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This dissertation consists of two essays in asset allocation. In the first essay, I explore

the question of how investors should optimally incorporate commodities in their multi-asset

portfolios, or even if they should at all. To tackle this problem, I conduct a comprehen-

sive out-of-sample assessment on the economic value of commodities in multi-asset invest-

ment strategies for both mean-variance and non-mean-variance investors who exploit the

predictability of time-varying asset return moments. With both monthly and quarterly re-

balancing frequencies, I find that predictability makes the addition of commodities profitable

even when short-selling and high leverage are not permitted. For instance, a mean-variance

(non mean-variance) investor rebalancing quarterly, with moderate risk aversion and lever-

age, would be willing to pay up to 108 (155) basis points per year after transaction cost for

adding commodities into her stock, bond and cash portfolio.

In the second essay, I study the economic value generated by active equity mutual funds

from an investor’s perspective. I employ an optimization-based portfolio approach to con-

struct a composite investment strategy of U.S. active equity mutual funds. The strategy

jointly exploits the conditioning information conveyed by multiple fund characteristics and

macroeconomic variables about the cross-section of fund performance. Based on an extensive

out-of-sample performance evaluation, I find that the proposed strategy consistently outper-

forms a large set of passive investments that rely on index funds as well as the strategies

that exploit the fund characteristics on an individual basis. The outperformance is net of

fees and expenses and after precluding short-sales and leverage. I further show that the

proposed strategy’s superior performance derives from effectively exploiting the predictive

power of distinct fund characteristics to shift portfolio allocation toward (away from) funds

with future outperformance (underperformance) as market conditions evolve over time. The

findings indicate that investing in active equity mutual funds can add significant economic

value for investors if the time-varying predictability in fund performance is properly taken

into account and if an optimal portfolio approach, as opposed to simpler strategies based on

sorting or on equal-weighted schemes, is adopted.
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Chapter 1

Do Commodities Add Economic Value

in Asset Allocation? New Evidence

From Time-Varying Moments

1.1 Introduction

Commodities, as an alternative class of investable assets, have attracted substantial interest

from both institutional and individual investors over the course of the past decade. According

to a report by McKinsey, by the end of 2011 the amount of all forms of alternatives in global

assets under management (AUM) had exceeded $6.5 trillion representing 14 percent weight

in the global market portfolio. Among all alternative strategies, commodities have grown

rapidly at an annual rate of 21 percent during 2005-2011, and stood at a peak of roughly $600

billion or approximately 6% in global AUM at the year-end of 2011.1 More recent figures

1McKinsey’s Global Alternative Investment Report is available at http://www.mckinsey.com/

clientservice/financial_services/knowledge_highlights/recent_reports/mainstreaming%20of%

20alternatives.aspx?sc_lang=en.

1
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http://www.mckinsey.com/clientservice/financial_services/knowledge_highlights/recent_reports/mainstreaming%20of%20alternatives.aspx?sc_lang=en
http://www.mckinsey.com/clientservice/financial_services/knowledge_highlights/recent_reports/mainstreaming%20of%20alternatives.aspx?sc_lang=en


show increasingly larger inflows and outflows associated with commodity-linked funds.2

In the asset management industry the dramatic boom of commodity investing is linked to

at least three perceived qualities of commodities: risk diversification, high historical returns

and protection against inflation.3 The increasing popularity of commodities recorded in

investment practice and the alleged merits pursued by investors raise the critical question

of how investors should optimally incorporate commodities in their multi-asset portfolios, or

even if they should at all.4

Academic researchers have conducted numerous analyses of the economic value adding of

commodity investment, but the results appear to be inconclusive. On one side, some studies

show that investing in commodities indeed improves the risk-return profiles of mean-variance

(MV) investors’ multi-asset portfolios based on in-sample (IS) assessments. On the other

hand, the ability of commodities to generate significant out-of-sample (OOS) economic gains

has been questioned in recent studies. As a prominent example, Daskalaki and Skiadopoulos

(2011) present the most recent and provocative OOS evidence that investing in commodi-

ties adds no value for either MV or non mean-variance (non-MV) investors. In the present

paper we argue that most, if not all, existing studies that examine (IS and/or OOS) the

value adding of commodities in multi-asset portfolios are based on rather over-simplifying

approaches to the estimation of the return moments that become input to the asset alloca-

tion problem. Namely, future return moments are either assumed to be constant and equal

to their full sample counterparts, or their variation is assumed to perfectly reproduce their

own dynamics in the recent past through the reliance on rolling or expanding sample esti-

2Citi research reports for the US (Citigroup (2013)) show nearly $30Bn in combined cumulative outflows
from passive commodity index funds and commodity-linked exchange traded funds for 2013 compared to
more than $20Bn in net inflows for the sector during 2012 and almost $6bn in net inflows for the first three
months of 2014.

3According to a survey by Barclays Capital who interviewed over 100 institutional investors and advisors,
almost half of respondents choose portfolio diversification as their main reason investing in commodities, a
third choose absolute returns, and one tenth inflation protection. The report is available at http://www.
barcap.com/about-barclays-capital/press-office/research-reports.html.

4This issue is also reflected in McKinsey’ research report: the surveyed traditional asset managers fully
agree with the potential of alternatives; on the other hand, many of them admit to be constrained by limited
knowledge in risk management and product expertise for moving into alternatives.

2

http://www.barcap.com/about-barclays-capital/press-office/research-reports.html
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mates.5 We label these strategies as backward-looking (BWD). For instance, Daskalaki and

Skiadopoulos (2011) rely on rolling sample moments at any given date t as estimates for

the moments at time t+ 1 that, then, determine optimal portfolio weights. But there is by

now compelling empirical evidence that asset return moments are time-varying and, to some

extent, predictable by variables other than themselves. Erb and Harvey (2006) warn against

naively using past average returns to infer expected returns and recommend developing a

forward-looking framework for thinking about prospective returns. Specific to commodities,

several papers find empirical links between variations in economic conditions and the perfor-

mance of a broad-based commodity market indicator, both in absolute terms and relatively to

equities and bonds.6 These findings suggest that, in aggregate, commodity expected returns

may respond systematically to shocks to state variables. Several studies show that exploiting

the predictability of returns by economic variables leads, indeed, to tangible economic gains

for portfolios that include either equities and cash or equities, bonds and cash. Similarly,

several papers show the advantages for asset allocation purposes of carefully modeling the

dynamics of volatilities and correlations rather than relying on historical second moments;

but the empirical evidence is limited to equities or equity and bond portfolios. A few recent

studies point to the importance of including the dynamics of return skewness and/or kurtosis

in the asset allocation exercise with equities and/or bonds and cash. To separate them from

the BWD approaches defined above, we label as forward-looking (FWD) all these approaches

that aim to better capture the time-variation in return moments rather than relying on their

5Throughout the paper we denote by static (or, full sample ) estimates those computed using the entire
available sample; by rolling estimates we denote those computed at each date t using data up to t on a rolling
window of a fixed length, by expanding estimates we denote those computed at each date t using data up
to t on a window of expanding length.

6Jensen, Johnson, and Mercer (2000) and Jensen, Johnson, and Mercer (2002) show that the GSCI
index, the one we describe and use in our empirical work, outperformed stocks and bonds during periods
of expansionary monetary policy by the U.S. Federal Reserve. Strongin and Petsch (1996) report that the
GSCI has above-average returns and performed well relative to stocks and bonds in periods of rising inflation.
Nijman and Swinkels (2008) document that nominal and real portfolio efficient frontiers can be improved
by timing allocation to the GSCI in response to variation in a number of macroeconomic variables such as
bond yields, the rate of inflation, the term spread, and the default spread. Vrugt, Bauer, Molenaar, and
Steenkamp (2004) find that GSCI return variation is affected by measures of the business cycle, the monetary
environment, and market sentiment.
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sample counterparts.7 No study that we know of investigates the predictable dynamics of

return moments in the context of asset allocation strategies that include commodities in

addition to equities and bonds. Without careful examination of the return dynamics in

a forward-looking framework while implementing portfolio strategies, we believe the above

conclusion about the lack of value added by commodities to be somewhat in hasty.

In this paper, we provide a comprehensive analysis of the OOS performance of investment

strategies incorporating commodities into traditional asset portfolios for both MV and non-

MV investors. A major innovation differentiating our study from the existing literature is

that we recursively construct optimal portfolios by exploiting the predictable variations of

all the first four moments and co-moments of asset returns. We find that, by exploiting

predictability, the inclusion of commodities into traditional asset portfolios does generate

significant out-of-sample economic gains. Furthermore, for both traditional and commodity-

augmented portfolios, FWD strategies outperform their BWD peers. Finally, adopting an

FWD framework for both the assessment of expected returns and the forecast of higher

moments appears to be especially relevant for commodity-augmented portfolios. Overall, our

study presents a solid argument in favor of combining commodities with equities and fixed

income exposures, whereas previous research had reached mixed or even opposite conclusions,

especially in an out-of-sample context.

1.2 Literature

The potential benefits of investing in commodities have been suggested in several academic

studies. In a seminal paper, Gorton and Rouwenhorst (2006) construct an equally weighted

long-only commodity futures index that generates an average annualized geometric return of

9.98% with monthly rebalancing over the 1959-2004 period. They also document the pattern

7As we will detail in Sections 4 and 5, FWD strategies will involve the assessment of expected returns
based on the predictive ability of economic variables and of technical analysis rules as well as the forecast of
volatilities, correlations, co-skewness and co-kurtoses not based on sample moments.

4



that the monthly (quarterly and annual) returns of the index are insignificantly (negatively)

correlated with stocks and bonds but positively correlated with inflation. Consequently, the

authors suggest that commodity futures could be an ideal diversifier to traditional investment

portfolios. However, Gorton and Rouwenhorst do not attempt to directly assess the empirical

benefits of investing in commodities, so it is not clear whether and how the potential benefits

could be realized practically. In a simple asset allocation exercise Erb and Harvey (2006)

demonstrate that incorporating commodity futures into an equity-bond portfolio improves

the risk-return profile significantly if the excess return of the commodity portfolio exceeds

3%.8 Erb and Harvey, however, do not offer an OOS evaluation based on actual data of

asset returns.

More generally, several researchers examine the economic value of commodities in multi-

asset allocation exercises, but no consensus on whether a commodity exposure adds value

to traditional equity-bond investors has been reached thus far. On one hand, a number of

studies provide evidence that commodities can be effective alternatives to achieve portfolio

diversification. For example, Bodie and Rosansky (1980) find that simply switching from

a 100% stock portfolio to 60-40% stocks and commodities makes an investor better off by

trimming off one third of the portfolio risk without sacrificing any return performance during

the period 1950 to 1976. Similarly, Fortenbery and Hauser (1990) find that adding individual

agricultural commodity futures into a well diversified stock portfolio does not enhance the

return performance but does reduce risk. After adding commodities into an investment

portfolio that consists of stocks, bonds, Treasury bills, and real estate, Jensen et al. (2000)

report that the Markowitz optimization gives substantial weights towards commodities so

that the portfolio’s return is enhanced during restrictive monetary policy periods, but little or

no weights during expansive monetary periods. Anson (1999) investigates the diversification

contribution of commodities with respect to investors’ risk tolerance, and finds that more risk

averse investors gain higher utility from investing in commodity index funds than less risk

8Erb and Harvey also show that an 18-60-22% commodity-equity-bond portfolio yields much higher return
than a traditional 60-40% equity-bond portfolio given the same level of volatility.

5



averse investors during 1974-1997. More recently, some researchers provide more supportive

evidence at the levels of individual commodities and sub-sectors. For instance, Geman and

Kharoubi (2008) document that WTI crude oil futures provide significant diversification

opportunities to the S&P500 index from 1990 to 2006. You and Daigler (2012) confirm

the diversification benefits of 39 commodity futures to traditional equity-bond portfolios

in the period 1994-2010. Belousova and Dorfleitner (2012) document the heterogeneous

diversification effects across five commodity sectors that energy and precious metals yield

the highest value in both return enhancement and risk reduction, and agricultural, livestock

and industrial metals only contribute to the risk reduction dimension. It is important to

notice that the commodity-augmented portfolios in most of these studies are constructed

using historical mean returns and sample variance/covariance structures and then evaluated

within a MV or IS framework.9

On the other hand, other recent studies have challenged the alleged view by showing

that including commodities in investors’ portfolios adds little or no value, particularly, in

an OOS assessment. The most recent and striking evidence is documented in Daskalaki

and Skiadopoulos (2011), in which the authors conduct a comprehensive examination on

the diversification value of the two most popular commodity indexes (S&P GSCI and DJ-

UBSCI) and five individual commodity futures under four different specifications, namely

the four cross-combinations of MV or non-MV investors and in- or OOS settings. They find

that, after accounting for investors’ preferences over higher-order moments, commodities

only contribute to non-MV investors in the IS setting, but are not beneficial under any of

the other specifications. Even though a large body of literature has suggested or directly

confirmed the benefits of commodities in an IS setting, the reported results in Daskalaki

and Skiadopoulos (2011) inevitably raise some concerns over the validity of such benefits in

an OOS context. Some studies employ regression-based spanning tests to examine whether

9You and Daigler (2012) construct ex ante portfolios without infrequent rebalancing and evaluate their
performance based on efficient frontiers and the Sharpe ratios within a MV framework; Belousova and
Dorfleitner (2012) consider non-normal returns, but the performance evaluation is based on IS statistical
spanning tests.

6



investing in commodities indexes or individual futures improves the MV efficient frontier of

benchmark portfolios within a MV and IS framework, and fail to find any value.10 [See Cao,

Jayasuriya, and Shambora (2010), Galvani and Plourde (2010) and Nijman and Swinkels

(2008).] Another concern on the diversification value of commodities comes from the recent

debate on the pattern of increasing correlation between commodity and stock returns since

the crash of financial markets in 2007.11 Investigating the causes of such phenomena goes

beyond the scope of this paper. Nevertheless, the observed rising commodity-equity cor-

relation is certainly of investors’ concern, as it could hurt the risk diversification value of

commodities, and thus, in turn, would have influence on their optimal portfolio selection.

Therefore, it is interesting to re-examine the diversification role using updated data during

the post-crisis period.

To summarize, despite the fact that investing in commodities has become popular in

recent years and that a large number of academic studies have looked into its potential

benefits in improving portfolio performance, there have been thus far mixed answers to the

question of whether commodities add value in multi-asset allocation exercises, particularly

and more importantly, OOS. To explore the economic value of commodities in portfolio

allocation, this paper sets out to better account for the dynamic nature of asset return

moments than previously done in the literature.

1.3 Extensions of Existing Approaches

In this study, we extend the existing literature on the role of commodities in multi-asset

allocation along several dimensions. Firstly, the predictability of commodity returns has

been largely neglected by researchers. Instead, all prior studies rely on sample means of

10It is worth noting that these studies rely on the outcomes of statistical spanning tests. However, there
has been a debate on ”statistical” vs. ”economical” significance for spanning tests. See Glabadanidis (2009)
and Kan and Zhou (2012) for detailed discussion.

11See Domanski and Heath (2007), Hamilton (2008), Smith (2009), Tang and Xiong (2010), Chong and
Miffre (2010), Büyükşahin and Robe (2010) and Kilian and Murphy (2010) for the debate.

7



historical returns as the estimates for future expected returns.12 To the best of our knowl-

edge, this is the first study that explicitly takes into account commodity return predictability

in forming optimal portfolios that incorporate multiple asset classes.13 Secondly, previous

studies exclusively rely on static or rolling/expanding covariance estimators to derive opti-

mal portfolio rules. Instead, we explicitly consider the dynamics of covariance structures of

commodities and other asset classes in the portfolio optimization problem. The combined

analysis of predictable first and second moments for portfolio allocation is typically absent

from previous studies, whether or not considering commodities. Thirdly, the asset alloca-

tion exercises involving commodities have been almost always conducted within the classic

Markowitz MV framework. As we will detail below, commodity returns exhibit negative

skewness and substantial leptokurtosis, making problematic the reliance on first and second

moments only when implementing and evaluating portfolio strategies. In addition to the

MV case, we also conduct the analysis in a non-MV context by incorporating higher-order

moments of asset returns whose significance and time variation are well documented in the

literature.14 Lastly, the results of existing studies that support the inclusion of commodities

into a stock-bond portfolios are exclusively based on an IS assessment. However, there have

been legitimate concerns about the OOS validity, which motivates our analysis in an OOS

context.15 In this paper we exclusively rely on an OOS performance evaluation.

12Bodie and Rosansky (1980), Fortenbery and Hauser (1990), Jensen et al. (2000), Anson (1999) and
Belousova and Dorfleitner (2012) all employ constant historical estimators; Daskalaki and Skiadopoulos
(2011) use rolling-sample based estimator.

13Erb and Harvey (2006) simply assume a set of forward-looking commodity futures index returns for
demonstrating purposes only.

14The studies that document the impact of higher moments of asset returns in asset allocation context in-
clude Harvey and Siddique (1999), Ang and Bekaert (2002), Timmermann (2006) and Jondeau and Rockinger
(2006, 2012).

15Daskalaki and Skiadopoulos (2011) perform both in- and out-of-sample tests, and, as noted above, they
find commodities add no value to investors OOS. See also Welch and Goyal (2008) for related concerns on
IS evaluations of return predictability.
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1.3.1 Predictable Commodity Returns

In principle, expected returns, as one of the crucial inputs to the portfolio optimization prob-

lem, should be forward-looking. In practice, as demonstrated in Timmermann and Blake

(2005), sophisticate investors indeed forecast time-varying future investment opportunities

and invest accordingly. The theoretical work by Merton (1971, 1973) implies that return pre-

dictability could have significant impact on investors’ optimal portfolio choices. Motivated

by the theoretical implication and the overwhelming empirical findings on stock return pre-

dictability, a number of studies show that such predictability, even if statistically weak, could

lead to significant economic gains, if exploited by investors who allocate wealth in equity

markets. [See Solnik (1993), Pesaran and Timmermann (1995), Rapach, Strauss, and Zhou

(2010), and Cenesizoglu and Timmermann (2012) among many others.]

In commodity space, several (mostly, recent) studies have also documented the IS and

OOS return predictability by a collection of variables at both individual commodity and

broad index levels. Bessembinder and Chan (1992), Bakshi, Panayotov, and Skoulakis

(2011), Gargano and Timmermann (2014), Hong and Yogo (2012) and Chen, Rogoff, and

Rossi (2010) are prominent examples.16. All previous studies investigating the value of com-

modities in asset allocation tend, however, to use sample or rolling/expanding averages as

estimates for future expected returns without taking account their time-varying character-

istics. Hence, it seems important to investigate the economic value of commodity return

predictability in portfolio selection.

16The general rationale is that these variables contain information about the anticipation of future economic
activity, which in turn drives the movements in commodity prices in future. We detail the exhaustive list of
predictive variables in Section 6.1.
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1.3.2 Predictable Volatility and Correlations

It is now widely agreed that the covariance structure of asset returns vary substantially

across assets, asset classes, countries, time periods, market conditions and business cycles.17

Particularly, Chong and Miffre (2010) and Büyükşahin et al. (2010) document the large vari-

ation in commodity-equity correlations at both index and individual futures levels over time,

which, in turn, implies time-varying diversification benefits of commodities for traditional

equity-bond investors. Some researchers have examined the impact of covariance dynamics

on portfolio strategies without considering commodities, and find that it yields substantial

economic gains (loss) for investors who account for (ignore) the dynamics of covariance struc-

tures. For example, Fleming, Kirby, and Ostdiek (2001, 2003) demonstrate that volatility

predictability in stock markets would be worth 50-200 bps per year for an investor who allo-

cates her wealth in the S&P500 index, Treasury bonds and gold futures. Della Corte, Sarno,

and Tsiakas (2012) find substantial economic value in timing correlations in addition to the

gains from volatility timing in FX markets. Engle and Colacito (2006) theoretically and

empirically show that, keeping other conditions constant, the economic loss of stock-bond

portfolio performance could be as high as 40% of return if a static correlation specification

is assumed but the true structure is dynamic.

Given the empirical evidence on time-varying covariance highlighted in the data and

the economic significance of dynamic covariance modeling, it is somewhat surprising that

all previous studies evaluating the value of commodities in asset allocation fail to take into

account the dynamic nature in the OOS portfolio analyses. Hence, another question this

paper aims to address is whether capturing such covariance dynamics between commodities

and other assets adds OOS economic value for investors.

17See Erb, Harvey, and Viskanta (1994), Longin and Solnik (1995), Ball and Torous (2000), Ang and
Bekaert (2002), Moskowitz (2003), Goetzmann, Li, and Rouwenhorst (2005), and Cappiello, Engle, and
Sheppard (2006) for international and U.S. equities and bonds; Büyükşahin, Haigh, and Robe (2010), Chong
and Miffre (2010) for commodities and stocks; Huang and Zhong (2010) for commodities, real estate and
TIPS.

10



1.3.3 Predictable Skewness and Kurtosis

One of the inadequacies of the classic Markowitz portfolio theory and its empirical implemen-

tations is its inability to handle higher-order moments of the return distribution. However,

it seems reasonable to assume that risk averse investors favor positive skewness and low

kurtosis in asset returns.18 Moreover, there exists overwhelming empirical evidence suggest-

ing that financial asset returns exhibit excess skewness and kurtosis rather than normality.19

Gorton and Rouwenhorst (2006), Erb and Harvey (2006) and Gorton, Hayashi, and Rouwen-

horst (2012) all report that monthly return distributions of commodity futures indexes and

individual futures have pronounced skewness and excess kurtosis during the periods of 1959-

2004, 1982-2004 and 1971-2010, respectively. At weekly frequency, the results are mixed.

You and Daigler (2010) report 55% of 20 commodity futures have positive skewness during

the 1992-2006 period. At daily frequency, Eastman and Lucey (2008) show that the returns

of 14 futures are all negatively skewed except the 10-year notes. In summary, the skewness

and kurtosis of commodity returns are well pronounced in the data although sensitive to

data frequencies.

