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ABSTRACT

Electromagnetic wave propagation and transmission in a
bounded magnetoplasma with an arbitrary orientation of the
imposed magnetic field has been investigated by solving the
resulting wave equation using the separation method. For a
given orientation class of the magnetic field, the wave
equation was found to be solvable by the separation method
in at least two but not more than four of the cylindrical
coordinate systems. Solutions of the electric field can be
obtained in the form of three scalar functions each composed
of a complete set of eigenfunctions. Investigation has also
been carried out for problems invélving source radiations in
the bounded magnetoplasma. Solutions to the inhomogeneous
wave equation by the Green's function method are derived,
The usual complex surface integralAarising from the Green's
function method was forced to vanish by demanding the Green's
function to satisfy a given set of boundary conditions. It
will be shown that the technique outlined in this thesis is
adequate to solve problems involving wave propagations or
radiations in a bounded magnetoplasma, providing that a dis-
persion relation for the given orientation of the magnetic

field can be found.
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CHAPTER I

INTRODUCTION

In the course of the investigation of electromagnetic
wave interaction with shock generated plasma imbedded in a
strdng magnetic field in a shock tube configuration, very
little analysis was found on electromagnetic waves in ani-
sotropic plasma with certain degree of freedom in the orien-
tation of its imposed magnetic field. Analysis is lacking
even in the case of stationary plasma. The purpose of this
thesis is to investigate solutions of the wave equation in
a finite domain, stationary, homogeneous, anisotropic plasma
with the static magnetic field exéressed in terms of a vector
which has constant components in each of the orthogonal
directions. The knowledge gained in this work will be appli-
cable to shock tube investigation. Since finite domain
problems are under consideration, it is desirable that the
solutions of the wave equation be separated into three vec-
torial components which fit the boundary configuration.

The three separated vectorial functions are then con-
structed from some vectorial operations on three scalar
functions, each of which satisfies the scalar Helmholtz
equation, The three vectorial functions so obtained are seen
-to be either perpendicular or parallel to a surface described

by the coordinate which has unity scale factor. A substitution



of these functions into the wave equation yields the disper-
sion relation.

The wave in anisotropic plasma dependg on the orientation
of the magnetic fields. Under certain restrictions on the
functional form of the static magnetic field, a case of
arbitrarily oriented static magnetic field has been analyzed
here. The technique presented here may be used for cases
involving other magnetic field orientations under the same
restrictions. The selection of the coordinate system is
dictated by the configuration of the boundaries; therefore,
the exact number of coordinate systems in which the wave
equation can be solved by the separation method is determined
by the ease in obtaining the dispersion ielation.

Whenever a radiation source is present in a bounded
anisotropic plasma, the wave field is calculated by two in-
tegrals. Each involves the Green's function. One of the
integrals is a surface integral. Evaluation of this surface
integral is difficult as it requires the knowledge of the
surface charge density and the surface current density which
are not usually given in the statement of the problem. This
surface integral can be made to vanish if the Green's func-
tion satisfies the same boundary condition as the wave field.
The wave field may be the electric or the magnetic field.

The second integral is a volume integral involving the volume



source distribution function and the Green's function. For
a vanishing surface integral, evaluation of the volume in-
tegral suffices in order to obtain the wave field. The
general solutions of the homogeneous wave equation must
satisfy the boundaty conditions; therefore, its appropriate
Green's function can be constructed from the general solution
of the homogeneous wave equation. Since the general solution
of the homogeneous wave equation is obtained by the separation
method, the solutions are in the form of eigenfunctions. The
properties of such eigenfunctions greatly facilitate the con-
struction of the Green's function. The Green's function is
found to be a dyadic and is recipéocal with respect to the
source and the observer coordinates. Thé homogeneous wave
equation is composed of purely transverse terms and therefore
the Green's function so constructed satisfies only a pure
transverse source function. If the source contains a longi-
tudinal component, an additional longitudinal term of the
Green's function can be derived from an algebraic equation
(Appendix C).

The method described here has been used for a fixed
magnetic field oriented in the direction of the unity scale
factor coordinate (Seto & Dougal, 1964). There has been

little work of this nature done (see Bibliography).



CHAPTER I1I

HOMOGENEOUS WAVE EQUATION

The wave equation obtained from Maxwell's equations
for the electric field intensity £ in a bounded, homogeneous,

uniform magnetoplasma volume without a source present is

»

UXVXE - &-E =0 (2.1)

a

where & is a dyadic determined by the medium (See Appendix
A). Equation (2.1) can be expressed in the following form

including the orientation of the magnetic field as

VXV XE. - &k, E - { w- ){a.\.)(?-,"t:b)(rb - Jé‘r (é""T'ﬂ) =0 (2.2)

where 7« is the unit vector in the direction of the static

AN\
A

magnetic field, and LL, t, and Lm are entries in % .
In general the direction of the static magnetic field

can be written in a generalized coordinate system as

= Are, + A&, + A€, (2.3)

where €, 1= 1, 2, 3 are the three right handed orthogonal
unit vectors in the generalized coordinate system. The co-
efficients A; , I = 1, 2, 3 are in general functions of the
coordinatgs.

