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ABSTRACT

Electromagnetic wave propagation and transmission in a 

bounded magnetoplasma with an arbitrary orientation of the 

imposed magnetic field has been investigated by solving the 

resulting wave equation using the separation method. For a 

given orientation class of the magnetic field, the wave 

equation was found to be solvable by the separation method 

in at least two but not more than four of the cylindrical 

coordinate systems. Solutions of the electric field can be 

obtained in the form of three scalar functions each composed 

of a complete set of eigenfunctions. Investigation has also 

been carried out for problems involving source radiations in 

the bounded magnetoplasma. Solutions to the inhomogeneous 

wave equation by the Green’s function method are derived. 

The usual complex surface integral arising from the Green's 

function method was forced to vanish by demanding the Green's 

function to satisfy a given set of boundary conditions. It 

will be shown that the technique outlined in this thesis is 

adequate to solve problems involving wave propagations or 

radiations in a bounded magnetoplasma, providing that a dis­

persion relation for the given orientation of the magnetic 

field can be found.
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CHAPTER I

INTRODUCTION

In the course of the investigation of electromagnetic 

wave interaction with shock generated plasma imbedded in a 

strong magnetic field in a shock tube configuration, very 

little analysis was found on electromagnetic waves in ani­

sotropic plasma with certain degree of freedom in the orien­

tation of its imposed magnetic field. Analysis is lacking 

even in the case of stationary plasma. The purpose of this 

thesis is to investigate solutions of the wave equation in 

a finite domain, stationary, homogeneous, anisotropic plasma 

with the static magnetic field expressed in terms of a vector 

which has constant components in each of the orthogonal 

directions. The knowledge gained in this work will be appli­

cable to shock tube investigation. Since finite domain 

problems are under consideration, it is desirable that the 

solutions of the wave equation be separated into three vec­

torial components which fit the boundary configuration.

The three separated vectorial functions are then con­

structed from some vectorial operations on three scalar 

functions, each of which satisfies the scalar Helmholtz 

equation. The three vectorial functions so obtained are seen 

to be either perpendicular or parallel to a surface described 

by the coordinate which has unity scale factor. A substitution 



2

of these functions into the wave equation yields the disper­

sion relation.

The wave in anisotropic plasma depends on the orientation 

of the magnetic fields. Under certain restrictions on the 

functional form of the static magnetic field, a case of 

arbitrarily oriented static magnetic field has been analyzed 

here. The technique presented here may be used for cases 

involving other magnetic field orientations under the same 

restrictions. The selection of the coordinate system is 

dictated by the configuration of the boundaries; therefore, 

the exact number of coordinate systems in which the wave 

equation can be solved by the separation method is determined 

by the ease in obtaining the dispersion relation.

Whenever a radiation source is present in a bounded 

anisotropic plasma, the wave field is calculated by two in­

tegrals. Each involves the Green's function. One of the 

integrals is a surface integral. Evaluation of this surface 

integral is difficult as it requires the knowledge of the 

surface charge density and the surface current density which 

are not usually given in the statement of the problem. This 

surface integral can be made to vanish if the Green's func­

tion satisfies the same boundary condition as the wave field. 

The wave field may be the electric or the magnetic field. 

The second integral is a volume integral involving the volume 
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source distribution function and the Green's function. For 

a vanishing surface integral, evaluation of the volume in­

tegral suffices in order to obtain the wave field. The 

general solutions of the homogeneous wave equation must 

satisfy the boundaty conditions; therefore, its appropriate 

Green's function can be constructed from the general solution 

of the homogeneous wave equation. Since the general solution 

of the homogeneous wave equation is obtained by the separation 

method, the solutions are in the form of eigenfunctions. The 

properties of such eigenfunctions greatly facilitate the con­

struction of the Green's function. The Green's function is 

found to be a dyadic and is reciprocal with respect to the 

source and the observer coordinates. The homogeneous wave 

equation is composed of purely transverse terms and therefore 

the Green's function so constructed satisfies only a pure 

transverse source function. If the source contains a longi­

tudinal component, an additional longitudinal term of the 

Green's function can be derived from an algebraic equation 

(Appendix 0).

The method described here has been used for a fixed 

magnetic field oriented in the direction of the unity scale 

factor coordinate (Seto § Dougal, 1964). There has been 

little work of this nature done (see Bibliography).



CHAPTER II

HOMOGENEOUS WAVE EQUATION

The wave equation obtained from Maxwell's equations 

for the electric field intensity E, in a bounded, homogeneous, 

uniform magnetoplasma volume without a source present is

X/xVXE. - 1-E » 0 (2.1)

where -L is a dyadic determined by the medium (See Appendix 

A). Equation (2.1) can be expressed in the following form 

including the orientation of the magnetic field as

VXVxEL- - I ku- - -4-r (G * iu ) - O (2.2)

where "i’o is the unit vector in the direction of the static 

magnetic field, and , -ts-r , and Xu are entries in X.

In general the direction of the static magnetic field 

can be written in a generalized coordinate system as

lk> - + Az. €-2. +■ A36 a.
(2.3)

where , t = 1, 2, 3 are the three right handed orthogonal 

unit vectors in the generalized coordinate system. The co- 

efficients A; , }, = 1, 2, 3 are in general functions of the 

coordinates.