Several studies find that risk averse investors do adjust optimal portfolio weights accord-

ingly to time-varying skewness and kurtosis in stock returns, and that portfolio strategies ac-

counting for the dynamics of higher-order moments leads to economically significant gains.20

However, the literature has been extremely skewed towards the impact of higher moments

in optimal allocations within equity markets. There has been very limited exploration on

whether these findings in equity markets are preserved in other asset classes, in particular,

commodities.21 Given the presence of excess skewness and kurtosis in commodity return

data, another goal of this study is to analyze the economic value of predicting higher-order

18Scott and Horvath (1980) establish the fact that investors prefer odd moments and are averse to the
even ones. Harvey and Siddique (2000) and Dittmar (2002) offer the empirical evidence.

19E.g., see Ang and Bekaert (2002) for the evidence in equity markets.
20See Bekaert, Erb, Harvey, and Viskanta (1998), Patton (2004), Jondeau and Rockinger (2006), Guidolin

and Timmermann (2008) and Harvey, Liechty, Liechty, and Müller (2010), among others.
21Daskalaki and Skiadopoulos (2011) and You and Daigler (2010) are exceptions.
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moments and co-moments of commodity and other assets returns in an OOS asset allocation

context.22

1.4 The Asset Allocation Problem

We consider a risk-averse investor with a constant relative risk aversion (CRRA) utility

function23:

U(Wt+1) =
W 1−γ

t+1

1− γ
(1.1)

where Wt+1 denotes the investor’s wealth level at time t+1, and γ (γ > 0 and γ ̸= 1) is the

coefficient representing the investor’s degree of risk aversion. At each time t, the investor

chooses the portfolio weight vector ωt ∈ RN+1 to maximize her one-period-ahead expected

utility Et[U(Wt+1)] by trading N risky assets and a risk-free asset.24 Following much of the

asset allocation literature, we rule out short-selling (i.e., negative portfolio weights). We

also impose constraints on total portfolio leverage in order to avoid implausible positions,

similarly to, e.g., Campbell and Thompson (2008) and Marquering and Verbeek (2004). The

22Admittedly, any sophisticated asset allocation models that either account for time-varying and state-
dependent properties or introduce higher moments raises the concerns of overfitting. In the present study,
the issue appears to be of a less concern as we focus on out-of-sample evidence.

23Within the CRRA family, power utility implies that absolute risk aversion is declining in wealth, while
relative risk aversion is a constant. Relying on introspection Campbell and Viceira (2003) point out that,
in a plausible portfolio choice model, absolute risk aversion should decline or, at the very least, should not
increase with wealth, while relative risk aversion should be independent of wealth: this rules out quadratic
utility and favors power utility over exponential utility.

24As most academic studies in asset allocation focus on solving recursive myopic portfolio optimization
problems [see, for example, DeMiguel, Garlappi, and Uppal (2009), Daskalaki and Skiadopoulos (2011) and
Cenesizoglu and Timmermann (2012).], and given that industry practice is also, by and large about tackling
one-period problems, as illustrated by Brandt (2009a), we leave the dynamic portfolio choice analysis for a
future study.
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initial wealth is normalized to one. Formally, the investor’s problem is

max
ωt

Et[U(Wt+1)] = Et[
(1 + rp,t+1)

1−γ

1− γ
]

s.t.
N∑
i=1

ωi,t − 1 ≤ h

ω0,t =
N∑
i=1

ωi,t − 1

ωi,t ≥ 0, i = 1, . . . , N

(1.2)

where rp,t+1 is portfolio return at time t + 1, ωt = [ω0,t, ω1,t, · · · , ωn,t]
′ denotes the portfolio

weight vector at time t. In particular, ω0,t denotes the weight on the risk-free asset, ωi,t

(i = 1, · · · , N) is the fraction of wealth in the ith risky asset and h denotes the maximum

leverage (e.g., h = 0.5 indicates that the investor cannot borrow more than 50% of her total

wealth.).

Since with power utility there is no closed form solution to the constrained optimization

problem, we follow, among others, Jondeau and Rockinger (2012) and Guidolin and Tim-

mermann (2008), and write the expected utility in equation (1.2) as an infinite-order Taylor

series expansion around the wealth at time t+ 1:

Et[U(Wt+1)] =
∞∑
k=0

U (k)(Wt+1)

k!
m

(k)
p,t+1 (1.3)

where U (k) denotes the kth derivative of the utility function, andm
(k)
p,t+1 = Et[r

k
p,t+1] is the kth

non-central moment of expected portfolio returns. This k-moment framework is economically

appealing and mathematically tractable.25 As detailed below in Sections 1.4.2 and 1.4.1, the

Taylor expansion allows one to make (approximate) expected utility an explicit function of

selected moments of asset returns. To relate our analysis to the extant literature we consider

25See Garlappi and Skoulakis (2011) for a thorough analysis and theoretical foundations for using the
Taylor expansion of expected utility.
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the Taylor series expansion up to the second order (k = 2) for MV investors in Section 1.4.1

and the fourth (k = 4) for non-MV investors in Section 1.4.2.

1.4.1 The MV Case

The MV investor’s expected utility is approximated by the Taylor series expansion as in

Eq.(1.3) with k = 2:

Et[U(Wt+1)] ≈ ϕ0 + ϕ1m
(1)
p,t+1 + ϕ2m

(2)
p,t+1 (1.4)

where ϕ0 = 1
1−γ

, ϕ1 = 1, ϕ2 = −γ
2
are constant for given γ, and m

(1)
p,t+1 and m

(2)
p,t+1 are,

respectively, the first and second non-central moments of expected portfolio returns, which,

in turn, can be expressed as the functions of the expected return and variance of portfolio

returns as:

m
(1)
p,t+1 = µp,t+1 = ω′

tµt+1

m
(2)
p,t+1 = σ2

p,t+1 + µ2
p,t+1 = ω′

tΣt+1ωt + µ2
p,t+1

(1.5)

where µt+1 ≡ Et[rt+1] ∈ RN the expected return vector, Σt+1 ≡ Et[(rt+1 − µt+1)(rt+1 −

µt+1)
′
] ∈ RN×N is the covariance matrix of N risky assets.

Thus, to obtain the optimal weights ω∗
t , the MV investor needs to numerically maximize

her expected utility defined in Eq.(1.4) with the estimates of µt+1 and Σt+1 as inputs. As

mentioned above, in our study we consider two types of strategies: (i) the BWD strategy,

relying on the sample moment estimators up to time t, µ̄t+1|t and Σ̄t+1|t; (ii) the FWD

Strategy, employing the estimators computed using richer conditioning information sets and

models up to time t, µ̂t+1|t and Σ̂t+1|t. As it is straightforward to compute the estimators

for the BWD strategy, we only detail the implementation of FWD strategies in the following

sections.
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1.4.1.1 Forecasting Returns

We follow, among others, Rapach et al. (2010) and employ the forecast combination method

to produce one-period-ahead OOS excess return forecasts for each asset class.26 The general

rationale for using a forecast combination is that forecasts based on individual predictors

could suffer from model mis-specification and instability, whereas combining the individual

forecasts could exploit the valuable information carried by each predictor and, at the same

time, achieve benefits from forecast diversification. For each risky asset, we use the following

linear model to produce the one-period-ahead OOS forecasts for excess return rt+1 at time

t+ 1:

rt = αi + βixi,t−1 + εi,t; where i = 1 · · ·K (1.6)

r̂i,t+1|t = α̂i,t + β̂i,txi,t (1.7)

r̂comb
t+1|t =

1

K

K∑
i=1

r̂i,t+1|t (1.8)

where xi,t−1 is the ith predictor at time t − 1, and K is the total number of predictive

variables.

We first run the univariate predictive regression defined in Eq.(1.6) to produce the IS

estimates for parameters α̂i,t and β̂i,t using the conditional information up to time t. Next,

we follow Eq.(1.7) to produce the next period OOS forecasts r̂i,t+1|t using α̂i,t, β̂i,t and xi,t.

Thus, we have K individual return forecasts at each time t. Next, we combine the individual

forecasts r̂i,t+1|t across theK predictors with equal weights to obtain the combination forecast

r̂comb
t+1|t.

27 Finally, we set µ̂t+1|t = r̂comb
t+1|t. The IS predictive regression in Eq.(1.7) is based on an

26The forecast combination is originally pointed out by Bates and Granger (1969). Timmermann (2006)
offers a comprehensive theoretical and empirical study on this method.

27Timmermann (2006) and Rapach et al. (2010) demonstrate the benefits of using equally weighted fore-
cast combinations. Intuitively, using equal weights avoids an additional layer of estimation, which could
potentially induce estimation error and thus deteriorate the OOS performance.
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expanding procedure and only uses the information up to time t. To implement the forecast

combination method, we employ a large set of predictive variables for each asset and detail

them in Section 1.6.1.

We first use macroeconomic and market indicators widely adopted in the predictability

literature. For robustness, we also use technical indicators to forecast returns, following the

work of, among others, Neely, Rapach, Tu, and Zhou (2014) and Goh, Jiang, Tu, and Zhou

(2013) that show how these indicators may be a valid complement to the more commonly

used macro and market predictors for the equity risk premium. To incorporate information

from the set of technical indicators, we follow Neely et al. (2014) and estimate predictive

regressions based on principal components which we, then, aggregate using the forecast

combination above. Appendix D details the procedure.

1.4.1.2 Forecasting the Covariance Matrix

We next detail the estimation of the other key input required in Eq.(1.5), namely the expected

conditional covariance matrix Σt+1. We employ the Dynamic Conditional Correlation (DCC)

model proposed by Engle (2002) to obtain the OOS forecasts of volatility and correlations

of asset returns.28 The DCC model offers a tractable and flexible multivariate framework

to model the dynamics of conditional volatility and correlations. Essentially, the one-period

ahead covariance matrix estimator can be decomposed as:

Σ̂t+1|t = D̂t+1|tP̂t+1|tD̂t+1|t (1.9)

where D̂t+1|t is an N × N diagonal matrix with conditional standard deviation σ̂i,t+1|t on

the ith diagonal, and P̂t+1|t = {ρ̂ij,t+1|t} is an N × N matrix with ones on the diagonal and

conditional correlations off the diagonal. Given the decomposition, we can employ a two-

28The DCC model and its variations have been used by several studies in asset allocation context. For
example, Billio, Caporin, and Gobbo (2006), Huang and Zhong (2010), Case, Yang, and Yildirim (2012) and
Della Corte et al. (2012).
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stage estimation procedure applied to the residuals from the forecast combination to obtain

Σ̂t+1|t. In the first stage, we forecast each diagonal element (σ̂i,t+1|t) of D̂t+1|t with a univariate

asymmetric GARCH model for the forecast combination residuals. In the second stage, we

standardize the residuals from the first stage by their conditional standard deviations and fit

the standardized residuals into a multivariate GARCH model to obtain the one-period-ahead

conditional correlation matrix P̂t+1|t. The estimation is based on an expanding estimation

window and uses up-to-time-t asset return data only (i.e. no additional predictive variables).

We detail the two-stage procedure in Appendix B.

1.4.2 The Non-MV (4-Moment) Case: Forecasting Higher Mo-

ments

Departing from the classic Markowitz paradigm, we next investigate the multiple asset class

allocation problem faced by a non-MV investor, who takes into account the moments of the

return distribution up to the fourth order. To capture the non-MV investor’s preferences for

the first 4 moments, we follow the literature29 and approximate her expected utility using

the fourth order Taylor series expansion as in Eq.(1.3) with k = 4:

Et[U(Wt+1)] ≈ ϕ0 + ϕ1m
(1)
p,t+1 + ϕ2m

(2)
p,t+1 + ϕ3m

(3)
p,t+1 + ϕ4m

(4)
p,t+1 (1.10)

where ϕ0 = 1
1−γ

, ϕ1 = 1, ϕ2 = −γ
2
, ϕ3 = γ(γ+1)

6
, ϕ4 = −γ(γ+1)(γ+2)

24
are constants for given

γ, m
(1)
p,t+1 and m

(2)
p,t+1 are defined in Eq.(1.5), and m

(3)
p,t+1 and m

(4)
p,t+1 denote the third and

fourth non-central moments of portfolio returns, which, as shown by Jondeau and Rockinger

(2012), can be analytically expressed as functions of portfolio weights, expected returns,

covariance, co-skewness and co-kurtosis of asset returns. The investor always favors the

odd moments but dislikes the even moments, in accordance with the economic rationales

29See, among others, Harvey and Siddique (2000), Dittmar (2002), and Jondeau and Rockinger (2006,
2012).
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suggested by Scott and Horvath (1980) and Dittmar (2002). To solve the 4-Moment portfolio

optimization problem, the non-MV investor needs to maximize her utility defined in Eq.(1.10)

with the estimates of the first 4 (co-)moments of asset returns. Notation wise, one needs to

obtain estimators for {µt+1, Σt+1, St+1, Kt+1}, where µt+1, Σt+1, St+1 and Kt+1 are expected

returns, covariance, co-skewness and co-kurtosis matrices, respectively. Consistent with the

implementation of the MV strategies, we consider two types of strategies in the 4-Moment

case, namely the BWD with the (co)moment estimators {µ̄t+1|t,Σ̄t+1|t, S̄t+1|t, K̄t+1|t} and

the FWD with the (co)moment estimators denoted by {µ̂t+1|t, Σ̂t+1|t, Ŝt+1|t, K̂t+1|t}. The

estimators used in BWD strategies can be easily computed from sample return moments

using information available up to time t. We have already introduced estimating µ̂t+1|t in

Section 1.4.1. In estimating {Σ̂t+1|t, Ŝt+1|t, K̂t+1|t} we follow the procedure proposed by

Jondeau and Rockinger (2009, 2012). We outline the entire procedure in Appendix C.

Armed with estimators from the BWD and FWD strategies we can numerically solve

the non-MV investor’s 4-Moment portfolio optimization problem for the optimal portfolio

weights ω∗
t . By repeating this optimizing procedure at each time t = τ, · · · , T − 1, we can

obtain the optimal portfolio weights {ω∗
t }t=τ,··· ,T−1.

1.5 Trading Strategies and Performance Measures

1.5.1 Competing Strategies

Based on the considerations above, we implement the following strategies:

1. Backward-looking traditional asset strategy (BWD S-B): the investor allocates her

wealth in Equity, Bond and Cash, and employs sample moments of returns computed

on an expanding window as input to the optimization problem defined in Eq.(1.2).

2. Backward-looking commodity-augmented strategy (BWD S-B-C): the investor allo-

cates her wealth in Equity, Bond, Commodity and Cash, and employs sample moments
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of returns computed on an expanding window.

3. Forward-looking traditional asset strategy (FWD S-B): the investor allocates her wealth

in Equity, Bond and Cash, and employs the forecasts of asset return moments illus-

trated in Sections 4.1 and 4.2.

4. Forward-looking commodity-augmented asset strategy (FWD S-B-C): the investor al-

locates her wealth in Equity, Bond, Commodity and Cash, and employs the forecasts

of asset return moments illustrated in Sections 4.1 and 4.2.

5. Fixed-weight traditional asset strategy (FIX S-B): the investor rebalances her portfolio

weights in Equity, Bond and Cash to predetermined weights [50%;40%;10%] at the

beginning of each period. Noteworthy, the FIX strategy does not require the estimates

of any moments of the return distribution.

6. Fixed-weight commodity-augmented strategy (FIX S-B-C): the investor rebalances her

portfolio weights in Equity, Bond, Commodity and Cash to predetermined weights

[50%; 30%;10%; 10%] at the beginning of each period.30

Following much of the asset allocation literature, we rule out short-selling and impose

constraints on total portfolio leverages (which is defined as the percentage of debt in total

portfolio value). Specifically, we report the empirical results based on five levels of leverage

ranging from 0 to 100%.31 Also following the extant literature, we consider alternative

levels of the relative risk aversion coefficient, γ = 3, 5, 10, which respectively represent low,

moderately and highly risk averse investors.32

30We analyze these fixed-weight strategies as several studies have documented how they may outperform
more sophisticated schemes. In addition, the simple rebalancing to fixed weights is rather common in industry
practice. Similarly, our choice of the actual fixed weights reflect benchmarks commonly used in the literature,
and/or average portfolio allocations reported by industry surveys, as referenced in our Introduction. See
Chaves, Hsu, Li, and Shakernia (2011) for an additional summary reference,

31As a point of reference, Ben-David, Franzoni, and Moussawi (2012) find that the mean leverage for hedge
funds is 79% during the period of 2004-2009.

32Even though the asset pricing literature and, in particular, the equity-premium ”puzzle” literature has
not yet agreed upon a commonly accepted estimate of the coefficient of relative risk aversion, many studies
suggest that plausible values could be ranging from as low as 0.1 to about 10. See, among others, Mehra
and Prescot (1985), Mankiw (1985), Friend and Blume (1975) and Gordon and St-Amour (2004).
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1.5.2 Performance Measures

We employ the CRRA Utility-based Certainty Equivalent Excess Return (CEQ)33 net of

transactions costs and the Portfolio Turnover (TO) to evaluate the OOS economic perfor-

mance of the competing strategies specified in Section 1.5.1. CEQ for a given strategy

is defined as the riskless return an investor is willing to accept instead of facing the un-

certain return generated by such strategy. We focus on CEQ rather than other metrics,

such as the Sharpe Ratio (SR) for two main reasons. First, while well suited within a

world of IID Gaussian returns, the SR may generate misleading conclusions when applied to

predictability-based strategies that exploit time variation in investment opportunities (see

Farinelli and Tibiletti (2008)). As noted by Bianchi and Guidolin (2013), with predictable

returns and CRRA utility, one cannot generally approximate preferences as mean-variance

objectives: hence, a higher SR yielded by any given strategy does not necessarily imply an

increase in the investor’s welfare, especially if this is achieved by altering the higher-order

moments of portfolio returns away from what they should be under multivariate Gaussian

returns. Second, the SR is independent of portfolio leverage [see Kan and Zhou (2007)]: as

a result, a sub-optimal weight in the risk-free asset does not affect the SR.

Specifically, the CRRA utility-based CEQ during the OOS evaluation period [τ + 1 : T ]

is computed as:

CEQτ+1:T = [(1− γ)Ūτ+1:T (Wt)]
1

1−γ − 1 (1.11)

where Ūτ+1:T (Wt) denotes the average realized CRRA utility.34

We follow DeMiguel et al. (2009) to compute the Portfolio Turnover (TO) as a measure of

the amount of trading required to implement a particular strategy. For any strategy, TO is

33CEQ has been widely adopted as a reliable measure in the asset allocation literature. Examples are,
among others, Kandel and Stambaugh (1996), Campbell and Viceira (1999), Ang and Bekaert (2002), Camp-
bell and Thompson (2008) and Rapach et al. (2010) and Cenesizoglu and Timmermann (2012).

34The difference of two CEQ’s can be interpreted as the Performance Fee, the premium that needs to
be added to the benchmark portfolio excess return so that the investor becomes indifferent between the
competing and the benchmark portfolio. [See, e.g., Fleming et al. (2001) and Patton (2004)]. Given the
simple relationship between Performance Fee and CEQ, we only consider CEQ in our studies.
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defined as the average absolute change in the weights across the N assets (N=2 for S-B; N=3

for S-B-C) over the T − τ − 1 rebalancing dates in time. Essentially, the TO is calculated

as:

TOτ+1:T =
1

T − τ − 1

T−1∑
t=τ

N∑
j=1

(|ωj,t+1 − ωj,t+ |) (1.12)

where ωj,t+1 is the desired portfolio weight in asset j at time t + 1; ωj,t+ is the portfolio

weight in asset j before rebalancing at time t+ 1.

As the FWD strategies tend to generate higher portfolio turnover than the BWD ones,

we follow, among others, DeMiguel et al. (2009) and include an estimate of transaction costs

for all the strategies. We set the proportional transaction cost equal to 50 bps for trading

each asset class index.35

When a portfolio of N assets is rebalanced at time t+1, the magnitude of trading asset j is

|ωj,t+1−ωj,t+|. Given a proportional transaction cost c, the trading cost of the entire portfolio

is c ·
∑N

j=1 |ωj,t+1−ωj,t+|. Therefore, we can write the portfolio return net of transaction cost

as

rnetp,t+1 = (1 + rp,t+1)(1− c ·
N∑
j=1

|ωj,t+1 − ωj,t+|)− 1 (1.13)

where rp,t+1 =
∑N

j=1 rj,t+1ωj,t is the portfolio return with zero transaction cost.

1.6 Data and Descriptive Statistics

1.6.1 Data

We use major monthly and quarterly total return indexes for the following three asset classes:

U.S. Equity, U.S. Bond and Commodity. Specifically, the equity class is proxied by the

S&P500 Total Return Index over the period 1946/01 - 2012/12. The bond class is measured

35DeMiguel et al. (2009) assume 50 bps per transaction based on the studies for individual stocks on the
NYSE by Stoll and Whaley (1983), Bhardwaj and Brooks (1992) and Lesmond, Ogden, and Trzcinka (1999).
Daskalaki and Skiadopoulos (2011) assume 50 bps transaction cost for stock and bond indexes and 35 bps
for commodity index based on their discussion with practitioners in the commodity markets.
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by the Barclays Capital U.S. Aggregate Bond Index (Bond) from 1976/01 to 2012/12. The

Bond index (previously known as Lehman Brother Aggregate Bond Index) is a broad-based

benchmark that measures the investment grade, U.S. dollar-denominated, fixed-rate taxable

bond market, including most Treasury, agency, corporate, mortgage-backed, asset-backed,

and international dollar-denominated issues, all with maturities of 1 year or more.36 The

commodity class is represented by the S&P Goldman Sachs Commodity Total Return Index

(GSCI) from 1970/01 to 2012/12. GSCI is a world-production weighted total return index

and consists of 24 commodity futures on physical commodities across five sectors: energy,

agriculture, industrial metals and precious metals.37 The reason we consider GSCI as our

base case instead of alternative commodities indexes or individual futures is two-folds: first,

GSCI is by far the leading fully collateralized investable commodity index followed by a

number of exchange-traded products and also has the longest data history on Datastream;

second, a majority of professional asset managers choose to gain their exposure to com-

modities through investment vehicles such as ETFs, ETNs and mutual funds, which are

index-based passive investment strategies.38 39 We use the 30-day U.S. Treasury Bill as the

proxy for cash.