In this work only  with constant A, was studied. This

restriction on A; may seem to be too severe, but only the



cases where Ai # 0, Ai - A - 0 where 1 =1, 2, 3 and i , k
permutated have been discussed in the literature (Allis,
Buchsbaum, § Bers, 1963).

A different orientation of the static magnetic field yields

R

different formsvof the dyadic k. . In the past, different
techniques were required to solve wave equations with dif-
ferent forms of i. (Allis, Buchsbaum, § Bers, 1963). An
attempt to derive a uniform technique to solve the wave
equation of different static field orientations with con-
stant Ai s i = 1, 2, 3 is madé here.

For infinite domains, solutions can be expressed in
terms of plane waves with éww space variations; but in a
finite domain problem, boundary conditions play an important
role in determining the closed form of the solutions, which
is more difficult to calculate. Since the coordinate system
employed is dictated by the boundary configurations of the
problem and since the solvability of the wave equation by
the separation method is dictated by the coordinate system
employed, it is advisable to investigate the number of co-
ordinate systems in which the wave equation is separable.
The first term in Eq. (2.2) is the curl of curl and is only
separable in six coordinate systems, all of which have a

unity scale factor for one coordinate axis. The ratio of

the remaining scale factors are independent of the variable



of the unity scale factor. The six coordinate systems are
the four cylindrical, the spherical, and the conical coor-
dinate systems (Morse & Feshbach, 1953). it is anticipated
that the number of coordinate systems in which Eq. (2.2) is
solvable may be less than six since the second to the fourth
terms in Eq. (2.2) may impose additional restrictions on the
separation of the wave equation. Following this technique
to separate WVXE , the solutions of Eq. (2.2) may be sepa-

rated into three vectors (Morse § Feshbach, 1953).

E-L+M +N . (2.4)
with L = @
M = IXYEH
T:[ = VXV%’)LZS

where ¢ , Y , and X are scalar functions to be determined;

and E; is the unit vector along the coordinate axis which has

unity scale factor. The separation of E into L , M , and

N does facilitate the fitting of the class of boundaries

—_—

§=:%§n such that at least one of the gl's is élxas = 0. In

matrix form, Eq. (2.4) becomes

c = VJ.W‘XQQ R V‘_{}/\XQ\} (2.51
Vo (Vi X -@) V. A

~G(Vi K-V & 9) -G, B



where A=VG 'X“(P , and
B= VJ.A'X“ V|°E3LP

The elements of Eq. (2.5) are mutually orthogonal vectors

with
- Vﬂ\f‘xa:,
'El = T= "1
| V.4
€, = %A
AN
—é3 = Ea
The separability of Eq. (2.2) for a given is therefore

determined by the solvability of the equation resulting from
the substitution of Eq. (2.5) into Eq. (2.2). As an example,

take the case of the unit vector expressed as

‘ — V¥ xa;
15 > CoSdhn Gy + Coso(J_%%] + CoS Ax of xa

T (2.6)

where S is either Y, @ s %, , A , or B ; and the cosines
are directional cosines and are assumed to be constant. Sub-
stitution of Eq. (2.5) into Eq. (2.2) yields three orthbgonal

equations.

XN V_L V¢§
[-_-‘-3.“ A ¢ ’la.“—k;\QosJ\x] Y- rﬁ%\ + [— Yo Cog it — (hu-hy) Gs oo Cos°(>c] WA A

Lo b Qo d i+ Clo k) Conel Gk ] B = 0 (2.7)



o T 28
[gﬂ'c‘:'s‘;\l\‘ ( h\\"a.ﬂ Cob(?{_;_CosOf,J VL%’"’?%\ + I:Lfm'%‘“ln‘hu\:) (oo J\J.]ﬁA’\V.;ﬂ ¥
[\me Sor Qedut (ha-du) Gods Gedu]B=0 (2.8)

(_ gzLTCOSo(_\_ (hz,u- LL\G)S“{I: Gso(x]’h]ﬂ(r WL&I [ KMLW* {J—&,Sa{,{ UQ.n lLL\(LSt}mCOSO{JJv‘ Vs)
L(m*“LU—(lu- “L-.) Cosoﬁ..]a = 0 (2.9)

In Eq. (2.7) to Eq. (2.9), the following arguments have been
employed. It is desirable that the solutions of VAN s
Ry , and B be in the forms that satisfy the scalar

Helmholtz equations such that

Vi \7a] 8) = T (vl [ wAl,B) (2.10)
VPO Iwyl, \uA] B = . (], (WAL B) (2.11)
Vo 1awl, 10ALB) = En (10, 10A],8) .(2.12)
| % e UVJ,A))B)‘) = AUmka ( Voa),B) (2.13)
To = K vk | (2.14)

Equations (2.10) to (2.14) imply that the scalar function

be solved by the separation of variable method, and that their



solutions are the desired eigenfunction forms subject to the
boundary conditions. The subscriptm in T; s Ko , and 1
is an index denoting that these separation constants are
eigenvalues. They are subject to the indexed values result-
ing from the boundary requirements. Observing that Eq. (2.13)
demands VL(Ag) = U9 (AY), and one has replaced - 3,8, V™,
-¢3% for U , ~km for Vi , and Mmbm for  |7o ]

whenever desired to obtain Eq. (2.7) through Eq. (2.9).

