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Abstract

Game theoretical techniques have recently become preévalemany engineering applications, notably in communica-
tions. With the emergence of cooperation as a new commumicparadigm, and the need for self-organizing, deceaglli
and autonomic networks, it has become imperative to se¢ldaigame theoretical tools that allow to analyze and study
the behavior and interactions of the nodes in future comoatioin networks. In this context, this tutorial introduces
the concepts of cooperative game theory, namely coalitigames, and their potential applications in communication
and wireless networks. For this purpose, we classify doalil games into three categories: Canonical coalitionahes,
coalition formation games, and coalitional graph gamess mbw classification represents an application-orienpgdaach
for understanding and analyzing coalitional games. Fohedass of coalitional games, we present the fundamental
components, introduce the key properties, mathematichhiques, and solution concepts, and describe the meibgids|
for applying these games in several applications drawn fitterstate-of-the-art research in communications. In ahellts
this article constitutes a unified treatment of coalitiogalme theory tailored to the demands of communications and

network engineers.
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|. INTRODUCTION AND MOTIVATION
Game theory provides a formal analytical framework with aoenathematical tools to study the complex interactions

among rational players. Throughout the past decades, daeythas made revolutionary impact on a large number of
disciplines ranging from engineering, economics, pdlitiscience, philosophy, or even psychology [1]. In recertrye
there has been a significant growth in research activitias use game theory for analyzing communication networks.
This is mainly due to: (i)- The need for developing autonos)adistributed, and flexible mobile networks where the
network devices can make independent and rational stcatisgiisions; and (ii)- the need for low complexity distribdit
algorithms that can efficiently represent competitive dfatmrative scenarios between network entities.

In general, game theory can be divided into two branches:cooperative [2] and cooperative game theory [1], [3].
Non-cooperative game theosyudies the strategic choices resulting from the intesastamongompetingplayers, where
each player chooses its strategy independently for impgpits own performance (utility) or reducing its losses (shs
For solving non-cooperative games, several concepts sxgdt as the celebrated Nash equilibrium [2]. The mainstream
of existing research in communication networks focused singinon-cooperative games in various applications such
as distributed resource allocation [4], congestion conf}p power control [6], and spectrum sharing in cognitiaalio,
among others. This need for non-cooperative games led t@rowus tutorials and books outlining its concepts and usage
in communication, e.g., [7], [8].

While non-cooperative game theory studies competitivanaiées,cooperative game theomgrovides analytical tools
to study the behavior of rational playevghen they cooperateThe main branch of cooperative games describes the
formation of cooperating groups of players, referred to aalitons [1], that can strengthen the players’ positioms i
a game. In this tutorial, we restrict our attention to coatial game theory albeit some other references can include
other types of games, such as bargaining, under the umlwfettaoperative games. Coalitional games have also been
widely explored in different disciplines such as econontcgolitical science. Recently, cooperation has emergea as
new networking paradigm that has a dramatic effect of imimg¥he performance from the physical layer [9], [10] up
to the networking layers [4]. However, implementing co@tien in large scale communication networks faces several
challenges such as adequate modeling, efficiency, contplexid fairness, among others. Coalitional games proveto b
a very powerful tool for designing fair, robust, practicahd efficient cooperation strategies in communication asks:
Most of the current research in the field is restricted to wppl standard coalitional game models and techniques to
study very limited aspects of cooperation in networks. TiRisnainly due to the sparsity of the literature that tackles
coalitional games. In fact, most pioneering game theakteferences, such as [1-3], focus on non-cooperative glame
touching slightly on coalitional games within a few chapter

In this article, we aim to provide a unified treatment of cthi@afial game theory oriented towards engineering appli-
cations. Thus, the goal is to gather the state-of-the-adach contributions, from game theory and communications
that address the major opportunities and challenges iryimgptoalitional games to the understanding and designing o
modern communication systems, with emphasis on both nelyta@h techniques and novel application scenarios. With
the incessant growth in research revolving around cooperatelf-organization and fairness in communication ek,
this tutorial constitutes a comprehensive guide that exsatal fully exploit the potential of coalitional game theofhe
tutorial starts by laying out the main components of caaiiél games in Sectidn] Il while in the following sections it
zooms in on an in-depth study of these games and their afiphsa Since the literature on coalitional games and their
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Fig. 1. A novel classification of coalitional games.

communication applications is sparse, we introduce a ncskification of coalitional games which allows groupirig o
various types of games under one class based on several gapesties. Hence, we group coalitional games into three
distinct classes:

1) Class I: Canonical (coalitional) gan@s
2) Class IlI: Coalition formation games
3) Class llI: Coalitional graph games

This novel classification is intended to provide an appiicabriented approach to coalitional games. The key festur
of these classes are summarized in Elg. 1 and an in-deptl sfuehch class is provided in Sectidng [T]1V, and V.
[I. COALITIONAL GAME THEORY: PRELIMINARIES

In essence, coalitional games involve a set of players,tédity N = {1, ..., N} who seek to form cooperative groups,
i.e., coalitions, in order to strengthen their positionsha game. Any coalitior’ C A represents an agreement between
the players inS to act as a single entity. The formation of coalitions oraaties is ubiquitous in many applications.
For example, in political games, parties, or individuala é@rm coalitions for improving their voting power. In addih
to the player sef\/, the second fundamental concept of a coalitional game icdadition value Mainly, the coalition
value, denoted by, quantifies the worth of a coalition in a game. The definitiérih@ coalition value determines the
form andtypeof the game. Nonetheless, independent of the definitioneof/#iue, a coalitional game is uniquely defined
by the pair(V,v). It must be noted that the valueis, in many instances, referred to g gamesince for every a
different game may be defined.

The most common form of a coalitional game is tiearacteristic form whereby the value of a coalitiofi depends
solelyon the members of that coalition, with no dependence on hevplétyers in\'\ S are structured. The characteristic
form was introduced, along with a category of coalitionaings known as games withansferable utility(TU), by Von
Neuman and Morgenstern [11]. The value of a game in charsiiteform with TU is a function over the real line
defined as : 2V — R (characteristic function). This characteristic funct@ssociates with every coalitiofi C A a real
number quantifying the gains ¢f. The TU property implies that the total utility representsdthis real number can be
divided in any manner between the coalition members. Theegain TU games are thought of as monetary values that
the members in a coalition can distribute among themselsagywan appropriatéairnessrule (one such rule being an

IWe will use the terminologies “canonical coalitional gathaed “canonical games” interchangeably throughout thisrtal.
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equal distribution of the utility). The amount of utility @h a playeri € S receives from the division of(.S) constitutes
the playerspayoff and is denoted by; hereafter. The vectae € RIS! (| - | represents the cardinality of a set) with
each element; being the payoff of playei € S constitutes gayoff allocation Although the TU characteristic function
can model a broad range of games, many scenarios exist whereotlition value cannot be assigned a single real
number, or rigid restrictions exist on the distribution b&tutility. These games are known esalitional games with
non-transferable utility (NTUjand were first introduced by Aumann and Peleg using non-catpe strategic games as
a basis [1], [12]. In an NTU game, the payoff that each plagyea coalitionS receives is dependent on the joint actions
that the players of coalitio§ seleﬂ. The value of a coalitiort in an NTU gameyp(.S), is no longer a function over the
real line, but a set of payoff vectors(S) C RIS, where each element; of a vectorz € v(S) represents a payoff that
playeri € S can obtain within coalitionS given a certain strategy selected bwhile being a member of. Given this
definition, a TU game can be seen as a particular case of the filirhework [1]. Coalitional games in characteristic
form with TU or NTU constitute one of the most important typgsgames, and their solutions are explored in detail in
the following sections.

Recently, there has been an increasing interest in coaitigames where the value of a coalition depends on the
partition of \/ that is in place at any time during the game. In such gameseutiie characteristic form, the value of
a coalition S will have a strong dependence on how the playerdV/in S are structured. For this purpose, Thrall and
Lucas [13] introduced the concept of gamegpartition form In these games, givenaalitional structure3, defined as
apartition of V, i.e., a collection of coalition = {B;, ..., B;}, such that i # j, B; NBj = 0, anduﬁlei = N, the
value of a coalitionS € B is defined as)(S, B). This definition imposes a dependence on the coalitionatttre when
evaluating the value aof. Coalitional games in partition form are inherently comxple solve; however, the potential of
these games is interesting and, thus, we will provide irisigin these games in the following sections.

As an example on the difference between characteristic anttipn forms, consider a 5-players game with =
{1,2,3,4,5} and letS; = {1,2,3}, So = {4}, S3 = {5}, and S, = {4,5}. Given two partitionsB; = {51, S2, 53}
and B, = {51,54} of N, evaluating the value of coalitio§; depends on the form of the game. If the game is in
characteristic form thenwv(Sy, By) = v(S1, B2) = v(S1) while in partition form v(S1, B1) # v(S1, B2) (the value here
can be either TU or NTU). The basic difference is that, unttke characteristic form, the value 6f in partition form
depends on whether playetsand5 cooperate or not. This is illustrated in Fid. 2 (a).

2The action space depends on the underlying non-coopemgdives (see [12] for examples).



In many coalitional games, the players are interconneatédcammunicate through pairwise links in a graph. In such
scenarios, both the characteristic form and the partittmmfmay be unsuitable since, in both forms, the value of a
coalition S is independent of how the members®fare connected. For modeling the interconnection graplaitiomal
games ingraph formwere introduced by Myerson in [14] whemnnectedgraphs were mapped into coalitions. This
work was generalized in [15] by making the value of each tioaliS C A a function of the graph structure connecting
the members of5. Hence, given a coalitional gam@V/’,v) and a graphs (directed or undirected) with vertices the
members of a coalitioly C N, the value ofS in graph formis given byv(Gg). For games in graph form, the value can
also depend on the gragh,~ ¢ interconnecting the players iV \ S. An example of a coalitional game in graph form
is given in Fig.[2 (b). In this figure, given two graplig; = {(1,2),(2,3)} andG% = {(1,2),(1,3)} (a pair(i,j) is a
link between two players and j) defined over coalitiors = {1, 2,3}, a coalitional game in graph form could assign a
different value for coalitionS depending on the graEhHence, in graph form, it is possible thatGk) # v(G%), while
in characteristic or partition form, the presence of thepbrdoes not affect the value. Having introduced the fundaahen
concepts for coalitional games, the rest of this tutoriavjites an in-depth analysis of each class of games.

[1l. CLASS|: CANONICAL COALITIONAL GAMES
A. Main Properties of Canonical Coalitional Games

Under the class of canonical coalitional games, we groupntbst popular category of games in coalitional game
theory. Hence, this class pertains to the coalitional gamas that have been widely understood, thoroughly forneal)
and have clear solution concepts. For classifying a gamewasnical, the main requirements are as follows:

1) The coalitional game is icharacteristicform (TU or NTU).