We collect a comprehensive set of predictive variables that have been previously relied

on by the literature when forecasting monthly and quarterly aggregate index returns.40 In

what follows, we detail the predictors for each asset class.

Commodity. In general, the variables we use to forecast the returns of GSCI can be

36For detailed description, please refer to the factsheet at https://ecommerce.barcap.com/indices/

show?url=Home/Guides_and_Factsheets.
37GSCI’s factsheet is available at http://us.spindices.com/index-family/commodities/sp-gsci.
38According to Morningstar & Barron’s Alternative Investment Survey 2011, over 60% of institutional

investors choose commodity ETFs, ETNs and mutual funds as their primary vehicles to access the commodity
investment.

39Specifically, the GSCI Total Return index measures a fully collateralized commodity futures investment
that is rolled forward from the fifth to the ninth business day of each month. Its characteristics make it
fully investable without any trading in physical commodities. On the other hand, its return may differ
significantly from what yielded by trading the physicals.

40We attempt to be as comprehensive as possible within the set of predictive variables, rather than arbi-
trarily selecting a few predictors from previous studies. Together with the forecast combination method for
expected returns (see Section 1.4.1.1 above), this strategy aims to limit the impact of model mis-specification
and the concerns of data mining.
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categorized into two sets: macroeconomic and commodity-specific. The macroeconomic set

includes the long-term bond return, the default spread, the growth of industrial production,

the money supply growth, the unemployment rate, the growth rate of Baltic Dry Index

(BDI) and the levels of real economic activity. [See Bessembinder and Chan (1992); Bakshi

et al. (2011); Gargano and Timmermann (2014).] The general rationale is that these eco-

nomic variables contain information on the anticipation of future economic activity, which

in turn drives the movements in commodity prices. Another set of predictive variables is

commodity-specific and include the growth in commodity market interest, the commodity

futures-cash basis and the changes in “commodity currency” exchange rates. [See Hong and

Yogo (2012); Fama and French (1987); Chen et al. (2010).] Hong and Yogo (2012) find that

the growth in total open interest can predict aggregate commodity returns, as the growth

signals higher hedging demand and, consequently, increasing commodity prices.41 Motivated

by the Theory of Storage, Fama and French (1987) show that the basis has predictive power

for commodity returns. Chen et al. (2010) find that the currency exchange rates of five major

commodity exporting countries (“commodity currencies”) can forecast aggregate commodity

price indexes in- and out-of-sample, because the exchange rates are strongly forward-looking

and convey information about expected future commodity price shocks.

Bond. Motivated by Campbell and Shiller (1991), Cochrane and Piazzesi (2005) and

Ludvigson and Ng (2009), we collect three sets of variables to forecast the Bond returns:

financial factors, real factors and stock market factors. The financial set includes the forward

spreads and the yield spreads of 1- to 5-year U.S. Government bonds. The real factors are

the NAPM Employment Index levels, the growth rate of Non-farm payroll employment, the

changes of Capacity Utilization - Manufacturing, the PMI Composite Index, the levels of

Manufacturing New Orders Index, the growth in Producer Price Index. The stock market

factors include the S&P500 return and the first difference in dividend/price ratio.

Stock. We collect the predictors for S&P500 directly from Welch and Goyal (2008), who

41We download the data from the author’s web site at https://sites.google.com/site/motohiroyogo/
home.
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provide a detailed description of the data in their paper.42 We also include one additional

variable, the VIX from the Chicago Board Option Exchange, which is often relied on as

a gauge of investors general sentiment within predictive regressions as in, e.g., Baker and

Wurgler (2007).

As mentioned in section 1.4.1.1 we also rely on indicators from technical analysis to

generate expected returns. The specific technical predictors and their construction is detailed

in Appendix D.

Other than the data directly from original authors, we compile other data from various

sources, including Datastream, CRSP, St. Louis Federal Reserve Economic Database and

the data libraries on Ken French’s website. The Data Appendix reports the time span and

the source for each series.

1.6.2 Descriptive Statistics

Table 1 shows the summary statistics for monthly and quarterly excess returns of the three

asset class indexes. All return series are aligned for the period 1976/01 - 2012/12, during

which returns on all three assets are available.

Panel A reports the statistics for monthly returns. We can see that Bond has the low-

est mean monthly excess return (0.24%) and also the smallest standard deviation of 1.61%,

exhibits positive skewness (0.20) and the most extreme excess kurtosis (5.96). SP500 has

a moderate mean return (0.27%) and standard deviation (4.38%), and exhibits the most

negative skewness (-0.59) and the least excess kurtosis (1.99). Commodity has the highest

mean monthly excess return of 0.30% and a high standard deviation (5.55%), and distributes

with negative skewness (-0.21) and a moderate excess kurtosis (2.24). Turning to the uncon-

ditional correlations, we find that the monthly return of GSCI is weakly positively correlated

with Equity (0.18), but uncorrelated with Bond (-0.02). This is in consistent with the find-

ings in Gorton and Rouwenhorst (2006) and Erb and Harvey (2006), making commodities

42The description and data set are available at http://www.hec.unil.ch/agoyal/
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potentially value adding to traditional asset portfolios.

Panel B presents the statistics of the three asset excess return at quarterly frequency.

The findings are comparable to those in the monthly panel.

[Table 1]

1.7 Empirical Results

In this section, we report and compare the OOS performance of the portfolio strategies

specified in Section 1.5.1 along several dimensions. First, we focus on the comparisons of

S-B vs. S-B-C: these represent our baseline results. Second, for both S-B and S-B-C, we

decompose the gains induced by switching from BWD to FWD strategies. As a special case

of the comparison between BWD and FWD strategies we investigate the role of technical

indicators in forecasting asset returns. Last, we conduct sub-period analyses and several

additional robustness checks.

1.7.1 S-B vs. S-B-C

Tables 2 through 5 report the performance metrics, annualized CEQs net of 50 bps of propor-

tional transactions costs and TO, for the monthly (Tables 2 and 4) and quarterly (Tables 3

and 5) rebalanced S-B and S-B-C strategies evaluated based on MV (Tables 2 and 3) as well

as non-MV (Tables 4 and 5) preferences. Across the columns we report figures for different

levels of the constraint on the highest allowed portfolio leverage: Lev < 100% , Lev < 75%,

Lev < 50%, Lev < 25% and Lev = 0. Across panels we present the figures for three levels

of investor’s relative risk aversion: 3, 5 and 10. Within each panel we compare the S-B and

S-B-C trading strategies under three portfolio formation approaches: FIX, BWD and FWD.
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Table 2 shows two main results. First, across all levels of risk aversion and leverage, the

MV investor would not favor adding Commodity to the traditional Stock-Bond portfolio if

she followed a rebalancing to fixed-weights strategy or a BWD strategy: the S-B-C strategies

consistently underperform the S-B and the FIX ones in CEQ terms. For instance, a moder-

ately risk-averse MV investor (i.e. γ = 5), with a 50% leverage constraint and who does not

account for the predictability of first and second asset return moments and, instead, forms

allocations based on expanding sample moments of returns, would like to pay up to 37 bps

per year to drop Commodity from her Stock-Bond portfolio. The same qualitative consider-

ation applies across alternative levels of risk aversion and leverage. This important result is

fully consistent with the findings and conclusions in Daskalaki and Skiadopoulos (2011) who

also employ the BWD strategies for their OOS analysis. Second, and most importantly for

our study, when relying on FWD forecasting the commodity-augmented strategies dominate

the traditional asset ones across all leverage constraints and all levels of risk aversion. As an

intermediate case, the MV investor with γ = 5 and a 50% maximum leverage would have

paid up to 84 basis points a year after transactions costs to switch from the S-B to the S-B-C

allocation, A less risk-averse investor (γ = 3 and leverage up to 75%) would have paid up to

119 basis points. More generally, the spread in favor of S-B-C tends to increase with lever-

age and to decrease with risk aversion. At one extreme, with γ = 3 and 100% leverage, the

investor would have earned an additional 142 annual basis points from adding the exposure

to GSCI. At the other end of the spectrum, a very risk-averse MV investor (γ = 10) with

no ability to leverage at all her portfolio would have paid a more modest 39 basis points

for switching to S-B-C. In facts, the performance of all BWD and FWD strategies, whether

or not they include commodities, follows this pattern. A Stock-Bond portfolio would have

earned a relatively low risk-averse investor 119 more basis points with a 50% leverage than

with no leverage.

It is also worth noting that implementing FWD strategies does lead to a substantially

higher portfolio turnover. On average, FWD strategies need to rebalance between about 10
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and 31% of wealth each month, approximately 5-10 times as much as the BWD and FIX

ones do. This is to be expected as the forecasts based on predicting time-varying moments

is much more volatile than what yielded by the simpler moment estimators computed on an

expanding window. Remember, however, that all CEQs are computed net of transactions

costs: it, hence, appears that the increased turnover and associated transactions costs are

more than compensated by an improved risk-return trade-off from the S-B-C allocation.

[Table 2]

Table 3 reports the results of portfolio strategies with quarterly rebalancing, still from

the perspective of an MV investor. Across alternative risk aversions and leverages, the per-

formance of FIX strategies is very comparable to what observed with monthly rebalancing

in Table 2: as a result, an MV investor relying on those strategies would not have wanted

to include commodities on top of her equity-fixed income allocation. A similar implication

emerges from the performance of the BWD strategies: the third and fourth rows of each

panel show that the investor with moderate to high risk aversion would have been essentially

indifferent between S-B and S-B-C, while the relatively less risk-averse investor would have

paid up to 63 basis points to avoid the S-B-C allocation. Turning to the FWD strategies,

though, we confirm that key result that S-B-C outperforms S-B by economically large mar-

gins. For example, a moderately risk averse investor with a 50% leverage constraint would be

willing to pay up to 108 bps per year in order to adopt the commodity-augmented strategies

instead of the traditional Stock-Bond ones. Again, FWD strategies require substantially

higher turnover than BWD ones: 2-5 times more on average, as the latter require a turnover

of only 4-5% per quarter, while the former need 15-20% turnover even for the more conser-

vative investors (γ = 5 and γ = 10) Still, the FWD forecasts generate sizable economic gains

for S-B-C, overcoming the transactions costs.
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[Table 3]

Next, we turn to the results for non-MV investors, who take into account co-skewness

and co-kurtosis of asset returns while constructing their multi-asset portfolios. Table 4

(Table 5) reports the comparisons between monthly (quarterly) rebalanced allocations. As

we can see from both tables, under FIX and BWD strategies S-B-C underperforms S-B

across all leverages and levels of risk aversion, which is consistent with the results for MV

investors and with results in the extant literature. Once more, though, S-B-C significantly

outperform S-B when the predictability of time-varying return moments is accounted for in

portfolio formation. In the intermediate case of γ = 5 and 50% leverage (see Tables 4 and

5, Panel B), an investor rebalancing quarterly (monthly) would have paid up to 155 (72)

bps per year after transaction costs to add the Commodity exposure. Accounting for higher

moments of returns coupled with the FWD strategies appear to amplify the relative benefits

of including commodities into a stock-bond portfolio, especially with quarterly rebalancing.

Even with high risk aversion and low leverage (Table 5, Panel C) the investor would have

still added about 80 bps per year in CEQ terms. With low risk aversion (Table 5, Panel A),

the spread for S-B-C over S-B would have reached a very meaningful range of 200 to 230

annualized basis points. While confirming the findings of Jondeau and Rockinger (2012) that

an investor can benefit from timing the dynamics of higher return moments, our results show

that this is especially valuable when a commodity exposure is part of the asset allocation

decision.

[Table 4]

[Table 5]
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In summary, based on the multi-dimensional comparisons of the performance of S-B-C

vs. S-B and FIX for both MV and non-MV investors, we find solid evidence that adding

Commodity into Stock-Bond portfolios leads to material economic gains. The improvement,

though, crucially depends on estimating the future dynamics of returns, volatilities, correla-

tions, co-skewness and co-kurtosis based on a FWD framework: if investors construct their

portfolios using FIX or BWD strategies the utility gains stemming from the commodity

exposure appear to be lost.

1.7.2 Decomposing the Economic Gains

Given the important differences that arise from comparing S-B and S-B-C under the BWD

and FWD approaches, it is natural to investigate the sources of such differences. In partic-

ular, since existing empirical studies on asset allocation do not typically consider first and

second moment jointly when relying on FWD forecasts, we ask whether the benefits stem-

ming from such forecasts are due to both the expected returns and the covariance matrix

predictions or whether one of the two is the main driver of the improvement relatively to

the BWD approach.43 A related question is what dimension of the investor’s utility function

the economic gains induced by the FWD approach originate from. For the MV investor we

ask whether the utility gains come primarily from a higher average portfolio return or from

a lower portfolio volatility. For the non-MV investor we also ask how the BWD and FWD

approaches differ in terms of generating portfolio skewness and kurtosis.

Table 6 reports the results that compare BWD and FWD strategies for an MV investor

(Panel A) and for a non-MV investor (Panel B). To conserve space we only present the quar-

terly rebalancing case for moderately risk averse investors (γ = 5) and under three levels of

leverage constraints (Lev < 100% , Lev < 50% and Lev = 0), but the results are qualitatively

43Related to the discussion in Section 1.3, we are not aware of published work that empirically analyzes
the effects of both excess return predictability and variance/covariance predictability on asset allocation
decisions.
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very similar with monthly rebalancing and alternative risk aversion coefficients.44

Across the rows there are four sections per panel, each representing a combination of the

approach used for forming expected returns and the one used for the variance/covariance

matrix (in Panel A) and for all second, third and fourth moments (Panel B). For each section

we report the CEQ and the realized portfolio return moments. In the first section (BWD

& BWD) of Panel A we report the figures from the case where both the first and second

moments are computed using sample moments recomputed at each time t on an expanding

window.45 We can see that the commodity-augmented strategies underperform the tradi-

tional asset strategies for all three levels of leverage. The second section of each panel (FWD

& BWD) shows the performance generated by relying on expected return from the forecast

combination method and on expanding sample variances and covariances (Panel A) as well

as on sample skewness and kurtosis (Panel B) also computed on an expanding window. We

find that, while the performance of S-B does not change significantly relatively to the bench-

mark BWD & BWD, the performance of S-B-C receives a significant boost. In particular,

by adding only FWD-based expected returns to the benchmark strategy, a moderately risk

averse investor could gain up to 90 bps per year more with an S-B-C portfolio than with an

S-B portfolio. Therefore, we argue that exploiting the predictability of the mean asset return

by itself improves portfolio performance, and also makes Commodity value adding compared

to Stock-Bond allocations. Moving further down to the third section (BWD & FWD) across

the two panels, we can see that relying on the DCC-based forecasts for second, third and

fourth moments also increases portfolio performance across all levels of leverages relatively

to the baseline BWD & BWD strategy but the improvement is still more tangible for the

commodity-augmented strategies. Lastly, we apply the FWD strategy to expected returns

as well as to the forecasts of higher moments, as shown in the fourth section (FWD & FWD)

of the panels, and find that the performance of all portfolios is maximized and S-B-C con-

sistently outperforms S-B. In other words, by combining FWD expected returns and FWD

44The complete results for this section are available from the authors upon request.
45The CEQs for BWD & BWD case come from Table 3, Panel B, BWD case.
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variances, covariances, (co-)skewness and (co-)kurtosis, the investor gains the largest eco-

nomic value. All in all, commodity-augmented strategies underperform traditional ones only

if one employs the BWD & BWD strategy. If any FWD forecast is employed, incorporating

commodities into Stock-Bond portfolios adds significant economic value.

Next, the analysis of realized portfolio return moments (columns Mean, Std, Skew, Kurt)

delivers several additional insights. First, the addition of commodities to a stock-bond

portfolio invariably leads to a higher average return as well as to a higher volatility. This is

true regardless of whether the BWD or the FWD approach is used. However, the increase

in average returns from S-B to S-B-C is fairly comparable from BWD to FWD whereas

the increase in volatility is not as sharp when the FWD approach is relied upon. As a

representative and, yet, intermediate example consider the Lev<50% case in Panel A. Here,

when adding commodities to the Stock-Bond mix relying on the BWD method, the increase

in portfolio average return is about 270 basis points per year (from 261 to 535 for the BWD

& BWD case ) while portfolio volatility rises by almost 740 annual basis points (from 380

to 1108). When relying on the FWD approach the average return for the S-B-C portfolio is

about 270 basis points per year higher (from 398 to 667 for the FWD & FWD case) while

volatility is up only about 500 basis points (from 570 to 1081). For an MV investor it,

thus, appears that the value adding generated by commodities stems from their ability to

increase the mean return without raising portfolio volatility excessively. It is the reliance on

the forward looking approach, though, that allows to achieve a better risk-return tradeoff.

Moving, next, to the non-MV case the general patterns in portfolio mean and volatility

are broadly similar to the MV case. Two distinctive features emerge from the analysis of

higher realized portfolio moments: first, the addition of commodities induces positive overall

portfolio skewness whereas a pure equity-bond portfolio displays, by and large, negative

skewness; second, the addition of commodities elevates the kurtosis of portfolio returns.

Importantly, though, the increase in kurtosis is significantly higher when relying on the

BWD method than on the FWD method. A plot of portfolio weights over time for S-B-C vs.
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S-B illustrates further. Figure 1 reports the difference in portfolio weights between S-B-C

and S-B when the FWD approach is used, while Figure 2 reports the weight differences for

the BWD case. From the top panel of Figure 1 it is clear that the possibility of diversifying

into commodities allows the investor to frequently avoid large negative returns in equities:

the blue line indicates that the allocation to equities is lower for S-B-C than for S-B (i.e.,

the difference is negative) in correspondence to several sizable dips in the S&P500. The

flip side of this can be seen in the third panel, which plots the allocation to commodities:

as the investor is not forced to stay in commodities at all times, the allocations to equities

and bonds spare the portfolio from many of the biggest drops in commodity prices. As a

result, by rotating across asset classes the investor is able to hedge against the negative

skewness of the individual assets (in particular, equities and commodities). For a non-MV

investor it, thus, appears that the value adding generated by commodities stems from their

ability to switch portfolio skewness from negative to positive without altering significantly

the fat-taildness of the return distribution. Similarly to the MV case for volatility, it is the

FWD method that allows to generate returns for the S-B-C portfolio with more tolerable

tail realizations.

[Table 6]

As established above, the predictability of mean asset returns, if exploited through the

forward looking approach, makes commodities value adding with respect to stock-bond al-

locations. An additional dimension is assessing which asset predictability contributes the

most to the improvement in portfolio performance. Restated, are all three predictabilities in

the mean (of S, B and C) equally important? To address the question we repeat the asset

allocation exercise using the FWD method only for one asset expected return at the time;

i.e., each time we use the predictive regression and the forecast combination only for the

expected return of one asset class, while using the sample moments (i.e., the BWD method)
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for the other two asset classes. Table 7 reports the results for an MV investor (Panel A with

monthly rebalancing and Panel B with quarterly rebalancing) and for a non-MV investor

(Panels C and D). Across the rows we report the results for five different ways of forming

expected returns, ranging from the pure BWD approach applied to all asset classes (BWD

S-B-C) to the full FWD approach applied to all asset classes (FWD S-B-C). With monthly

rebalancing the main pattern is very similar across the MV and non-MV cases: it is the

predictability of commodity returns through the FWD approach that appears to generate

the advantage for the S-B-C portfolio vs. the S-B portfolio. When expected returns are

estimated through the FWD approach only for stock or for bonds the performance of S-B-C

relatively to S-B is: a) not value adding; b) similar to what the pure BWD approach pro-

duces. This can be seen in Panels A and C both in terms of moments of portfolio returns

and, more importantly, in terms of certainty equivalents. When commodity returns only are

predicted with the FWD method, S-B-C dominates S-B by about 70 bps per year (from 327

to 396 in the MV case, from 267 to 337 for the no-MV case). This pattern is confirmed

with quarterly rebalancing: here S-B-C outperforms S-B even when all expected returns

come from realized sample moments: the outperformance is between 60 and 90 annual basis

points (346 bps vs. 283 bps for the MV investor, 392 vs. 283 for the non-MV investor).46

However, the outperformance becomes much larger when the FWD approach is applied to

commodity expected returns only: about 135 basis points for the MV case (from 283 to 419)

and 160 bps for the non-MV case (from 283 to 443).

[Table 7]

46Recall that in all cases reported in Table 7 higher moments are predicted with the FWD method.
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1.7.2.1 Forecasting Returns Using Technical Analysis

Next, we replace the expected returns computed according to the variables used above with

forecasts from technical analysis rules. Following the comprehensive analysis of Neely et al.

(2014) we extract the first three principal components from a set of twelve technical in-

dicators (listed in Appendix D). We, then, forecast returns out-of-sample based on a) the

first principal component of individual forecasts from the twelve technical rules; b) a lin-

ear combination of the first two principal components; b) a linear combination of the first

three principal components; d) a linear combination of the individual forecasts from all the

twelve technical rules. Table 8 report the results for monthly rebalanced portfolio strategies

for an MV (panel A) and for a non-MV (Panel B) investor and for three levels of leverage

constraints.47 For each leverage/utility function combination we also report (from previous

tables) the portfolio performance based on the FWD approach that relies on the macroeco-

nomic and market predictors.

Looking at the strategies based on the first principal component of the technical forecasts

(denoted by 1st PC), it is clear that both an MV and a non-MV investors could not have

improved upon a stock-bond allocation by including commodities. In none of the six re-

ported cases is the certainty equivalent return for S-B-C higher than for S-B. Similar results

(unreported) obtain for strategies based on the first two PC of technical rule forecasts and

for those based on a linear combination of all twelve individual forecasts.

