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Abstract

Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for

neuroprosthetics and assistive devices. Here we aim to investigate methods to com-

bine Electroencephalography (EEG) and Near-infrared Spectroscopy (NIRS) in an

asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4

di�erent executed and imagined movements: Right-arm, Left-arm, Right-hand, and

Left-hand tasks.

Previous studies demonstrated the bene�t of EEG-NIRS combination, without pro-

cessing the NIRS signal with online implementable methods for an asynchronous

paradigm. Since normally the NIRS hemodynamic response shows a long delay, we

investigated new features, involving slope indicators, in order to immediately de-

tect changes in the signals. Moreover, Common Spatial Patterns (CSPs) have been

applied to both EEG and NIRS signals. Fifteen healthy subjects took part in the

experiments, and, because 25 trials per class were available, CSPs have been reg-

ularized with information from the entire population of participants and optimized

using genetic algorithms.

Di�erent approaches have been investigated for feature extraction, classi�cation, and

signal association. The results showed that a hybrid EEG-NIRS approach enhances

the performance of EEG or NIRS separately. Better performances are achieved for

the motor execution paradigm, probably due to the subjects' inexperience in motor

imagery, despite the small dataset available.
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Chapter 1

Introduction

1.1 Project Presentation

The thesis is divided in 6 di�erent chapters, each one with a di�erent purpose. The

chapters can be read separately, but in order to have an overview of the work it is

suggested to go through the chapters sequentially. The present chapter explains how

the thesis is organized and gives a brief summary of the other chapters; moreover

it explains what is the aim of the work. Chapter 2 introduces the �eld in which

the present study is inserted. It explains what is a Brain-Computer Interface and

what is the state of the art in the literature. Chapter 3 deals in detail with the

methods used in the work, from the data acquisition to the data classi�cation and

evaluation passing through the signal processing. Chapter 4 presents the results of

the methods and tries to give a meaningful explanation in the context. Chapter 5

draws the conclusions and it discusses issues and problems as well as positive aspects
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and future development. Section 5.7 sums up the entire project and concludes the

thesis.

1.2 Aim of the Work

The aim of the work is mainly to develop the Brain-Computer Interface (BCI). At

the start of the project, in fact, there was no previous study on the topic, and the

main goal was to develop and implement the tools and programs to be able to collect,

analyze, and use the BCI. This included the design of the experimental setup and pro-

cedure, the development of the real-time feedback application for the data acquisition

part, and the investigation of di�erent methods to �nd the most suitable con�gura-

tion in which Electroencephalography (EEG) and Near-infrared Spectroscopy (NIRS)

can be combined to yield a robust BCI. The EEG-NIRS combination in the BCI �eld,

in fact, is poorly understood. One of the purposes of the project is to understand

whether a hybrid BCI including EEG and NIRS can be bene�cial and feasible. In

particular, the use the Common Spatial Patterns method, which has been widely

studied for EEG-based BCI, is applied for NIRS and compared to more standard

processing and feature extraction methods. Another key point of the project is the

use of a minimal experimental setup distributed only on the motor cortex, in order

to allow a faster setup in a possible product development and/or clinical translation.

With the same philosophy, the experimental procedure is also shortened, yielding a

small number of trials available for optimizing the classi�cation. The performance

and the applicability of the algorithms is therefore tested in a situation that could
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be assimilable to a clinical environment. Lastly, in the study both motor execution

and motor imagery are involved, and one of the aims is to understand whether no

experience in the latter is an important factor in the system performance, since none

of the participants have had ever before experienced motor imagery.
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Chapter 2

Background

The background chapter is divided as follows: section 2.1 introduces the basic con-

cepts and principles of Brain-Computer Interfacse, section 2.2 describes how the

motor cortex and the motor control work, sections 2.3 and 2.4 present an overview of

the recording systems used in the project, with particular focus on motor tasks, and

section 2.5 reviews the state-of-the-art about EEG-based, NIRS-based, and EEG-

NIRS-based Brain-Computer Interfaces.

2.1 Brain-Computer Interfaces

A Brain-Computer Interface (BCI) is a system that measures Central Nervous System

(CNS) activity and translates it into arti�cial commands to replace, restore, enhance,

supplement, or improve the natural CNS output [66].
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The CNS is the part of the nervous system that includes only the brain and

the spinal cord. Almost all BCI research has been focusing on measuring the signal

from the brain itself. The great challenge of Brain-Computer Interfaces is to manage

to decode brain activity without being invasive with the patient-user, i.e., acquiring

signals from outside the brain. Di�erent modalities of signals, representing and giving

information about various aspects of the complex activity of the CNS, can be used

for BCI purpose, such as signals measuring the electrical activity of populations of

neurons, the magnetic �elds induced by their activity, or the metabolic activity. The

di�erent modalities will be discussed in detail later on in this section.

Let us now make a step back in the past, to understand when, where, and how

everything began. In 1924, Professor Hans Berger from the university of Jena, Ger-

many, made an astonishing discover: the electrical activity of the brain could be

measured by electrodes placed on the scalp, without the need to surgically open

the scalp and place the electrodes right on the brain. Berger was inventing a new

and non-invasive way to investigate the brain activity and functions: the Electroen-

cephalography (EEG). Unfortunately, Berger's work, which culminated in several

articles on the use of EEG for clinical diagnosis (Berger 1929, [3]), was prematurely

shut down in 1938, when the German government forced him to an early retirement.

His pioneering work was starting to be internationally recognized from the scienti�c

community, and a young American neurophysiologist, Hebert Jasper, exported the

EEG technique for the �rst time in the USA in 1935. Jasper was so thankful to

Berger's work, that in 1938, just before WWII, he expressed his holiday greetings to

the German neurologist with the drawing shown in Figure 2.1. The drawing can be
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Figure 2.1: Herbert Jasper's drawing to Hans Berger, an early idea of BCI.

interpreted as a very early Brain-Computer Interface: brain signals, in fact, �ow out

from the head and are interpreted and translated in another arti�cial output, such

as the English language.

Although the idea of interfacing the human brain with a computer or a machine

was certainly earlier, the �rst appearance of the term Brain-Computer Interface was

in 1977, coined by Jacques Vidal [62, 61]. In his works, Vidal used VEPs (Visual

Evoked Potentials) to determine the direction of the gaze, with the purpose of control-

ling a cursor. Throughout the years, the term Brain-Computer Interface has been

juxaposed with the term Brain-Machine Interface (BMI). This term was initially

used to indicate direct cortical stimulation [21]; later it started to refer to systems

that control external machines from cortical activity recorded from implanted mi-

croelectrodes [9]. At present the two terms (BCI and BMI) are considered synonyms

and they are completely interchangeable. In this work, the word Brain-Computer

Interface will be used, because it suggests a wider range of applications and more

�exibility (the word machine seems too static with respect to the idea of computer).

BCI can be furtherly classi�ed depending on their implementation:
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Dependent/Independent: A dependent BCI uses signals that depends on a natu-

ral CNS output, for example muscular activity. An independent BCI, instead,

uses signals that do not produce a CNS output, e.g., motor imagery or attention

level [69].

Hybrid: A hybrid BCI uses di�erent kind of brain signals. The term is not limited

to those BCIs that use di�erent modalities (e.g., EEG + NIRS or EEG + Mag-

netoencefalography), but it can also identify BCIs that use the same modality,

in two diverse ways, for example an EEG-based BCI that produces its output

from Sensory Motor Rhythms (SMRs) and Visual Evoked Potentials (VEPs).

Synchronous/Asynchronous: A synchronous BCI is not self-paced and the user

can communicate with the BCI only in de�ned time frames, which are usually

indicated by either visual or acoustic cues. On the other hand an asynchronous

BCI does not require external cues and the user can communicate with it every

time.

With this classi�cations, the aim of this work expressed in section 1.2 can be re-

formulated. For motor execution the BCI would be dependent, hybrid, and syn-

chronous, while for motor imagery it can be de�ned as independent, hybrid, and

synchronous. The only di�erence between the two paradigms is in the dependency

of the output command on natural CNS output.

How do Brain Compute Interface work? How can they translate the user men-

tal states into application commands? A BCI, �rst of all, must have four di�erent

components. It has to measure brain activity, it has to provide feedback, it has to
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be real-time, and it must be intentional [17]. While the �rst three components are

milestones of a BCI system, the intentionality can be argued. In fact, some consider

a BCI also a so called passive system that does not require an intention by the user,

but is based only on its state (e.g., an automatic brake system for lack of driver's

attention). On the contrary, active BCI provide control and communication [17]. To

understand how a BCI works, let us use Fig. 2.2 and 2.3 as support. Fig. 2.2 shows

a general scheme of a Brain-Computer Interface: brain signals are acquired and pro-

cessed in real-time. The processing consists of a pre-processing part (usually �ltering

and normalization) and a feature extraction step, that extracts particular character-

istics from the signals, that are used by the translation algorithm to produce outputs

to command and application, e.g., a computer program, a wheelchair or the grasping

of a robotic hand. While Fig. 2.2 only show the �nal use of a BCI, i.e., the online

or feedback application, in order to develop the algorithms to output the commands

(translation algorithms) another phase is needed: the training or calibration phase.

The translation algorithm, in fact, is usually a classi�cation or regression algorithm

that needs to learn the patterns and characteristics of the data in order to produce

new output once it is presented new data. This kind of machine learning algorithms

fall in the category of supervised learning methods, because they need a set of good or

right examples to understand what is the best model to produce the desired output

(the examples). For a better understanding of the process, Fig. 2.3 shows the two

di�erent phases of the supervised learning paradigm applied to an EEG-based BCI.

The calibration phase precedes the feedback phase on a temporal line. First of all, for

the training of the classi�er/translation algorithm, the subject must perform a series
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Figure 2.2: Basic design and operation of a Brain-Computer Interface: brain signals
are acquired and processed. Then features are extracted from them and a translation
algorithm is used to output commads to a device from the feature set. (Figure taken
from [69]).

of tasks multiple times (in this case left- and right-hand motor imagery), to build the

so called training set used to learn the patterns in the signals. From the classi�ed

trials (examples), signals features are extracted, e.g., powers in di�erent frequency

bands or variances of di�erent channels. The machine learning algorithm creates a

model, or more generically a set of rules, that maps the distributions of these fea-

tures into outputs that minimizes the errors between the right examples provided

(in the �gure left-hand imagination is class -1, while right-hand is class +1) and the

algorithm outputs. Once the algorithm is trained, it can be used for the real-time

feedback application: from new brain signals features are extracted and used by the

trained classi�er to output commands to an application. The application itself will

be the medium through which the loop between the user and the BCI is closed.
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Figure 2.3: Detailed scheme of the supervised learning paradigm applied to an EEG-
based BCI: in the calibration phase, the classi�er is trained using the training data.
The classi�er is then used in the feedback phase to compute new outputs given new
EEG signals. (Figure taken from [5]).

As far as the possible use of BCIs, the applications are diverse. As stated in the

de�nition given at the very beginning of this section, the BCI output could serve

as replacement, restoration, enhancement, supplement, or improvement. Let's give

some concrete examples of BCI for all these possible purposes [66]:

Replacement: A BCI could serve as replacement for lost natural functionalities

and output due to impairment or injuries. An example could be the use of a

BCI to control the direction of a wheelchair in disabled people or one to select

letters and compose sentences for a person who can no longer talk.

Restoration: Although restoration and replacement might seem quite alike, they

are slightly di�erent. In fact, as explained above, while a BCI could replace a

lost function with a completely arti�cial device such as a wheelchair, it could
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also restore a function no longer accessible, e.g., arm movements in a paralyzed

person, by triggering an electrical stimulation of the muscles. In this case the

functionality of the arm itself would be restored by intervening on the limb

directly, without the use of a completely and external device.

Enhancement: A BCI could enhance capabilities already present in a person. Think

about a very demanding task such as driving for a long distance: in this perspec-

tive a BCI could be used to detect a lack of attention in the driver, preventing

an accident. The BCI would augment the performance of the person in the

task.

Supplement: A supplement to the natural CNS output could be given by means

of a BCI. In this sense, the BCI would add further capabilities to the natural

muscular output: for example one could control an external robotic arm with

the brain and use it in combination with his/her natural arms.

Improvement: It has been proven that rehabilitation success (e.g., in stroke pa-

tients) is higher when the patient actively participate in the physiotherapy

sessions by thinking of moving his/her impaired arm, for example, while the

physiotherapist actually moves it [69]. This tends to augment and facilitate

the rehabilitation of the neural pathway due to the high plasticity of the neu-

ral system. In this framework, a BCI could be used to improve the outcome

of a rehabilitative process by triggering the onset of an orthotic device when

the patient thinks of the movement or by activating a Functional Electrical

Stimulation (FES) on the impaired arm.
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The BCI research, given all the possible and useful applications just described, is

a fast-growing �eld that could and will help many people in improving their life

conditions. Apart from the biomedical uses, which mainly fall in the categories of

replacement, restoration, and improvement, in the last decades BCIs have been also

targeting a wider range of potiential users, overall with the purposes of enhancement

and supplement. They are starting to be accessible and low cost and they will

probably be the new hi-tech trend of the years to come, for example for videogames

and home automation. Probably, in a not-too-far future, we will be able to interact

with virtual realities and to switch on and o� the living room lights only with our

thoughts.

After this ex-cursus with a future perspective, let us go back to the BCI system.

The main complexity of interfacing a computer with a human brain is probably the

fact that we are dealing with really highly plastic and adaptive systems, that can pos-

sibly learn one another. This is a key concept in the BCI �eld: the computer learns

the user brain activity and how to map it in output commands; the user, during the

real-time use of the system, learns to improve his/her performance through the BCI

feedback [67]. This mutual adaptation makes it very di�cult to evaluate the actual

performance of a BCI. In fact, for the reasons expressed before, a static evaluation

of the system, such as the accuracy of the classi�er (right outputs / total outputs),

is not enough, and it should be accompanied by an online evaluation not only in

terms of accuracy, but also in terms of time, of subject satisfaction and improvement

through the use. A global evaluation that takes into account all these possible factors

and variables is usually very time consuming and di�cult to perform. On the other
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hand, a static evaluation is clearly the base of the BCI e�ectiveness, and it can be

seen as a quantitative starting point to improve the user BCI performance. A metric

that is usually suitable to evaluate many aspects of a BCI system is the Information

Transfer Rate (ITR), that depends on the number of classes used, on the time needed

to classify, and on the classi�cation accuracy [5]. ITR is measured in bits/minute,

and it actually indicate the amount of information that a user can communicate to

the BCI system in a minute.

All Brain-Computer Interfaces start from the same point: acquiring or measuring

brain activity. The measurement of brain activity can be done in many ways, di�ering

from each other in terms of technology, invasiveness, and nature of the recorded

signals. Brain activity can be measured from three di�erent aspects: as electrical,

magnetic, and metabolic activity. The �rst one is the result of billions of neurons

that talk to each other through action potentials or spikes which have an electric

nature: they are �ows of ions, which makes the de�nition of electric current. The

global electrical and highly dynamic activity, for the well-known relation between

electrical and magnetic �elds (Gauss - Faraday-Neumann laws) can be recorded also

by looking at the magnetic �elds produced by this activity. Whereas electrical and

magnetic activity are extremely connected and correlated, the metabolic activity

represents a completely di�erent phenomenon: the consumption of energy from the

brain. Usually the metabolism is measured through bio-markers, for example one can

measure the concentration of hemoglobin, which is the carrier of oxygen in blood, in a

region of the brain and relate it to the actual energy consumption of that region. The
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following will give a quick and concise review of the di�erent techniques to measure

brain activity in its many natures.

As far as electrical activity, electroencephalography (EEG) has been introduced

and will be treated in detail in subsection 2.3. More invasive techniques allow us

to obtain higher quality signals in terms of Signal-to-Noise Ratio (SNR) and spatial

resolution. The electrocorticogram (ECoG) uses a grid of electrodes placed just above

the cortex on the arachnoid, and the scalp must be surgically opened. ECoG can

acquire signals from a huge portion of the brain with a relatively high spatial reso-

lution (2-10 mm). The most invasive technique to measure electrical activity of the

brain is the Local Field Potential (LFP) recordings: LFPs are microlevel phenomena

recorded within the cortex by microelectrodes inserted inside the brain. In partic-

ular, LFPs can record the synaptic activity of neurons within ∼1 mm and action

potentials within ∼0.1 mm from the electrode tip [66]. Although their extremely

high spatial resolution, it would be di�cult to cover large areas of the brain using

LFPs, and for this reason they are minimally used for BCI purposes.

The recording of the magnetic activity of the brain is called Magnetoencefalogra-

phy (MEG). The main advantage of MEG with respect to EEG (here we compare

MEG with EEG because of their non-invasive nature) is that the skull and other

tissues separating the brain from the outside are transparent to magnetic �elds; how-

ever, the orientation of magnetic sources play an important role making the MEG

sensor selectively sensitive to sources of di�erent orientations.
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Metabolic or functional activity can be recorded through three di�erent tech-

niques: Positron Emission Tomography (PET), functional Magnetic Risonance Imag-

ing (fMRI) and Near-infrared Spectroscopy (NIRS) (the latter will be discussed in

detail in section 2.4). Due to its very low temporal resolution (∼1 frame every 40

s), cumbersomeness, and cost, PET has not been targeted as a possible BCI sig-

nal acquisition system. fMRI use for BCI applications could be feasible in terms of

temporal resolution, on the order of 1 s, but it is de�nitely prohibitive for the non-

portability and cost of the system. The only suitable metabolic signal that satis�es

the BCI requirements for temporal resolution and portability is the NIRS, which will

be discussed in detail in section 2.4.

The next section introduces the basic mechanisms involved in motor control which

modulate the non-invasive measurements that are used in the current work.

2.2 Motor Control and Motor Cortex

The development of the BCI described in this work relies on motor-related brain

activity. This section has the purpose of introducing some general concepts about

the complex and not entirely understood neural mechanisms underlying motor tasks.

First of all, Fig. 2.4 shows the actors mainly involved in motor control. M1, colored

in green, is the primary motor cortex and it has been identi�ed and studied since 1870,

when Eduard Hitzig and Gustav Fritsch discovered that the electrical stimulation of

that part of the cortex resulted in the movement of controlateral parts of the body

[66]. M1 is the main area (primary) involved in motor execution, but other areas,
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such as the Premotor Cortex (PMC), the Supplementary Motor Area (SMA), the

Posterior Parietal Cortex (PPC), and somehow the primary Somatosensory cortex

(S1) actively participate in the motor control process.

Figure 2.4: Motor cortex areas involved in motor control: M1 - Primary Motor Cor-
tex, PMC - Pre Motor Cortex, SMA - Supplementary Motor Area, PPC - Posterior
Parietal Cortex, and S1 - Primary Sensorymotor Cortex.

One of the most important discoveries about how the motor cortex functionality

was made by Pen�eld, a pioneer neurosurgeon who mapped for the �rst time the

somatotopic organization of the primary motor cortex [41]. His studies led to the

familiar Pen�eld's (or motor) homunculus, displayed in Fig. 2.5. The areas devoted

to control more complex parts of the body, such as hands or the face, are spatially

more extended than others mapped for easier motor control functions, like the leg or

the arm (made up of a less number of bigger muscles). The somatotopic organization

of M1, though, is not as simple as depicted in Pen�eld's homunculus. More accurate

cortical maps were obtained later, e.g., by Park et al. [39], using microstimulation
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of the primary cortex in monkey. They demonstrated that di�erent areas of M1 are

involved in the control of distal and proximal parts of limbs and body parts. For

the aim of this study, because non-invasive brain imaging cannot detect such small

spatial features, as explained in sections 2.3 and 2.4, Pen�eld's homunculus can be

considered an appropriate model to deal with the somatotopicity of the motor cortex.

Figure 2.5: Pen�eld's homunculus. The drawing shows how the primary motor
cortex (M1) is somatotopically organized, i.e., di�erent motor cortex areas map the
movements of di�erent body parts.

Motor control has been widely studied, mainly through spike recordings and

neuronal �ring rates, which carry the information of when and to what extent a

neuron �res action potentials, i.e., communicates with other neural circuits. By

investigating the associations and response of neurons in di�erent cortical locations,

many aspects of motor control have been understood and the role of di�erent motor

areas have been identi�ed. Of course, due to the complexity of brain connectivity

and neural circuits, many aspects of motor control are still unknown, but an overview

of the basic mechanisms involved in the control of movements can be outlined.
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Motor control can be seen as a set of functions that are hierarchically organized

and performed in series. The hierarchy concept can be treated having in mind four

di�erent dimensions: time, encoding, complexity, and source [66].

� The time dimension usually refers to the di�erence between planning and ex-

ecution of a movement. Straightforwardly, planning precedes execution on the

time scale, and di�erent motor areas are involved: planning mainly takes place

in the PMC, while execution is caused by activation in M1. Under the hierar-

chical point of view, therefore, PMC precedes M1 in the time dimension.

� The encoding dimension represents the level of abstraction in which a move-

ment is described. For example, a movement can be thought as a target po-

sition, or, in a less abstract way, as a set of movement to reach that position,

or, in the most concrete view, as a precise sequence of muscular contraction

to achieve the di�erent movements to reach that position. M1 neurons en-

code the kinematics of a movement [12], i.e., the position of the di�erent joints

and its derivatives (velocity and acceleration), as well as the direction of the

movement (M1 are directionally tuned, i.e., their �ring rate is higher when a

movement is performed in a certain direction [16]). The PMC, instead, ap-

pears to be involved more in the target location rather than kinematic and

dynamic aspects of the movements [2]. Also in the encoding dimension PMC

hierarchically precedes M1.

� The complexity dimension refers to the di�erences between simple and com-

plex movements. A complex movement can be seen as a sequence of simpler
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movements performed in series, but it is not always the case. Sometimes a com-

plex movement requires a higher level control because an elementary movement

could a�ect the execution of another one. Complex movements, therefore, are

thought to be controlled by specialized neural circuits that coordinate and

connect many simple movements. One of the main area involved in complex

movement execution and coordination is the SMA.

� The source dimension indicates the di�erence between an internal or an exter-

nal initiation of a movement. For example, a pianist can play reading the music

(external initiation) or by heart (internal initiation). Experimental evidence

suggest that when the initiation is internal, that is completely volitional, the

SMA is the main area involved, whereas when the movement is external, the

PMC plays an important role [31]. It is interesting to observe how neurons

belonging to M1, which are more involved in the execution of the movement,

do not di�erentiate between internally and externally generated movements,

providing support for the fact that M1 succeed both PMC and SMA in the

hierarchical organization.

PPC and S1 areas have not been mentioned yet. The PPC contains areas devoted

to the visual information processing, and it is involved in associating stimuli coming

from di�erent sensory inputs. This activity is strictly related to motor control, for

example in the feed-forward mechanisms that adjusts the movements in order to

catch a �ying object perceived by the visual system. The S1 is important for motor

control mainly because of the proprioception system, which consists of muscle spin-

dles and Golgi tendon organs, and informs the CNS about the kinematics (position,
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velocity, and acceleration) and dynamics (load and torques) of the di�erent body

parts. Proprioception is clearly extremely important in motor control mainly for its

feedback.