2) Cooperation, i.e., the formation of large coalitionsnisver detrimental to any of the involved players. Hence,
in canonical games no group of players can do worse by cotipgrae., by joining a coalition, than by acting
non-cooperatively. This pertains to the mathematical @riypof superadditivity

3) The main objectives of a canonical game are: (i)- To stidygroperties and stability of thgrand coalition i.e.,
the coalition of all the players in the game, and (ii)- to stulde gains resulting from cooperation with negligible
or no cost, as well as the distribution of these gains faiamanner to the players.

The first two conditions for classifying a game as canonieatgin to the mathematical properties of the game. First,
any canonical game must be in characteristic form. Sectwrdcanonical game must be superadditive, which is defined
as

v(S1USy) D {® € RIFV%!|(1;),c6, € 0(S1), (1) jes, € v(S2)} VS1 C N, Sy C N, s.t.51 NSy =10, (1)
wherex is a payoff allocation for coalitiort; U S2. Superadditivity implies that, given any two disjoint cdahs .S,
and.S,, if coalition S; U S, forms, then it can give its members any allocations they @drese when acting iry; and
Sy separately. The definition in](1) is used in an NTU case. FolJagame, superadditivity reduces to [1]

v(S1US) > v(S1) +v(S2) VS1 C N, Sy C N, s.t.51 NSy = 0. 2

From [2), the concept of a superadditive game is better gchspimply, a game is superadditive if cooperation, i.e.,
the formation of a large coalition out of disjoint coaliteynguarantees at least the value that is obtained by thardisjo
coalitions separately. The rationale behind superadigitis that, within a coalition, the players can always réveack
to their non-cooperative behavior to obtain their non-avafive payoffs. Thus, in a superadditive game, cooperasio

3In this example we considered an undirected graph and aeslimi between every pair of nodes. However, multiple linletvizen pairs of
nodes as well as directed graphs can also be considered hithigraph form of coalitional games.



always beneficial. Due to superadditvity in canonical ganteis to the joint benefit of the players to always form the
grand coalition NV, i.e, the coalition ofall the players, since the payoff received frar)\V) is at least as large as the
amount received by the players in any disjoint set of caalgithey could form. The formation of the grand coalition in
canonical games implies that the main emphasis is on stgdii@ properties of this grand coalition. Two key aspects
are of importance in canonical games: (i)- Finding a paytffcation which guarantees that no group of players have
an incentive to leave the grand coalition (havingtablegrand coalition), and (ii)- assessing the gains that thadyra
coalition can achieve as well as the fairness criteria thastrbe used for distributing these gains (havinfaia grand
coalition). For solving canonical coalitional games, titerature presents a number of concepts [1], [3] that we will
explore in detail in the following sections.

B. The Core as a Solution for Canonical Coalitional Games
1) Definition: The most renowned solution concept for coalitional gamed, far games classified as canonical in
particular, isthe core[1], [3]. The core of a canonical game is directly related e grand coalition’s stability. In a
canonical coalitional gaméN, v), due to superadditvity, the players have an incentive tomftite grand coalitionV.
Thus, the core of a canonical game is the set of payoff ailmesitwhich guarantees that no group of players has an
incentive to leaveV in order to form another coalitio§ C A. For a TU game, given the grand coalitid, a payoff
vectorz € RN (N = |N]) for dividing v(A\) is group rationalif >, 2; = v(N). A payoff vectora is individually
rational if every player can obtain a benefit no less than acting aloeez; > v({i}),V i. An imputationis a payoff
vector satisfying the above two conditions. Having definedmaputation,the coreis defined as
CTU:{w:in:’u(N) andeizv(S)VSgN}. (3)
ieN €S
In other words, the core is the set of imputations where nditzwa S C N has an incentive to reject the proposed
payoff allocation, deviate from the grand coalition andrazoalition S instead. The core guarantees that these deviations
do not occur through the fact that any payoff allocatiorihat is in the core guarantees at least an amount of utility
equal tov(S) for every S C N. Clearly, whenever one is able to find a payoff allocatiort ffes in the core, then
the grand coalition is a stable and optimal solution for toalitional game. For solving NTU games using the core,
the valuev of the NTU game is often assumed to satisfy the following, day coalitionS, [1]: (1)- The valueu(S)
of any coalitionS must be a closed and convex subsetRof!, (2)- the valuev(S) must becomprehensivei.e., if
x € v(S) andy < RISl are such thay < x, theny € v(S), and (3)- the se{x|x € v(S) andz; > z;, Vi € S} with
2 = max {y;ly € v({i})} < oo Vi € N' must be a bounded subset Bf°|. The comprehensive property implies that
if a certain payoff allocationc is achievable by the members of a coalitiSn then, by changing their strategies, the
members ofS can achieve any allocatiop wherey < x. The last property implies that, for a coalitigf the set of
vectors inu(S) in which each player irf receives no less than the maximum that it can obtain noneratigely, i.e.,
2i, is @ bounded set. For a canonical NTU gafé v) with v satisfying the above properties, the core is defined as
Cntu = {x € v(N)|VS, Py € v(9), st.y; >z, Vic S} 4)
This definition for NTU also guarantees a stable grand coalitThe basic idea is that any payoff allocation in the
core of an NTU game guarantees that no coalittoean leave the grand coalition and provide a better allon&to
all of its members. The difference from the TU case is that, inNfAi& core, the grand coalition’s stability is acquired
over the elements of the payoff vectors while in the TU garmis, acquired by the sum of the payoff vectors’ elements.



TABLE |
APPROACHES EOR EINDING THE CORE OF A CANONICAL COALITIONAL GME
Game theoretical and mathematical approaches
(T1) - A graphical approach can be used for finding the core of TU games with upptayers.
(T2) - Using duality theory, a necessary and sufficient ciowifor the non-emptiness of the core exists
through theBondareva-Shapley theore@heoren(]L) for TU and NTU [1], [3] .
(T3) - A class of canonical games, known @mvex coalitional gamealways has a non-empty core.
(T4) - A necessary and sufficient condition for a non-emptgecexists for a class of canonical games
known assimple gamesi.e., games where(S) € {0,1}, VS C N andv(N) = 1.
Application-specific approaches
(T5) - In several applications, it suffices to find whether gfaglistributions that are of interest in a
given game, e.g., fair distributions, lie in the core.
(T6)- In many games, exploiting game-specific features agcthe value’s mathematical definition or the
underlying nature and properties of the game model, helptnfinthe imputations that lie in the core.

2) Properties and Existencerhe cores of TU or NTU canonical games are not always guagdrite exist. In fact,

in many games, the core is empty and hence, the grand coalitionot be stabilized. In these cases, alternative solutio
concepts may be used, as we will see in the following sectiblmsvever, coalitional game theory provides several
categories of games which fit under our canonical game clalssre the core is guaranteed to be non-empty. Before
surveying the existence results for the core, we providerglei example of the core in a TU canonical game:
Example 1: Consider a majority voting TU gan&/,v) where N' = {1,2,3}. The players, on their own, have no

voting power, hence({1}) = v({2}) = v({3}) = 0. Any 2-players coalition wins two thirds of the voting powaard
hencep({1,2}) = v({1,3}) = v({2,3}) = 2. The grand coalition wins the whole voting power, and th(is , 2, 3}) = 1.
Clearly, this game is superadditive and is in charactecistrm and thus is classified as canonical. By (3), solving the

following inequalities yields the core and shows what alimns stabilize the grand coalition.
x1+xo+x3 =v({1,2,3}) =1, 1 >0, 29 >0, x3 >0,

x1+ w9 > v({1,2}) = 3 1 +x3 >v({1,3}) = 3 12 +x3 > v({2,3}) =
By manipulating these inequalities, the core of this ganfeusd to be theiniquevectorxz = [% ] which corresponds
of an equal division of the total utility of the grand coaliti among all three players.
In general, given a TU coalitional gani&/, v) and an imputatiom: € R”, the core is found by a linear program (LP)
min D wi st Y x> w(S), VS CN. (5)

The existence of the TU core is relatlgélvto the féeégsibilityhﬁ tP in [3). In general, finding whether the core is
non-empty through this LP, is NP-complete [16] due to the bernof constraints growing exponentially with the number
of playersN (this is also true for NTU games, see [1, Ch. 9.7]). Howewardietermining the non-emptiness of the core
as well as finding the allocations that lie in the core seviethniques exist and are summarized in Table |.

Thefirst technique in Tablél | deals with TU games with up3t@layers. In such games, the core can be found using
an easy graphical approach. The main idea is to plot the @omist of [3) in the plangg’:1 x; =v({1,2,3}). By doing
so, the region containing the core allocation can be eadéntified. Several examples on the graphical techniques are
found in [3] and the technique for solving them is straightfard. Although the graphical method can provide a lot of
intuition into the core of a canonical game, its use is liohite TU games with up t@ players.

The secondtechnique in Tablgl | utilizes the dual of the LP id (5) to shdwattthe core is non-empty. The main result
is given through the Bondareva-Shapley theorem [1], [3]clvhielies on thébalancedproperty. A TU game ibalanced
if and only if the inequality [1]

> u(S)u(S) < v(N), (6)
SCN
is satisfied for all non-negative weight collectiops= (1(S))sca (u is a collection of weights, i.e., numbers fio 1],

associated with each coalitighC N) which satisfyzsgi u(S) =1, Vi € N; this set of non-negative weights is known



as a balanced set. This notion of a balanced game is intedpeet follows. Each playerc A/ possesses a single unit
of time, which can be distributed between all the coalititimst: can be a member of. Every coalitighC A is active
during a fraction of timeu(S) if all of its members are active during that time, and thislitoa achieves a payoff
of u(S)v(S). In this context, the conditiod) ¢, u(S) = 1, Vi € N is simply a feasibility constraint on the players’
time allocation, and the game is balanced if there is no éasillocation of time which can yield a total payoff for
the players that exceeds the value of the grand coalitigl). For NTU canonical games, an analogous definition for
balancedness is found in [1], [3]. The definition for NTU is difeed to accommodate the fact that the vatuén an
NTU game is a set and not a function. Subsequently, given arMyTd) balanced canonical game, the following result
holds [1], [3].

Theorem 1: (Bondareva-Shapley) The core of a game is non-empty if amyglibthe game is balanced:
Therefore, in a given canonical game, one can always shottlieacore is non-empty by proving that the game is
balanced through{6) for TU games or its counterpart for NTU Ch. 9.7]. Proving the non-emptiness of the core
through the balanced property is a popular approach andaexseamples on balanced games exist in the game theory
literature [1], [3] as well as in the literature on communica networks [17], [18].