A different picture emerges when looking at the strategies based on the first three prin-

cipal components of the technical indicators. Except for the MV case with no leverage, the

S-B-C portfolio consistently outperforms the S-B allocation in terms of CEQs. Moreover,

the outperformance is, at times, even higher than when using the macro combination. For

instance, a non-MV investor with a 50% leverage constraint would have earned an additional

72 basis points per year by adding commodities and relying on the macroeconomic and mar-

47To conserve space we only report results for cases a) and c) above. All other results based on technical
indicators are available upon request.
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ket variables but 110 basis annual points had she exploited the predictive power of technical

analysis rules. Even larger gains would have occurred with a 100% leverage constraint: 96

basis points using the macro indicators, over 200 basis points using technical rules.

To summarize, we find that technical analysis rules may be a useful alternative to eco-

nomic variables when forming expected returns for portfolio allocations across asset classes,

although their contribution appears to be more valuable for investors facing lower leverage

constraints.

[Table 8]

1.7.3 Additional Robustness

To further assess the robustness of the results presented in the previous section, we perform

four more sets of tests.

First, it is well known that commodity prices have experienced unprecedented high growth

during the 2002 - 2008 period, the so-called commodity super-cycle. We, hence, investigate

whether the superior performance of S-B-C strategies during the full evaluation period is

purely driven by the commodity boom. We divide our full OOS evaluation period (1986/12

- 2012/12) into two sub-periods: 1986/01 - 2001/12 and 2002/01 - 2012/12.48 Table 9 reports

the sub-period results for MV and non-MV strategies. As in the previous section, we only

report the quarterly rebalancing case for moderately risk averse investors (γ = 5) and under

three levels of leverage constraints (Lev < 100% , Lev < 50% and Lev = 0). Results are

qualitatively the same with monthly rebalancing and alternative risk aversion coefficients.49

Panel A shows that S-B-C tends to outperform S-B for both MV and non-MV investors over

48We aggregate the boom and post-boom (2009-2012) periods as the latter is simply too short to draw
any concrete conclusion if one were to subject it to separate analysis.

49These results are also available from the authors upon request.
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the early sample period, 1986-2001, with the outperformance being more pronounced when

using the FWD approach. For instance, a non-MV investor with a 50% leverage constraint

would have earned an additional 54 bps per year adding a commodity exposure based on

the BWD strategies, while she would have earned about 140 bps per year had she formed

her S-B-C allocation using the FWD strategies. Over the second sub-period (Panel B) it

is the S-B portfolio that dominates S-B-C if one relies on either a fixed-weight or BWD

strategy. More importantly, though, when employing the FWD strategies the addition of

commodities still pays off as it earns a, e.g., non-MV investor between 150 and 210 annual

bps more than the stock-bond allocation. Therefore, the sub-period analysis indicates that

including commodities into traditional asset portfolios following the FWD approach is value

adding for both MV and non-MV investors not only during the commodity super-cycle but

also during the earlier 1986-2001 period.

[Table 9]

As a third set of checks, we employ rolling estimation windows, namely 10yr- and 20

yr-rolling windows, for the estimators of all BWD and FWD strategies as opposed to the

expanding window our results above are based on. In unreported results we find that our

baseline conclusions remain valid: it is, thus, confirmed that the S-B-C strategy does out-

perform S-B when one relies on the FWD approach.

Fourth, we use an alternative forecasting method for volatility and correlations. Specifi-

cally, instead of the GARCH-type models, we employ a first-order autoregressive specifica-

tions for realized second moments computed from daily returns.50 In unreported results we

find that realized volatility and correlation models better fit the data in-sample, although

they tend to slightly underperform their GARCH/DCC counterparts in the out-of-sample

50As a prominent example in an asset allocation framework, Fleming et al. (2003) show the gains induced
by a realized covariance measure.
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context. More importantly, though, the FWD S-B-C strategy still generates economic gains

over the S-B strategy and such gains are of very comparable magnitudes to those reported

in Tables 2 through 5.

1.8 Concluding Remarks

We empirically examine the economic value of adding a commodity exposure to a tradi-

tional (stock-bond-cash) portfolio in an out-of-sample framework. When forming optimal

portfolios we exploit the predictability of mean, volatility, correlations, co-skewness and co-

kurtosis of returns while previous studies do not account for these predictable variations

when assessing the role of commodities in multi-asset portfolios. We perform the analysis

for both MV and non-MV investors and find that, by exploiting the predictability of return

moments, the addition of commodities generates substantial out-of-sample economic value

after transactions costs, with monthly as well as with quarterly rebalancing. We also decom-

pose the gains induced by predictable moments and find that both excess return predictions

and variance/covariance predictions are value adding.

We subject our baseline findings to a battery of robustness checks and demonstrate

that the key results are not significantly affected by reasonable variations in the amount of

portfolio leverage and investor’s risk aversion. We find some room for using technical analysis

rules as an alternative to economic variables when forming portfolios of stocks, bonds and

commodities. We also show that the improved risk-return trade-off induced by allocation to

commodities is not driven by the commodity super-cycle that started in the early 2000’s.

Overall, our empirical evidence presents a solid argument in favor of combining com-

modities with equities and fixed income exposures, whereas previous research had reached

mixed or even opposite conclusions, especially in an out-of-sample context.
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Appendices

A Data Appendix

Data Description

This table lists the series, the sample periods and the sources of all of all the variables we use

in the paper. In particular, GW2012 denotes the dataset used in Welch and Goyal (2008), which

is extended by the authors and available at http://www.hec.unil.ch/agoyal/; CBOE denotes

the website of Chicago Board Options Exchange: http://www.cboe.com/micro/VIX/historical.

aspx; FRED denotes the Federal Reserve Economic Data - St. Louis Fed; the link to Lutz Kilian’s

website is http://www-personal.umich.edu/~lkilian/.

Time Series Sample Period Source

S&P500 Total Return Index 1946/01 - 2012/12 GW2012
Barclays US Aggregate Index 1976/01 - 2012/12 Datastream
S&P GSCI Commodity Total Return Index 1970/01 - 2012/12 Datastream
Dow Jones-UBS Commodity Total Return Index 1991/01 - 2012/12 Datastream
Rogers International Commodity Index 1998/08 - 2012/12 Datastream
12-month moving sum of dividend on SP500 1946/01 - 2012/12 GW2012
12-month moving sum of earnings on SP500 1946/01 - 2012/12 GW2012
AAA-rated corp. bond yield 1946/01 - 2012/12 GW2012
BAA-rated corp. bond yield 1946/01 - 2012/12 GW2012
Long-term corp. bond return 1946/01 - 2012/12 GW2012
Stock market volatility 1946/01 - 2012/12 GW2012
Cross-sectional premium 1946/01 - 2002/12 GW2012
Book-to-Market ratio 1946/01 - 2012/12 GW2012
Total Net Issues of NYSE 1946/01 - 2012/12 GW2012
3-month T-bill 1946/01 - 2012/12 GW2012
Long-term govt. bond yield 1946/01 - 2012/12 GW2012
Long-term govt. bond return 1946/01 - 2012/12 GW2012
Govt. bond term spread 1946/01 - 2012/12 GW2012
Inflation rate 1946/01 - 2012/12 GW2012
CBOE Volatility Index (VIX) 1986/01 - 2012/12 CBOE
Napm Employment Index 1976/01 - 2012/12 FRED
Nonfarm Payroll Employment - Total 1976/01 - 2012/12 FRED
Capacity Utilization - Manufacturing 1976/01 - 2012/12 FRED
PMI Composite Index 1976/01 - 2012/12 FRED
ISM Manufacturing: New Orders Index 1976/01 - 2012/12 FRED
Producer Price Index: Finished Consumer Goods 1976/01 - 2012/12 FRED
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(Continues)

Time Series Sample Period Source

6-month T-bill yield 1976/01 - 2012/12 FRED
1yr T-bond yield 1976/01 - 2012/12 FRED
5yr T-bond yield 1976/01 - 2012/12 FRED
Kilian’s Real Economic Activity Index 1970/01 - 2012/12 Lutz Kilian’s website
Industrial Production Index 1970/01 - 2012/12 FRED
log growth in money stock (M1, in percentage) 1975/02 - 2012/12 FRED
Unemployment Rate 1970/01 - 2012/12 FRED
Baltic Dry Index (BDI) 1985/05 - 2012/12 Datastream
Commodity Futures Market Total Open Interest 1970/01 - 2008/12 HY2012
Commodity Futures-Spot Price Spread (Basis) 1970/01 - 2008/12 HY2012
Exchange Rate, Australian Dollar to 1 USD 1971/01 - 2012/12 Datastream
Exchange Rate, Canadian Dollar to 1 USD 1971/01 - 2012/12 Datastream
Exchange Rate, New Zealand Dollar to 1 USD 1971/01 - 2012/12 Datastream
Exchange Rate, Indian Rupee to 1 USD 1973/01 - 2012/12 Datastream
Exchange Rate, Chilean Peso to 1 USD 1994/01 - 2012/12 Datastream
Exchange Rate, South African Rand to 1 USD 1971/01 - 2012/12 Datastream
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B Forecasting the Covariance Matrix Using the DCC Model

We follow the two-stage DCC model proposed by Engle (2002) to estimate and forecast

the one-period-ahead conditional covariance matrix at time t + 1. We first decompose the

covariance matrix as:

Σ̂t+1|t = D̂t+1|tP̂t+1|tD̂t+1|t (B.1)

where Σ̂t+1|t is the covariance matrix forecast at time t+ 1, D̂t+1|t is a diagonal matrix with

individual volatility forecasts (σ̂i,t+1|t, i = 1 · · ·N) on the diagonal, and P̂t+1|t is the correla-

tion forecast.

Step 1 : Forecast conditional volatility σ̂i,t+1|t for asset i

We first estimate the following GJR-GARCH type model in-sample using data up to time

t:

ri,t = βi,kxk,t−1 + εi,k,t (B.2)

εi,t =
1

K

K∑
k=1

εi,k,t (B.3)

σ2
i,t = ωi,t + αiε

2
i,t−1 + βiσ

2
i,t−1 + ψiε

2
i,t−1 · 1(εi,t−1<0) (B.4)

where ri,t is asset i’s return at time t, xk,t−1 (k = 1 · · ·K) is the kth predictor for asset i,

and εi,k,t is the residual for asset i based on the kth predictor. Specifically, Eq.(B.2) is the

univariate regression that decomposes the return into two parts using each predictor: the

expected return and the unexpected one. Eq.(B.3) combines the residuals from the regression

equation. Eq.(B.4) specifies the dynamics of conditional variance of expected returns.

With the in-sample estimates for the parameters, we then produce the OOS variance
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forecast σ̂2
t+1|t for asset i at time t+ 1:

σ̂2
i,t+1|t = ω̂i,t + α̂i,tε

2
i,t + β̂i,tσ̂

2
i,t + ψ̂i,tε

2
i,t−1 · 1(εi,t−1<0) (B.5)

where ω̂i,t, α̂i,t, β̂i,t and ψ̂i,t are coefficients estimated using data up to time t from the model

specified in Eq.(B.2-B.4).

Thus, the next period OOS diagonal volatility matrix forecast D̂t+1|t is given by:

D̂t+1|t =



σ̂1,t+1|t 0 · · · 0

0 σ̂2,t+1|t · · · 0

...
...

. . .
...

0 0 · · · σ̂N,t+1|t



Step 2 : Forecast the conditional correlation matrix Pt+1|t across N assets.

We first standardize the residuals obtained from Eq.(B.3) in Step 1 using the conditional

standard deviations:

st = D
− 1

2
t εt (B.6)

where st and εt are N × 1 vectors.

Next, we fit st into the following multivariate GARCH model:

Pt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2 (B.7)

Qt = (1− a− b)Ω + ast−1s
′
t−1 + bQt−1 (B.8)

where a and b are scalars, Ω is the unconditional covariance matrix of st up to time t, Qt is
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the conditional covariance matrix, and Pt is the conditional correlation matrix.

Last, we produce the next period OOS correlation matrix forecasts:

Q̂t+1|t = Ω̂t + âtsts
′
t + b̂tQ̂t (B.9)

P̂t+1|t = (diag(Q̂t+1|t))
−1/2Q̂t+1|t(diag(Q̂t+1|t))

−1/2 (B.10)

where Ω̂t, ât and b̂t are the in-sample estimates from Eq.(B.8).

Finally, we plug in the volatility and correlation forecasts from Step 1 and 2 above into

Eq.(B.1), and obtain the one-period-ahead conditional covariance matrix forecast Σ̂t+1|t.
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C Forecasting Higher-order Moments Using Skew-t DCC Model

In what follows we detail the procedure proposed by Jondeau and Rockinger (2012) to

forecast higher-order moments of portfolio returns that are necessary to solve the portfolio

optimization problem for a non-MV investor.

A portfolio’s first four non-central moments in Eq.(1.10) can be express as:

m
(1)
p,t+1 = µp,t+1

m
(2)
p,t+1 = σ2

p,t+1 + µ2
p,t+1

m
(3)
p,t+1 = u

(3)
p,t+1 + 3µp,t+1σ

2
p,t+1 + µ3

p,t+1

m
(4)
p,t+1 = u

(4)
p,t+1 + 4u

(3)
p,t+1µp,t+1 + 6σ2

p,t+1µ
2
p,t+1 + µ4

p,t+1

(C.1)

where µp,t+1, σ
2
p,t+1, u

(3)
p,t+1 and u

(4)
p,t+1 are the portfolio’s return, variance, third and fourth cen-

tral moments of N assets, respectively. Furthermore, the expected portfolio return, variance,

third and fourth central moments, for a given portfolio weight vector ωt, can be expressed

as:

µp,t+1 = ω′
tµt+1

σ2
p,t+1 = ω′

tΣt+1ωt

u
(3)
p,t+1 = ω′

tSt+1(ωt ⊗ ωt)

u
(4)
p,t+1 = ω′

tKt+1(ωt ⊗ ωt ⊗ ωt)

(C.2)

where µt+1, Σt+1, St+1 and Kt+1 are expected asset returns, covariance, co-skewness and

co-kurtosis matrices, respectively.

Provided the expected third and fourth central moments (i.e. u
(3)
i,t+1 and u

(4)
i,t+1) exist for

each asset return series ri,t, we can obtain the n× n2 conditional co-skewness matrix:

St+1 = Et[(rt+1 − µt+1)(rt+1 − µt+1)
′ ⊗ (rt+1 − µt+1)

′] = {sijk,t+1} (C.3)
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with component (i, j, k) : sijk,t+1 =
N∑
r=1

σir,t+1σjr,t+1σkr,t+1u
(3)
r,t+1

where σij,t+1 is the element of the “square root” of the covariance matrix, Σ
1
2
t+1, which can

be obtained using Eigen decomposition. The conditional co-kurtosis matrix:

Kt+1 = Et[(rt+1 − µt+1)(rt+1 − µt+1)
′ ⊗ (rt+1 − µt+1)

′ ⊗ (rt+1 − µt+1)
′] = {kijkl,t+1} (C.4)

with component (i, j, k, l) : kijkl,t+1 =
∑N

r=1 σir,t+1σjr,t+1σkr,t+1σlr,t+1u
(4)
r,t+1+

∑N
r=1

∑
s̸=r ψrs,t+1

where ψrs,t+1 = σir,t+1σjr,t+1σks,t+1σls,t+1+σir,t+1σjs,t+1σkr,t+1σls,t+1+σis,t+1σjr,t+1σkr,t+1σls,t+1.

Therefore, to derive the first four moments described in Eq.(C.1) - Eq.(C.4), we need to

obtain the FWD estimates for expected asset returns, covariance matrix, and the third and

fourth central moments of each asset return distribution, notation-wise {µp,t+1,Σt+1, ski,t+1, kui,t+1}.

As we have already discussed the estimation of FWD asset returns in Section 1.4.1.1, we

only detail the procedure to estimate {Σt+1, ski,t+1, kui,t+1} with Skew-t distribution in the

follows.

Step 1 : Following Eq.(B.2) - Eq.(B.3), we obtain the combined residual εi,t for asset i, and

form the residual vector εt = [ε1,t, · · · , εn,t]′:

εt = Σ
1
2
t zt (C.5)

zt ∼ g(zt|λt, ηt) (C.6)

where zt denotes the independent innovation vector with zero mean and unit variance, and

Σt = DtPtD
′
t denotes the conditional covariance matrix, where Dt is a diagonal matrix with

standard deviations on the diagonal and Pt is the symmetric conditional correlation matrix.

Eq.(C.6) specifies that the marginal distribution of innovations zt follows Hansen’s general-
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ized Skew-t distribution g(zt|λt, ηt), where λt and ηt are shape parameters that respectively

capture the time-varying asymmetries and fat-tailed ness of the multivariate Skew-t return

distributions.

Moreover, an asymmetric GARCH specification is adopted to fit the conditional variance

for each asset:

σ2
i,t = ωi,t + αiε

2
i,t−1 + βiσ

2
i,t−1 + ψiε

2
i,t−1 · 1(εi,t−1<0) (C.7)

And, a standard DCC specification is used to model the time-varying correlation matrix of

N assets:

Pt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2 (C.8)

Qt = (1− a− b)Q̄+ a(st−1s
′

t−1) + bQt−1 (C.9)

where a and b are scalars, and st = D−1
t εt is standardized residuals.

The dynamics of conditional variance and correlations are driven by the innovation vector,

zt, which is drawn from the multivariate Skew-t distribution with time-varying individual

asymmetry parameter and the degree of freedom, λi,t and ηi,t respectively. The dynamic

process of the two shape parameters are modeled as:

λi,t = −0.9 +
1.8

1 + e−λ̃i,t
(C.10)

λ̃i,t = d0 + d−1 zi,t−1 · 1(zi,t−1≤0) + d+1 zi,t−1 · 1(zi,t−1>0) + d2λ̃i,t−1 (C.11)

ηi,t = −4.1 +
25.9

1 + e−η̃i,t
(C.12)

η̃i,t = c0 + c−1 |zi,t−1| · 1(zi,t−1≤0) + c+1 |zi,t−1| · 1(zi,t−1>0) + c2η̃i,t−1 (C.13)
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Eq.(C.11) and Eq.(C.13) respectively specify the temporal dynamic process of the asymmetry

parameter λi,t and the degree of freedom ηi,t. Eq.(C.10) and Eq.(C.12) respectively denote

the logistic mappings from estimated parameters to true Skew-t shape parameters that satisfy

the theoretical restrictions pointed out by Hansen (1994).51

The model Eq.(C.5) - Eq.(C.13) can be estimated using the Maximum Likelihood method.

The estimation is based on asset return data available up to time t only (i.e. no additional

predictive variables). The complete set of parameter estimates is:

{ω̂i,t, α̂i,t, β̂i,t, ât, b̂t, ĉ0,t, ĉ
−
1,t, ĉ

+
1,t, ĉ2,t; d̂0,t, d̂

−
1,t, d̂

+
1,t, d̂2,t} (C.14)

Step 2 : Plug in the in-sample parameter estimates and obtain the one-period-ahead shape

parameter forecasts.

ˆ̃λt+1|t = d̂0,t + d̂−1,tzt · 1(zt≤0) + d̂+1,tzt · 1(zt>0) + d̂2,tλ̂t (C.15)

λ̂t+1|t = −0.9 +
1.8

1 + e−
ˆ̃
λt+1|t

(C.16)

ˆ̃ηt+1|t = ĉ0,t + ĉ−1,t|zt| · 1(zt≤0) + ĉ+1 |zt| · 1(zt>0) + ĉ2,tη̂t (C.17)

η̂t+1|t = −4.1 +
25.9

1 + e−
ˆ̃ηt+1|t

(C.18)

where η̂t+1|t and λ̂t+1|t are the next period shape parameter OOS forecasts.

51To ensure the first four moments exist, the two restrictions need to be maintained: −1 < λi,t < 1 and
ηi,t > 4.
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Step 3 : Plug in the shape parameter forecasts and obtain next period central moment

forecasts for each asset:

µ̂
(3)
t+1|t = M̂3,i,t+1|t − 3M̂1,t+1|tM̂2,t + 2M̂3

1,t+1|t (C.19)

µ̂
(4)
t+1|t = M̂3,t+1|t − 4M̂1,t+1|tM̂2,t+1|t + 6M̂2

1,t+1|tM2,t+1|t − 3M̂4
1,t+1|t (C.20)

where

M̂r,t+1|t =
Γ(

η̂t+1|t−r

2
)Γ( r+1

2
)(η̂t+1|t − 2)

r+1
2√

π(η̂t+1|t − 2)Γ(
η̂t+1|t

2
)

·
λ̂r+1
t+1|t +

(−1)r

λ̂r+1
t+1|t

λ̂t+1|t +
1

η̂t+1|t

is the rth raw moment of zt. Clearly, the third and fourth central moments of zt are non-

linear functions of the shape parameter estimates η̂i,t+1|t and λ̂i,t+1|t.
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D Technical Indicators and Return Forecasting

We follow Neely et al. (2014) and use a total of 12 technical indicators based on two popular

trend-following rules to forecast asset excess returns.

The first is a moving-average (MA) rule that generates a buy or sell signal (Si,t = 1 or

Si,t = 0, respectively) at the end of t by comparing two moving averages:

Si,t =


1 MAs,t ≥MAl,t

0 MAs,t < MAl,t

where

MAj,t = (1/j)

j−1∑
i=0

Pt−i for j = s, l;

Pt is the level of a stock price index, and s(l) is the length of the short (long) MA (s < l).

We denote the MA indicator with MA lengths s and l by MA(s, l). Intuitively, the MA rule

detects changes in stock price trends because the short MA will be more sensitive to recent

price movement than will the long MA. We analyze monthly MA rules with s = 1, 2, 3 and

l = 9, 12, 18: a total of 9 MA signals.