Motor control, as described so far, appears as a set of articulated mechanisms that

can be seen from di�erent perspectives. Nevertheless, the cortical activities which

have been treated are not accessible with non-invasive measurements techniques.

The next two sections describe the Electroencephalography and Near-infrared Spec-

troscopy techniques, with particular interest in how the over described motor control

mechanisms are projected and related to the measured activity.

2.3 EEG (Electroencephalography)

EEG, as introduced brie�y in 2.1, is a medical imaging technique that reads scalp

electrical activity generated by brain structures. Electroencephalography is de�ned

as the electrical activity recorded from the scalp surface after being picked up by

metal electrodes and conductive media [34]. The electrical activity measured on

the scalp is hypothesized to be generated by changes in the membrane potentials of

somas of large populations of pyramidal cortical neurons, which can be excitatory

(EPSP - Excitatory Post Synaptic Potential) or inhibitory (IPSP - Inhibitory Post

Synaptic Potential). The modulation of a post-synaptic neuron body would not be

detectable from scalp recording. The oscillations of EEG signals must derive from

the synchronous activity of tens of thousands of neurons [36].

EEG signals represent the di�erence in potential between two electrodes, an active
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electrode and the so-called reference electrode. The electrode placement adhere to a

standard that was �rst introduced by Jasper in 1958, the 10-20 system [20]. The name

recalls the fact that electrode locations are determined by measuring the distance

between two �duciary points, nasion and inion, and dividing it in portions of 10% and

20%, as shown in Fig. 2.6. The original 10-20 locations allows the placement of 19

electrodes homogeneously distributed on the scalp. More recently, the international

10-20 con�guration has been extended (American Electroencephalography Society,

1991 [52]) to the 10-10 system, which allows a larger number of electrodes, as shown

in Fig. 2.6, panel C.

Figure 2.6: A: lateral view of 10-20 system electrode placement; B: top view of 10-20
system electrode placement; C: top view of electrode locations for the extended 10-10
standard con�guration.
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The �normal� EEG signal is usually composed of di�erent brain waves that can be

observed by means of spectral analysis. Some of those rhythms are so prevalent that

they can also be observed from raw EEG signals, such as α activity, that can be, in

most of cases, easily detected when subjects relax and close their eyes. Brain waves

are classi�ed depending on their frequency. Usually, for EEG, 5 di�erent waves can

be recognized: δ-band (1-4 Hz), θ-band (4-8 Hz), α-band (8-13 Hz), β-band (13-30

Hz), and γ-band (30-50 Hz).

Another identi�ed rhythm, which is extremely important for sensorimotor mod-

ulations, is the µ rhythm. µ rhythm is between 8-12 Hz and it is located mainly

over the motor cortex. It was �rst identi�ed by Chatrian in 1959 [6], who called it

wicket rhythm and observed that it is desynchronized during movement. The other

important rhythm that is recognized as a Sensory Motor Rhythm (SMR), in EEG

recordings, is the β rhythm. The blockage of a rhythm due to a motor task is usually

addressed as Event Related Desynchronization (ERD), while the reappearance of the

activity when the movement is ceased is known as Event Related Synchronization

(ERS). SMR are modulated during motor execution, as well as during motor imagery

[45]: in particular, prior to the movements, ERDs start in the controlateral areas,

and then they spread and become bilaterally symmetrical during the execution of the

movement [54]. This symmetry in the brain response to motor tasks makes it very

challenging to detect the side of the movements in BCI applications, and it requires

complex methods and algorithm to enhance the di�erences. Moreover, as shown in

[17], motor imagery is a skill that takes a while to be learnt (in best cases 1 to 4

hours of practice are needed to achieve an acceptable performance).
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Synchronization and desynchronization of EEG signals, measured on the scalp,

re�ect the activity of a large number of neurons, and they seem very di�erent from

the neural activity presented in section 2.2. Due to the volume conduction of the

issues between the cortex, i.e., the main source of the activity captured by EEG, and

the EEG electrodes, such as cerebro-spinal �uid, skull, and scalp (skin), the activity

measured on the scalp is only a small and blurry portion of the underlying current

sources generated in the cortex, and in this macro-scale the meaningful information

that can be recorded is represented by large neuronal population �ring synchronously

and resulting in the previously described rhythms (or bands).

2.4 NIRS (Near-infrared Spectroscopy)

NIRS is an imaging technique involving the use of continuous light to non-invasively

investigate brain tissue oxygenation. In other words, NIRS measures the changes

in the concentration of oxygenated (HbO) and deoxygenated (HbR) hemoglobin.

Hemoglobin is one of the most important protein in humans. It is contained in

red blood cells and its role is to bind with oxygen molecules and deliver it to the

di�erent parts of the body. Oxygen is then used to produce energy, and therefore

the measurement of the hemoglobin concentration can be correlated to the metabolic

activity. NIRS is a spectroscopy technique, as the name suggests, and it estimates the

hemoglobin concentration by lighting the investigated tissue with red and infra-red

light and detecting the light intensity after it traversed the tissue.

The principle on which NIRS is based relies on the fact that the hemoglobin
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interacts with light in a di�erent way depending on its oxygenation. In a homogeneus

medium, the attenuation of light is expressed by the Beer-Lambert Law [64], which

states that the attenuation for the i-th chromophore Ai [unitless], de�ned as the

logarithm to the base 10 of the input light, and the output light power (Io and

I), is proportional to the concentration of the absorbing molecule ci [M], its molar

extinction coe�cient εi [M
−1cm−1], and the optical path length l [cm] (considered

linear):

Ai = log10(
I0

I
) = ciεil (2.1)

The assumptions for applying Beer-Lambert Law, i.e., homogeneous medium and

linear optical path, are not satis�ed in case of NIRS, because the tissues traversed

by light from the source to the detector is highly heterogeneous and the optical path

length is not linear but it has a banana shape, as shown in Fig. 2.7a. Therefore,

a modi�cation of the Beer-Lambert Law has been introduced, and it is addressed

as Modi�ed Beer-Lambert Law (MBLL) [64]. MBLL makes use of two corrective

factors, DPF [unitless] that accounts for the increased length traveled by light, and

G [unitless], which is a scattering dependent parameter (for further information on

tissue optics refer to [64] and [11]). The MBLL, though, only corrects for the non-

linear path length, but it still assumes a homogeneous medium. The MBLL, at time

t and for wavelength λ, can be written as:

A(t, λ) = log10(
I0(t, λ)

I(t, λ)
) =

∑
i

εi(λ)ci(t)DPF (λ)d+G(λ) (2.2)
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where εi and ci are the wavelength-dependent molar extinction coe�cient and con-

centration for chromophore i (i can be either oxy- or deoxy hemoglobin), and d is

the source-detector distance. G can be assumed time-invariant, since the change in

scattering can be neglected when compared with changes in absorption. Therefore,

when considering the change of attenuation ∆A between the initial time point t0 and

a time point t1the factor G(λ) is canceled out [50]:

∆A(∆t, λ) = log10(
I(t0, λ)

I(t1, λ)
) =

∑
i

εi(λ)∆ciDPF (λ)d (2.3)

where ∆ci = ci(t1) − ci(t0). The non-homogeneity of the tissues traversed by light,

though, causes an error in the quanti�cation of the concentration of chromophores.

For many applications of NIRS, including the one described in this work, an exact

quanti�cation of HbO and HbR concentration is not necessary, but only the trends

of the signals are needed.

The last step involved in the estimation of HbO and HbR concentration relies

on the fact that the molar extinction coe�cient ε is wavelength dependent and it is

di�erent between HbO and HbR (εHbO and εHbR). As shown in Fig. 2.7b, by sampling

the attenuation at two di�erent wavelengths, usually one in the red spectrum (around

700 nm) and the other one in the infra-red spectrum (around 900 nm), a linear

system of two equations and two unknowns can be obtained (one equation for each

wavelength, λ1and λ2, unknowns are ∆cHbO and ∆cHbR):
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(a) (b)

Figure 2.7: (a) Scheme of the banana shape optical path that light travels from source
(Emitter Optode) and detector (Receiver Optode). (b) Molar extinction coe�cient
in function of light wavelength (ε) for oxy- and deoxy- hemoglobin, red and blue line
respectively.

 ∆A(λ1)

∆A(λ2)

 = d

 εHbO(λ1)DPF (λ1) εHbR(λ1)DPF (λ1)

εHbO(λ2)DPF (λ2) εHbR(λ2)DPF (λ2)


 ∆cHbO

∆cHbR


and ∆cHbO and ∆cHbR are computed by solving the system. The solution with respect

to ∆cHbO and ∆cHbR is Eq. 2.4, and it is used to compute the actual estimation of

HbO and HbR changes in concentration.

 ∆cHbO

∆cHbR

 = d−1

 εHbO(λ1) εHbR(λ1)

εHbO(λ2) εHbR(λ2)


−1  ∆A(λ1)/DPF (λ1)

∆A(λ2)/DPF (λ2)

 (2.4)

As far as motor-related changes in NIRS signals, the activation of a motor cortical

area certainly results in a hemodynamic change, revealed by the estimation of HbO
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and HbR concentration. Nevertheless, the actual contribution of cortical vessels in

NIRS signal is a wider and more complex topic, because light, before reaching the

cortical blood vessels, passes through other non-cortical vascularized tissues (such

as skin and pial veins, located above the surface of the cerebral cortex), which con-

tribute to the detected changes. However, NIRS-fMRI combined studies conducted

on motor-related activity, such as [56, 14], showed a high correlation between NIRS

signals and blood-oxygenation level-dependent (BOLD) fMRI images, con�rming

that NIRS can be used with the purpose of detecting changes in the hemodynamic

response due to motor areas activation.

2.5 State-of-the-art

This section presents an overview of the past and current research involving SMR-

based BCI. Other BCI paradigms exist and are used, but since the BCI development

in this project can be considered SMR-based, only the state of the art about this

approach is covered. For a wider overview on BCI methods and approaches refer to

[68, 60].

This section separately treats EEG-based, NIRS-based, and EEG-NIRS-based

BCI. EEG is the oldest measuring technique for BCI and the literature about it is

huge. In the following subsection the review is particularly focused on the methods

used to process and classify the signals.
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2.5.1 EEG-based BCI

EEG is the most common and well established approach to BCI. Many di�erent

studies have been conducted throughout the last decades, and currently EEG seems

to be the most suitable uni-modal approach to develop high performance BCI due to

its high temporal resolution. The low spatial resolution problem is tackled by means

of di�erent techniques that allow us to increase the Signal-to-Noise Ratio (SNR)

of the signals, managing to achieve high accuracy and performances. Nevertheless,

several variables must be considered to describe a BCI. The �rst great di�erence

among BCI studies is about the paradigm involved in the motor tasks, which can be

either motor execution or motor imagery. In the latter case, as explained in section

2.3, the experience of the subjects should also be taken into account. Other factors

are the number of classes involved in the classi�cation (binary or multi-class), the

number of trials per class that are used for training, the experimental design, the

signal processing involved, the classi�cation methods, and the performance of the

system, which can be expressed as accuracy or Information Transfer Rate. Since a

detailed and comprehensive review including all this aspects would be too wide and

inadequate for the purpose of this work, here particular focus is given to the signal

processing methods applied to separate the di�erent classes. It should be emphasized

that signal processing and classi�cation methods are greatly correlated, in the sense

that their choice is not independent, but often a certain analysis method calls for a

speci�c classi�cation approach. Due to the previously described ERD/ERS and the

somatotopical distribution of motor related activity, most of the methods presented

in various ways extract features that represent the frequency, time-frequency, and
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spatial contents of EEG signals from di�erent channels.

The �rst approach describes the frequency-content of each measurement channel

with auto-regressive (AR) estimates of signal spectra. AR estimate is a parametric

method to compute the power spectrum of a signal and to represent it with a small

number of coe�cients, which are then used to extract features to classify the signals

as in [42]. A more sophisticated approach derived by AR, implemented in [46] and

[43], involves the adaptive estimation of AR coe�cients (AAR) by means of Kalman

�lter.

Another approach used for EEG processing is wavelets. The Wavelet Transform

(WT) projects the signal on a family of frequency bands either continuous (CWT)

or discrete (DWT). WT allows to represent the signal in a time-frequency represen-

tation, which is clearly bene�cial in the detection of ERD/ERS patterns. Wavelet

approaches can vary regarding feature extraction, selection, and classi�cation meth-

ods, as shown in [18], [65], and [70].

The third most common method to classify EEG signals related to di�erent motor

tasks makes use of Common Spatial Patterns (CSPs). CSPs are used in this project

with a regularization approach and are described in detail in the Methods chapter,

section 3.2.2. Brie�y, CSPs act overall in on the spatial content of the signals,

optimizing linear spatial �lters to maximize the separability between classes. CSPs

have been widely used in SMR-based BCI, for example in [30], [44], and [5]. The latter

work presents an exhaustive and complete description and review of the method.

Every methodology over described has advantages and disadvantages, and it
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should usually be considered the general framework of the study, including all the

variables named at the beginning of this section, in order to fully appreciate and

evaluate each of the methods. Whereas for EEG the literature is rich and full of well

established and interesting approaches, for NIRS-based BCI the state-of-the-art is

much more circumscribed, due to the NIRS late appearance as communication sys-

tem for BCIs. The following subsection reviews the studies performed in NIRS-based

BCI involving motor-related tasks.

2.5.2 NIRS-based BCI

The �rst study investigating the use of NIRS for BCI was made by Coyle et al. in 2004

[7], followed by another one in 2007 by the same authors [8]. The two studies are very

similar regarding the instrumentation and the experimental procedure. In particular,

in [7] a single NIRS channel centered on C3 position of the EEG 10-20 system (see

Fig. 2.6) was used to detect hand motor imagery, while in [8], two channels were

placed in correspondence of C3 and C4 with 3 healthy subjects involved. Online

feedback based on previous hand-gripping execution tasks was given to the subjects

to enhance the performance. The Mindswitch paradigm allowed the user to select

or not a particular goal (on-o�). NIRS signals, in particular HbO, showed a peak in

the response around 5-8 s, making the response quite slow for BCI purposes, despite

the overall good accuracy (75% on average in [7] and around 80% in [8]). These two

papers represented an important incentive in the consideration of NIRS for BCIs,

but they certainly had the limitation of performing only a binary on-o� classi�cation

between rest and an unde�ned motor imagery task.
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In 2007, Sitaram et al. [53], studied the use of NIRS for the classi�cation of

right-left motor imagery on 5 healthy subjects. Using 20 measurement channels,

they performed an o�ine analysis, in which a feature vector was extracted from

every 10 s trial, and they managed to classify right and left motor imagery with

an average accuracy of 73%, using Support Vector Machine (SVM), and 89% using

Hidden Markov Model (HMM). Clearly, since the construction of the feature vector

was done using an 8 s interval after the stimulus onset, the main drawback of this

approach would be its long delay in a real-time performance, for which the time

factor is extremely important. On the other hand, they managed to recognize with

particularly high accuracy the laterality of the motor imagery.

Kanoh et al. in 2009 [22] investigated the changes in mental strategies involved

right-hand motor imagery sessions performed in 5 consecutive days. They used a

feedback based on the average concentration of HbO on 3 measurement channels

(around C3, Cz, and C4), and they showed how the feedback becomes more robust

as the three subjects used the online system. They also observed that the spatial

distribution of HbO concentration (visualized with 52 channels) presents di�erences

before and after training. Despite the interesting conclusions, the article cannot be

considered as a comprehensive BCI study, but it focused on the importance of the

feedback with a NIRS-based approach. Moreover, also in this case the paradigm only

involved either rest or right-hand motor imagery, i.e., an on-o� approach.

More recently (in 2013), Naseer et al. [32] performed a study about motor imagery

of right and left wrist �exion. 10 healthy subjects had to imagine the execution of

the movements after a preparatory training session. From the 17 channels, a single
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feature set was extracted for every trial. Features consisted of the average of HbO and

HbR values over the task period and the slopes of the two sets of signals, computed as

the coe�cients of the line �tting the data. The accuracies obtained were 78% using

average features, and 87% using slope ones. The main issue of this approach, in spite

of the high classi�cation performance, is its inapplicability in real-time systems, since

the feature vector is computed using the entire task signals.

As shown in this brief NIRS-based BCI review, the main concern about the use

of NIRS signals is the delay of the hemodynamic response, which makes the online

performance quite low in terms of Information Transfer Rate.

2.5.3 EEG-NIRS hybrid BCI

A multi-modal EEG-NIRS approach for BCI applications have been minimally in-

vestigated in the literature of the BCI �eld. Both the systems, though, have issues

of diverse nature, such as spatial resolution for EEG and temporal resolution for

NIRS: the combination of them, therefore, can no doubt improve and enhance the

robustness and reliability of the application and have been studied in di�erent ways.

Surprisingly enough, only three articles of an hybrid EEG-NIRS approach for BCI

have been found in the literature, probably due to the technical di�culty in the

simultaneous and non-standardized setup of the two imaging systems together.

Khan et al. in 2014 [23] implemented a system capable of recognizing 4 di�erent

states. The EEG was used to detect motor related activity changes to control right

and left commands, while NIRS signals from the prefrontal cortex (PFC) allowed
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to choose between forward and backward by means of arithmetic mental tasks. In

2014 as well, Tomita et al. [58] studied the possibility of integrating NIRS with EEG

in a steady-state visual evoked potentials (SSVEPs) paradigm, which is a complete

di�erent approach from the one used in this work and therefore will not be discussed.

The only work investigating whether NIRS signals can enhance the performance in

SMR-based BCI is by Fazli et al. in 2012 [13]. This study is of particular interest for

the current work, because it represents the �rst (and only) attempt to combine EEG

and NIRS for motor classi�cation. The purpose of Fazli's work was to investigate the

performance of EEG- and NIRS-based classi�ers on Right-hand - Left-hand motor

execution and imagery tasks. In particular, the experimental setup consisted of 37

EEG electrodes, distributed along the whole head, and 24 NIRS optodes (12 sources

and 12 detectors) arranged in 24 measurement channels. The experimental design

included 48 trials per class for motor execution and 100 trials per class for motor

imagery. It is important to specify that motor imagery tasks were divided in two

blocks: during the �rst run a subject-independent classi�er gave feedback to the

subjects. During the second run a subject-speci�c classi�er, estimated from the

data of the �rst block, was used to improve the e�ectiveness of the feedback (this

approach has been recently developed in [63] and it is called Co-adaptive calibration).

The o�ine performance of the data involved the use of subject-dependent temporal

�lters and CSP for the EEG, while for the NIRS the baseline of each trial was

subtracted (this kind of processing is unlikely applicable online for an asynchronous

BCI) and the average of HbO and HbR served as features. Features were computed

in time segments of 1 s with 50% overlap between each other. The results showed
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that the improvement in accuracy when EEG and NIRS features are combined using

a feature selection method is signi�cant. The accuracy was computed dynamically,

obtaining an accuracy signal over the trial (see section 3.4 for a detailed explanation

of the dynamic accuracy computation). The accuracy peaks obtained were 93.2% for

motor execution (when combining EEG and HbR derived features) and 83.2% for

motor imagery (with EEG-HbO combination). The authors showed that EEG and

NIRS provide information which is complementary in terms of mutual information.

On the other hand, as shown in Fig. 2.8 in the second and third rows, the trend of

the accuracy over the trials for NIRS signals is very slow, reaching a peak in accuracy

after 6.5-7.5 s from the stimulus onset.

With the work just described in mind, it is important to emphasize the di�erences

and developments proposed in this study. First of all, the current study has been

performed with a remarkably shorter training time (in [13] the training lasted around

4 hours): this allows us to evaluate the capability of the system when only a small

dataset is available (only 25 trials per class for both execution and imagery). The

second main di�erence, which can be considered an improvement, regards the number

of classes: whereas a binary classi�cation was performed by Fazli et al., in this study

4 di�erent motor tasks are involved, namely, right-arm, left-arm, right-hand, and

left-hand. Moreover, here it has been tried to develop a compete asynchronous

BCI, which needs the online detection of rest or task before performing any further

classi�cation. Under the setup point of view, the EEG electrodes density is lighter,

with 21 active electrodes around the motor cortex only (see Fig. 3.5). For the NIRS

the same number of optodes is used, i.e., 24, but they are arranged in 34 measurement
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Figure 2.8: Figure from [13] that shows the trends of the accuracy of the di�er-
ent subjects (colored lines) and their average (black thick line). The �rst column
represents executed movements, while the second one shows motor imagery perfor-
mance. The �rst row re�ects the accuracy of EEG-based classi�er, the second one
of HbO-based ones, and the third one of HbR-based ones.

channels. For the experimental procedure, such an advanced feedback system was

not available, and an EEG-based online feedback was implemented based on SMR,

telling the subject whether rest or task was detected. The signal processing of the

EEG data is similar, apart from the use of regularization techniques for CSP, while for

processing the NIRS data, in order to limit the delay observed in the accuracy trend,

new methods were investigated, including CSP and slope-based features. Particular

35



attention should be given to the fact that both EEG and NIRS signals analysis,

although performed o�ine, were treated with methods easily implementable in an

online system.
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Chapter 3

Methods

The following chapter will explain in details all the materials, instrumentation, and

methods used in this work in order to achieve the aim of developing the multi-class

Brain-Computer Interface. The �rst section (3.1) deals with the data acquisition,

from the instrumentation to the protocol de�nition and experimental setup. Par-

ticular emphasis is given to the explanation of the real-time EEG-based feedback

C++ software. Section 3.2 describes how the raw signals are processed to extract

informative features, while section 3.4 treats the classi�cation and validation aspect.

Section 3.5 explains what kind of hypothesis tests are performed in order to �nd

di�erences among tasks (e.g., motor execution and imagery), and processing tech-

niques. Finally, section 3.6, deals witht the design of an online setup to evaluate the

BCI in real-time.
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3.1 Data Acquisition

3.1.1 Instrumentation

The following section will describe all the hardware and software used. All software

were running on a Windows 7 workstation (WS) for recording and visualization, and

on a Windows 7 laptop (LT) for presentation and feedback purposes.