The third technique in Tablél | pertains wonvexgames. A TU canonical game is convex if
v(S1) 4+ v(S2) < v(S1USy) +v(S1NSs) ¥ Sp,8 CN )
This convexity property implies that the value functiom, jthe game, is supermodular. Alternatively, a convexitoahl

game is defined as any coalitional game that satisfigs U {i}) — v(S1) < v(S2 U {i}) — v(S2), wheneverS; C Sy C
N\ {i}. This alternative definition implies that a game is convearifd only if for each playei € A the marginal
contribution of this player, i.e. the difference betweem¥ialue of a coalition with and without this player, is nonaasing
with respect to set inclusion. The convexity property casodle extended to NTU in several ways, and the reader is
referred to [3, Ch. 9.9] for more details. For both TU and NTahanical games, a convex game is balanced reasl
a non-emptycore, but the converse is not always true [3]. Thus, converegaconstitute an important class of games
where the core is non-empty. Examples of such games areitthiguin both game theory [1], [3] and communications
[17].

The fourth technique pertains tsimple gamesvhich are an interesting class of canonical games wherediteeaan be
shown to be non-empty. A simple game is a coalitional gameevtie value are eithéror 1, i.e.,v(S) € {0,1}, VS C N
and the grand coalition hag/\') = 1. These games model numerous scenarios, notably votingsyadine known that a
simple game which contains at least oretoplayer: € N/, i.e. a player such that (N \ 7) = 0 has anon-empty core
[3]. Moreover, in such simple games, the core is fully chemdzed, and it consists of all non-negative payoff profiles
x € RY such thatr; = 0 for each playet that is anon-vetoplayer, andy_,_\  z; = v(N) =1

The first four techniques in Tallk | rely mainly on well-knogame theoretical properties. In many practical scenarios,
notably in wireless and communication networking appias, alternative techniques may be needed to find the
allocations in the core. These alternatives are inherajylication-specific, and depend on the nature of the defined
game and the properties of the defined value function. Onédeset alternatives, thifth technique in Tablél I, is to
investigate whether well-known allocation rules yield togs that lie in the core. In many communication application
(and even game theoretical settings), the objective is gesmswhether certain well-defined types of fair allocatisunsh
as equal fairness or proportional fairness among othermdhne core or not, without finding all the allocations thas ar
the core. In such games, showing the non-emptiness of tleeisaone by testing whether such well-known allocations



lie in the core or not, using the intrinsic properties of tlemsidered game and usirld (3) for TU gamesLor (4) for NTU
games. A simple example of such a technique is Example 1,embee can check the non-emptiness of the core by
easily showing that the equal allocation lies in the coremiany canonical games, the nature of the defined value for
the game can be explored for showing the non-emptiness afdree this is done in many applications such as in [10]
where information theoretical properties are used, in [d@fre network properties are used, as well as in [18], [20]
where the value is given as a convex optimization, and thHraligplity, a set of allocations that lie in the core can be
found. Hence, whenever techniques (T1)-(T4) are too coxmpiaifficult to apply for solving a canonical game, as per
the sixth technique in Tabl€l I, one can explore the properties of thesidered game model such as in [10], [17-20].

In summary, the core is one of the most important solutioncepts in coalitional games, notably in our canonical
games class. It must be stressed that the existence of tkesbows that the grand coalitiok” of a given (N, v)
canonical coalitional game is stable, optimal (from a papefspective), and desirable.

C. The Shapley Value
As a solution concept, the core suffers from three main demk&: (i) - The core can be empty, (ii) - the core can be

quite large, hence selecting a suitable core allocationbeadifficult, and (iii)- in many scenarios, the allocatiomsit
lie in the core can be unfair to one or more players. Theseluals motivated the search for a solution concept which
can associate with every coalitional gaié, v) a uniquepayoff vector known as thealue of the game (which is quite
different from the value of a coalition). Shapley approati@s problem axiomatically by defining a set of desirable
properties and he characterized a unique mappirigat satisfies these axioms, later known as $epley valugl].
The Shapley value was essentially defined for TU games; hewextensions to NTU games exist. In this tutorial, we
restrict our attention to the Shapley value for TU canongaines, and refer the reader to [1, Ch. 9.9] for insights on
how the Shapley value is extended to NTU games. Shapleydedviour axiorrg as follows ; is the payoff given to
playeri by the Shapley value)

1) Efficiency Axiom}_, s ¢i(v) = v(N).

2) Symmetry Axiomf player: and player; are such that(SU{i}) = v(SU{j}) for every coalitionS not containing

playeri and playerj, then¢;(v) = ¢;(v).

3) Dummy Axiomlf player i is such thaw(S) = v(S U {i}) for every coalitionS not containingi, then¢;(v) = 0.

4) Additivity Axiom If « andv are characteristic functions, therfu + v) = ¢(v + u) = ¢(u) + ¢(v).
Shapley showed that there exists a unique mapping, the Shaplues(v), from the space of all coalitional games to
RY, that satisfies these axioms. Hence, for every gaNgev), the Shapley value assigns a unique payoff allocation in
R which satisfies the four axioms. The efficiency axiom is irt fwoup rationality. The symmetry axiom implies that,
when two players have the same contribution in a coalitibejrtassigned payoffs must be equal. The dummy axiom
assigns no payoff to players that do not improve the valuengfaalition. Finally, the additivity axiom links the value
of different games:, andv and asserts that is a unique mapping over the space of all coalitional games.

The Shapley value also has an alternative interpretatiochamiakes into account the order in which the players join
the grand coalitionV. In the event where the players join the grand coalition mraredomorder, the payoff allotted by
the Shapley value to a playér N is the expected marginal contribution of playewhen it joins the grand coalition.

“In some references, the Shapley axioms are compressechie® ity combining the dummy and efficiency axioms.



The basis of this interpretation is that, given any candrithgame (', v), for every playeri € A/ the Shapley value
¢(v) assigns the payofp;(v) given by
SN —|S|—1)! .
sy =y B W50 iy - u(s)) ®

N!
SCM\{i}
In @), it is clearly seen that the marginal contribution @kl player: in a coalitionS is v(S U {i}) — v(S). The

weight that is used in front of(S U {i}) — v(S) is the probability that playei faces the coalitiors when entering in a
random order, i.e., the players in front ©&re the ones already ifi. In this context, there arg5|! ways of positioning
the players ofS at the start of an ordering, arfdv — |.S| — 1)! ways of positioning the remaining players exceéptt the
end of an ordering. The probability that such an orderinguoegwhen all orderings are equally probable) is therefore
W consequently, the resulting payaff(v) is the expected marginal contribution, under random-ojaiaing

of the players for forming the grand coalition.

In general, the Shapley value is unrelated to the core. Hewé@v some applications, one can show that the Shapley
value lies in the core. Such a result is of interest, sinceidhsan allocation is found, it combines both the stability of
the core as well as the axioms and fairness of the Shapleyg valuthis regard, an interesting result from game theory
is thatfor convex games the Shapley value lies in the ¢ble[3]. The Shapley value presents an interesting safutio
concept for canonical games, and has numerous applicatiohsth game theory and communication networks. For
instance, in coalitional voting simple games, the Shapkyer of a player represents its power in the game. In such
games, the Shapley value is used as a power index (known &htpey-Shubik index), and it has a large number of
applications in many game theoretical and political sg&if8]. In communication networks, the Shapley value presen
a suitable fairness criteria for allocating resources dadates as in [9], [19], [21]. The computation of the Shapley
value is generally done usinf](8); however, in games withrgelaumber of players the computational complexity of
the Shapley value grows significantly. For computing thepBhavalue in reasonable time, several analytical tectesqu
have been proposed such as multi-linear extensions [3]santling methods for simple games [22], among others.

D. The Nucleolus
Another prominent and interesting solution concept fororacal games ishe nucleolusvhich was introduced mainly

for TU games [3]. Extensions of the nucleolus for NTU games rast yet formalized in game theory, and hence this
tutorial will only focus on the nucleolus for TU canonicalmgas. The basic motivation behind the nucleolus is that,
instead of applying a general fairness axiomatization fodifig a unique payoff allocation, i.e., a value for the game,
one can provide an allocation that minimizes the dissatisfa of the players from the allocation they can receive in a
given (N, v) game. For a coalitior$, the measure of dissatisfaction from an allocatiog R is defined as thexcess
e(z,S) = v(S)—>_,cs ;- Clearly, an allocatiorr which can ensure that all excesses (or dissatisfactioesharimized

is of particular interest as a solutiband hence, constitutes the main motivation behind the girafethe nucleolus.
Let O(x) be the vector of all excesses in a canonical gd/xfev) arranged in non-increasing order (except the excess
of the grand coalitionV). A vectory = (y1,...,y,) IS said to be lexographically less than a vectoe (21,. .., 2;)
(denoted byy <ex z) if 3l € {1,...,k} wherey; = z1,y2 = z2,...,y1-1 = 21,1 < z. An imputationz is a
nucleolusif for every other imputatiord, O(x) <jex O(6). Hence, the nucleolus is the imputatienwhich minimizes
the excessdg a non-increasing order. The nucleolus of a canonicalittmadl game exists and is unique. The nucleolus

®In particular, an imputatiox lies in the core of( IV, v), if and only if all its excesses are negative or zero.
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is group and individually rational (since it is an imputafjpand satisfies the symmetry and dummy axioms of Shapley.
If the core is not empty, the nucleolus is in the core. Moreotlee nucleolus lies in th&ernel of the game, which
is the set of all allocations: such thatmaxgcan fj1,ics €(®, ) = maxgcan (i},jeq €(x, G). The kernel states that if
playersi andj are in the same coalition, then the highest excessitbah make in a coalition withouyt is equal to the
highest excess thgtcan make in a coalition without As the nucleolus lies in the kernel, it also verifies thispgandy.
Thus, the nucleolus is the best allocation under a min-magriom. The process for computing the nucleolus is more
complex than the Shapley value, and is described as follbikst, we start by finding the imputations that distribute th
worth of the grand coalition in such a way that the maximumessc(dissatisfaction) is minimized. In the event where
this minimization has a unique solution, this solution ie tiucleolus. Otherwise, we search for the imputations which
minimize the second largest excess. The procedure is expéatall subsequent excesses, until finding a unique soluti
which would be the nucleolus. These sequential miniminatiare solved using linear programming techniques such as
the simplex method [23]. The applications of the nucleoltes rumerous in game theory. One of the most prominent
examples is the marriage contract problem which first agekar the Babylonian Talmud (0-500 A.D).

Example 2: A man has three wives, and he is committed to a ageriGontract that specifies that they should receive
100, 200 and 300 units respectively, after his death. This implies thategia total amount ofv units left after the
man’s death, the three wives can only claim 100, 200, and B&pectively, out of the: units. If after the man dies,

the amount of money left is not enough for this distributitie, Talmud recommends the following:

o If @« =100 is available after the man dies, then each wife
« If o =200 is available after the man dies, wifegets50, and the other two get5 each.
« If a =300 is available after the man dies, wifegets50, wife 2 gets100 and wife3 gets150.