The second rule is based on momentum. A simple momentum rule generates the following

signal:

Si,t =


1 Pt ≥ Pt−m

0 Pt < Pt−m

Intuitively, a current stock price that is higher than its level m periods ago indicates “pos-

itive” momentum and relatively high expected excess returns, thereby generating a buy

signal. We denote the momentum indicator that compares Pt to Ptm by MOM(m), and we

compute monthly signals for m = 9, 12, 18: a total of 3 momentum signals. All in all, we

construct a total of 12 technical indicators using the MA and momentum rules52.

52Neely et al. (2014) use an additional tech. rule, on-balance volume, which requires trading volume data.
The volume data on the indexes we use are not available, so we only use the MA and Momentum rules.
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To incorporate information from the set of technical indicators, we follow Neely et al.

(2014) and estimate a predictive regression based on principal components.53.

Let xt = [x1,t, .., xN,t]
′ denote the N-vector (N=12) of the entire set of technical indicators

and let Ft = [F1,t, ..., FK,t]
′ denote the vector containing the first K principal components

extracted from xt (where K << N). We first estimate the univariate principal component

predictive regression in-sample:

rk,t+1 = αk + βkFk,t + ϵt+1

Then, the univariate OOS forecast for time t+ 1 is obtained by:

r̂k,t+1|t = α̂k,t + β̂k,tFk,t

At last, the forecast combination is computed:

r̂t+1|t =
1

K

K∑
k=1

r̂k,t+1|t

53Ludvigson and Ng (2007, 2009) estimate predictive regressions for excess stock and bond returns, re-
spectively, based on principal components extracted from a large set of macroeconomic variables.
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Table 1.1 Descriptive Statistics

Panel A reports the summary statistics for monthly excess returns of three asset class indexes:

S&P500, Barclays Aggregate Bond Index and S&P GSCI and the sample correlation matrix of

excess returns. Panel B reports the summary statistics for quarterly excess returns and their

sample correlation matrix. The monthly (quarterly) return series span the periods 1976:01-2012:12

(1976:Q1-2012:Q4).

Panel A: Monthly

N Mean Median Min Max Stdev Skew XKurt
SP500 443 .0027 .0064 -.2227 .1272 .0438 -.59 1.99
Bond 443 .0024 .0031 -.0705 .1023 .0161 .20 5.96
GSCI 443 .0030 .0043 -.2825 .2233 .0555 -.21 2.24

Correlation matrix

SP500 1
Bond .23 1
GSCI .18 -.02 1

Panel B: Quarterly

N Mean Median Min Max Stdev Skew XKurt
SP500 147 .0084 .0121 -.2467 .1977 .0801 -.43 .54
Bond 147 .0074 .0036 -.1251 .1702 .0338 .47 5.30
GSCI 147 .0103 .0175 -.4701 .5333 .1100 .07 4.88

Correlation matrix

SP500 1
Bond .16 1
GSCI .08 -.10 1
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Table 1.2 Monthly Rebalanced MV Strategies: Fixed-weights vs. Stock-Bond
vs. Stock-Bond-Commodity (1986-2012)

This table reports the portfolio performance of Fixed-weights (FIX), Stock-Bond (S-B) and Stock-

Bond-Commodity (S-B-C) MV strategies with monthly rebalancing. The in-sample period is

1976:01 - 1985:12, the out-of-sample period is 1986:01 - 2012:12. All reported performance mea-

sures refer to the out-of-sample period. The FIX strategy rebalances portfolio weights each month

to [50%,30%,10%] for S-B and [50%,20%,10%,10%] for S-B-C; the BWD strategy relies on sample

means and covariance matrices recomputed each month on an expanding estimation window; the

FWD strategy exploits predictability of excess returns and covariances and recursively forecasts

portfolio return moments each month using an expanding estimation window. We report the annu-

alized CRRA utility-based Certainty Equivalent Excess Return (CEQ) and the monthly Turnover

(TO). The CEQ is calculated from net portfolio returns after a proportional transaction cost of

50 bps. We report the portfolio performance for different levels of risk aversion (γ = 3, 5, 10) and

portfolio total leverage constraints (Lev<100%, 75%, 50%, 25% and Lev=0).

Lev<100% Lev<75% Lev<50% Lev<25% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel A: γ = 3

FIX:
S-B .0253 .02 .0253 .02 .0253 .02 .0253 .02 .0253 .02
S-B-C .0254 .02 .0254 .02 .0254 .02 .0254 .02 .0254 .02

BWD:
S-B .0458 .02 .0422 .02 .0376 .02 .0320 .02 .0257 .02
S-B-C .0372 .02 .0325 .02 .0268 .02 .0205 .02 .0136 .03

FWD:
S-B .0467 .12 .0399 .13 .0325 .15 .0246 .17 .0158 .20
S-B-C .0609 .19 .0518 .21 .0420 .25 .0320 .29 .0247 .31

Panel B: γ = 5

FIX:
S-B .0182 .02 .0182 .02 .0182 .02 .0182 .02 .0182 .02
S-B-C .0174 .02 .0174 .02 .0174 .02 .0174 .02 .0174 .02

BWD:
S-B .0310 .02 .0308 .02 .0297 .02 .0275 .02 .0238 .02
S-B-C .0276 .02 .0273 .02 .0260 .02 .0227 .02 .0179 .02

FWD:
S-B .0449 .10 .0391 .10 .0330 .11 .0262 .12 .0190 .14
S-B-C .0554 .14 .0487 .15 .0414 .16 .0332 .19 .0233 .22

Panel C: γ = 10

FIX:
S-B -.0003 .02 -.0003 .02 -.0003 .02 -.0003 .02 -.0003 .02
S-B-C -.0039 .02 -.0039 .02 -.0039 .02 -.0039 .02 -.0039 .02

BWD:
S-B .0148 .02 .0148 .02 .0148 .02 .0148 .02 .0148 .02
S-B-C .0132 .02 .0132 .02 .0132 .02 .0132 .02 .0132 .02

FWD:
S-B .0297 .09 .0288 .09 .0269 .09 .0238 .09 .0192 .10
S-B-C .0378 .12 .0361 .12 .0337 .12 .0293 .12 .0231 .14
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Table 1.3 Quarterly Rebalanced MV Strategies: Fixed-weights vs. Stock-Bond
vs. Stock-Bond-Commodity (1986-2012)

This table reports the portfolio performance of Fixed-weights (FIX), Stock-Bond (S-B) and Stock-

Bond-Commodity (S-B-C) MV strategies with quarterly rebalancing. The in-sample period is

1976:Q1 - 1985:Q4, the out-of-sample period is 1986:Q1 - 2012:Q4. All reported performance

measures refer to the out-of-sample period. The FIX strategy rebalances portfolio weights each

quarter to [50%,30%,10%] for S-B and [50%,20%,10%,10%] for S-B-C; the BWD strategy relies

on sample means and covariance matrices recomputed each quarter on an expanding estimation

window; the FWD strategy exploits predictability of excess returns and covariances and recursively

forecasts portfolio return moments each quarter using an expanding estimation window. We report

the annualized CRRA utility-based Certainty Equivalent Excess Return (CEQ) and the quarterly

Turnover (TO). The CEQ is calculated from net portfolio returns after a proportional transaction

cost of 50 bps. We report the portfolio performance for different levels of risk aversion (γ = 3, 5, 10)

and portfolio total leverage constraints (Lev<100%, 75%, 50%, 25% and Lev=0).

Lev<100% Lev<75% Lev<50% Lev<25% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel A: γ = 3

FIX:
S-B .0271 .04 .0271 .04 .0271 .04 .0271 .04 .0271 .04
S-B-C .0280 .05 .0280 .05 .0280 .05 .0280 .05 .0280 .05

BWD:
S-B .0382 .05 .0365 .05 .0337 .05 .0298 .05 .0248 .06
S-B-C .0386 .05 .0359 .05 .0316 .05 .0251 .06 .0185 .07

FWD:
S-B .0451 .17 .0391 .17 .0327 .18 .0265 .20 .0201 .22
S-B-C .0636 .28 .0569 .31 .0496 .35 .0431 .39 .0361 .42

Panel B: γ = 5

FIX:
S-B .0199 .04 .0199 .04 .0199 .04 .0199 .04 .0199 .04
S-B-C .0197 .05 .0197 .05 .0197 .05 .0197 .05 .0197 .05

BWD:
S-B .0226 .05 .0226 .05 .0226 .05 .0225 .05 .0209 .05
S-B-C .0240 .05 .0240 .05 .0241 .05 .0232 .05 .0204 .05

FWD:
S-B .0392 .16 .0356 .16 .0318 .16 .0267 .17 .0207 .18
S-B-C .0536 .21 .0487 .23 .0426 .25 .0365 .28 .0296 .32

Panel C: γ = 10

FIX:
S-B .0016 .04 .0016 .04 .0016 .04 .0016 .04 .0016 .04
S-B-C -.0029 .05 -.0029 .05 -.0029 .05 -.0029 .05 -.0029 .05

BWD:
S-B .0107 .05 .0107 .05 .0107 .05 .0107 .05 .0107 .05
S-B-C .0115 .05 .0115 .05 .0115 .05 .0115 .05 .0115 .05

FWD:
S-B .0264 .15 .0245 .15 .0225 .15 .0204 .15 .0179 .16
S-B-C .0311 .18 .0300 .18 .0289 .18 .0275 .19 .0242 .21
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Table 1.4 Monthly Rebalanced Non-MV Strategies: Fixed-weights vs.
Stock-Bond vs. Stock-Bond-Commodity (1986-2012)

This table reports the portfolio performance of Fixed-weights (FIX), Stock-Bond (S-B) and Stock-

Bond-Commodity (S-B-C) non-MV strategies with monthly rebalancing. The in-sample period

is 1976:01 - 1985:12, the out-of-sample period is 1986:01 - 2012:12. All reported performance

measures refer to the out-of-sample period. The FIX strategy rebalances portfolio weights each

month to [50%,30%,10%] for S-B and [50%,20%,10%,10%] for S-B-C; the BWD strategy relies on

sample means, covariances. co-skewness and co-kurtoses recomputed each month on an expanding

estimation window; the FWD strategy exploits predictability of excess returns, covariances, co-

skewness and co-kurtoses and recursively forecasts portfolio return moments each month using an

expanding estimation window. We report the annualized CRRA utility-based Certainty Equivalent

Excess Return (CEQ) and the monthly Turnover (TO). The CEQ is calculated from net portfolio

returns after a proportional transaction cost of 50 bps. We report the portfolio performance for

different levels of risk aversion (γ = 3, 5, 10) and portfolio total leverage constraints (Lev<100%,

75%, 50%, 25% and Lev=0).

Lev<100% Lev<75% Lev<50% Lev<25% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel A: γ = 3

FIX:
S-B .0253 .02 .0253 .02 .0253 .02 .0253 .02 .0253 .02
S-B-C .0254 .02 .0254 .02 .0254 .02 .0254 .02 .0254 .02

BWD:
S-B .0460 .02 .0423 .02 .0377 .02 .0320 .02 .0257 .02
S-B-C .0355 .02 .0309 .02 .0255 .02 .0194 .02 .0128 .03

FWD:
S-B .0435 .13 .0370 .14 .0301 .16 .0222 .18 .0134 .21
S-B-C .0569 .23 .0485 .25 .0397 .28 .0301 .32 .0242 .33

Panel B: γ = 5
FIX:
S-B .0182 .02 .0182 .02 .0182 .02 .0182 .02 .0182 .02
S-B-C .0174 .02 .0174 .02 .0174 .02 .0174 .02 .0174 .02

BWD:
S-B .0312 .02 .0311 .02 .0298 .02 .0276 .02 .0239 .02
S-B-C .0261 .02 .0260 .02 .0247 .02 .0216 .02 .0170 .02

FWD:
S-B .0416 .12 .0367 .12 .0306 .12 .0240 .13 .0171 .15
S-B-C .0512 .18 .0452 .19 .0378 .20 .0297 .22 .0207 .26

Panel C: γ = 10

FIX:
S-B -.0003 .02 -.0003 .02 -.0003 .02 -.0003 .02 -.0003 .02
S-B-C -.0039 .02 -.0039 .02 -.0039 .02 -.0039 .02 -.0039 .02

BWD:
S-B .0150 .02 .0150 .02 .0150 .02 .0150 .02 .0150 .02
S-B-C .0125 .02 .0125 .02 .0125 .02 .0126 .02 .0125 .02

FWD:
S-B .0240 .12 .0235 .12 .0221 .12 .0200 .12 .0170 .12
S-B-C .0316 .18 .0304 .18 .0279 .18 .0245 .18 .0197 .18
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Table 1.5 Quarterly Rebalanced Non-MV Strategies: Fixed-weights vs.
Stock-Bond vs. Stock-Bond-Commodity (1986-2012)

This table reports the portfolio performance of Fixed-weights (FIX), Stock-Bond (S-B) and Stock-

Bond-Commodity (S-B-C) non-MV strategies with quarterly rebalancing. The in-sample period

is 1976:Q1 - 1985:Q4, the out-of-sample period is 1986:Q1 - 2012:Q4. All reported performance

measures refer to the out-of-sample period. The FIX strategy rebalances portfolio weights each

quarter to [50%,30%,10%] for S-B and [50%,20%,10%,10%] for S-B-C; the BWD strategy relies on

sample means, covariances. co-skewness and co-kurtoses recomputed each quarter on an expanding

estimation window; the FWD strategy exploits predictability of excess returns, covariances, co-

skewness and co-kurtoses and recursively forecasts portfolio return moments each quarter using an

expanding estimation window. We report the annualized CRRA utility-based Certainty Equivalent

Excess Return (CEQ) and the quarterly Turnover (TO). The CEQ is calculated from net portfolio

returns after a proportional transaction cost of 50 bps. We report the portfolio performance for

different levels of risk aversion (γ = 3, 5, 10) and portfolio total leverage constraints (Lev<100%,

75%, 50%, 25% and Lev=0).

Lev<100% Lev<75% Lev<50% Lev<25% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel A: γ = 3

FIX:
S-B .0271 .04 .0271 .04 .0271 .04 .0271 .04 .0271 .04
S-B-C .0280 .05 .0280 .05 .0280 .05 .0280 .05 .0280 .05

BWD:
S-B .0392 .05 .0374 .05 .0342 .05 .0301 .05 .0248 .06
S-B-C .0347 .05 .0318 .05 .0272 .05 .0208 .06 .0151 .07

FWD:
S-B .0465 .18 .0412 .18 .0348 .18 .0285 .18 .0219 .19
S-B-C .0700 .34 .0633 .37 .0564 .41 .0492 .45 .0404 .48

Panel B: γ = 5

FIX:
S-B .0199 .04 .0199 .04 .0199 .04 .0199 .04 .0199 .04
S-B-C .0197 .05 .0197 .05 .0197 .05 .0197 .05 .0197 .05

BWD:
S-B .0236 .05 .0236 .05 .0236 .05 .0233 .05 .0213 .05
S-B-C .0215 .05 .0215 .05 .0217 .05 .0206 .05 .0176 .05

FWD:
S-B .0366 .18 .0342 .18 .0308 .18 .0272 .17 .0219 .17
S-B-C .0548 .28 .0513 .29 .0463 .30 .0401 .33 .0329 .38

Panel C: γ = 10

FIX:
S-B .0016 .04 .0016 .04 .0016 .04 .0016 .04 .0016 .04
S-B-C -.0029 .05 -.0029 .05 -.0029 .05 -.0029 .05 -.0029 .05

BWD:
S-B .0112 .05 .0112 .05 .0112 .05 .0112 .05 .0112 .05
S-B-C .0102 .05 .0102 .05 .0102 .05 .0102 .05 .0102 .05

FWD:
S-B .0211 .18 .0207 .18 .0197 .18 .0184 .18 .0166 .17
S-B-C .0300 .26 .0291 .27 .0274 .27 .0263 .27 .0244 .28
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Table 1.6 Quarterly Rebalanced Strategies: BWD vs. FWD Strategies (1986-2012)

This table reports the portfolio performance of Stock-Bond (S-B) and Stock-Bond-Commodity (S-B-C) strategies with quarterly rebal-

ancing. The in-sample period is 1976:Q1-1985:Q4, the out-of-sample period is 1986:Q1-2012:Q4. All reported performance measures

refer to the out-of-sample period. Panel A reports results for MV strategies, Panel B for non-MV strategies. In each panel the S-B

and S-B-C allocations are implemented using four combinations of the BWD and FWD approaches to forecasting return moments, For

instance, in Panel A, FWD & BWD denotes a portfolio allocation where expected returns are computed with the FWD approach and

the covariance matrix is computed with the BWD approach. The BWD approach relies on sample moments recomputed each quarter

on an expanding estimation window; the FWD approach exploits predictability of return moments and recursively forecasts portfolio

return moments each quarter using an expanding estimation window. We report the annualized mean, standard deviation, skewness and

kurtosis of realized portfolio returns and the annualized CRRA utility-based Certainty Equivalent Excess Return (CEQ). The CEQ is

calculated from net portfolio returns after a proportional transaction cost of 50 bps. We report the measures for moderate risk aversion

(γ = 5) and three portfolio total leverage constraints (Lev<100%, 50% and Lev=0).

Lev<100% Lev<50% Lev=0%

Mean Std Skew Kurt CEQ Mean Std Skew Kurt CEQ Mean Std Skew Kurt CEQ

Panel A: MV

BWD & BWD:
S-B .0261 .0380 -.32 4.02 .0226 .0261 .0380 -.32 4.03 .0226 .0241 .0367 -.39 4.23 .0209
S-B-C .0538 .1113 .89 12.48 .0240 .0535 .1108 .93 12.60 .0241 .0443 .1021 1.46 15.54 .0203

FWD & BWD:
S-B .0272 .0406 -.04 5.17 .0234 .0274 .0404 -.02 5.24 .0235 .0241 .0378 -.29 5.23 .0207
S-B-C .0596 .1125 1.91 16.25 .0324 .0584 .1114 2.00 16.78 .0319 .0482 .1030 2.42 19.18 .0261

BWD & FWD:
S-B .0459 .0697 -.49 3.84 .0340 .0369 .0587 -.63 4.92 .0283 .0249 .0462 -1.10 8.79 .0194
S-B-C .0750 .1153 1.18 12.10 .0449 .0599 .1054 1.30 13.79 .0346 .0419 .0926 1.34 14.58 .0221

FWD & FWD:
S-B .0503 .0677 -.45 4.16 .0392 .0398 .0570 -.77 5.27 .0318 .0259 .0449 -1.40 9.45 .0207
S-B-C .0826 .1184 1.80 15.33 .0530 .0667 .1081 1.94 16.12 .0420 .0486 .0957 2.19 17.16 .0292
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Table 1.6 (Continues)

Lev<100% Lev<50% Lev=0%

Mean Std Skew Kurt CEQ Mean Std Skew Kurt CEQ Mean Std Skew Kurt CEQ

Panel B: Non-MV

BWD & BWD:
S-B .0275 .0392 -.31 4.01 .0236 .0275 .0392 -.31 4.01 .0236 .0249 .0372 -.41 4.29 .0214
S-B-C .0550 .1154 .74 11.33 .0213 .0545 .1147 .79 11.48 .0215 .0437 .1049 1.27 14.16 .0173

FWD & BWD:
S-B .0291 .0423 .00 5.17 .0245 .0292 .0419 .02 5.25 .0248 .0251 .0387 -.31 5.21 .0213
S-B-C .0623 .1174 1.75 14.63 .0309 .0606 .1162 1.85 15.17 .0302 .0484 .1068 2.20 17.15 .0235

BWD & FWD:
S-B .0425 .0614 -.31 3.50 .0328 .0359 .0543 -.43 3.94 .0283 .0251 .0434 -.64 5.81 .0202
S-B-C .0732 .1023 .18 5.53 .0462 .0612 .0937 .45 6.46 .0392 .0439 .0833 .72 7.62 .0270

FWD & FWD:
S-B .0462 .0607 -.38 3.94 .0366 .0382 .0534 -.58 4.42 .0308 .0268 .0430 -.96 6.84 .0219
S-B-C .0822 .1049 .40 5.57 .0544 .0692 .0972 .72 6.69 .0461 .0511 .0880 1.02 7.69 .032666



Table 1.7 Performance of Portfolio Strategies (1986-2012): Which Asset Predictability Matters the Most?

This table presents the performance of Stock-Bond (S-B) and Stock-Bond-Commodity (S-B-C) portfolios formed using various combi-

nations of BWD and FWD expected returns during the out-of-sample period of 1986:01-2012:12. For instance, FWD S + BWD B-C

denotes a portfolio allocation where expected returns for stocks are computed with the FWD approach while expected returns for bonds

and commodities are computed with the BWD approach. In all cases the relevant higher moments are predicted with the FWD approach.

The BWD approach relies on sample moments recomputed each period on an expanding estimation window; the FWD approach exploits

predictability of return moments and recursively forecasts portfolio return moments each period using an expanding estimation window.

We report the first four moments of portfolio realized excess returns and the annualized CRRA utility-based Certainty Equivalent Excess

Return (CEQ) . The CEQ is calculated from net portfolio returns after a proportional transaction cost of 50 bps. We report the portfolio

performance for risk aversion of 5 (γ=5) and portfolio total leverage constraint of 50% (Lev<50%). Panels A and B report results

for mean-variance (MV) strategies with, respectively, monthly and quarterly rebalancing. Panels C and D report results for non-MV

strategies.