For a nontrivial solution of Eq. (2.7) through Eq. (2.9),

the determinant of the coefficients must vanish; thus

“T% - ko ‘Jo.T G dln - by Bedy
-( - deou) Qe:au - U’le ‘lﬂ) @os&gos"(, +( i’lu- l"--L) ()oso(x(wp(ll
“PLTQesO(u‘( )lu—]o,DOOSOL 0050(1 &j‘m - ‘LL MmM+ *&LT Gaso{x =0
- { Lin" ‘L) Oos,;b. U&.u- ?D-JJ 005 A_LGJSO("
= br fosdy + = Jhon Kom + (edv ~Kin+ b
- (Lu - LL\ Cosogn GJ‘S(* ~® - ( -&.II“' L.L) COS"(HCQ'D"(L ( EAI' Ll—\ CO:Z" t}

Using Eq. (2.14), the resulting dispersion relation is

T:\("aﬂ + ).;4'.,,,( 01+ @15)— Joim ( lz,lm[ai - 2G.as] - 2oy *‘“’20508)"’
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T’:" ( Kol 247 + 0% ~20,0a] -2asLay +Qs])) + A Kmbh: — a5 + S a5
T (= W @5 - L [ fm 0% -2 % 0,00 2000, ] + 2465, (als - 03 K

© 0 F 00 + & W [ G0y ~Gias -0a0k] + 26a05 ~ aF ) + LEulls
T2 (= I 20,0 -2% 0y -0 + Won[2 {00~ G5~ Q0+ da gl lo 058 ©)

where

01 = b.L
Ch, = )oa.
q3 = ‘0(-‘01 + bg ba

Oa = _‘01‘63 ~babs
Qs = - loa.\O3 + ‘oi
Ou= ‘o —lbn

Oq= bebe + babs+ (b1- b)bs

Qs = ‘Dgha‘_bg- ‘aq b+ bs —-Joﬂo:" .l—lo:.bs-bq_-f— LlL"’-'ob 4~ E’B bg bﬁ

and,
b, = Qu T (\o_u-‘/u.) Ce:a(;.
by b s ) Ged,
b= ke v (e ) Gost,

by br sk, 4 (- k) Cotdy Gk
=y Ged, (- b)) oocdy cosdy
T P R T h) cssdy Gedx
= Ay Gedy — G- W) Cood, Gosd
vp= et Cosd, 1 (o by) Cosdy (ot
b= dr Gsdx = Cha— b)) sda Cesdy,
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As seen, the dispersion relation is a very complicated
expression. As long as this determinant is solvable, the
separation of E in terms of ¢ , X , and ¥ which are in
turn solutions of the Helmholtz equation is possible.-

The solutions of ¢ , 7 , and W\ represent an infinite:
series of orthogonal eigenfunctions which have the coeffi-
cients to be determined, and the combinations Vi.Wyuy \
VL(QRQX‘Q): and %(Vfﬂ+ﬂﬁ§@) each form a complete set so that

so obtained is also a complete set (Seto & Dougle, 1964).
Because of the cprl of curl in the wave equation, the solu-
tion is only valid in six coordinate systems due to separability.
If only physically realizable magﬂetic fields are considered,
the solution is only valid in the-four cylindrical coordinate
systems.

This technique is general enough to be applicable to
problems where their magnetic field direction can be expressed

as a constant vector in a coordinate system.



CHAPTER III

INHOMOGENEOUS WAVE EQUATION

The solutions obtained through the general technique
outlined in the last chapter are the free-wave solutions.
When radiation sources are present in the bounded magneto-
plasma volume, tﬁe wave excited by the radiation sources
will be only a part of the free wave. Mathematically, the
wave equation with sources present is inhomogeneous (Appen-

dix A).

- R _
VxVUYE - L€ =35 (3.1)

One approach in obtaining a solution for Eq. (3.1) is by the

Green's function method. By this method, the wave field is

E=j T Te de (3.2)

Vol

where ( is the Green's function and is in dyadic form (Appen-
dix B).

The equation which the Green's function must satisfy is

VTR T - by § = (hee 0 (Boit) o + br fixio = T T@7) (3.3)

where I is the idemefactor. It is noted that this equation

is not identical to the wave equation but differs in the
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=

source function and the constants (Appendix B). If l satis-
fies Eq. (3.4) as well as the same boundary conditions E
satisfies, then Eq. (3.2) suffices in evaluating E . On the
other hand, if E does not satisfy the same boundary condi-
tions E satisfies, then an additional surface integral must
be evaluated.

Another property of the Green's function is the reci-
procity with respect to the source coordinate *. and the ob-
server coordinate " . This is the direct result from the
reciprocity theoremn.