Note that the Talmud does not specify the allocation for ottsdues of« but certainly, ifa > 600 each wife simply
claims its full right. A key question that puzzled matheaiatis and researchers in game theory was how this allocation
was made and it turns out that the nucleolus is the answerukehodel the game as a coalitional gaifé, v) where

N is the set of all three wives which constitute the players and the value defined for any coalitiof C A as
v(S) = max (0,a — 3 ,c\n s ¢i), Wherea € {100,200, 300} is the total units left after the death of the man ands

the claim that wifei must obtain(c; = 100, c; = 200, c3 = 300). It then turns out that, with this formulation, the payoffs
that were recommended by the Talmud coincide with the nludex the game! This result highlights the importance of
the nucleolus in allocating fair payoffs in a game.

In summary, the nucleolus is quite an interesting concéptest combines a number of fairness criteria with stapilit
However, the communications applications that utilizeel tlucleolus are still few, with one example being [19], where
it was used for allocating the utilities in the modeled gaffiee main drawback of the nucleolus is its computational
complexity in some games. However, with appropriate modeé&snucleolus can be an optimal and fair solution to many
applications.

E. Applications of Canonical Coalitional Games

1) Rate allocation in a multiple access channdin elegant and interesting use of canonical games withinncom
nication networks is presented in [9] for the study of rateation in multiple access channels (MAC). The model in
[9] tackles the problem of how to fairly allocate the transsmn rates between a number of users accessing a wireless
Gaussian MAC channel. In this model, the users are barggafninobtaining a fair allocation of the total transmissiarer
available. Every user, or group of users (coalition), thadsinot obtain a fair allocation of the rate can threaten tmac
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TABLE Il

THE MAIN STEPS IN SOLVING THEGAUSSIAN MAC RATE ALLOCATION CANONICAL GAME AS PER[9]
1- The player set is the sé&f of users in a Gaussian MAC channel.
2- For a coalitionS C N, a superadditive value function in characteristic formhwitJ is defined
as the maximum sum-rate (capacity) tltalchieves under the assumption that the users in coalition
S¢ =N\ S attempt to jam the communication 6f.
3- Through technique (T5) of Tale | the core is shown to be-@mpty and containing all imputations
in the capacity region of the grand coalition.
4- The Shapley value is discussed as a fairness rule fomtateation, but is shown to be
outside the core, hence, rendering the grand coalitionablest
5- A new application-specific fairness rule, known as “efnge” fairness, is shown to lie in the core
and is presented as a solution to the rate-allocation gan@aussian MAC.

its own which can reduce the rate available for the remainisgys. Consequently, the game is modeled as a coalitional
game defined by, v) where N = {1,..., N} is the set of players, i.e., the wireless network users thatirio access
the channel, and is the maximum sum-rate that a coalitidhcan achieve. In order to have a characteristic function, [9]
assumes that, when evaluating the value of a coalifian \/, the users in5¢ = '\ S known as jammers, cooperate in
order tojam the transmission of the users fh The jamming assumption is a neat way of maintaining theadtaristic
form of the game, and it was previously used in game theorygéoiving a characteristic function from a strategic form
non-cooperative game [1], [12]. Subsequently, when etalgaghe sum-rate utilityv(S) of any coalitionS C A/, the
users inS¢ form a single coalition to jam the transmission $fand hence, the coalitional structure 8f is always
pre-determined yielding a characteristic form. For a ¢imali.S, the characteristic function in [9}(S), represents the
capacity, i.e., the maximum sum-rate, titaachieves under the jamming assumption. Hen€#g) represents a rate that
can be apportioned in an arbitrary manner between the @gaye¥, and thus the game is a TU game. It is easily shown
in [9] that the game is superadditive since the sum of suesrathieved by two disjoint coalitions is no less than the
sum-rate achieved by the union of these two coalitions esihe jammer in both cases is the same (due to the assumption
of a single coalition of jammers). Consequently, the probles in allocating the payoffs, i.e., the transmissioresat
between the users in the grand coalitishwhich forms in the network. The grand coalitiodd has a capacity region
C={RcR"| Zfll R; < C(I's,0?), ¥S C N}, whereI's captures the power constraints on the userS,in? is the
Gaussian noise variance, and hen@él's, o) is the maximum sum-rate (capacity) that coaliti§rcan achieve. Based
on these properties, the rate allocation game in [9] is Isleacanonical coalitional gameand the key question that [9]
seeks to answer is “how to allocate the capacity of the graaditon v(/N') among the users in a fair way that stabilizes
N". In answering this question, two main concepts from cacaingames are used: The core and the Shapley value.
In this rate allocation game, it is shown that the core, whigbresents the set of rate allocations that stabilize the
grand coalition, isnon-emptyusing technique (T5) from Tablé I. By considering ihgoutationsthat lie in the capacity
regioncC, i.e., the rate vector® € C such thatzz.]\i1 R, = C(F/\/’,O‘Q), it is shown that any such vector lies in the core.
Therefore, the grand coalitio' of the Gaussian MAC canonical game can be stabilized. Howélve core of this
game ishig and contains a large number of rate vectors. Thus, the authd®] sought to answer the next question
“how to select a single fair allocation which lies in the c#teFor this purpose, the authors investigate the use of the
Shapley value as a fair solution for rate allocation whickoamts for the random-order of joining of the players in
the grand coalition. In this setting, the Shapley value $§mmplies that no rate is left unallocated (efficiency axjom
dummy players receive no rate (dummy axiom), and the lapealinthe players does not affect the rate that they receive
(symmetry axiom). However, the authors show that: (i)- Taerth Shapley axiom (additivity) is not suitable for the
proposed rate allocation game, and (ii)- the Shapley vabes ahot lie in the core, and hence cannot stabilize the grand
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coalition. Based on these results for the Shapley valueatitieors propose a new fairness criterion, named “envy-free
fairness. The envy-free fairness criterion relies on th& tiiree axioms of Shapley (without the additivity axiommda
complements them with a fourth axiom, teevy free allocation axion®, Eqg. (6)]. This axiom states that, given two
playersi and j, with power constraint§’; > I';, an envy-free allocationy gives a payoffy;(v) for user; in the game
(N,v), equal to the payofis;(v*/) of useri in the game(N,v*/) wherev®’ is the value of the game where user
utilizes a power’; = I';. Mathematically, this axiom implies that;(v) = ¢;(v"7). With these axioms, it is shown that

a unique allocation exists and this allocation lies in theec@hus, the envy-free allocation is presented as a fair and
suitable solution for the rate allocation game in [9]. Fipnathe approach used for solving the rate allocation caraini
coalitional game in [9] is summarized in Talpé II.

2) Canonical games for receivers and transmitters coopenatIn [10], canonical games are used for studying
the cooperation possibilities between single antennaiverseand transmitters in an interference channel. The mode
considered in [10] consists of a set of transmitter-reaepadrs, in a Gaussian interference channel. The authody stu
the cooperation between the receivers under two coalitperme models: A TU model where the receivers communicate
through noise-free channels and jointly decode the rededignals, and an NTU model where the receivers cooperate
by forming a linear multiuser detector (in this case therfietence channel is reduced to a MAC channel). Further, the
authors study the transmitters cooperation problem uneiéeqt cooperation and partial decode and forward cooperat
while considering that the receivers have formed the gramaditon. Since all the considered games are canonical éas w
will see later), the main interest is in studying the projesrof the grand coalitions for the receivers and the tratterai

For receiver cooperation using joint decoding, the caaldl game model is as follows: the player $étis the set of
links (the players are the receivers of these links) andjrasgy that the transmitters det cooperate, the value(S) of
a coalitionS C N is the maximum sum-rate achieved by the links whose receivelong toS. Under this model, one
can easily see that the utility is transferable since itesents a sum-rate, hence the game is TU. The game is also in
characteristic form, since, as the transmitters are censidnon-cooperative, the sum-rate achieved when thevegsei
in S cooperate depends solely on the receiver§ iwhile treating the signal from the links iV \ S as interference.

In this game, the cooperation channels between the reseiverconsidered noiseless and hence, cooperation is always
beneficial and the game is shown to be superadditive. Hemukerwour proposed classification, this game is clearly a
canonical game, and the interest is in studying the pragsedf the grand coalition of receivers. Under this coopenati
scheme, the network can be seen as a single-input-mudtigjait (SIMO) MAC channel, and the proposed coalitional
game is shown to have a non-empty core which contalhshe imputationswhich lie on the SIMO-MAC capacity
region. The technique used for this proof is similar to thengan [9] which selects a particular set of rate vectors,
those that are on the SIMO-MAC region, and shows that theynlithe core as per (T5) from Tablé I. The core of
this game is very large, and for selecting fair allocatiahss proven in [10] that the Nash bargaining solution, and in
particular, a proportional fair rate allocation lie in there, and hence constitute suitable fair and stable allocstiFor
the second receiver cooperation game, the model is sinoildnet joint decoding game, with one major difference: Indtea
of jointly decoding the received signals, the receiversnftinear multiuser detectors (MUD). The MUD coalitional gam

is inherently different from the joint decoding game sinicea MUD, the SINR ratio achieved by a usein coalition .S
cannot be shared with the other users, and hence the gammbégan NTU game with the SINR representing the payoff
of each player. In this NTU setting, the valuéS) of a coalition S becomes the set of SINR vectors that a coalition
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TABLE Il

THE MAIN RESULTS FOR RECEIVERS AND TRANSMITTERS COOPERATIOGIOALITIONAL GAMES AS PER[lO]
1- The coalitional game between the receivers, where catiparentails joint decoding of the received
signal, is a canonical TU game which has a non-empty corecéjethe grand coalition is the stable
and sum-rate maximizing coalition.
2- The coalitional game between the receivers, where catiperentails forming linear multiuser
detectors, is a canonical NTU game which has a non-empty. et@ece, the grand coalition is the
stable and sum-rate maximizing coalition.
3- For transmitters cooperation, under jamming assumpthiancoalitional game is nauperadditive
hence non-canonical. However, the grand coalition is shimupe the rate maximizing partition.
4- For transmitters cooperation under jamming assumptioresults for the existence of the core
can be found due to mathematical intractability.

S can achieve. For this NTU game, the grand coalition is prdeebe stable and sum-rate maximizing at high SINR

regime using limiting conditions on the SINR expressiomdetechnique (T6) in Tab[é I.