Mean Std Skew Kurt CEQ Mean Std Skew Kurt CEQ

Panel A: MV / Monthly Panel B: MV / Quarterly

BWD S-B-C
S-B .0415 .0581 -.55 4.96 .0327 .0369 .0587 -.63 4.92 .0283
S-B-C .0506 .0863 -.01 4.28 .0313 .0599 .1054 1.30 13.79 .0346

FWD S + BWD B-C
S-B .0386 .0555 -.29 3.79 .0307 .0359 .0588 -.61 4.82 .0272
S-B-C .0489 .0867 .00 4.28 .0294 .0586 .1043 1.28 13.12 .0339

FWD B + BWD S-C
S-B .0413 .0593 -.68 5.94 .0322 .0393 .0565 -.76 5.50 .0314
S-B-C .0521 .0835 -.03 4.21 .0340 .0622 .1077 1.03 13.03 .0350

FWD C + BWD S-B
S-B .0415 .0581 -.55 4.96 .0327 .0369 .0587 -.63 4.92 .0283
S-B-C .0581 .0841 .18 4.19 .0396 .0658 .1069 2.18 18.23 .0419

FWD S-B-C
S-B .0412 .0563 -.27 3.76 .0330 .0398 .0570 -.77 5.27 .0318
S-B-C .0592 .0830 .11 4.04 .0412 .0667 .1081 1.94 16.12 .0420
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Table 1.7 (Continues)

Mean Std Skew Kurt CEQ Mean Std Skew Kurt CEQ

Panel C: Non-MV / Monthly Panel D: Non-MV / Quarterly

BWD S-B-C
S-B .0353 .0575 -.67 4.96 .0267 .0359 .0543 -.43 3.94 .0283
S-B-C .0463 .0911 .10 4.36 .0250 .0612 .0937 .45 6.46 .0392

FWD S + BWD B-C
S-B .0335 .0544 -.39 3.33 .0258 .0356 .0539 -.42 3.91 .0280
S-B-C .0454 .0908 .16 4.54 .0243 .0596 .0933 .44 6.13 .0379

FWD B + BWD S-C
S-B .0387 .0592 -.60 5.53 .0295 .0368 .0528 -.63 4.54 .0296
S-B-C .0494 .0892 .11 4.19 .0290 .0641 .0968 .35 6.20 .0405

FWD C + BWD S-B
S-B .0353 .0575 -.67 4.96 .0267 .0359 .0543 -.43 3.94 .0283
S-B-C .0541 .0893 .34 4.56 .0337 .0666 .0955 .78 7.30 .0443

FWD S-B-C
S-B .0388 .0564 -.23 3.51 .0306 .0382 .0534 -.58 4.42 .0308
S-B-C .0578 .0884 .30 4.49 .0378 .0692 .0972 .72 6.69 .0461
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Table 1.8 Monthly Rebalanced Portfolio Strategies (1986-2012): the Role of Technical Indicators

This table reports the performance of Stock-Bond (S-B) and Stock-Bond-Commodity (S-B-C) monthly rebalanced portfolios using either

macroeconomic predictors or technical indicators to form expected returns and using the FWD approach for higher return moments.

All reported performance measures refer to the out-of-sample period 1986:01-2012:12. Tech 1st PC denotes strategies where the return

forecast is based on the first principal component of twelve technical indicators (listed in Appendix D); Tech 1st +2nd + 3rd PC denotes

strategies where the return forecast is based on the first three principal components of the same twelve technical indicators; FWD Macro

Comb denotes strategies where the return forecast is based on the combination of individual forecasts from macroeconomic and financial

market variables. We report the first four moments of portfolio realized excess returns, the annualized CRRA Certainty Equivalent

Excess Return (CEQ) and the monthly Turnover (TO). The CEQ is calculated from net portfolio returns after a proportional transaction

cost of 50 bps. We report portfolio performance for a risk aversion of 5 (γ=5) and three portfolio total leverage constraints (Lev<100%,

50% and Lev=0). Panels A reports results for mean-variance (MV) strategies, Panel B for non-MV strategies.

Lev<100% Lev<50% Lev=0%

Mean Std Skew Kurt CEQ TO Mean Std Skew Kurt CEQ TO Mean Std Skew Kurt CEQ TO

Panel A: MV

Tech: 1st PC
S-B .0443 .0863 -1.61 12.61 .0251 .16 .0313 .0775 -2.14 17.76 .0160 .17 .0175 .0690 -2.88 26.50 .0055 .20
S-B-C .0443 .1124 -.36 6.74 .0120 .25 .0295 .1006 -.63 7.60 .0038 .28 .0109 .0852 -1.14 10.10 -.0073 .33

Tech: 1st + 2nd + 3rd PC Comb
S-B .0494 .0805 .03 4.20 .0326 .24 .0403 .0727 .13 4.99 .0267 .24 .0253 .0611 -.14 4.74 .0158 .25
S-B-C .0796 .1201 .25 4.99 .0415 .36 .0597 .1082 .09 4.63 .0293 .38 .0364 .0927 -.07 4.25 .0144 .42

FWD Macro Comb
S-B .0580 .0706 -.23 4.06 .0450 .10 .0412 .0563 -.27 3.76 .0330 .11 .0232 .0405 -.36 3.45 .0190 .14
S-B-C .0798 .0962 .07 3.76 .0552 .14 .0592 .0830 .11 4.04 .0412 .16 .0361 .0707 .15 4.54 .0232 .22
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Table 1.8 (Continues)

Lev<100% Lev<50% Lev=0%

Mean Std Skew Kurt CEQ TO Mean Std Skew Kurt CEQ TO Mean Std Skew Kurt CEQ TO

Panel B: Non-MV

Tech: 1st PC
S-B .0413 .0860 -1.62 12.77 .0204 .19 .0313 .0783 -2.10 17.19 .0136 .19 .0173 .0700 -2.78 25.19 .0030 .21
S-B-C .0507 .1190 -.31 6.31 .0131 .28 .0345 .1043 -.63 7.13 .0053 .29 .0147 .0870 -1.06 9.54 -.0056 .33

Tech: 1st + 2nd + 3rd PC Comb
S-B .0411 .0804 -.10 4.67 .0244 .26 .0340 .0742 -.08 5.37 .0199 .26 .0220 .0628 -.33 5.27 .0119 .26
S-B-C .0862 .1263 .34 4.70 .0448 .37 .0637 .1128 .18 4.53 .0309 .38 .0385 .0953 .06 4.24 .0153 .42

FWD Macro Comb
S-B .0537 .0682 -.15 3.80 .0416 .12 .0388 .0564 -.23 3.51 .0306 .12 .0217 .0421 -.38 3.54 .0171 .15
S-B-C .0777 .1008 .23 4.05 .0512 .18 .0578 .0884 .30 4.49 .0378 .20 .0352 .0757 .33 5.07 .0207 .26
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Table 1.9 Quarterly Rebalanced Strategies: Sub-period Performance and Tradability

This table reports sub-period portfolio performance and tradability using financial instruments (futures and ETFs) of Fixed-weights

(FIX), Stock-Bond (S-B) and Stock-Bond-Commodity (S-B-C) MV (left portion of the table) and non-MV (right portion) strategies

with quarterly rebalancing. Specifically, Panel A reports the out-of-sample performance of portfolio strategies using asset class indexes

over the period of 1986:Q1-2001:Q4. Panel B presents the out-of-sample performance of portfolio strategies using an ETF tracking

S&P500 (Ticker: SPY) to represent the equity class, a combination of Aggregate Bond Index and ETF (Ticker:AGG) for the bond

class, and a combination of Futures and ETF (Ticker:GSG) that track the GSCI for commodity class for the period 1993:Q3-2012:Q4.

Panel C reports the out-of-sample performance of portfolio strategies using SPY, AGG and Futures/GSG for equities, bonds and

commodities, respectively, over the period of 2003:Q4-2012:Q4. Panel D shows the out-of-sample performance of monthly rebalanced

portfolio strategies using SPY, AGG and GSG for for equities, bonds and commodities, respectively, over the period 2006:08-2012:12.

Panel E shows the out-of-sample performance of monthly rebalanced portfolio strategies using SPY, AGG and DBC (tracks the DBIQ

Optimum Yield Diversified Commodity Index) for for equities, bonds and commodities, respectively, over the period 2006:03-2012:12.

All reported performance measures refer to the out-of-sample period. The FIX strategy rebalances portfolio weights each quarter to

[50%,30%,10%] for S-B and [50%,20%,10%,10%] for S-B-C; the BWD strategy relies on sample means, covariances. co-skewness and

co-kurtosis recomputed each quarter on an expanding estimation window; the FWD strategy exploits predictability of excess returns,

covariances, co-skewness and co-kurtosis and recursively forecasts portfolio return moments each quarter using an expanding estimation

window. We report the annualized CRRA utility-based Certainty Equivalent Excess Return (CEQ) and the quarterly Turnover (TO).

The CEQ is calculated from net portfolio returns after a proportional transaction cost of 50 bps for indexes and futures and 10bps for

ETFs. We report the measures based on moderate risk aversion (γ = 5) and three portfolio total leverage constraints (Lev<100%, 50%

and Lev=0).

MV Non-MV MV Non-MV

Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel A: 1986:Q1-2001:Q4 Panel B: 1993:Q3-2012:Q4

FIX: FIX:
S-B .0292 .04 .0292 .04 .0292 .04 .0292 .04 .0292 .04 .0292 .04 S-B .0169 .05 .0169 .05 .0169 .05 .0171 .05 .0171 .05 .0171 .05
S-B-C .0319 .05 .0319 .05 .0319 .05 .0319 .05 .0319 .05 .0319 .05 S-B-C .0153 .05 .0153 .05 .0153 .05 .0145 .05 .0145 .05 .0145 .05

BWD: BWD:
S-B .0154 .09 .0154 .09 .0154 .09 .0160 .09 .0160 .09 .0160 .09 S-B .0263 .03 .0263 .03 .0243 .03 .0275 .03 .0275 .03 .0247 .02
S-B-C .0253 .07 .0253 .07 .0245 .06 .0214 .07 .0214 .07 .0201 .06 S-B-C .0233 .04 .0233 .04 .0162 .04 .0174 .04 .0178 .04 .0118 .04

FWD: FWD:
S-B .0270 .23 .0237 .23 .0156 .24 .0253 .25 .0225 .25 .0175 .25 S-B .0396 .09 .0325 .09 .0228 .11 .0383 .10 .0319 .09 .0229 .09
S-B-C .0446 .25 .0364 .28 .0266 .34 .0415 .36 .0367 .37 .0258 .43 S-B-C .0499 .17 .0398 .21 .0271 .30 .0555 .23 .0463 .26 .0344 .36
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Table 1.9 (Continues)

MV Non-MV MV Non-MV

Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel C: 2003:Q4-2012:Q4

FIX:
S-B .0136 .06 .0136 .06 .0136 .06 .0138 .06 .0138 .06 .0138 .06
S-B-C .0083 .07 .0083 .07 .0083 .07 .0068 .07 .0068 .07 .0068 .07

BWD:
S-B .0316 .03 .0316 .03 .0273 .03 .0331 .03 .0331 .03 .0274 .03
S-B-C .0172 .06 .0173 .05 .0096 .06 .0077 .06 .0084 .05 .0035 .06

FWD:
S-B .0492 .08 .0382 .09 .0255 .12 .0445 .11 .0371 .10 .0252 .10
S-B-C .0610 .19 .0487 .24 .0345 .34 .0679 .21 .0590 .24 .0467 .36
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Table 1.10 Quarterly Rebalanced Strategies: Sub-period Performance and Tradability

This table reports sub-period portfolio performance and tradability using financial instruments (futures and ETFs) of Fixed-weights

(FIX), Stock-Bond (S-B) and Stock-Bond-Commodity (S-B-C) MV (left portion of the table) and non-MV (right portion) strategies with

quarterly rebalancing. Specifically, Panel A reports the out-of-sample performance of portfolio strategies using asset class indexes over

the period of 1986:Q1-2001:Q4. Panel B presents the out-of-sample performance of portfolio strategies using an ETF tracking S&P500

(Ticker: SPY) to represent the equity class, a combination of Aggregate Bond Index and ETF (Ticker:AGG) for the bond class, and

a combination of Futures and ETF (Ticker:GSG) that track the GSCI for commodity class for the period 1993:Q3-2012:Q4. Panel C

reports the out-of-sample performance of portfolio strategies using SPY, AGG and Futures/GSG for equities, bonds and commodities,

respectively, over the period of 2003:Q4-2012:Q4. Panel D shows the out-of-sample performance of portfolio strategies using SPY, AGG

and GSG for for equities, bonds and commodities, respectively, over the period 2006:Q4-2012:Q4. Panel E shows the out-of-sample

performance of portfolio strategies using SPY, AGG and DBC (tracks the DBIQ Optimum Yield Diversified Commodity Index) for

for equities, bonds and commodities, respectively, over the period 2006:Q3-2012:Q4. All reported performance measures refer to the

out-of-sample period. The FIX strategy rebalances portfolio weights each quarter to [50%,30%,10%] for S-B and [50%,20%,10%,10%] for

S-B-C; the BWD strategy relies on sample means, covariances. co-skewness and co-kurtosis recomputed each quarter on an expanding

estimation window; the FWD strategy exploits predictability of excess returns, covariances, co-skewness and co-kurtosis and recursively

forecasts portfolio return moments each quarter using an expanding estimation window. We report the annualized CRRA utility-based

Certainty Equivalent Excess Return (CEQ) and the quarterly Turnover (TO). The CEQ is calculated from net portfolio returns after a

proportional transaction cost of 50 bps for indexes and futures and 10bps for ETFs. We report the measures based on moderate risk

aversion (γ = 5) and three portfolio total leverage constraints (Lev<100%, 50% and Lev=0).

MV Non-MV MV Non-MV

Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel A: 1986:Q1-2001:Q4 Panel B: 1993:Q3-2012:Q4

FIX: FIX:
S-B .0292 .04 .0292 .04 .0292 .04 .0292 .04 .0292 .04 .0292 .04 S-B .0169 .05 .0169 .05 .0169 .05 .0171 .05 .0171 .05 .0171 .05
S-B-C .0319 .05 .0319 .05 .0319 .05 .0319 .05 .0319 .05 .0319 .05 S-B-C .0153 .05 .0153 .05 .0153 .05 .0145 .05 .0145 .05 .0145 .05

BWD: BWD:
S-B .0154 .09 .0154 .09 .0154 .09 .0160 .09 .0160 .09 .0160 .09 S-B .0263 .03 .0263 .03 .0243 .03 .0275 .03 .0275 .03 .0247 .02
S-B-C .0253 .07 .0253 .07 .0245 .06 .0214 .07 .0214 .07 .0201 .06 S-B-C .0233 .04 .0233 .04 .0162 .04 .0174 .04 .0178 .04 .0118 .04

FWD: FWD:
S-B .0270 .23 .0237 .23 .0156 .24 .0253 .25 .0225 .25 .0175 .25 S-B .0396 .09 .0325 .09 .0228 .11 .0383 .10 .0319 .09 .0229 .09
S-B-C .0446 .25 .0364 .28 .0266 .34 .0415 .36 .0367 .37 .0258 .43 S-B-C .0499 .17 .0398 .21 .0271 .30 .0555 .23 .0463 .26 .0344 .36
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Table 1.10 (Continues)

MV Non-MV MV Non-MV

Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel C: 2003:Q4-2012:Q4 Panel D: 2006:08-2012:12

FIX: FIX:
S-B .0136 .06 .0136 .06 .0136 .06 .0138 .06 .0138 .06 .0138 .06 S-B .0088 .03 .0088 .03 .0088 .03 .0082 .03 .0082 .03 .0082 .03
S-B-C .0083 .07 .0083 .07 .0083 .07 .0068 .07 .0068 .07 .0068 .07 S-B-C -.0081 .03 -.0081 .03 -.0081 .03 -.0095 .03 -.0095 .03 -.0095 .03

BWD: BWD:
S-B .0316 .03 .0316 .03 .0273 .03 .0331 .03 .0331 .03 .0274 .03 S-B .0612 .02 .0557 .02 .0371 .02 .0613 .02 .0557 .02 .0371 .02
S-B-C .0172 .06 .0173 .05 .0096 .06 .0077 .06 .0084 .05 .0035 .06 S-B-C .0077 .02 .0013 .02 -.0092 .02 .0020 .02 -.0017 .02 -.0108 .02

FWD: FWD:
S-B .0492 .08 .0382 .09 .0255 .12 .0445 .11 .0371 .10 .0252 .10 S-B .0811 .07 .0613 .09 .0403 .13 .0724 .09 .0575 .09 .0384 .12
S-B-C .0610 .19 .0487 .24 .0345 .34 .0679 .21 .0590 .24 .0467 .36 S-B-C .0727 .14 .0533 .18 .0327 .25 .0663 .16 .0514 .19 .0327 .26

Panel E: 2006:03-2012:12

FIX:
S-B .0088 .03 .0088 .03 .0088 .03 .0082 .03 .0082 .03 .0082 .03
S-B-C .0013 .03 .0013 .03 .0013 .03 .0000 .03 .0000 .03 .0000 .03

BWD:
S-B .0612 .02 .0557 .02 .0371 .02 .0613 .02 .0557 .02 .0371 .02
S-B-C .0432 .02 .0327 .02 .0181 .03 .0383 .02 .0305 .02 .0171 .02

FWD:
S-B .0811 .07 .0613 .09 .0403 .13 .0724 .09 .0575 .09 .0384 .12
S-B-C .0968 .13 .0757 .17 .0534 .24 .0939 .15 .0761 .18 .0545 .24
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Table 1.11 Quarterly and Monthly Rebalanced Strategies: Sub-period Performance and Tradability

This table reports sub-period portfolio performance and tradability using financial instruments (futures and ETFs) of Fixed-weights

(FIX), Stock-Bond (S-B) and Stock-Bond-Commodity (S-B-C) MV (left portion of the table) and non-MV (right portion) strategies with

quarterly rebalancing. Specifically, Panel A reports the out-of-sample performance of portfolio strategies using asset class indexes over

the period of 1986:Q1-2001:Q4. Panel B presents the out-of-sample performance of portfolio strategies using an ETF tracking S&P500

(Ticker: SPY) to represent the equity class, a combination of Aggregate Bond Index and ETF (Ticker:AGG) for the bond class, and

a combination of Futures and ETF (Ticker:GSG) that track the GSCI for commodity class for the period 1993:Q3-2012:Q4. Panel C

reports the out-of-sample performance of portfolio strategies using SPY, AGG and Futures/GSG for equities, bonds and commodities,

respectively, over the period of 2003:Q4-2012:Q4. Panel D shows the out-of-sample performance of portfolio strategies using SPY, AGG

and GSG for for equities, bonds and commodities, respectively, over the period 2006:Q4-2012:Q4. Panel E shows the out-of-sample

performance of portfolio strategies using SPY, AGG and DBC (tracks the DBIQ Optimum Yield Diversified Commodity Index) for

for equities, bonds and commodities, respectively, over the period 2006:Q3-2012:Q4. All reported performance measures refer to the

out-of-sample period. The FIX strategy rebalances portfolio weights each quarter to [50%,30%,10%] for S-B and [50%,20%,10%,10%] for

S-B-C; the BWD strategy relies on sample means, covariances. co-skewness and co-kurtosis recomputed each quarter on an expanding

estimation window; the FWD strategy exploits predictability of excess returns, covariances, co-skewness and co-kurtosis and recursively

forecasts portfolio return moments each quarter using an expanding estimation window. We report the annualized CRRA utility-based

Certainty Equivalent Excess Return (CEQ) and the quarterly Turnover (TO). The CEQ is calculated from net portfolio returns after a

proportional transaction cost of 50 bps for indexes and futures and 10bps for ETFs. We report the measures based on moderate risk

aversion (γ = 5) and three portfolio total leverage constraints (Lev<100%, 50% and Lev=0).

MV Non-MV MV Non-MV

Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel A: 1986:Q1-2001:Q4 Panel B: 1993:Q3-2012:Q4

FIX: FIX:
S-B .0292 .04 .0292 .04 .0292 .04 .0292 .04 .0292 .04 .0292 .04 S-B .0169 .05 .0169 .05 .0169 .05 .0171 .05 .0171 .05 .0171 .05
S-B-C .0319 .05 .0319 .05 .0319 .05 .0319 .05 .0319 .05 .0319 .05 S-B-C .0153 .05 .0153 .05 .0153 .05 .0145 .05 .0145 .05 .0145 .05

BWD: BWD:
S-B .0154 .09 .0154 .09 .0154 .09 .0160 .09 .0160 .09 .0160 .09 S-B .0263 .03 .0263 .03 .0243 .03 .0275 .03 .0275 .03 .0247 .02
S-B-C .0253 .07 .0253 .07 .0245 .06 .0214 .07 .0214 .07 .0201 .06 S-B-C .0233 .04 .0233 .04 .0162 .04 .0174 .04 .0178 .04 .0118 .04

FWD: FWD:
S-B .0270 .23 .0237 .23 .0156 .24 .0253 .25 .0225 .25 .0175 .25 S-B .0396 .09 .0325 .09 .0228 .11 .0383 .10 .0319 .09 .0229 .09
S-B-C .0446 .25 .0364 .28 .0266 .34 .0415 .36 .0367 .37 .0258 .43 S-B-C .0499 .17 .0398 .21 .0271 .30 .0555 .23 .0463 .26 .0344 .36
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Table 1.11 (Continues)

MV Non-MV MV Non-MV

Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0 Lev<100% Lev<50% Lev=0

CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO CEQ TO

Panel C: 2003:Q4-2012:Q4 Panel D: 2006:Q4-2012:Q4

FIX: FIX:
S-B .0136 .06 .0136 .06 .0136 .06 .0138 .06 .0138 .06 .0138 .06 S-B .0164 .08 .0164 .08 .0164 .08 .0171 .08 .0171 .08 .0171 .08
S-B-C .0083 .07 .0083 .07 .0083 .07 .0068 .07 .0068 .07 .0068 .07 S-B-C .0005 .09 .0005 .09 .0005 .09 -.0007 .09 -.0007 .09 -.0007 .09

BWD: BWD:
S-B .0316 .03 .0316 .03 .0273 .03 .0331 .03 .0331 .03 .0274 .03 S-B .0464 .05 .0464 .05 .0388 .04 .0485 .05 .0485 .05 .0389 .04
S-B-C .0172 .06 .0173 .05 .0096 .06 .0077 .06 .0084 .05 .0035 .06 S-B-C .0015 .07 .0013 .07 -.0060 .07 -.0106 .07 -.0101 .07 -.0138 .07

FWD: FWD:
S-B .0492 .08 .0382 .09 .0255 .12 .0445 .11 .0371 .10 .0252 .10 S-B .0731 .10 .0550 .11 .0348 .14 .0736 .11 .0569 .11 .0360 .12
S-B-C .0610 .19 .0487 .24 .0345 .34 .0679 .21 .0590 .24 .0467 .36 S-B-C .0595 .22 .0425 .28 .0246 .38 .0605 .23 .0481 .29 .0324 .38

Panel E: 2006:Q3-2012:Q4

FIX:
S-B .0167 .08 .0167 .08 .0167 .08 .0174 .08 .0174 .08 .0174 .08
S-B-C .0098 .08 .0098 .08 .0098 .08 .0090 .08 .0090 .08 .0090 .08

BWD:
S-B .0444 .04 .0444 .04 .0374 .04 .0465 .04 .0465 .04 .0375 .04
S-B-C .0282 .06 .0265 .06 .0137 .06 .0198 .06 .0187 .06 .0083 .06

FWD:
S-B .0695 .09 .0529 .10 .0339 .13 .0702 .11 .0548 .11 .0348 .12
S-B-C .0709 .21 .0529 .26 .0337 .38 .0704 .24 .0561 .30 .0396 .40
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Figure 1.1 Non-MV Quarterly Rebalanced FWD S-B-C vs. FWD S-B
Strategies: Weight Differences and Excess Returns for Each Asset Class
This figure shows the differences in portfolio weights assigned to each asset class index
(colored solid line) between FWD S-B-C and FWD S-B portfolio strategies and the excess
returns of asset class indexes (black dashed line). We report the portfolio weights generated
for a moderately risk averse investor (γ = 5) and a medium portfolio total leverage constraint
(Lev<50%). The out-of-sample period covers 1986:Q1-2012:Q4.
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Chapter 2

Investing in Mutual Funds:
Exploiting the Cross-sectional
Predictability in Fund Performance

2.1 Introduction

With $15 trillion in assets under management, mutual funds serve as a significant component

of U.S. households’ investment holdings. Among all types of funds, about 3,195 actively

managed domestic equity funds with approximately $6 trillion in total net assets constitute

the largest portion of the average U.S. investor’s investment portfolio at year-end of 2013.1

Given such a large cross-section of funds, how should investors effectively invest in the

universe of active equity mutual funds, or should they at all?

