and complexity of these datasets is so great that humans are not able to 

process and extract useful information from them. In the past, when we were given a dataset, we 

could generally plot it in a graph and try to extract useful information.  

 

Figure 1.1: A data table and its plotted graph 
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By comparing the table and the graph in Figure 1.1, we can see that a graph is much easier to 

deal with than a data table. Unfortunately, if the data have more than three dimensions, it will be 

difficult for us to view it all at once. It is also impossible for humans to deal with huge amounts 

of data. Fortunately, we can make computers deal with these massive data for us. This is why 

machine learning is becoming so popular.  

As the dimensionality of the data is getting higher, the efficiency and accuracy of learning 

algorithms are degraded. The problem of high dimensionality poses a great challenge to learning 

algorithms. Consider a set of documents, where each document is represented by a vector of 

occurrence frequencies of each word. There are typically thousands or tens of thousands of 

attributes. In this case, many types of data analysis become significantly harder as the 

dimensionality of the data increases. This phenomenon is called the curse of dimensionality 

[Pang-Ning et al., 2006]. Thus we need to reduce the dimensionality of such high dimensional 

data in order to apply accurate and efficient learning algorithms; feature selection is a good way 

to do dimensionality reduction. 

1.2 Contribution 

Before talking about the contribution of this thesis, we will talk about the benefits of feature 

selection. There are a variety of benefits from feature selection. A key benefit is that many 

learning algorithms work better if the number of features in the data is low. This is because we 

can eliminate irrelevant features and reduce noise by applying feature selection, and we can also 

improve the efficiency at the same time. Another benefit is that feature selection can lead to a 

more understandable model because the model may have fewer features. Also, feature selection 

may allow the data to become easy to visualize. 
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However, many learning algorithms and feature-selection algorithms assume independence of 

features, which is not always true. A single feature can be considered irrelevant when treated as 

an independent feature, but it may become a relevant feature when combined with other features. 

For example, given a person’s weight or height, we are not able to tell the body shape of that 

person.  But if we are given both of these two features, it will be easy for us to tell the body shape. 

This is because there are interactions between features. In this case, those feature selection 

algorithms may wrongly remove interacting features. Unintentional removal of these features can 

result in the loss of useful information and may cause poor learning performance [Zhao and Liu, 

2007]. In this thesis, we propose a practical algorithm for feature selection. Instead of treating all 

single features as independent, our algorithm will deal with feature subsets based on feature 

interactions.  

1.3 Outline 

This thesis is organized as follows. In Chapter 2, we introduce some background information 

about machine learning and feature selection. We will describe the concepts and techniques that 

we will use in later chapters. In Chapter 3, we introduce the concept of feature interaction. We 

give an information-theoretic view of feature interaction. Chapter 4 presents the structure and 

analysis of our algorithm BIFS (Binary Interaction based Feature Selection). In Chapter 6, we 

evaluate our algorithm with regards to the number of selected features, identified feature 

interactions and accuracy using selected features. We compare our algorithm with some well-

known feature selection algorithms. Finally in the last chapter, we provide our conclusions and 

discuss limitations and future work. 
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Chapter 2 

Background 

2.1 Machine Learning 

In 1959, Arthur Samuel defined machine learning as a “Field of study that gives computers the 

ability to learn without being explicitly programmed” [Simon, 2013]. Later a more formal 

definition was provided: “A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at tasks in T, as measured by 

P, improves with experience E” [Mitchell, 1997].  The key concept of machine learning is 

learning from data, since data is what we have [Marsland, 2009].  

Now, more and more machine learning algorithms have been developed and they are widely 

used to help humans to analyze complex learning problems; for example, voice recognition, 

pricing system, computer games and automatic systems. All these learning algorithms can be 

classified into 5 categories: supervised learning, unsupervised learning, semi-supervised learning, 

reinforcement learning, and evolutionary learning. 
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 Supervised Learning 

Supervised learning can be defined as learning from labeled training data. A supervised 

learning algorithm learns the training data and produces a predictive function. The predictive 

function will be used to decide the class label for unseen instances [Mohri, Rostamizadeh and 

Talwalkar, 2012].  

 Unsupervised Learning 

In contrary to supervised learning, unsupervised learning is learning from unlabeled training 

data. In the training step, no error or score will be given to evaluate generated solutions. In 

statistics, unsupervised learning is known as density estimation [Duda et al., 2001].  

 Semi-supervised Learning 

Semi-supervised learning algorithms learn from both labeled and unlabeled data. Labeled 

data is often expensive and difficult to obtain. Meanwhile, unlabeled data is relatively easy to 

collect, but it contains less information than labeled data. By using a large amount of 

unlabeled data with a small amount of labeled data, semi-supervised learning requires less 

human effort and tends to higher accuracy [Zhu, 2008].  

 Reinforcement Learning 

Reinforcement Learning deals with how software agents should take actions in an 

environment to maximize a reward. In a traditional reinforcement learning model, an agent is 

connected to the environment via perception and action [Kaelbling et al., 1996]. Whenever 

the agent takes an action, the action will change the state of the environment. The value of 

this state transition will be returned to the agent as a reward. The agent should learn to take 

actions that can maximize the long-run sum of reward. 
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 Evolutionary Learning 

Evolutionary learning is inspired by biological evolution. The learner will start with a 

population of solutions. Then scores will be assigned to each solution within the population. 

After that, only a percentage of the solutions will be retained. The empty space of the 

population will be filled with new solutions generated by genetic operators including 

crossover, mutation and replication [Holland, 1992]. 

Supervised learning is the most common type of learning. This thesis will mainly discuss 

feature selection for a supervised learning problem.  

2.2 Classifiers 

One instance of supervised learning algorithms is a classifier. Classifiers are machine learning 

algorithms that solve the problem of classification. A classification problem can be defined as of 

identifying class labels for new observations on the basis of a training set of data whose class 

label is known. Examples include fraud detection, face recognition, and galaxy identification. A 

classifier’s task is to build a classification model that can be used for prediction of class labels of 

unknown data. The process of applying classification to a real-world problem is described in 

Figure 2.1. 
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Figure 2.1 The process of classification 

The input for a classification task is a collection of labeled records. Each record is represented 

by a tuple (x, y), where x is a vector representing the feature set and y is the class label. A first 

step is data pre-processing. A real-world dataset is usually not suitable for classification directly. 

In most cases, it contains noise, missing value, irrelevant and redundant features, and therefore 

requires significant pre-processing [Zhang et al., 2002]. The pre-processed data enables the 

classifier to operate faster to build a more accurate classification model. A classification model is 

also known as a target function that maps each feature set x to one of the class labels y. After the 

classification model is built, the mapping function will be used to predict the class label for the 

test set which consists of records with unknown class labels. 
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There are many well-known machine learning classifiers, such as decision tree, support vector 

machine, naïve bayes, linear regression, and multilayer perceptron. Here we will introduce two 

popular ones: decision trees and support vector machines, which we will use in our experiments. 

