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Abstract

Zebrafish has become a viable model for various research including vertebrate de-

velopment, gene expression analysis, human diseases modeling, drug screening and

toxicology analysis. Zebrafish have a closed circulatory system, and the mechanisms

of vessel formation are highly similar to those in humans. Being able to model the

growth of blood vessel in the vasculature system of zebrafish is interesting for un-

derstanding both the circulatory system in humans, and for facilitating large scale

screening of the influence of various chemicals on vascular development. Zebrafish

embryo is an attractive alternative for environmental risk assessment of chemicals

since it offers the possibility to perform high throughput analysis in vivo. Interseg-

mental vessels (ISV) and caudal vein plexus (CVP) undergo active development via

angiogenesis. Hence, providing excellent models to study vasculature system. How-

ever, the lack of tools for automated analysis of acquired images is a huge bottleneck

in utilizing the zebrafish to its full potential.

Most of the current research based on ISV observe the presence or absence of ISVs

or perturbation of ISV morphology but do not quantify growth dynamics. Moreover,

these analyses are done manually. All of these factors drive the need for automated

image processing methods to quantitatively analyze the imaged embryos. In this

work, we have focused on developing image processing algorithms to automatically

segment and quantify ISVs of zebrafish embryos that have been exposed to various

chemicals. We tested the algorithms on images of zebrafish embryos obtained from

screening compounds that may act as an ISV disruptor. The efficiency of segmenta-

tion and quantification approach is demonstrated by our experiments of the entire

zebrafish vasculature recorded using a fluorescence microscope.
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In this work, we have also presented an approach to segment and detect ab-

normalities in the CVP region of zebrafish embryos due to exposure to chemicals.

Morphological changes due to chemicals exposure are modeled based on the proposed

gradient weighted co-occurrence histogram of oriented gradients (gCo-HOG). These

features are compared to gray level co-occurrence matrix (GLCM), histogram of ori-

ented gradients (HOG), and co-occurrence histogram of oriented gradients (Co-HOG)

that utilizes distribution of neighboring pixels to capture spatial structure.
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Chapter 1

Introduction

1.1 Motivation

Zebrafish has recently emerged as an invaluable model for biomedical research. Enor-

mous amounts of data is being generated from imaging zebrafish embryos. Manual

image analysis is cumbersome and subjective, there by increasing the need for auto-

mated image analysis tools. Lack of automated image-processing tools for zebrafish

analysis is a huge bottleneck in realizing zebrafish application to its full potential.

The growing utility of zebrafish as a model for biomedical research is attributed

to its properties such as transparency, reproducibility, growth rate, and small size.

The transparency of zebrafish embryo makes it a good model for direct observation

of the development of organs and tissue. For this reason, zebrafish has been widely
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utilized to study neural developmental [11], and vasculature development [23]. It en-

ables researchers to study different development stages of zebrafish to adulthood [31].

Transparent zebrafish promote relatively easy modification of genetic expressions to

mimic various diseases including Cancer [2], Alzheimer [45], and Parkinsons [8]. Neu-

ronal structures and blood vessels can be directly observed, providing an opportunity

to study abnormal neuronal and vascular patterns due to gene manipulation, drug

screening and other environmental cues.

Its small size and high reproduction rate allows researchers to image a large num-

ber of zebrafish in a short period of time [37]. Advantages of zebrafish as a vertebrate

animal model make it suitable for screening chemicals in an effective manner [30].

Studies are being conducted to evaluate the embryotoxic effect of chemicals [59].

Transgenic zebrafish has been developed to study the effects of chemicals on blood

vessel development [53]. The availability of a large number of zebrafish embryos

makes them suitable for characterizing gene expressions [19].

Advances in imaging techniques combined with various advantages of zebrafish, is

another reason driving their wide applicability in various research areas [37]. Imaging

zebrafish is fast and cost-effective as compared with other animal models. Thus,

zebrafish is becoming one of the most popular species in high-throughput screening.

In most of the above work, data is generated in large amounts and it is difficult

to analyze it manually. Manual analysis is time-consuming, suffers from inter-class

variability and is not scalable for high throughput analysis. With rapid advances in

science and environmental pollutants, the need to screen huge numbers of compounds

during the drug screening and toxicology analysis has been growing. At present, there
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is substantial effort required to validate assays for such use. A key challenge has been

the automated assessment of imaging data because there are few image analysis tools

capable of performing analysis in an automated manner. In the past few years, there

has been a significant increase in the number of research efforts focusing on analyzing

behavioral and morphological features in adult zebrafish [40]. Morphological analysis

methods have been developed to extract features of neurons [31] and vasculatures

[20] from zebrafish. Methods have also been developed where zebrafish swimming

pattern and behavior are recorded by video equipment for analysis in response to

stress, predators, alarms, and drugs [5].

In this thesis, we focus on developing image-processing algorithms for segmenta-

tion, analysis, and classification of zebrafish under the influence of various chemicals.

The interpretation and analysis of toxicology screens consumes about 70% of analysis

time [1]. Due to industrialization, we need to regularly perform a risk assessment on

new chemicals, pesticides, and drugs. Frequency with which new hazardous chemicals

are being identified further emphasizes the magnitude of the problem. Concurrent

with the increasing levels of environmental pollutants, accumulating evidence shows

that there is a vital need to study effects of exposure levels on human and animal

health [43]. Research community is still trying to understand the effects of expo-

sure of chemicals on organisms. There are many questions that have to be answered.

Firstly, what is the nature of effect, and to what extent? Secondly, after what dosage

of a chemicals do the hazardous effects becomes threatening? Is there a way to estab-

lish predictive toxicity testing of chemicals? Zebrafish as the model of toxicology has

been well established. Emphasis is on creating tools for toxicity assessment through
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qualitative or quantitative screening for varying exposure levels of toxins.

1.2 Zebrafish Image Analysis

Over the past several years, efforts have been dedicated to developing methods to

process, analyze, and quantify zebrafish images. Over the years researchers have

dedicated efforts to develop image-processing algorithms to analyze behavior of ze-

brafish. The first step in image-processing for behavioral analysis is usually the

continuous tracking and segmentation of the whole zebrafish from digital images.

Bang et al. developed an automated screening assay to detect hearing effects in

zebrafish by monitoring their behavior after receiving a loud sound burst [5]. Kato

et al. proposed to study swimming pattern and schooling behavior for analysis [29].

Various neurobiological analysis algorithms for quantifying changes in zebrafish

has been proposed. Xu et al. [58] proposed an algorithm focused on detecting

and quantifying pigments in zebrafish embryos. They automatically identify torso

area through series of image-processing steps. Liu et al. [40] have proposed to

automatically quantify the neurons and somites in a large number of zebrafish images,

as well as quantitative measurement of gene expression levels in zebrafish embryos.

Chen et al. [13] proposed a robust automatic segmentation to identify region of

interest (ROI) for gene expression quantification.

Image-processing methods have also been developed to analyze morphological

features in zebrafish. Stern et al. [51] focuses on automatically detecting specific

interest points in microscopy images. Alshut et al. [1] proposed learning based
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classification approach, which detects the embryo in the well, classifies its status as

dead, alive or unknown, and derives characteristic parameters for the regions. Liu

[39] proposed a recognition model for high throughput screening of toxicity based

on image descriptors based on color and texture combined with a support vector

machine to recognize three basic phenotypes (hatched, unhatched, and dead).

In addition to neuronal structure, blood vessels is another structure that is often

used in zebrafish-based studies. These studies are particularly interesting since, the

cardiovascular system is one of the first organ to emerge during embryonic develop-

ment. The vascular system is a vital component of all vertebrate animals, supplying

oxygen and essential nutrients to every tissue and organ. Zebrafish have a closed cir-

culatory system, and the mechanism of vessel formation are highly similar to those

in humans. A wide range of congenital diseases are associated with blood vessel

formation [21], development of the cardiovascular system and associated vascular

defects [49], and the adverse effects of exposure to toxic elements during develop-

ment [32]. Some previous studies have already employed image-processing methods

to studying vasculature development. Tran et al. [53] proposed an algorithm using

the Discovery-1/MetaMorph software to analyze blood vessel images. Vogt et al. [54]

implemented a user guided image interpretation tool to generate rule-based hierarchi-

cal image segmentation and blood vessels quantification. Feng et al. [20] developed

a 3D attributed vessel representation graph (AVRG) approach to reconstruct caudal

vasculature of zebrafish embryo. The whole vascular structure is reconstructed and

then utilized for quantification of the number and connectivity of the vessels, their

size, length, and volume, as well as the distance between any two vessels. Existing
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methods perform well with uniformly illuminated zebrafish images, but resolve to

manual analysis under varying illumination [53]. Automated analysis of vasculature

is still a budding field. Feng et al. [20], and Vogt et al. [54] are the only studies

dedicated to automated analysis of vasculature. The work presented in the above

mentioned has been performed on small number of screens; there is still a question

about its scalability.

In this work, we focus on developing an image-processing algorithms for the

high-throughput screening (HTS) of assays of compounds for toxicology analysis.

In particular, we will focus on the vasculature system of zebrafish. The methods

presented in this work is quantitative, can be utilized in wide varieties of toxin

treated zebrafish, and capable of quantifying changes in fine structure that may not

be quantiable by the human eye.

1.3 Zebrafish Vasculature Anatomy

The zebrafish embryo (fig. 1.1) is an appropriate model to study vascular morpho-

genesis in vivo. The formation of vertebrate blood vessels is subdivided into two

distinct morphogenetic processes, called vasculogenesis and angiogenesis. The earli-

est endothelial cells differentiate and aggregate into vascular cords by the mechanism

of vasculogenesis. The subsequent vessels develop from existing vessels by the process

of angiogenesis. First embryonic vessels to appear by vasculogenesis are the dorsal

aorta (DA) and the posterior cardinal vein (PCV) [27]. The intersegmental vessels

(ISV) of the trunk are the first angiogenic vessels to form in all vertebrates. ISV
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development is a two-step process: (1) A set of new sprouts emerges from the dorsal

side of the DA at 22 hour post fertilization (hpf) and these sprouts grows dorsally

and connect to form the future dorsal longitudinal anastomotic vessel (DLAV); (2)

Second step starts at 32 hpf, involves sprouts from the PCV [60]. These sprouts will

either connect to an existing vessels, or alternatively, they will grow up to the level

of the horizontal myoseptum. Just like ISV, caudal vein plexus (CVP) angiogenesis

occur in two waves [15]: (1) Sprouting occurs in the caudal vein region between 25

hpf and 30 hpf to form the primordial CVP. Soon after that, sprouting angiogenesis

in this region slows down, but the primordial CVP continues to mature; (2) Second

wave of caudal vein morphogenesis begins at around 48 hpf.

Figure 1.1: Zebrafish embryo anatomy [27].

The morphogenesis of the ISV, and CVP involves sprouting, migration, and prun-

ing and can therefore serve as an excellent model for studying angiogenesis.
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1.4 Challenges

Current methods analyze images based on intensity and thresholding. These methods

perform well on clearly resolved objects against a uniform background but often

resort to manual analysis for images that possess information at multiple sizes and

heterogeneity across images. To add to the challenge, the images are affected with

noise and artifacts. Furthermore, the appearance of zebrafish may vary in intensity,

texture, size, and orientation. This problem was brought to attention in a work

where zebrafish vasculature became quantifiable only after manual segmentation of

the trunk [53].

Moreover, there is a growing requirement for automated image analysis tech-

niques to process, analyze, and quantify zebrafish images. Meeting such objectives

is essential for zebrafish research to reach its full potential in discovery and under-

standing. Despite the potential of the zebrafish as a model, quantification is still a

fledgling field in zebrafish research, primarily due to the lack of tools that can yield

objective and quantitative measurements from imaging. From an image-processing

perspective, a successful algorithm must take into consideration the objectives of the

HTS and the content of the images.

All these factors advocate, for automation of as many steps of the analysis as

possible. According to [44], the development of dedicated image-processing methods

has become a serious bottleneck in the full exploitation of the information contained

in the acquired image sets. Many custom-made and nongeneric solutions have been

developed to answer specific questions. These solutions have an enormous potential
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to support the analysis of current and future image-based phenotype studies and

to avoid parallel developments that tend to “reinvent the wheel”. We believe that

development of a computerized data processing pipeline would be a significant step

towards reproducible quantification of phenotypes in large scale or high throughput

imaging studies.

Although methods have been developed to process zebrash images, as the appli-

cations of the zebrash model expands, there is a concurrent demand for a variety

of image-processing methods. In this work we will focus on the vasculature system

of zebrafish, segmenting and developing algorithms for blood vessels development.

The vasculature structure is composed of arteries and veins. Blood vessel are highly

diverse in length, width, and branching pattern. Significant challenges are associated

with blood vessel extraction including, noisy signal, drift in image intensity and poor

image contrast.