Despite numerous efforts, the literature has not been able to provide a definitive an-

swer to this question. Early studies, e.g. Jensen (1968), Malkiel (1995), Gruber (1996) and

Carhart (1997), find that active equity mutual funds, on average, persistently underperform

the aggregate stock market and other passive benchmarks after fees and expenses, and sug-

gest that these funds possess little skill and therefore investors would be better off investing

in passively managed index funds. Instead of treating all active mutual funds as one group,

1See Investment Company Fact Book 2014 at http://www.icifactbook.org.
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academics have examined subgroups of the active management industry. Some studies report

that a small proportion of fund managers exhibit superior skill relative to their peers in stock

picking, market timing, volatility timing or earning forecasting.2 Implicitly, such empirical

evidence indicates that investors may invest with those managers who were identified as

skilled ex-ante and expect positive outcomes in return for their money. Nevertheless, Berk

and Van Binsbergen (2015) argue that because of competition in capital markets, manage-

rial skill does not necessarily translate into net gains to their investors. Moreover, Pástor,

Stambaugh, and Taylor (2015) show that the active management industry has in fact be-

come more skilled over time, whereas investors do not benefit from such improvement due

to increasing competition as the industry size grows.

The above discussion suggests that neither buying the average mutual fund nor investing

with skilled fund managers would be an effective solution for investors who seek to select a

portfolio of mutual funds. In this paper, I reexamine this problem within an optimal port-

folio choice framework. Specifically, using a large sample of U.S. domestic active equity mu-

tual funds, I construct optimal investment strategies that jointly exploit the cross-sectional

predictability in fund performance induced by a number of fund-level characteristics and

macroeconomic variables, and evaluate their performance out-of-sample over the investment

period 1996:01–2013:12.

A number of papers find that mutual fund characteristics, such as past performance, fund

size, recent cash inflows and the degree of activeness in management, can help predict the

future relative performance of funds.3 These studies further show that the predictive power

2See, among others, Grinblatt and Titman (1989); Busse (1999); Bollen and Busse (2005); Kosowski,
Timmermann, Wermers, and White (2006); Jiang, Yao, and Yu (2007); Kacperczyk, Van Nieuwerburgh, and
Veldkamp (2013); Jiang, Verbeek, and Wang (2014).

3Related studies include Hendricks, Patel, and Zeckhauser (1993), Goetzmann and Ibbotson (1994), Chen,
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of each individual characteristic could be exploited using a sorting rule to build a long-short

portfolio and this portfolio produces a positive benchmark-adjusted return, suggesting that

the information content conveyed by fund characteristics is economically valuable. However,

the profitability of the hypothetical long-short portfolio may not truly reflect the economic

gains that the characteristics could generate for a real-world investor, because short-selling

a mutual fund is very hard, if not impossible, in practice. By eliminating short positions,

one could still form a long-only strategy that recursively selects a small group of top-ranked

funds based on a particular characteristic. Albeit simple and intuitive, such an approach

may not be optimal due to at least three reasons: (i) it does not take full advantage of

conditioning information available to investors, such as the potentially valuable information

in other fund characteristics and the time-variability in the cross-sectional predictability of

fund performance; (ii) it requires a subjective choice about the number of groups funds are

sorted into; (iii) it does not align with the principles of portfolio theory that takes into

account investors’ preferences and attitude toward risk taking. I detail these issues in the

following.

The advantages of integrating the predictive information from multiple cross-sectional

predictors of asset returns in trading strategies are recently investigated outside the mutual

fund literature.4 This strand of research shows that the cross-sectional predictors, when used

on an individual basis in trading strategies, could generate significant economic gains, but

could produce even larger economic value if properly combined in a single composite strategy

Hong, Huang, and Kubik (2004), Gruber (1996), Zheng (1999), Cremers and Petajisto (2009), Kacperczyk,
Sialm, and Zheng (2005), Kacperczyk, Sialm, and Zheng (2008) and Amihud and Goyenko (2013).

4For example, Asness, Moskowitz, and Pedersen (2013) average momentum and value portfolios within
and across multiple asset classes. Brandt (2009a) optimally combine size, value and momentum in an equity-
only portfolio. Barroso and Santa-Clara (2014) bundle the carry trade with other characteristics, such as
momentum, reversal, real exchange rate and current account to build optimal currency portfolios.
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that relies on all of them. The added value stems from the advantages of diversifying

across multiple return predictors whose predictive ability can vary over time. I contend

that similar advantages may be present when exploiting the cross-sectional performance

predictability of mutual funds. Funds with distinct characteristics may differ in their trading

strategies and therefore in their performance. For instance, previous studies find that hot-

hand and high alpha funds are likely to be momentum followers in the equity market.5 In

addition, highly active funds tend to exhibit strong stock selection skill and perform relative

well during recessions and poor business conditions.6 Such distinct trading behavior and

abilities could lead to wide spreads in the cross-section of fund performance during different

periods of time. Recent studies provide empirical evidence that the characteristic-based

predictability of fund performance does change over time and appears to be dependent

on the macroeconomic environment and on market conditions.7 From the mutual fund

investor’s perspective, a single characteristic portfolio approach that maintains a constant

tilt toward funds with a particular characteristic could result in factor or sector biases, and,

consequently, poor performance. For instance, persistently chasing hot-hand and/or high

alpha funds would have loaded up on the technology sector prior to the Dot-com collapse in

2000. Similarly, constantly buying highly active funds that typically pick value stocks might

miss profit opportunities offered by momentum stocks in bull markets. On the contrary,

a composite portfolio strategy with tactical exposures to multiple fund characteristics is

5See, e.g., Grinblatt, Titman, and Wermers (1995); Carhart (1997).
6See, among others, Moskowitz (2000); Kosowski (2011); Glode (2011). Sun, Wang, and Zheng (2009) offer

two plausible economic rationales for this performance counter-cyclicality: (i) the information opaqueness
provides a better profit opportunity for informed managers in the down market; (ii) as noise traders withdraw
from the market, professional money managers are more likely to succeed by trading on signals about the
fundamentals of firms.

7E.g. Glode, Hollifield, Kacperczyk, and Kogan (2012), Kacperczyk et al. (2013) and Banegas, Gillen,
Timmermann, and Wermers (2013)
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poised to take advantage of more opportunities than the single characteristic strategies:

when certain type of funds is underperforming, investors may benefit from another type that

is outperforming. As a result, the composite strategy could achieve greater consistency in

performance compared with a single characteristic strategy.

To summarize, the above discussion suggests that, in order to effectively capitalize on the

cross-sectional performance predictability of mutual funds, one needs to be concerned with

the problems of what fund characteristics to use as performance predictors, as well as how to

optimally weigh predictive signals over time in order to align with the investor’s investment

objectives. In addition, the investor/econometrician also needs to deal with issues such as

the restrictions on short-sales and leverage. To the best of my knowledge, the literature has

been silent on these aspects.

Empirically, this paper brings these issues to an out-of-sample optimal portfolio choice

framework and provides new evidence on the economic value generated by investing in active

equity mutual funds through investment strategies that simultaneously incorporate the cross-

sectional performance predictability based on multiple fund characteristics and on macroe-

conomic variables. First, I find that the proposed optimal composite strategies significantly

outperform passive investments based on a large set of low-cost index funds that maintain

constant exposures to different segments of the market, after fees and expenses and without

relying on short-sales or leverage.8 Quantitatively, a moderately risk-averse investor char-

acterized by a relative risk aversion coefficient of 5 (RRA=5) is willing to pay up to 4.29%

per annum in certainty equivalent return (CEQ) in order to switch from the best-performing

8As this paper is primarily interested in net investment outcomes experienced by investors in the funds,
all performance measures are computed based on funds’ net returns, i.e. after fees and expenses. However,
as in Avramov and Wermers (2006) and Banegas et al. (2013), brokerage commissions and taxes are ignored
in the results.
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index fund to the optimal composite strategy that exploits the predictive power of multi-

ple fund characteristics. The switching could earn the investor an extra 4-Factor alpha of

3.35% per year and increase the Sharpe ratio from 0.51 to 0.69. Second, given the identi-

cal conditioning information contained in each individual fund characteristic, the strategies

based on maximization of expected utility generate extra economic gains compared to their

counterparts relying on a sorting rule, suggesting that the sorting-based portfolio approach

understates the economic value added by exploiting the predictive power of fund characteris-

tics. Third, the optimal composite strategy that maintains tactical exposures to funds with

different characteristics consistently delivers superior performance out-of-sample in compar-

ison with their peers that are formed using the same optimized portfolio approach but only

rely on a single characteristic. Fourth, motivated by recent asset allocation literature on

the superiority of näıve diversification over more complex optimized approaches [See, e.g.

DeMiguel et al. (2009)], I construct and evaluate a näıve composite strategy that simply

takes equal-weighted long positions in five single characteristic sorted portfolios. Despite its

simplicity and parsimony in incorporating the predictive information contained across all

fund characteristics, the simple averaging rule fails to fully capitalize on the predictability

out of sample, as the näıve composite strategy significantly underperforms its optimized

counterparts.

Next, I show that the superior performance of the optimal composite strategy relative

to the alternative strategies is driven by effectively utilizing predictive information in mul-

tiple fund characteristics to shift portfolio allocation toward (away from) funds with future

outperformance (underperformance) as market conditions evolve over time. For instance,

as the aggregate market shifts from good to poor states, funds with good past performance
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(i.e. hot-hand and high alpha funds) relative to those with other characteristics declines

remarkably; at the same time, highly active funds turn to be the top-performer among all

the characteristics, whereas they are the worst-performing one in good market states. As

in turns out, the state dependence in the relative performance of strategies concentrating

on a single characteristic is identified and captured by the optimal composite strategy, as

evidenced by the shifts in its portfolio characteristics. A further investigation reveals that

the state-dependent performance of strategies formed on the basis of single fund character-

istic is, at least partially, linked to variation in their factor loadings across different market

states. Specifically, high alpha and hot-hand funds significantly outperform highly active

funds in bull markets, as they benefit from having higher market beta and larger loadings

on size and momentum factors. However, in bear markets, highly active funds become the

top-performer because of their lower exposures to market, size and momentum factors but

higher loading on the value factor.

Lastly, I conduct several additional analyses to test the robustness of the baseline re-

sults. First, I find that accounting for macroeconomic information improves the optimal

composite strategy’s performance, but the improvement is marginal. Second, I let the in-

vestor select smaller numbers of funds in vestment strategies and find that the results are

not sensitive to the sizes of investment universe and all the conclusions still hold. Third, the

baseline results are robust across the separate investment sub-periods of 1996:01–2004:12

and 2005:01–2013:12.

This paper makes several contributions to the literature. First, this study is related to

prior work that compares the value of active and passive investments from an investor’s

point of view. Early research argues that investors are no better off investing with active
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mutual funds rather than just indexing their money passively. Recent studies show that

even if skilled active managers can be identified ex-ante, investors are still not able to benefit

from them due to competition in capital markets. In contrast, I provide empirical evidence

that investing in actively managed equity mutual funds is value adding relative to a set of

index-based passive investments, if the cross-sectional predictability in fund performance is

properly exploited.

Second, my work is similar in spirit to several papers that examine the predictability-

based investment strategies of U.S. active equity mutual funds, such as Baks, Metrick, and

Wachter (2001), Pástor and Stambaugh (2002) and Avramov and Wermers (2006). These

papers focus exclusively on the time-series predictability of funds’ alphas. I complement this

area of research by building optimal portfolio strategies that exploit the cross-sectional pre-

dictability in fund performance induced by multiple fund characteristics and macroeconomic

variables. More importantly, I show that integrating the predictive information in multiple

fund characteristics into a single composite investment strategy leads to considerably larger

economic gains than relying separately on each characteristic.

Third, this paper adds to the asset allocation literature on the efficacy of optimized versus

simpler portfolio formation approach. The sorting-based rule has been extensively used to

form portfolios capturing the cross-sectional predictability in asset returns. I show that,

based on the same conditioning information, the portfolio approach based on maximization

of expected utility is superior to the sorting method in terms of the ability to generate

economic value for investors. Moreover, recent studies, e.g. DeMiguel et al. (2009), advocate

that näıve diversification, such as the 1/N rule, tend to outperform more complex optimized

methods out-of-sample. In contrast, I show that, at least within the universe of mutual

85



funds, optimization-based portfolio strategies outperform out-of-sample those constructed

using the 1/N rule.

This paper may also be relevant to large institutional investors, such as funds of mutual

funds (FoMFs).9 Fixed weighting schemes across mutual fund styles (e.g. aggressive, growth

and income or large-, mid- and small-cap) are widely used as the basis for making portfolio

allocation decisions by FoMFs.[ Brands and Gallagher (2005); Elton, Gruber, and Blake

(2006).] However, style-based approaches have been questioned by academic researchers who

argue that mutual fund style classifications do a poor job on forecasting differences in future

performance and consequently such misclassification has an adverse effect on investors’ ability

to build diversified portfolios.[ Brown and Goetzmann (1997); diBartolomeo and Witkowski

(1997); Chan, Chen, and Lakonishok (2002).] The characteristic-based portfolio approach

proposed in this paper offers an alternative to aid FoMFs managers in making mutual fund

investment decisions.

The rest of this paper proceeds as follows: Section 2.2 introduces mutual fund charac-

teristics and their measures. Section 2.3 discusses methodologies for constructing optimal

composite strategies. Section 2.4 introduces the data. Section 2.5 reports all empirical

results. Section 2.6 concludes.

2.2 Fund characteristics and measures

In this section, I introduce the set of selected mutual fund characteristics that have been

extensively studied in the literature and their measures. Specifically, five fund characteristics

9FoMFs have emerged as a popular investment vehicle in recent times. According to the 2014 Investment
Company Fact Book, the FoMFs industry grew from as little as $1.4 billion in early 1990s to nearly $1.6
trillion in AUM at the year-end 2013.

86



are considered in this paper: historical alpha, hot-hand, new money inflows, fund size and

the degree of activeness in management.10

Alpha. Starting with Carhart (1997), a fund’s alpha, the intercept in a regression of

the fund’s excess return on the Fama-French-Carhart 4 factors, is widely interpreted as a

measure of skill. Cremers, Petajisto, and Zitzewitz (2012) argue that the Fama-French factor

model produces biased assessments of fund performance and recommend using index-based

benchmarks, as such benchmarks better explain the cross-section of mutual fund returns.

Therefore, I follow Pástor et al. (2015) and use the benchmark-adjusted alpha as the alpha

characteristic, which is estimated regressing a fund’s net return on the returns of the fund’s

benchmark index designated by Morningstar.11

ri,t = αi + βi · rBMK,t + ei,t (2.1)

where ri,t denote fund i’s net return during period t; rBMK,t is the return of Morningstar

designated benchmark index; αi is the benchmark alpha. The estimation is performed recur-

sively with a 12-month rolling sample at the end of each month t. Thus, the benchmark alpha

measures a fund manager’s ability to beat its benchmark index portfolio over a 12-month

sample period.

10I acknowledge that other characteristics that are related to mutual funds’ cross-sectional differences
in performance have been proposed in the literature, e.g. the Return Gap of Kacperczyk et al. (2008),
Active Shares of Cremers and Petajisto (2009) and industry- or sector-concentration of Kacperczyk et al.
(2005). These findings are of course interesting from the performance evaluation point of view. However,
constructing these predictors often entails creating portfolios from funds’ quarterly stock positions, which
are often difficult for many investors to obtain and calculate. Furthermore, relying on a mutual fund’ self-
reported quarterly positions may distort our view of the fund’s actual performance due to potential reporting
biases, such as missing cash and bond holdings in the database [ Wermers (2000)] and/or window dressing and
tax-motivated trading [ Moskowitz (2000)]. Therefore, in this paper, I only focus on the five characteristics
discussed earlier, as they can be relatively accurately measured using the information available to retail
investors. Nevertheless, it is important to note that the analytical framework provided in this paper can be
easily extended to include additional cross-sectional predictors of mutual fund performance.

11 Pástor et al. (2015) note that Morningstar chooses benchmarks based on funds’ holdings rather than
their reported objective, so the Morningstar benchmark does not suffer from the cherry-picking bias.
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Hot-hand. Hendricks et al. (1993) and Goetzmann and Ibbotson (1994) examine the

short-term persistence phenomenon in mutual fund returns, and find that recently top-

performing funds tend to continue to be good performers in the near term and a portfolio

strategy purchasing the good performing funds and selling the underperforming ones could

earn positive risk-adjusted returns. Following Hendricks et al. (1993), I compute 12-month

compounded prior net returns as the hot-hand characteristic.

Money inflows. Gruber (1996) and Zheng (1999) document that funds that experience

recent positive net money inflows tend to outperform their less popular peers subsequently.

The authors term this phenomenon as “smart money” effect. Berk and Green (2004) provide

an explanation for the flow-for-performance relationship that investors rationally update

their beliefs about managers’ skill based on past performance. Following the literature, I

calculate the normalized new money net flow as the flow characteristic, which is calculated

as the quarterly net cash flow divided by the TNA at the end of the previous quarter:

Flowi,t =
netflowi,t

TNAi,t−1

(2.2)

where netflowi,t is fund i’s net cash inflows during time t; TNAi,t−1 is the fund’s total net

assets at the end of time t− 1.

Fund size. In the spirit of Berk and Green (2004), fund performance is inversely related to

fund size: a small fund can easily put all of its money in its best ideas, but a lack of liquidity

forces a large fund to have to invest in its not-so-good ideas and take larger positions per stock

than optimal, thereby eroding performance. Chen et al. (2004), Yan (2008) and McLemore

(2014) provide supportive empirical evidence. Following the literature, I compute the size
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characteristic as:

Sizei,t = 1− TNAi,t

IndSizet
(2.3)

where IndSizet denotes the industry size, computed as the sum of TNAs across all funds at

time t; TNAi,t is fund i’s TNA at time t. To be consistent with other characteristics that

better performing funds have higher measures, I use one minus the fund-to-industry size

ratio.

Activeness. A fund manager can attempt to outperform her benchmark only by taking

positions that are different from the benchmark portfolio. The deviations from the bench-

mark holdings can be attributed to the manager’s ability in selecting stocks or timing the

market. To measure the degree of activeness in management, Amihud and Goyenko (2013)

propose an intuitive and easily calculable measure, which is defined as 1 − R2, where R2

is estimated by regressing the fund’s returns on benchmark returns (e.g. the Fama-French-

Carhart 4-Factors). Thus, lower R2 indicates greater degree of activeness, which in turn

predicts better performance. In this paper, I use the 1−R2 computed from Eq.(2.1) as the

active characteristic.

2.3 Optimal portfolio strategies and performance mea-

sures

To optimally integrate the information content from individual fund characteristics in a

single investment strategy, I employ the parametric portfolio policy proposed by Brandt

(2009a) (hereafter, BSV). The BSV approach is especially suited here for several reasons.

First, it directly models portfolio weights as a linear function of fund characteristics. In

such a way, it effectively avoids the extremely sensitive (co)moments estimation of fund
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return distributions, which often involves substantial sampling errors and leads to extreme

portfolio weights.12 Second, it mitigates the dimensionality problem: the complexity of

BSV approach depends only on the number of characteristics rather than the number of

assets as in traditional portfolio methods.13 Third, it captures implicitly the impacts of fund

characteristics on expected returns, variances, covariances and even higher-order moments

of the return distribution.14 This is nontrivial in the portfolio choice problem. For example,

a specific characteristic might be found to be positively associated with funds’ expected

returns. Naturally, portfolio methods focusing on mean returns, such as the sorting-based

rule, would favor the funds possessing this characteristic. On the contrary, those funds may

not look attractive to the BSV approach, if the characteristic is also associated to undesirable

moments of the resulting portfolio’s returns, such as volatility and negative skewness. In this

paper, I provide the first application of the BSV parametric portfolio policy in the context

of optimal mutual fund portfolio selection.