For modeling the transmitters cooperation problem as atmall game the authors make two assumptions: (i)- The
receivers jointly decode the signals, hence form a granéitioma and (ii)- a jamming assumption similar to [9] is made
for the purpose of maintaining the characteristic form.He transmitters game, from the set of link§ the transmitters
are the players. When considering the transmitters cotiperalong with the receivers cooperation, the interfeeenc
channel is mapped unto a multiple-input-multiple-outgdiNIO) MAC channel. For maintaining a characteristic form,
the authors assumed, in a manner analogous to [9], that wlerecoalition of transmitter$ forms, the users in
S¢= N\ S form one coalition and aim to jam the transmission of caalitt. Without this assumption, the maximum
sum-rate that a coalition can obtain highly depends on he@wsers inS¢ structure themselves, and hence requires a
partition form that may be difficult to solve. With these asftions, the value of a coalitiofi is defined as the maximum
sum-rate achieved by when the coalitionS¢ seeks to jam the transmission 8f Using this transmitters with jamming
coalitional game, the authors show that in general the gaaseah empty core. This game is not totally canonical since
it does not satisfy the superadditivity property. Howewsr,proving through [10, Th. 19] that the grand coalition ig th
optimal partition, from a total utility point of view, the gnd coalition becomes the main candidate partition for thre.c
The authors conjecture that in some cases, the core can @lsorbempty depending on the power and channel gains.
However, no existence results for the core are providedighngame. Finally, the authors in [10] provide a discussion on
the grand coalition and its feasibility when the transmittemploy a partial decode and forward cooperation. The main
results are summarized in Talblel IIl.

3) Other applications for canonical games and future di@ts: Canonical coalitional games cover a broad range of
communication and networking applications and, indeedstmesearch activities in these areas utilize the toolsféiiat
under the canonical coalitional games class. In additiothéoprevious examples, numerous applications used models
that involve canonical games. For instance, in [19], cagaintoalitional games are used to solve an inherent problem
in packet forwarding ad hoc networks. In such networks, thersithat are located in the center of the network, known
as backbone nodes, have a mutual benefit to forward eachsbffamkets. In contrast, users located at the boundary of
the network, known as boundary nodes, are not helped by ttidbbae nodes due to the fact that the backbone nodes
do not need the help of the boundary nodes at any time. Hencgydh a setting, the boundary nodes end up having
no way of sending their packets to other nodes, and this ioblgm known as theurse of the boundary nodem
[19], a canonical coalitional game model is proposed betmae@layer sef\ which includes all boundary nodes and
a single backbone node. In this model, forming a coalition, entdils following benefits: (i)- By cooperating with a
number of boundary nodes and using cooperative transmisfie backbone node can reduce its power consumption,
and (ii)- in return, the backbone node agrees to forward #uekeis of the boundary nodes. For cooperative transmission
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in a coalition S, the boundary nodes act as relays while the backbone nodeaach source. In this game, there

is shown to be non-empty using the property that any groupooidary nodes receive no utility if they break away

from the grand coalition with the backbone node, this cfassas a (T6) technique from Talfle I. Further, the authors in
[19] study the conditions under which a Shapley value andd@eolus are suitable for modeling the game. By using a
canonical game, the connectivity of the ad hoc network isii@antly improved [19]. Beyond packet forwarding, many

other applications such as in [17], [18], [21] utilize sealesf the techniques in Tablé | for studying the grand caaiiti

in a variety of communications applications.

In summary, canonical games are an important tool for shglgboperation and fairness in communication networks,
notably when cooperation is always beneficial. Future apfibns are numerous, such as studying cooperative trans-
mission capacity gains, distributed cooperative souraingp cooperative relaying in cognitive radio and many othe
applications. In brief, whenever a cooperative schemeytiedds significant gains at any layer is devised, one caizetil
canonical coalitional games for assessing the stabilitthefgrand coalition and identifying fairness criteria itoaeating
the gains that result from cooperation. Finally, it has tonleéed that canonical games are not restricted to link-level
analysis, but also extend to network-level studies as dstrated in [18], [19].

IV. CLASSII: COALITION FORMATION GAMES
A. Main Properties of Coalition Formation Games

Coalition formation games encompass coalitional gameseyhmlike the canonical classetwork structureand cost
for cooperation play a major role. Some of the main charesties that make a game a coalition formation game are as
follows:
1) The game is in either characteristic form or partitioniofTU or NTU), and is generally not superadditive.
2) Forming a coalition brings gains to its members, but thegare limited by aostfor forming the coalition, hence
the grand coalition is seldom the optimal structure.
3) The objective is to study theetwork coalitional structurgi.e., answering questions like which coalitions will fgrm
what is the optimal coalition size and how can we assess thetgte’'s characteristics, and so on.
4) The coalitional game is subject to environmental charsgeet as a variation in the number of players, a change in
the strength of each player or other factors which can affextnetwork’s topology.

5) A coalitional structure is imposed by an external factortioe game (e.g., physical restrictions in the problem).
Unlike canonical games, a coalition formation game is galhenot superadditive and can support the partition form
model. Another important characteristic which classifiggaane as a coalition formation game is the presence of a cost
for forming coalitions. In canonical games, as well as in tmafsthe literature, there is an implicit assumption that

forming a coalition is always beneficial (e.g. through sagditivity). In many problems, forming a coalition requsre
negotiation process or an information exchange processhwdan incur a cost, thus, reducing the gains from forming the
coalition. In general, coalition formation games are of types:Static coalition formation games and dynamic coalition
formation gamesin the former, an external factor imposes a certain coalii structure, and the objective is to study this
structure. The latter is a more rich framework. In dynamialition formation games, the main objectives are to analyze
the formation of a coalitional structure, through playergéeraction, as well as to study the properties of this stmec
and its adaptability to environmental variations or exadities. In contrast to canonical games, where formal raled
analytical concepts exist, solving a coalition formatiag, notably dynamic coalition formation, is more difficanhd
application-specific. The rest of this section is devotedissecting the key properties of coalition formation games
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B. Impact of a Coalitional Structure on Solution ConceptsCahonical Coalitional Games
In canonical games, the solution concepts defined, sucheasotie, the Shapley value and the nucleolus, assumed that

the grand coalition would form due to the superadditivitpgerty. The presence of a coalitional structure affects the
definition and use of these concepts as was first pointed oAubyann and Dreze in [24] for a static coalition formation
game. In [24], a TU coalitional game is considered, in thespnee of a static coalitional structue= {B;,..., B;}
(each B; is a coalition), that is imposed by some external factor. d¢erfi24] defines a coalitional game as the triplet
(N, v, B) wherew is a characteristic function. First, in the presencé3qfthe concept of group rationality is substituted
by relative efficiency Given an allocation vectaz ¢ R”, relative efficiency implies that, for each coalitids, € 3,

> iep, Ti = v(By) [24]. Hence, for every present coalitidsy, in 3, the total value available for coalitioB;, is divided
among its members unlike in canonical games where the vdlukeogrand coalitionv(N) is distributed among all
players. With regards to canonical solutions, we first tuan attention to the Shapley value. For the gaf\é v, BB),
the previously defined Shapley axioms remain in place, eéxoeghe efficiency axiom which is replaced byrelative
efficiencyaxiom. With this modified axiom, [24] shows that the Shapleyue of (N, v, B), referred to ad3-value, has
the restriction property The restriction property implies that, for finding tifevalue, one can consider ttrestricted
coalitional games$ By, v|By), VBy € B where(v|By) is the valuev of the original gameN, v, B), defined over player
set (coalition) B;,. As a result, for finding the3-value, we proceed in two steps, using the restriction ptgp€l)-
Consider the game3y, v|By), k = 1,...,l separately and for each such gafig,, v| By) find the Shapley value using
the canonical definitiori {8), and (2)- ti&value of the game is thex N vector¢ of payoffs constructed by combining
the resulting allocations of each restricted gaiBg, v|By).

In the presence of a coalitional structue the canonical definitions of the core and the nucleolus &e mainly
modified by replacing group rationality with relative eféaicy. However, unlike the Shapley value, it is shown in [24]
that the restriction property does not apply to the core,thernucleolus. This can be easily deduced from the fact that
both the core and the nucleolus dependatincoalitions of A/. Hence, in the presence & the core and the nucleolus
depend on the values of coalitios; € B as well asthe values of coalitions that are not I, that is coalitions
S c N,1B, € Bs. t.B, = S. Hence, the problem of finding the core and the nucleolu§\6fv, B) is more complex
than for the Shapley value. In [24], an approach for findingsthsolutions for games whevé{i}) = 0, Vi € N is
presented. The approach is based on finding a game equivalenby redefining the value, and hence, the core and
nucleolus can be found for this equivalent game. For theilddtanalysis, we refer the reader to [24, Th. 4 and Th. 5].

Even though the analysis in [24] is restricted to static itioal formation games with TU and in characteristic form, it
shows that finding solutions for coalition formation ganesat straightforward. The difficulty of such solutions ieases
whenever an NTU game, a partition form game, or a dynamicitamalformation game are considered, notably when
the objective is to compute the solution in a distributed neanFor example, when considering a dynamic coalition
formation game, one would need to evaluate the payoff dilmesjointly with the formation of the coalitional structure,
hence solution concepts become even more complex to firftb(ah the restriction property of the Shapley value makes
things easier). For this purpose, the literature dealirth woalition formation games, notably dynamic coalitiomfiation
such as [25-28] or others, usually re-defines the solutioceots or presents alternatives that are specific to the game
being studied. Hence, unlike canonical games where forwiatisns exist, the solution of a coalition formation game
depends on the model and the objectives that are being evadid
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C. Dynamic Coalition Formation Algorithms
In general, in a coalition formation game, the most impdrtspect is the formation of the coalitions in the game.

In other words, one must answer the question of “how to fornpalittonal structure that is suitable to the studied
game”. In addition, the evolution of this structure is imjamt, notably when changes to the game nature can occur
due to external or internal factors (e.g., what happenséoctalition structure if one or more players leave the game).
In many applications, coalition formation entails finding@alitional structure which either maximizes the totalityti
(social welfare) if the game is TU, or finding a structure wWRhreto optimal payoff distribution for the players if the
game is NTU. For achieving such a goalcentralizedapproach can be used; however, such an approach is generally
NP-complete [25-28]. The reason is that, finding an optinaatifoon, requires iterating over all the partitions of the
player setN'. The number of partitions of a sAf grows exponentially with the number of playersifand is given by

a value known as the Bell number [25]. For example, for a gamera/\” has only10 elements, the number of partitions
that a centralized approach must go through1§975 (easily computed through the Bell number). Hence, finding an
optimal partition from a centralized approach is, in geheramputationally complex and impractical. In some cages,
may be possible to explore the properties of the game, notalthe valuewv, for reducing the centralized complexity.
Nonetheless, in many practical applications, it is degr#iiiat the coalition formation process takes place in ailiged
manner, whereby the players have an autonomy on the ded@sido whether or not they join a coalition. In fact, the
complexity of the centralized approach as well as the needli&iributed solutions have sparked a huge growth in the
coalition formation literature that aims to find low comgltgxand distributed algorithms for forming coalitions [258].