EEG : The EEG system used for this project was microEEG from BioSignal Group

[1]. The microEEG System is capable of recording 26 channels, it is easy to set up,

it is portable, battery powered, and connects wireless via Bluetooth to the controller

software, namely, microEEGCtrl, running on the WS. Despite its small size and ease

of use, the system performs as standard clinical EEG systems: the only small dif-

ference, mainly due to the concentrated electronics, is in the lower amount of 60

Hz power line [37], which did not a�ect the current study because all EEG signals

were �ltered o�ine and online with a low-pass frequency cuto� of 25 Hz (within β

band). As far as recording speci�cations, the Analog-to-Digital Converter (ADC)

resolution is 16 bits, the input impedance is greater than 100 MΩ, and the Common-

Mode-Rejection-Ratio (CMRR) of the operational ampli�er is 85 dB. The compact

microEEG system (weight: 88 g, size: 9.4Ö 4.4Ö 3.8 cm) is shown in Fig. 3.1. The

controller software, microEEGCtrl, allows us to search and connect to the detected

device (the device needed to be previously paired to the WS). The two main uses of

microEEGCtrl were the resistance check and the signal visualization, which allowed

us to assess (from an engineer) the EEG quality. The resistance threshold for which
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Figure 3.1: microEEG System.

an electrode was considered good was set to 20 kΩ, but sometimes even higher resis-

tances have been accepted if a lower resistance could not be reached, after assessing

the time course of the EEG signal. The visualization of the signals have been also ex-

tremely useful for performing basic EEG tests, such as α-wave test and eye blinking,

and to assess whether there was a major interference with the NIRS lighting system

and the passive EEG electrodes. The electrodes were standard Ag/AgCl ones, and in

order to reduce the resistance between the electrode itself and the scalp, a conductive

gel was injected inside the hole of the electrode holder with a syringe. The electrode

holder is shown in Fig. 3.3a.

NIRS : The NIRS acquisition system was the NIRScout, by NIRx [35], in the ex-

tended con�guration, that is equipped with 128 LED sources and 64 �ber-optic-wired

detector (Si photodiode, sensitivity < 1 pW) for a maximum of 4096 measurement

channel (Fig. 3.3a shows the system optodes). The LED light wavelengths used for

oxy- and deoxy- hemoglobin estimation were 760 nm (red) and 850 nm (infra-red).

The sources and detectors can be arranged in di�erent ways, and every source can
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build up a measurement channel if the emitted light is acquired by one or more

detectors. The sampling frequency can range between 2.5 and 62.5 Hz. The sam-

pling frequency depends on the number of sources, detectors, and channels and can

be increased by changing the lighting pattern on the recording software (NIRStar,

running on the WS). In fact, the system has the capabilty of lighting up more than

one source at the same time, resulting in a faster sampling rate. On the other hand,

the simultaneous channels should be far enough apart to avoid cross-talk between

di�erent channels [35]. In the present work the latter capability has been used and

simultaneous channels were always at least at 10 cm distance, assuring the absence

of cross-talk and allowing a relative high sampling frequency of 10.42 Hz (12 sources,

12 detectors, 34 channels). Another important feature of the NIRScout system is

the possibility of receiving and acquiring trigger/event signals through a 8 bit TTL

parallel port (up to 28 − 1 possible codes). This capability has been used to keep

log of the experiment events and to synchronize NIRS and EEG signals. The entire

NIRScout system, along with the running NIRStar software, is represented in Fig.

3.2.

CAP : The cap adopted for the equipment of EEG electrodes and NIRS probes

was actiCAP 128, produced by BrainProducts. The cap is easy to wear, relatively

comfortable, as con�rmed by the experiment subjects, and it takes only some seconds

to put it on the subject's head and fasten the chin belt. As the name suggests

the cap is capable of holding up to 128 electrodes, but in this study we integrated

the NIRScout holders inside the cap holes as well as EEG electrodes for multi-

modal imaging. In order to maintain the proper distance between NIRS sources
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Figure 3.2: NIRScout instrumentation and workstation rinning NIRStar software.

and detectors (3 cm, as speci�ed in manual) plastic holders provided by NIRScout

were used. To keep the relative position between NIRS probes and EEG electrodes,

custom made laser-cut plastic holders were applied, consisting of a bigger circular

hole of 7 mm radius for the electrode and a smaller 3.5 mm radius hole for the NIRS

probe holder. Since, due to the disposition of the cap holes, electrodes and optodes

happened to be at di�erent distances, the center of the plastic holder holes ranged

from 2.25 cm to 2.6 cm. Fig. 3.3b shows the internal part of the cap, with the NIRS

and EEG-NIRS holders, while Fig. 3.5b shows the cap completely set up.

PRESENTATION : The software for presenting and guiding the subject through

the experiment was Presentation, from NeuroBehaviouralSystems, running on the

LT. The software is designed for precise stimulus delivery and accurate event logging,

it can interface external hardware devices for input/output communication, it is
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(a) (b)

Figure 3.3: (a) Sensors, from left to right: NIRS LED, NIRS Si photodiode, EEG
Ag/AgCl passive electrode. (b) EEG-NIRS laser-cut holders (pointed by blue arrows)
and NIRScout holders (ocra arrow) between NIRS sensor plastic spacers.

highly �exible and programmable. The programming language is a high level C-

like object-oriented language, and it allows the programmer to create and precisely

deliver stimuli of di�erent nature (visual, and auditory), to include them in trials

with controlled timing, and to �exibly decide the order the trials succeed each other

and interact with external input/output. In particular the LT was equipped with a

standard 25-pin TTL parallel port, which was used to send di�erent event codes to

the NIRS and EEG system, while a USB port was used as an input port to receive

EEG-based real time feedback (explained in detail in section 3.1.3).

SYNCHRONIZATION : Since the acquisition systems were not the same for

EEG and NIRS signals, they needed to be synchronized for o�ine analysis (con-

versely, for real-time applications, synchronization is not needed for the data �ows

are exactly simultaneous). The LT parallel port was directly interfaced with the

NIRScout TTL input/output connector by means of a standard parallel cable. For
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the EEG it has been observed that a direct interface with the microEEG event chan-

nel resulted in a highly noisy signal, full of spiky artifact due to the fast transition of

the digital signals. In order to avoid this problem, an opto-isolator (Motorola 4N26)

was used to uncouple the parallel port digital signal and the microEEG event chan-

nel. Only 1 pin out of the 8 data pins of the parallel port was opto-coupled to the

microEEG, so the recognition of the event code was done using the NIRScout input

trigger log rather than the microEEG event channel signal. For synchronization, at

the beginning of the experiment, one single 255 code was sent by Presentation soft-

ware and captured by both the NIRScout system and the microEEG event channel

(as a high-amplitude spike, over 1-2 V).

3.1.2 Experimental Setup

Figure 3.4: Experimental setup block diagram.

Fig. 3.4 shows how the di�erent systems described in section 3.1.1 are connected

and work with each other. The subject interacts with the system by looking at the
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screen of the laptop on which Presentation is running. Presentation keeps log of

the events of the experiment by sending triggers of di�erent codes depending on the

experiment phase through the parallel port. The latter is connected to the parallel

event/trigger input port of NIRScout, and a single pin of the port is sent to the

opto-isolator and recorded by the microEEG event channel. The NIRScout LEDs

are wired through normal twisted cables, while the detectors are �ber-optic wired.

Due to the nature of the LED wires, particular precaution must be taken during the

disposition of EEG electrodes and NIRS LED probes. In fact, if the electrode and

LED wires are too close to each other, a strong interference is found in the EEG

signals and can be often detected just by inspecting the EEG signal. In order to

avoid this issue, when all the probes are in place and the NIRS channels have been

calibrated, the source wires are pulled up and hung on supports, so that the distance

between the electrode wires and them is increased (as shown in Fig. 3.5b). The

EEG is recorded by microEEG, which sends the data stream in real-time to the WS

(which is paired to the device through a Bluetooth dongle). Through microEEGCtrl

application the EEG signals can be visualized in real-time and streamed by third-

party application. In the current setup, the EEG data were broadcast by a custom-

developed C++ application (programmed in Microsoft Visual Studio Express 2013),

that performed the online normalization, µand β band �ltering, and average power

computation (an extensive explanation of the application can be found in 3.1.3). The

EEG band-powers averaged over custom chosen EEG channels were sent via UDP-IP

local connection to a custom Python application designed for real-time plotting of

the signal. The experiment consisted of a motor execution and a motor imagery part:
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the green arrows in Fig. 3.4 were active only during the motor imagery block, with

the purpose of giving real-time feedback to the subject performing the experiment.

In particular, one single signal of µ or β EEG band-powers computed by the C++

application and averaged over signi�cant channels chosen by the operators (usually

from the ones in correspondence of the motor and/or parietal cortex) was sent back

to the LT and read by Presentation via USB connection. For the USB host-to-host

connection a normal USB cable could not be used, for it can interface only a host (a

computer) with a device (such as a printer). To connect two computers a particular

integrated circuit (IC), namely, a FTDI, has to be serially connected to both the

USB ports. The FTDI circuit usually comes integrated in a cable and it provides

connectivity between a USB and a serial UART (Universal Asynchronous Receive

Transmit) port. The interface of an FTDI cable has a USB connector at one edge and

Tx (Transmit), Rx (receive), Vcc, and GND pins at the other. The communication

between the two computers is achieved by connecting the Tx pin of one FTDI cable

to the Rx pin of the other, and vice versa.

The cap was equipped with 23 EEG electrodes (21 recording channel plus REF

and GND), 12 NIRS sources, and 12 NIRS detectors combined in 34 measurement

channels. As explained in the Introduction (section 1.2), one of the main aim of the

entire project has been the investigation of a BCI system whose measurement probes

are distributed only in a restricted area throughout the motor cortex. For this reason,

EEG electrodes lay all between the F and the P parallel of the 10-20 system, apart

from GND that was placed in Fpz. As shown in Fig. 3.5a, the list of EEG electrodes,

from left to right and from top to bottom was: F3, Fz, F4, Fc5, Fc1, Fcz (REF),
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Fc2, Fc6, C5, C3, C1, Cz, C2, C6, T4, P3, Pz, and P4. It is important to address

the fact that the placement of the reference in Fpz does not a�ect the main part of

the EEG analysis because of the use of spatial �lter, which result in a change in the

reference of the signals. Although the GND electrode was not placed within F and

P parallels, as that would violate the design for which all the electrode and probes

were within the F and P parallel, its location was chosen for its ease to setup and to

get good conductivity, being placed on the forehead. Actually the GND, since all the

measurement are bipolar, is used only to subtract di�erential voltage to measuring

and reference electrodes, and it is considered as common mode voltage when it comes

to di�erential ampli�ers. Given that, the GND electrode could be placed, in theory,

everywhere on the body. The NIRS probes were organized in a 4 by 3 grid for each of

the two emispheres as shown in Fig. 3.5a. Sources and detectors were alternating to

allow to pair the same source with multiple detectors. Each source was paired with

a minimum of two detectors for corner sources, and a maximum of 4 detectors for

internal ones. NIRS channels have been labeled according to their relative position

(Anterior = A, Posterior = P, Medial = M, and Lateral = L) with respect to 10-20

system EEG location: for example the channel anterior to C3 was named C3A. With

this in mind, the list of the channels from left to right and from top to bottom was:

Fc3A, Fc1A, Fc2A, Fc3A, Fc3L, Fc3M, Fc1M, Fc2M, Fc4M, Fc4L, C3A, C1A, C2A,

C4A, C3L, C3M, C1M, C2M, C4M, C4L, Cp3A, Cp1A, Cp2A, Cp4A, Cp3L, Cp3M,

Cp1M, Cp2M, Cp4M, Cp4L, Cp3P, Cp1P, Cp2P, and Cp4P. The labeling of the

NIRS channel has demonstrated to be extremely straightforward and useful in the

signal visualization and processing.
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(a) (b)

Figure 3.5: (a) EEG electrodes and NIRS optodes con�guration on the cap. (b) Real
picture of a subject wearing the cap completely mounted (with EEG electrodes, NIRS
sources and detectors).

The following section explains the experimental procedure for the data collection.

3.1.3 Experimental Procedure

For the study, 15 healthy subject participated in the experiments. The subject

were all male, aged between 22 and 54 (only one subject was above 30 years old).

An important factor that needs to be taken into consideration is the fact that the

subject never experienced motor imagery before: this topic will be discussed in more

detail in section 5.3. The use of the NIRS technique forced the choice of having

only male subjects. In fact, the hair represent the most important issue in the NIRS

setup, preventing the sources and detectors to be in direct contact with the scalp

and yielding bad quality signals. The subject were seated on a comfortable chair
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during the entire duration of the experiment, facing the LT screen at a distance of

approximately 1 m. The subject preparation of the subject include the following

steps:

� measurement of the nasion-inion distance

� cap placement in the correct position with Cz at a half of the nasion-inion

distance

� conductive gel application as shown in [26] and resistance check through mi-

croEEGCtrl

� optical gel application to all NIRS probes, moving aside the hair in order to

allow the probes to couple directly with the scalp

� NIRS calibration with NIRStar and adjustments to probes

� EEG-NIRS interference check

Although the subject have been selected basing on the amount and thickness of hair,

it must be said that for some of them (at least 4) the NIRS setup was far from perfect.

When the setup time exceeded one entire hour (in some cases even some more) it was

decided to settle and accept the lower quality of some of the channels. Often, though,

noise was present only in relatively high frequencies, and it has been �ltered out using

the pre-processing described in section 3.2.1. For further processing techniques, in

particular for the regularization of the Common Spatial Patterns (section 3.2.2), the

entire set of channels was needed for all the subjects: no channels, thus, could be

discarded from the analysis.
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Protocol : A single experiment consisted of three separate parts: the motor exe-

cution part, the motor imagery �practice�, and the actual motor imagery part. The

entire experiment, not including the setup, lasted a maximum one and half hours.

The �rst part was the motor execution one; the subject was instructed to perform

4 di�erent upper limb tasks, namely, right- and left- hand-gripping and right- and

left- arm-raising. The subject was instructed to repeat continuously every movement

for at approximately 1 Hz during the task phase of every trial. The experiment was

guided by the screen of the LT, on which visual stimuli were presented. The stimuli,

for this part, were images with a black background and with a big colored text in

the middle. The texts presented for both the motor execution and motor imagery

part were: REST, READY, RIGHT ARM, LEFT ARM, RIGHT HAND, and LEFT

HAND. In order to ease the subject reaction when presented a task, the 4 di�erent

movement had di�erent colors: red for right arm, blue for left arm, magenta for right

hand, and cyan for left hand. The motor execution part, as well as the motor imagery

one, consisted of 100 trials divided in 5 blocks of 25 blocks each. Trials in each block

were presented in a random order, but the balance of the tasks was preserved for

each block, so that in every block the subject was asked to perform each movement

5 times. Every trial started with the REST stimulus for approximately 5 s, followed

by the READY one for 1 s and one of the 4 task stimuli for 6 s. After every block

the subject could rest and relax for some seconds or start back with the next block

at his pleasure. The motor execution part, thus, lasted a couple of minutes more

than 20 minutes, usually between 22 and 25 minutes.
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During the motor execution part, the C++ application running on the WS es-

timated online the EEG �ltered signals and output (µ and β band-powers of every

channel) parameters to perform a normalization of the feedback. This step was nec-

essary to know a-priori the range of the output signal and to provide a signi�cant

feedback. The detailed explanation of the feedback application can be found in the

next paragraph. The feedback consisted of a big circle at the center of the LT screen

with a color code: red meant that a resting state was detected, while green, on the

contrary, stood for motor imagery detection. The color ranged from the red to green

passing to yellow and it could be every hue of the RGB model. The motor imagery

�practice� was designed to allow the subject to familiarize with the feedback and to

�nd the best strategy for motor imagery. This part of the experiment lasted from 5

to 20 minutes, depending on how comfortable the subject felt in using the feedback.

The third and last part of the experiment was the motor imagery part. The only

di�erences between the motor imagery part and the motor execution part were the

presence of the feedback and the timing. The organization and division of blocks

and trials were exactly the same. Feedback was given to the subject only during

the task because during the resting phase it could have made him focus more on the

color of the circle than on the relaxation itself. The timings were longer than the

motor execution part, because it has been observed that subject found more di�cult

to stop imagining the movement instantaneously: each trial started with the REST

stimulus for approximately 8 s, followed by the READY one for 1 s and one of the

4 task stimuli with the feedback circle for 7 s. The motor imagery part, thus, lasted

around 27 min plus the inter-block breaks.
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Real-time Feedback Application : The C++ application used to compute the

real-time feedback was developed with a highly object-oriented paradigm. This

yielded an organized and thoughtful design, in which many di�erent objects with

di�erent purposes strictly interact with each other in order to achieve the �nal pur-

pose of the program. In order to give an overview of the program, every class is

brie�y described by its task and how it talks with other classes.

Main The main, which is not actually a C++ class, �rst of all opens the COM inter-

face to interact with the microEEGCtrl application. Only if a microEEG is con-

nected and the streaming status is RECEIVING, information about the num-

ber and the name of channels are their names are retrieved from microEEGCtrl

and a UDP port is set for the data broadcast. The user is then prompted for:

the COM port on which the USB transmission is going to be, whether online

normalization has to be performed or parameters have to be loaded from �le,

whether the feedback should be µ or β power band, and which channels have

to be averaged for the feedback. After that, a Controller object is created with

all these parameters and the Start() member function of the Controller object

created is called.

Controller The Controller class only contains a StreamingThread and a Process-

ingThread member variables. When the Start() method is invoked the two

StreamingThread and ProcessingThread objects �join� their threads. The threads

start and keep running in parallel until the application is stopped. For the

thread classes, boost libraries have been used (please refer to www.boost.org

site for further information)
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StreamingThread The StreamingThread class, as the name suggests, contains the

actual thread. The thread is assigned to a the Stream() member function. This

class contains a MicroEEGController class, which is designed for the low-level

streaming of the data. The StreamingThread class has two important member

variables: tw_reached, where tw stands for time window, and stopped, which

are both boolean. Whereas the stopped variable task is straightforward (it is

set to true when the user decides to stop the application by pressing any key),

the role of the tw_reached �ag needs more explanation. This �ag is set to false

from the class constructor, and the streaming of the data is done only if this

�ag is false. The actual timing is given by the receiveEEG() method of the

MicroEEGConnector class, that, when a time window span is reached, returns

a true boolean; the return value of the MicroEEGConnector receiveEEG()

function is assigned to tw_reached. When tw_reached is true, the streaming

stops for a moment to allow other classes (in particular the ProcessingThread

one) to copy the raw data, and it is then reset to false once the data are copied.

This mechanism assures that the raw data are always consistent and increases

the robustness of the program.

ProcessingThread The ProcessingThread class contains a thread that is assigned

to the Process() function. This class contains, as member variables, a Stream-

ingThread, an EEGHandler, an USBController, and an UDPClient object,

among others. The StreamingThread member variable is necessary, because

it registers the ProcessingThread with the StreamingThread object that is

streaming the data. The Process() function, which is the worker of the class,
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keeps polling (checking) the status of the tw_reached �ag of the StreamingTh-

read variable. When it is found to be true, it copies the new raw EEG data,

resets tw_reached to false (so that the streaming resumes), and calls the Han-

dleEEG() method of the EEGHandler class, which does all the low-level pro-

cessing and returns the normalized band-powers for µand β of all the channels.

The feedback value is then computed with the µ or β powers by averaging over

the user-chosen channels. The feedback value is then sent via USB by means of

the USBController object, while both the µ and β grand averages (user-chosen)

and the average over C3 and C4 are sent via UDP to the Python application

through the UDPClient object, for the real-time plot. C3 and C4 were chosen

to monitor the motor cortex only.

MicroEEGConnector This class is the one that interface directly with microEEGC-

trl to stream the data via UDP. The streaming is done by means of a socket

using WinSock library from Windows. It is the receiveEEG() that gives the

timing to the rest of the program, and, as anticipated before, it returns a

boolean which is true if a time window has been reached; otherwise it returns

a false. The timing is managed using the Queue class. When a new datagram

is received, it is decoded, i.e., translated from a packet of bytes into meaningful

µV values, and the raw values of every channel are enququed in a Queue object,

after dequeuing the oldest values. By setting the length of the Queue as the

number of EEG samples in a time window (in this case, since the EEG is sam-

pled at 250 Hz and the time window is 1 s, every Queue has a length of 250), it

is assured that in every Queue there is a the last 1 s of each EEG channel. The
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overlap between consecutive time windows is managed as follows: the number

of samples that corresponds to the not overlapped values is computed, e.g., if

the overlap is 90% (as in this case), the number of new values to be added

to the Queues will be 0.1 x 250=25, and a counter is increased every time a

new UDP datagram is received. When the counter is equal to the number of

non-overlapped samples, it means that a time window is reached. The counter

is then set to 0, and the Queues values are returned as a reference to a vector

of vectors (the Queue is parsed to a vector). The returned matrix has size

of the number of channels by the number of samples per time window and it

represents the raw EEG data that will be processed.

EEGHandler This is the class that performs all the EEG processing. The main

member function is HandleEEG() and it takes as input the raw EEG matrix

and returns two di�erent vectors, one containing the µ band-powers and the

other with the β band-powers of every channel. Since the computation of the

FIR (Finite Impulse Response) �ltered signal is very time consuming due to

the convolution operator, every channel is processed using a separate thread,

making the processing massively parallel and less time consuming. Another

hint used to diminish the time complexity is to �lter only the new values,

i.e., the non-overlapped ones, and, after having processed them, to shift all

the resulting vectors backwards to make room for the values of the next time

window. With this strategy, only 25 samples over 250 (the non-overlapped 10%)

undergo the convolution operator with the �lter coe�cients. Another comment

is needed for the normalization and saturation step; in order to perform online
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normalization, mean and standard deviation of the signals and of the output

values are computed as shown in Appendix A. For normalization, Eq. 3.1

in section 3.2.1 has been used. The log2 transform of the output signals has

the purpose of making the output distribution more normal around the 0,

which results in a more balanced feedback. The saturation stage has the role

of limiting the e�ect of EEG artifacts of non-cerebral origin, such as EMG

activity, talking, or yawning. This said, the processing consists of:

1. Band-pass FIR �ltering (using MATLAB-designed �lters)

2. Saturation of the signals at ±15 µV

3. Normalization of the µ and β �ltered signals

4. Low-pass �ltering (moving average over 250 samples) of the absolute value of

the signals (envelope)

5. Average over the time window

6. Normalization of the output values

7. log2 transform of the output values (to adjust for right skewness)

8. Saturation of the output signals at ±3

USBConnector This class is used to send data via the USB port. It uses boost

serial port classes, creating a serial_port object with the port de�ned by the
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user. The writing member function, USBWrite(), takes as input a single un-

signed char and writes it on the speci�ed serial port using boost write_some

method. When the user terminates the program the port is closed.

UDPClient This class is used to send out data to the Python application for the

real-time plot. As the MicroEEGConnector class, the UDP connection is per-

formed usingWinSock libraries. In particular, the member function sendData()

allows to send out a bu�er of char of any length. The values to be sent via

UDP, thus, must be parsed to a char array before they are sent.

The application has the feature of allowing the estimation the normalization pa-

rameters beforehand and to load them in following sessions. This capability has

been added because, due to how the parameters are computed (see Appendix A),

some time is needed in order to obtain signi�cant output values (usually at least 5-7

minutes). In the current experimental procedure, thus, the parameters were esti-

mated during the motor execution part and then loaded for the motor imagery part.