In this work only with constant was studied. This 

restriction on Aj. may seem to be too severe, but only the 
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cases where A-i / 0, 4j. = Ak= 0 where 1 = 1, 2, 3 and £ , k 

permutated have been discussed in the literature (Allis, 

Buchsbaum, § Bers, 1963).

A different orientation of the static magnetic field yields 

different forms of the dyadic -k . In the past, different 

techniques were required to solve wave equations with dif­

ferent forms of (Allis, Buchsbaum, £ Bers, 1963). An 

attempt to derive a uniform technique to solve the wave 

equation of different static field orientations with con­

stant j = 1, 2, 3 is made here.

For infinite domains, solutions can be expressed in 

terms of plane waves with e space variations; but in a 

finite domain problem, boundary conditions play an important 

role in determining the closed form of the solutions, which 

is more difficult to calculate. Since the coordinate system 

employed is dictated by the boundary configurations of the 

problem and since the solvability of the wave equation by 

the separation method is dictated by the coordinate system 

employed, it is advisable to investigate the number of co­

ordinate systems in which the wave equation is separable. 

The first term in Eq. (2.2) is the curl of curl and is only 

separable in six coordinate systems, all of which have a 

unity scale factor for one coordinate axis. The ratio of 

the remaining scale factors are independent of the variable 
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of the unity scale factor. The six coordinate systems are 

the four cylindrical, the spherical, and the conical coor­

dinate systems (Morse § Feshbach, 1953). It is anticipated 

that the number of coordinate systems in which Eq. (2.2) is 

solvable may be less than six since the second to the fourth 

terms in Eq. (2.2) may impose additional restrictions on the 

separation of the wave equation. Following this technique 

to separate VxxTYE , the solutions of Eq. (2.2) may be sepa­

rated into three vectors (Morse § Feshbach, 1953).

with L = V^P

pi =

N/ = Vx % 43 

where , qT , and % are scalar functions to be determined; 

and 0.3 is the unit vector along the coordinate axis which has 

unity scale factor. The separation of E. into L , Ml , and

N does facilitate the fitting of the class of boundaries 

such that at least one of the ’s is Si'XQa = 0. In 

matrix form. Eq. (2.4) becomes

(2.51
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where A™ Vi,q3 'X-(P , and

The elements of Eq. (2.5) are mutually orthogonal vectors

with

Vl A 
F^Xl

€.3 = &3>

The separability of Eq. (2.2) for a given is therefore 

determined by the solvability of the equation resulting from 

the substitution of Eq. (2.5) into Eq. (2.2). As an example, 

take the case of the unit vector expressed as

lb * CoSctn a3 4- + CoS j jrj- (2.6)

where is either , A > or 15 ; and the cosines

are directional cosines and are assumed to be constant. Sub­

stitution of Eq. (2.5) into Eq. (2.2) yields three orthogonal 

equations<

-Vu.-I ku-VWsokx] ixz^l L~ CoSo(il- ’(x J

+ L"" 1-tQ’sA.L * kll "kx) Cos^u J & = ° (2.7)
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trCo^iii' ( kn-ki') CbS^Co^ J ■*■ L tw -K ky) CtoIxZtfl

Kw kw 4- Q>&<ta+" (kil'-ha.) (sS^-L Cc&c( II"! 13 - C>

7 Vi CosdL ~ t kn- Li3(ds^u Gso^y] ^Z.^* ■*■ ["fcw Lw^" 'Lr&)&t/>z- fkirkx^G&JmCoSpfxJViA v%s)

_- <%, - l.4- (u- l.) Cos^-J ® =• ° (2 ‘9)

In Eq. (2.7) to Eq. (2.9), the following arguments have been 

employed. It is desirable that the solutions of ,

|V4-hl , and E> be in the forms that satisfy the scalar

Helmholtz equations such that

v'GwLfeA),^ = uvM/v-lM.b) (2-10)

V/C I Va^l ( IVj.qi-1, IM!, (2.11)

I W), ] VxA!,B3 = (2.12)

I Vx Vn’93 dVLA)^)! ■= ( IVxA) J B) (2.13)

Equations (2.10) to (2.14) imply that the scalar function

be solved by the separation of variable method, and that their
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solutions are the desired eigenfunction forms subject to the 

boundary conditions. The subscripts in , and

is an index denoting that these separation constants are 

eigenvalues. They are subject to the indexed values result­

ing from the boundary requirements. Observing that Eq. (2.13) 

demands and one has replaced - V5" >

-K.^ for , --kun for V* , and -^Ufor Ivli/nj

whenever desired to obtain Eq. (2.7) through Eq. (2.9).

For a nontrivial solution of Eq. (2.7) through Eq. (2.9), 

the determinant of the coefficients must vanish; thus

Using Eq. (2.14), the resulting dispersion relation is

-T%. - kA.

— ( kll— Uj-)

~ Lt ii

- 1 Lu ~Ll)

- Lt

+ ( ku- La) (LoJ/Gipfll

X[-Qbs<Zii- ( Ln-(osot-t r ।*->7n — 'ill

I L||- -L) OosoIa

kwLwb Lt

L Ji <i - La) <KjG>sA i|

= 0

ia.T (jo&dx + ™ Lw kim + Li - on + Lj.