1.5 Research Goal

This work presents a framework of image-processing and analysis algorithms that

consists of extracting zebrafish, realigning zebrafish embryo images of different ori-

entations, and segmenting, quantifying, and classifying intersegmental vessels (ISV)

and caudal vein plexus (CVP).

Following initial formation of the primitive vasculature by vasculogenesis, most

subsequent vessel formation during development takes place via angiogenesis and

includes the formation of new vessels by budding growth from, or remodeling of,
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preexisting vessels. The formation of the ISV and CVP, provides an excellent model

for angiogenesis.

ISVs of the trunk are among the first angiogenic vessels to form in all vertebrates.

ISVs (fig. 1.1) are essential for development and nutrition of the zebrafish embryo.

Unlike other vessels, the ISVs are interesting because of the patterned appearance and

easy accessibility. Tran et al. [53] has shown that treatment of zebrafish at this early

time point had a very strong antiangiogenic effect, causing nearly complete absence

of intersegmental vessel growth. The vasculogenic dorsal aorta and posterior cardinal

vein were unaffected. Since the intersegmental vessels in zebrafish form by sprouting

from the preformed vasculogenic vessels, any compound that disrupts vasculogenesis

will also inhibit the growth of angiogenic vessels [53]. All these properties makes ISV

one of the most highly investigated vessel in the zebrafish.

In this work, we have focused on developing an image-processing algorithm to au-

tomatically segment and quantify ISVs of zebrafish embryos that have been treated

by various toxins. The processing pipeline consists of Segmentation, Region Detec-

tion, ISV Extraction, ISV refinement, feature quantification and classification. The

efficiency of segmentation approach is demonstrated by our experiments of the en-

tire zebrafish vasculature recorded using fluorescence microscopy. The experiments

also demonstrate that automated segmentation of ISV is comparable to that of man-

ual segmentation. The quantified features are used to train a linear SVM classifier

to identify morphological changes in a dataset consisting of ISV zebrafish embryo

images.

Recently, studies have indicated that CVP also undergoes active development,
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hence providing an additional measure for studying vascular development [12]. The

study of the zebrafish CVP and its utilization as a screening assay has not been

as prevalent as the ISV, and very few studies have attempted to identify regulators

of CVP development. In this work, we study the impact of toxicity on the shape

of CVP. Instead of the fine mesh-work of the CVP observed in healthy embryos,

treated embryos exhibit the formation of loops in the CVP. Previous research has

primarily focused on using color, texture [53] and morphological changes [20] for

toxicity analysis. Shape information, however, can be another attribute that can be

evaluated. A shape descriptor can capture the outline of the shape that other color

or texture-based descriptors may not be able to capture.

Hence by quantifying the shape of CVP, and comparing it against that of a healthy

embryo, we can identify changes in CVP due to exposure to toxins. Morphological

changes due to toxin exposure is modeled based on the proposed gradient weighted

co-occurrence histogram of oriented gradients (gCo-HOG). These features are com-

pared to more commonly used gray level co-occurrence matrix (GLCM), histogram

of oriented gradients (HOG) features, and co-occurrence histogram of oriented gra-

dients (Co-HOG) features that utilizes spatial distribution of neighboring pixels to

capture spatial structure. The features are used to train a linear SVM classifier to

identify structural changes in a dataset of region of CVP zebrafish embryo images.

We have also presented a method for analyzing effects of Arsenic on overall vas-

culature development of zebrafish in time-lapse confocal images. We use a trans-

genic zebrafish that expresses green fluorescent protein (GFP) in the vascular sys-

tem Tg(Flk1:GFP) to visualize vessel growth in the fish embryo. This transgenic
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zebrafish line expresses GFP in vascular endothelial cells, which permits real-time

imaging of the formation and growth of blood vessels. Time-lapse confocal imaging

of embryonic vasculature in the zebrafish is used in conjunction with digital im-

age analysis to monitor and quantify the effect of toxins on vascular development.

Imaging captures the dynamics of blood vessel formation over time. In order to

quantify these morphological changes, i.e., how much vascular structure has changed

over a period of time, it is necessary to compensate for any movements caused by

the growing embryo. Thus, in order to record the temporal changes occurring due

to vessel growth, it is necessary to establish spatial correspondence between blood

vessels that may appear displaced due to embryo movement. Thus quantification of

temporal vascular growth can be seen as a problem of image registration.

The goal of image registration is to align two images, so that common features

overlap and differences are emphasized. Image registration has been used widely in

the medical field to quantify the influence of changes over time. As an example, regis-

tration is required in medicine for comparing computer tomography of patients scan

[7], aligning images from various different modalities to diagnose diseases, etc. Re-

cently, image registration has found application in growth monitoring of tumors and

bone [10], [34]. We use a non-rigid registration approach to align images. Non-rigid

mapping is based on complete correspondence of images and includes a deformation

model as the underlying transformation. We utilize free-form deformation based on

B-splines for growth monitoring, and use intensity differences as a similarity measure.

Overall, the methods presented in this work is quantitative, can be utilized with

wide varieties of toxin treated zebrafish, and capable of quantifying changes in fine
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structure not quantifiable by the human eye. The algorithm automatically pro-

cesses multiple image files, saves the intermediate image-processing results, writes

the results in a excel/text format for further statistical analysis. We believe that

development of a automated image-processing pipeline would be a significant step

towards reproducible quantification of zebrafish analysis for HTS.

1.6 System Overview

Zebrafish is a versatile model for vasculature analysis. As its application continues

to grow, it is imperative to have an automated image analysis system (fig. 1.2) in

place to be able to analyze high throughout data. Obtaining region of interest is the

first step for any type of analysis. Multiple zebrafish are imaged in one dish. It is

essential to extracts individual zebrafish from image. Our system extracts relevant

zebrafish embryo from images. Further, we segment ISV and CVP from embryos.

Automated segmentation of ROI opens new opportunities for diversified analysis on

zebrafish.

ISVs are widely used to study toxicology, development, and disease modeling.

ISV segmentation is based on multiscale analysis combined with directional infor-

mation. Multiscale analysis, makes it possible to capture responses from vessels of

varying diameter and direction information aids to isolate ISV from other vessels in

the region. Although many types of analysis and quantification can be performed

on segmented region. Our framework computes morphological properties for quan-

tification of ISV.
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CVP with its easy accessibility during imaging process, is a potential candidate

for vasculature research. Realizing its plausible benefits, we have proposed segmen-

tation algorithm based on curvature properties of zebrafish tail. Shape descriptor is

proposed for CVP analysis. Shape descriptor is inspired from Histogram of Gradi-

ents. Co-Occurrence of histogram of gradient is combined with gradient information

to obtain discriminative representation for CVP region.

Lastly, classification component completes the system. We treat classification

as two class binary problem. This system is indicative of healthy embryo versus

abnormal embryo. We demonstrate the validity of our system by analyzing toxin

treated data. We used the model to estimate the safe dosage for various chemical.

This system can be easily trained to be used for drug modeling, gene expression, etc.

System proposed in this thesis is robust in the manner that each step can be iso-

lated and easily merged with existing or future research. For example, extraction of

embryo, ISV and CVP can be effortlessly combined with varied feature quantification

methods.

1.7 Summary of Contribution

This thesis studies the image analysis of zebrafish embryo. It makes seven major

contributions to this goal:

• Foremost contribution is the ISV segmentation. There has been many stud-

ies indicating viability of using ISV as a model for various application. To
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Figure 1.2: Zebrafish segmentation, feature quantification, classification system

our knowledge, automated segmentation of ISV is still largely unstudied prob-

lem. In this work we have proposed use of multiscale response and direction

information to segment blood vessels.

• Next is feature quantification of ISV. We have shown its applicability to quan-

tify ISV for toxicology analysis.

• Next contribution is segmentation of CVP. CVP is relatively new model as

compared to ISV for studying zebrafish. There has been studies showing ac-

tive molecular development for CVP. Its importance as a model is gaining

popularity. CVP segmentation can greatly simplify analysis for HTS. We have

proposed an algorithm for CVP segmentation.

• In order to utilize shape property of CVP, we have proposed a shape descriptor

based on gradient weighted co-occurrence of histogram of gradient. We have
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proposed to use these descriptors to be able to classify healthy zebrafish embryo,

against abnormal embryos.

• We presented a toxicology-screening system based on ISV and CVP analysis.

We used the models derived from morphological properties of ISV and shape

properties of CVP to study the effect of increasing dosage on zebrafish in terms

of number of zebrafish being impacted with chemicals. Further, this helps us

to establish the safe dosage for various chemicals.

• We proposed the algorithm for detecting changes in vasculature development

for time lapse data. This work focuses on capturing temporal vasculature

changes in zebrafish. This can work as an initial pass for studying changes

in zebrafish development under the influence of chemicals. We have shown

utilization of developed algorithms to study arsenic treated zebrafish embryo.

• Lastly, the work-flow presented in this thesis is fully automated. The segmen-

tation and analysis of the imaging data is one of the most challenging tasks in

automation of the zebrafish applications. Due to lack of robust solutions for

this problem, most of the analysis is currently being performed manually. This

serves as a huge bottleneck for interpreting data from HTS.

1.8 Thesis Outline

The remaining chapters are organized as follows:
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• Chapter 2 gives the detail about related work. Related work is clustered ac-

cording to type of analysis ( automated versus manual).

• Chapter 3 presents segmentation algorithm for zebrafish embryo, ISV and CVP.

Embryo segmentation is based on region and moment analysis. ISV segmenta-

tion uses multiscale property with directional information. CVP segmentation

is based on curvature analysis.

• Chapter 4 describes the features used for quantification of ISV and CVP. We de-

scribe our propose algorithm utilizing gradient information with co-occurrence

matrix of histogram of gradient. Also, we will discuss time lapse vasculature

quantification.

• Chapter 6 summarizes approach and our results. We will present results for

ISV segmentation, comparing proposed segmentation with manual segmenta-

tion. We will also present a classification system for ISV (healthy versus ab-

normal), based on its morphological properties. We will also present result for

classification system based on shape properties of CVP. We will describe the

toxicology screening system based on modeling ISV and CVP, and how it can

be used to derive safe dosage.

• Lastly, chapter 7 concludes the thesis. We will discuss limitations of our work

and present future work.
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Chapter 2

Related Work

Utilization of zebrafish as a model has received lots of attention in recent years.

Advances in imaging technologies and growing number of applications is pressing

the need for automated image-analysis methods. Table 2.1 presents the summary of

past work for zebrafish analysis. We divided the related work into three sections on

the basis of analysis: manual, semi-automated, and automated. We further grouped

the automated methods based on the type of methods used for analysis.

2.1 Manual Analysis

Arslanova et al. [4] developed a method to examine live zebrafish that were each

treated with gamma-secretase inhibitors (GSI), DAPT N-[N-(3,5-difluorophenacetyl-

L-alanyl)]-S-phenylglycine t-butyl ester, Gleevec, or fragments of Gleevec in a ze-

brafish model of Alzheimer’s disease (AD).
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Table 2.1: Summary Zebrafish Image Analysis

Method Imaging Modality Anatomy Dimension Application Analysis Type Year

Liu et al. Digital Microscopy Whole Organism Gene Expression 2D Automated 2006

Shirinifard et al. Confocal Vasculature 3D + t Toxicology Manual 2013

Chen et al. n.s. Vasculature 2D Gene Expression Manual 2001

Cheng et al. Confocal Vasculature 2D Toxicology Manual 2005

Liu et al. Bright Field Whole Organism 2D Toxicology Automated 2012

Xu et al. Bright Field Torso 2D Toxicology Automated 2010

Arslanova et al. Microscope Whole Organism 2D Gene Expression Manual 2010

Tran et al. Fluorescent Vasculature 2D Drug Discovery Semi Automated 2007

Yozzo et al. Fluorescent Whole Organism 2D Toxicology Semi Automated 2013

Stern et al. Microscope Whole Organism 2D Toxicology Automated 2011

Kato et al. CCD Camera Whole Organism 2D + t Behavior pattern Automated 2004

Vogt et al. Fluorescent Vasculature 2D Toxicology Automated 2009

Feng et al. Fluorescent Vasculature 3D Toxicology Automated 2005

Chen et al. Microscope Whole Organism 2D Drug Discovery Automated 2011

Tal et al. Confocal Whole Organism 3D + t Toxicology Semi-Automated 2014

Kamali et al. Confocal Brainstem 3D Disease Modeling Automated 2009

Anilla et al. Fluorescent Whole Organism 2D Disease Modeling Semi - Automated 2013

Mccollum et al. n.s Whole Organism 2D Toxicology n.s. 2011

Alshut et al. Microscope Whole Organism 2D Toxicology Automated 2010

Peravali et al. Microscope Brain 2D n.s. Manual 2011

Bang et al. CCD Camera Whole Organism 2D + t Behavior pattern Automated 2002
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Several GSI are in clinical trials for the treatment of AD. Brain regions (ROI)

from the dorsal view images are manually segmented. The intensity of each ROI is

quantified. To measure the gene expression, a manual approach is not only time-

consuming but also lacks objectivity due to inter-observer variations.