2.2.1 Decision Trees 

A decision tree learning algorithm approximates a target concept using a tree representation, 

where each internal node corresponds to a feature and every terminal node corresponds to a class 

[Grosan and Abraham, 2011]. There are two kinds of nodes in a decision tree, internal nodes and 

terminal nodes. The internal node splits the dataset into different branches according to the 

different values of the corresponding feature. Root node is a special kind of internal node. The 

terminal node has a class label assigned to it and all the data records in the terminal node will be 

predicted as the class label assigned to the node. Figure 2.2 shows an example of a decision tree 

for the data in Table 2.1.  

 

Figure 2.2 A decision tree representation of Table 2.1 
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Decision trees are a way to represent rules underlying data with hierarchical, sequential 

structures that recursively partition the data [Murthy, 1998]. The hierarchical structure is very 

similar to our own logic. This is the reason why decision trees have higher interpretability than 

other machine learning classifiers. By comparing Figure 2.2 and Table 2.1, we can find that a 

decision tree is much easier to understand and get information from, than a data table.  

x1 (r, g, 

b) 

x2 (0, 1) x3 (Yes, 

No) 

Class (Positive, 

Negative) 

r 0 Yes P 

r 1 No N 

r 1 Yes N 

r 0 No P 

g 0 Yes P 

g 0 No N 

g 1 Yes N 

g 1 No N 

b 1 Yes P 

b 0 No P 

b 1 No P 

 

Table 2.1 Dataset example 

Given a dataset, there may be more than one possible decision tree representation for it. For 

example, Figure 2.3 is another decision tree for Table 2.1. Thus we need to choose the best one 

among all possible decision trees. However, constructing an optimal decision tree is an NP-

complete problem and thus efficient heuristics have been found to construct near-optimal decision 

trees [Kotsiantis, 2007]. The key point to build an optimal decision tree is to find the best feature 

to divide the training set. There are plenty of methods to judge the goodness of a feature to divide 

the training set. Among these methods, information gain is one of the most popular one. We will 

talk about entropy and information gain in section 3.2. 
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Figure 2.3 Another decision tree representation of Table 2.1 

When we talk about decision trees, we must mention the overfitting issue. Before talking 

about overfitting of decision trees, we will introduce the definition of overfitting of a hypothesis. 

Assume a hypothesis space H. We say a hypothesis h in H overfits a dataset D if there is another 

hypothesis h’ in H where h has better classification accuracy than h’ on D but worse classification 

accuracy than h’ on dataset D’, where D’ comes from the same data source as D [Mitchell, 1997]. 

A decision tree overfits the data if we let it grow deep enough so that it begins to capture 

“aberrations” in the data that harm the predictive power on unseen records. Figure 2.4 shows the 

training and testing accuracy of the decision tree. 
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Figure 2.4 Training and testing accuracy of the decision tree 

There are mainly two causes that lead to overfitting of decision trees. One cause is the 

presence of noise. Noise gives incorrect information about the dataset. Another cause is lack of 

representative samples. In this case, a decision tree may capture coincident patterns due to the 

small size of the representative sample. And sometimes coincident patterns can also be caused by 

irrelevant features. Here we will introduce another cause for overfitting. Sometimes classifiers, 

like decision trees, may use the information provided by redundant features repeatedly. This will 

cause a tree to be grown too deep. Irrelevant features and redundant features can both be 

eliminated by feature selection. Thus feature selection is a good way to avoid overfitting in 

decision trees.  

2.2.2 Support Vector Machines  

Support vector machines are state-of-the-art supervised learning algorithms that are used for 

classification and regression analysis. A support vector machine maps the original dataset to a 

higher dimensional space. Then the support vector machine will construct a hyperplane or set of 

hyperplanes with sufficiently high dimensions in the new space. The support vector machine was 

first introduced in [Guyon, Boser and Vapnik, 1992].  
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To understand how a support vector machine works, we must start from linear discriminant 

functions, also known as linear classifiers. Consider a binary classification problem containing n 

examples. Each example can be represented by a tuple (xi, yi) (i = 1, 2, 3, …, n), where xi = (xi1, 

xi2, …, xik)
T
 is the transpose feature vector and yi is the class lable of the i

th
 example. For 

convenience we assume the class labels are 1 or -1. Then a linear discriminant function can be 

defined as: 

 ( )          

where b is the bias of the model. The key concept for defining a linear discriminant function is 

the dot product     which is defined as:  

    ∑     

 

 

    

where w is the known weight vector. A linear decision boundary of a linear discriminant function 

can be expressed as: 

          

Let x1 and x2 be two points on the decision boundary, then  

           

           

Subtracting the two equations will get: 

  (     )      
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Since       is a vector that is parallel to the decision boundary, w must be a vector that is 

perpendicular to the decision boundary. 

Linear discriminant functions have their advantages, one of them being that they often have 

simple training algorithms that scale well with the number of examples [Hastie et al., 2001].  

However, sometimes the dataset can’t be linearly separated in a fixed dimensional space. We may 

want to extend linear discriminant functions to handle non-linear decision boundaries. Fortunately, 

we can generalize a linear discriminant function to a non-linear discriminant function by using a 

mapping function  :    . The   function maps the data from the original space X to a new 

feature space F. The generalized discriminant function is defined as: 

 ( )     ( )      

Consider an example of a two dimensional input space with the  -fucntion 

 ( )  (            
    

 )   

then the dot product    ( ) is calculated as: 

                          
       

    

The new discriminant function will build a non-linear decision boundary in the two dimensional 

input space. 

Now let’s talk about the margin of SVMs. Figure 2.5 shows the margin of a linear decision 

boundary for the data from Figure 1.1.  
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Figure 2.5 Margin of support vector machines 

For the data from Figure 1.1, the linear classifier predicts class labels for any test example in 

the following way: 

  {
                 
                

  

For all the test examples above the decision boundary, the linear classifier classifies them as class 

B. Similarly, test examples below the decision boundary are classified as class A.  

Consider the red and green points that are closest to the decision boundary in Figure 2.5. It is 

possible to find the parameters w and b so that the two hyperplanes h1 and h2 can be expressed as 

follow: 
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The margin of the linear classifier is defined as the distance d between these two hyperplanes. Let 

x1 and x2 be two points from hyperplane h1 and h2 respectively. Then we have: 

           

            

Subtracting the two equation will get: 

  (     )      

Since w is vector that is perpendicular to the decision boundary, the above equation can be 

written as: 

‖ ‖        

Now we can see that the margin of a linear classifier is only related to the module of the weight 

vector w: 

  
 

‖ ‖
   

The goal of support vector machines is to find the decision boundary with the largest margin. The 

learning task of a linear support vector machine can be formalized as follows: 

    
‖ ‖ 

 
              (     )                 

where n is the number of training examples. We can write this in a dual form as: 

   ∑   
 

 
∑∑             
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Details about deriving the equation can be found in [Pang-Ning, 2006]. Recall that a linear 

discriminant function can be extended to handle non-linear decision boundaries by using a   

function. For a non-linear support vector machine, the learning task can be summarized as: 

    
‖ ‖ 

 
              (   (  )   )                 

And we can also write it in a dual form as: 

   ∑   
 

 
∑∑         (  )   (  )

 

   

 

   

 

   

   

Here the dot product  (  )   (  ) is called a kernel function. The kernel function is a measure 

of the similarity between two examples in the transformed space. There are three different types 

of kernel functions that are commonly used: 

 Polynomial kernel with degree s: 

 (     )  (       )
 
 

 Sigmoid kernel with parameter k and  : 

 (     )       (        ) 

 Radial kernel with parameter  : 

 (     )      ( (     )   
 ⁄ ) 
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Choosing which kernel and parameters to use is a tricky problem. Most of the time, we will 

just run support vector machines with different kernels parameters and find the one that works 

best.  