This strategy made the feedback e�ective and well-normalized as soon as the subject

started the �practice� session.
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3.2 Signal Processing

3.2.1 Pre-processing

The pre-processing of the signals, described in this section, includes all the operations

and transforms which are used in order to obtain signals on which the feature extrac-

tion step can be applied either directly or by means of further and more sophisticated

techniques (such as Common Spatial Patterns, in section 3.2.2).

The starting point are the raw signals, i.e., the recorded EEG µV values and

the light attenuation detected by the NIRS detectors for the red and infra-red wave-

lengths (wl1 and wl2 ). Since the two modes are acquired with di�erent hardware,

the �rst step is the synchronization of the signals. This is achieved by clipping both

the EEG and the NIRS signals from the �rst occurrence of the triggers on. In order

to make the EEG and NIRS signals have the same time span, also the tails of the

longer signal (either EEG or NIRS) are clipped. After synchronization, both the

signals are from 0 s to the same terminal time.

The pre-processing of the EEG and NIRS consisted of band-pass �ltering and

normalization; however, for the NIRS signal, the oxy- and deoxy- hemoglobin (HbO

and HbR) were computed before every other operation by means of the Modi�ed

Beer-Lambert law (MBLL, in Eq. 2.4).

The choice of the �lters regarded both the type of �lters (Finite Impulse Re-

sponse - FIR, or In�nite Impulse Response - IIR) and the cuto� frequencies. It was
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anticipated in section 3.1.3 that µ and β bands were used in the study. In particu-

lar, µ band was �ltered between 8-12 Hz, while a restricted β band was considered,

ranging 18-25 Hz (same band-pass used in [30]), because it is mainly in those bands

that Event Related Synchronization and Desynchronization (ERS/ERD) take place

[43]. In order to �lter out both the DC, the extremely low frequencies, and the heart

beat, NIRS signals were �ltered between 0.01-0.2 Hz.

Regarding the type of �lters, both FIR and IIR have their advantages and dis-

advantages. In short, the main advantages of FIR �lters are the fact that they

are all-zeros �lters, and thus they always assure the stability of the system. In

addition, their phase response is linear, meaning that the �ltered signal has no dis-

tortion. On the other hand, in order to obtain a high order in the amplitude response

(dB/decades), an elevate number of coe�cients is needed; however, the group delay,

i.e., the lag in number of samples by which every frequency is delayed, is linear with

respect to the number of coe�cients. Given n = the number of coe�cients, if n

is even, the group delay of the FIR �lter is constant and is Φ = n/2; if n is odd,

Φ = n+1/2 . On the contrary, IIR �lters are not assured to be stable for they also

contain poles. Their group delay is not constant, which causes distortions in the

output signals; however, their performance in terms of steepness of the amplitude

response is higher with respect to FIR �lters [38].

In the current study for the EEG signals, IIR �lters (Butterworth 4th-order) have

been preferred to FIR ones. In order to obtain an acceptable �lter performance using

a FIR �lter, in fact, more than 200 coe�cients would have been needed, meaning

that the output signals would be delayed by around 0.5 s, given the EEG sampling
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Figure 3.6: Group delay of a 250-coe�cient FIR �lter (red horizontal line) and a
4th-order IIR Butterworth �lter with band-pass between 8 and 12 Hz.

frequency of 250 Hz. Fig. 3.6 shows the group delay of a FIR �lter (250 coe�cients)

and an IIR (Butterworth 4th-order). It can be observed that the FIR �lter has a

constant group delay of 125 (0.5 s delay), while the IIR one has a maximum of 40

samples of delay (160 ms delay). The phase displacement of di�erent frequencies does

not exceed 20 samples in the �ltered band, i.e., the distortion caused by the �lter is

not excessive. Moreover, band-power features are extracted from EEG signals and

for this reason the distortions, which appear in the time domain, can be neglected.

For the NIRS signals, the choice of IIR �lters over FIR ones was dictated by a

simple fact: too many FIR coe�cients would have been needed to �lter out the DC,

yielding an unacceptable delay of the �ltered signals given the low sampling frequency

of the NIRS system (10.42 Hz). Filtering out the DC is needed to avoid low-frequency

trends of the signals. Fig. 3.7a shows the di�erence between an HbO signal �ltered

between 0.01-0.2 Hz (red line), and the same signal only low-pass �ltered at 0.2 Hz

(blue signal). It is clear that the low-pass �ltered signal has a low descending trend

59



from the beginning to the end, which is not present in the band-pass �ltered one.

The upper cuto� frequency of the band-pass �lter was chosen at 0.2 Hz (as in [13])

because higher frequency contents actually contains only noise with respect to the

purpose of this study. Fig. 3.7b shows how the heart beat component is more present

using a band-pass between 0.01-0.5 Hz (blue line) than using 0.01-0.2 Hz (both �lters

were Butterworth, 2nd-order). This said, the �lter chosen for the NIRS signals was

a 2nd-order Butterworth band-pass �lter between 0.01-0.2 Hz. The order is only 2nd

because higher orders yielded an unacceptably elevated group delay.

Normalization was performed by means of a Gaussian transform, where every

signal was subtracted by its mean µ and divided by its standard deviation σ:

xnorm(t) =
x(t)− µ

σ
(3.1)

Before the normalization step, the EEG signals were clipped between ±20µV ,

in order to prevent any artifact to a�ect excessively the estimation of mean and

standard deviation.

EEG-NIRS GUI : This short paragraph will describe the design and the main

features of a custom-designed MATLAB GUI, used to pre-process and visualize the

data. A GUI can speed up and ease the screening of the data and the choice of

some pre-processing parameters (such as the choice of the �lters) when dealing with

multiple channel signals, even more for multi-modal imaging. Without the GUI,

in fact, the visualization of time signals, spectra or even combination of signals of
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di�erent nature (e.g., EEG band-powers and HbO signals) would have been extremely

tiring and time consuming. The GUI has been designed for combined EEG-NIRS

only, and it cannot be used for visualization of the two kind of signals separately.

The GUI presents itself as shown in Fig. 3.8. It is composed by four main

panels, namely, LOAD, PRE PROCESS, VISUALIZE, and ANALYZE. The ANA-

LYZE feature will not be discussed here, but it was designed to add further GUI for

more speci�c purposes. From the LOAD panel the user can easily load raw or pre-

processed data (the latter can be saved from the GUI itself after the pre-processing).

When a Load button is clicked, it opens a window and the user can select the �les

that s/he wants to open. After loading raw data (in the extension of .edf and .wl1

for EEG and NIRS, respectively) from the pre-processing panel, the �lter cuto� fre-

quencies can be decided with the sliders or by manually inserting the text box at

their sides. It must be emphasized that the pre-processing performed for visualiza-

tion is di�erent with respect to the one described in section 3.2.1. The main purpose

of the GUI is in fact, the screening of the data, and in order to achieve a better

visualization, zero-phase 4th-order Butterworth �lters have been used both for the

EEG and the NIRS signals. The user can also apply notch �lters to eliminate the

power line interference at 50 or 60 Hz. The user can also de�ne what EEG channels

s/he wants to consider for visualization and the con�guration of the NIRS channels

(source-detector pairs) using .txt �les. Once the data are pre-processed they can be

saved and visualized in the VISUALIZATION panel. The following are the time

signals and spectra that can be plotted: raw NIRS signals (wl1 and wl2 ), raw NIRS

power spectra (HbO and HbR), pre-processed EEG spectra, and pre-processed time
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signals (EEG, HbO, HbR, HbT - total hemoglobin concetration, EEG + HbO, EEG

+ HbR, HbO + HbR, EEG + EEG, EEG + HbO, EEG + HbR, and HbO + HbR).

For all the time signals involving the EEG, the latter can be visualized as the pre-

processed signal, or �ltering it in the di�erent EEG bands described in section 2.3.

Another very important feature is the possibility of visualizing the EEG signals as

band-power in the di�erent frequency bands (as in Fig. 3.8). Last but not least,

through the EVENT toggle button the user can visualize the di�erent trigger events

received during the experiment; di�erent colors are assigned to di�erent event codes,

as shown in Fig. 3.8.

The GUI just described has been demonstrated to be extremely helpful in order

to pre-process the signals and decide the best �lter parameters.

3.2.2 Common Spatial Patterns (CSPs)

This section is about the Common Spatial Pattern (CSP) technique: a powerful

transformation of spatially distributed signals in order to increase di�erences between

mental states. It includes an overview of the CSP algorithm, including principles, im-

plementation, and limitations. The next section (3.2.3) deals with the regularization

techniques that are applied to overcome the limitations, in particular the over-�tting

phenomenon. CSPs have been widely used for EEG-based BCI [30, 48, 5, 44, 13],

and in this project a possible application on NIRS signals has also been investigated.

The Common Spatial Pattern performs a data-driven, supervised transform of

the data that maximizes the di�erence in the variance of two di�erent classes [5].
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The output of the CSP algorithm is a matrix W ∈ RNxN, where N is the number of

channels (either EEG or NIRS channels), on which the original data are projected.

Given x(t) ∈ RN, the CSP �ltered signals are:

xCSP (t) = W Tx(t) (3.2)

The resulting signal, xCSP (t), is still of dimension N . Every column ofW , namely

wj ∈ RN, is considered a spatial �lter, because it project the vector x(t) by weighing

every channel with a di�erent component (element of wj). The result of the mul-

tiplication of a single time sample x(t0) of dimension Nx1 by wj will be, in fact, a

scalar value. Considering a generative model, in which a set of sources at time t is

s(t) ∈ RNis projected on the scalp, where the signals are measured, by means of a

matrix A = (W−1)T , the recorded signals can be written as:

x(t) = AT s(t) =
N∑
j=1

ajsj(t) (3.3)

where aj, i.e., the j-th column of A, is called a spatial pattern. It is easy to demon-

strate that by �ltering x(t) with the spatial �lter wj only the j-th source sj(t) is

isolated and the sources s(t) are identical the xCSP (t) de�ned in Eq. 3.2:

xCSP (t) = W Tx(t) = W TAT s(t) = W T
[
(W−1)T

]T
s(t) = Is(t) = s(t) (3.4)
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where I is the NxN identity matrix. In the �lter-pattern view, the matrices A and

W are also called mixing and de-mixing matrices, respectively. In fact the matrix

A mixes the generative source activities among all the recording channels (Eq. 3.3

is a forward model), while the matrix W goes back, or in other word de-mixes the

recorded signals back to the sources (Eq. 3.2 is a backward model).

The main principle of the CSP method, considering a linear mixing model that

generates the signals [40], and assuming two di�erent sets of sources for two separate

classes, sC1 and sC2 (for the classes {1 , 2}), is to �nd the spatial �lters that maximize

the di�erence in variance in the �ltered signals. The �rst components of the �ltered

signal (xCSP (t)) will have maximum variance for class C1 and minimum for the class

C2, while the last components, on the contrary, will have maximum variance for class

C2 and minimum for C1. The extraction of these �lters, under a discriminative view,

can be seen as the optimization of an objective function [28, 5]. Since the purpose

is to maximize the covariance for C1 and at the same time minimizing the one for

C2, given the two covariance matrices ΣC1 and ΣC2, the objective function can be

written as:

J(ω) =
ωTΣC1ω

ωTΣC2ω
(3.5)

Since the �lter ω can be re-scaled at pleasure, maintaining the vector directions, Eq.

3.5 can be subjected to the constraint that ωTΣC2ω = 1. The optimization problem
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can be now solved with Lagrange multipliers [4]:

L(ω, λ) = ωTΣC1ω − λ(ωTΣC2ω − 1) (3.6)

and the optimization occurs when the derivative with respect to ω is equal to 0:

∂L(ω, λ)

∂ω
= 2ωTΣC1 − 2λΣC2 = 0⇐⇒ ΣC1ω = λΣC2ω (3.7)

Eq. 3.7 is a generalized eigenvalue problem and its solution yields a simultaneous

diagonalization of the two covariance matrices, as shown in Eq. 3.8.


W TΣC1W = ΛC1

W TΣC2W = ΛC2

(3.8)

It is important to notice that W can be re-scaled so that ΛC1 + ΛC2 = I (I is the

NxN identity matrix) [5]. This identity regarding the eigenvalues corresponding

to di�erent eigenvectors wj is the key to increase the discrimination between C1

and C2: in fact the �rst components of W , i.e., the �rst eigenvectors, correspond

to high eigenvalues in ΛC1, meaning that the projection of the initial signals on

those �lters will have high variance for time samples belonging toC1 class and low

variance for those belonging to C2. Conversely, the last components correspond to

high eigenvalues for ΛC2 and low for ΛC1: projections on them, thus, will yield high
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variance for samples belonging to C2 class and low variance for those belonging to

C1. Fig. 3.9 shows this behavior: the two top signals are EEG projected on the �rst

and second component, while the two signals at the bottom are projected on the last

two. CSP were computed to discriminate between LEFT and RIGHT tasks. Red

and blue vertical lines represent the beginning of the right and left tasks, respectively,

while the black vertical line is the starting of the rest period. It can be observed that

the �rst two signals have higher variance during right tasks, and lower during left

ones, and the last two signals have higher variance for left tasks than right ones.

The application of CSP, as explained above, requires the estimation of the co-

variance matrices for di�erent pair of classes. Before their computation, the signals

must be scaled and centered, as suggested in [5]:

X =
1√
T
Xoriginal(IT − 1T1TT )

where Xoriginal is a short segment of signal corresponding to a certain class of size

NxT (where N is the number of channels and T is the number of time points in the

segment), IT is the T -dimension identity matrix, and 1T is a column vector of ones.

X is the scaled and centered matrix of size NxT that is used for the estimation of

the covariance. It should be emphasized that Xoriginal, di�erently from what it could

be inferred, does not refer to the raw data, but to the pre-processed ones (both for

the NIRS and the EEG signals). After scaling and centering the tracts of the signals

belonging to the two classes (e.g., Right - Left or Rest - Task), the covariance matrices

for the two classes are computed by averaging the covariance matrices obtained in
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every trial belonging to the class (Eq. 3.9). Let X
(k)
i ∈ RNxT be a signal segment of

the k-th trial belonging to class i. The covariance matrix for class Ci (ΣCi ∈ RNxN)

is estimated as follows:

ΣCi =
1

TCi

∑
k

X
(k)
i X

(k)T
i

trace(X
(k)
i X

(k)T
i )

(3.9)

Here, TCi is the number of trials for class Ci. In order to normalize the covariances

computed in separate trials, which, because of non-stationarities in the signals, can

have a di�erent baseline energy, each estimate regarding every trial is divided by its

trace (total amount of energy).

One of the main advantage of the CSP algorithm is interpretability. For the

reasons explained so far, it is straightforward that the �lters and the patterns can be

easily plotted on a brain map in order to visualize the activity of every channel and

relate it to a neurophysiological behavior of the brain activity. Fig. 3.10, for example,

shows the CSP estimated from the EEG data shown in Fig. 3.9, in particular the

�rst and last components, which should resemble the minimum variance for right

and left movement tasks, respectively.

CSP also has well-known limitations. First of all, the main problem of this

method is its tendency to over-�t the data used to compute the covariance matrices

[49]. If the matrices are computed from a small sample size the CSP algorithm

has too many degrees of freedom with respect to the quantity of trials provided to

estimate the covariances. This phenomenon will be shown and quanti�ed in detail

in chapter 4, where a comparison between its performance using all the data or
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within the cross-validation (CV, explained in 3.4) is made. The bias of the sample-

based estimate of the covariance matrices can be partially mitigated by applying

regularizing techniques, that will be discussed in more depth in the following section.

In short, regularization aims at generalizing the covariance matrices to make them

less dependent on the sample used for their estimation. Another issue regarding

CSP is inter-subject translation. Being based on subject speci�c covariances, this

algorithm tends to be extremely tuned on each subject separately. Also in this case,

though, regularization strategies can provide help in generalizing the �lter extraction

among di�erent subjects.

3.2.3 Regularized Common Spatial Patterns (RCSPs)

In this section there are references to concepts and terms that will be extensively

treated in section 3.4; however, in order to allow an essential understanding of the

arguments, each of them is brie�y explained.

As introduced in the previous section, CSP particularly su�ers from over-�tting,

especially when few trials are available for training, i.e., to estimate the most suitable

parameters of a model that allow to predict the output (class) from input data

(feature vector). Over-�tting, in a broad sense, refers to the phenomenon for which

the estimated model adheres excessively to the data used to estimate it, but it does

not perform as well when it is applied to other data. In a machine learning or

model identi�cation view, over-�tting occurs when the model does not generalize

over new observations, but it includes also the stochastic noise present in the training
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data. This phenomenon can be quantitatively observed in the performance of the

classi�cation algorithms on the training set, testing set, or the combination of the two.

In particular, over-�tting can be identi�ed when the accuracy (correct predictions /

total predictions) on the testing set is signi�cantly lower than the one obtained on the

training set. Clearly, this issue is much more severe for small training sets, and it is

also a�ected by the number of degrees of freedom that can be tuned by the model. In

this work CSP has been applied both to EEG and NIRS signals. Because of the very

low sampling frequency of the NIRS (10.42 Hz) with respect to the one of the EEG

(250 Hz), it is likely that the NIRS signals will be more a�ected by over-�tting than

the EEG ones. Although the term is usually referred to classi�cation or regression

algorithm, it is extended to CSPs because they perform a supervised decomposition

of the signals, in other words they need labeled data to be computed. Chapter 4

will show how CSP dramatically over-�t the data when they are computed using the

entire dataset (before CV), instead of estimating covariances and spatial �lter within

each fold of the CV.

By looking at how CSPs are computed in Eqs. 3.5 and 3.7, it is clear that the only

possible way to over-�t the data is in the estimate of the covariance matrix of the two

classes. In order to overcome the sensitivity to over-�tting, one can add an a-priori

knowledge to the model, or, in other words, regularize it. In this case regularization

can be done at two di�erent levels: at the covariance matrix estimation or at the

objective function computation level [28, 29]. In the current study a regularization

method regularizes only at the matrices level has been used, and the second kind of

regularization is only mentioned and shortly introduced for completeness.
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The covariance matrix can be regularized as follows:

Σ̃C = (1− γ)Σ̂C + γI (3.10)

where:

Σ̂C = (1− β)sCΣC + βΓC (3.11)

In Eqs. 3.10 and 3.11, ΣC denotes the sample-based covariance for class C, Σ̃C is the

regularized estimate, sC is a constant scalar, γ and β are the regularizing parameters

(γ, β ∈ [0, 1]), and ΓC is a generic covariance matrix estimated from all the subject

data. The regularized covariance matrix can be shrunk towards both a generic and

global matrix and towards the identity matrix, by adjusting the parameters β and

γ, respectively.

The objective function can be regularized by adding a regularizing term in it, in

order to penalize solutions that do not satisfy a given condition:

J(ω) =
ωTΣC1ω

ωTΣC2ω + αP (ω)
(3.12)

The term α represents the degree to which the objective function is penalized if it

does not satisfy the prior P (ω).
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There exist in the literature many kinds of regularization methods that usually

di�er in the use of the regularizing parameters. In the current study it has been

decided to use the Generic Learning Regularized CSP (GLRCSP) proposed by [29].

Generic Learning regularization makes use of both β and γ, but it does not use α:

therefore, the objective function is the one in Eq. 3.5, while it is only the covariance

matrix to be regularized. Before describing in detail how to compute Σ̃C , which

indeed is slightly more complex than Eqs. 3.10 and 3.11, one comment is due on

what the shrinkage parameters α and β are actually doing. The parameter β, as

anticipated before, make the sample-based covariance tend to a generic covariance

matrix estimated from all the subject except the one for which the covariance is being

regularized. This should improve the performance of the CSP, because they are not

being estimated from the training data only; however, some information about the

�average� behavior among all the population is added. The parameter γ, instead, by

shrinking toward a scaled identity matrix, weighs less the correlations found in the

training set.

Generic Learning Regularized CSP : The regularization of the covariance ma-

trix for each class ΣC is performed in two steps. First of all the shrinkage towards

the generic matrix is applied and afterwards the one towards the identity matrix.

In GLRCSP there is actually not a direct computation of ΣC and ΓC ; Σ̂C in fact is

computed by normalizing the sums of the sample and the generic covariance, SCand

S̃C . In particular:
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SC =
M∑
m=1

SC,m (3.13)

S̃C =
T∑
t=1

SC,t (3.14)

and:

SC =
XCX

T
C

trace(XCXT
C )

(3.15)

In other words, SC,i is a covariance matrix estimated from a single trial of class C,

m and t are trials belonging to the speci�c subject or tho other subject respectively.

M and T represent the total number of trials for the speci�c subject and the sum

of all the trials belonging to the other subjects (for class C), respectively. The �rst

step of regularization allows to compute Σ̂C as:

Σ̂C(β) =
(1− β)SC + βS̃C
(1− β)M + βT

(3.16)

Eq. (3.16) shows that the shrinkage towards the generic behavior of the population

is not a simple average between the initial covariance and the generic one, but it also

takes into account how many trials are available for the current subject and for the

rest of them.
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To shrink towards the identity matrix, the latter (I) is re-scaled basing on the

total energy of the matrix computed at the �rst step (Σ̂C) and the number of channels

N :

Σ̃C(β, γ) = (1− γ)Σ̂C + γ
trace[Σ̂C(β)]

N
I (3.17)

Eq. (3.17) yields the regularized matrix for class C. After both the sample-based

covariance matrices have been regularized, Σ̃C1 and Σ̃C2, CSP can be estimated from

Eq. (3.7) simply by substituting the sample-based covariances (ΣC1 and ΣC2) with

the regularized ones (Σ̃C1 and Σ̃C2).

It can be noticed, that in order to apply GLRCSP for a binary classi�cation, 4

di�erent parameters can be adjusted (γ1, γ2, β1, and β2). The performance of the

regularization technique can be extremely a�ected by the choice of those parameters,

but the selection of the optimal ones can be very time consuming. The goodness of

a certain set of parameters, in fact, must be computed with CV. For k times (in

this case k = 10), covariance matrices must be computed and regularized, CSPs

have to be estimated, features extracted, and classi�ers optimized from the training

set, while the accuracy is obtained from the testing data of each fold. For example,

considering the µ power EEG signals, in order to perform a single evaluation, around

30 s were needed. If one imagine to evaluate all the possible combinations for one

binary classi�cation (in this work at least 3 binary classi�cation are performed) of

γ1, γ2, β1, and β2, constraining their value to be [0, 0.1, 0.2, ..., 0.9], 104 possible

combination could exist, which means 300000 seconds, i.e., around 83 hours, would

be needed. And this is only for one of four signals (µ and β �ltered signals for
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EEG; HbO and HbR for NIRS) and a single binary classi�cation (e.g., Right - Left).

Another faster optimization technique, from what was just said, was required in

order to regularize all the single signal covariances for the di�erent classi�cation

(see section (3.4)). Apart from the time, the over described method has also the

disadvantage of discretizing the parameters, that by de�nition are real numbers.