Shirinifard et al. [50] discussed quantitative analysis of growth dynamics for char-

acterization of both normal and perturbed growth for ISV. Their method is based on

analyzing ISV trajectories (sequences of successive 3D locations over time). Manual

Tracking plugin in FIJI ImageJ is used to track 3D position of ISV sprout bases and

tips over time (x, y, z coordinates over time). ISV sprout base position is the midpoint

of the sprout where it intersects with the DA. ISV tip position is the farthest point

on the ISV from the point of attachment on DA. Displacement and angle between the

ISV and the DA is used to correct for zebrafish embryos twitching. Average trajecto-

ries are calculated for control and for arsenic-treated embryos. Average trajectories

are fitted with quadratic curve to produce a canonical ISV trajectory. Curvature,

average directed migration speed and directionality were computed from canonical

trajectories. Curvature, average directed migration speed and angle between the ISV

and DA were different for arsenic-treated versus untreated.

Chen at al. [12] proposed to use caudal vein to study the affects of modifications

of sulfate 6-O sulfotransferase (HS6ST) genes on zebrafish development. Authors

observed formation of large loops with high penetrance for the caudal vein. Quan-

tification is done on the basis of number of embryos showing abnormal caudal vein

development.
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In the review done by Mccollum et al. [42] explores the questions of using ze-

brafish as a screening tool for human risk assessment. Toxicity effects on the ze-

brafish development are reviewed from existing literature. Toxic effects are reported

on cardiovascular, somite, muscular, skeletal, and neuronal systems. They also re-

port abnormal behavior, changes in gut, pancreas, liver, and kidney development, as

well as toxic effects on the immune system and lipid metabolism.

Cheng et al. [14] studied the effects of cadmium on cardiovascular development

in zebrafish embryos. They concluded that exposure to cadmium could affect the

morphogenesis of the vasculature. In embryos with visible abnormalities, the vas-

culature in the malformed region correlated well with defective vascular patterning.

There is a significant reduction in number of branches for cadmium exposed embryos

as compared to health embryos.

2.2 Semi-Automated Analysis

Tran et al. [53] proposed an interactive algorithm using the Discovery-1/MetaMorph

software to rapidly analyze each image. ISV is isolated from rest of images, by

manually removing trunk from the fluorescent image. ISV is separated from rest of

image using mask. The software counts the number of intersegmental vessels and

branching arteries in the isolated trunk of the embryo. Manual segmentation of trunk

restricts its usage for HTS. As shown in our work, certain compounds do not alter

ISV count but, end up changing other dynamics of ISV.

Yozzo et al. [61] screened 10 known cardiovascular toxicants through an image
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analysis pipeline that included ISV sprout length quantification. Semi-automated

methods are used to isolate regions of interest and quantify heart rate, circulation,

pericardial area, and intersegmental vessel area, whereas a fully automated method

is used to quantify body length.

Tal et al. [52] tested the effect of environmental chemicals on formation of the

vascular system. They developed a quantitative assay in transgenic zebrafish and

evaluated the assay using angiogenesis inhibitors that target VEGFR2 (PTK787)

or EGFR (AG1478). Both PTK787 and AG1478 exposure impaired ISV sprouting,

while AG1478 also produced caudal and pectoral fin defects at concentrations below

those necessary to blunt ISV morphogenesis. The functional consequences of vessel

toxicity during early development included decreased body length and survival in

juvenile cohorts developmentally exposed to inhibitor concentrations sufficient to

completely block ISV sprouting angiogenesis. Vascular growth depicted in time-lapse

image stacks is quantified in automated manner where as ISV length is manually

observed.

ZebIAT is image analysis tool developed by Anilla et al. [3] that allows both

automatic or semi-automatic registration of the outer contour and inner organs of

zebrafish embryos. ZebIAT provides a registration at different stages of development

and an automatic analysis to study cancer progression. The user manually marks

the organs or other areas of interest in the reference zebrafish embryo image. Outline

of the zebrafish is obtained by segmentation and edge detection. Landmark-based

registration is applied to register images to reference image. Labeled cancer cells are

detected using a method of multiscale product of wavelet and the mean fraction of
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the area of each organ that exhibited cancer spots in the embryos is examined.

To enable large scale observations Peravali et al. [48] developed an algorithm to

identify head region from low-resolution image based on template matching. The

regions of interest are subsequently imaged automatically at high magnification, en-

abling rapid capture of cellular resolution data. The pixel location in the source

image yielding the largest normalized cross-correlation measure was considered the

best match between the template and the source image, and is chosen as the center

of the field of view for subsequent high-resolution imaging.

2.3 Automated Analysis

This section discuses automated techniques for zebrafish image analysis. Review is

grouped into various subsection, based on type of method used for image analysis.

Figure 2.1 gives an overview of algorithm utilized for analysis. It also includes, few

of the methods described in section 2.2.
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Figure 2.1: Overview of an automated/semi-automated image analysis methods.
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2.3.1 Template Based

Chen et al. [13] proposed a robust automatic segmentation to identify ROIs for gene

expression quantification. Their pipeline consisted of image alignment, segmentation,

extraction and quantification of 15 ROIs. The telencephalon, left and right (L&R)

dorsal diencephalon, L&R olfactory vesicles, ventral midbrain, L&R retina, L&R

branchial arches, ventral hindbrain, L&R dorsal hindbrain, and L&R pectoral fin

is quantified to evaluate gene expression. Size of each of the ROI is calculated for

quantification.

Kamali et al. [28] developed a 3D template-based tracing algorithm to localize

and differentiate the fluorescent neurons. A control template consisting of 28 zones

with 14 zones on each side of the brainstem is created as a representation of 300

neurons that descend from the larval zebrafish brain into the spinal cord. The tem-

plate is initialized by registering neurons manually identified in the different zones.

After the creation of the template, image processing steps are applied to detect neu-

rons and assign them to the template. First process is image registration of confocal

z-stacks into a normalized space. User select three points on a MIP projection of

confocal z-stack and corresponding points on template. Affine transform is applied

to the 3D image stack to register it to the template. Second process of segmentation

involves two steps: (1) neurons are segmented on each xy - plane to find a set of

intensity contours with appropriate size and shape so as to reveal each neuronal cell

body present in the plane (2) segmented results over consecutive xy-plane images are

associated with the same neurons based on the assumption that each neuron spans

several images along the z-direction. Lastly, for cell identification a template is used
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in conjunction with the segmented boundary contours to assign detected neurons to

specific zones and sub-zones of the brainstem.

2.3.2 Learning Based

Liu et al. [39] proposed a recognition model for high-throughput screening of toxic-

ity based on image descriptors based on color and texture combined with a support

vector machine to recognize three basic phenotypes (hatched, unhatched, and dead).

The best performing model is attained with three image descriptors (color histogram,

representative color, and color layout) identified as most suitable from an initial pool

of six descriptors. The SVM classification model is developed using the three descrip-

tors: (a) Global and Semi-global Edge Histogram Descriptor (GSEHD), (b) Repre-

sentative Color Descriptor (RCD), and (c) Color Histogram Descriptor (CHD). They

reported an average classification accuracy of 97.40% in a 10-fold cross-validation and

93.75% classification accuracy for a stress test with zebrafish images of low quality.

This system can be used to identify extreme cases of toxicity, but further analysis is

needed to identify less extreme cases.

Alshut et al. [1] proposed learning based classification approach, which detects

the embryo in the well, classifies its status and derives characteristic parameters for

the regions. Expert labeled the data to the classes dead, alive or unknown. Chorion

is segmented from background using adaptive threshold and features are derived

based on intensity edge filter, and chorion size. Two most discriminative features are

selected by MANOVA (multivariate analysis of variances). Using these two features,
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the classification is performed utilizing a Bayesian classifier.

Stern et al. [51] focused on automatically detecting specific interest points in

microscopy images. Images are manually annotated by expert to identify interest

points coordinates and to train models able to predict those interest points in new,

unseen images. The approach first extracts sub-windows (or patches) around points

of interest and at other randomly chosen positions within images. The patches are

described by various visual features, RGB, HSV, Grayscale, Edge strength, Local

Binary Pattern. A classification or a regression model is built using these features.

In the classification scheme, the model is trained to predict whether the central pixel

of a sub-window is an interest point or not (a binary classification problem). In the

regression scheme, the model predicts the distance between the central pixel of a

sub-window and the interest point.

Vogt et al. [54] implemented a user guided image interpretation tool to gen-

erate rule-based hierarchical image segmentation. The zebrafish embryos are first

segmented, and the large vessels and head structures are identified based on pixel

values. The algorithm then removes small and isolated objects. Next, the remain-

ing regions are re-processed to identify the head, dorsal aorta, and posterior cardinal

vein. These pre-processed images were then used for blood vessel quantification. Nu-

merical measurements of blood vessels development such as area, length, and shape

are captured.
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2.3.3 Contour Based

Liu et al. [40] have proposed to automatically quantify the neurons and somites

in a large number of zebrafish images, as well as quantitative measurement of gene

expression levels in zebrafish embryos. Neurons are segmented from edge image using

circular Hough transform. RohonBeard (RB) sensory neurons are segmented using

method based on intensity projection. Somites are recognized using gray level co-

occurrence matrix, and edge direction histogram. ROI for genes quantification is

established with region growing segmentation. Neurons quantification is based on

its count. There is neuron loss in zebrafish embryos due to knockdown of AD-linked

genes. Somites are quantified using features extracted from gray level co-occurrence

matrix for detection of defective somites.

2.3.4 Curvature and Edge Based

Xu et al. [58] proposed an algorithm focused on detecting and quantifying pigments

in zebrafish embryos. They automatically identify torso area through series of image

processing steps. Steps include, finding single zebrafish in an image and then rotating

the images so the embryo is positioned with its head region to the upper right corner

and with its back pointing upward and abdomen downward to allow the algorithm to

search the abdominal region based on the zebrafish anatomy. A watershed method

is used to remove the head region from the torso that contains the pigmentation.

Otsus method is applied on the torso for segmentation, which is quantified and used

for toxicology.
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Feng et al. [20] developed a 3D attributed vessel represent graph (AVRG) ap-

proach to reconstruct caudal vasculature of zebrafish embryo. The major steps of

the framework include pre-processing, vasculature reconstruction, vascular structure

quantification, and representation. Pre-processing steps for vessel segmentation in-

clude: (1) Image enhancement; (2) Adaptive thresholding; (3) Vessels registration;

(4) Edge tracking and curve fitting. The cross-sections of a segmented vessel are rep-

resented by ellipses. The surface of a blood vessel is represented by triangle meshes.

Vasculature structure is reconstructed by locating junction points at the intersec-

tions of two or more vessels. Reconstructed vasculature structure is then utilized for

quantification of the number and connectivity of the vessels, their size, length, and

volume, as well as the distance between any two vessels.

2.3.5 Tracking Based

Bang et al. [6] developed an automated screening assay to detect hearing defects

in zebrafish by monitoring their behavior after receiving a loud sound burst. The

image was acquired immediately before the tone burst was subtracted from the image

acquired immediately after the tone burst. If the zebrafish did not respond to the

tone burst, due to hearing defects, the subtraction of its images produced an image

approximating zero. If the zebrafish responds to the tone burst by moving to a

different position, the subtraction result contains both positive and negative pixel

values that can be detected by taking the absolute value of the resulting image and

segmenting it by an appropriate threshold.
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Kato et al. [29] developed computer image processing system for quantifying

zebrafish behavior. Zebrafish images were extracted in real time from the original

image as a binary image by removing a background of the aquarium before the fish

are introduced. To maintain an effective frame rate that is high enough to capture

the movement of the zebrafish, skipping search method is applied on data. In each

frame, only one fourth of the pixels are “skippingly”examined, and then only the

areas of interest that are recognized as zebrafish are analyzed in more detail in the

two diagonal directions and in two crosswise directions with a continuous search.

Chasing behavior of pairs of fish are quantitatively analyzed based on the positional

coordinates of their center of gravity.

Figure 2.2: Overview of vasculature image analysis methods.

Figure 2.3: Overview of an automated vasculature image analysis methods.