2.3  Evaluation of Classification Models 

Since we have so many classifiers to choose from to solve a specific classification problem, we 

must have a measure to judge the goodness of a classifier. This step is called validation or 

evaluation. The evaluation of a classifier is most often based on its predictive accuracy. Before 

talking about accuracy, let’s talk about the confusion matrix first. A confusion matrix describes 

the number of correctly and incorrectly predicted examples by the classification model. Table 2.2 

shows the confusion matrix of a binary classification problem. 

 Predicted Class 

Class = 0 Class = 1 

True 

Class 

Class = 0 f00 f01 

Class = 1 f10 f11 

 

Table 2.2 Confusion matrix of a binary classification problem 

In Table 2.2, each entry fij denotes the number of examples whose true class label is i and 

predicted class label is j. For example, f11 is the number of examples from class 1 correctly 

predicted as class1 and f10 is the number of examples from class 1 incorrectly predicted as class 0. 

We can tell the goodness of a classifier for a binary classification problem easily from the 

confusion matrix. But for multiclass classification problems, we need a generalize measure metric 

to evaluate the performance of a classifier, such as accuracy, which is defined as follows:  
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For a binary classification problem, the definition of accuracy can be expressed as: 

         
                                     

                                 
 

       
               

  

Based on the definition of accuracy, we have at least three methods to evaluate the performance 

of a classifier.  

 Holdout Method 

In the holdout method, the original data are partitioned into two parts, the training set and the test 

set. Most often, two thirds of the original dataset is used for training and one third is used for 

testing. Then a classification model will be induced from the training set and the performance of 

the classifier will be evaluated by the test set. There is one well-known limitation for the holdout 

method. The performance of the classifier may be highly affected by the composition of the 

training and testing sets. A small training set size may result in a classification model with large 

variance. On the other hand, if the training set is too large, the accuracy computed from the small 

test set may be less reliable. 

 Cross-Validation 

In cross-validation method, the original data are randomly divided into mutually exclusive and 

equal-sized subsets.  For each subset, the classifier is trained with the union of all other subsets 

and tested on that subset [Kohavi, 1995]. If the original dataset is segmented into k subsets, then 

the method is called k-fold cross validation. The cross validation method ensures that each record 

from the original dataset is used the same number of times for both training and testing. In cross 

validation method, the total accuracy is obtained by averaging the accuracies for all k runs, which 

can be calculated as follows: 
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 Bootstrap 

Bootstrap was introduced by EFron [Efron and Tibshirani, 1993]. In the bootstrap method, the 

training records are sampled with replacement uniformly from the original dataset. For a dataset 

of size n, the probability of a record not being chosen by n bootstrap samples is (1 –   ⁄ )
n
. When 

n is sufficiently large, the probability approaches e
-1

   0.368. Thus the probability of a record 

being chosen by at least one bootstrap sample is 0.632. The accuracy of bootstrap methods can be 

calculated by the .632 bootstrap approach as below: 

        
 

 
∑(                   )

 

   

   

where b is the number of bootstrap samples,    is the accuracy estimate for bootstrap sample i and 

     is the accuracy estimate on the full dataset. 

2.4 Feature Selection 

Feature selection, also known as variable selection, attribute selection or feature subset selection, 

is the process of selecting relevant features in terms of a target learning problem. The purpose of 

feature selection is to remove redundant and irrelevant features. Irrelevant features are features 

that provide no useful information about the data, and redundant features are features that provide 

no more information than the currently selected features. In other words, redundant features do 

provide useful information about the data set, but the information has been provided by the 

currently selected features. For example, the year of birth and age contain the same information 



20 
 

about a person. Redundant and irrelevant features can reduce the learning accuracy and the 

quality of the model that is built by the learning algorithm. 

In order to apply learning algorithms more efficiently and accurately, many feature selection 

algorithms have been proposed to help reducing the dimensionality, such as FCBF [Yu and Liu, 

2003], CFS [Hall, 2000], ReliefF [Kononenko, 1994], and FOCUS [Almuallim and Dietterich, 

1994]. By removing irrelevant features and reducing noise, we can both increase the accuracy and 

the efficiency of learning algorithms [Guyon and Elisseeff, 2003].  Feature selection has become 

the key point of much research in areas where high dimensional datasets are involved. These 

areas include text processing, gene expression, and combinatorial chemistry.  

A feature selection algorithm is usually formed by a search technique and an evaluation 

measure. A search technique is an approach whose task is to propose new feature subsets. These 

search approaches include best first, exhaustive, genetic algorithm, simulated annealing, greedy 

forward selection, and greedy backward elimination. An evaluation measure scores the different 

feature subsets. Some popular evaluation metrics are the followings: correlation, mutual 

information, error probability, inter-class distance, and entropy. The diagram of feature selection 

can be summarized in Figure 2.6. 
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Figure 2.6 Flow of feature selection 

In concept, a feature selection algorithm will search over all possible subsets of features to 

find the optimal subset. This process can be computationally intensive, so we need some sort of 

stopping criterion. The stopping criterion is usually based on conditions involving the number of 

iterations and the evaluation threshold. For example we can force the feature selection process to 

stop after it reaches a certain number or iterations. 

Feature selection algorithms can be classified into three categories: embedded approaches, 

wrapper approaches, and filter approaches [Kohavi and John, 1997; Das, 2001].  

 Embedded Approaches 

Feature selection is performed as part of the learning algorithm. During the run of the learning 

algorithm, the algorithm itself decides which attribute to use and which to eliminate. By 

incorporating feature selection as part of the training process, embedded approaches may achieve 

higher efficiency than other feature selection approaches. One example of an embedded approach 

is the algorithm for building decision trees, such as CART [Breiman et al., 1984]. 
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 Wrapper Approaches 

Wrapper approaches use the learning algorithm as a black box to do feature selection. In its most 

general formulation, wrapper approaches use the performance of the learning algorithm as an 

evaluation measure to access the usefulness of subsets of features. They are remarkably universal 

and simple. Wrapper approaches seem to require massive amount of computation, but it is not 

necessarily so when applying efficient search strategies. 

 Filter Approaches 

Filter approaches perform feature selection before the learning algorithm is run. They can be used 

as a preprocessing step to reduce the dimensionality and avoid overfitting. They are independent 

and require no information from the learning task. Filter approaches usually require less 

computation than wrapper approaches. Filter approaches provide a general feature selection 

strategy for most learning algorithms. 
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Chapter 3  

Feature Interaction 

3.1 General View of Feature Interaction 

Feature interaction is phenomenon that has been studied for years, e.g., in the field of telephony 

[Calder et al., 2003]. A feature interaction occurs when the combination of two or more features 

modify the behavior of some decompositions of the combined feature set in an unexpected way. 