— (. ku - La') Cos^ii G>M y. - C Ln- La) Cos^iiCes^ C Ln* La^ Qsb^ii

- 5a^a8 )+-
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I -m ( -k+ Gi, QiQ»J — 2qi L G 64. Q g + -Ik.-171 Q4

(- L4W al - Vt»[ kX ok -3. k%, o.o»- -aa.citj +■ na^3 k4^
- Q g + 4- feln Qi CI4. + 2. k-ryi £_ £/w £)i — Qi Qs " Oa.fl4-J "t" Mt-^3 " (J4. ] -f -m/liCls

(- k%j-^1nQA-U^+ ^LiL%{afc<57-ald5-a^+«2a*qj+2£I[{i3£t-^q£f^*o16-> 

where

Qi = bi

Cla, = Iot.

^3 = b(,lo-| +• ba. Io j.

Oft = -bik>a -bt-bg

Qs = — IoJlVjj + bl

(!(.= '04. — Ln

= bi- bo. +■ L>-i bs" + (. bi - b 1)L3

^8 = bgb^bt- H b-1 bs - Jotb^ 4. ba_bs b^. +■ kT b^L0 +■ b3 bg btj 

and,

bt = k-x t I bn - Uu) CeS i.

bx = kt + C kn - Lu.) Cbs «( 1(
kj. + (. -Sui- k.) y

b4= k-T Cos<k| + (kii- kx) CoS,^ G>s<<

bs= kr Gis-ki "~ ki- lax^ Cex<Zx £oScCj_

H= 4 ck - L.)

bn= k>T Cos^x — (U - lu.) Cos,o( n Gd£o( x

b8= kT W* -L cku-k) Ce^Xx Goik„

b=\= It - CVa-V) CosAa- Cesin
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As seen, the dispersion relation is a very complicated 

expression. As long as this determinant is solvable, the 

separation of & in terms of 'P , 'X- , and *4^ which are in 

turn solutions of the Helmholtz equation is possible.-

The solutions of , 'X , and represent an infinite 

series of orthogonal eigenfunctions which have the coeffi­

cients to be determined, and the combinations VLCpVaj , 

X7d_ > and each form a complete set so that

so obtained is also a complete set (Seto § Dougle, 1964). 

Because of the curl of curl in the wave equation, the solu­

tion is only valid in six coordinate systems due to separability. 

If only physically realizable magnetic fields are considered, 

the solution is only valid in the-four cylindrical coordinate 

systems.

This technique is general enough to be applicable to 

problems where their magnetic field direction can be expressed 

as a constant vector in a coordinate system.



CHAPTER III

INHOMOGENEOUS WAVE EQUATION

The solutions obtained through the general technique 

outlined in the last chapter are the free-wave solutions. 

When radiation sources are present in the bounded magneto­

plasma volume, the wave excited by the radiation sources 

will be only a part of the free wave. Mathematically, the 

wave equation with sources present is inhomogeneous (Appen­

dix A) .

VxVv £ - L- e -
(3.1)

One approach in obtaining a solution for Eq. (3.1) is by the 

Green’s function method. By this method, the wave field is

(3.2)

where Q is the Green’s function and is in dyadic form (Appen­

dix B) .

The equation which the Green's function must satisfy is

VyVxG- - (L- kJ + Lt Lib - I (3'3)

where X is the idemefactor. It is noted that this equation 

is not identical to the wave equation but differs in the 
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source function and the constants (Appendix B). If 0 satis­

fies Eq. (3.4) as well as the same boundary conditions E- 

satisfies, then Eq. (3.2) suffices in evaluating E . On the 

other hand, if ft does not satisfy the same boundary condi­

tions E satisfies, then an additional surface integral must 

be evaluated.

Another property of the Green's function is the reci­

procity with respect to the source coordinate r- and the ob­

server coordinate . This is the direct result from the 

reciprocity theorem.

One method of obtaining a Green's function that satisfies 

the same boundary conditions E- satisfies is to construct it 

from the eigenfunction solutions of the free-wave. The eigen­

functions are complete sets, are solutions of the homogeneous 

wave equation, and have orthogonal characteristics which faci­

litates the construction of the Green's function.

Taking the exemplified case of Chapter II with the as­

sumed iio , the Green's function may be assumed to be

Q = +• +• Qm (3.4)

with. S. VL^c^) via Fcn.) (3.5)

(3.6)

(3.7)
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where F(*7) , , and ^C^)are the source coordinate functions

(Seto § Dougal, 1964). Substituting Eq. (3.4) into Eq. (3.3) 

and demanding that F , |-| , and G take the form that would 

satisfy Eq. (3.3). This results in a set of three dyadic 

equations which have the following form since 

satisfy the same equations and boundary conditions:

- F - kV'JVxF X.T 13 H G ]*-

- L^U-LjJ (Vs</x [^XZu'/F- CoScty. j- VLA G • Ce30<1,+-

C3'8)

B U — \7j_X7,! A G — Iui_Vl A G "1" Jan L. CoS°{ y. & f-vX^l + F <2oS) t-

— L 4n - VlI r^-;- F CoS^x 1" VuA ° G Css 'Fl."1'

-BAQo^u-] = Scw-w,,) (3.9)

tA -4lt[Qs-ofi. Qdsofj.Q>sct^]4

Cos^a^ t 'VutV'- F Cc%><Ax +-VxA’ G CoS^4_- 13 U C>solii~] —

- a3 Oj 5*6?-?.) (3.10)