Automated analysis of vasculature is still a budding field. Feng [20], and Vogt
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[54], and proposed method are the only studies dedicated to automated analysis of

vasculature blood vessel (fig. 2.2). The work presented in their papers has been per-

formed on limited number of compounds (fig. 2.3); there is still a question about its

scalability. Feng [20] performed 3d reconstruction of few vessels, where in our work

we capture the dynamics of all ISVs. In this work, we have proposed a segmentation

and quantification algorithm for ISV and CVP. Segmentation is a very crucial and

important step for any kind of analysis. Interestingly, an automatic segmentation of

ISV and CVP is still an untouched problem. Segmentation based either on thresh-

olding or on edge detection of images are not sufficient to analyze ISV. ISV are highly

diverse; they differ in size, shape, intensity, and occluded with noise. The orienta-

tion and amount of details of each embryo are different. One image has multiple

embryos placed in various orientations. To quantify different regions, manual analy-

sis requires one to draw ROIs for every image and then measure the features in each

ROI. Often a human observer needs to rotate the images to the same orientation

before drawing ROIs and quantifying pixel intensity, making their laborious work

more tedious. In addition, manual analysis is subject to inter-observer variation and

lacks repeatability.

In summary, although methods have been developed to process zebrafish images,

as the applications of the zebrafish model expands, there is a demand for a variety of

automated image processing algorithm. In this work we have presented a techniques

and a framework for segmentation, representation, quantification and classification of

the zebrafish ISV and CVP from images. The methods presented is quantitative, can

be utilized with wide varieties of toxin treated zebrafish, and capable of quantifying
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changes in fine structure not quantifiable by the human eye. Relevance of our work

is further amplified, by having a model to be able to determine safe dosages for

assays of compounds. In next few chapters we will present detailed description of

our approach.
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Chapter 3

Zebrafish Segmentation

Zebrafish vessel segmentation can be utilized for delineation of morphological at-

tributes of blood vessels, such as length, width, area and/or angles for disease mod-

eling, drug screening, toxicology, and gene expression evaluation. Automated seg-

mentation can help screen larger populations for vessel abnormalities. In this chapter

we will describe segmentation algorithm for zebrafish embryo, its ISV and CVP.

3.1 Embryo Segmentation

An image may have multiple zebrafish embryos as shown in fig. 3.1A. Our aim is

to capture the complete anatomic structure of each zebrafish. Due to the low res-

olution of a microscopic image, adjacent objects may appear to be touching, each

other or boundaries. The algorithm presented detects the valid zebrafish embryos

in an image and excludes rest. For, this we smooth the image with Gaussian filter.
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Figure 3.1: Figure 3.1A, 3.1B shows multiple embryos in an image, and
corresponding segmented image. In fig. 3.1C embryos shown in red are outliers and

in blue are valid embryos. After extracting the relevant embryo, we rotate each
embryo by an angle that major axis of bounding box makes with the horizontal

axis. If bounding box intersect, we choose the largest connected component.

Smoothing reduces the finer details of an embryo, hence producing a uniform fore-

ground (zebrafish embryo) against uniform background. The background and the

foreground are separated, hence we can perform thresholding with triangle method

[62]. The method is based on a histogram of image intensities. The triangle method

constructs a line between the histogram peak and the farthest end of the histogram.

The threshold is the point of maximum distance between the line and the histogram.

Thresholding is followed by connected component labeling for extracting the each
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of the zebrafish embryos. Let Ci, i = 1, 2, . . . , n be the labeled component sets in an

image I with size w × h. In each connected set, let the labeled pixels be given by

Ci = ((xij, yij), j = 1, 2, . . . ,m). Since in each image we are looking for a complete

anatomic structure, we discard labeled component Ci in I under 3 conditions (fig.

3.1(c)):

(i) if blobs are touching the boundaries of image.

(ii) if number of labeled pixels in connected set is above certain threshold

(iii) if number of labeled pixels in connected set is below certain threshold.

Ci =



0, if (xij == w||yij == h||xij == h||yij == w)j ∈ (1, 2, . . . ,m)

0 if size(Ci) > upper

0, if size(Ci) < lower

255, if otherwise.

(3.1)

where, upper and low are calculated based on the dataset. Values for upper and

lower is easy to estimate. Upper is approximately 1.5 times, and lower is 1
3

of the

average size of zebrafish embryo.

As the orientation of zebrafish embryo varies in the image, the next step of

extraction will use the shape information of the embryo. The position of the zebrafish

embryo in the image is normalized, to place longest axis of fitted ellipse parallel to

horizontal axis. Moment invariants allow us to find the best fitting ellipse for a target

object. For an image I, the moment of order (p+ q) is defined as:
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mpq =

∞∫
−∞

∞∫
−∞

xpyqI(x, y)dxdy (3.2)

p, q = 1, 2, . . .

We can simplify Eq. (3.2) further,

mpq =
∑
p

∑
q

xpyq (3.3)

p, q = 1, 2, . . .

To further reduce Eq. (3.3) over a connected region C, in an image:

mpq =
∑
C

xpyq (3.4)

p, q = 1, 2, . . .

Let (xc, yc) be the centroid of region C. The central moments are defined as:

µpq =
∑
C

(x− xc)p(y − yc)q (3.5)

From the eq.(3.4), m00, gives the area of C. The centroid c = (xc, yc) and angle θ

between the largest axis and the x-axis can be calculated as follows:

xc =
m10

m00

yc =
m01

m00
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θ =
arctan( b

a−c)

2
(3.6)

where a, b, c cane be defined as:

a =
m20

m00

− x2c

b = 2(
m11

m00

− xcyc)

c =
m02

m00

− y2c

Connected components are rotated around its c = (xc, yc), with the angle θ (fig.

3.1D). Since the mask obtained likely contains small connected components, we find

the relevant embryo by selecting the largest connected component in the mask. The

steps are exemplified in fig. 3.1D, 3.1E.

3.2 Region-of-Interest Detection

After isolating zebrafish embryo’s complete anatomical structure, we proceed to de-

tect region-of-interest (ROI). We are interested in ISV and CVP region. We bisect

zebrafish into ISV + DLAV region and tail + head region. The vessels dorsal aorta,

tail and head structure have high intensity value, as they are large in size, and tightly
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knit together. On the other hand, ISV and DLAV are very thin and located at dis-

tance, this results in ISV and DLAV to having low intensity as compared to large

vessels as depicted in fig. 3.2.

Figure 3.2: The difference in intensity profile of ISV + DLAV region compared to
tail + head region. The difference in intensity profile average value is more than

150.

We enhanced contrast, to further exemplify differences in their intensity value.

Intermodes threshold based on bimodal distribution is well suited for separating ISV

+ DLAV from rest of embryo. The histogram is smoothed using a running average

of size 3, until there are only two local maxima. The threshold value is the average

of two peaks.

Although, the above step separates zebrafish embryo into two region. There is

still some isolated portion of head, and yolk region left to be masked out. Specifically

for tail + head region, we want to mask out only tail region. Skeleton of segmented

image is used to find head, and yolk position. We can have two possibilities for head
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Figure 3.3: Procedure for finding head yolk position. Figure 3.3B is obtained by
masking out ISV + DLAV region from fig. 3.3A. Skeleton (fig. 3.3C) of mask is
used to find the position of head and yolk and point of intersection of head and

yolk region, and hence remove the rest of data.

and yolk. Head can be on right side of image (fig. 3.3D) or left side of image. Yolk

can face up or upside down (fig. 3.3D). We scan the skeleton image from top (from

origin) along image width and store pixel values in pixelLocUp. Similarly, we scan

the skeleton image from bottom (from height) along image width and store pixel

values in pixelLocDown. Next we compute the euclidean distance between each pair

of entries in pixelLocUp, and pixelLocDown as described in algorithm 1. Next step

is to find the position of yolk, if yolk is facing up or upside down (algorithm 2).

Lastly for finding head location we use steps described in algorithm 3.

After eliminating yolk and head region, we are confined with two ROI, one en-

closing ISV and other enclosing tail (fig. 3.4E, 3.4D).

3.3 Intersegmental Vessel Segmentation

Next we need to extract ISV from image. Extraction of ISV is challenging since it

varies in size, local contrast is unstable, high curvature, and noisy. The ability to

segment and quantify vessels, especially with smaller diameter, is limited by noise

and contrast.
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Algorithm 1 Algorithm for finding distances between skeleton point from top and
bottom.

for i = 1 to height do
for j = 1 to width do

if (Image(i, j) == 255) then
pixelLocUp = [pixelLocUp; ij]
break

end if
end for

end for
for i = height to 1 do

for j = width to 1 do
if (Image(i, j) == 255) then

pixelLocDown = [pixelLocDown; ij]
break

end if
end for

end for
. pairwise Euclidean distance for pixelLocUp, pixelLocDown
pixelLocUpDist = dist(pixelLoUp, pixelLocUp)
pixelLocDownDist = dist(pixelLocDown, pixelLocDown)
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Algorithm 2 Algorithm for finding yolk position, and cleaning region containing
yolk

. Yolk is facing up
if (max(pixelLocUpDist) > max(pixelLocDownDist)) then

top = true
location = find(pixelLocUpDist == max(pixelLocDist))
. Yolk is facing down

else
top = false
location = find(pixelLocDownDist == max(pixelLocDownDist))

end if
. clean image above pixelLocUp
if ( top == true ) then

for i = 1 to pixelLocUp.size do
for j = 1 to pixelLocUp[i][1] do

Image(j, pixelLocUp[i][2]) = 0
end for

end for
. clean image below pixelLocDown

else
for i = 1 to pixelLocDown.size do

for j = height to pixelLocDown[i][1] do
Image(j, pixelLocDown[i][2]) = 0

end for
end for

end if
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Figure 3.4: Procedure for extracting ISV + DLAV region and tail region. Figure
3.4D is obtained by masking segmented region shown in fig. 3.4b and removing
head region. Figure 3.4E is obtained by masking out segmented region fig. 3.4B

from 3.4A. Figure 3.4C is used to remove isolated region from head and yolk.

3.3.1 Eigen Analysis

The eigenanalysis of Hessian matrix is a crucial method for vessel detection. Hes-

sian matrix components approximate 2nd order derivatives, and hence represents the

shape information in terms of both, quality and quantity. Particularly interesting are

the eigenvalues and eigenvectors of Hessian matrix. In this work, we are presenting

the ISV detection method based on eigenanalysis of image Hessian matrix combined

with multiscale image analysis. A segmentation method incorporating vessel direc-

tion and the eigenvector of the Hessian matrix is used for vessel detection and to

obtain a segmented vessel tree.

The common approach to analyze local shape of a 2D image I is to consider its
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Algorithm 3 Algorithm for finding head position and clean image containing head
region

. head is on right side
if (dist(location, 0) > dist(location, width)) then

for i = 1 to height do
for j = location.y to width do

. clean image from head location to width
Image(i, j) = 0

end for
end for
. head is on left side

else
for i = 1 to location.x do

for j = 1 to location.y do
. clean image from origin to head location
Image(i, j) = 0

end for
end for

end if

Taylor Expansion in the neighborhood of a point x0.

I(x+ x0) ≈ I(x0) + ∆xT∇I(x0) + ∆xT∇H(x0)∆(x) (3.7)

where ∇I is the gradient vector and H denote Hessian matrix of second-order

partial derivatives of an image I.

H =

 ∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

 (3.8)

For a given pixel of an image a Hessian matrix is composed of second order partial

derivatives. Second order derivatives locally approximates the structure of an image.
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To solve these differential operators in a well-posed fashion we use concepts of linear

scale space theory [33]. In this framework, differentiation is defined as a convolution

with derivatives of Gaussian:

∂I

∂x
= I(x) ∗ ∂G(x, σ)

∂x
(3.9)

where the Gaussian is defined as:

G(x, σ) =
1√

2πσ2
exp(− x

2σ2
) (3.10)

where the parameter σ is the standard deviation of the Gaussian kernel, it controls

the scale and the smoothing. With increasing the scale the image gets less detailed.

The scale allows to search for objects of similar dimensions at the chosen scale. Let

the eigenvalues of the Hessian matrix be λ1 and λ2 (λ1 ≥ λ2) and corresponding

eigenvectors be v1 and v2. The eigenvalues λ1 and λ2 of the Hessian matrix can be

calculated through the following equation:

∆(H − I ∗ λ) = 0 (3.11)

where I is an identity matrix and λ is set of eigenvalues.

The eigenvalue of Hessian matrix are called principal curvature. The eigenvalues

of the Hessian matrix evaluated at a point encodes the local morphology in all direc-

tion in terms of curvature [17]. The highest eigenvalue λ1 corresponds to maximum

change in curvature, and corresponding eigenvector gives a direction of maximum

change [24]. The eigenvector v2 is orthogonal to the vector v1.
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Since vessels appear in different sizes it is important to introduce a measurement

scale which varies within a certain range, which matches the local feature size. Eval-

uating the eigenvalue in a scale-space shows local morphology change with scale. The

scale-space theory introduced by Lindeberg [38] uses for the purpose of detail removal

a convolution with a Gaussian kernel. We denote the eigenvectors of the Hessian,

H(x, σ), at sampling location x and scale σ as v1(x, σ), v2(x, σ). The eigenvalues are

denoted by λ1(x, σ), λ2(x, σ).