One method of obtaining a Green's function that satisfies
tﬁe same boundary conditions €& satisfies is to construct it
from the eigenfunction solutions of the free-wave. The eigen-
functions are complete sets, are solutions of the homogeneous
wave equation, and have orthogonal characteristics which faci-
litates the construction of the Green's function.

Taking the exemplified case of Chapter II with the as-

sumed 1o , the Green's function may be assumed to be

|
i

§= &.*—QM + QM (3.4)
with E\__‘: S VLY F) Xiy FR) (3.5)
= TLAGY [GR) (3.6)

=1 =D

M=
= N BLV" ‘:\(ﬁ\ .
N 2.5\3 (3.7)
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where F®2), (@), and H®&) are the source coordinate functions

(Seto & Dougal, 1964). Substituting Eq. (3.4) into Eq. (3.3)

and demanding that F ,j: , and G take the form that would
satisfy Eq. (3.3). This results in a set of three dyadic
equations which have the following form since

satisfy the same equations and boundary conditions:

— — = 7. § <& _ 7
—VLXV;L‘FQ% F - QQ,_L.qu;(Eb F o+ dar [—Ccﬁ:v’u_ |V...§>I BH - Cos VLAxUs G ]*_

- [_}n_u- lq_,l_] Cos A x vi;—i:{g? [VJ.LI‘}E' ?%?_‘g‘l CoSdy + VLA Q - J'_,_S.l COSO(.L"'

VeSxla VIEXGY 5 Ry : (3.8)

_,Bu(io&du]’—' IZaf xagl <L x&3)

- UVl B0 - WS AG - uzLAEJr L[ Coselx ® Yéﬂ—ﬁ + WYTF Conunl+
—Ume.—] c—“&ﬂh..r—&g[ [VJ{P rvj FCOS‘*K “"VJ.A Va5 C C’osJ\J’*l'
- BA Qovdut] = \VJ.}I Fv%‘\ SCF-2) (3.9

ViBg R+ AT + b b - de [ Uy By Caoty + A B  Goot Qa4
- Y_%.u‘,/z;] Qo&d&} [_V:.("A)\ ﬁ%\ F Qosojsx + V.LA' %%l aQoSo{_;_— B—ﬁ C:Sdujz
= 0 0y SC-T) (3.10)

Since F ,a , and H may have components in all three ortho-

gonal directions, they can be e xpressed as:

=4 = X VL_{_’Q; — v; ] —_— 3 . 1 1

FN“ = Foaen 14§ "i:b\ * ‘—:"‘ Va§i + F o Gy ( )

Don = oy T8%S3 6L 2s. Lot . | 3.12
™ e \VJ.% X &3 \ * ™ 1V+-§\ + ww Oy ( . )

V1§ x& o W "

- - < Vi€ _ '
H-rmf\ Hammn T2y = g | + How AN + Hyh G (3.13)



15

The three equations, Eq. (3.8) through Eq. (3.10), are each
reduced to a vector equation by vectorially multiplying each
with an appropriate unit vector so that only the constants

: £

< .
Qw“ R a3 and W.,.. remain as vectors. After some

regrouping, the three equations are:

[Ti-\*' ko = (o~ L,.L) Qe;;\,c:\ lv%ffgi;:ig\.v:uxgb E +
_[ k—T obbv(n'*' ( bn- L) Cosd x CosD(J.—] %—-—L%\’ VLAQ +
[ -hr Coods +  hu- b Cos s Gosdd W] BR = %—é—:‘%, AN (3.14)

. ["ﬁ"(’osdn - (L,ll'ﬂu.)(’asohcg%o(x} ;"Vi%lu v.x_("}"ﬁ +
‘[—IZm+ he + Chy= k) Covdh, ] \ST%‘ NLAL &
[ bon Yo & Jor Cosdx + ( - hy ) Goody Gos o |1 = \%ﬁ%‘ OL7-Ts) (3.15)

B [ l’-T Qede + (ho- k;.) Oosnlu Coso{ x] \%{%] * Yx.(-}rt? + -
["Lm k'm + yn.T CDSO{X— [lQh‘!D-.LS CDSJ)H CGSJX-L] \v%.%]' V-LA'Q t
['K:m b+ (he-h) Qosadn J BW = o3 ‘RV—V‘Q (3.16)

Now each of the vector equations has components in the three
orthogonal directions and each can be separated by dot product
of a vector in each of the orthogonal directions; and this

results in nine equations:



[T’;n rher (- lﬁ.L\QOSZxJ AT F;:(»‘rs%m - [ br Cosobn + Chu=thy) CoscdxCosd, ] VLA Qfﬂ*‘ 3)'(* v [—ATQ’S A+ Chn-ha) O°5°(><C05"{"] BH):“MX’f I
CT?'M * hl- A L)n_"— h‘_\ C\‘S::s(yj ]V_‘_({)'ltt“ g:" - [ ;).T Cosdn + (17.\)"14;) Co:.dx 006 0(4..] \VA—A) D\:\"\ Qi‘. + [' %..1 COS P(L"'(%.n-h;s CoSJsx QOS(*HB BHl'n'nL\t\ = ©
Lot v (b k) Gosdy 11O Fnfn = [ br Conhir (- ha) Cos thx Concha TIVAA] R §'nn # [-Ser Cos e+ Cln -l el o1 I RH Sy = 0