The concept of feature interaction has been presented several times in machine learning, but with 

different terminologies. For example, J. R. Quinlan referred to the problem in this way [Qui, 

1994]: 

We can think of a spectrum of classification tasks corresponding to this same 

distinction. At one extreme are P-type tasks where all the input variables are 

always relevant to the classification. Consider an n-dimensional description 

space and a yes-no concept represented by a general hyperplane decision 

surface in this space. To decide whether a particular point lies above or 

below the hyperplane, we must know all its coordinates, not just some of 

them. At the other extreme are the S-type tasks in which the relevance of a 

particular input variable depends on the values of other input variable. In a 



24 
 

concept such as ‘red and round, or yellow and hot’, the shape of the object is 

relevant only if it is red and the temperature only if it is yellow. 

In this description, S-type tasks are actually tasks with interactive features, while P-type tasks 

contain all independent features. To illustrate an example of feature interaction, see Figure 3.1. 

 

Figure 3.1Example of feature interaction. (a) The data is plotted by projecting on feature x1. (b) 

The data is plotted by projecting on feature x2. (c) The data is plotted using both feature x1 and 

feature x2. 
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The data of Figure 3.1 is generated by four Gaussians centered on four corners of a square: (1, 

1), (1, 8), (8, 8), and (8, 1). The two colors denote two classes. This example is inspired by the 

XOR problem. As shown in Figure 3.1 (a) and (b), the data is highly overlapped by plotting the 

data using either x1 or x2 only. Neither feature x1 nor x2 can provide a separation of the two 

classes. This means feature x1 and feature x2 are useless independently by themselves. However, 

if we plot the data using feature x1 and x2 together as in Figure 3.1 (c), we can see the two classes 

can easily be separated. This is because there is interaction between these two features. Due to the 

existence of feature interaction, apparently useless features can be useful when they are taken 

together.  

Feature interaction sometimes can also degrade the prediction power of the combination of 

features. The significance of feature interactions is well studied in [Jakulin and Bratko, 2003] and 

[Jakulin and Bratko, 2004]. They defined the strength of feature interactions IS as: 

    (            )   (∑  (    )

 

   

where   (            ) is the evidence function denoting the degree of evidence of choosing 

class label C given features           , and  (∑   (    )  is the voting sum of the evidence of 

a single feature Xi. Actually, the voting sum treats every feature as independent. If the assumption 

of independence of features is true, then  

 (            )   (∑  (    )

 

   

Otherwise, IS greater than some positive threshold indicates a positive interaction and IS less than 

some negative threshold indicates a negative interaction. A positive interaction means the 
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prediction power of a joint set of features            is stronger than it of the voting sum which 

treats all features as independent. A positive interaction indicates the combination of features 

           provides new information about the data in addition to the voting sum. A negative 

interaction happens when multiple features share duplicate information about the data. In this 

case, the evidence provided by the evidence function  (            ) is weaker than the 

voting sum.   

3.2 An Information-Theoretic View of Feature Interaction 

3.2.1 Entropy 

We can now investigate feature interactions in the scope of information theory. In information 

theory, entropy measures the amount of information that is missing before reception. The entropy 

we will use to identify feature interactions is Shannon Entropy [Shannon, 1948]. For a data group 

S with n class labels, the Shannon Entropy is a measure of its unpredictability or impurity:  

 ( )   ∑ (

 

   

 )     ( )  

where p(i) is the probability of class i in the data group S. Figure 3.2 shows the entropy function 

as a function of probability.  
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Figure 3.2 Entropy for a problem with two class labels 

Entropy is a function concave downward. When all the examples within data group S belong 

to the same class which means p(i) = 0 or p(i) = 1, the entropy H(S) = 1*log1 + 0*log0 = 0. 

Entropy reaches the largest value 1 when p(i) = 0.5 which means half of the examples in data 

group S belong to one class and half of examples belong to the other class. From Figure 3.2, we 

can see that the higher the entropy, the less pure the data. Figure 3.2 also tells us that the smallest 

value of entropy is 0 and the largest value of entropy is 1. This is true for learning problems with 

two class labels, but not true for learning problems with more than two class labels. Consider a 

learning problem with n class labels. The most pure situation happens when all the examples 

belong to the same class. In this case, 

 ( )                             

The most impure case is that every 
 

 
 of the examples belong to one different class. Then 

 ( )   (
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Thus the smallest value of entropy is 0. But the largest value of entropy is not necessarily limited 

to 1, it is bounded by     . 

3.2.2 Information Gain 

Another key concept of information theory is information gain. In information theory, 

information gain is a synonym for Kullback-Leibler divergence. Kullback-Leibler divergence is a 

non-symmetric measure of the divergence between probability functions P and Q [Kullback and 

Leibler, 1951]: 

 (    )  ∑ ( )   
 ( )

 ( )
 

    

Actually, KL divergence is the expected logarithmic difference between the probability model P 

and Q. KL divergence is zero only when the two probability functions P and Q are equal. 

However, information gain can also be defined with mutual information. In particular, 

information gain IG(A) is the reduction in the entropy that is archived by learning a variable A: 

  ( )   ( )  ∑
  
 

 

 (  )    

where  ( ) is the entropy of the given dataset and  (  ) is the entropy of the ith subset generated 

by partitioning S based on feature A. In machine learning, information gain can be used to help 

ranking the features. Usually a feature with high information gain should be ranked higher than 

other features because it has stronger power in classifying the data. 



29 
 

Generally, we can also define information gain for a joint set of features as the reduction in the 

entropy that is archived by learning a joint feature set F. The definition is similar to the definition 

above: 

  ( )   ( )  ∑
  
 

 

 (  )    

where  (  ) is the entropy of the ith subset generated by partitioning S based on all features in the 

joint feature set F. 

3.2.3 Definitions Based on Information Theory 

In order to handle feature selection and feature interactions in practice, we must define the 

concepts based on a theory which can be applied directly, e.g., information gain. To perform the 

task of feature selection, we must know what are relevant features. According to [John et al., 

1994], a feature fi is relevant if and only if removing it from a feature set F will harm the 

prediction power of the feature set. This means a relevant feature contains valuable information 

about the dataset that cannot be replaced by any other features in the feature set. Thus we can 

define relevance in terms of information gain as definition 1. 

Definition 1 (Feature Relevance) A feature fi is relevant  iff   

  ( )    (    )   

where      and F – fi is the feature subset resulted by removing feature fi from feature set F. 
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Here, we use information gain to measure the prediction power of features. According to 

definition 1, a feature is relevant only if the purity of the state achieved by learning the feature set 

F is higher than the purity of the state achieved by learning the feature set F - fi.  

Definition 2 (Binary Feature Interaction) f1 and f2 are two features. There is binary feature 

interaction between feature f1 and f2 if  

  (     )    (  )    (  )    

where   (     ) is the information gain of the joint set of feature f1 and f2. More precisely,  

  (     )    (  )    (  )  

denotes a positive binary feature interaction between feature f1 and f2 and  

  (     )    (  )    (  ) 

denotes a negative binary feature interaction between feature f1 and f2.  