ISVs are extracted by tracing the direction of maximum eigenvalue normal to x-

axis. Our response function is calculated from eigenvalue evaluated by extracting the

direction of maximum eigenvalue. For each location, we compute the angle between

eigenvector corresponding to maximum eigenvalue and vector X in x (horizontal)

direction.

h(v1(x, σ), X) =
v1(x, σ) ·X
‖v1(x, σ)‖‖X‖

(3.12)

We analyze the response from each scale within pre-determined range, and select

the maximum eigenvalue based on h. Since ISV in images exists with varying size, it

is logical to perform feature extraction at the scale which matches the ISV size. The

strongest response (with respect to σ) over scales directly corresponds with width of

object [38]. For this purpose, our parameter selection is based on prior measurement

of width of objects. From our data set, we manually measure the width of ISV. We

randomly select 1
15

images from our dataset, and measure the width of vessel, and

use the range of values for scale parameter. From our observation, we found radius
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of ISV to be in range [0.5, 3].

r(x) =


maxσ λ1(x, σ) if β ≥ h(x, σ) ≥ α

0 if otherwise

(3.13)

All pixels which satisfy (3.13) belongs to ISV. Parameter α is chosen to be 45

and β is chosen to be 135. We want to remove all the pixels which are parallel

or approximately parallel to horizontal axis. For our purposes, tolerance of ±45

works well. We binarize ISV (say br) based on value from proposed adaptive Niblack

thresholding.

3.3.2 Adaptive Niblack thresholding

Original Niblack’s algorithm [46] is a local thresholding method based on the calcu-

lation of the local mean and of local standard deviation. The threshold is calculated

by the formula:

T = m+ k ∗ s (3.14)

where, m and s are the local mean and standard deviation of pixel values in local

neighborhood, respectively. The size of the neighborhood should be small enough to

preserve local details, but at the same time large enough to suppress noise. k is the

correction factor to adjust how much of the total object boundary is taken as a part

of given object.

46



Instead of having fixed k, we use scale parameter which matches the ISV size.

We can derive scale information from equation (3.13). We return for every pixel the

value of the scale (sigma) with the maximum eigenvalue from (3.13). We utilized

window size of [125, 25] approximately based on box enclosing ISV.

3.3.3 Linking vessels

Figure 3.5: Figure 3.5A is used in place of original image to depict the structure
similar to of ISV. 3.5A shows the response of maximum eigenvalue corresponding to
scale = 1 for principal direction. In top right fig. 3.5C, shows few isolated regions
from DLAV. These regions are outliers and will be removed. Figure 3.5D perfectly
captures the response corresponding to principal direction. Figure 3.5E shows the

region whose principal direction is lies outside the [α, β], hence no response is
generated. These regions are merged.

Some ISV might appear disconnected, or some isolated response from DLAV

region might be outliers as shown in fig. 3.5C. This happens when region along

center of ISV, appears parallel to x-axis i.e. the angle of principal direction with

horizontal axis does not fall in [α, β] as depicted in fig. 3.5E. We connect the disjoint
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ISV’s and remove outlier from DLAV based on the feature set extracted form each

ISV region.

We use morphological operation to link the broken vessels segmented. We com-

pute the maximum response from all vessels using (3.13). We binarize ra(x) based

on value from Adaptive Niblack thresholding and call it bra . Parameter k is the value

of the scale (sigma) with the maximum eigenvalue from (3.15).

ra(x) = max
σ

λ1(x, σ) (3.15)

At each potential vessel pixel from br, we apply morphological closing using lin-

ear structure. The direction of the linear structure is perpendicular to the x-axis

direction. We set the length of the linear structure as 10 pixels. We retain all those

potential vessel pixel from br that belongs to bra .

3.3.4 Post Processing

There are some isolated response from DLAV region which are outliers as shown in

fig. 3.5C. We follow similar approach as for linking vessels, but instead we work with

maximum response from vessels from DLAV region (3.16). We binarize rd(x) based

on value from Niblack thresholding and call it brd . Parameter k is the value of the

scale(sigma) with the maximum eigenvalue from (3.16).
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rd(x) =


maxσ λ1(x, σ) if α > h(x, σ) > β

0 if otherwise

(3.16)

At each potential vessel pixel from brd , we apply morphological closing using linear

structure. The direction of the linear structure is parallel to the x-axis direction. We

set the length of the linear structure as 10 pixels. We remove all those potential

vessel pixel from br that belongs to brd .

3.4 Caudal Vein Plexus Segmentation

After extracting ROI enclosing CVP as shown in fig. 3.4d. We use structural prop-

erties of CVP for segmentation.

Figure 3.6: Procedure for CVP segmentation. Figure 3.6A is a region enclosing
CVP. Curve C in blue represents lower boundary of tail region along midpoint of

tail. Figure 3.6B, C is smoothed using moving average filter. Pink points
represents local maxima and green points represents local minima. Circled point
represents the CVP region start location. CVP start position is the mid point of

the local curve with largest steepness. Figure 3.6C is the segmented CVP obtained
by masking out segmented region from fig. 3.3A with fig. 3.6A from start location

of CVP.

The intuition behind our method is that there is a high gradient associated with

transition of PCV region to CVP region in zebrafish. For this purpose, we trace the

curve C along mid point m of lower boundary of the tail.Lets C be represented as:
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C = ((xi, yi), i = 1, 2, . . . , n) (3.17)

We compute the slope of the cure as:

S = (
dyi
dxi

, i = 1, 2, . . . , n) (3.18)

S is smoothed using moving average filter. Let H and L denote the set of local

maxima and local minima along S. Let v = (hi0, lj0) denote local maxima and local

minima, respectively, such that:

mod(hi0 − lj0) ≥ mod(hi − lj),∀hi ∈ H,∀lj ∈ L, j − 1 ≤ i ≤ j

Point p where the CVP starts is given by:

p =


hi0+lj0

2
if H 6= ∅, L 6= ∅

m otherwise

(3.19)

p signifies the mid point along the curve with maximum change in slope. CVP is

obtained by masking region shown in fig. 3.3A from segmented region shown in fig.

3.6C from start location p of CVP.

In the next chapter, we will discuss feature quantification methods for ISV and

CVP.
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Chapter 4

Feature Quantification

In this chapter we will explain feature quantification algorithm for ISV and CVP.

4.1 Intersegmental Vessel Feature Quantification

ISV features are defined in terms ISV count; an average distance between ISV, total

area of ISV; and an average ISV length. All terms were defined in pixels. Previous

research have shown the quantification terms used in this work can use to analyze

toxicity effect in ISV [20], [53], [54].

Figure 4.1: Skeleton of ISV, used for calculating length of ISV.
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Our quantification procedure consists of reporting features: ISV count; average

distance between ISV; total area of ISV; and average ISV length. We calculate

these features for each of embryo. Features are obtained by performing connected

component analysis. Number of connected component corresponds to ISV count. ISV

distance is computed as the average of euclidean distance between ISV centroid, and

the centroid of two adjacent neighboring ISV. Total area occupied by all components

is ISV area. ISV length is computed by analyzing the skeleton of each of connected

component. Image skeleton is obtained by thinning procedure explained in [36].The

general idea is to erode the ISVs surface iteratively until only the skeleton remains.

The structure obtained is shown in fig. 4.1B. We decompose each individual vessel

segments as individual graph for calculating ISV length. We perform graph analysis

on each vessel and compute end points (pixels with less than 2 neighbors). For

calculating the length of ISV we find the number of pixels connecting the end points.

Average ISV length is computed by averaging over all graphs. Feature vector is

formed by concatenating ISV count; average distance between ISV; total area of

ISV; and average ISV length.

4.2 Caudal Vein Plexus Feature Quantification

The study of the zebrafish CVP and its utilization as a model for screening assay has

not been as prevalent as the ISV, and very few studies have attempted to identify

regulators of CVP development. Previous research has primarily focused on using
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color, texture [53] and morphological changes [20] for toxicity analysis. Shape infor-

mation, however, can be another attribute that can be evaluated. A shape descriptor

can capture the outline of the shape that other color or texture-based descriptors

may not be able to capture. Hence, by quantification of the shape of CVP, and

comparing it against that of a healthy embryo, we can identify changes in CVP due

to exposure to toxins. This section will discuss utilization of gray level co-occurrence

matrix (GLCM), histogram of oriented gradients (HOG), co-occurrence of histogram

of oriented gradients gradient (Co-HOG) and weighted co-occurrence histogram of

oriented gradients (gCo-HOG) for shape modeling.

4.2.1 Gray-Level Co-occurrence Matrix

GLCM is a very well known texture analysis method [25], [26]. GLCM represents the

angular and spatial relationship over an image sub region. GLCM entries represents

an estimate of the probability that two pixels with a specified displacement, d, and

an angle, θ occurs in an image.

Mathematically, for a given image I of size M × N , the elements of a gray-level

co-occurrence matrix Cx,y for a displacement vector d = (x, y) is defined as:

Cx,y(i, j) =
∑
p

∑
q


1, if I(p, q) = i, I(p+ x, q + y) = j

0, otherwise

(4.1)

Statistical measures are derived from the co-occurrence matrix. The features we

used include: energy, homogeneity, correlation, and contrast. Energy, also called
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Angular Second Moment and Uniformity, is a measure of textural uniformity of an

image.

energy =
∑
i

∑
j

C2
x,y(i, j) (4.2)

Homogeneity or Angular Second Moment compares the distribution of the values

on the diagonal of the GLCM to the distribution of the values off the diagonal.

homogeneity =
∑
i

∑
j

Cx,y(i, j)/1 + |i− j| (4.3)

Correlation, measures the correlation among neighboring pixels. It gives a mea-

sure of abrupt pixel transitions in the image.

correlation =
∑
i

∑
j

(i− µi)(j − µj)Cx,y(i, j)/σiσj (4.4)

Contrast is a measures of the amount of local variations in an image.

contrast =
∑
i

∑
j

|i− j|2Cx,y(i, j) (4.5)

For varying choices of d and θ, we obtain a separate GLCM. The GLCM is imple-

mented with certain degree of rotation invariance, which is achieved by combining

the results from various angles. In the present work, four possible spatial relation-

ships 0, 45, 90, 135 are implemented. We analyzed results with varying value of k

and obtained best performance with 9 pixel displacement. The results is combined
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by averaging the GLCM for each angle and concatenating energy, homogeneity, cor-

relation, and contrast into one feature vector.

4.2.2 Histogram of Oriented Gradients

HOG descriptor first proposed by Dalal and Triggs [16] has been used in many differ-

ent problems in computer vision, such as pedestrian detection [55], face recognition

[18], object recognition [9] and text recognition [56]. HOG features are extracted

from image by first computing gradient orientation at every pixel. Orientations of

gradients are quantized into histogram bins and each bin has an orientation range.

Image is divided into blocks and in each block a histogram of oriented gradients is

computed. HOG feature consists of concatenation of histogram of oriented gradients

over all blocks.

In our case, HOG are computed on edge contours extracted using the canny edge

detector (fig. 4.2(center)). The gradients are computed using a Sobel mask. The

HOG descriptor is quantized into K orientation bins, each over an orientation range

of [0, 360] or [0, 180]. The weight from each contour point depends on its gradient

magnitude and is added to its orientation bin. Each bin in the histogram represents

the sum of gradient magnitudes that have orientations within a certain angular range.

HOG are invariant to 2d rotation and illumination variations. On the other hand,

HOG captures orientation of only isolated pixels, ignoring spatial relationship among

neighboring pixels. Co-HOG captures spatial information and is more powerful in

describing local structure. With spatial structure, more shape information of object
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Figure 4.2: Extraction of HOG features from a CV image. (left) Original image.
(center) Edge contours are extracted using an edge detector, image is divided into 8

blocks. (right) HOG vector is extracted from each sub region. (bottom)
Concatenation of all the HOG vectors to obtain the HOG features for image.

can be captured.

4.2.3 Co-occurrence of Histogram of Oriented Gradients

Co-HOG is an extension of HOG. Co-HOG captures spatial information by mea-

suring probability of oriented gradients between pairs of pixel. A pixel pair can be

represented by an offset (x, y), which captures the spatial relationship of the two

points. As shown in fig. 4.3(left), we define 31 offsets including zero offset for a

given point. The black pixel in the center is the pixel under consideration and the

neighboring blue pixels are with different offsets. Each neighboring pixel in blue

color forms an orientation pair with the center black pixel and accordingly votes to
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the co-occurrence matrix. For each pixel in the image of size M×N , the orientations

ranging between [0, 360] or [0, 180] are quantized into number of orientation bins, say

K. Co-occurrence matrix at a specific offset (x, y) is defined as:

Cx,y(i, j) =
∑
p

∑
q


1, if I(p, q) = i, I(p+ x, q + y) = j

0, otherwise

(4.6)

The Co-HOG descriptor is formed by concatenation of components of the co-

occurrence matrix of each offset including offset 0. Co-HOG obtains 31 co-occurrence

matrices. There areK ×K elements in the co-occurrence matrix (fig. 4.3(right)shows

example with K = 8 bins). The co-occurrence matrix calculated with zero offset has

only K values.