"

[,L‘T &Sdn - ()1"-‘?‘74-\) 095‘7{;—()060()‘] )VLV} F:ﬂ‘;:n - ["E‘mﬁ-ﬂl.l."" { l3-'1’ h;) COS}L j ‘\7-‘-Al Q):ﬁ“‘g,‘('h A YI(-MLM * v/tr@os‘x'l' (la“")kl-) (Josd"- Ogsﬂgu-]B\—\)'(mv\ I/\XW‘ =©
Y_ Qq'r Qosﬂ(u - L Ln ‘)Zq.) Cosdo COSO()(] ]V-l(lpl FW-:“ Sl-m - [—E’m*’ lz.;_'*‘( hu-LJ) OU;M-] \VJ-A \ G:—n-n le;m A E }éM ),Dw\\’ lA.\' as dy +( bll"'h-l) Q)&O{L &SO{IJB H%v\\'\ ﬁ“‘: ﬁ\7 'F‘)

L]

Llor Gosdu- (bn-) Cosch Cosd] J0P] Faon§ omem L-¥e fou +( ln-don) Ceole 3 172 A1 05en Gop + T o bog - lar Ces i+ Lt -l )G Gos 4y T S W50 kY, =

—[}TGML (b fsd, Q;sp(x]fv*w Foo 9: * [%Km + b Qed o = Con 404-)(:»50511(’0&0{,] mM U':m Q:\ + E‘Kfm’r by (b)) /&s:ﬂd B H:Jf\:\ =t
"L_’h ool 4+l k) (ssdln (on(x]!m’“} F:;:O:n + [, bkt by Gody - Clen-La) Goedu G\Sd-‘] WJA} ﬁ:"‘ (J:‘:n + [dl@"\* Joy + Cen ) (.‘“;"(“] v ”:m hj;v\; ©
"[ Qa\" CObd.L 3 (bu-bo) fesdu Cmdﬂ}mw,l F,':m%\-:, 1—[" lem kom + by C\so{x "“An-(m) (e C"”(J ]V,_M a'l:m\ %,"n +["K§,\+Jm_ *‘”ﬂu"}bﬂ pssjdu.] B JJL‘W,\ h“nw:°

91

Equations (3.17)-(3.25)
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. : Ly : 1

From Eq. (3.17)-Eq.(3.25), the Famld , Qonfas, and Whahw?
are solved by Cramer's method (Appendix D). It is noted that
the determinant of the coefficient is exactly the dispersion

relation given in Eq. (2.15). The determinant can be written

in its factored form:

(9% T30 T 2 (0% )0 T0) (3.26)
where {ﬁ;, 1, 2, 3, 4 are the roots of Eq. (2.15). Since

the solution is only valid if the dispersion relation is
satisfied, the solution will be valid only in the neighborhood

of each root. This means that Eq. (3.26) is of the form

= 2 2 2, -2 3.27
(T T T T T T2 = L T2 5.2
if evaluated in the neighborhood of the {T; root and has a
similar form when evaluated in the neighborhood of the other
roots. The right hand side of Eq. (3.27) is just one form
of the Helmholtz equation with a constant 7; which depehds

on the root in consideration.

o]

n = (- T4 y T T T E T (T (3.28)

for the 1™ root. Equation (3.17)-Equation (3.25) leads to

the following forms:



S0 (P T 1 s S 1| b Bedes (b st Conl. | by + b Oyt (b Gt b

+ E SO (y=bes) COE;{LJ[“&T Ced it Ch-ho) Los dy Casrfu]}
(3.29)

= (0% 72) [TA Qﬂmg'; 5 (%) { [-Tim # e+ Cha-hy) COSZ/)JX
[Kml,m + /LT @m(x +(la_n—l2,|_) Cosol L Cos 4:1] 1 [‘- - 0050{1,4‘ (AQ"”JQJ-) ()osdxcosa/q]x
[21.1-0034'11- (len—Jm)OesdJ.Cesdly]} (3.30)

2 (U15) B Ll-l:'nn\,% yans ?D)[ [“T;,. s+ U-by) @M:{y] X
[“!0-27;1 + L_ +( lau- [/u_) 00&24]*’ [ ‘lT 0950111 + (lenl-‘vfu)cosﬂ(x(\es'h—])é
Lohe Qo — (- &) PedeCosAx]} A ‘ (3.31)

=N V't (To) [yl Fr.tn%fm = OCF-T) [ ftzr Coschy + (hu-bo) (’osO(yCDS*’(L] X
- s v ( by ~ hos) Oos:-;(,.] - [»Km b + by Cosdh— (hnths) Comofn Cosd X
L= hrlesde + (hu~ly) CBSahCosa(”]f (3.32)