Since F , , and H may have components in all three ortho­

gonal directions they can be expressed as: 

p —. P —‘i: i- ,b-rr-n j cT^ \

L.= ^_5L, +
x I

14 -v, - d *" xtTs. +
r| mm H -m m iVj.^ x I

— 1.
r-».-rX IV^l

II
*■ F -Mt\

v-l§- 0 n 4 'M* Vh

H-m
v4£- tl

+ Mvh 5-b

(3.11)

(3.12)

(3.13)
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The three equations. Eq. (3.8) through Eq. (3.10), are each 

reduced to a vector equation by vectorially multiplying each 

with an appropriate unit vector so that only the constants

, and remain as vectors. After some

regrouping, the three equations are:

[t^.* 4- ( kn- Lx) 3 4"

~ L Lt CosXn + ( kn - Lx) C<osAx Ce=.»<xJ r^£i' VxA Q +

E-Lt (x>so(j_+‘ t Ja.ii— L*-) Cosot* G>sc^ n3 B H - (3.14)

t L-r Cosdn - (An " Lx) Cos i<l Ct>s o^x] I * F 4

—l«-7n+ Lx + L L,|-U) Cos<Ax. 3 +

L ^•■va Lw F Lt Ces dx F (. la.n_ Lx.) (L>s> oL C° s ctu 1 ~ l XZx-£ I v - V'o) (3.15)

L? Cds.((x + (Ln - Lx) (?Bstjn CLsot x J Wxfl * Vx^ F +

E'La L-wi Lt Cosolx " I Lb - L x^ Gtsd,,! CeS^xJ ' Vl L +

E ~ kiyi +- Lx + L Ln- Lx) Qc&elii J W - (X-i, <T".V- Ve) (3.16)

Now each of the vector equations has components in the three 

orthogonal directions and each can be separated by dot product 

of a vector in each of the orthogonal directions; and this 

results in nine equations:



t- Am- +• C k-vt- J >,

Ct^ 4, hU- ka J

Lt Tn t- kx *• C L.V - ki) G>^y J I Vx^ 1

L kr Cos°<ii -t ( la. ii - kx) Cos°t k C05 Aj_”3 I Vuk | (J -x^yi ’*' E EtCis^x "'" ^•x') Cos^xCte^nJ I5>l4 mV) t* • ^CV’-W,

— L kr Costiii +• (ku-lai) <S>xol/ (?os du. J \VxA) (^ <« + £- tin Cos CBm-lix^ Cos.«Ax Go$c^i|ZJ B J-fL-nliL - 0

- t IzT Cto>d>n * ( k_(( - ku) &S Ax G>Sctx2 1 Vxk| (J^mn + E"^rCoS.c(x ■'■ (kll-kii Q>6o(xG>Gc(||7J -o

ELt^S^II - (kl(i--t?x)(?OSo(xCyS^xJ i'LV'l Fwf-m '■ L"k.m+-l!u. b kn kx)Ces.<<x£I IVxAl Q TflrA^Tk t EtZ-wkw + BtcPos/x't' tkll-kx") 6)sdx(ss.<4»3'B|4-m^ kyyx - 0

L trr Cesdii - t leu -kx) &>Al Cosc(x3 I V4.y*| t'-K-n S -yy, - C - kw v k-x^ (- Ju’-'k*} CcSxAx"} A I R-m-n TVI * Q k>Wi kw Lf C‘S tlv +( k||-Ux) Q)X.<^4. 6>sc{| J[3 Htvivi k<Ar ''r• )

L Lf Cos4li- (kti-tti) (?os<k. Cc&t’lx] JCxVl F-J>-r>yi-x~ L~k3#nV kx ( En -Jixl C<&<k-3 I ViA I G un L +E ^w. Lvi+ Ja-r^os dx + k|i ~E.)6(i4-«-G>5 4if J H wnlA>i ~ 0

^kydi^A-. +■ ( En-kxVos/il F-m-n C~ +■ l^-T 0)S</x - ( kn-Lx) E^/I CL* 9 -M ■*- t ^4. *■ tkn -kx.) cThJ 13 irx" F-rx - b

-Lkr &s[/l -aI- -Uh—L_x) (k><k ELth^P-^ ■*" E-* kwKnu.+ -ky Qj^^k -Ck(i-L0 (U-^ii (U-dJ I^Aj R^vi (j^ 4 f ■'k?wy t- (Un -4+^(U\c(n2 i? AlL-c hL>. - 0

" Lr CoscIl + ( ku-juD ^<isdil Cos^lWj F-L-ApT* tf" Uvilkn k-y (Usdx "'I Lh-Ll) (ts'/'I I 'Lkl tf-K^+ku. B k'L"0

Equations (3.17)-(3.25)
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From Eq. (3.17)-Eq . (3.25) , the and w. 0

are solved by Cramer's method (Appendix D). It is noted that 

the determinant of the coefficient is exactly the dispersion 

relation given in Eq. (2.15). The determinant can be written 

in its factored form:

( v\^)( V+3T^)(VV (3.26)

where , = 1, 2, 3, 4 are the roots of Eq. (2.15). Since

the solution is only valid if the dispersion relation is 

satisfied, the solution will be valid only in the neighborhood 

of each root. This means that Eq. (3.26) is of the form

j-V) - (3-27)

if evaluated in the neighborhood of the root and has a 

similar form when evaluated in the neighborhood of the other 

roots. The right hand side of Eq. (3.27) is just one form 

of the Helmholtz equation with a constant which depends 

on the root in consideration.