Co-HOG extracts both local and global shape information, with varying offset

sizes.

One potential limitation of co-occurrence histograms of oriented gradients is that

both strong and weak gradients provide the same contribution in representing the

spatial structure. To address this limitation, we investigate the inclusion of gradient

strength in the generation of the histogram.

We treat the gradient as forces and use vector addition to combine forces using:

Cx,y = Cx,y + ‖g1 + g2‖ (4.7)
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Figure 4.3: Extraction of Co-HOG features from a CV image. (left) Pixel offset.
(center) Edge contours are extracted using an edge detector, image is divided into 8

blocks. (right) Co-HOG vector is extracted from one region for 8 bins. (bottom)
concatenation of all the Co-HOG vectors to obtain the Co-HOG features for image.

where C is the co-occurrence matrix at a specific offset (x, y) as defined in equa-

tion 4.6, g1 is the gradient magnitude at location (p, q), and g2 is the gradient magni-

tude at location (p+ x, q + y). The gCo-HOG feature descriptor of the whole image

can then be constructed by concatenating all the regions features. The gCo-HOG is

normalized to sum to unity.

4.3 Vasculature Time-lapse Feature Quantification

There are various challenges associated with live imaging oz zebrafish. One such

complication is, zebrafish embryos twitch, so that growth and motion of embryos

are not uniform across the 3D field. Imaging captures the dynamics of blood vessel
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formation over time. In order to quantify these morphological changes, i.e. how

much vascular structure has changed over a period of time, it is necessary to com-

pensate for any movements caused by the growing embryo. Thus, in order to record

the temporal changes occurring due to vessel growth, it is necessary to establish

spatial correspondence between blood vessels that may appear displaced due to em-

bryo movement. Thus, quantification of temporal vascular growth can be seen as

a problem of image registration. We use a non-rigid registration approach to align

images. Non-rigid mapping is based on complete correspondence of images and in-

cludes a deformation model as the underlying transformation. We utilize free-form

deformation based on B-splines for growth monitoring, and use intensity differences

as a similarity measure.

4.3.1 Vasculature Registration

The goal of image registration is to find an optimum mapping that aligns two im-

ages. Since deformations are important for quantification of changes in images, it is

necessary to find a mapping between two time points as accurately as possible. In

our case we need to quantify blood vessel growth independent of motion artifacts.

Hence we need a registration approach that establishes vessel correspondence be-

tween successive time frames. Affine and rigid registration approaches are mainly

based on local stretching of images, and hence do not adequately capture structural

changes.

Many applications in medicine require that object is modified in global scale.
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Therefore, we have used free-form deformation (FFD). Free form deformation de-

forms an object by warping the image geometry in which the object is localized. The

nature of deformation varies widely across different time points; hence it is difficult

to use traditional B-spline registration, which is based on many parameters. If we

only select few parameters, an approximate match can be obtained, whereas many

parameters incur added computational costs. Hence, we have used FFD based on

hierarchical B-splines for multilevel nonlinear registration [35]. The underlying idea

of FFD is based on deforming an object by manipulating a mesh of 2D points.

Let Ω = {(x, y) | 0 ≤ x ≥ X, 0 ≤ y ≥ Y } be the domain of 2d points. Let Ω

denote a nx × ny mesh of control points with uniform spacing ∆. Let Ωij be the

value of ij-th control point located at (i, j). The FFD f can be written as:

f(x, y) =
3∑

m=0

3∑
l=0

Bl(s)Bm(t)Ωi+l,j+m (4.8)

where, i =
⌊
x
nx

⌋
− 1 j =

⌊
y
ny

⌋
− 1 , s = x

nx
−
⌊
x
nx

⌋
, t = y

ny
−
⌊
y
ny

⌋
. Bl and Bm are

uniform cubic B-spline basis function defined as:

B0(s) =
(1− s)3

6
(4.9)

B1(s) =
(3s3 − 6s2 + 4)3

6
(4.10)

B2(s) =
(−3s3 − 3s2 + 3s+ 1)3

6
(4.11)

B3(s) =
s3

6
(4.12)
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They weigh the contribution of each control point to f(x, y) based on its distance

to (x, y). The problem of deriving function f is reduced to solving for the control

points in Ω. The control points in Ω behave as parameters for transformation. The

degree of non-rigid deformation depends highly on the size of control points. Dense

mesh can increase number of degrees of freedom, hence providing more flexibility

and consequently an increase in computational complexity. In order to achieve the

tradeoff between degree of freedom and computational complexity, we use a hierar-

chical multiresolution [35] approach, in which the resolution of the control mesh is

increased, along with the resolution of image in an iterative loop. Consider a hier-

archy of control mesh Ω0,Ω1, . . . ,Ωh overlaid on domain Ω. For simplicity, we will

assume decreasing space as we move from Ωs to Ωs+1. Similar to above, we will have

FFD fs(x, y) for each control mesh. Their sum defines the overall transformation

model.

f(x, y) =
∑
s=1

fs(x, y) (4.13)

Calculation of FFD for each control lattice introduces a significant overhead. To

avoid this overhead, B-spline refinement can be applied hierarchically to control

mesh. This can be achieved by B-spline subdivision algorithm. In this case, the

control point mesh at level s is generated by using the mesh control points from level

s − 1. More details can be found in [22]. To achieve correspondence between two

images acquired at different time points, we have used a similarity criterion based

on sum of squared difference (SSD):
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SSD =
1

n

√
(
∑

(I(t0)− T (I(t)))2 (4.14)

4.3.2 Vasculature Morphology

Blood-vessel growth is quantified by recording the temporal occurrence of differences

in pixel intensities along registered vascular structures. Registration is performed on

pair of consecutive images (It, It+1). It is warped to It+1 to give Iregt . Measuring

the difference (pixel changed) between It+1 and Iregt provides a standard for change

quantification. This protocol is shown in fig. 4.4, where ∆tis the

Figure 4.4: For a given sequence of images, image i is registered to (i + 1).
Measuring the difference between registered images i and (i + 1), provides the

change in number of pixels.

change in number of pixels at time t.

∆t = It+1 − Iregt (4.15)

The change measured over the entire imaging cycle can be characterized by the
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function f(∆t) given by:

f(∆t) = {δt}mt=1 (4.16)

In next chapter, we will give details corresponding to zebrafish data used for

experiments and presents results on data.
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Chapter 5

Materials, Experiments, and Data

Images of zebrafish embryo are collected at the Center for Nuclear Receptors and

Cell Signaling, Department of Biology and Biochemistry, University of Houston.

Zebrafish (Danio rerio) are reared and maintained at 28.5◦ C as previously de-

scribed [57], and in accordance to the standard operating protocols approved by

the Institutional Animal Care and Use Committee at University of Houston. A sta-

ble line of Tg(kdrl:EGFP)mitfab692 is generated by crossing Tg(kdrl:EGFP) with

mitfab692/b692 (Zebrafish International Resource Center, Eugene, OR) to facilitate

GFP visualization without obstruction from melanophores. Embryos are collected

from natural mating and staged accordingly [31].

Two-dimensional data is acquired for ISV and CVP analysis. Three-dimensional

time lapse data is acquired to study overall growth in vasculature of zebrafish.
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5.1 Two-Dimensional Data

Zebrafish embryos are treated with chemicals selected from phase I of ToxCast

chemical library (http://www.epa.gov/ncct/toxcast/chemicals.html) and solubilized

in dimethyl sulfoxide (DMSO).

5.1.1 Chemical Treatments

Tg(kdrl:EGFP) mitfab692 embryos are harvested in a petri dish after mating. At

approximately 3 hpf, embryos are sorted and placed in 6-well plates (n = 20), followed

by a single chemical treatment without renewal at 100 nM, 250 nM, 500 nM, 1 µ M,

10 µ M and 20 µ M, unless otherwise noted. Working dilution stocks of all chemicals

are made such that the final concentration of the vehicle DMSO is at 0.1%. Each

well contained a final volume of 3 mL of embryo medium, E3 (5 mM NaCl, 0.17 mM

KCl, 0.33 mM CaCl2, 0.33 mM MgSO4). Control embryos are treated with 0.1%

DMSO. The embryos are incubated at 28.5◦ C until 72 hpf, during which they are

assessed for vascular perturbations. List of chemicals and their dosages are given in

table 5.1

5.1.2 Imaging

At 72 hpf, control and treated embryos are manually dechorionated, if necessary,

and anesthetized with 0.04% MS-222 (Pentair Aquatic Eco-Systems, Apopka, FL).

Embryos are manually oriented and imaged using a 4X objective on an Olympus
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IX51 fluorescence microscope equipped with an Olympus XM10 camera and cellSens

Dimension software (Olympus, Center Valley, PA).

Figure 5.1: Original 2d images of zebrafish capturing zebrafish full anatomy.

5.2 Three-Dimensional Time-Lapse Data

Zebrafish embryos are treated with Sodium (meta) arsenite (NaAsO2) with 400 µg

dosage.

5.2.1 Chemical Treatment

Sodium (meta)arsenite (NaAsO2) is purchased from Sigma-Aldrich (St. Louis, MO)

and dissolved in ultra pure deionized water(vehicle). Tg(kdrl:EGFP)mitfab692 em-

bryos are harvested in a petridish after mating. Then, they are sorted and placed

in 6-wellplates (N = 10-30) in 3 mL of embryo medium, E3 (5 mM NaCl,0.17 mM

KCl, 0.33 mM CaCl2, 0.33 mM MgSo4), followed by arsenite treatment at 400 µg/L
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Table 5.1: List of chemicals and their respective dosages

Chemical Dosage Chemical Dosage

Triflumizole 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m Trifloxystrobin 1nM, 10nM, 100nM, 250nM, 300nM, 350nM, 400nM, 500nM

Tribufos 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m Thiram 100nM, 250nM, 500nM, 1µ m

Thiodicarb 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m Tetramethrin 100nM, 250nM, 500nM, 1µ m, 10µ m

Tebupirimfos 1nM, 10nM, 100nM, 1µ m, 10µ m, 20µ m, 30µ m, 40µ m Tebufenpyrad 100nM, 250nM, 500nM, 1µ m

Rotenone 1nM, 10nM, 20nM, 25nM, 30nM, 40nM, 50nM, 80nM Resmethrin 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m

Quinoxyfen 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m Pyridaben 1nM, 10nM, 100nM

Pyraclostrobin 1nM, 10nM, 100nM, 250nM, 300nM, 350nM, 400nM, 500nM Pendimethalin 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m

Oryzalin 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m, 30µ m, 40µ m Niclosamide 100nM, 250nM, 500nM

PTK787 0.0691µ m, 0.1234µ m, 0.2203µ m, 0.7µ m, 1.254µ m Metiram 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m

Methomyl 100nM, 250nM, 1µ m, 10µ m, 20µ m Malaoxon 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m

Lactofen 100nM, 250nM, 500nM Indoxacarb 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m

Flumetralin 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m Fenpyroximate (Z,E) 100nM, 250nM

Ethofumesate 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m Esfenvalerate 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m

Esbiol (S-Bioallethrin) 1nM, 10nM, 100nM, 1µ m, 2.5µ m, 5µ m, 8µ m, 10µ m Endosulfan 1nM, 10nM, 100nM, 1µ m, 10µ m

Diniconazole 1nM, 10nM, 100nM, 1µ m, 2µ m, 5µ m, 8µ m, 10µ m Dimethomorph 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m

Dibutyl phthalate 100nM, 250nM, 500nM, 1µ m Cymoxanil 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m

Cyazofamid 100nM, 250nM, 500nM, 1µ m Chlorpyrifos oxon 100nM, 250nM, 500nM, 1µ m

Butafenacil 100nM, 250nM, 500nM, 1µ m Allethrin 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m

Abamectin 100nM, 250nM, 500nM, 1µ m, 12.1µ m 2-methyl-4-chlorophenoxyacetic acid 100nM, 250nM, 500nM, 1µ m, 10µ m, 20µ m
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(3.08 mM) without renewal. The embryos are incubated at 28.5◦C until 72 hpf,

at which they are manually dechorionated, if necessary, and assessed for vascular

perturbation and other developmental malformations. For determining the window

of effect, embryos are treated with arsenite at 400 µg/Lat 0-24 hpf, 24-48 hpf, or

48-72 hpf. After exposure time is complete, embryos are washed multiple times and

allowed to continue to develop in E3 at 28.5◦C until assessment at 72 hpf.For RT-

qPCR, 30 embryos are pooled as one biological sample in 3 mL of E3 and treated

with arsenite at 10 µg/L, 50 µg/L, 100 µg/L, 200 µg/L, or 400 µg/L up to 72 hpf.