Actually, feature interactions are not necessarily limited between single features. They can 

also happen between feature subsets. Thus, we can expand definition 2 as: 

Definition 3 (Binary Feature Subset Interaction) F1 is a feature subset with k features and F2 is 

a feature subset with l features, where      . There is binary feature subset interaction between 

feature subset F1 and F2 if 

  (     )    (  )    (  )    

where   (     ) is the information gain of the joint set of feature subset F1 and F2. More 

precisely, 
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  (     )    (  )    (  ) 

denotes a positive binary feature subset interaction between feature subset F1 and F2 and  

  (     )    (  )    (  ) 

denotes a negative binary feature subset interaction between feature subset F1 and F2. 

Binary feature subset interaction is a generalized definition of binary feature interaction. We 

can treat definition 2 as a special case of definition 3 when      . Recall that negative 

interactions are caused by duplicate information that should be counted only one time. Negative 

interactions can usually be solved by removing duplicate features. It has been well studied in 

many well-known feature selections algorithms. However, positive interactions are always 

ignored by most of the feature selection algorithms which assume independence of features.  In 

this thesis, we focus our research on positive interactions. For the rest of the thesis, we will 

mainly discuss positive interactions.  

After defining the interactions between feature subsets, we can keep expanding the definition 

of feature interaction to k-degree feature interaction. 

Definition 4 (k-degree Feature Interaction) Let F denote a feature set with k features f1, f2, …, 

fk. {          } is an arbitrary partition of F, where     and     . We say f1, f2, …, fk 

interact with each other iff 

  ( )  ∑  (  )
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Identifying k-degree feature interaction requires exponential time. Definition 4 cannot be 

directly applied to identify interacting features for a high dimensional dataset. In this thesis, we 

use the idea of closure problem to identify potential k-degree feature interactions. 

Definition 5 (Closed Interactive Feature Subset) Feature subset F is a closed interactive feature 

subset if every possible pair of features in F has binary feature interaction between them. 

Definition 5 gives the definition of closure problem in the domain of binary feature 

interactions. Closed interactive feature subsets are also considered to be potential feature 

interactions since every possible pair of features within them must have binary feature 

interactions. A potential k-degree feature interaction is a closed interactive feature subset with k 

features. The purpose of feature interaction identification is to identify all possible feature 

interactions of maximum size. In order to perform feature selection based on feature interactions, 

we must ensure that for every identified feature interaction, there is no possible feature interaction 

containing it. This is the idea of the maximum closure problem.  

Definition 6 (Maximum Closed Interactive Feature Subset) Feature subset F is a maximum 

closed interactive feature subset if F is a closed interactive feature subset and adding any new 

features to F from the original dataset will cause it to no longer be a closed interactive feature 

subset. 

Definition 7 (k-degree Maximum Feature Interaction) Let F denote a k-degree feature 

interaction. F is a maximum feature interaction if there is no (k+1)-degree feature interaction that 

contains F. 



33 
 

Based on the explanation of definition 5, a maximum closed interactive feature subset can be 

considered as a potential maximum feature interaction. The problem of identifying k-degree 

potential maximum feature interactions can be formulated as: 

   ∑ ∑  

        

      

                                                               

where F is the feature set containing all features of the dataset.  

With all the definitions above, the purpose of our research is to identify all potential maximum 

feature interactions and perform feature selection for a supervised learning problem based on 

feature interactions. 
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Chapter 4 

Algorithm 

In this section, we present our algorithm BIFS, which performs the task of identifying all 

potential maximum feature interactions and feature selection for a supervised learning problem. 

BIFS is constructed by two main processes: forward identification and backward selection. BIFS 

performs its task by applying the backward selection after the forward identification. The details 

of our algorithm BIFS are shown in Figure 4.1. 
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================================================================== 

input: 

S: the source dataset  

F: full feature set with features f1, f2,…, fn 

α: degree of interaction 

β: degree of relevance 

output: 

Finteract: identified potential feature interaction of all k-degrees 

Fselect: the selected feature subset 

step 1: initialization 

Finteract = NULL 

Fbinary = NULL 

for i = 1 to n do 

 add {fi} to Finteract         

end 

for i = 1to n do 

 for j = i + 1 to n do 

  if IG(fi & fj) > IG(fi) + IG(fj) + α 

   add {fi, fj} to Fbinary 

  end 

 end 

end 

merge(Fbinary, Finteract) 

step 2: forward identification 

Fprevious = Finteract 

for i = 2 to n-1 do                               //i+1 is the degree of feature interactions 

 Ftemp = NULL 

 for j = 1 to Fprevious.size do 

  A = Fprevious.j 

  for k = j + 1to Fprevious.size  do 

   B = Fprevious.k 

if A.size == B.size && {A1, A2,…, AA.size–1} == {B1, 

B2,…,BA.size-1} && {AA.size, BA.size}   Fbinary then 

 remove duplicate items in A 

    add union(A, B) to Ftemp 

   end 

  end 

 end 
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 merge(Ftemp, Finteract) 

 Fprevious = Ftemp 

end 

step 3: backward selection 

 rank the feature subsets in Finteract in the ascending order of IGPF 

foreach feature subset A in Finteract do 

  if IG(Finteract) – IG(Finteract – A)   β then  

delete A from Finteract 

end 

end 

for i = 1 to n do 

 if              then 

  add fi to Fselect 

 end 

end 

subroutine: merge(A, B) 

for i = 1 to B.size do 

 for j = 1 to A.size do 

  If Bi{Bi1, Bi2,…, Bik} ⊆ Ai{Ai1, Ai2,…, Ail} then 

   delete Bi from B 

   i = i – 1 

   break 

  end 

 end 

end 

union(A, B) 

================================================================== 

Figure 4.1 Algorithm BIFS 

4.1 Forward Identification 

Forward identification is designed to identify all potential maximum feature interactions. Since 

our identification of k-degree potential feature interactions is based on binary feature interactions, 

we need to identify binary interactions first. However, definition 2 cannot be applied to identify 

binary feature interactions to real world problems. In real world problems, we may capture fake 
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feature interactions using definition 2 directly. There are many reasons to the existence of fake 

feature interactions. For example, they can be the result of noise in the data. Fake feature 

interactions can also be due to coincidental patterns stemming from non-representative samples of 

the source data.  In this case, the model generated using definition 2 will overfit the training data. 

And sometimes, we may not be interested in weak feature interactions. We may just want to 

identify those strong feature interactions which can tell reliable information about the problem. In 

order to apply definition 2 to real world problems, we introduce a new parameter α to help us 

filter out weak and fake feature interactions. In our algorithm, we recognize binary feature 

interaction between two features f1 and f2 if  

  (     )    (  )    (  )       

where α is called the degree of interaction and    .   is a user defined parameter.  

In the initialization step, Finteract is initialized with sets of every single feature from feature set 

F and all identified binary feature interactions are stored in set Fbinary. Then the subroutine 

merge(Fbinary, Finteract) is called to merge Fbinary to Finteract. The subroutine merge(A, B) is designed 

to merge the newly identified (k+1)-degree potential feature interactions A to B which contains 

potential feature interactions up to k degrees. If a feature interaction Bi of size k from B is 

contained by a feature interaction Ai of size k+1 from A which contains all newly identified (k+1)-

degree potential feature interactions, then Bi will be deleted from the updated B which is the 

union of B and A. 