- (- iTn -I ; l-wX ”■» ' "h Ar'n'^ L^'h') (3.28)

for the i Ik root. Equation (3.17)-Equation (3.25) leads to 

the following forms:
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(3.29)

-T2^ 4-

(3.31)

(3.32)

'Qa C ) id H-vnr)^ - 6 Ci/'— l/t>) L +• kx +- I w.ji- ex) 6>J</y J X 
L - Il th *■ lu. +■ ( ku- Ut) (?cs<^x J '*' C lif (es du <- ( Ian - -lo-Oflis dx Ces Xx-3 X

&S</u t ^l> "i-O &5>dy 6>So/xl[ IU Un "*" (ltiril^(e.^DS^

C V’t <T^n) | Wl

C - *• K. +• ( kn - k-x) QoS

L~ Cos <L- + 6fen ~ liq.) Cei

(V7+nT>)\W\F^X [!

E~ ILfn + Ll+ (ku-kx) (o&i^x JC-Lt Cbs>o!J-+ (--kii-"kx) QoS dy Cost/11^

(- 4 i "’’O -w “ S^Cv-v'ol^L^'-^*' 8li_h- I kn"' k X 

r~-^tCoS-A X- (_ kii~l»x) (3&c(ii CftsXx J + Q jir G$.j-L+ C felli-kl) Qasc(xlx 
t V&iS^ii V (U - DCos^yCcxstij (3.34)

(,V2+ iTtt) ) l^yj F-ht-n cr_Vo) L "K^yld- -V-F Cfeut- fiu.) (jasclx ] X

■V + (.kn- kx) Cos^u f ktv, kfA"b CcSd. xkr F t hii- .k+.)(ks>»(-x<2o$>dii X 

E - ^wi Uvi + kv y - L k<i- Kl) (ks/ii G&a|yJ (3.35)

t ^(7 + tT=

E^wilwi + kr Cto/x + (kn-kx) &s(/xCkis ^nl F f- 4.r OeS^J-"1" ^/‘“kx) fts^xCksi/'iU X.

L V Cos^tj - ( ku-kO Oes^x Cos <JyJ r (3.30)

"S- + F*Tfl) t^xA) Tun g tvj E>(y-V'») I -' L T+ k)_ + ( ki - ki) ^z>s«/x J X

[-Kin + kx.4" I U -k) Cask L4r 6>s^4_ F (kfi-kx) (kxJ.il dosAx^X 
[ - kr^otx-F (Uu-Ux) (ksoi/Co^dinJ (3.33)
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5 ( \7a+ Wx N | c cV(lr-y:.’)

E-^m+ i - - .-.. __ - -

. 1 . mj . ., , d ,,. ,. .. - [-ll-T&S^I -I til - LuJ Pcs^4_ Q)S^x^X

kj-4" ( L)-Ul) Cesflll I V V Co^ol-J-4 i- CfrS-^H

m v ki Ca^x 4- ( kn—V) C^ctn^J (3.36)

(_V2Hl^e> (Tcy-VV) ) LV Ces-All -/ WljCo^4.(3>^V jX

f-^Ui *- /Ur 0<as4 - ( kii-lod) Oos^n " E t-T (eD <=! 4.1" (kn-J^ (W k^X 
L- + kj. + t kn - k-u) <K x j] (3.37)

N°w > and Htcm h’titcan be determined since the

functions , and ’S are orthogonal eigen­

functions. Utilizing the orthogonality properties.

WW* dlT -

Vj. A • V4. F\* du" - jc7 
A

y 13. ”&*■ dl/- =
BJV^ **Tlt

(3.38)

(3.39)

(3.40)

where v indicates complex conjugate and the -A- ’s are the 

normalization factors . and found for

the root to be

+ atX.\ Ces4ii ■+ ( kti-kv) Coi^vCo^^j.?] X

[ kwiUwx 4 Lx Ces-ojy 4- (ti- kx) Co-xdx Qj^tk uE] E- krm 4 kx 4 (kii~ Vv) Eosdx- ] X

[ - ^ii'k-x) Ces<Xx (3.41)



r" n11
Ia w y ■*' ■ 1- ki- 4" - -U CtxS Av _ 'X-

L^mUa + kr (kso<x +- -L'ids^Cog-cju J- [-"^tCos^a.^- fosc^x 6ojo()iJ 

IZ'le.T Ces dll - ( k/1 - In.) Co&cCt CoS oZ-x3
V

(3.42)

[ikAk

U .* c-t^ i-rrk-'i I "'^w, '1-^24-+ ^h-D Oosd >] y

- L'tyi + kt- +( kn - Lx) C»S 3 ’* i'\l k-V Ce>5cfll +■ (kn-Vi.) (?®5cf -it Ges j 1G]

C-T^+ \ tV)[ l ^4ii ( kn- L) fttci xCnS^x] X

_ - RV + L. +■ ( Li- u_2) + L- La kwi + Xt Q?sXx- (kii-kx) Gdsd niSxs^x.^) X

. - It 4-( (3.44)