To examine RNA levels at different time points via RT-qPCR, embryos are treated

with arsenite at 400 mg/L up to 18 hpf, 20 hpf, 24 hpf, 28 hpf, or 48 hpf. Control

embryos are treated with vehicle.

5.2.2 Imaging

72 hpf control and arsenite-treated Tg(kdrl:EGFP)mitfab692 embryos are manually

dechorionated, if necessary, and anesthetized with 0.04% MS-222 (Pentair Aquatic

Eco-systems, Apopka, FL). Embryos are then manually oriented and mounted in

0.8%low-melt agarose (LMA; Sigma), and imaged using an Olympus Fluoview 1000

confocal fluorescence microscope with a 4X or 20X objective and 50 or 30 z-plane

optical slices, respectively. Images are then rendered by Olympus Fluoview software

and projection are generated using ImageJ. Brightfield images are captured with

a Nikon DS-Fi1 color camera attached to a Nikon AZ100M microscope with a 4X

objective and 25 z-plane optical slices, and then rendered by Nikon NIS-Elements

software.2.7.
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5.2.3 Time-lapse imaging

Tg(kdrl:EGFP)mitfab692 embryos are treated with arsenite, as described above. At

approximately 18 hpf, control and treated embryos are manually dechorionated, anes-

thetized with 0.04%MS-222 and mounted in 0.3% LMA on MatTek glass bottom

dishes (MatTek Corporation, Ashland, MA). The 0.3% LMA mounting media is

supplemented with 0.04% MS-222 and arsenite at concentrations matching to that

of the exposure solutions. E3 with MS-222and arsenite is added following LMA so-

lidification and the dishes are sealed with parafilm. 100 z-plane optical slices are

acquiredon an Olympus Fluoview 1000 confocal fluorescence microscope over a span

of 15 h with 15 min time intervals. Images are then processed by Olympus Fluoview

software and projections are animated into a time-lapse movie using ImageJ.

Figure 5.2: Maximum intensity projection is computed by selecting the brightest
voxel along z-axis.

Images are generated in TIFF format with 8-bit intensity depth. Image size is
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512 pixels by 512 pixels and 640 pixels by 480 pixels. Maximum Intensity projection

(MIP) (fig. 5.2) is computed for stack of images. MIP algorithm selects the brightest

voxel along the z-axis and projects it on the orthogonal image plane. Figure 5.3 shows

MIPs for unexposed and exposed embryo.
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Figure 5.3: (Still images from Movies S1 and S2 illustrating confocal time-lapse of
control (AE) and arsenite-treated (400 mg/L; FJ) Tg(kdrl : EGFP )mitfab692

embryos, starting at 22 hpf (total length: 9:00). Lateral view of the trunk region
with anterior to the left and dorsal to the top
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Chapter 6

Zebrafish Analysis

This chapter is divided into three sections. First section presents result related to

ISV analysis. We will compare proposed automated segmentation of ISV against

manual segmentation. Further to identify whether chemicals from ToxCast Phase I

library are vascular disruptor compounds, we present how ISV features can be used

to discriminate healthy embryo from abnromal embryos. ISV features are used to

train a linear classifier for depicting embryos impacted with toxicity.

The Second section will focus on CVP analysis, presenting classification results

using GLCM, HOG, Co-HOG, and proposed gCo-HOG. In third section, we will

explore the relationship between increasing dosage of chemicals with impact on ISV,

and CVP separately. We will discuss how many chemicals impacted ISV and CVP

or both.

The Last section will present results showing variations in temporal growth of
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untreated embryo against treated embryo.

6.1 Intersegmental Vessel Analysis

ISV results are presented for entire zebrafish vasculature recorded from the fluores-

cence microscope.

6.1.1 Segmentation Analysis

Segmentation of ISV can be a time consuming process. ISVs occur in various size

and shows huge variation in intensity. Method in section 3.3 to segment the ISV from

zebrafish images. The accuracy of the automatic segmentation of ISVs is determined

by the comparisons between manual segmentation and the automated. 30 randomly

chosen ISVs are manually segmented in the RGB color space, and compared. Vessels

are visually inspected by two users (fig. 6.1).

Accuracy, precision and recall measures and F-score are used to define error [41].

The error measures used are defined as follows:

Accuracy =
tp+ tn

(tp+ tn+ fp+ fn)
(6.1)

Precision =
tp

(tp+ fp)
(6.2)

Recall =
tp

(tp+ fn)
(6.3)
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F − score = 2 ∗ (Precision ∗Recall)
(Precision+Recall)

(6.4)

where tp is the number of true positives, tn is the true negatives count, fp is the

number of false positives and fn is the number of false negatives. The output of the

segmentation is a binary vector with the same size as the image. A true positive

is when output of our segmentation is 1 when manual users marked it as 1, a true

negative is when the output of the segmentation is 0 while the manual users labeled

it as 0, a false positive is when the output of the segmentation is 1 when users label

is 0, and a false negative is when the output of the segmentation is 0 while the

users label is 1. We used the above mentioned error to quantitate how close the

automated method is to manual segmentation. We have shown the results for 30

randomly chosen zebrafish ISVs by two users in fig. 6.2, 6.3, 6.4, and 6.5.

The average accuracy for the ISVs with manual users are 0.952 and 0.951. Av-

erage f-score for both users are 0.830 and 0.832. More detailed results are presented

in table 6.1. These results indicate that the automated segmentation is comparable

to that by manual segmentation.

Table 6.1: Segmentation results for ISV

Analysis User 1 User 2

Precision 0.847 0.839

Recall 0.826 0.828

Accuracy 0.952 0.951

F-score 0.834 0.830
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Figure 6.1: Comparison between automated segmentation and manual

segmentation by user1 and user2 of zebrafish embryos. (A) Segmented ISV (B)

Automated segmentation (C) user1 segmentation (D) user2 segmentation
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Figure 6.2: Our approach have an average precision of 0.83 and 0.84 with user1 and

user2.

Figure 6.3: Our approach have an average recall of 0.83 for both users.
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Figure 6.4: Our approach have an average f-score of 0.83 for both user.

Figure 6.5: Our approach have an average accuracy of 0.95 with user1 and user2.
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6.1.2 Toxicity impacts Intersegmental Vessels

To identify whether chemicals from ToxCast Phase I library are vascular disruptor

compounds (VDCs), 38 chemical are tested in a range of concentrations on zebrafish

embryos from 3 hpf to 72 hpf in a single static exposure. Typically, the chemicals

are tested from 100 nM to 20 µM. If the chemical exposures are lethal, lower and

narrower dosages are tested. Visual analysis showed changes in ISV morphology due

to chemical treatment. ISV abnormalities included the absence of ISV (fig. 6.6B),

or thin and underdeveloped ISV (fig. 6.6A, 6.6C, 6.6D). Quantitative image analysis

is performed on the vascular disruption in the ISVs.

Figure 6.6: Severity of toxins effect on zebrafish ISVs. High dosage can act as a

ISV disruptor, and these effects can be quantified in terms of ISV count; average

distance between ISV; total area of ISV; and an average ISV length. Figure 6.6A

shows an increment in ISV count, whereas fig. 6.6B shows decrement in ISV count.

Figure 6.6C, 6.6D embryos have small size ISV and occupy less area.

ISVs are first isolated from images using algorithm presented in section 3.3 from
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the whole embryo and measured for ISV length, ISV distance, number of ISVs and

ISV area. All terms are defined in pixels. We reported quantification results for

38 toxins. Previous research have shown the quantification terms used in this work

can be used to analyze toxicity effect in ISV [20], [53], [54]. Figure 6.7, and 6.8

shows with increasing toxins dosage, the ISV disruption becomes more prominent.

Average ISV count, average distance between ISV, average ISV area and an average

ISV length gradually decreases with increasing chemical dosage.

To aid HTS of ISV for toxicity, we utilized features quantification to train a lin-

ear SVM classifier to identify zebrafish embryo with morphological changes. Dataset

consists of 380 images of ISV. 190 images in the dataset did not show any abnormal-

ities, while the remaining 190 images shows morphological changes to the ISV due

to toxicity. Labels are visually obtained. We split the data into two parts. 1/3 of

data is used for parameter estimation for SVM and rest 2/3 is used for training and

testing. Parameters (C, γ) are determined based on a grid-search that is conducted

among C ε 2−10, 2−4, · · ·, 210 and γ ε 2−10, 2−4, · · ·, 210 with 3-fold cross-validation.

Using the parameter values that achieved the best cross-validation accuracy, we then

perform test on the remaining data set, using 3-fold cross-validation. The optimal C

and γ parameters are found to be 0.5 and 16, respectively, resulting in SVM model

classification accuracy of 93.03%.
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Figure 6.7: Plots for three chemicals with variable dosage in comparison too untreated embryo (0.1%). Each
column corresponds to different chemical. Within each column first plot shows variation in count ISV and

second plot shows Total area ISV.
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Figure 6.8: Plots for three chemicals with variable dosage in comparison too untreated embryo (0.1%). Each
column corresponds to different chemical. Within each column three plot shows variation in Average length

ISV; Average area ISV; Average distance ISV respectively.
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6.2 Toxicity impacts Caudal Vein Plexus

CVP analysis results are presented for entire zebrafish vasculature recorded from

the fluorescence microscope. We will present CVP analysis results using features

explained in section 4.2. We will empirically validate choice of parameters used for

analysis. Dataset consists of 180 images of various size (163× 55− 331× 150 pixels).

90 images in the dataset do not show any abnormalities, while the remaining 90

images show structural changes to the CVP due to toxicity effects (fig. 6.9 shows

the images of healthy and treated zebrafish embryo). Labels are visually obtained.

On similar lines ad CVP toxicity analysis We split the data into two parts. 1/3 of

data is used for parameter estimation and rest 2/3 is used for training and testing.

Parameters (C, γ) are determined based on a grid-search that is conducted among C

ε 2−10, 2−4, · · ·, 210 and γ ε 2−10, 2−4, · · ·, 210 with 3-fold cross-validation. Using the

parameter values that achieved the best cross-validation accuracy, we then test on

the remaining data set, using 3-fold cross-validation.

Figure 6.9: Image on left shows healthy CVP and on right is the CVP observed for
an embryo exposed to toxin. Loopy structure develops in CVP region for the

treated embryo.
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6.2.1 Gray Level Co-occurrence Matrix Analysis

Features energy, homogeneity, correlation, and contrast are calculated from each

image using GLCM representing our image. We computed results with varying d

ranging from 1-15. We obtain best results using d = 9. Table 6.2 shows comparison

between accuracies with varying d.

Table 6.2: Recognition results (%) for GLCM with varying d

d accuracy

1 73.02

2 71.42

3 80.15

4 76.19

5 76.91

6 79.36

7 80.95

8 76.98

9 80.95

11 75.39

12 80.74

13 80.95

14 78.57

15 80.57

The optimal C and γ parameters are found to be 65536 and 0.03, respectively,

resulting in SVM model classification accuracy of 80.95%.
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6.2.2 Histogram of Gradient Analysis

8 rectangular regions are tiled M/4×N/2 with no overlap. More tiles are made along

the image width as CVP occupies more region along width as compared to height.

To compare the effect of orientations, we generate histograms with orientation range

from [0, 360] and [0, 180]. Histograms with bin size K ranging from 5 to 10 are

evaluated. We got the best performance with bin size 6, 8, 9, 10 for [0, 360] orientation

(table 6.3 and 6.4). We choose bin size of 6 and orientation range as [0, 360]. Thus

the dimension of our feature is (6× (4× 2)) = 48. The optimal C and γ parameters

are found to be 16 and 0.5, respectively.

Table 6.3: Recognition results (%) for HOG with varying bin size K for [0, 360]
orientation

d 5 6 7 8 9 10

accuracy 90.47 92.06 92.00 92.06 92.06 92.06

Table 6.4: Recognition results (%) for HOG with varying bin size K for [0, 180]
orientation

d 5 6 7 8 9 10

accuracy 79.36 81.74 84.12 83.34 85.12 85.71

6.2.3 Co-occurrence of Histogram of Gradient Analysis

Similar to HOG, 8 rectangular regions are tiled M/4 × N/2 with no overlap. As

mentioned in 4.2.3 we obtain occurrence matrix for 31 offset. To compare the effect of
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orientations, we generate histograms with orientation range from [0, 360] and [0, 180].