The approaches used for distributed coalition formatioa guite varied and range from heuristic approaches [25],
Markov chain-based methods [26], to set theory based mstf&X] as well as approaches that use bargaining theory or
other negotiation techniques from economics [28]. Althotitere are no general rules for distributed coalition fdroma
some work, such as [27] provides generic rules that can bd tsalerive application-specific coalition formation
algorithms. Although [27] does not explicitly construct aatition formation algorithm, the mathematical framework
presented can be used to develop such algorithms. The ngriedients that are presented in [27] are three: (1)- Well-
defined orders suitable to compar@lectionsof coalitions, (2)- two simple rules for forming or breakingalitions, and
(3)- adequate notions for assessing the stability of atfmartiFor comparing collections of coalitions, a numbepafers
are defined in [27], two of which are of noticeable importanee first order, known as thdilitarian order, states that,

a group of players prefers to organize themselves into @ad@hR = {Ry,..., Ry} instead ofS = {S1,...,S;}, if the
total social welfare achieved iR is strictly greater than irf, i.e., Zle v(R;) > zﬁzlu(si). This order is generally
suitable for TU games. Another important order is Bageto order which bases the preference on the individual payoffs
of the players rather than the coalition value. Given twocdtionsx andy that are allotted byR andS, respectively,

to the same playersy is preferred oveS by Pareto order if at least one player improvesiirwithout hurting the other
players, i.e.x > y with at least one element; of x such thatr; > y,. The Pareto order is suitable for both TU and
NTU games.

Using such orders, [27] presents two main rules for formingreaking coalitions, referred to asergeandsplit. The
basic idea behind the rules is that, given a set of playérany collection of disjoint coalition$Ss,...,S;}, S; C N
can agree tanergeinto a single coalitionG = U!_,S;, if this new coalitionG is preferred by the players over the
previous state depending on the selected comparison @uheilarly, a coalitionS splits into smaller coalitions if the
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resulting collection{S1,...,S;} is preferred by the players ovet. Independent of the selected order, any arbitrary
sequence of these two rules is shown to converge to a finatiparof N [27]. For assessing the stability of the final
partition, the authors in [27] propose the concept afedection functionwhich is a function that associates with every
network partition, another partition, a group of other piams, or a group of collections i\/. By defining various types

of such a function, one can assess whether, in a given parfitiof \/, there is an incentive for the players to deviate
and form other partitions or collections. A first notion oélsility, is a weak equilibrium-like stability, known &8y,
stability. A Dy,-stable partition simply implies that, in this partitionp group of players has an interest in performing
a merge or a split operation. This type of stability can beufa of as merge-and-split proofness of a partition, or a
kind of equilibrium with respect to merge-and-split. Theshionportant type of stability inspected in [27]1ik.-stability.
The existence of &,.-stable partition is not always guaranteed, and the two itiond needed for its existence can be
found in [27]. However, when it exists, tHe,.-stable partition has numerous attractive propertiestBind foremost, a
D.-stable partition is ainigueoutcome of any arbitrary merge and split iteration. Hentatiag from any given partition,
one would always reach the.-stable partition by merge-and-split. Based on the sealeotder, the players prefer the
D.-stable partition oveall other partitions On one hand, if the selected order is the utilitarian ortlés, implies that
the D.-stable partition maximizes the social welfare (totalityfil on the other hand, if the selected order is the Pareto
order, theD -stable partition has a Pareto optimal payoff distributionthe players. Finally, no group of players in a
D.-stable partition have an incentive to leave this partition forming any other collection in\'. Depending on the
application being investigated, one can possibly definerathitable defection functions, as this concept is nottdichi

to a particular problem.

Coalition formation games are diverse, and by no meansddnio the concepts in [27]. For example, a type of
coalition formation games, known dgedonic coalition formationgames has been widely studied in game theory.
Hedonic games are quite interesting since they allow thmdtion of coalitions (whether dynamic or static) based on
the individual preferences of the players. In additionsthgames admit different stability concepts that are eiiass
to well known concepts such as the core or the Nash equitibtised in a coalition formation setting [29]. In this
regard, hedonic games constitute a very useful analytieatdwork which has a very strong potential to be adopted in
modeling problems in wireless and communication netwookdy(few contributions such as [30] used this framework in
a communication/wireless model). Furthermore, beyondyeand-split and hedonic games, dynamic coalition foromati
games encompass a multitude of algorithms and conceptsasuich[25-28] and many others. Due to space limitations,
this tutorial cannot provide an exhaustive survey of allhsatgorithms. Nonetheless, as will be seen in the following
sections, many coalition formation algorithms and congepin be tailored and adapted for communication applicgtion

D. Applications of Coalition Formation Games
1) Transmitter cooperation with cost in a TDMA systefie formation of virtual MIMO systems through distributed

cooperation has received an increasing attention recésely[10], [31] and the references therein). The problemlves

a number of single antenna users which cooperate and staratitennas in order to benefit from spatial diversity or
multiplexing, and hence form a virtual MIMO system. Mosef#éture that studied the problem is either devoted to
analyzing the link-level information theoretical gainsrr distributed cooperation, or focused on assessing thditta

of the grand coalition, for cooperation with no cost, suchrathe work of [10] previously described. However, there
is a lack of literature which studies how a network of usens iceeract to form virtual MIMO systems, notably when



18

there is a cost for cooperation. Hence, a study of the nettap&logy and dynamics that result from the interaction of
the users is needed and, for this purpose, coalition foomagames are quite an appealing tool. These considerations
motivated our work in [31] where we considered a network nfk antenna transmitters that send data in the uplink of a
TDMA system to a receiver with multiple antennas. In a nopgErative approach, each single antenna transmitter sends
its data in an allotted slot. For improving their capacitye transmitters can interact for forming coalitions, wibgre
each coalitionS is seen as a single user MIMO that transmits in the slots tlese previously held by the users 6f

After cooperation, the TDMA system schedules one coalifien time slot. An illustration of the model is shown in
Fig.[3. To cooperate, the transmitters must exchange tla#, dnd hence, this exchange of information incurs a cost
in terms of power. The presence of this cost, as per [31],@enthe game non-superadditive due to the fact that the
information exchange incurs a cost in power which is indreasvith the distances inside the coalition as well as the
coalition size. For example, when two users are far awagyination exchange can consume the total power, and the
utility for cooperation is smaller than in the non-coopeeatcase. Similarly, adding more users to a coalition dods no
always yield an increase in the utility; for instance, a ttwal consisting of a large number of users increases thé cos
for information exchange, and thus superadditivity can mtguaranteed. As a consequence of this property, for the
proposed game in [31] the grand coalition seldom férmsd the game is modeled as a dynamic coalition formation
game between the transmitters (identified by theé¢tthat seek to form cooperating coalitions. The dynamic espe
stems from the fact that many environmental changes, sudmeasobility of the transmitters or the deployment of new
users, may affect the coalitional structure that will forrdaany algorithm must be able to cope with these changes
accurately.

For the proposed game, the value function represents theraiemor capacity, that the coalition can achieve, while
taking into account the power cost. Due to the TDMA naturehef problem, a power constraiit per time slot, and
hence per coalition, is considered. Whenever a coalitiom$o a fraction ofP is used for information exchange, hence
constituting a cost for cooperation, while the remainirgcfion will be used for the coalition to transmit its data,aas
single user MIMO, to the receiver. For a coalitiéih the fraction used for information exchange is the sum ofpivers
that each user € S needs to transmit its data to the uget S that is farthest from; due to the broadcast nature of the
wireless channel all other users$hcan receive this data as well. This power cost scales witmtimeber of users in the
coalition, as well as the distance between these users.eH#me sum-rate that a coalition can achieve is limited by the
fraction of power spent for information exchange. For inst if the power for information exchange for a coalitién
is larger thanP, thenu(S) = 0. Otherwisew(S) represents the sum-rate achieved by the coalition usingetinaining
fraction of power. Clearly, the sum-rate is a transferaliiéyy and hence we deal with a TU game.

In this framework, a dynamic coalition formation algoritimased on the merge-and-split rules previously described
can be built. In [31], for coalition formation, we start withnon-cooperative network, whereby each user discovers its
neighbors starting with the closest, and attempts to meagedon the utilitarian order, i.e., if cooperating with &ghbeor
improves the total sum-rate that the involved users caneaehithen merging occurs (merge is done through pairwise
interactions between a user or coalition and the users ditiooa in the vicinity). Further, if a formed coalition firsdout
that splitting into smaller coalitions improves the totélity achieved by its users, then a split occurs. Startirg the

®In this game, the grand coalition only forms in extremelydi@ble cases, such as when the network contains only tws asef these users
are very closeby.
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Coalition 1

Base Station

(Multiple Antennas) 2

Time slot 1 Tineslot2 Timeslot3 Timeslot4 Timeslot S Time slot &

User1 | User2 | Userd | User 4 | User 5 | User 6

Timeslot 1  Timeslot2 Timeslot 3 Timeslot4 TimeslotS Timesloté

Coal.1 | Coal. 1 | Coal. 1 | Coal.2 | Coal. 3 | Coal. 2

Fig. 3. The system model for the virtual MIMO formation ganme[31].
initial non-cooperative network, the coalition formatialgorithm involves sequential merge and split rules. Thavoe's

coalition can autonomously decide on whether to perform mener split based on the utility evaluation. The convergenc
is guaranteed by virtue of the definition of merge-and-splitrther, if an optimaD,.-stable partition exists, the proposed
algorithm converges to it. The existence of ihestable partition in this model cannot always be guarantegd depends
on random locations of the users; however, the convergenitewhen it exists, is guaranteed. The coalition formation
algorithm proposed in [31] can handle any network size, asirtiplementation is inherently distributed, whereby each
coalition (or user) can detect the strength of the othersusglink signals (using techniques as in ad hoc routingll an
discover the nearby candidate partners. Consequenthygigiebuted users can exchange the required informatiah an
then assess what kind of merge or split decisions they camnddde transmitters engage in merge-and-split periogicall
and hence, adapt the topology to any environmental chamngé, & mobility or the joining/leaving of transmitters. In
this regard, by adequate merge or split decisions, the agyak always dynamically changing, through individual and
distributed decisions by the network’s coalitions. As tliegmsed model is TU, several rules for dividing the coaitio
value are used. These rules range from well-known fairngteria such as the proportional fair division, to coalitéd
game-specific rules such as the Shapley value or the nusldoie to the distributed nature of the problem, the nuckeolu
or the Shapley value are applied at the level of the coaéitibat are forming or splitting. Hence, although for the $é&ap
value this allocation coincides with the Shapley value @& Whole game as previously discussed, for the nucleolus, the
resulting allocations lie in the nucleolus of the restricgames only. In this game, for any coalitiohC A that forms
through merge-and-split, the Shapley value presents aidliviof the payoff that takes into account the random order of
joining of the transmitter inS when forming the coalition (this division is also efficieritthe coalition level and treats
the players symmetrically withi§). In contrast, the division by the nucleolus at the level\rg coalitionS C N that
forms through merge-and-split ensures that the dissatisfaof any transmitter withinS' is minimized by minimizing
the excesses inside. Finally, although in [31] we used a utilitarian order, intexsions to the work, we reverted to the
Pareto order, which allows every user of the coalition teasthe improvement to its own payoff during merge or split,
instead of relying on the entire coalitional value. By dosw the fairness criteria chosen impacts the network streict
and hence, for every fairness type one can obtain a diffecgaiogy.