E - K?w Lx 4- ( 4,1 - Lx) Goa <f n ] +■ E. -Lt (U <A j_ +• (Ln- 4_x) Q^n Co jXk]x

L - It &5,cjL+- ( Li-Lx) QoUx C»4nl ( (3.45)

.»+
; C-t^-i^TL') I L kvi k It Los >- I b«- K) (ds'/h Pos^Jx 

(Un- kx) Css. dxj +" E k-T Gos^ i_-b ( Lu-L2) CosjiiOeSi^xC]^

I Ln-(ax) Cos Ax CoSdCj [ (3.46)

(Li- Lx.) C&s4n ] + E Kjvi V<aa -•- ItfOs^AY 1" I kn-kx) (o0>
r Pus I’fx - ( Uii- k x3 C»s^n Cos I (3.47)

JaT (co^ii ~ ( Ln ~ L-l) CLsd 4-CoS^x-I^ (3.43)

_Mfl
-A^- TVf^ll *

[- Kkc <- k +



X

"T w) £ ■kr CoS'5/’1 "* ^-K" ^4-^ C®S^X X

E^'^vi IstM 4 ^-CosXx "*" -Ul') Qqstlv-Gas^111'J’ r Vm f la 4.t (kt)- Vl) C<»s4i"] X

C-^ Ca^fj-"*" lkn-l&2) Cco^)i3|

lv4x*"jl

+ WC«s4

4

x
7>i

L ^wl^F -(Lil-WPoj^x/oj^xX k-v Co^4-+"

The entire Green's function is therefore:

n" V4^"3 \VfV)

kr foc(/l - fk/|-LJ Qrasdi. (fiiclxjx

E — kv 4 kr Ck.dx — ( Ce^cki Qss I^z~] - E~k\| + 414. ^[ku- Ua) i^Ejx

E krCoi o/i 4- ( k.,1 - (u.) CosJii Coo^x^ f (3.49)

^ku-U) CeAtki. Gs-J^iJ^lZynUi +■ krCosofx’ +

W4I Ekj-Ces^u -(^n-D ^e5 Cej c/11 <■ kit ( lin- kx) (2oS<Ah +

*•_______ J r
-X-vxxa ft C-T^ + tT-^) I L kr PoScjn — ( li<'- kx’) Ods^xCpi A y j ^•

r t- (
L ■~I6W + Lx-t- (kll -tax') Cts>4 xCcSfl(iElt Lkr CckSd+. t fikl-kx) fMJ|||(o,s<i(yJV
E "'^■ryx kw ■ky 60s, J, K + f Lu - Lx) Cos (A x-Gss^ilJ | (3.48)
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<-M7l

? V

•WW

7j.IX

^VV—■»wl#n^ L-

t^T 0^-L+ ( hji-Uj.) Ce^il CoS^ xl E~ Lr (cs^x. + (3iit-Lu) Co5^i3^j

i + FX a- L. + (^/l- L) CoSa/ x] £' ttw v L-+ ( Li-W CoJ^p

P^-T CcEcju t Cliit-lu.) (bdt (!x>s</a^E jkiO^^u- (tn -

Ccac^y ]ECksojx 1 (k|i-'Li.')Cbl^j-CoS cjj i

[ Lt Cos^x+ (kij- kx") GficJulL -Lt Oosofn '(LirLi) CosdJCpsd x ~]

VZ-fx^l LkVesd'i- fkw- Ux) Q>£<^l Lit" Zta.ii-L. VtE^ii ]-t

E LtQ)ScI+ + (Lji-kk.) Cexcfn CoscJxKh/wLm

7x5 X<i5 I r -sC
^Vx^k^) I L LrCsSc/ii- (k|~4ax') Coj<Zx Ctoc/x J [~Lit* "I -Lp Os4*. ' ( |g(r Lj) Qo^u

A - t Lr Cp5«( x+ ( U- Lx) Oest/i. Oxs 4icj[~-Lw 1-Kl Zlzn-kl)^^ J +’ 

\Vxf ] t."Tfyi'bLlX +■ fta/l- L-1-) Oicf y 1^—^Tr> kw ■*" W — ( Ith-llx) Qoldu 0^13"*"

E Oesi/j, + (Lt-Lxlfiu^i/Cns^^C hr^osAt) 4 (Ln - ki) QB2.dx Zos^T-j^ ‘

(3.50)
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Since from boundary considerations it can be shown that

V V a * %0.5 > and V? are not independent of each other,

it is reasoned that for a given set of boundary conditions

XZ^xas -

VxA -
0a3 ~ ^^3)

where is a two variable function of (^ifjand^g) jand

are one variable functions of §3 only. Furthermore, 

i|3 = - Ka k t^3) 

i^3 = U.

. must hold. By this observation, the Green's dyadic can be 

written as:

Qu Vj.^ xa3 "V^ XU3 Vq.^*

- \2l \V v4 Voi^

-^1*3 ClS'J 03

where

Qu - "" L KX ♦ki t- (k.u- L.J GskcU"] V kj. + tkn- X.) (?osd /I 3 4

+ kr x + Cku-U^ Ces-dj-Cixs^ CoSA y-Cos^n^tisd-i"]

= P Lu- W Oojct xCosj 4.3C kX > kc ■‘'tku' -111)

t V_-m kwx+■ CoS^y — ( ku- CciiZx (XX klE'-ky CoS 4.+ C ?>iu- L4.) CLsd x CoSci 113 
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"V-m * t.4.Iju - Casc^X It * ^-T — C^-il- Cosolji CoS'VU"1 

£ -Skv Cosol.i, + Ck-a-’ Kut ^s>o{ii E'^-t Qas^n"1" C Ln — kiJ d x Cexs^4.