=4 (v 773) [TA) o Gz O(F-7) {—[T?ﬁ by + Cha- ) Cosdn ] x
LW + bt Clon=h) Gody 1+ [ e (ko + Uea-bo) Goado Cosdr JX
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. . _‘ * \; N
Now E,TN%:,\ D, L‘\wﬁi,'a , and Hpmhaocan be determined since the
functions \quy] s [OLA ) , and ® are orthogonal eigen-

functions. Utilizing the orthogonality properties,

2 3.38
J‘VLV'VLW* o= A A ( )
jhvaA A dy = AL et ' (3.39)
5. R B dv - 55 mn (3.40)

where % indicates complex conjugate and the A 's ‘are the

. . 3 \ \ N N \‘ .
normalization factors. P,:,\S‘wg, . gmA, and Rlah'~ found for

the ;T3 root to be

F;:mu ‘?iv\ = _‘sz::‘)il s (=73, + 1 ) { [ J/lT QGSOSII + ( )'U\"XAL) div(‘oy{ﬂ X
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[‘ )/LTQBBO(_L + (\D—H—Lﬂ Cosd x G&O{IJ %

(3.41)



0

0 My N
Q_m 0 = )«‘%;%ﬁz:rm“ﬁw&u-u&sdx

bor b+ Jur Cosely + Choy- 30 Y Cosd, Gosdln |- [ hrCosdor (hn-tu) os d Cosdn | ¥
EIQTQQSO{H- (Ja.n—-l/u_) CO&d-a-CDSD(s{]} (3.42)

¥ 2
i b = %mcrmww{ [‘TL*L, e (hydy) Oosd 4 ] X

[—’a"m + ’2_\- +( \eu-hx) staxx] %E lO.T deu + (lan—t:.d @%L{xaaaal.\.]x
Y_vQ:.T Gadin = (han- ) Q:deCoSﬂ(x]} (3.43)

R | |
Fee 8% - .Alm)e i (-Th+n T?m){[ ke Qsdn + (Jen- ) fosd <Cosd ] X

[“ 7;m *lﬂ_n."‘(nﬁn- [A..L)(D.Saﬂ(ll]‘(‘ ["/(wa vav\"‘ 'P'»T Q@SA,(“ (kll'.D/A.L) Orasd |\G&54L]X
[‘ ’?:-T OQSDSJ_. "-( lgu-lfu_) Co&AxCabo(u]Z (3-44)

+ 4 \—\7.: k*‘ A 3
C\‘mf\ (3,7“ = s CTET %\— [‘Tm + IAL + (',1!)‘/'1\.4-) (’n&dy] x
[— Con & les +( L, - lay) Cm?(d + [LT (edy + (‘Ln-dru.) Ogylu me{x\JY

[" 911‘ Oo.sO{L*‘ [”Qu—- ‘0.1_) Oo.go{x Ooso[u_]i (3.45)

N —‘391‘
Ufm l/\‘m = m"ﬂ“) { [—"(m Lw. r /Q/).T @050{ = UQ(;- LL) (’oso(u ()osdJX

[’T'?n + LL + (lﬁn‘ &u—) CDSD{x] +[ L—T Q)Sd L+ (’Q\l' Qa-_\.\ Cosd,.O&SO(X]X
{f?@.‘reoédu + (}V.n—lm.)cqsdx Cgsa(_,_-]} (3.46)

F’Zin o= ,/LV;}{)@ T3+ 4 Tom) {[Kfm tha+ U b Coﬁh.] X
Loes bt Oum k) CoZin ]+ Cmban + JrGodet Ubn-he) (g de Guadi] ¢
(b + by B = i) Cosha oo ] (3.47)



Y X epl*
awm (j'm T e \7;\ T35, + '{T?,,.){ I L—T Cosdn ~( lao- ) a::é{.LCos(/) y]x
[”k}m Y —-LIJ.) COSG( LCQSO(M + T_Jer Oosd-;-."‘ (&n—lﬁﬂ (’OSAHCOS :{Y]\(
["KMLM*‘ by Gosd i t {LH"‘U-)CQSJ\LCeSO{H]} (3.48)

¥ =

“Nw\ l’\)fm= Wl\{ [ }/J.ra)sl{n - Wzn*'(u) Qs d. an{x])‘
["Kmkwn 2y Oa\dx -”'L(("'I’LL) COBO‘M Oeao(;.—_! ‘[‘Bm‘l‘ s *‘”Qu*l’zx) @M"’(L]X
[ hrCond,+ Chae ) Gorde Cosds 1§ (3.49)

The entire Green's function is therefore:
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Since from boundary considerations it can be shown that
V.5, * VXIXX3; > and V¢ are not indepgndent of each other,
it is reasoned that for a given set of boundary conditions

Y )(53 ~ V;_¥ Lg. \%a) ‘3. (é:,)xab
WA~ EED g6
—6 -53 -~ gLéu %Q h(§3)

where g(é,_,%&) is a two variable function of (Ei,fgandﬁ(éa) gand
k(gg are one variable functions of §3 only, Furthermore;
? = * b hi§)
ag =X hwn ‘a.Lg )
. must hold. By this observation, the Green's dyadic can be

written as:
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Equation (3.50) is in a dyadic form and is reciprocal
with respect to the source coordinate and the observer co-
ordinate.