Step 2 is the main part of forward identification. In this step, our algorithm searches for 

maximum closed interactive feature subsets of sizes from 3 to n, where n is the number of 

features of the dataset. Recall that maximum closed interactive feature subsets are considered to 
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be potential maximum feature interactions, the purpose of step 2 is to identify potential maximum 

feature interactions from 3-degree to n-degree. 2-degree potential feature interactions are 

identified in the initialization step. In order to identify (k+1)-degree potential feature interactions, 

our algorithm will examine every possible pairs of feature interactions of size k from Finteract. If 

the two feature interactions of size k contains k-1 features in common and the rest two features 

have binary feature interaction between them,  the union of these two feature interactions will be 

identified as a (k+1)-degree potential feature interaction. By doing this identification process for 

up to n-degree potential feature interactions, we can successfully find all potential maximum 

feature interactions.  

4.2 Backward Selection 

At the beginning of backward selection, all the identified feature interaction subsets will be 

ranked based on IGPF in the ascending order. IGPF stands for information gain per feature. It is 

defined as: 

    ( )  
  ( )

 
    

where F is a feature subset containing n features. Then our algorithm will perform a relevance 

check for all feature interaction subsets in Finteract. Irrelevant feature interaction subsets will be 

deleted from Finteract. At last, features remained in Finteract are selected as the best features for the 

learning problem. Definition 1 gives an idea about how to judge the relevance of a single feature. 

It is possible that some subsets in Finteract contain only one feature because this feature has no 

interaction with other features. But most of the subsets in Finteract contain more than one feature. In 

this case, we need to know how to judge the relevance of a feature subset. The definition of the 
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relevance of a feature subset is very similar to the definition of the relevance of a single feature in 

terms of information gain: 

Definition 8 (Relevance of Feature Subsets) A feature subset Fi is relevant iff 

  ( )    (    )                     

Like definition 2, definition 8 cannot be directly applied to assess the relevance of feature subsets 

for real world problems either. Due to the existence of noises, outliers and coincidental patterns, 

irrelevant features may have very weak relevance according to definition 8 and can be wrongly 

identified as relevant features. In this case, the model trained by the selected features tends to 

overfits the training data. Thus we introduce another parameter β to help us filter out feature 

interaction subsets with weak relevance. Our algorithm considers a feature subset as relevant if 

  ( )    (    )        

where β is called the degree of relevance and     .   is also a user defined parameter. In most 

cases, we can use zero as the value for β. But for complicated datasets which may contain noise, 

outliers and coincidental patterns, α and β need to be adjusted. 

4.3 Complexity 

To analyze the complexity of BIFS, we must start from analyzing the complexity of the 

subroutine merge. The complexity of the subroutine merge depends on the size of the two sets 

being merged. The largest size of Finteract is    [Benjamin and Quinn, 2003]. Thus the worst case 

complexity of the subroutine merge requires exponential time. However, it requires much less 

time in practice since there are often not that many maximum closed interactive feature sets in a 
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dataset. Let   denote the size of Finteract. Checking whether a feature interaction Bi is contained by 

another feature interaction Ai requires a complexity of  ( ). The complexity of subroutine merge 

can be expressed as  (   ). In the initialization step, the maximum size of Fbinary is n
2
. The size 

of Finteract is n and the sizes of subsets in Finteract are all one. Thus the complexity of subroutine 

merge is  (  ). Calculating of the information gain for one and two features has a complexity of 

 ( ) , where m is the number of examples of the datasets. Thus the complexity of the 

initialization step can be bounded by  (   (      )). In most cases, the number of examples 

is larger than the number of features. So the complexity of the initialization step can be expressed 

as  (   ).  

Recall that identifying k-degree feature interactions using definition 4 requires exponential 

time, the complexity of identifying a k-degree potential feature interaction using the idea of 

closure problem requires only  ( ) . However, the complexity of identifying all potential 

maximum feature interactions depends on the size of Fprevious. Since the maximum size of Fprevious 

is 2
n-1

, the size of Fprevious can be bounded by  . In our algorithm, we store all feature interactions 

in a hash structure. By using the hash structure, the complexity of checking whether a union of 

two k-degree potential feature interactions from Fprevious can form a (k+1)-degree potential 

interaction is reduced to  ( ) successfully. Now we can draw that the forward identification step 

has a complexity of  (    ).  

In order to rank the feature subsets in Finteract, we need to calculate the information gain for all 

these feature subsets. This requires a complexity of  (   ). Since the information gain has been 

calculated in the ranking step, the complexity of checking the relevance of these feature subsets 

requires only  ( ). Constructing the feature subset Fselect has a complexity of  ( ).  
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From above all, the complexity of our algorithm BIFS can be summarized as: 

 (   (             )) 

where m is the number of the examples, n is the number of features, and   is the number of all 

identified potential maximum feature interactions.  
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Chapter 5 

Results and Discussion 

BIFS is implemented using JAVA and all the experiments are conducted in the WEKA 

framework. In this section, we first talk about how the two parameters α and β can affect the 

performance of BIFS.  And then we will compare BIFS with information gain feature selection of 

single independent features to show the difference. At the end, we will evaluate the performance 

of BIFS by comparing it with some well-known feature selection algorithms. We will show the 

results with regards to the number of selected features and the predictive accuracy using selected 

features.  We apply two learning algorithms to test the performance of our feature selection 

algorithms. They are C4.5 from the decision tree family and SMO from the SVM family. For 

evaluation of the models, we use additional testing datasets if they are provided in the original 

data source. Otherwise, we will use 10-fold cross validation. The datasets we use for our 

experiments are 4 artificial dataset and 2 real datasets which have been identified having feature 

interactions by [Jakulin, 2005]. We also include another two datasets: the Tic-Tac-Toe Endgame 

and the SPECT. All these 8 datasets can be found in the UCI ML Repository. Information about 

these 8 datasets is summarized in Table 5.1. 
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Table 5.1 Summary of the datasets 

5.1 α parameter and β parameter 

The α and β parameters are introduced to improve the performance of BIFS when dealing with 

datasets containing noise, outliers and coincidental patterns. Before describing the two parameters, 

let’s examine how BIFS deals with known feature interactions for four synthetic datasets. The 

first dataset is Corral which has six boolean features A0, A1, B0, B1, I, R. The class label is defined 

by (     ) (     ) and features A0, A1, B0, B1 are independent of each other. Feature I is 

irrelevant and feature R is redundant. The other three datasets are from the MONKs Problem. The 

MONKs data has six features a1, a2, a3, a4, a5, a6 and three target concepts:  

 MONK-1: (a1 = a2) or (a5 = 1) 

 MONK-2: Exactly two of {a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 1} 

 MONK-3: (a5 = 3 and a4 = 1) or (a5 ≠ 4 and a2 ≠ 3) (5% class noise added to the training set) 

The maximum feature interactions (MFIs) and selected features identified by BIFS are shown 

in table 5.2. 
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Table 5.2 Relevant features and MFIs identified by BIFS for the four synthetic datasets 

All the results in table 5.2 are generated by BIFS using a value of 0.05 for both α and β. 

Maximum feature interactions like [a5] which contains only one feature means the feature has no 

interaction with other features. The reason why we don’t use 0 is that we don’t want BIFS to 

capture very weak feature interactions, and features having little relevance with the target concept. 