[ "'T'vn^L4 C Lu- L-u) OsS o(y b L-4 Ck/>- MCo&^n] b
-f Ly (Li- Li) Cos^u CbSoly 2L-L.T (Lsdd-V (. Ln-Lj Gdsc/x

^'3'3= L'1 w *■ L4.4- CLii- Lx) C©s<< x It--Vw + L.4* ^Ui-Lx) J "t

E LrCes^w (,U|—Ll) Oc^ofx E ■^•tCoSp/u "• ( Llf'-Li) (L>5^4- C<^3 c(xj

L '^Tn + Ll b c Lil- -Lx) Ces-j-SL IL X-zn-Zw b It (®J d X +■ ^iI-Ll) Gscji/ 

E Lp Cm ^4. -i C Ln- Lx) Cost!* Ce3«(n -1 [ Lt cjn - { I211 - Lx) Cos c/x Ce^oly J 

1 t Lt CdS^h (Ln — Lx) C05<dx Cssi/y J C- l^w ly< +• Ly Lesoi y — (-Ln - Ul) Ceiofn 

'" L "L-T CosXx + (L|I—Lu) Coitdu Co.s ofx^E - L?™ + Lx 4' (-Lil-Lx) Co^ela_~l

^'d — [ Oescti) 4 ( Ln -Lx) Cls^x Cos^xlt^ Lm 4 Lx Ces 'k y 4 I Ian - Lx) Ccs- ‘’lx Gs °(ii 4 

E Ltm x Lx 4 (Ln -Vx) CoS d\u 1 E - Lh- CsS <k , + ( Lit - LA 1. "1

9| - L &T CbSofu — ( Lj.i -Lx) (aS Al.CssAx 3f 4- Lx ''"(Ln “ Lx) C.osc(\t 3

L Lt (Ls^L- + I Lh- kx) (jdsAi\ CaSO^y^L-^ + Lt (<Kl^y b- (LiI-La.) ^oitL_CcS Am J
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Equation (3.50) is in a dyadic form and is reciprocal 

with respect to the source coordinate and the observer co­

ordinate .

The Green’s dyadic is subjected to the same restrictions 

that the free-wave solution is subjected to.



CHAPTER V

DISCUSSION

The application of the solutions obtained from the wave 

equation for a bounded homogeneous, anisotropic plasma are 

valid only in the coordinate systems in which a dispersion 

relation can be obtained for the given orientation of the 

static magnetic field. The number of such coordinate systems 

is limited to not more than four. In spite of this limita­

tion, the technique described is found to be more flexible 

than other techniques previously available in terms of the 

relaxation of the restrictions in the magnetic field orien­

tation and boundary configurations.

The mathematical description of the magnetic field 

direction was restricted to those cases which can be trans­

formed to the chosen orthogonal coordinate system with con­

stant coefficients. The form of dispersion relation would 

be different for different magnetic field orientation with 

respect to the boundaries.

In view of Eq. (2.10)-Eq.(2-14) the forms of solutions 

are required to be of certain form, this might not be desir­

able or possible for certain problems. Such limitation could 

be a most serious drawback for the application of this tech­

nique. The technique proposed in this paper is applicable 

to electromagnetic wave radiation or propagation in such 
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physically realizable configurations as the mirror region of 

the Magnetic Mirror machine, the magnetic field of the Stella­

rator, the Cusp machine, and such similar confinement devices 

(Bishop, 1958). With some modifications, it can also possibly 

be applicable to non-laboratory configurations, such as the 

electromagnetic interaction in the finite volume of a meteor 

trail. Furthermore, since the work reported here is a part 

of the electromagnetic driven shock tube investigation, the 

technique with some extension is also applicable to the in­

vestigation of electromagnetic wave interaction with aniso­

tropic plasma shock wave.



APPENDIX A

REDUCTION OF MAXWELL EQUATIONS TO THE WAVE EQUATION

The Maxwell's equations are

— — aS
Vxh =- J + ■si- (A.l)

(A.2)

V-D - (°

VB = °

and the Constitutive equations are

P - £-e

(A.3)

(A.4)

(A.5)

(A.6)

where yd is a scalar and

is a dyadic.

Performing the curl operation on Eq. (A.2), substituting the

Constitutive equations into Eq. (A.l) and Eq. (A.2), and 

eliminating the field from the two resulting equations will 

result in the equation (A.7).

-T=r 5^- . <* 'C'= - yd 917 - yU k-- (A.7)

If only monochromatic waves are of interest. Eq. (A.7) reduces 

to

VXYXG — JJ caD*1 oE — - J
(A.8)



If new variables are chosen such that is 5"s , and

is ; then Eq. (A.8) will result in the wave equation 

of the form

(A.9)

The -K- dyadic for the magnetic field oriented along the

coordinate axis of the unity scale factor will have the form

Lt

= - L-

O D

where

(A.10)

• Nl-i -^-a/^L------ -- —X.
Lr " 1 to1- [ Ci -i v^°/lo j — (A.11)

1 + J_ • ~L2!Lek_ L i * t ^EM/w] 

(M-o -MX (A.12)

1 "X2-V
1 ^€.^1 Lc, (A.13)

where E% = charge of particle

= concentration of the particle

-mX = mass of the particle 

w = frequency of the wave 

lb = magnetic field 

'Jeo = collision frequency

^2.; _ e;-^ (Holt a Haskell, 1965).-m a.