2) Coalition formation for spectrum sensing in cognitivali@networks:In cognitive radio networks, the unlicensed
secondary users (SU) are required to sense the environmesrder to detect the presence of the licensed primary
user (PU) and transmit during periods where the PU is inec@ollaborative spectrum sensing (CSS) has been proposed
for improving the sensing performance of the SUs, in termsedficing the probability of missing the detection of the
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PU (probability of miss), and hence decreasing the interfee on the PU. Even though CSS decreases the probability
of miss, it also increases the false alarm probability, thee probability of falsely detecting that the PU is trantsimg.
Hence, CSS presents an inherent tradeoff between reduwoingrobability of miss (reducing interference on the PU)
and maintaining a good false alarm probability, which cgpands to a good spectrum utilization. In [32], we consider
a network of SUs, that interact for improving their sensimgfprmance, while taking into account the false alarm cost.
For performing CSS, every group of SUs form a coalition, aritthiwv each coalition, an SU, selected as coalition head
will gather the sensing bit from the coalition members. Byngswvell-known decision fusion rules, the coalition head
can decide on the presence or the absence of the PU. UsinG38sscheme, as shown in [32], each coalition reduces
the probability of miss of its SUs. However, this reductisraccompanied by an increase in the false alarm probability.
This tradeoff between the improvement of the probabilitynoés and the false alarm, impacts the coalitional structure
that forms in the network.

Consequently, the CSS problem is modeled as a dynamicioaaldrmation game between the SU¥’ (s the set of
SUs in this game). The utility(S) of each coalitionS is a decreasing function of the probability of mi§s, s within
coalition S and a decreasing function of the false alarm probabilifys. In the false alarm cost component, the proposed
utility in [32, Eqg. (8)] imposes a maximum tolerable falsarah probability, i.e., an upper bound constrainbn the
false alarm, that cannot be exceeded by any SU. This utiiprasents probabilities, and hence, cannot be transferred
arbitrarily between the SUs. Hence, the coalition formatimme for CSS is an NTU game, whereby the payoff of an
SU which is a member of any coalitiofi is given byz; = v(S), Vi € S and reflects the probabilities of miss and
false alarm that any SU which is a member®fchieves [32, Property 1] (here, the NTU value is a singlst@t). In
this game, it is easily shown that the grand coalitsmidomforms, due to the false alarm constraintand the fact that
the false alarm for a coalition increases with the coalithize and the distances between the coalition members [32,
Property 3].

For this purpose, a coalition formation algorithm is needdte algorithm proposed in [32] consists of three phases: In
the first phase the SUs perform their local sensing, in thermkphase the SUs engage in an adaptive coalition formation
algorithm based on the merge and split rules of Sedtion]I\&@] in the third phase, once the coalitions have formed,
each SU reports its sensing bit to the coalition head whickesa decision on whether or not the PU is present. Due to
the NTU nature of the game, the adaptive coalition formagibase of the algorithm uses the Pareto order for performing
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merge or split operations. The merge and split decisionfiéncbntext of the CSS model can also be performed in a
distributed manner by each coalition, or individual SU. Therge and split phase converges to Ihestable partition
which leads to a Pareto optimal payoff allocation, whenévsrpartition exists. Periodically, the formed coalittoengage

in merge and split operations for adapting the topology tarenmental changes such as the mobility of the SUs or the
PU, or the deployment of more SUs. In Fig. 4 (a), we show an @kawf a coalitional structure that the SUs form for
CSS in a cognitive network of0 SUs with a false alarm constraint ef= 0.1. Clearly, the proposed algorithm allows
the SUs to structure themselves into disjoint independeatitons for the purpose of spectrum sensing. By forming
such topologies, it is shown in [32] that the SUs can signifiigaimprove their performance, in terms of probability of
miss, reaching up t86.6% per SU improvement relative to the non-cooperative sensasg for a network o080 SUs,
while maintaining the desired false alarm levelcot= 0.1. In addition to the performance improvement achieved by the
proposed coalition formation algorithm in [32], an inteheg upper bound on the coalition size is derived for the pemul
utility. This upper bound is a function of only two quantgieThe false alarm constraint and the non-cooperative false
alarm valuePy, i.e., the detection threshold. Hence, this upper bound e depend on the location of the SUs in
the network nor on the actual number of SUs in the networkrdfbee, deploying more SUs or moving the SUs in the
network for a fixedr and Py does not increase the upper bound on coalition size. I Hig),4ve show this upper bound

in addition to the average and maximum achieved coalitiae &r a network o80 SUs with a false alarm constraint
of a = 0.1. The coalition size variations are shown as a function ofrthe-cooperative false alarii;. The results in
Fig.[4 (b) show that, in general, the network topology is cosgal of a large number of small coalitions rather than
a small number of large coalitions, even whep is small relative ton and the collaboration possibilities are high (a
smaller Py implies the cost for cooperation, in terms of false alarnreases more slowly with the coalition size). Also,
whenP; = o = 0.1, the network is non-cooperative, since cooperation wolgys violate the false alarm constraimt

In a nutshell, dynamic coalition formation provides novellaboration strategies for SUs in a cognitive network iahic
are seeking to improve their sensing performance, whilentamiing a desired spectrum utilization (false alarm lgvel
The framework of dynamic coalition formation games suiatrlodels this problem, yields a significant performance
improvement, and allows to characterize the network tapokhat will form.

3) Future applications of coalition formation gameBotential applications of coalition formation games in oor
nication networks are numerous and diverse. Beyond thdcapiphs presented above, coalition formation games have
already been applied in [33] to improve the physical layerusiéy of wireless nodes through cooperation among the
transmitters, while in [30] coalition formation among a ruen of autonomous agents, such as unmanned aerial vehicles,
is studied in the context of data collection and transmissiowireless networks. Moreover, recently, there has been
a significant increase of interest in designing autonomimroanication systems. Autonomic systems are networks that
are self-configuring, self-organizing, self-optimizirend self-protecting. In such networks, the users shouldhie ta
learn and adapt to their environment (changes in topol@phriologies, service demands, application context, tta},
providing much needed flexibility and functional scalailCoalition formation games present an adequate franiefeor
the modeling and analysis of these self-organizing nexéggion communication networks. Hence, potential appboa
of coalition formation games encompass cooperative nésyavireless sensor networks, next generation IP networks,
ad hoc self-configuring networks, and many others. In geénetaenever there is a need for distributed algorithms for
autonomic networks, coalition formation is a strong toal fieodeling such problems. Also, any problem involving the
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study of cooperative wireless nodes behavior when a coseiept, is candidate for modeling using coalition fornmatio
games.

Finally, although the main applications we described is thiorial required a characteristic form, coalition fotioa
games in partition form are of major interest and can haverniiatl applications in communication networks. For ins&n
in [10], the transmitter cooperation problem assumed thatpiayers outside any coalition work as a single entity and
jam the communication of this coalition. This assumptiommiade in order to have a characteristic form. For relaxing
this assumption and taking into account the actual intenfeg that affects a coalition, a coalitional game in partiti
form is needed. In the presence of a cooperative cost, thigiga form game falls in the class of coalition formation
games. Hence, coalition formation games in partition fore rgpe for many future applications.

V. CLAss lIl: COALITIONAL GRAPH GAMES
A. Main Properties of Coalitional Graph Games

In canonical and coalition formation games, the utility atue of a coalition doesot depend on how the players are
interconnected within the coalition. However, it has beleoven that, in certain scenarios, thaderlying communication
structurebetween the players in a coalitional game can have a majoadtngn the utility and other characteristics of
the game [14], [34]. By the underlying communication stamef we mean the graph representing the connectivity of
the players among each other, i.e., which player commusscafth which one inside each and every coalition. We
illustrated examples on such interconnections in Se€fiamd Fig.[2 (b). In general, the main properties that distisky
a coalitional graph game are as follows:

1) The coalitional game is in graph form, and can be TU or NTdwever, the value of a coalition may depend on
the external network structure as explained in Sediibn II.

2) Theinterconnectiorbetween the players within each coalition, i.e., who is emt@d to whom, strongly impacts
the characteristics and outcome of the game.

3) The main objective is to derive low complexity distribditglgorithms for players that wish to build a netwataph
(directed or undirected) and not just coalitional group#asoalition formation games (Class Il). Another objective
is to study the properties (stability, efficiency, etc) oé tormed network graph.

In coalitional graph games, the main theme is the presenaeggadph for communication between the players. Typically,
there are two objectives for coalitional graph games. Tis¢ dind most important objective, is to provide low complexit
algorithms for building a network graph to connect the ptay@ second objective is to study the properties and stgbili
of the formed network graph. In some scenarios, the netwaoalplgis given, and hence analyzing its stability and
efficiency is the only goal of the game. The following sectigorovide an in-depth study of coalitional graph games.

B. Coalitional Graph Games and Network Formation Games
The idea of having a value dependent on a graph of commuaichietween the players was first introduced by

Myerson in [14], through the graph function for TU games.his twork, starting with a TU canonical coalitional game
(NM,v) and given an undirected gragh that interconnects the players in the game, Myerson atterepfind a fair
solution. For this purpose, a new value functienwhich depends on the graph, is defined. For evaluating thes va
of a coalition S, this coalition is divided into smaller coalitions depamglion the players that are connected thro$gh
For example, given a 3-players coalitioh= {1, 2,3} and a graphG = {(2,3)} (only players2 and3 are connected by
a link in G), the valueu(S, G) is equal tou(S, G) = v({2,3}) + v({1}), wherev is the original value of the canonical
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game. Using the new value, Myerson presents an axiomatic approach, similar to thepl8havalue, for solving the
game in graph function form. The work in [14] shows that, & &lution of the canonical ganm{@/, v) in the presence
of a graph structure, is the Shapley value of the géieu) whereu is the newly defined value. This solution is known
as theMyerson value The drawback of the approach in [14] is that the valuef a coalition depends only on the
connected players in the coalition with no dependence orstieture, e.g., for both graph@l and G% in Fig.[2 (b),
the valuesu are equal (although the payoffs received by the playersijrand G% through the Myerson value allocation
would be different due to the different graphs).