The Green's dyadic is subjected to the same restrictions

that the free-wave solution is subjected to.



CHAPTER V

DISCUSSION

The application of the solutions obtained from the Qave
equation for a bounded homogeneous, anisotropic plasma are
valid only in the coordinate systems in which a dispersion
relation can be obtained for the given orientation of the
static magnetic field, The number of such coordinate systems
is limited to not more than four. 1In spite of this limita-
tion, the technique described is found to be more flexible
than other techniques previously available in terms of the
relaxation of the restrictions in the magnetic field orien-
tation and boundary configurations.

The mathematical description of the magnetic field
direction was restricted to those cases which can be trans-
formed to the chosen orthogonal coordinate system with con-
stant coefficients. The form of dispersion relation would
be different for different magnetic field orientation with
respect to the boundaries,.

In view of Eq. (2.10)-Eq.(2-14) the forms of solutions
are required to be of certain form, this might not be desir-
able or possible for certain problems. Such limitation could
be a most serious drawback for the application of this tech-
nique. The technique proposed in this paper is applicable

to electromagnetic wave radiation or propagation in such
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physically realizable configurations as the mirror region of
the Magnetic Mirror macﬁine, the magnetic field of the Stella-
rator, the Cusp machine, and such similar confinement devices
(Bishop, 1958). With some modifications, it can also possibly
be applicable to non-laboratory configurations, such as the
electromagnetic interaction in the finite volume of a meteor
trail. Furthermore, since the work reported here is a part

of the electromagnetic driven shock tube investigation, the
technique with some extension is also applicable to the in-
vestigation of electromagnetic wave interaction with ahniso-

tropic plasma shock wave.



APPENDIX A

REDUCTION OF MAXWELL EQUATIONS TO THE WAVE EQUATION

The Maxwell's equations are

- = k)
VYH =T + e (A.1)
VHE = — 28 (A.2)
Vo= f (A.3)
né = O
v (A.4)
and the Constitutive equations are
- R =
D= K€ (A.5)
H=4h®= (A.6)

where 4 is a scalar and

<

K is a dyadic.
Performing the curl operation on Eq. (A.2), substituting the
Constitutive equations into Eq. (A.1) and Eq. (A.2), and
eliminating the field from the two resulting equations will

result in the equation (A.7).

— T
VX VHE = —-/JEI%-)J

=N
oo
Ry

> (A.7)

If only monochromatic waves are of interest, Eq. (A.7) reduces

to

IXTKE —-},m:)"htzo—é = - Jw/{f
(A.8)
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If new variables are chosen such that -jwsuJ3 is Js , and

A

~
,;w’K is L ; then Eq. (A.8) will .result in the wave equation

of the form

E = Ts _ (A.9)

Sl

WVXE -

The X dyadic for the magnetic field oriented along the

coordinate axis of the unity scale factor will have the form

K;_\. K—T o

-~
s (A.10)
K= - ir Ly °
° o Ky
where
ke = VYV or e mi [ O-1%Yw) - s (A.11)
L. 1+ 1 {‘\'_Q;ei‘ (e Yefuo] N .
- @ea| T [ (e )~ 2] (A-12)
23 Vi <24/
w= 1o Gow ro ey o (A-13)
LG -1vee ) — 25+ 1
where & = charge of particle
Mi = concentration of the particle
" Mi = mass of the particle
w = frequency of the wave
® = magnetic field
%o: collision frequency
Q= 835 (Holt & Haskell, 1965).

m A



APPENDIX B
SOLUTION OF THE WAVE EQUATION IN TERMS OF

THE GREEN'S FUNCTION

The wave equation is

VKVK%- - )a:}é - (Jal\’b..\.)(é“‘l‘b)-‘ ‘fa«'\'éx"“b = Js (B.1)
where <, - Cogdx W5 x4 Cosd, VL - (B.2)
b S ]m + ql \V.LS-) + Gasohlaa
for the coordinate
WL§ i
WAPEA
Gy
T ”
1%
Fig. B.1.
The Green's equation is assumed in the form
VaUx G bl G- (W -k (hoio) o - - fate = ST (B.3)

—
=

- ’ f ’
with the constants Li, hT, and hu to be determined. T is the

idemefactor. Pre-multiplying Eq. (B.1) by f ana post-multi-
plying Eq. (B.2) by E and subtracting the two equations will

result in equation

B X E = by BoF - (ln-Bu)Z (Eeiv) = by LE 2l - [+T5 + Sy T-E
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“VIXE h+ A LB+ (b~ b) (Gd0)BA0) + kir by oF = o (B.4)

r 1
c1f by = by and if = b, Eq. (B.4) reduces to

f;.mxé - wa—évé - L—ﬁo_éx;b + L; fx-E = ’(—1’—-’_&5 _&\;,v,,ﬁog (B.5)