In order to overcome these issues, it was decided to opt for a stochastic optimiza-

tion, in particular using genetic algorithms.

Genetic Algorithm : Genetic algorithms belong to the evolutionary programming

class and are biologically inspired, resembling the way that natural selection makes

species evolve based on their �tness.

In short, the fundamental unit of genetic algorithms is a chromosome, i.e., a

representation of a possible solution. In the current case, a chromosome will be

coded as 4 real numbers, representing γ1, γ2, β1, and β2. A chromosome is good

if it has a high �tness value, which is computed by means of a �tness function.

Related to this case, the �tness function will output the accuracy of the chromosome

using a k-fold CV. The genetic search is achieved using the algorithm 3.1. The new

Algorithm 3.1 GENETIC ALGORITHM:
Given the population size L, and the stopping criteria Γ

1: Initialize population with L random chromosomes: xi, i = 1, 2, ..., L
2: repeat
3: Compute �tness value for each chromosome: fi = fitness(xi)
4: Rank the chromosomes based on their �tness
5: Generate a new population using genetic operators
6: until Γ not satis�ed

return xmax
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population are generated with di�erent genetic operators. The selection decides how

the chromosomes to be mated are selected. The crossover operator is used to mix

two di�erent solutions and the mutation operator randomly changes a solution in

order to add randomness in the population. In order to maintain the best �tness

of a population in the o�spring, elitism is used, i.e., copying the best solutions of a

population in the newly generated one.

Di�erent parameters had to be set to regulate the generation of new popula-

tions and the stopping criteria: L is the number of solutions per population, N

the maximum number of generations, S is the number of stall generations, and e

is the number of elite solutions. Other genetic algorithm parameters, such as the

probability of crossover and mutation or the selection method, were left as default

(MATLAB ga() function was used). For the EEG searches (µ and β �ltered signals),

the following parameters were set: L = 10, N = 15, S = 5, and e = 1. For the NIRS

signals, since CSP and CV steps were faster due to the lower sampling frequency,

a larger population size has been used, with increased iterations: L = 20, N = 30,

S = 10, and e = 2.

The genetic algorithms are much faster than other search algorithms, but their

main drawback is that they are not assured of �nding an optimal solution. The

genetic algorithm can sometimes get stuck in local minima, and the usually the way

to avoid this issue is to run the search multiple times with di�erent initial points. In

the current work, multiple initialization is not used, since a wider exploration of the

parameter space with respect to the method, introduced in the previous paragraph,

is already performed by the application of genetic algorithm itself. For the purpose
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of the study, a sub-optimal solution is acceptable when taking in consideration the

high time complexity of the problem.

3.3 Feature Extraction

Starting from an initial set of data, in this case already pre-processed, feature ex-

traction consists of deriving informative values from the data. Practically, extract-

ing features transforms the initial set into a more compact and signi�cant one, from

which predictive models are built. For most of BCI applications, signals are usually

segmented in blocks or time windows, possibly overlapped with each other, and for

every time window a set of features is computed [66], the feature vector. To every

feature vector there is a correspondent output value, which in he case of classi�cation

is a label of a class (e.g., +1 for right movement and -1 for left ones). After feature

extraction, the initial dataset is shrunk into a new one with M observation (repre-

senting M time windows in the initial signals) and N features. Every observation

has a corresponding label, as anticipated before; therefore the label vector has size

Mx1. In the current work the time signals were segmented using a time window of 1

s with 50% overlap (as in [13]). These parameters were chosen because they provide

enough information in a single time segment and they can yield a relative fast output

command (1 command every 0.5).

The main role of the feature extraction step is to �ne characteristics of the signals

which are informative and signi�cant for predicting the output. This task is usually

achieved by further processing of the signal. The entire information inside every time
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segment, in fact, must be collapsed into a relatively small dimensional vector, to avoid

a high dimensionality of the feature space, which can result in a lower classi�cation

performance to to lack of generalization [24, 28].

In this work, two di�erent kind of features were extracted from the EEG and

NIRS signals: one from the CSP-�ltered signals (named CSP features), and another

one from the original non-CSP-�ltered pre-processed signals (named NCSP features).

For CSP-�ltered signals, since the algorithms increase the di�erences between classes

in terms of variances, feature extraction aims at capturing this di�erence. Using non-

CSP-�ltered signals, especially for the NIRS, features of di�erent nature have been

used. In chapter 4, the performance of the di�erent feature extraction methods will

be shown and evaluated. Since the feature extraction depends on the nature of the

signals, it is described in separate paragraph for EEG and NIRS.

EEG : For the EEG, features were extracted separately from µ and β �ltered

signals. Actually, the processing for CSP- and NCSP-based features computation

was exactly the same, but feature vectors di�ered in terms of number of channels

used and number of time segment features concatenated. The variance indicator

chosen was the Band-Power [45], which is equivalent of computing the envelope of

the signals. The time signals, after the band �ltering, were recti�ed and then a low-

pass �lter was used. The low-pass �lter adopted in this work was a 250 coe�cients

rectangular FIR �lter, i.e., a moving average �lter.

For the NCSP-�ltered signals, a feature vector consisted of the average of the band-

power of each EEG channel. In this case, the size of the feature vector was 21.
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A variance indicator was also chosen for NCSP features because of the stochastic

nature of the EEG signal, which is usually translated into spectral features [66]. For

the CSP-�ltered signals, since most of the discriminative information lies in the �rst

and last set of components, the �rst three and last three components were used and

features were computed as the average band-power over the time window. Due to

the small dimensionality of the CSP-derived feature vector, three consecutive feature

vectors were concatenated to form a new feature vector that includes also information

regarding the time evolution of the signals [27]. After this step the feature vector

became an 18 dimension feature vector. The same concatenation was not performed

for NCSP-derived features, for it would result in a very high dimensional feature

space (63 features). Features were extracted separately from µ and β �ltered signals.

NIRS : NIRS signals were processed in completely di�erent ways to extract CSP

and NCSP features and, such as EEG, HbO, and HbR signals were treated separately.

For CSP ones, since only 10 NIRS samples are found in a time segment, the range of

the signals seemed to represent a good indicator of the variance. It should be added

that while for EEG an increase of variance is usually perceived as an average higher

amplitude, for the NIRS signals it is easier to see it as an increase of low frequency

oscillations (NIRS signals were �ltered between 0.01-0.2 Hz). Fig. 3.11 shows how

the amount of oscillations is modulated after CSP �lters. Also for the NIRS, ranges

were computed for the �rst and last three components of the CSP-�ltered signals and

three consecutive time segment features were concatenated to give an 18 dimension

feature vector.

For NCSP features, two di�erent kind of features were used: the average and a slope
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indicator. Averages were computed only by extracting the mean of pre-processed

NIRS signals, while the slope indicator, which was demonstrated to be very signi�cant

in motor execution/imagery classi�cation in [32], was computed as the slope of the

average features, i.e., by subtracting the previous time window average from the

current one. Concatenation was avoided in order to not increase the feature space

dimension, since the number of features was already 68 for both HbO and HbR. One

last comment regards the use of the average over a time segment as feature; in NIRS

BCI literature, e.g., [13] and [32], the average is also referred to a baseline preceding

the task. Clearly, this approach is not translatable in an online application for an

asynchronous BCI, since there is no cue when the task begins. The current study

tried to overcome the real-time inapplicability of these feature by using band-pass

�lters instead of low-pass only [13, 32].

Both the EEG and NIRS features were log2 transformed and normalized with

Eq. 3.1, in order to adjust for the right skewness of the features (the mode of the

distribution is not centered and the right tail is longer) and to prepare to feature

dataset for the classi�cation step. The classi�cation, in fact, is performed by means

of Fischer's Linear Discriminant Analysis, which works better when dealing with

normal distributions (achieved by log transform) and with equal variance (achieved

with normalization) [10, 5].
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3.4 Classi�cation and Validation

Classi�cation, in machine learning, means predicting an output class or label for a

given input vector (feature vector); therefore, it basically consists in mapping the

feature vectors with the labels of the classes.

Classi�cation is usually performed in two steps: �rst, a model or hypothesis or

classi�er is estimated from the data, so that, second, new data can be classi�ed

by means of the classi�er. In other words, a classi�er has to learn from the data

particular patterns, in order to recognize these peculiar patterns in new input data

and predict their output. In this section only a binary classi�cation is covered in

detail. The multi-class classi�cation used in the current study is, in fact, achieved

by combining multiple binary ones.

When the model is tuned too much on the particularities of the speci�c dataset

and does not aim at generalizing over new data, the estimation of a classi�er param-

eters can result in over-�tting of the data used to estimate it. In practice, over-�tting

yields a much worse performance when predicting the output of new unlabeled data.

In order to overcome this issue, or at least to quantify it, usually the initial dataset

is split into a training set and a testing set. The training set is used to estimate the

parameters of the model, while the testing one is used to evaluate the capability of

generalization of the model, since the testing data are hidden during the learning

phase and they are labeled. The performance on the testing set, therefore, can be

quanti�ed in terms of accuracy:
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AccTEST =
correct predictionsTEST
total observationsTEST

(3.18)

In order to evaluate the real expected performance of a classi�er, though, the division

between training and testing set is not enough. The choice of the observations that

will be part of the two sets, in fact, can bias the evaluation of the model. For a better

evaluation, a k-fold cross-validation (CV) is performed. The k-fold cross-validation

consists of repeating k times the split of the dataset, so that the training and testing

sets are di�erent for every fold. Every trial, thus, is part of the training set for k− 1

times, and part of the training once. Before the trials were assigned to one of the

two sets, they were randomized; in order to compare the performance of di�erent

sets of features, the random seed of the pseudo-random generator was always the

same. In each fold, a model is estimated from the training set and evaluated on the

testing one, and after the k iterations the accuracy is computed as the mean of the

k accuracies. In this work two di�erent approaches have been used to classify the

data, and as explained later in this section, k was set to 10 or 5 (10-fold and 5-fold

CV). Accuracies were computed on a subset of the features. In particular the �rst 2

seconds of every rest and task were discarded to consider only the steady states of

rest and motor tasks.

Since in BCI application it is also important to have a temporal view, a dynamic

evaluation of the performance was performed as follows. For each iteration:

� testing observations (n = nTRIALS

k
) were aligned and clipped in a time scale of
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the trial, creating a 3D matrix X ∈ RnxTxM (where T is the number of time

segment in the trial and M the dimension of the feature vector)

� predictions were performed using the trained classi�er (P ∈ RnxT) correspond-

ing to the correct labels L ∈ RnxT

� dynamic accuracies were computed time segment by time segment by applying

Eq. 3.18 over the columns of P and L.

This dynamic accuracy resulted in a time signal over the trial length for each clas-

si�er, allowing to evaluate the role of time. Standard accuracy in Eq. 3.18, in fact,

is only static and does not include the dynamic aspect, which is so crucial for BCI

applications.

There are really many di�erent classi�ers that approach the problem in many

ways. Some make use of Baesyan probabilities (e.g., Baesyan Decision theory), others

use linear or quadradic models (Linear or Quadratic Discriminant Analysis), some

of them try to cluster the data depending on their entropy (Decision Trees), and

others use more complicated principle and optimization techniques that will not be

discussed here (e.g., Arti�cial Neural Networks or Support Vector Machines). In the

current project a Fischer's Linear Discriminant Analysis was used and it is described

in the following paragraph. The choice of a linear classi�er rather than more complex

ones was recommended by di�erent observations. First of all, when using CSP, the

separability between classes is done by the spatial �lters and a more complex classi�er

is not needed; moreover the use of a complex classi�er would add a high number of
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degree of freedom in the estimate of a model, worsening the phenomenon of over-

�tting. A simple linear classi�er was used also for NCSP features in order to obtain

a standard evaluation of the performances.

Fischer's Linear Discriminant Analysis (LDA) : As the name suggests, LDA

is a linear classi�er, i.e., it assigns predictions to a feature vector by applying a linear

combination of the features. Let x be the feature vector, then:

g(x) = wTx + w0 (3.19)

The classi�er output depends on the sign of g(x): e.g. if it is positive it predicts class

+1 and if it is negative it predicts -1. Eq. 3.19 can be referred to as the decision rule

of the classi�er, and it can be graphically seen as a projection of the feature vector

x on the weight vector w. For a binary classi�cation, for which LDA is designed,

one can imagine an optimal hyperplane that divides the feature space in two regions

(one for each class); let us call this optimal hyperplane decision boundary d. Since

the classes are separated based on the sign of g(x), it is straightforward that the

decision boundary equation would be g(x) = 0 ⇐⇒ wTx + w0 = 0. Assuming 2

points x1 and x2 that lie on d, the following equality is satis�ed:

wTx1 + w0 = 0 , wx2 + w0 = 0 =⇒ wT (x1 − x2) = 0 =⇒ w ⊥ d

The decision boundary is, therefore, perpendicular to the weight vector w.
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The classi�er training can be reduced to an optimization problem that �nds the

direction w for which the 2 classes are maximally separable. Assuming normality

and equal covariance for the distributions of the two classes, which have means µ0, µ1

and covariances Σ0 and Σ1(= Σ), then the separation between the classes is de�ned

by Fischer as:

S =
σ2
between

σ2
within

(3.20)

where σ2
between = (µ1 − µ0)(µ1 − µ0)T and σ2

within = Σ0 + Σ1. The denominator,

which expresses to what extent the two distributions are �far� from each other, is

to be maximized, while the denominator, which represents the �expansion� of the

distributions around their means, should be minimized in order to achieve a better

separability. By projecting S on w the estimation of the optimal weight vector is

reduced to an optimization problem, i.e., the maximization of the objective function:

J(w) =
wTσ2

betweenw

wTσ2
withinw

(3.21)

The projection that maximize Eq. 3.21 will yield the best performance of the

classi�er. The estimation of w can be visually appreciated in the 2D example in Fig.

3.12.

Under a probabilistic point of view, the posterior probability of a feature vector

x belonging to a class i can be estimated applying the logistic �nction to g(x) in Eq.
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3.19:

P (Ci|x) =
1

1− e(−g(x))
(3.22)

This metric can be used as a score of the prediction, indicating the con�dence (pos-

terior probability) in the classi�cation. It can be extremely useful when LDA is used

for multi-class classi�cation, because it suggests which of the multiple classes is more

likely given the features.

Classi�cation Approaches : Two di�erent approaches were used to perform the

complete 5 classes -Rest (Re), Right-Arm (RA), Right-Hand (RH), Left-Arm (LA),

and Left-Hand (LH)- classi�cation. Both the approaches require the estimation of

multiple binary classi�ers, that combined allow to predict each of the 5 classes.

They have their advantages and disadvantages and will be evaluated and discussed

in chapter 4.

The �rst approach requires the estimation of 3 di�erent classi�ers in order to

discriminate between the following classes:

1. Rest vs Task (Re-T)

2. Right vs Left (R-L)

3. Arm vs Hand (A-H)

After the model estimation, in order to predict the one of the 5 classes, the 3 classi�ers

must be run in cascade. The Re-T classi�er predicts �rst: if Re is predicted then
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the class is 0, otherwise R-L and A-H classi�ers will predict one of the remaining 4

classes. The order in which classi�er 2 and 3 predict is not important. This approach

has the advantages of giving as output an univocal class (the second approach does

not), and it increases the number of trials per class by grouping together RA and

RH into R, LA and LH into L, RA and LA into A, and RH and LH into H. This way

there are 50 trials available for classi�cation 2 and 3, and 100 for classi�cation 1. The

latter advantage, though, can have a downside: by grouping the classes, in fact, one

can argue that some physiological information is lost, because di�erent brain areas

are involved. To evaluate this possibility, a second approach is adopted.

The second approach is built by 5 di�erent classi�ers:

1. Rest vs Task (Re-T)

2. Right-Arm vs Left-Arm (RA-LA)

3. Right-Hand vs Left-Hand (RH-LH)

4. Right-Arm vs Right-Hand (RA-RH)

5. Left-Arm vs Left-Hand (LA-LH)

Also in this case, the Re-T classi�cation precedes all the others. If T is predicted,

the others classi�ers are run in parallel giving 4 outputs. The assignment to a

class can be done using a majority voting principle and taking into account the

score of every prediction. To provide a concrete example, imagine that for a feature

vector, the classi�er predicted task and for the other 4 classi�er the output were

the following: classi�er 2 predicts RA with 85% con�dence, classi�er 3 predicts LH
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with 60%, classi�er 4 predicts RH with 55% of accuracy, and classi�er 4 predicts LA

with 70% con�dence. Clearly, even if none of the class is predicted twice and, thus,

the majority voting cannot be applied, the most likely class is RA because it has

the higher con�dence to be true. Of course it could be a misclassi�cation, but the

probability of error would be the minimum when predicting RA.

For each the above mentioned classi�ers, di�erent sets of CSP have been com-

puted. The performance of every classi�cation step has been evaluated with a 10-fold

CV for the �rst approach and a 5-fold CV for the second one. Only 5 folds have

been used for the second approach in order to assure that in every testing set there

were 5 trials belonging to each class. The testing trials were non-randomized in this

case, but at every fold, 4 experimental blocks were used as a training set and the

other as a testing set (see section 3.4 for a detailed explanation on the experimental

procedure). Moreover, every classi�er was tested using features derived from di�er-

ent signals, with di�erent CSP variants (including NCSP features explained before).

SIGNALS:

� µ �ltered EEG

� β �ltered EEG

� HbO

� HbR

� µ+ β (EEG)

� HbO + HbR (NIRS)
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� µ+ β + HbO + HbR (COM)

CSP:

� computed before CV (batch)

� computed within CV (cv)

� regularized and within CS (reg)

� no CSP (noCSP)

� CSP only for EEG (CSPeeg)

The abbreviations in parentheses refer to the ones that are going to be used in the

statistical analysis to identify the di�erent signals and CSP approaches. In order to

identify the most suitable signals and CSP approach, as well as the best classi�cation

approach, the data need to be statistically analyzed, as described in the next section.

3.5 Statistical Analysis

The statistical analysis involves the use of tests in order to �nd signi�cant di�erences

among the data. To sum up, the datasets analyzed are made of the accuracies

obtained by the classi�ers with combination of features and CSP approaches, and the

purpose is to �nd which are the best con�gurations that yield the highest accuracy.

The statistical analysis has been performed in R environment.
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Before performing any kind of test, though, the data are to be explored. Data

exploration in practice consists of plotting the di�erent distributions in order to get

an idea of where the signi�cant di�erences might be. Boxplots of the di�erent signals,

divided by the CSP approach for motor execution and motor imagery can give a �rst

insight on the dataset, driving further hypotheses and analyses. Therefore, in the

data exploration step, it is crucial in a statistical analysis to not waste any time

looking for di�erences where they do not exist.

A hypothesis test can be performed using parametric or non-parametric statis-

tics. Parametric statistical tests assume that the data are generated by a normal

distribution (that can be described with a set of parameters) and that they have

equal variance. When these assumptions are not satis�ed, the only way to obtain

reliable results is to opt for non-parametric statistical tests, which do not assume

any particular distribution of the data, but instead are based on ordering the ob-

servations and considering the rank to extract signi�cant di�erences. In order to

assess the normality of the data, for every distribution the Shapiro-Wilk test was

performed [51], while for equality of variance the Levene test was used [25]. If both

the assumptions are satis�ed, then the t-test and the ANOVA test can be used for 2

and multiple populations, respectively; otherwise the Mann-Whitney U test and the

Krukcal-Wallis test should be used.

Statistical analysis is performed on Rest - Task classi�cation separately, because

it is common between both the classi�cation approaches. For each of the approaches,

then, the best con�guration of signals and CSP methods is investigated in detail.
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3.6 Online Evaluation

The online evaluation of the entire system is very important, as introduced in section

2.1, in order to understand and quantify the real potential and capability of the BCI.

The real-time evaluation, in fact, goes beyond the concept of accuracy, taking into

account a metric, the Information Bit Rate (ITR), that comprehend the accuracy,

the time, and the possible choices. It is clear that two BCI with the same accuracy,

but with the di�erence that one classi�es between 2 classes and the other between 4

classes, may have completely di�erent communication power (the 4-class BCI allows

the user to perform more actions). However, the development of the real-time system

that allows the computation of the ITR is very challenging and time consuming. In

this section the design of such a system will be presented, but unfortunately it has

not been implemented yet.

Fig. 3.13 shows the block diagram of the setup. Comparing it with the one in

Fig. 3.4, it can be noticed that the laptop (LT) running Presentation software is

no longer used, because the synchronization is not needed anymore since the data

stream of the EEG and NIRS system occurs at the same time, and because there is

no need to present stimuli for the subject. In fact the subject interacts only with a

tablet with an Android application developed to test the performance in real-time.

On the WS side, the C++ application is built on the basis of the one explained in

section 3.1.3, with three main di�erences:

� �rst of all, NIRS signals must be streamed too. The application, then, behaves

as a Client of NIRStar, the server that provides real-time data via TCP/IP.
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The raw signals are extracted and �ltered online with the same IIR �lter used

in the pre-processing (see section 3.2.1). In order to avoid the program to wait

for NIRStar data packets while �losing� EEG ones, the NIRS streaming must

be performed on another thread that run in parallel with StreamingThread and

ProcessingThread ones.

� the second main di�erence lies on the fact that now the application not only

has to compute EEG power bands, but it has to compute the features described

in section 3.3 and to classify using the subject-dependent trained classi�ers. In

particular it should compute the feature set accordingly to the con�guration

and approach that yields the best performance for the subject using the BCI.

� and last, instead of sending the output via USB to Presentation, the program

sends it to the Android application via Bluetooth.

In order calculate the ITR, the Android and the C++ applications needs to commu-

nicate; the implementation can be uni-directional if the Android application acts as

a Master, deciding the timing and the nature of the evaluation. In that case it would

be the Android app itself that computes the ITR. For example, a possible design

could be a cue-based one, in which 4 arrows pointing left, right, up, or down tell the

subject which movement to perform: right arm, left arm, right hand, or left hand.