Histograms with bin size K ranging from 5 to 10 are evaluated. We got a best

performance with bin size 8 for [0, 360] orientation (table 6.5 and 6.6). Final, feature

vector size is ((8× 8)× 30 + 8)× (4× 8) = 15424. The optimal C and γ parameters

are found to be 0.5 and 256, respectively.

Table 6.5: Recognition results (%) for Co-HOG with varying bin size K for [0, 360]
orientation

d 5 6 7 8 9 10

accuracy 92.44 92.44 92.40 92.86 92.85 92.85

Table 6.6: Recognition results (%) for Co-HOG with varying bin size K for [0, 180]
orientation

d 5 6 7 8 9 10

accuracy 83.33 85.71 83.33 85.71 86.5 82.53

6.2.4 Gradient Co-occurrence of Histogram of Gradient Anal-

ysis

Similar to HOG and Co-HOG, 8 rectangular regions are tiled M/4 × N/2 with no

overlap. As mentioned in 4.2.3 we obtain occurrence matrix for 31 offset. To compare

the effect of orientations, we generate histograms with orientation range from [0, 360]

and [0, 180]. Histograms with bin size K ranging from 5 to 10 are evaluated. We got

a best performance with bin size 8 for [0, 360] orientation (table 6.7 and 6.8). Final,
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feature vector size is ((8 × 8) × 30 + 8) × (4 × 8) = 15424. The optimal C and γ

parameters are found to be 0.5 and 128, respectively.

Table 6.7: Recognition results (%) for gCo-HOG with varying bin size K for
[0, 360] orientation

d 5 6 7 8 9 10

accuracy 93.65 91.26 93.66 94.44 92.85 92.85

Table 6.8: Recognition results (%) for gCo-HOG with varying bin size K for
[0, 180] orientation

d 5 6 7 8 9 10

accuracy 86.5 85.71 85.71 87.3 85.71 86.5

Experimental results in table 6.9 shows that our proposed descriptor gCo-HOG

outperforms the other two (HOG, Co-HOG) and has an accuracy of 94.44%.

Table 6.9: Recognition results (%) for descriptors with 360 orientation

gCo-HOG Co-HOG HOG

94.44 92.85 92.06

6.3 Toxicity Screening with ISV, CVP

Among so many chemicals that exist in the market, it is crucial to be able to identify

which chemicals can target the vasculature blood vessel development. Further, its
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imperative to determine safe dosage of chemicals, which does not impose harmful

effects on vasculature growth. In this section we will discuss about how number of

zebrafish showing abnormalities in ISV and CVP region increases with increasing

dosage. Our screening method analyzed 38 chemicals.

Toxicity screening uses the svm model derived from section 6.1 and 6.2 to study

the impact of different dosages on zebrafish. We retrain the model on all the 380

images for ISV (using morphological properties of ISV) and 180 images for CVP

(using proposed gCo-HOG). We tested both the models on 2039 zebrafish images. To

study the effects of malformations with increasing dosage and to be able to determine

safe dosage for chemicals, we defined the term abnormality rate as the ratio of number

of zebrafish embryos with abnormal growth based on proposed model to the total

number of embryos.

abnormality rate = no. of abnormal zebrafish / total no. of zebrafish

This term is calculated for each dosage for all chemicals. We calculated the

abnormality rate with both ISV, and CVP models. We can calculate safe dosage as

maximum dosage within each chemical dosage range with less than 0.1 abnormality

rate. The reason for allowing 0.1 deviation is, there are 20 images out of 2039, in

which zebrafish turned on its back during imaging.
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Figure 6.10: Abnormality rate for three chemicals on ISV. There is an increase in abnormality rate with increase

in dosage. 0.1% represents the untreated (control) zebrafish image.

Figure 6.11: Abnormality rate for three chemicals on CVP. There is an increase in abnormality rate with

increase in dosage. 0.1% represents the untreated (control) zebrafish image.
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Based on abnormality rate, we deduced out of 38 screened chemicals, our ISV

model identified 28 chemicals that severely (≥ 10% of embryos are impacted for each

dosage within each chemical) impacted ISV growth. Out of 28 chemicals impacting

ISV growth, 22 of them showed increasing abnormality rate with increasing dosage.

The remaining six chemicals did not show an increment in abnormality rate with

increasing dosage, but the effects are more sever at high dosages. Figure 6.10 shows

abnormality rate for three chemicals with increasing dosage. Its worth pointing out

that in some cases our model identified untreated zebrafish as unhealthy. Reasons

for the miss-classification is due to the imaging artifact.

On similar line as above, we computed abnormality rate for CVP analysis. 30

chemicals out of 38 severely (≥ 10% of embryos are impacted for each dosage within

each chemical) impacted development in CVP region. Out of 30 chemicals impacting

CVP, 15 showed increasing impacts on CVP with increasing dosage (in terms of

abnormality rate). Figure 6.11 shows abnormality rate for three chemicals with

increasing dosage.

A representation is illustrated to show what is the safe dosage for chemical based

on ISV and CVP based screening ( fig.6.12). Illustration 6.12 also tells us which

chemicals impacted ISV only, CVP only or both ISV and CVP. Moreover it tells

us the safe dosage for various chemicals used to treat zebrafish embryo. For 15

chemicals, we found exactly same safe dosage for both ISV and CVP.
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Figure 6.12: Figure tells us chemicals, which impact ISV only, CVP only, both ISV

and CVP. Safe dosage for each chemical for ISV and CVP region is also illustrated

in this plot. Each dosage is given in nano-molar (nm). Chemical with the blank

value, shows there is no impact due to toxicity for tested dosages.
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6.4 Vasculature Time - Series Analysis

The computational framework presented in section 4.3 is applied to quantify vascular

changes in both toxin treated and untreated zebrafish embryos. A uniform B-splines

control grid with spacing [20, 20], and 3 grid refinement levels are used. Totally,

7 embryos (5 untreated and 2 treated) are analyzed. Vascular growth is computed

using method described in section 4.3. Figure 6.13 shows the dynamics of blood vessel

growth in terms of average pixel change for untreated and arsenic treated embryos.

As seen in the figure, although the overall rate of growth is constant for both treated

and untreated embryos, the growth rate for untreated embryos is approximately 5

times higher.

Figure 6.14 shows the dynamics of blood vessel growth in terms of average pixel

change for each of the seven embryos analyzed. Pixel change measured in untreated

fish is represented by uexposed1 - uexposed5 and exposed1 - exposed2 shows pixel

change measured for arsenic exposed embryos.
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Figure 6.13: Blue curve shows average change in number of pixels over all the unexposed embryos whereas red
curve shows average pixel change for arsenic treated embryo.
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Figure 6.14: uexposed1 - uexposed5 represents change in number of pixels for unexposed embryos growth,
whereas exposed1 and exposed2 represents change in number of pixels for arsenic treated embryos.

93



Chapter 7

Conclusions and Perspectives

As the application of zebrafish in research is becoming more sought after, manual

analysis of images has become a bottleneck. This thesis has described a complete

framework for the segmentation, quantification, analysis and classification of ze-

brafish images for ISV and CVP. We also presented methods for ISV and CVP

quantification for applications not limited to toxicology analysis. Our results show

that ISV and CVP analysis can be used to capture the effect of vascular disruptors.

Roughly 80,000 industrial chemicals are registered on the US market, and very

few of them have been screened for disrupting properties. Thus, development of high

throughput screening models that can recognize impacts of toxicity can prove to be

very vital. The work presented in this thesis, paves the way for all existing research

which has been restricted by analyzing huge amount of data. In conclusion, this

work will directly impact the transition from qualitative observation to quantitative

measurement of zebrafish by not only providing effective segmentation, but also
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capturing effective dynamics.

7.1 Discussion and Limitations

Zebrafish being a versatile model, is used in analysis of many biological processes,

toxic analysis, and drug screening. Despite the potential of the zebrafish as a model,

the actual number of analysis reported is small, involving limited numbers of com-

pounds, with analysis performed manually. Many of the studies reported on ze-

brafish, focuses on ISV, and yet the research to segment and extract the features

from ISV has not taken a lift. The ISVs are particularly interesting because their

pattern appears to be established primarily, unlike other vessels such as those of

the yolk, brain or retina. Thus, ISVs can give us an initial pathway guidance for

capturing dynamics related to growth or environmental cues.

The key bottleneck restricting these analysis is quantification of the high-throughput

experiments, because there are few image analysis methods capable of capturing the

complexity ISV. The huge amount of data generated for analysis makes manual

analysis a time-inhibiting and error prone process subject to inter-observer varia-

tions. Computer-based image processing methods are the only viable way to analyze

and quantify the data. Current methods analyze images based on pixel information

and thresholding. These methods perform well on clearly resolved objects against

a uniform background but often struggle with images that possess information with

variable sizes, noise, and heterogeneity across images. This is exemplified in many

studies where zebrafish vascular became quantifiable only after manual identification
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or manual analysis.

In this work, we focus on developing an integrated image-processing methods to

analyze zebrafish embryos post chemical treatment. The pipeline consists of Seg-

mentation of the zebrafish embryo, Region Detection, ISV Extraction, and ISV re-

finement. We quantify extracted ISV to capture the effect of chemical treatment. A

critical issue with the quantitative analysis of zebrafish is that it should be invari-

ant to orientation of zebrafish, and it is highly desirable to have a description that

is invariant to noise, intensity and scales. Our algorithm takes care of this critical

issue.

ISV segmentation method perform reasonably well for noisy and blur data (fig.

7.1A and 7.1B). Our method does not perform well for very noisy and blurred ISV

(fig. 7.1A and 7.1B near the tail region). Also, ISVs shows immense variation in size.

They grow small and thin near the end points, as opposed to center as depicted in

figure 7.1D and thin again near head region. Our method is limited by very thin and

faded vessels. In figure 7.1D faded vessel does not show in our segmentation. Lastly

for figure 7.1C, since ISV curled around zebrafish head, we missed many vessels which

does not respond within direction parameters of our method.

Choice of our parameter effects ISV merging. ISVs remain disjoint is they do

not lie within parameter range. In order to negate the effect of direction restriction,

we also get response from ISV image in all direction as the probable ISV pixels.

Morphological closing operation is applied on direction based ISV and later merged

with direction free ISV response. This helps us merge vessels, but if there is no

response from direction free ISV, they remain unlinked.
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Figure 7.1: (A), (B) The vessels are more noisy and blurry (C) We lost ISV, due to

direction limitation opposed to in tail region. (D) ISVs occur in various sizes, with

weak boundary response. Vessels that does not produce a strong response during

eigenanlysis also gets excluded during segmentation. Overall, Our algorithm did

segmentation of most of ISV. Parameter selection for ISV response and merging

causes some loss in data.

The developed segmentation presents several advantages. Firstly, the parameters

are established directly from images so that user interaction is minimal. Secondly,

it is not iterative and it can be performed rapidly. Thirdly, this method performs

well for images with varied intensity profile and varied texture, orientation and size.

97



Hence, this method possesses the capacity to capture highly dynamic vessels, regard-

less of phenotype types that exhibit a wide range of morphologies.

We have presented method for segmentation and analysis for CVP. CVP segmen-

tation is based on prior knowledge about change in curvature around tail region.

If, our algorithm is not able to find point with the steepest change in curvature,

we assume the point where tail starts is the mid point of the curve tracing tail +

yolk region. High toxicity impacts the structure of zebrahish, hence perturbing tail

region. In those, cases we resort to mid point of curve, which does the good job

capturing CVP structure properties. But, it captures more then CVP region (fig.

7.2A, 7.2B, 7.2C).

Figure 7.2: (A), (B), (C) The tail vessel is structurally damaged due to high

dosage. We do get a good estimate of CVP region, but not exact. (D) We are able

to segment CVP region well.

7.2 Future Work

Segmentation

In terms of related work, there is a definitely a place for improvement of segmen-

tation of ISV and CVP. Some zebrafish curve around its head under the influence
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of chemicals. Peng et al. [47] proposed method to straighten curved worm based

on formulating the backbone of a worm as a parametric cubic spline defined by a

series of control points. This method, can be applied to backbone of zebrafish. This

method will improve both the ISV and CVP segmentation.

Features

Improvement in segmentation, will concurrently improve extracted features. For

CVP analysis fusion of morphological properties, with shape properties may im-

prove the classification accuracy. It will be interesting to be able to fuse model for

both ISV and CVP to study the toxicology effects and determine safe dosages from

chemicals. There is also a scope to be able to extend ISV and CVP analysis algo-

rithm for various other dimensions including 2D + t, 3D, 3D + t.

Applications

We have tested our algorithms for application in toxicology. It can be easily ex-

tended for drug screening, gene expression modification, or disease modeling. It will

be interesting to model affects of combinations of chemicals. Normally we think of

each chemical as having a separate toxic effect inside the body. When some chemical

combinations are present, do abnormalities occur at smaller dosages?
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