For Corral, BIFS removes the irrelevant feature I and redundant feature R. It identifies the 4-

degree feature interaction [A0, A1, B0, B1] successfully. For the MONKs problem, BIFS identifies 

the correct relevant features and feature interactions for MONK-1 and MONK-2. For MONK-3, 

BIFS does identify the relevant feature interaction (a2, a4, a5), but it also captures the irrelevant 

feature a1 due to the noises. In this case, the values of α and β need to be adjusted. We need larger 

values for α and β to eliminate the affect caused by noises. For example, if we increase the value 

of β to 0.2, BIFS can get rid of the noises and recognize only the relevant maximum feature 

interaction [a2, a4, a5]. 

To illustrate how the values of α and β can affect the performance of BIFS, we show the 

results generated by BIFS using different values of α and β for the same four datasets. 
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(a) α = 0.0, β = 0.0 

 

(b) α = 0.0, β = 0.2 

 

(c) α = 0.05, β = 0.0 

 

(d) α = 0.05, β = 0.2 

Table 5.3 MFIs and relevant features identified by BIFS using different value of and for the four 

synthetic datasets 
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From Table 5.3 (a) and (b), we can see that BIFS fails its task of feature selection. Since we 

use 0.0 as the value for α, weak feature interactions are captured by BIFS. In this case, even we 

increase the value of β to 0.2, BIFS is not able to remove the irrelevant features because the 

irrelevant features are grouped together with relevant features as feature interactions. If we 

increase the value of α to 0.05, BIFS is capable of identifying meaningful feature interactions. 

Table 5.3 (c) shows that BIFS identifies all relevant feature for Corral, MONK-1, and MONK-2. 

For MONK-3, a value of 0.2 is needed for β to remove the irrelevant feature interaction [a1, a4, a5]. 

Corral is a special case among these four synthetic datasets. For the four combinations of values 

of α and β in Table 5.3, BIFS can identify all the meaningful feature interactions and relevant 

features for Corral because Corral is an ideal dataset without any noises or outliers.  

Choosing the best values for α and β is a tricky problem. There are several reasons for this. 

The larger the value of α, the fewer feature interactions BIFS can find. The larger the value of β, 

the fewer feature interaction subsets can be remained by BIFS. Especially when few feature 

interactions are detected by the BIFS, the relevance of features will be determined by the 

information gain of a single feature and the information gain of a single feature is usually limited 

compared to feature combinations. In this case, we will need a small value of β. In addition to 

these, there is one important thing that we should keep in mind. A small value of α which is close 

to zero may cause that irrelevant features be grouped together with relevant features. It would be 

very difficult for BIFS to remove irrelevant features. 
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5.2 Improvement of BIFS against Information Gain Feature Selection 

The traditional information gain feature selection (IGFS) algorithm is based on the assumption of 

feature independence. As discussed before, this is not always true, since there may be feature 

interactions between features. Thus, features that contain little information itself may be more 

useful than some relevant features when they are used together with some other features. In this 

case, traditional information gain feature selection may remove such important features and 

removal of these features can usually result in loss of information.  

In this section, we run experiments for the four synthetic datasets in the framework of WEKA. 

We compare the performance of BIFS and the traditional information gain feature selection by 

evaluating the accuracies of two supervised learning algorithms on the four datasets using the 

selected features. The two learning algorithms are C4.5 and SMO which are available in WEKA. 

For traditional information gain feature selection, WEKA only provides the ranking of features 

using the information gain attribute evaluator. In order to compare the performance of BIFS and 

traditional feature selection, we force WEKA to select the same number of features for traditional 

information gain feature selection as BIFS. For evaluation of the built models, we use additional 

testing datasets for the MONKs problem and 10-fold cross validation for Corral. Table 5.4 shows 

the features that are selected by the two feature selection strategies and table 5.5 shows the results 

of the two learning algorithms. For SMO, we run the algorithm with a polynomial kernel of three 

different values: 1(SMO-1), 2(SMO-2), and 3(SMO-3).   
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(a) Selected features of IGFS 

 

(b) Selected features of BIFS 

Table 5.4 Selected features of IGFS and BIFS 

 

(a) Accuracy (%) of C4.5 

 

(b) Accuracy (%) of SMO 

Table 5.5 Accuracy (%) of C4.5 and SMO on selected features of BIFS and IGFS 
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For Corral, the selected features of BIFS and IGFS are almost the same. The only difference is 

that BIFS chooses feature B0 instead of R which is selected by IGFS. IGFS considers feature R is 

the best feature and it destroys the feature interaction [A0, A1, B0, B1] by removing feature B0 from 

the selected features. This is because IGFS evaluates each feature based on its own information 

gain independently and feature R contains much more information itself than feature B0. On the 

contrary, BIFS considers that feature B0 is more important than feature R since it detects a very 

powerful feature interaction which contains B0. Because the feature interaction [A0, A1, B0, B1] 

contains much more information than feature R, BIFS removes feature R from the selected 

features. According to Table 5.4, feature B0 is ranked fifth among the six features while feature R 

is ranked the first. And from Table 5.6, we can see that the information gain of feature B0 is 

0.004708 while the information gain of feature R is 0.287031. However, we can see that both 

C4.5 and SMO can achieve higher accuracy using the selected features of BIFS for Corral 

according to Table 6.5. Actually the feature interaction [A0, A1, B0, B1] can achieve an information 

gain of 0.9887, while the sum of their own information gain is only 0.1121. The same thing 

happens to MONK-1 and MONK-3. IGFS destroys the feature interaction [a1, a2] by removing 

feature a2 from MONK-1 and the feature interaction [a2, a4, a5] by removing feature a4 from 

MONK-3. The accuracies achieved using the selected features of BIFS are higher than the 

accuracies achieved using the selected features of IGFS for both MONK-1 and MONK-2. 

Ignorance of feature interactions causes poor performance for feature selection algorithms like 

IGFS when dealing with datasets containing feature interactions.   

 

Table 5.6 Information gain of each feature for Corral dataset 
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5.3 Compare BIFS with Other Feature Selection Algorithms 

In this section, we compare our algorithm with some well-known feature selection algorithms. 

They are CFS, ReliefF and FCBF. All of these three feature selection algorithms are available in 

WEKA. Besides these, we also include the results of IGFS. Table 5.1 has given a brief 

description of the 8 datasets we use for the experiments. The first six datasets have been 

identified with obvious feature interactions. In order to test the performance of BIFS when 

dealing with datasets without feature interactions, we also include another two datasets, Tic-Tac-

Toe Endgame and SPECT. For these two datasets, we ignore whether they have feature 

interactions or not. We apply C4.5 and SMO with 3 degrees after feature selection to evaluate the 

performance of the feature selection algorithms. For evaluation of the built models, we use 

additional test datasets for MONKs and SPECT since they are provided in the original data 

source and 10-fold cross validation for the rest datasets. The identified MFIs and selected features 

of BIFS for the Corral dataset and MONKs problem have been presented in Table 5.4(b). Table 

5.7 presents the results generated by BIFS for the rest four datasets. 