Nevertheless, the work in [14] motivated future work, andllif] the value was extended so as to depend on the graph
structure, and not only on the connected components. Bygdsin coalitional graph games became a richer framework,
however, finding solutions became more complex. While in|,[1de objective was to find a solutiogjven a graph
new research in the area sought algorithmsfé@ming the graph One prominent tool in this area is non-cooperative
game theory which was extensively used for forming the ngtwoaph. For instance, in [1, Ch. 9.5], using the Myerson
framework of [14], an extensive form game is proposed fomiag the network graph. However, the extensive form
approach is impractical in many situations, as it requiisting all possible links in the graph, which is a complex
combinatorial problem. Nonetheless, a new breed of ganaetedtto appear following this work, and these games are
known asnetwork formation game&'he main objective in these games is to study the intenast@onong a group of
players that wish to form a graph. Although in some refersribese games are decoupled from coalitional game theory,
we place these games under coalitional graph games duedmbszasons: (i)- The basis of all network formation games
is the work on coalitional graph games that started in [1)}, Kietwork formation games share many objectives with
coalitional graph games such as the presence of a value aalibaation rule, the need for stability among others, and
(iii)- the solutions of network formation games are quiteretated with coalition formation games (in terms of forgin
the graph) and canonical games (in terms of having stalbeatlbns).

Network formation games can be thought of as a hybrid betweatitional graph games and non-cooperative games.
The reason is that, for forming the network, non-coopeeagiame theory plays a prominent role. Hence, in network
formation games there is a need to form a network graph asasetl ensure the stability of this graph, through concepts
analogous to those used in canonical coalitional gamesfdfiming the graph, a broad range of approaches exist, and
are grouped into two typesnyopicandfar sighted/]. The main difference between these two types is that, in msyop
approaches, the players play their strategies given themustate of the network, while in far sighted algorithniee t
players adapt their strategy by learning, and predictirigréustrategies of the other players. For both approachel, w
known concepts from non-cooperative game theory can be O$edmost popular of such approaches is to consider the
network formation as a non-zero sum non-cooperative garnerermhe players’ strategies are to select one or more links
to form or break. One approach to solve the game is to piggpic best response dynamigkereby each player selects
the strategy, i.e. the link(s) to form or break, that maxisiits utility. Under certain conditions on the utilitiekgtbest
response dynamics converge to a Nash equilibrium, whiclsttates a Nash network. These approaches are widespread
in network formation games [36—38], and also, several refargs to the Nash equilibrium suitable for network formatio
are used [36-38]. The main drawback of aiming for a Nash nétvgothat, in many network formation games, the Nash
networks are trivial graphs such as the empty graph or camdffidient. For these reasons, a new type of network

"These approaches are sometimes referred to as dynamicsnafrkdormation (see [35]).
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formation games has been developed, which utilizes newegiador stability such apairwise stabilityand coalitional
stability [35]. The basic idea is to present stability notions thatesiepon deviations by a group of players instead of the
unilateral deviations allowed by the Nash equilibrium.dpdndent of the stability concept, a key design issue inarétw
formation games is the tradeoff between stability and efficy. It is desirable to devise algorithms for forming stabl
networks that can also be efficient in terms of payoff disttitn or total social welfare. Several approaches for diegis
such algorithms exist, notably using stochastic proceggeph theoretical techniques or non-cooperative ganmasaF
comprehensive survey on such algorithms, we refer the read85].

Finally, the Myerson value and network formation games arethe only approaches for solving coalitional graph
games. Other approaches, which are closely tied to carayéraes can be proposed. For example, the work in [34],
proposes to formulate a canonical game-like model for an gabhe, whereby the graph structure is taken into account.
In this work, the authors propose an extension to the colecc#thebalanced corewvhich takes into account the graph
structure. Further, under certain conditions, analogouké balanced conditions of canonical games, the authdB#n
show that this balanced core is non-empty. Hence, coaditigraph games constitute quite a rich and diverse framework
with a broad range of applications. In the rest of this sectiwe review sample applications from communication
networks.

C. Applications of Coalitional Graph Games
1) Distributed uplink tree formation in IEEE 802.16]:he most recent WiMAX standard, the IEEE 802.16j, introdlice

a new node, the relay station (RS) for improving the netvsddpacity and coverage. The introduction of the RS impacts
the network architecture of WiMAX networks as the mesh nekws replaced by a tree architecture which connects the
base station (BS) to its subordinate RSs. An efficient desighe tree topology is, thus, a challenging problem, ngtabl
because the RSs can be nomadic or mobile. The IEEE 802.16jasth does not provide any algorithm for the tree
formation, however, it states that both distributed andredimed approaches may be used. For tackling the desigmeof t
tree topology in 802.16] networks from a distributed apphgeacoalitional graph games provide a suitable framework.
In [39], we model the problem of theplink tree formation in 802.16j using coalitional graph gamesnelg network
formation games. In this model, the players are the RSs witecaict for forming alirecteduplink tree structure (directed
towards the BS). Every RSin the tree, acts as a source node, and transmits the pabkets teceives from external
mobile stations (MSs) to the BS, using multi-hop relayingnile, when RS is transmitting its data to the BS, all the
RSs that are parents ofin the tree relay the data @fusing decode-and-forward relaying. Through multi-homy#ig,

the probability of error is reduced, and consequently thekgasuccess rate (PSR) achieved by a RS can be improved.
Essentially, the value function in this game is NTU as eachoRfimizes its own utility. The utility of a RS is an
increasing function of the effective number of packets irsmkby the BS (effective throughput) while taking into agod

the PSR, as well as the number of packets received from otB€ttfe more a RS receives packet, the more it is rewarded
by the network). The utility also reflects the cost of mainiiag a link, hence, each RShas a maximum number of links
that it can support. As the number of links on a Riicreases, the rewards needed éceptinga link also increase,
hence making it difficult for other RSs to form a link with The strategy of each RS is two-fold: (1)- Each RS can
select another RS (or the BS) with whom to connect, and (2phERS can choose to break a number of links that are
connected to it. For forming a directed lifk j) between RS and RSj, the consent of Rg is needed. In other words,

if RS 7 bids to connect to R$, RS j can either accept this link as a new connection, acceptitiiksbly replacing one
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Fig. 5. Example of an 802.16j tree topology formed using & idisted networl)< formation game as per [39].
or more other links, or reject the link. Using this formutatj the network formation game is a non-cooperative non-zer

sum game played between the RSs, with the previously definattgies. Hence, the dynamics of network formation

are performed using an algorithm consisting of two phagsethe first phase, the RSs are prioritized, and in the second
phase, proceeding sequentially by priority, each RS isvaltbto play its best response, i.e., the strategy that magsni

its utility. This algorithm is myopic, since the best resperof a RS is played given the current state of the network
graph. The end result is the formation of a Nash network thegtsire that links the RSs to the BS. This tree structure

is shown in [39] to yield an improvement in the overall PSRiaebd by the MSs in the network, compared to a static

star topology or a network with no relays. The proposed délgor allows each RS to autonomously choose whether to
cooperate or not, and hence, it can easily be implementedistdbuted manner.

In Fig.[H, we show an example of a network topology formed1byRSs. In this figure, the solid arrows indicate
the network topology that formed before the deployment of Bi$s (in the presence of keep-alive packets only). The
proposed network formation algorithm is, in fact, adaptiseenvironmental changes, such as the deployment of the
external MSs as well as mobility of the RSs or MSs. Hence, q1[Bj we can see how the RSs decide to break some of
their link, replacing them with new links (in dashed arrowagnce adapting the topology, following the deployment of
a number of MSs. In [40], the application of network formatigames in 802.16j was extended and the algorithm was
adapted to support the tradeoff between improving the &ffethroughput by relaying and the delay incurred by multi-
hop transmission, for voice over IP services in particufature work can tackle various aspects of this problem using
the tools of coalitional graph games. These aspects inaeagising a probabilistic approach to the network formation
or utilizing coalition graph games concepts such as thenlsalh core introduced in [34] among others.

2) Other applications and future potentialThe presence of a network graph is ubiquitous in many wisekasd
communication applications. For designing, understapydamd analyzing such graphs, coalitional graph games are th
accurate tool. Through the various concepts pertainingteaork formation, stability, fairness, or others, one cardel a
diversity of problems. For instance, network formation garhave been widely used in routing problems. For example, in
[41], a stochastic approach for network formation is preddn the proposed model, a network of nodes that are inéetes
in forming a graph for routing traffic among themselves issidered. Each node in this model aims at minimizing its cost
function which reflects the various costs that routing tcadtn incur (routing cost, link maintenance cost, discotioec
cost, etc.). For network formation, the work in [41] propese myopic dynamic best response algorithm. Each round
of this algorithm begins by randomly selecting a pair of rmtlandj in the network. Once a random pair of nodes is
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selected, the algorithm proceeds in two steps. In the fiegt, st the link (4, j) is already formed in the network, node

is allowed to break this link, while in the second step node allowed to form a new link with a certain node if &
accepts the formation of the lin, k). In the model of [41], the benefit from forming a link, j) can be seen as some
kind of cost sharing between nodésind j. By using a stochastic process approach, the work in [41jvshibat the
proposed myopic algorithm always converges to a pairwiablstand efficient tree network. Under a certain condition
on the cost function, the stable and efficient tree network gmple star network. The efficiency is measured in terms
of Pareto optimality of the utilities as the proposed gamialierently NTU. Although the network formation algorithm
in [41] converges to a stable and efficient network, it ssffieom a major drawback which is the slow convergence time,
notably for large networks. The proposed algorithm is nyaimplemented for undirected graphs but the authors provide
sufficient insights on how this work can extend to directedpgs.

The usage of network formation games in routing applicatitmnot solely restricted to forming the network, but
also for studying properties of an existing network. Fotanse, in [42], the authors study the stability and the flow of
the traffic in a given directed graph. For this purpose, sgvancepts from network formation games such as pairwise
stability are used. In addition, the work in [42] generaizke concept of pairwise stability making it more suitatde f
directed graphs. Finally, [42] uses non-cooperative gamery to determine the network flows at different nodes while
taking into account the stability of the network graph. Thelacations of coalitional graph games are by no meansdithit
to routing problems. The main future potential of using ttlisss of games lies in problems beyond network routing.
For instance, coalitional graph games are suitable toots&dyze problems pertaining to information trust manageme
in wireless networks, multi-hop cognitive radio, relayesgion in cooperative communications, intrusion detegtjmeer-
to-peer data transfer, multi-hop relaying, packet forwagdn sensor networks, and many others. Certainly, thik ric

framework is bound to be used thoroughly in the design of maspects of future communication networks.

VI. CONCLUSIONS
In this tutorial, we provided a comprehensive overview oélitmnal game theory, and its usage in wireless and

communication networks. For this purpose, we introducedweehclassification of coalitional games by grouping the
sparse literature into three distinct classes of gamesrgeal coalitional games, coalition formation games, avalitonal
graph games. For each class, we explained in details thexfoetal properties, discussed the main solution concepts,
and provided an in-depth analysis of the methodologies qupioaches for using these games in both game theory
and communication applications. The presented applicsititave been carefully selected from a broad range of areas
spanning a diverse number of research problems. The tutsa sheds light on future opportunities for using the
strong analytical tool of coalitional games in a number gblegations. In a nutshell, this article fills a void in exisgi
communications literature, by providing a novel tutorial @pplying coalitional game theory in communication networ
through comprehensive theory and technical details asasgethrough practical examples drawn from both game theory

and communication applications.
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