One of the four arrows appears randomly on the screen, let us say the left one which

corresponds to the left arm; then the Android app waits until a classi�cation output

is delivered from the C++ application: if the classi�cation matches the expected one,

it counts one hit, otherwise one error. Then the arrow disappears and after some

91



seconds (e.g., 2-3 s) another arrow appears and so on for a �xed amount of time (e.g.,

2 minutes). Given C the number of classes (C=4), the accuracy measured p, the

number of decisions (number of arrows presented) d , and the duration in minutes T

, the ITR can be computed as [5]:

ITR =
d

T
(p log2(p) + (1− p)log2(

1− p
C − 1

) + log2C) (3.23)

Of course a crucial point in the real-time evaluation and use of the BCI is the

classi�cation step. In fact, although speed is a key factor of a BCI performance, it

is probably more important to have a higher accuracy with a slower speed than the

opposite. With this perspective, the classi�cation should not be forced to output a

decision at every time segment (0.5 s). The output could be �ltered out to increase

the robustness of the system using to di�erent approaches. The �rst way takes into

account the score of the LDA classi�er output in Eq. 3.22, i.e., the degree of certainty

of the classi�cation. In order to minimize mistakes, the C++ application would send

classi�cation output only when the con�dence of the classi�cation is above a certain

threshold. Another way to increase robustness is to �lter the outputs with a majority

vote approach, which means classifying not only in base of the current output, but

also taking into account the previous ones (e.g., the last 3 or 4). Without an online

test, though, it is di�cult, if not impossible, to simulate these approaches and to

decide what is the best one (which can also be a hybrid approach) and what are the

most suitable parameters.
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The reader can notice that this cue-based design is not exploiting the asyn-

chronous capability, i.e., the possibility of detecting rest and task in a continuous

way. A self-paced design could consist of a maze that the subject could traverse in 4

di�erent directions (left, right, up, or down) trying to get to the end in the minimum

amount of time. Nevertheless, even though this design could resemble more closely

a real application (e.g., a wheelchair control), in this case the evaluation in terms of

ITR would not be as straightforward as the cue-based design.
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Figure 3.7: (a) Comparison between low-pass (0-0.2 Hz, blue) and band-pass (0.01-
0.2 Hz, red) �lters on NIRS HbO signal (b) Comparison between 2 band-pass �lter:
0.01-0.5 Hz (blue) and 0.01-0.2 Hz (red).
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Figure 3.8: EEG-NIRS GUI: on the top left there is the LOAD panel; on the bottom
left, the PRE PROCESS panel; on the right the VISUALIZATION panel enables to
plot raw signals, spectra and pre-process data in di�erent combinations of signals and
channels; with the FILTER panel inside the VISUALIZATION one, EEG signals
can be �ltered in di�erent bands and band-power visualized; the ANALYZE panel
is thought to allow the user to add custom processing to the GUI.
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Figure 3.9: Time signals of 1st, 2nd (top 2 rows), Last and 2nd Last (bottom 2
rows) CSP components for Right - Left classi�cation: red and blue vertical lines
represent the beginning of right and left tasks, respectively, and black vertical lines
show the beginning of rest phase. The time between the beginning of the task and
the beginning of the rest is 4 s. The �rst 2 signals have higher variance for left tasks
and lower for right ones, while the last 2 rows have the opposite behavior, i.e., higher
variance for right tasks and low for left ones.
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FILTER PATTERN

RIGHT

LEFT

Figure 3.10: Scalp plots of CSP �lters (on the left) and corresponding pattern (on
the right) for Right - Left motor execution classi�cation: the top row, representing
the �rst component of CSP, enhances most of all the channels on the left emisphere,
i.e., the controlateral side of right movements, while the bottom row, displaying the
last CSP components, enhances the right emisphere, which is the controlateral side
of left movements.

Figure 3.11: NIRS HbO time series of �rst 4 (top panel) and last 4 (bottom panel)
CSP components for Right - Left classi�cation. The x-axis represents the time [s],
while the y-axis is uniteless because the signals are normalized. Red and Blue shaded
areas correspond to right and left trials, respectively. Black lines are the beginning
of rest. It can be observed that for right tasks (red areas) the �rst components have
lower oscillations, whereas they start oscillating remarkably for left tasks (blue areas).
The last components show an opposite behavior: they have minimum oscillations for
left tasks (blue areas) and maximum for right ones (red areas).
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Figure 3.12: Image representing the maximized separation given by the projection on
the optimized weight vector: whereas the right and left distributions are not separable
in the standard reference system, the become completely separable if projected on
w.

Figure 3.13: Setup block design for an online evaluation of the system. Note that
the 2 �Bluetooth dongle� blocks are actually the same and they are divided for sake
of presentation.

98



Chapter 4

Results

The results are divided into three sections. The �rst one presents the results about

the Rest - Task classi�cation (section 4.1), which is common between the 2 approaches

as described in section 3.4. The second part focuses on the �rst approach, i.e., Right

- Left and Arm - Hand classi�cation (section 4.2), while the third section is about

the second approach, which consists of pairwise classi�cation among the 4 classes

(section 4.3). In every section there is a data exploration part and an analysis of the

CSP approaches for Execution and Imagery tasks separately, as well as a comparison

between Execution and Imagery tasks. Moreover, the dynamic accuracy evaluation

is presented for each classi�er. All the �gures involving box plots and signi�cance

levels are depicted in Appendix B for sake of conciseness. As explained in section

3.5, parametric statistics is applied when possible (when assumptions are satis�ed),

but it will not be speci�ed in the text - only the signi�cant di�erences are reported.

The CSP approaches that appear in the box plots and are used in this chapter
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have the following labels:

batch CSP are computed before CV

cv CSP are computed within CV

reg CSP are computed within CV with regularization and optimized parameters

noCSP CSP are not used

CSPeeg reg is used for EEG signals and noCSP for NIRS ones

4.1 Rest - Task

4.1.1 Execution

First of all, let us see whether there are signi�cant di�erences among accuracies

depending on the CSP approaches. The EEG and NIRS signals are considered sepa-

rately, and afterwards the combination of the signals is taken into account. Table 4.1

contains the accuracies of all signal-derived features and their combination divided

by CSP approach.

Fig. B.1a (Appendix B) shows the µ and β performance with box plots; however,

the di�erence is signi�cant only between the µ-batch and µ-noCSP approaches. For

both the signals it can be observed that CSP over-�t, but not excessively, and that

the regularization process improves the performance (see Table 4.1). Accuracy is

de�nitely worse without using CSP (noCSP around 5% less than reg). For the NIRS
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signals, box plots and signi�cance levels are shown in Fig. B.1b (Appendix B). Even

if NIRS regularization increases the performance (batch accuracy is higher than cv

accuracy), the noCSP approach yields extremely high accuracy that outperforms the

use of CSP (reg). There is no doubt that the noCSP is the best strategy for Rest

- Task classi�cation using NIRS-based classi�ers. For the combination of features,

only the regularized approach is reported, because it improves the performance with

respect to cv and is not biased as is the batch approach. Therefore, as shown in Fig.

B.2, only reg and noCSP are shown for EEG (µ + β) and NIRS (HbO + HbR),

while reg, noCSP, and CSPeeg are shown for COM (all 4 signals together). For the

EEG signals, regularization is signi�cantly better than noCSP at the 5% signi�cance

level. The NIRS-based classi�er yields a signi�cantly higher accuracy when CSP are

not used (p<0.001), and the combination of EEG and NIRS features improves the

overall accuracy (but not signi�cantly with respect to noCSP).

µ β HbO HbR EEG NIRS COM

batch 80.3±4.4 83.5±4.6 74.3±3.9 71.1±3.6

cv 77.7±6 82.3±5.7 65.5±4.2 62.2±3.6

reg 78.6±5.7 82.8±5 69.4±4.1 65.9±4 85.2±4.6 69.8±4.5 86.2±4

noCSP 73.3±6.4 77.5±7.5 90.5±6 89±7.1 80.4±6.7 92.4±5.3 93.7±4.1

CSPeeg 94.2±3.4

Table 4.1: Rest - Task Motor Execution: accuracies obtained with a 10-fold CV for
single signals features and combination of them. The combination of the features
improves the overall accuracy.

Observing the performance of the classi�ers in terms of accuracy, it can be ob-

served that both for EEG and NIRS, the combination of the signals improves the

accuracy, and that the use of features derived from the all four signals yields the

highest accuracy. Such a high accuracy (94.2%) in the Rest - Task classi�cation for
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motor execution could allow the use of the BCI in a synchronous or self-paced mode,

in which the user can control the BCI output any time, without the need of visual

or auditory cues.

4.1.2 Imagery

Table 4.2 shows the accuracies in motor imagery tasks for the 4 signals separately

and for their combination. Box plots of performances for EEG and NIRS signals

are displayed in Figs. B.3a and B.3b (Appendix B). For EEG signals there is no

signi�cant di�erence, but regularization slightly improves the performance. As in

motor execution, the best approach for NIRS is without the use of CSP, which

is signi�cantly better than all the other possibilities (noCSP accuracy is ∼10-15%

higher with respect to reg). Combining features improves the accuracy both for

EEG and NIRS (Fig. B.4). The di�erence between noCSP and reg is not signi�cant

for EEG; however, it is highly signi�cant for the NIRS (also in this case noCSP

is the best approach). By using features derived from all the di�erent signals the

highest accuracy is achieved (85.8%); such a high accuracy could be translated in an

asynchronous BCI for motor imagery paradigm.

4.1.3 Execution vs Imagery

Tables 4.1 and 4.2 showed that for both execution and imagery tasks, the highest

accuracy for Rest - Task classi�cation is obtained when features derived from all

channels are combined, applying regularized CSP on EEG signals and not using
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µ β HbO HbR EEG NIRS COM

batch 75.4±7.1 72.2±7 66.7±5.1 65.6±3.7

cv 72.3±9.2 66.9±8.9 59.1±5.8 58.1±4.8

reg 73.8±9.1 70.4±7.8 63.6±6.1 61.2±4.8 74.8±9.2 63.1±6.4 76.3±8.5

noCSP 69.1±8 66.5±6.7 79.1±8.6 77.9±8.7 71.3±8 82.8±7.9 84.9±7.4

CSPeeg 85.8±7.2

Table 4.2: Rest-task Motor Imagery: accuracies obtained with a 10-fold CV for single
signals features and combination of them. The combination of the features improves
the overall accuracy.

CSP for NIRS ones. In order to look for di�erences between execution and imagery

performance, only the con�guration COM-CSPeeg is taken in consideration, because

it resulted in the highest performance. The distributions of accuracies for execution

(EXE) and imagery (IM) is shown in Fig. 4.1. There is a remarkably signi�cant

di�erence between the two tasks (p<0.001), and motor execution yields a higher

accuracy with respect to motor imagery.

Figure 4.1: Rest-task classi�er performance using CSPeeg approach for motor exe-
cution (EXE) and motor imagery (IM).

Whereas, it has been shown that the mental strategies for motor execution and

motor imagery are similar (in section 2.3), it can be concluded that execution is a
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more reliable strategy in this case. One of the reason that could explain the worse

performance of motor imagery is that the subjects had no experience at all in this

kind of mental exercise and they found it very di�cult. With more practice and

a more robust feedback, the second distribution would probably approach the �rst

one, �lling the gap between performances.

4.1.4 Dynamic Evaluation

The dynamic evaluation, as described in section 3.4, consists of plotting the mean

accuracy of the di�erent testing trials averaging on the time windows. Fig. 4.2

displays the trend of the accuracy for Rest - Task classi�cation. The black vertical

lines mark the beginning and end of the task. The feature con�guration used is

CSPeeg for both execution and imagery tasks, because it yielded the highest accuracy.

The colored lines are the accuracies of the di�erent subjects, and the black thicker

line is the average of them. It can be noticed that right after the cues the accuracy

drops. This is not due to a de�cit of the classi�er, but it can be explained due to the

fact that it takes some reaction time for the subject to actually start the motor task

and also to end it when told to do so. Moreover, the classi�ers have been trained by

discarding the �rst two seconds of task and rest periods and this for sure contributes

to the worse performance when the label changes. As observed in Tables 4.1 and

4.2, the best performance for both motor execution and imagery is obtained when

EEG and NIRS features are combined. The NIRS-based classi�ers do not su�er

from the hemodynamic delay that is usually observable in NIRS signals. This can

be explained by the fact that not only the average of the signal is used as a feature,
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but so is the slope, and since the signals start increasing as soon as the movement

begins, the accuracy is not delayed. As shown in Fig. 4.1, then, executed movements

are better classi�ed than imagery ones, and this is re�ected in the dynamic accuracy

trends.
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Figure 4.2: Dynamic accuracy plots for Rest - Task classi�ers: the �rst column shows
executed tasks, the second one imagined ones. The �rst row represents the accuracy
obtained with EEG features, the second row with NIRS ones, and the third one the
combination of EEG and NIRS features. The x axis is time in seconds and the y
axis the accuracy (from 0 to 1). The vertical lines delimit the task phase of the
trial. Colored lines represent single subjects, the black thick line is the average of all
subjects.

4.2 First Approach

The �rst approach to classi�cation, after having classi�ed task with the Rest - Task

classi�er, consists of recognizing if the movement is right or left and then arm or

hand, or vice versa.
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4.2.1 Execution

Table 4.3 contains the results of the Right - Left classi�ers (for the combination of

features only reg, noCSP, and CSPeeg con�gurations are shown). It can be observed

that neither the separate signals, nor the combination of EEG and NIRS, result in a

high accuracy. The combination of all signals allows to reach an accuracy of 72.2%

with CSPeeg con�guration. For EEG signals, though, CSP signi�cantly outperforms

noCSP approach by around 5% of accuracy (p<0.1 for µ and p<0.05 for β), while

for NIRS the best performance is achieved without the use of CSP (signi�cantly only

for HbO, p<0.01). The reader can notice how prevailing the phenomenon of over-

�tting is; for EEG the drop between batch and cv is around 15-18% for µ and β, and

for NIRS it is 20% in both cases. Regularization improves the performance (around

4% for EEG and 7-8% for NIRS signals), but de�nitively not enough to consider

the use of single-signal-based classi�ers. In Figs. B.5a, B.5b, and B.6 (Appendix

B) all the box plots and the signi�cant di�erences are displayed. Regarding the

µ β HbO HbR EEG NIRS COM

batch 73.8±6.5 72.1±5.5 74.8±5.7 72.8±4

cv 57.5±11.1 54.4±8.6 54.1±5.3 52.1±4.2

reg 61±9.8 58.7±7.3 62.2±4.3 60.9±4.6 62.2±8.9 63.1±5.8 67.1±7.4

noCSP 55.5±8.6 53.7±6.3 70.6±9.4 65±8.5 56.9±6.5 70±7.8 71.2±7.4

CSPeeg 72.2±6.9

Table 4.3: Right - Left Motor Execution: accuracies obtained with a 10-fold CV
for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

classi�cation between arm and hand tasks, Table 4.4 shows the performance of the

di�erent classi�ers. Also for the Arm - Hand classi�ers, a great amount of over-�tting
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is observed, which is partially corrected with regularization (drop of around 8-10%

for both EEG and NIRS signals after regularization, while before regularization it is

between 12-14%). The best performance is achieved by combining EEG and NIRS

features, but unlike Rest - Task and Right - Left classi�ers, though, CSP perform

slightlt better than noCSP. The highest accuracy, in fact, occurs when regularized

CSPs are applied to both EEG and NIRS signals (83.6%). Box plots with signi�cant

di�erences can be found in Figs. B.7a, B.7b, and B.8 (Appendix B).

µ β HbO HbR EEG NIRS COM

batch 78.5±6.7 74.4±5.5 85.9±6.2 83.9±6

cv 66.3±13.5 60.1±9.5 73.9±9.7 71.2±10.7

reg 69.3±12.3 65.8±8.1 79.4±8.7 76.7±10.7 71±11.9 80.4±9.1 83.6±9.6

noCSP 63±10.9 60.2±6 75.5±8.1 73.4±7.4 66.1±10 76.9±6.4 78.3±6.1

CSPeeg 79.9±7.1

Table 4.4: Arm - Hand Motor Execution: accuracies obtained with a 10-fold CV
for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

4.2.2 Imagery

Table 4.5 shows the accuracies obtained for Right - Left classi�cation in motor im-

agery tasks. It can be observed that imagining a motor task does not yield results

as high as executing a task: for Right - Left classi�cation the maximum accuracy is

obtained combining EEG and NIRS features without the use of CSP (63.2%), even

though it is only slightly higher than CSPeeg approach, which results in 62.5% of

accuracy. The average accuracy, though, is low; it would probably be not enough to
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be translated in a working BCI. An important observation is that the noCSP ap-

proach allows to reach the maximum performance, even if the single signal classi�ers

have equal or lower performance with respect to the reg approach. This means that

the information carried by the separate signals is somehow mixed when CSPs are

applied. Nevertheless, this is only a suggestion, and further experiments should be

conducted to prove that. Figs. B.9a, B.9b, and B.9b (Appendix B) show the box

plots of all the con�gurations. Arm - Hand classi�cation performance is in line with

µ β HbO HbR EEG NIRS COM

batch 75.4±7.4 72.1±5.1 68.7±5.3 68.1±2.9

cv 58.4±11.8 52.9±7.7 48.5±3 48.8±3.2

reg 61.9±10.1 57.6±6 55.5±1.4 55.5±2.3 62.1±8.9 56.6±2 58.7±7.8

noCSP 57.2±9.2 50.5±7.1 54.9±6.6 55.5±6 56.8±9.4 56.4±7.7 63.4±7.5

CSPeeg 62±7.9

Table 4.5: Right - Left Motor Imagery: accuracies obtained with a 10-fold CV
for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

the Right - Left one for motor imagery tasks; the maximum accuracy is 63.4% when

combining all features and applying regularized CSP (same con�guration as motor

execution tasks). In this case, however, the accuracy would probably be too low for

a BCI application. The distributions of the performances for Arm - Hand motor

imagery classi�cation are shown in Figs. B.11a, B.11b, and B.12 (Appendix B).

4.2.3 Execution vs Imagery

The comparison between execution and imagery motor tasks is presented using the

con�guration of features that yielded the highest performance for Right - Left and
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µ β HbO HbR EEG NIRS COM

batch 73.6±3.7 70.5±4.9 67.8±3.3 67.1±2.2

cv 55.6±6.7 50.8±6.1 48.3±2.9 49.3±2.8

reg 58.7±5.9 55.4±4.6 55.6±1.7 54.1±2.5 59.5±6 55.5±2 60.8±4.4

noCSP 52.8±6.8 50.5±6.1 53.3±5.2 52.3±5.3 53.5±7.5 51.7±4.6 53.6±5.8

CSPeeg 56.5±6

Table 4.6: Arm - Hand Motor Imagery: accuracies obtained with a 10-fold CV
for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

Arm - Hand classi�ers, i.e., the combination of all signal features (COM) and CSPeeg

for R-L execution, noCSP for R-L imagery, and reg for both A-H execution and

imagery. Fig. 4.3 displays the distributions of the accuracies for Right - Left clas-

si�cation divided by execution (EXE) and imagery (IM). A paired statistical test

showed that they are highly signi�cantly di�erent (p<0.001), and the performance

for executed movements overcomes the one for imagined ones.

Figure 4.3: Right - Left classi�er performance using CSPeeg approach for motor
execution (EXE) and noCSP for motor imagery (IM).

Also, the di�erence for Arm - Hand classi�cation is highly signi�cant in favor of

execution tasks. Both Right - Left and Arm - Hand classi�cations are much better
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for execution than imagery tasks. The main reason why this occurs is most likely the

lack of experience of the subject in motor imagery strategy and the inadequacy of the

feedback. A more in depth discussion on motor imagery classi�cation performance

can be found in section 5.3.

Figure 4.4: Arm - Hand classi�er performance using reg approach for both motor
execution (EXE) and motor imagery (IM).

4.2.4 Dynamic Evaluation

Fig. 4.5 displays the trend of the accuracy along the trials for Right - Left classi-

�ers, divided between motor execution and motor imagery. The colored lines are

the performances of single subjects and the black line is the average accuracy. The

con�guration of features is CSPeeg for both execution and imagery. The trend of the

accuracy con�rms that NIRS classi�ers outperforms EEG ones for executed move-

ments, while for imagined ones, despite the overall low performance, EEG-based

classi�ers seems slightly better than NIRS ones. The combination of EEG- and

NIRS-derived features improves the performance in all cases. The signals outside
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the vertical lines, which represent the beginning and the end of the task, are not

signi�cant, because being in the resting phase they would not be classi�ed. The

performance of Right - Left classi�er is not very high for motor execution, and it

seems to increase slowly, reaching a maximum around 3 s after the task. Neverthe-

less, it must be noticed that the readiness of NIRS classi�ers is higher than the EEG

ones, i.e., the slope is steeper and the accuracy raises faster. However, for a working

BCI, probably the Right - Left classi�cation would cause many errors and it should

be improved, mainly by means of considering a larger dataset for training the CSP

and the classi�ers. A further discussion on this topic can be found in section 5.2.

Regarding motor imagery, the performance is on average unacceptable (as shown in

Table 4.5), being slightly over 0.5, which indicates the performance of a completely

random classi�er.

Fig. 4.6 shows the dynamic accuracy for the Arm - Hand classi�ers. For this

classi�cation, the use of regularized CSP has shown the best results both for EEG

and NIRS. For the Right - Left classi�cation the performance for motor imagery is

excessively low and not enough for a BCI; however, for motor execution, displayed

in the left column of the �gure, the average accuracy is high (around 80%) and

steady during the entire task. The use of CSP makes the response of the NIRS-

based classi�er faster (it gets to a steady point around 2 s after the task visual cue),

and the overall accuracy over time could certainly be translated in a working BCI.

By enlarging the training set, though, the performance probably would increase.
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Figure 4.5: Dynamic accuracy plots for Right - Left classi�ers: the �rst column
shows executed tasks, the second one imagined ones. The �rst row represents the
accuracy obtained with EEG features, the second row with NIRS ones, and the third
one the combination of EEG and NIRS features. The x axis is time in seconds and
the y axis the accuracy (from 0 to 1). The vertical lines delimit the task phase of
the trial. Colored lines represent single subjects, the black thick line is the average
of all subjects.

4.3 Second Approach

For the second approach the 4 di�erent pairwise classi�ers are analyzed separately,

both for motor execution and motor imagery.

4.3.1 Execution

Table 4.7 and Figs. B.13a, B.21b, and B.14 (Appendix B) show the performance

in Right-arm - Left-arm classi�cation. The best performances are obtained when

regularized CSP are applied for both EEG and NIRS and the features are combined
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Figure 4.6: Dynamic accuracy plots for Arm - Hand classi�ers: the �rst column
shows executed tasks, the second one imagined ones. The �rst row represents the
accuracy obtained with EEG features, the second row with NIRS ones, and the third
one the combination of EEG and NIRS features. The x axis is time in seconds and
the y axis the accuracy (from 0 to 1). The vertical lines delimit the task phase of
the trial. Colored lines represent single subjects, the black thick line is the average
of all subjects.

(72.3%). In comparison with Right - Left motor execution classi�er, though, it

can be observed that here the NIRS performs better when CSP are used, while by

clustering together right and left tasks, the best performance is obtained in noCSP

con�guration. The highest accuracy is in line with Right - Left classi�cation one

(72.2%, in Table 4.3). Over-�tting is severe (16-22% of accuracy drop with respect

to batch), but the performance is improved signi�cantly (except for the µ-based

classi�er) by regularization (12-14% of accuracy drop with respect to batch). While

regularization is signi�cantly better than noCSP for EEG, it is not the case for NIRS,

as can be inferred from the box plots.