APPENDIX B

SOLUTION OF THE WAVE EQUATION IN TERMS OF

THE GREEN'S FUNCTION

The wave equation is

where Co=> ^£-, + r , - (B.2)
IV^Kdsl |V^)+C»^'i63

for the coordinate

Fig. B.l.

The Green's equation is assumed in the form

Vx^xl? -H Q -( ik> - IrfiAlU* (B.3)

with the constants -Kx, Lt, and to be determined. T is the 

idemefactor. Pre-multiplying Eq. (B.l) by 6 and post-multi­

plying Eq. (B.2) by E and subtracting the two equations will 

result in equation

Q E - L - (^.-D (e -Ik) -k-v C/E y'k - £ -J& * rcv-v,)i’6
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VxVxe efi+• (ku- M CQ,uX^’'!'O + 4lt fixiL °C - 0 (B-4)

If = Ulj- and if 4-" = ■le.u , Eq. (B.4) reduces to

Q.7x17x6 - VxWQ »e - ItQ.-ExiV) * Vt ^il-E - fR q-i
I ' lD.DJ

Now expressing -^_T^ X1&0 E in matrix form will result in

^rK - J.3 + (j.3 (kboli -^u C,sd J E94 ( fccj,!-

3'2"2 ^6£“/k- ^13 Gs^lf) £| + ^23 Gs/x - ) E? + ( '(

_V [ 532 - 53d 4. ( ^33 Cs<,cL - ^31 G\^S J 6> V L C|3I Cosdu

where =
e<

e3

%

^•v

in matrix form is

i3

^-33^

Ctiik

Cesd i/

. Ces^jj'

(B.6)

(B.7)

(B.8)
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£jr> C ^3 - £i Gst/x) $ '3 ( Ei

^.a.2 C 63 CpS/Xii ~ C©S°( J + ^13 C E] C0<Xlf - ^-P

1331 E) Ccscfii -t Fjc

If -^T = - k4 , Eq. (B.5) will be

fl- W/E - - Q -Jcv-r,)j,*e (B.9)

If Eq, (B.9) is integrated over the volume of interest, the 

first two terms in the integral can be changed into surface 

integral by Green's theorem. This surface integral will 

vanish if both G and £ satisfy the same boundary conditions. 

The resulting integral is (Seto § Dougal, 1964)

& = V Q‘Tsclvr (B.10)



APPENDIX C

WAVE EQUATION WITH LONGITUDINAL AND TRANSVERSE SOURCE

The wave equation is

(C.1)

If the source is composed of both longitudinal 3"<i and trans­

verse T-r components, the resulting wave equation will have 

the following form:

-VyCXE — ia." E — d’x; (C. 2)

The electric field intensity E is assumed to have the form

E = et -t-er (c.3)

where Eg. is the longitudinal part and is the transverse

part. Substituting Eq. (C.3) into Eq. (C.2) results in two 

equations, one longitudinal

- VEl- lx. (C.4)

and one transverse

VXtfXEr f k-Ejt = (C.5)

Two Green's functions can be derived from the two associated 

equations Eq. (C.4) and Eq.(C.5).



APPENDIX D

SOLUTION OF A NONHOMOGENEOUS SYSTEM OF n LINEAR EQUATIONS 

BY CRAMER'S METHOD

For a nonhomogeneous system of n linear equations in 

n unknowns

<fll Xt -»■••• Ar- dnr, =. ^3,1

(D.l)

^7)1 X । +- • • ■ X-n =

has a unique solution if and only if the determinant of the 

coefficient matrix is not zero, i.e.

D U-H ) \ 0 (D . 2)

If DH-itH0, the solution is given by

1) ( Cj.) • • • ) -1 } l> ) C-i-r I j ■ • -j )

D ( aii)
CD. 3)

where • j C-n are the columns of Q-ti, and Cd- < (Si . .

(J. C. Curtis, 1963, p. 79).



APPENDIX E

SEPARABILITY OF THE VECTOR WAVE EQUATION

A scalar wave equation

\7^ v = o (E-1)

is separable into three independent differential equations 

in three different space variables, 'tv 'Y K and 7.3 . This 

separability condition is (Mose § Feshbach, 1953)

^4 = (E.2)
J’- -

where S = Stekel determinant and Tflji = Minor. Similarly, 

the vector wave equation

VxVxE- -° (E.3)

is simply separable if the term VKV^e. can be written as . 

This can be accomplished by assuming 6- in the form

Upon substituting this form for E into Eq. (E.3), 

becomes in generalized curvilinear coordinate system

This has been shown to become separable (Mose § Feshbach, 1953) 

if -I (E.5)

(E.5)

and this implies that x satisfies

(E.7) 
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Then V%VXG = !/*£&- and thus the field is said to be 

separable in terms of Vx'X^ . Similar analysis shows that

E equal to and ^Xj&^satisfy the same separability

criteria.
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