 

(a) Results of BIFS for soy-large dataset 
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(b) Results of BIFS for zoo dataset 

 

(c) Results of BIFS for Tic-Tac-Toe Endgame dataset 

 

(d) Results of BIFS for SPECT dataset 

Table 5.7 Results of BIFS for the four datasets: soy-large, zoo, Tic-Tac-Toe Endgame and 

SPECT 
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Table 5.8 Number of selected features for each algorithm 

The number of selected features for each algorithm is summarized in Table 5.8. According to 

Table 5.8, all algorithms significantly reduce the number of features. The average number of 

selected features for the 8 datasets are 8.75(BIFS), 6(CFS), 11.75(ReliefF), 5.125(FCBF) and 

8.75(IGFS) while the average number of features of the full set is 13.25. We can see that BIFS is 

comparable to the other feature selection algorithms in terms of number of selected features. Now 

let’s examine the effects of the feature selection algorithms on accuracy. 

 

(a) Accuracy (%) of C4.5 on selected features 
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(b) Accuracy (%) of SMO with polynomial kernel of degree 1 on selected features 

 

(c) Accuracy (%) of SMO with polynomial kernel of degree 2 on selected features 

 

(d) Accuracy (%) of SMO with polynomial kernel of degree 3 on selected features 

Table 5.9 Accuracy (%) of C4.5 and SMO on selected features 
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(a) Win/loss of BIFS against the compared algorithms and full set over all datasets 

 

(b) Win/loss of BIFS against the compared algorithms and full set for each dataset 

Table 5.10 Summary of win/loss of BIFS against the compared algorithms and full set 

According to Table 5.9, the accuracies generated using the selected features of BIFS are 

comparable with using all features: average accuracy overall datasets 84.20% (BIFS) vs. 80.04% 

(Full Set) for C4.5, 82.66% (BIFS) vs. 84.81(Full Set) for SMO-1, 91.97% (BIFS) vs. 92.72% 

(Full Set) for SMO-2, and 90.30% (BIFS) vs. 90.56% (Full Set) for SMO-3. However, the 

number of features is reduced by 34%: average number of features over all datasets 8.75 (BIFS) 

vs. 13.25 (Full Set). In Table 5.9, we also show the win/loss of BIFS against the four compared 

algorithms and the full set for all the 8 datasets. According to Table 5.7, BIFS identifies no 

feature interaction for Tic-Tac-Toe Endgame, but it detects feature interactions for SPECT while 

there should not be any feature interactions in SPECT. As discussed before, real world datasets 

usually contains noises, outliers and coincidental patterns. We need to adjust the value for α and β 
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to get a good result. In our experiments, we use uniform values of α and β for all the four real 

world datasets to test the robustness of BIFS. Thus the values may not be good for SPECT and 

BIFS may detect fake interactions due to the existence of noise, outliers and coincidental patterns.   

According to Table 5.9, BIFS achieve more wins than losses over all the compared algorithms 

and full set for both C4.5 and SMO. For C4.5, the average accuracy of BIFS over all datasets 

defeats all the compared algorithms and the full set. For SMO, the average accuracy of BIFS is 

not as high as that of ReliefF and the full set, but it wins over the other three compared algorithms. 

And BIFS still get more wins than losses compared with ReliefF over all datasets for both C4.5 

and SMO: 3/2 (win/loss) for C4.5 and 8/6 (win/loss) for SMO. The total numbers of win/loss are 

summarized in Table 5.10. From Table 5.10(a), we can see that the total number of wins is much 

more than the total number of losses when comparing BIFS with CFS, FCBF and IGFS: 23/4 

(win/loss) with CFS, 25/4 (win/loss) with FCBF, and 23/4 (win/loss) with IGFS. Though the total 

number of win/loss over all datasets of BIFS against ReliefF is only 11/8, the performance of 

BIFS is still much better than ReliefF given that the average number of selected features 8.75 

(BIFS) vs. 11.75 (RelefF). According to Table 5.10(b), the total number of win/loss for the first 

six datasets which have been identified with feature interactions is 77/7 while the total number of 

win/loss for the last two datasets is 19/20. The performance of BIFS is much better than the 

compared algorithms when doing feature selection for datasets containing feature interactions. 

But BIFS is still comparable with the compared algorithms when doing feature selection for 

datasets containing no feature interaction. 
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Chapter 6 

Conclusion and Discussion 

6.1 Conclusion 

Feature selection is a very efficient way to help reduce the dimensionality of the data. Feature 

selection algorithms are widely used to preprocess the data. However, the existence of feature 

interaction can severely affect feature selection algorithms that are based on the assumption of 

feature independence. Even well-known feature selection algorithms can remove useful 

interactive features unintentionally and this will result in loss of information. Through 

experiments, we present the effects of feature interaction by showing that the information gain of 

the feature interaction [A0, A1, B0, B1] of Corral is 0.9887 while the sum of the information gain of 

the four single features is 0.1121. Ignorance of feature interactions like IGFS will result in poor 

performance. We prove that a feature should not be evaluated based on its own merit when 

working independently; feature selection algorithms should evaluate the whole selected feature 

subset, instead of each single feature within it. 
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In this thesis, we present an information-theoretic view of feature interaction. We define 

feature interaction with information gain. Based on that, we develop an algorithm called BIFS to 

do feature interaction identification and feature selection. We evaluate our algorithm with regards 

to number of selected features, identified feature interactions, and accuracy achieved using 

selected features. The experiments are conducted on six datasets which have been identified with 

feature interactions and two datasets with no feature interaction. For the four synthetic datasets, 

BIFS identifies the known feature interactions existing in the datasets successfully. We also 

compare our algorithm with four well-known feature selection algorithms: CFS, ReliefF, FCBF 

and IGFS (information gain feature selection). In order to test the performance of the feature 

selection algorithms, we apply two famous supervised learning algorithms on selected features. 

By comparison, we show that BIFS wins over the compared algorithms over the six datasets 

identified with feature interactions. For the two datasets without feature interactions, BIFS is still 

comparable with the other algorithms.  

6.2 Limitations and Future Work 

BIFS is a robust feature selection algorithm, especially when doing feature selection for datasets 

with feature interactions. However, it is ongoing research work with many possible enhancements. 

Some of the current limitations are given below:  

 BIFS has variable performance depending on the values of α and β. A good understanding of 

the data will help choose the right values for α and β. However, choosing the best values for α 

and β is a tricky problem. For the time being, we do not have an efficient way to solve this 

issue. What we can do for now is to try several sets of different values and select the one that 

yields the best result.   
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 The complexity of BIFS is  (   (             )) . It depends on the number of 

identified feature interactions.  Though there are often not that many feature interactions in 

data, and BIFS has reduced the time complexity from exponential time, the complexity of 

BIFS can still be high theoretically.  

 Feature interactions identified by BIFS are called potential feature interactions which is 

defined based on binary feature interactions. They are not actual feature interaction according 

to Definition 4. Though the results show that BIFS does identify the known feature 

interactions for the four synthetic datasets, we still lack of proof of that potential feature 

interactions are actual feature interactions.   

 The input to BIFS can only contain nominal features. Datasets that contain numeric features 

must be discretized beforehand. Otherwise BIFS will treat numeric values as nominal values. 

This can result in a high complexity when calculating information gain.  
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