Now expressing —&_TCx{baE in matrix form will result in

-

{Lr l:( (jn. Cebﬂ{x - j|3 ()osdu )El + (3'3 0950[1 - %u CHS-OI x) E; 4 ( 3\' G)SO{H - le'l C°50(,L) Es]
}zr(( 372 (Gsa(y‘ qu Cesi’{u) EI + ((‘5;3 CQS‘{L - ‘alt Q&ssﬂxx) Eﬂ + ( C\jzl (L‘.SO['( gn Casol_.\éaj
er[( 332 COQ‘J(X" 333 C‘S“{l’)E}{' ( 333 CQ&O{.L - 633\ G\W!“)E-; J"(- 63! (\O.Sdu j,jz C—“«‘-‘;O{-r) E‘OJ

where E = [

(B.6)

(B.7)
| Cesdy

%Il %h— (}”3
42a %
351 %31« %.35 (B.8)

Similarly qugﬁb in matrix form is
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LT[ %\( ( € Gbozx - 6_3 CDSOL) + gn (Ea Coedly - €| G&dx) + 3'3 (e' G!\b"{'l = ED CQS"L.)J
f,LT[ ﬁu( € Gede ~ & Cowh) e ( Es Coscly — €1 Cosdl x) + ‘313(51 Cosdy - € CQS"‘#)]
‘m[ 33' Lé? (wdv - €3 CQSOLL)" 932 Le3 Ceady — €\ Gusd ") + (335( € Costlfy+ €x Cosdl):l

4
I1f kvr= -bT , Eq. (B.5) will be

[ TKNE - TUVNG B STy - PR 1CE (B.9)

If Eq. (B.9) is integrated over the volume of interest, the
first two terms in the integral can be changed into surface
integral by Green's theorem. This surface integral will
vanish if both E and € satisfy the same boundary conditions.
The resulting integral is (Seto & Dougal, 1964)

e-{ oTdr ~ (B.10)
Vol



APPENDIX C

WAVE EQUATION WITH LONGITUDINAL AND TRANSVERSE SOURCE
The wave equation is
— k —_— -
PUKE « ' E=T ' (C.1)

If the source is composed of both longitudinal Je and trans-
verse J+ components, the resulting wave equation will have

the following form:

b’g ;—S-L"' 6;'&7 (C'z)

15474

IYONE —

The electric field intensity £ is assumed to have the form

arl

= €L +Ex . (C.3)

where €E¢ is the longitudinal part and E£ is the transverse
part. Substituting Eq. (C.3) into Eq. (C.2) results in two

equations, one longitudinal
- -
- h,EL: 49‘1' (C.4)
and one transverse
_ R —
VKUK ET + Qr€ g = T¢ (C.5)

Two Green's functions can be derived from the two associated

equations Eq. (C.4) and Eq.(C.5).



APPENDIX D
SOLUTION OF A NONHOMOGENEOUS SYSTEM OF n LINEAR EQUATIONS

BY CRAMER'S METHOD

For a nonhomogeneous system of n linear equations in

n unknowns

dn Yt “* A= d\'n Xn’; (z’)l

. (D.1)
Y,

Al + + dan Xm= &=

has a unique solution if and only if the determinant of the

coefficient matrix is not zero, i.e

D(dii) x 0 (D.2)
1f D(¥¢)k0, the solution is given by
v 1>(cl,...,c;.laL,,ch,).‘.J Cn) o5
D(aiy)
where Cg.. .y Cn

are the columns of (<iand b= ¢ @ir")#“>‘
(J. C. Curtis, 1963, p. 79).



APPENDIX E

SEPARABILITY OF THE VECTOR WAVE EQUATION

A sealar wave equation
Ve, « KE =0 (E.1)
is separable into three independent differential equations
in three different space variables,‘YL\ “a,and Xy . This
separability condition is (Mose & Feshbach, 1953)
34 = S /miy (E.2)
gf = L0, (6 f06)
where S = Stekel determinant and 7 = th Minor. Similarly,
the vector wave equation
VXIXE - [ E =0 (E.3)

is simply separable if the term VXVX€ can be written as LE .

—

This can be accomplished by assuming €& in the form WU«1% .

Upon substituting this form for € into Eq. (E.3), VX

M

becomes in generalized curvilinear coordinate system

%
h

51\_ ( 3’1,3" /Z) -9, [ %:)“/( 3§ %‘" %}+(§njag Q? ( ';c”:g‘” Qg} g,/: rx)
Chr A0, 4 4

(E.4)

This has been shown to become separable (Mose § Feshbach, 1953)

L/
if go =1 (E.5)

AL

(E.5)
and this implies that x satisfies

7K - X ‘ (E.7)



_— = — 2 q7-
Then TYXVYE = UK 7@] and thus the field is said to be
separable in terms of Vx%4 . Similar analysis shows that
E equal to VxUxWi and Vﬁzgsatisfy the same separability

criteria.

3o
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