The performance of the Right-hand - Left-hand classi�er is contained in Table
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µ β HbO HbR EEG NIRS COM

batch 82.8±6.1 80±5.1 82.8±5.6 79.9±4

cv 63.6±14.5 58.9±9.1 56.4±5 53.6±4.6

reg 69.5±11.2 66.7±7.3 67.8±6.3 66.3±5.6 69.3±10 67.7±6.7 72.3±9.5

noCSP 59.3±9.2 57.6±8.8 72.3±7.2 64.2±8.6 60.1±7.6 68.4±7.7 66.4±8

CSPeeg 69.9±5.6

Table 4.7: Right-arm - Left-arm Motor Execution: accuracies obtained with a 10-fold
CV for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

4.8, and the distributions are displayed in Figs. B.15a, B.15b, and B.16 (Appendix

B). In this case the maximum accuracy (65.3%, using EEG and NIRS features with

regularized CSP) is around 7% lower than the Right - Left classi�er one. It can

be observed that the over-�tting phenomenon is higher than in the Right-arm -

Left-arm case; the accuracy drop from batch to cv is around 23-27%. Even with

regularization, the over-�tting is partially corrected and the accuracy drop from

batch to reg is 15-19%. Regularization signi�cantly improves the performance for

both the EEG-based and NIRS-based classi�ers (from cv to reg). Also in this case,

the reg approach is signi�cantly better than the noCSP only for EEG signals, while

for NIRS not only there is no signi�cance di�erence. Also, the noCSP approach has

better performance for HbO-, HbR-, and NIRS-based classi�ers. When combining

EEG and NIRS features, though, the best performance is obtained with the use of

CSP for both the signals. Given the performances just presented, the recognition

of right and left hand can be identi�ed as the less accurate classi�cation among

the others (for both approaches); chapter 5 will develop further explanations on the

topic.

Table 4.9 displays the performances for the Right-arm - Right-hand classi�ers.
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µ β HbO HbR EEG NIRS COM

batch 78.1±7.1 75.8±5.3 82.7±5.4 80±4

cv 55.7±12.7 52±9.4 55.5±6.4 52.9±59.7

reg 62.3±9.6 61±6.8 63.4±6.2 61.8±4.2 61.5±7.9 63.5±4.9 65.3±7

noCSP 54.9±8.5 52.7±6.9 67.1±10.9 64.5±8.3 54±8.8 63.9±10.9 61.9±9.9

CSPeeg 64.2±9.7

Table 4.8: Right-hand - Left-hand Motor Execution: accuracies obtained with a 10-
fold CV for classi�ers trained on features derived from the 4 signals separately and
with combinations of them with di�erent approaches for CSP.

Even for this classi�cation the highest accuracy is reached when EEG and NIRS

are combined with the reg approach (80%). The accuracy is only slightly lower

than the Arm - Hand motor execution classi�er one (83.6% in Table 4.4). Over-

�tting is staunched by regularization, which limits the accuracy drop from batch to

reg to 10-13%. The application of regularizing techniques improves signi�cantly the

performance for all classi�ers and yields the highest accuracy both for EEG-based

and NIRS-based classi�ers. Box plots are shown in Figs. B.17a, B.17b, and B.18.

µ β HbO HbR EEG NIRS COM

batch 83.3±5.4 80.4±2.7 88.9±4.2 85.8±5.9

cv 64.9±12.3 60.1±8.3 69.2±8.6 66.9±12

reg 71.3±10.8 67.3±7.2 77.7±8.9 75.7±9.3 71.5±11 78.4±8.9 80±9.7

noCSP 61.6±10.5 60.8±6.6 71±10 69.8±9 65.5±8.9 68.2±10.6 67.9±8.2

CSPeeg 70±9.3

Table 4.9: Right-arm - Right-hand Motor Execution: accuracies obtained with a
10-fold CV for classi�ers trained on features derived from the 4 signals separately
and with combinations of them with di�erent approaches for CSP.

The results for the Left-arm - Left-hand classi�ers are shown in Table 4.10 and

the box plots are displayed in Figs. B.19a, B.19b, and B.20 (Appendix B). Except for

the µ-based classi�er, regularization is signi�cantly better and it stems over-�tting.
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Before regularization, in fact, the drop in accuracy from batch is around 19-20%

for all signals, while with regularization it is around 9-11%. Regularization, like for

the Right-arm - Right-hand classi�er case, improves the accuracy of both EEG- and

NIRS-based classi�ers. In fact, the best performance is reached when EEG and NIRS

features are joined with regularized CSP (80.1%), being only slightly lower than Arm

- Hand classi�er performance.

µ β HbO HbR EEG NIRS COM

batch 82.3±5.6 78.8±5.5 88.2±5.4 87.5±4.9

cv 63.9±16.2 58.3±12.7 69.3±9.2 68.6±11.4

reg 71.9±12.2 66.3±9.1 79.3±8 76.5±9.4 70.5±13 79.9±9.1 80.1±9.7

noCSP 61.3±12.3 59.7±7.7 74.7±8.5 71.3±7.1 63±11.6 71.3±8.5 71.7±7.3

CSPeeg 72±8.8

Table 4.10: Left-arm - Left-hand Motor Execution: accuracies obtained with a 10-
fold CV for classi�ers trained on features derived from the 4 signals separately and
with combinations of them with di�erent approaches for CSP.

The next section will present the results of the same 4 classi�ers for motor imagery

tasks.

4.3.2 Imagery

For Right-arm - Left-arm motor imagery classi�ers, the results are displayed in Table

4.11 and Figs. B.21a, B.21b, and B.22(Appendix B). The best performance is ob-

tained when EEG and NIRS features are combined using regularized CSP (67.9%).

The accuracy is not extremely lower than in case of motor execution; an analysis

of the di�erence between motor execution and motor imagery performances can be

found in the next subsection (4.3.3). Over-�tting (22-27% drop from batch to cv) is
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severe and it is diminished with regularization down to 14-16%, from batch to reg.

It can be noticed that regularization is clearly the best strategy both for EEG- and

NIRS-based classi�ers. In fact, reg performance is signi�cantly better than noCSP

for all classi�ers.

µ β HbO HbR EEG NIRS COM

batch 81.8±6.3 77.8±6.3 78.7±5.8 75.9±4

cv 59.1±13.4 53.4±7 51.1±4.1 50±5.2

reg 67.1±11 63±6.8 60.8±3.7 59±2.8 67.8±9.8 59.5±2.5 67.9±8.7

noCSP 58.8±11.6 55.4±7.2 53.9±8 53.8±5.5 59.2±10 53.8±7.1 55.1±6.2

CSPeeg 58±7.9

Table 4.11: Right-arm - Left-arm Motor Imagery: accuracies obtained with a 10-fold
CV for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

Table 4.12 shows the performances of Right-arm - Right-hand motor imagery

classi�ers. Di�erently from the same classi�cation in motor execution tasks, for

motor imagery regularization performs better than noCSP also for NIRS (for motor

execution the best performance was obtained with the noCSP approach). For the

COM con�guration, the performance of reg with respect to noCSP and CSPeeg is

signi�cantly higher, and it yields an accuracy of 64.3%. In terms of over-�tting,

regularization signi�cantly increases the performance with respect to cv ; the drop

from batch to cv in fact is around 23-28% and from batch to reg it is diminished to

16-18%. The box plots are shown in Figs. B.23a, B.23b, and B.24.

In Table 4.13 displays the accuracies of the classi�ers for Right-arm - Right-hand

motor imagery classi�cation. Box plots are displayed in Figs B.25a, B.25b, and B.26.

Regularization in this case is signi�cantly better than the noCSP approach both for
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µ β HbO HbR EEG NIRS COM

batch 80.1±4.4 76.6±5.1 76.9±5.2 74.6±3.6

cv 56.8±9.9 50.9±7.6 48.5±3.5 47.6±3.8

reg 64.1±7.6 58.6±4.1 59.2±2.5 58.9±2.6 63.2±5.9 59.3±3.4 64.3±5.1

noCSP 56.1±8.3 51.2±5 56.3±8.1 56.6±7.3 55.7±6.7 57±6.7 56.7±6.8

CSPeeg 58.9±4.9

Table 4.12: Right-hand - Left-hand Motor Imagery: accuracies obtained with a 10-
fold CV for classi�ers trained on features derived from the 4 signals separately and
with combinations of them with di�erent approaches for CSP.

EEG and NIRS. Over-�tting, before regularization, causes a drop in accuracy of

around 24-27% from batch to cv, and the use of regularization makes it decrease to

16-18%. The highest performance is 63.2% and it is obtained when using regularized

CSP on the combination of EEG and NIRS derived features.

µ β HbO HbR EEG NIRS COM

batch 78±4.8 76.9±4.6 78.2±4.9 75.6±4.6

cv 53.6±4.5 52.3±4.8 52.7±4.9 48.2±4.5

reg 62±7.4 59.6±3.5 60.2±2.6 59.2±2.6 61.8±6.3 59±3.2 63.2±6.1

noCSP 54.1±8.9 53±5.3 54.7±4.7 53.6±6.7 55±6.5 52.8±5.6 53.9±5.6

CSPeeg 55.4±5.1

Table 4.13: Right-arm - Right-hand Motor Imagery: accuracies obtained with a 10-
fold CV for classi�ers trained on features derived from the 4 signals separately and
with combinations of them with di�erent approaches for CSP.

The results for Left-arm - Left-hand motor imagery clasi�ers can be found in

Table 4.14 and Figs. B.27a, B.27b, and B.28. The maximum accuracy is 63.2%

(exactly like Right-arm - Right-hand classi�cation), and it occurs when EEG and

NIRS features are joined in reg con�guration. The over-�tting phenomenon can be

observed in the accuracy drop from batch to cv (26-27%), and for all the classi�ers

the use of regularization improves signi�cantly the performance, as it is shown in the
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box plots. The use of CSP makes the performance highly signi�cantly better than

not using it for both EEG and NIRS derived classi�ers and for the combination of

all features.

µ β HbO HbR EEG NIRS COM

batch 79.6±4.4 76±3.9 78.4±4.8 75.3±3.9

cv 54.9±7.6 50±5 51.1±4 49.3±4.8

reg 62.8±5.8 59.5±4.3 59.1±3.1 58±2 61.4±6.3 59.4±3.1 63.2±5.1

noCSP 53.4±6.9 52.5±5.3 52.5±6.9 52.1±5.9 54.1±6.5 52.2±5.6 51.8±6.3

CSPeeg 54.2±5.9

Table 4.14: Left-arm - Left-hand Motor Imagery: accuracies obtained with a 10-fold
CV for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

4.3.3 Execution vs Imagery

Exactly like the �rst classi�cation approach analysis, the comparison between execu-

tion and imagery performance has been done on the con�guration that allowed the

highest accuracy. For all the 4 classi�ers (RA-LA, RH-LH, RA-RH, and LA-LH) the

best performance is achieved with regularized CSP using EEG- and NIRS-derived

features all together (COM-reg).

Fig. 4.7 displays the distributions of the accuracy of the Right-arm - Left-arm

classi�er, on the left, and of the Right-hand - Left-hand classi�er, on the right. For

both classi�ers, there is not a signi�cant di�erence between executed and imagined

tasks. This result is di�erent than the one presented in section 4.2.3, where the

performance of the Right - Left classi�er was signi�cantly higher for execution than

for imagery. Although there is no signi�cant di�erence for the Right-arm - Left-arm
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classi�ers, by looking at the distributions it is clear that the executed movements

allow, on average, higher performance. Moreover, the accuracy obtained with the

motor execution is almost the same as the one reached for the Right - Left classi�ers

from the �rst classi�cation approach. Instead, the motor imagery classi�cation for

Right-arm - Left-arm is higher than the Right - Left one by around 4%. In the Right-

hand - Left-hand classi�cation accuracy, it can be noticed that the two distributions

are almost the same, and there is no clear di�erence performance between executed

and imagined movements. While the accuracy of the motor imagery classi�er is more

or less the same as the one obtained by the Right - Left classi�er, for motor execution

tasks the classi�cation is much worse than the Right - Left classi�er (Right - Left:

72.2%; Right-hand - Left-hand: 65.3%). The worse performance could be due to the

small amount of data used for training and the subsequent severe over-�tting. This

result also con�rms that the worst performance among all the classi�er is the one

obtained in the Right-hand - Left-hand classi�cation.

Figure 4.7: Left panel: Right-arm - Left-arm classi�er performance using reg ap-
proach for motor execution (EXE) and motor imagery (IM). Right panel: Right-hand
- Left-hand classi�er performance using reg approach for motor execution (EXE) and
motor imagery (IM).
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Fig. 4.8 displays the distributions of the Right-arm - Right-hand classi�er (on

the left) and of the Left-arm - Left-hand one (on the right), divided by executed

and imagined tasks. For both the classi�ers the motor execution performance is

signi�cantly higher than the motor imagery one. Although the accuracy of imagined

tasks, which is 63.2% for both the classi�ers, is slightly higher than the accuracy

obtained for the Arm - Hand classi�er of the �rst approach (60.8%), the gap between

motor execution and motor imagery is still wide. The low performance of the Arm

- Hand recognition for imagery can be due to the fact that the mental strategies

to imagine arm and hand movements is quite di�cult to learn without a feedback

telling the subject whether it is recognizing one or the other mental imagery. This

topic is discussed widely in section 5.3.

Figure 4.8: Left panel: Right-arm - Right-hand classi�er performance using reg
approach for motor execution (EXE) and motor imagery (IM). Right panel: Left-
arm - Left-hand classi�er performance using reg approach for motor execution (EXE)
and motor imagery (IM).
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4.3.4 Dynamic Evaluation

For all the 4 classi�ers the accuracy along time over the task has been computed.

In all �gures the top row shows the EEG-based classi�er performance, the middle

row the NIRS-based one, and the bottom row represents the accuracy for a classi�er

based on both EEG and NIRS features. All the classi�ers used are the ones trained

using the regularized CSP approach, because it resulted in the best results in all

cases. The left column of each �gure contains the performances for motor execution,

while the right column the ones for motor imagery tasks. For how the dynamic

accuracy is computed, the only tract of interest is between the vertical lines, i.e.,

during the task. In fact the other classi�ers are used only when the Rest - Task

classi�er outputs task.

Fig. 4.9 displays the dynamic accuracy for the Right-arm - Left-arm classi�er.

As observed in Tables 4.7 and 4.11, the combination of features from EEG and NIRS

yields the best performance (on the bottom), and the main contributor is for sure

the EEG signals, which de�nitely performs better than NIRS both for execution and

imagery. Regarding the time response of classi�cation, the response for EEG seems

to have a highest slope than NIRS, but the combination of them outperforms both

of them also in terms of speed, i.e., slope of the accuracy trend.

Fig. 4.10 shows the accuracy trend over the trial for the Right-hand - Left-

hand classi�er. Apart from a very good performing subject in motor execution

tasks mainly due to the EEG signals (top row, left column), the EEG accuracy

is mediocre, and it seems exactly like the imagery one. The NIRS-based classi�er
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Figure 4.9: Dynamic accuracy plots for Right-arm - Left-arm classi�ers: the �rst
column shows executed tasks, the second one imagined ones. The �rst row represents
the accuracy obtained with EEG features, the second row with NIRS ones, and the
third one the combination of EEG and NIRS features. The x axis is time in seconds
and the y axis the accuracy (from 0 to 1). The vertical lines delimit the task phase
of the trial. Colored lines represent single subjects, the black thick line is the average
of all subjects.

appears to be slightly better than the EEG-based one, and a di�erence between

execution and imagery is more perceptible. Despite the combination of features,

the trend of the accuracy for this classi�cation seems extremely inadequate in order

to recognize Right-hand and Left-hand. It should not be ignored, though, that for

this second approach all the 4 classi�ers work together in order to select the output

class. A more comprehensive dynamic evaluation should investigate the synergy in

the classi�cation, but that can only be done with an online setup that allows the

evaluation of the parameters for the classi�cation, as introduced in section 3.6. A

further discussion on the appropriateness of the current dynamic evaluation with

respect to an online one can be found in section 5.4.
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Figure 4.10: Dynamic accuracy plots for Right-hand - Left-hand classi�ers: the �rst
column shows executed tasks, the second one imagined ones. The �rst row represents
the accuracy obtained with EEG features, the second row with NIRS ones, and the
third one the combination of EEG and NIRS features. The x axis is time in seconds
and the y axis the accuracy (from 0 to 1). The vertical lines delimit the task phase
of the trial. Colored lines represent single subjects, the black thick line is the average
of all subjects.

The performance over time of Right-arm - Right-hand classi�ers for execution

and imagery can be found in Fig. 4.11. The trends clearly re�ects the results

observed in Tables 4.9 and 4.13. There is a large di�erence in the results between

motor execution and motor imagery, and for motor execution both EEG and NIRS

contribute to the improvement in classi�cation of the COM con�guration. Some

subjects clearly bene�t from the combined use of EEG and NIRS: for example, for

the subject represented by the red line in the EEG performance of motor execution

(top row on the left) the use of EEG only would be de�nitely inadequate to reach

a su�cient accuracy; however, when NIRS features are added, the overall accuracy

gets between 70% and 80% for all the task duration. As far as readiness of response,
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one can notice that the slope of the NIRS classi�er is higher than the EEG slope. In

the COM con�guration the accuracy gets steady after around 2 seconds from when

the subjects are presented the task cue. If 1 s of reaction time is accounted, then

only 1 s is necessary for the classi�er to perform well.
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Figure 4.11: Dynamic accuracy plots for Right-arm - Right-hand classi�ers: the �rst
column shows executed tasks, the second one imagined ones. The �rst row represents
the accuracy obtained with EEG features, the second row with NIRS ones, and the
third one the combination of EEG and NIRS features. The x axis is time in seconds
and the y axis the accuracy (from 0 to 1). The vertical lines delimit the task phase
of the trial. Colored lines represent single subjects, the black thick line is the average
of all subjects.

Fig. 4.12 contains the accuracy trend over the trial for the Left-arm - Left-

hand classi�ers. The performance of these classi�ers is very similar to the one just

described, namely, Right-arm - Right-hand. Also for this classi�cation, in fact, a

huge di�erence between execution and imagery performance is observed. Moreover,

the EEG-NIRS combination is very bene�cial for some subjects, for example the two
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subjects represented by the purple lines, for which the EEG performance is quite low

and �uctuating, while the NIRS performance is higher and stable. The advantages

and disadvantages of an EEG-NIRS combination will be dealt in detail in section

5.1. Lastly, the response of the classi�er is quite fast, with the COM con�guration

that reaches a steady state after 2-2.5 s from the task cue.
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Figure 4.12: Dynamic accuracy plots for Left-arm - Left-hand classi�ers: the �rst
column shows executed tasks, the second one imagined ones. The �rst row represents
the accuracy obtained with EEG features, the second row with NIRS ones, and the
third one the combination of EEG and NIRS features. The x axis is time in seconds
and the y axis the accuracy (from 0 to 1). The vertical lines delimit the task phase
of the trial. Colored lines represent single subjects, the black thick line is the average
of all subjects.
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Chapter 5

Discussion

The discussion chapter is divided in multiple sections, each of them treating a dif-

ferent topic that emerged during the study.

5.1 EEG-NIRS combination

The results show that the combination of EEG and NIRS for BCI purposes can en-

hance the classi�cation accuracy, especially when a low-resolution EEG con�guration

is used. In the current study, for example, the EEG spatial resolution chosen in the

experimental setup (21 measuring channels distributed from Frontal to Parietal 10-

20 system parallels, see Fig. 3.5) was lower than many other studies of SMR-based

BCIs involving EEG only (55 in [5], 60 in [43], 118 in [29]), or in combination with

NIRS (37 electrodes in [13]). Due to the volume conduction of the tissues between
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the cortex, i.e., the main source of activity captured by EEG, and the EEG elec-

trodes (such as cerebro-spinal �uid, skull, and scalp), the activity measured by a

single electrode is much smaller than the one that could be measured on the brain

membrane (up to 1000 time smaller, from mV to µV). This drop of potential makes

it very di�cult to localize the di�erent sources from the EEG signals [59] and it calls

for the use of high-resolution EEG, in which the elevate number of sampling points

on the scalp makes the localization much more accurate. On the other hand the

use of high-resolution con�gurations makes the translation of BCIs into the clinical

environment more complex.

The NIRS experimental setup can be considered as complex as the EEG one,

consisting of 24 optodes (12 sources and 12 detectors) with respect to the 23 elec-

trodes (21 measuring electrodes, a GND electrode, and a Reference electrode). In

most cases, with this con�guration, the NIRS-based classi�ers allowed higher per-

formances to be reached than the EEG alone, especially for motor execution (motor

imagery is discussed aside in section 5.3). This was the case for Rest - Task (without

CSP), Right - Left (without CSP), Arm - Hand (using CSP), Right-arm - Right-hand

and Left-arm - Left-hand (using CSP) classi�ers. Only for Right-arm - Left-arm and

Right-hand - Left-hand classi�cation the EEG and NIRS performance was about the

same, as shown in Tables 4.7 and 4.8. The main concern about the use of NIRS is

that the hemodynamic signals are slow and it takes some seconds for them to reach

their peak. This a�ects on classi�cation accuracy, which in [13] reaches its peak

around 6-7 seconds after the movement onset. The results obtained in this study,

though, do not show such a long delay of the NIRS-based classi�ers, and this is
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probably because of the features used (this issue is explored in section 5.4).

The better outcome of the NIRS with respect to the EEG can be tackled in

terms of spatial resolution and source localization. The classi�cation of di�erent

motor tasks, or whatsoever other kind of activities, can be seen as the recognition

of patterns in the signals generated by di�erent sources localized along the cortex.

For example, having in mind the Pen�eld's homunculus in Fig. 2.5, the activity

that generates an arm movements will be more central than the one causing a hand

movement. As explained above, it is very di�cult to localize those sources from a

low-resolution EEG, and, in other words, the activity measured for the arm and the

hand movements will be extremely similar (of course this is very subject-dependent

and it accounts for di�erent electric conduction conditions, brain patterns, etc.).

The NIRS signals, on the contrary, do not su�er because of volume conduction, as

the measurement is performed around the middle point between the source and the

detector location. What each NIRS measurement channel picks up, then, is the

oxy- an deoxy- hemoglobin concentration estimation over the light pathway between

the source and the detector, and nothing else. It is clear then that for localizing the

source of a brain activity, a higher resolution EEG signal is needed in order to yield a

good BCI performance; however, the combination with the NIRS de�nitely improves

the accuracy of the system and can be bene�cial in the development of robust BCIs.

One of the key factors when dealing with BCI research and development is the

clinical translation, e.g., how easy would be for medical doctors to include a BCI in a

rehabilitation therapy. One of the main issue about current BCI is their complexity

from the setup point of view. If every time it takes one hour or more to setup a system
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for a patient, then it would be extremely unlikely to be used in the clinical world.

The challenge is to try to reduce the setup in order to diminish the time to prepare

the BCI. Another layer of complexity is added by how the BCI algorithm needs to

be trained with the subject's data. A training dataset, in fact, is needed to learn

each subject's characteristics, and a smaller setup may result in the need of a bigger

training dataset. The combination of EEG and NIRS for sure is worse with respect

to a single system under this perspective, because not one system, but two need to

be setup. The time required can vary, not only because of the �density� of the setup,

but also and especially because of the technology used for the two systems. For the

EEG, dry electrodes are being used more and more, and they provide measurements

comparable with standard clinical wet electrodes [57, 15]. They can be equipped

in measurement systems that can be setup in around 2 minutes [47]. With such

a technology the EEG setup could be redesigned in order to have a higher spatial

resolution, which would certainly improve the performance. Regarding the NIRS, in

the current study the setup has been very time consuming and sometimes troubled,

depending on the subjects. The main problem, as explained in section 3.1.1, is

represented by the hair, that needs to be moved aside for every optode in order

to guarantee the optical coupling between the optode ans the scalp. On possible

solution, that is also being developed by NIRx, is to place a holder on every optode

with a spring inside that pushes it down, making the optical coupling easier. With

this technology the setup time for NIRS would diminish dramatically; time would

also decrease because in some cases the use of gel to move the hair is not needed at

all.
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The combined use of EEG and NIRS has been seen to be bene�cial, increasing the

performance of each of the two systems used separately. When combining features

derived from the two measurement systems, though, a further step should be added

to maximize the performance of the classi�ers: feature selection. Feature selection is

a technique to reduce the dimensions of the problem and selects the most signi�cant

features. The selection of features indeed simpli�es the model, and it can enhance

the generalization by reducing over-�tting [19].

Another important topic that contributes massively on the �nal performance,

because of the methods that have been used, is the experimental design, and in

particular the amount of data available for training.

5.2 Experimental Design, CSP, and Over-�tting

As suggested in the previous sections, the performance of the classi�cation cannot

be detached from the amount of available data. Clearly, a bigger dataset for training

the models would result in a better performance, because intuitively more examples

are provided to learn from. On the other hand, collecting data is extremely time

consuming, and it can be boring for the subject if it takes too long. For the current

experiment, since it has been decided to acquire data of di�erent kinds (di�erent

tasks and both motor execution and motor imagery) instead of focusing on a re-

stricted problem (e.g.,the recognition of only executed right-left hand movements),

the training datasets are small, i.e., only 25 trials per class for executed and imagined
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movements in a total of 200 trials. Of course, in case of the restricted problem de-

scribed before, there could be 100 trials for each class, and that would have certainly

resulted in a better performance. Moreover, since the aim of the study was more ex-

ploratory than exploiting, it has been opted for the solution that allowed us to have

more classes for both motor execution and imagery, maintaining a bearable experi-

mental time for the subjects. In the trade-o� between number of classes/conditions

and numbers of trials, the �rst one has been preferred. In the literature the number

of trials per class is usually higher than the one used in the current work, for example

[43] used 60 trials per class, [13] had 48 executed movements and 100 imagined trials

per class, and 140 trials per class were used in [29].

After having provided the motivation behind the experimental design and proce-

dure, let us analyze the drawbacks of such choices. The main disadvantage of having

a small training dataset is the use of CSP. CSPs are known to over-�t the data in

case of small datasets, as widely treated in section 3.2.2. The over-�tting is mainly

due to the fact that the CSP method is powerful, in the sense that it can make

use of many degrees of freedom in order to �nd the optimal �lters that increase the

separability of the training data. When the optimized �lters excessively adhere on

the data used for training, they perform much worse on testing data not used for

training and never �seen� by the algorithm.

The amount of over-�tting is severe in the current study, as seen in the drop

accuracy that is observed between the batch CSP approach (CSP computed with all

the data before CV) and the cv one (CSP computed on training data within CV). In

the Results chapter it can be noticed that the accuracy drop in every classi�cation
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is always between 12%, in the best cases, and up to 30% in the worst ones. The

phenomenon is, in most cases, more prevalent when CSP is applied on NIRS signals.

This is because in case of NIRS the estimation of covariance matrices, on which CSPs

are built, is done on fewer time points with respect to the EEG signal, resulting

in a higher bias in the estimation. In order to limit the over-�tting phenomenon,

regularized CSPs have been used. As described in section 3.2.3, the idea is to add a-

priori information to the covariance estimation based on the rest of the population.

Clearly, regularization also would de�nitely bene�t from having a bigger training

dataset. In fact, the covariance matrices of each subject would be better estimated,

resulting in a generic covariance (see Eq. 3.17) which better represents the behavior of

the all population. Moreover, one cannot expect that regularization would magically

�x everything from such a small dataset. No doubt it improves the performance

drastically in some cases, but the solution for a real improvement of the performance

can only be found along with a bigger initial dataset for each class for each subject.

An increased a-priori knowledge of the brain activity, which could be acquired

by collecting more data, not only would de�nitely enhance the regularization perfor-

mance, but it could also be used for another purpose of extreme importance. The

current study tried to also collect data on motor imagery tasks. Nevertheless, the

imagination of movements is a very di�cult task at the beginning, and it certainly

needs practice. An initial dataset on motor executed and/or motor imagery tasks

can indeed be used to train general classi�ers that can be used to give feedback to the

subject and make the get used to the BCI system, as explained in the next section.
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5.3 Motor Imagery and Execution

It has been shown that when a movement is imagined rather than executed, the brain

activity patterns are similar to the ones observed when the movement is actually

executed [45]. Motor imagery, though, is a complex mental strategy and it needs to

be learnt. In particular, the brain activity that most resembles the motor execution

patterns occur when the motor imagination is kinesthetic [33, 55], i.e., when the

subject is able to picture his/her muscles contracting, even if they are not. Graimann

and Pfurtscheller in [17] state that training is necessary for motor imagery, and it

takes at least from 1 to 4 hours on average for a subject to be able to control with

good performance a 2-choice BCI. For many subjects a longer training session is

needed to achieve a good control. In the current study there has not been the

possibility to train the subjects su�ciently before motor imagery tasks. The only

training, as described in setion 3.1.3, lasted about 10-20 minutes and allowed the

subject to familiarize with the feedback, which could respond based on ERD/ERS

in the EEG signals. The feedback, therefore, told the subject whether an imagined

movement was perceived or the subject was resting. Such a feedback is probably too

naive to really make the subject practice and learn the best motor imagery strategy.

The feedback, in fact, is essential for understanding how to perform a certain mental

activity, especially when multiple motor tasks need to be imagined. This was the

case in this study, where the subjects were asked to imagine the movement of right

and left arms and hands. A proper feedback would communicate to the subject

which of the classes is being recognized, e.g., right-hand, left-hand, right-arm, or

left-arm, so that the user could adjust his/her mental strategy in order to meet
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what the classi�er �expects�. As introduced in section 2.1, in fact, the feedback

is a founding part of a BCI and it allows the subject to learn and adapt to the

system. For this work, though, the development of a complex feedback system was

not feasible. In fact, a subject-independent feedback is usually built on a great

amount of data (usually EEG) previously available. In particular the entire set of

labeled data is used to train a generic classi�er that will tell the subject what is

the behavior of the average population. Sometimes, as in [63], the experimental

procedure is even split into multiple sessions, and the feedback passes from being

completely subject-independent, to include subject-dependent features that result in

a customized feedback for every subject. Due to the unavailability of previous data

on which building up a more complex feedback, a SMR feedback has been developed.

The lack of information provided by the feedback and the complete inexperience of

the subjects on motor imagery tasks can be probably addressed as the main reasons

for the motor imagery failure. The performance of the classi�ers for motor imagery

tasks was in fact below an acceptable level for a BCI application (around 70%)

for every classi�er trained, except for one; the only case in which motor imagery

resulted in a relatively high accuracy was for the Rest - Task classi�cation. Clearly,

this classi�cation can be considered easier with respect to the others, but such a high

accuracy (85.8%) could be in part due to the feedback used. As stated before, the

feedback gave information about Rest - Task to the subjects, who may have learned

how the system responded and how to adjust their mental strategy to meet the

visual positive feedback (the feedback circle turned green), rather than the negative

one (the feedback circle turned red). Because of the overall low accuracy of motor
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imagery mental strategy due to the reasons just explained, in the following sections

its performance is neglected and the discussion will deal only with motor execution

tasks.

Lastly, feedback is not only extremely important during data collection, but it is

the end e�ector of every BCI system. In order to actually measure the e�ectiveness

of a BCI, the user should be able to observe the output of the classi�cation and get

used to the control command provided by the system. The only way to evaluate a

BCI as a whole and complex is to develop a real-time feedback session.

5.4 Dynamic and Real-time Evaluation

In the Results chapter a dynamic evaluation of each classi�er has been proposed.

The dynamic evaluation, though, is performed o�ine, and even if it adds a new

point of view on the classi�ers' performance, it does not take into account the whole

complexity of a real-time evaluation. The dynamic accuracy evaluation that has been

implemented has certainly been helpful in drawing conclusions about some aspects of

the classi�cation. An important point that emerged from the dynamic evaluation is

about the response of NIRS-based classi�ers. Di�erently from what has been shown

in [13], i.e. NIRS classi�cation has a lag in the accuracy peak of 6-7 s, the proposed

methods used to classify using NIRS did not su�er from the same delay. The reason

why the delay is not as severe as previous results can be found in the set of features

computed from the NIRS signals. Both the regularized CSP approach and the use of

HbO and HbR slopes in combination with the averages seems promising in advancing
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the NIRS as a valuable alternative for BCI purposes, with or without the use of EEG.

In particular, for Arm - Hand, Right-arm - Right-hand, and Left-arm - Left-hand

classi�ers, for which regularized CSP have been adopted, the readiness of the NIRS

response allows to reach a steady classi�cation accuracy after around 2 s from the

presentation of the task cue, as shown in Figs. 4.6, 4.11, and 4.12. Even when CSP

are not used to process the NIRS signals before feature extraction, the inclusion of

HbO and HbR slopes as features results in classi�ers that do not present a long delay

in the reaching of the accuracy peak: this is the case of the Rest - Task and Right

- Left classi�ers. For the Rest - Task classi�ers the accuracy peak is reached after

about 2 s from the cue appearance (Fig. 4.2), while for the Right - Left classi�er (Fig.

4.5), the accuracy takes about 3-3.5 s to get to a steady point. The performance

of the Right-arm - Left-arm and the Right-hand - Left-hand is not considered here

because it is extremely biased by the over-�tting of the CSP.

Whereas the dynamic evaluation proposed allowed to observe helpful and inter-

esting hints about the classi�cation dynamics, it cannot be regarded as su�cient to

evaluate the entire BCI system. First of all, the dynamic accuracy has been done

on the single classi�ers separately, without combining to output only one of the 4

classes. The translation of the classi�ers output into a BCI command, in fact, is a

delicate matter. For the �rst approach of classi�cation, described in section 3.4, the

BCI command can be assigned trivially by outputting the classi�ed class at every

time segment, i.e., having one new and independent output every 0.5 s. For example,

if at a certain time point the Rest - Task classi�ers predicts task, the Right - Left one

predicts right, and the Arm - Hand predicts arm, then the right-arm class is used as
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BCI command for that time segment. The problem of such an approach is mainly

due to the high number of mistakes that the combination of classi�ers will commit,

which can be due to an error in one of each of the 3 classi�ers. One way to avoid

misclassi�cation and develop a more robust BCI could be �ltering the last 4 classi�-

cation outputs, for example, with a majority vote approach. Practically, if the Rest

- Task classi�er output task/rest/task/task, the Right - Left one right/-/left/right,

and the Arm - Hand predicted arm/-/arm/hand, then the �nal prediction would be

right-arm, because 3 of the 4 last predictions were task, 2 of the 3 were right, and

2 of the 3 were hand. The drawback of this approach is that the responsiveness of

the system to a new class would be slower (it acts as a low-pass �lter). Another

possibility to clean out the BCI output could be to consider the con�dence of each

classi�cation. This approach is applicable to both of the classi�cation paradigms

in section 3.4. An output command can be delivered only when the classi�ers are

�sure� about their prediction, i.e., when the likelihood of of the prediction being cor-

rect (expressed in Eq. 3.22) is above a certain threshold for all the classi�cations.

In case of uncertainty, the BCI could stop and reject the classi�cation, waiting for

more con�dent predictions.This technique would, though, worsen the performance

in terms of time.

What has just been stated should make clear that a real-time classi�cation with

feedback is necessary for a BCI system to be entirely evaluated. An online setup

would give the possibility to decide which of the classi�cation approaches and BCI

output translations described above have the best online performance. The Informa-

tion Transfer Rate (ITR in Eq. 3.23) could be used as term of reference to evaluate in
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a complete sense the entire system, including information about accuracy, complex-

ity of the classi�cation, and time, which has been ignored so far. Moreover, being

composed of a highly adaptive system as the human brain, the online use of the BCI

would de�nitely become better performing as the user experiences it, and the e�ect

of �practice� could be investigated as well.

5.5 Classi�cation Approaches: Which One is the

Best?

As described in section 3.4, two di�erent approaches were investigated for classi�ca-

tion. The �rst approach made use of 3 classi�ers (Rest - Task, Right - Left, and Arm

- Hand); the second approach consisted of 5 di�erent classi�ers (Rest - Task, Right-

arm - Left-arm, Right-hand - Left-hand, Right-arm - Right-hand, and Left-arm -

Left-hand). What is the best one?

From the performance tables displayed in the Results chapter, the best method

seems to be the �rst one, composed by Rest - Task, Right - Left and Arm - Hand

classi�ers. Although the small amount of trials used to estimate the CSP and the

classi�ers, the accuracies obtained for all 3 classi�ers, on average, is above 70%: i.e.

94.2% for Rest - Task, 72.2% for Right - Left, and 83.6% for Arm - Hand. The

enhanced performance of the �rst approach with respect to the second one, which

consists of 4 pairwise classi�cation between the di�erent classes, can be explained

in terms of number of training samples and over-�tting. The �rst approach, in fact,
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merges two classes into a single one for each classi�cation, doubling the training

set size. This is the reason why over-�tting seems to be prevalent in the second

approach, in which a drop from batch to cv of around 16-27% is observed, rather

than the �rst one, where the drop is around 12-18%. On the other hand it would

be interesting to evaluate the second approach having the double amount of training

data. If the performance of the single classi�ers would increase and reach the one of

the �rst approach ones, then probably the second approach would be more reliable,

because the information provided by the di�erent classi�ers could be synergistically

combined to obtain a more robust classi�cation. The synergy of the classi�ers used

in the second approach could be evaluated also o�ine, deciding a rule to arrange the

con�dence of the predictions of the single classi�cations into one single prediction.

Nevertheless, an online evaluation would be much more reliable and truthful and it

should be used to really establish which one of the approaches works best.

5.6 Future Development

In the previous sections of this chapter, several new ideas and possible developments

have been proposed to tackle di�erent issues that have emerged during the work. Let

us list all the future development and possible improvements in a clear and concise

way:

� Investigate a smarter combination of features for hybrid EEG-NIRS classi�ers

involving a feature selection methods
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� Tackle the over-�tting problem by designing an experimental procedure that

allows to have an increased number of trials for each class and evaluate and

quantify the bene�t in the classi�cation accuracy

� Design and build a generic classi�er based on the data collected for this study

to develop a more complex feedback system and investigate the performance

of motor imagery tasks

� Develop a real-time setup for the online evaluation of the BCI, as outlined in

section 3.6

� Evaluate the performance of classi�cation online

5.7 Conclusions

In conclusion, the work presented in this thesis has been very challenging and fas-

cinating. Let us sum up the main points in terms of methods used and results

obtained.

The project has been broad and it included di�erent activities. First of all,

the experimental setup needed to be chosen and the procedure de�ned. The setup

consisted of 21 EEG and 34 NIRS channels (the latter composed by 12 sources and

12 detectors) distributed along the motor cortex, between the F and the P parallel

of the international 10-20 system. The data were collected from 15 healthy subjects

(all males). Each subject was asked to perform 4 di�erent executed and imagined

motor tasks (right arm, right hand, left arm, and left hand) and 25 trials per class
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per condition were recorded. During imagery tasks, subjects were given a real-time

feedback based on EEG ERD/ERS.

The recorded data were pre-processed and synchronized. Features were extracted

using regularized CSP for EEG, while for NIRS both regularized CSP and averages

and slopes of each channel were separately investigated. As a classi�er, LDA was

chosen for its simplicity and its robustness against over-�tting. Performances were

evaluated both in terms of static accuracy (correct predictions / total predictions)

and by computing a dynamic accuracy during the trial.

Results showed that a hybrid approach combining EEG and NIRS measurements

enhances the performance of the classi�ers in all cases. NIRS accuracy outperformed

EEG accuracy most of the times, mainly because CSP tends to over-�tting the train-

ing data when the dataset is small. Over-�tting was, in fact, one of the main issues

encountered in the study, and it was so severe because of the experimental setup and

procedure previously chosen. An asynchronous BCI appeared to be feasible because

of the motor execution performance (94.2%) in the Rest - Task classi�cation. Motor

execution on average allowed to reach acceptable accuracies, possibly translatable in

a real-time BCI. Motor imagery paradigm, instead, did not yield su�cient results,

probably because of the total inexperience of the subjects in such activity and for

the simplicity of the provided feedback. Two approaches have been proposed for the

4-class classi�cation: the results obtained with the current setup suggested that the

best one is the �rst one (consisting of classifying Rest - Task, Right - Left, and Arm

- Hand), which yielded an accuracy of 94.2% for Rest - Task, 72.2% for Right - Left,

and 83.6% for Arm - Hand.
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The wish of the author is that the work done will be helpful in the fast-growing

�eld of the BCI research and that hopefully within a few years BCI systems will be

translatable systematically in the clinical environment or in the houses of impaired

patients and improve life conditions of many people.
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Appendix A

Online Normalization

Mean Estimation

Starting from the optimal mean estimation, having N samples xi, with i = 1, 2, ..., N :

µ̂ =
1

N

N∑
i=1

xi

the sum over the N samples can be split in the sum from 1 to N − 1 plus the last

sample available, xN :

µ̂ =
1

N

N∑
i=1

xi =
1

N

(
N−1∑
i=1

xi + xN

)
=

1

N

N−1∑
i=1

xi +
1

N
xN

The only variables needed to apply this algorithm are: N , which counts the number

of samples received online starting from 1, and
∑N−1

i=1 xi, which is an accumulator
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that sums up all the values received from the �rst (i = 1) to the one before he current

one (i = N − 1). The variance estimation uses the estimate of the µ̂ parameter. It

can be noticed that the sum is split into one part containing only values from the

past (
∑N−1

i=1 xi) and a part with the current or update value (xN).

Variance Estimation

The variance estimation is based on the expansion of the square in the correct vari-

ance formula and, as for the mean, on the splitting of the sum of all values in a past

and a current part.

σ̂2 =
1

N − 1

N∑
i=1

(xi − µ̂)2 =
1

N − 1

[
N−1∑
i=1

(xi − µ̂)2 + (xN − µ̂)2

]

By expanding the square in the sum:

σ̂2 =
1

N − 1

N−1∑
i=1

x2
i +

N − 1

N − 1
µ̂2 − 2µ̂

N − 1

N−1∑
i=1

xi +
(xN − µ̂)2

N − 1

which simpli�ed bring to:

σ̂2 =
1

N − 1

(
N−1∑
i=1

x2
i − 2µ̂

N−1∑
i=1

xi

)
+ µ̂2 +

(xN − µ̂)2

N − 1

The variance can be correctly estimated online by means of 3 variables that are

updated every time a new sample is received: N and
∑N−1

i=1 xi are the same as the

mean estimation, and
∑N−1

i=1 x2
i , that accumulates the squared values from i = 1 to
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i = N−1. Also for the variance estimation it is clear the division between a past part

( 1
N−1

(∑N−1
i=1 x2

i − 2µ̂
∑N−1

i=1 xi

)
+ µ̂), and a current part ( (xN−µ̂)2

N−1
), which represents

the update.

The estimation of variance must follow the estimation of mean, because it makes

use of the current mean parameter µ̂. After mean and variance are updated, the

count of the samples is increased (N = N + 1), and the current value has to be

accumulated in
∑N−1

i=1 xi and
∑N−1

i=1 x2
i .

Online normalization is used in the real-time C++ feedback application to nor-

malize:

� the EEG signals from every channel, after they have been �ltered

� the output values (band-powers in µ and β), to provide a standardized feedback

to all subjects
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Appendix B

Box Plots and Signi�cance

Box plots and signi�cance of statistical tests performed. In the following �gures the

symbols refers to:

o p < 0.1

* p < 0.05

** p < 0.01

*** p < 0.001
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(a)

(b)

Figure B.1: Rest - Task Motor Execution: a) EEG-based classi�ers. b) NIRS-based
classi�ers.
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Figure B.2: Rest - Task Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.3: Rest - Task Motor Imagery: a) EEG-based classi�ers. b) NIRS-based
classi�ers.

Figure B.4: Rest - Task Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.5: Right - Left Motor Execution: a) EEG-based classi�ers. b) NIRS-based
classi�ers.

Figure B.6: Right - Left Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.7: Arm - Hand Motor Execution: a) EEG-based classi�ers. b) NIRS-based
classi�ers.

Figure B.8: Arm - Hand Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.9: Right - Left Motor Imagery: a) EEG-based classi�ers. b) NIRS-based
classi�ers.

Figure B.10: Right - Left Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.11: Arm - Hand Motor Imagery: a) EEG-based classi�ers. b) NIRS-based
classi�ers.

Figure B.12: Arm - Hand Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.13: Right-arm - Left-arm Motor Execution: a) EEG-based classi�ers. b)
NIRS-based classi�ers.

Figure B.14: Right-arm - Left-arm Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.15: Right-hand - Left-hand Motor Execution: a) EEG-based classi�ers. b)
NIRS-based classi�ers.

Figure B.16: Right-hand - Left-hand Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.17: Right-arm - Right-hand Motor Execution: a) EEG-based classi�ers. b)
NIRS-based classi�ers.

Figure B.18: Right-arm - Right-hand Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.19: Left-arm - Left-hand Motor Execution: a) EEG-based classi�ers. b)
NIRS-based classi�ers.

Figure B.20: Left-arm - Left-hand Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.21: Right-arm - Left-arm Motor Imagery: a) EEG-based classi�ers. b)
NIRS-based classi�ers.

Figure B.22: Right-arm - Left-arm Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.23: Right-hand - Left-hand Motor Imagery: a) EEG-based classi�ers. b)
NIRS-based classi�ers.

Figure B.24: Right-hand - Left-hand Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.25: Right-arm - Right-hand Motor Imagery: a) EEG-based classi�ers. b)
NIRS-based classi�ers.

Figure B.26: Right-arm - Right-hand Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.27: Left-arm - Left-hand Motor Imagery: a) EEG-based classi�ers. b)
NIRS-based classi�ers.

Figure B.28: Left-arm - Left-hand Motor Imagery: EEG-NIRS-based classi�ers.
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