12 Brandt (2009b) provides a comprehensive discussion on the issue of estimation errors in asset allocation
context.

13For example, in a classic MV portfolio optimization with N assets, it requires modeling N first and
(N2 +N)/2 second moments of returns.

14 Brandt (2009a): “To better understand this point, we can approximate the expected utility of the
investor with a Taylor series expansion around the portfolio’s expected return E[rp,t+1] u u(E[rp,t+1]) +
1
2u

′′(E[rp,t+1])E[(rp,t+1 −E[rp,t+1])
2] + 1

6u
′′′(E[rp,t+1])E[(rp,t+1 −E[rp,t+1])

3] + · · · . This expansion shows
that, in general, the investor cares about all the moments of the distribution of the portfolio return. Since the
portfolio return is given by rp,t+1 =

∑Nt

i=1 f(xi,t; θ)ri,t+1, the moments of its distribution depend implicitly on
the joint distribution of the returns and characteristics of all assets. The coefficients θ affect the distribution
of the portfolios return by changing the weights given to the returns of the individual assets in the overall
portfolio.”
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2.3.1 Estimating optimal portfolio weights: unconditional case

Following BSV, I optimize mutual fund portfolios from the perspective of a risk-averse in-

vestor characterized by a CRRA utility function:

U(rp) =
(1 + rp)

1−γ

1− γ
(2.4)

The investor’s problem is to recursively choose the portfolio weights ωi,t at time t to maximize

her conditional expected utility of the portfolio’s return rp,t+1 at time t+ 1:

max
{ωi,t}

Nt
i=1

Et[U(rp,t+1)] = Et

[
U

(
Nt∑
i=1

ωi,tri,t+1

)]
(2.5)

where rp,t+1 and ri,t+1 are the portfolio’s and fund i’s returns at time t + 1, respectively;

Nt is the number of mutual funds available to trade at time t. Fund i’s weight, ωi,t, is

parameterized as a linear function of the fund’s standardized characteristics:

ωi,t = f(zi,t; θt) =
1

Nt

θ⊤t zi,t (2.6)

where θ is a K × 1 vector of parameters to be estimated and K is the number of fund

characteristics; zi,t is a K × 1 vector of fund i’s standardized characteristic measures with

zero mean and unit standard deviation across all funds at time t.

Rewrite the investor’s problem by plugging Eq.(2.6) into Eq.(2.5) with a general CRRA

utility function:

max
θt

1

τ(1− γ)

t∑
t′=t−τ

[
1 +

Nt′∑
i=1

(
1

Nt′
θ⊤t zi,t′ri,t′+1

)]1−γ

(2.7)

The optimal parameter vector θ∗t is obtained by solving Eq.(2.7) numerically over the rolling

sample period [t − τ, t]. With the estimated parameter vector, the desired portfolio weight
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on fund i for time t+1 is calculated as w∗
i,t =

1
Nt
θ∗t

⊤zi,t. Note that I only use the information

available up to time t to derive the optimal weights for time t+1. By repeating this procedure

at each time t ∈ [T0, T − 1], I can obtain the out-of-sample unconditional optimal portfolio

policy {ω∗
t }t=T0,··· ,T−1.

2.3.2 Estimating optimal portfolio weights: conditional case

While able to incorporate the information in fund characteristics, the unconditional BSV

algorithm cannot account for the impact of macroeconomic information on the optimal port-

folio policy. As a result, the investor’s expected utility may not be fully optimized if the

additional conditioning information is relevant. To accommodate the possible effects, I fol-

low BSV and extend the coefficient vector, θt, to be a linear function of M macroeconomic

variables yt = [y1,t, · · · , yM,t]
′:

θt =

θ1,t...
θK,t

 = Λtyt =

λ1,1,t · · · λ1,M,t
...

...
λK,1,t · · · λK,M,t


 y1,t...
yM,t

 (2.8)

where Λt is a K ×M coefficient matrix and its element λk,m,t reflects the sensitivity of the

coefficient θk,t to the corresponding conditioning macroeconomic variable ym,t. Then, the

extended portfolio weight function for fund i at time t becomes:

ωi,t = f(zi,t; yt; Λt) =
1

Nt

z′i,tΛtyt (2.9)

In this conditional form, portfolio weights are determined jointly by standardized fund char-

acteristics and macroeconomic variables.

Rewrite the investor’s conditional optimal portfolio problem by plugging Eq.(2.9) into
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Eq.(2.5) with a general CRRA utility function:

max
Λt

1

τ(1− γ)

t∑
t′=t−τ

[
1 +

Nt′∑
i=1

(
1

Nt′
(z′i,t′Λyt′)ri,t′+1

)]1−γ

(2.10)

At each time t, the optimal parameter matrix Λ∗
t is obtained by solving Eq.(2.10) numerically

over a sample period [t − τ, t]. With the estimated parameter matrix, the desired portfolio

weight on fund i for time t + 1 is calculated as ω∗
i,t =

1
Nt
z′i,tΛ

∗
tyt. Note that I only use the

information available up to time t to derive the optimal weights for time t+1. By repeating

this procedure at each time t ∈ [T0, T−1], I can obtain the out-of-sample conditional optimal

portfolio policy {ω∗
t }t=T0,··· ,T−1.

2.3.3 Implementation issues

To implement the parametric portfolio approach, several issues are worth bearing in mind.

First, BSV apply this approach to individual stocks, allowing for short positions. In contrast,

I am interested in long-only investment strategies for mutual funds. To work around this

problem, BSV recommend to simply truncate negative weights of the unconstrained optimal

portfolio at zero and then re-scale the truncated weights so that they sum to one.15 It is

worth mentioning that the ex post adjusted weights are theoretically suboptimal.16

Second, to estimate the BSV coefficients in Eq.(2.7) and Eq.(2.10), I use a rolling sample

window of 24 months.17 For the sake of robustness, I also entertain other window lengths,

15In applications of the BSV algorithm, Plazzi, Torous, and Valkanov (2010) and Barroso and Santa-Clara
(2014) follow BSV’s suggestions to truncate and re-normalize the optimal portfolio weights in order to satisfy
the constraints.

16I experimented by imposing short-sale and no-leverage constraints directly into the optimization, but
it resulted in too conservative characteristic weight estimates. This is because the number of control pa-
rameters (=5 in this case) is significantly smaller than the number of funds, and satisfying all portfolio
weight constraints at every instant t during the whole sample period might require artificially low parameter
estimates due to lack of degrees of freedom.

17The 24-month rolling sample estimation has been commonly used for evaluating mutual fund performance
in the literature. See, for example, Jiang et al. (2007), Amihud and Goyenko (2013), Del Guercio and Reuter
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including 12, 36, 48, 60 months. I find that all the baseline results are qualitatively unchanged

and that the performance of optimal composite strategies tend to decrease with the window

length, consistent with the well documented short-lived superior performance of mutual funds

in the literature.18

2.3.4 Performance measures

Through out this paper, I employ three conventional metrics to measure the out-of-sample

performance of investment strategies, namely the 4-Factor alpha (Alpha), Sharpe ratio

(Sharpe) and certainty equivalent excess returns (CEQ). In particular, Alpha, to date the

most widely used performance measure in the mutual fund literature, measures a portfolio’s

mean returns adjusted for the Fama-French-Carhart benchmarks. In addition to focusing

on the first moment, Moskowitz (2000) advocates looking at the second moment of fund

returns in mutual fund performance evaluation, as active managers could add value by re-

ducing the volatility of their managed portfolios, meanwhile, delivering similar mean returns

to the market. Following Moskowitz’s suggestion, I compute Sharpe ratios as the second

performance measure to capture both mean and volatility of fund returns. Researchers,

e.g. Arditti (1967), Kraus and Litzenberger (1976) and Scott and Horvath (1980), have

shown that investors also care about the moments of return distributions beyond mean and

variance. Hence, to accommodate an investor’s preferences for portfolio’s mean, variance,

skewness, kurtosis as well as her level of risk aversion, I add the third measure — CEQ.19

(2014), Pástor et al. (2015).
18 Berk and Green (2004) argue that superior performance in mutual funds cannot persist even if it is a

result of skill because it induces an inflow of funds that makes the fund grow in size and causes its performance
to worsen because of decreasing returns to scale in fund management. Bollen and Busse (2005) and Keswani
and Stolin (2008) provide empirical supports.

19Under CRRA utility, the CEQ is computed as: CEQτ+1:T = [(1 − γ)Ūτ+1:T (Wt)]
1

1−γ − 1, where
Ūτ+1:T (Wt) is the average realized CRRA utility.
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Given its inherent superiority relative to other two metrics, I will mainly focus on CEQs in

the rest discussions of empirical results.20

2.4 Data

The mutual fund data used in this paper come from two main sources: the CRSP survivorship

bias free mutual fund database and the mutual fund dataset from Morningstar. In particular,

I use CRSP to collect the data on fund returns, share-level total net assets (TNA), fees and

expense ratios, investment objectives and other fund characteristics. Morningstar assigns

each fund into a category based on the fund’s holdings and designates a benchmark portfolio

to each fund category. In addition to the data offered by CRSP, I collect the benchmark

return data for each fund from Morningstar.

Next, I follow the procedures specified in the Data Appendix of Pástor et al. (2015) to

merge CRSP and Morningstar datasets.21 Briefly, I first use funds’ tickers, CUSIPs and

names to match funds that are available in both datasets. I then double check the matching

accuracy by comparing the matched funds’ TNAs and returns across the two datasets. To

minimize the impacts caused by data errors, I apply the algorithms proposed by Berk and

Van Binsbergen (2015) to correct the discrepancies in the data. If some observations are not

fixable, I set them to missing. For instance, I set fund returns to missing if they still differ

across the two datasets by more than 10 bps after the correcting process.

To obtain a clean set of domestic active equity mutual funds, I use fund investment

20In the asset allocation literature, CEQ has been commonly employed as a reliable performance measure.
See, among others, Brandt (2009a); DeMiguel et al. (2009); Cenesizoglu and Timmermann (2012); Barroso
and Santa-Clara (2014).

21The Data Appendix can be downloaded at http://faculty.chicagobooth.edu/lubos.pastor/

research/Data_Appendix_Aug_2013_V3.pdf
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objective codes as well as the keywords in the Morningstar Fund Category variable and fund

names to exclude bond funds, money market funds, international funds, index funds, funds

of funds, industry funds, real estate funds, target retirement funds, and other non-equity

funds. To eliminate the return bias of small-sized funds, I exclude fund/month observations

with lagged TNA below $10 million from the sample.22

Finally, I use the filtered fund data to construct the five characteristic measures specified

in Section 2.2. Due to the missing data problem, there are some fund/month observations

with zero non-missing characteristic measures. I exclude them from the sample. For com-

parison purposes, I generate two data samples: the large sample which contains all the

fund/month observations with at least one non-missing characteristic measure and the small

sample which only includes the fund/month observations with five non-missing character-

istic measures. The large and small samples respectively contain 3,438 and 3,423 unique

actively managed domestic equity mutual funds during the period between January 1981

and December 2013. Figure 1 depicts the number of funds in the two sample sets over time.

[Figure 1]

In particular, the thick line represents the large sample, in which the number of funds

increases from 110 in January 1981 to 1,932 in December 2013 and reaches the maximum of

2,198 in June 2008. The fine line represents the small sample, in which the number of funds

22I also considered other variations that have been used in the literature, such as $5 million and $15
million. My empirical results are not sensitive to the changes of the threshold value.
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starts with 7 in January 1981, then peaks at 2,173 in June 2008 and finally ends with 1,930

in December 2013. Comparing the two sample paths, we see that there is a substantially

lower number of funds during the first 10 years. The loss is due to two reasons: (i) a large

number of mutual funds report TNA only quarterly or yearly before February 1991, so the

characteristic measures, such as Size and Flow, could not be constructed. (ii) The recorded

expense ratios across the two databases often disagree and exhibit large jumps during this

period. Due to the limited number of funds, I further exclude this sample period and only

use the data of 1991:02–2013:12 as my final sample for empirical analysis.

2.5 Empirical results

In this section, I present the empirical results. I begin by first assessing single characteris-

tic sorted strategies that rely on the sorting-based rule to incorporate the predictions from

individual fund characteristics. Next, I discuss the results of composite portfolio strate-

gies that simultaneously exploit the predictive ability of multiple fund characteristics and

macroeconomic variables, and compare their out-of-sample performance with that of various

alternative investment strategies. Lastly, I identify the sources for the superior performance

of optimal composite strategies.

2.5.1 Single characteristic sorted strategies

I first reexamine the predictive ability of each individual fund characteristic for the perfor-

mance of single characteristic sorted portfolios. To do so, I sort funds at each re-balancing

date into 10 decile portfolios based on rankings of lagged individual fund characteristics and

then compare their performance out-of-sample. Five groups of single characteristic decile
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portfolios are formed and I, for the sake of brevity, label them as the Alpha, Hot, Flow, Size

and Active decile portfolios. By construction, these single characteristic strategies overlook

the information from other fund characteristics and also that they do not take into account

any additional conditioning information, such as macroeconomic and market conditions.

Table 2.1 reports the out-of-sample performance of the 10 decile portfolios and a long-

short portfolio for each fund characteristic. In particular, Decile 10 - 1 represent the top- to

bottom-decile or best- to worst-performing portfolios; L-S denotes the long-short portfolio

that longs the top-decile portfolio and shorts the bottom-decile one. Their performance is

measured out-of-sample for the investment period of 1996:01–2013:12.

[Table 2.1]

Let us first examine the performance of 10 decile portfolios based on each fund characteristic.

The general observation seems to be a clear-cut: all three performance measures show large

dispersions and monotonically declining trends from the top to bottom decile. The results

lend support to prior literature that these characteristics are related to the cross-sectional

variations in funds’ performance and therefore could be utilized by investors in selecting

funds. Moving to the last row (L-S) of Table 2.1, we find that all long-short portfolios

produce positive alphas. In particular, the Alpha portfolio yields the highest 4-Factor alpha

of 4.89% per annum, which is statistically and economically significant. Hot also returns a

high alpha of 3.18%, but not statistically significant at conventional levels. Flow and Active,

respectively, generate 1.43% and 1.89%, both of which are statistically significant at the 10%
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level. Size appears to be the worst-performer. Again, these results are broadly consistent

with previous findings, suggesting that these fund characteristics contain valuable predictive

information.

As discussed earlier, mutual fund investors face short-selling restrictions in practice. Con-

sequently, the implied profitability of the long-short portfolios in Table 2.1 may not truly

reflect the economic gains that could be earned by a real-world investor. Therefore, a more

meaningful assessment for the investor should be based on the performance of long-only

strategies, i.e. the top-decile portfolios. Following the literature, e.g. Pástor and Stambaugh

(2002) and Avramov and Wermers (2006), a sorting-based single characteristic long-only

strategy is constructed as the equally weighted portfolio of the top 10% funds ranked on

the lagged characteristic measure at each re-balancing date. By restricting our attention to

strategies with long-only positions in mutual funds, i.e. the first row of Table 2.1, we find

the following: (i) the alphas generated from long-only portfolios are significantly lower than

those from the long-short strategies and none is statistically significant at conventional lev-

els; (ii) the short-only portfolios (Decile 1) based on all measures appear attractive relative

to their long-only peers (Decile 10), suggesting that the characteristics seem to be better at

locating losers rather than winners. In summary, we can conclude that fund characteristics

appear to convey the predictive information for future fund performance. However, after

eliminating the possibility of short-sales, their capability to generate economic value turns

to be significantly lower than that implied with hypothetic short positions.

From now on, I will refer to the long-only top-decile portfolios as single characteristic

sorted strategies. Table 2.2 presents summary statistics of their monthly net excess returns
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over the period from 1992:02 to 2013:12.23

[Table 2.2]

Panel A of Table 2.2 summarizes the sample moments. The return distributions exhibit

large degrees of heterogeneity in both means and standard deviations across the five fund

characteristics. In particular, the Hot and Alpha sorted strategies show high mean returns

and high standard deviations. In contrast, Size and Active yield relatively low returns and

low volatility. All return series, except Hot, are negatively skewed and have fat tails in

returns as evident by the large kurtosis estimates.

Panel B of Table 2.2 shows pairwise unconditional correlations of single characteristic

sorted portfolio returns. In general, the correlation coefficients are high: greater than 0.8 in

all pairs. In particular, the correlations of Hot-Alpha and Flow-Alpha are very high (≥ 0.97).

This may not be surprising, as a number of studies have shown that mutual fund flows tend

to chase funds’ past performance.[See, among others, Sirri and Tufano (1998); Del Guercio

and Tkac (2002); Del Guercio and Reuter (2014).] Moreover, Size and Active are also highly

correlated at 0.98, which again is consistent with the prior findings that smaller funds tend to

be more active than larger peer.[See, among others, Cremers and Petajisto (2009); Amihud

and Goyenko (2013).] On the other hand, Hot-Size, Hot-Active and Alpha-Active have

relatively low correlations: all below 0.89.

Panel C of Table 2.2 provides the regression coefficients of 4-Factor model for each single

23The sample data span the period from 1991:02 to 2013:12. The first 12 month data are used to construct
the first characteristic measures, so the return series of single characteristic portfolios start from 1992/02.
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characteristic sorted portfolio. Not surprisingly, we see that all portfolios have statistically

significant and close-to-one market betas (MKT). Moving to SMB, we observe that the five

portfolios have significant, positive but different sensitivities to the size factor, indicating

that funds with distinct characteristics tend to hold small-cap stocks to different extents.

The estimated coefficients on the value factor (HML) reflect that, on average, hot-hand

and high alpha funds are likely to hold growth stocks, whereas the small-sized and highly

active funds tend to include value stocks in their portfolios. Finally, the loadings on the

momentum factor (UMD) suggest that hot-hand, high alpha and large inflow funds like to

hold momentum stocks, whereas small-sized and highly active funds do not exhibit such

pattern.

To sum up, the above analyses indicate that (i) Portfolio strategies formed on the basis

of a single fund characteristic exhibit heterogeneous risk-return profiles. (ii) The returns of

Alpha, Hot and Flow portfolios are highly correlated, suggesting that they are likely to have

a high degree of overlap in fund holdings and hence that combining these characteristics

would be less likely to build a well-diversified portfolio. (iii) Strategies focusing on distinct

fund characteristics have different exposures to equity factors, such as value and momentum.

Such distinctions are of course interesting from a diversification perspective.

2.5.2 Optimal composite strategies

In this subsection, I assess the out-of-sample investment results of the unconditional and

conditional optimal composite strategies derived using the methods specified in Section 2.3.1

and 2.3.2, respectively.24 I first discuss the results of the BSV coefficient estimation. Next, I

24For the sake of simplicity, I, hereafter, refer to the unconditional (conditional) optimal composite strategy
as the unconditional (conditional) strategy.
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compare the out-of-sample performance of optimal composite strategies with that of various

alternative strategies: these represent the baseline results of my empirical analyses. Lastly,

I examine the attributes of optimal composite portfolios and determine the sources of their

economic gains.

2.5.2.1 BSV coefficient estimates

As explained in Section 2.3.1, to derive the optimal composite strategy, we need to estimate

the BSV coefficients that combine the information content conveyed by the selected fund

characteristics. Table 2.3 provides the out-of-sample coefficient estimates (Coef) coupled

with corresponding single characteristic sorted portfolio performance (CEQ with RRA=5)

over the period from 1996:01 to 2013:12.

[Table 2.3]

Specifically, the first row (Full) of Table 2.3 gives the time-series averages of Coefs and CEQs

over the full investment period. Overall, all the coefficients have positive signs, indicating

that on average all five characteristic signals are relevant in determining the optimal portfolio

weights. This is consistent with prior findings in the literature. Recall that before entering

the portfolio weight function, each characteristic signal is cross-sectionally standardized to

have zero mean and unit standard deviation. Hence, we can further assess these character-

istics’ relevance by comparing the magnitudes of the coefficients to each other. The results

show that the Alpha and Active predictors receive larger coefficients (1.80 and 1.45) than

do Size and Flow (0.98 and 1.17). Interestingly, we also find that the Alpha and Active
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strategies perform relative well (2.11% and 1.85% in CEQ), whereas Size and Flow are the

two worst-performing ones (0.14% and 0.72% in CEQ). These results indicate that the BSV

portfolio approach seems to be able to capture the relative predictive performance of fund

characteristic signals on average.

To further assess the efficacy of BSV approach, I examine the coefficient estimates under

different market conditions. Following the definition of Glode et al. (2012), I categorize

the aggregate stock market into four states: Up, Mid-Up, Mid-Down and Down, which

are respectively defined as when the three-month average of past market excess return is

higher than the 75th, between 50th and 75th, between 25th and 50th and lower than 25th

percentile of the historical three-month averages of past market excess return. Noteworthily,

the average return percentiles are computed in an out-of-sample way: for time period t, the

percentiles are computed based on the three-month averages of CRSP value-weighted market

excess returns from July 1926 up to period t.

The second to fifth row of Table 2.3 depict the results. Focusing on the columns of Coef,

we notice that the estimated coefficients for each characteristic fluctuate substantially across

different market states. For example, the Hot coefficients decline from 1.36 in the Up market

to 0.23 in the Down market, indicating that hot-hand funds are much more relevant under

good market conditions than they are in poor ones in the optimal composite strategy. In

contrast, the coefficients of Active exhibit an inverse pattern: the values increase monotoni-

cally from 0.81 to 1.75 while the overall market becomes worse. To see whether or not such

changes are sensible, we need to compare them with the performance of portfolios that focus

on corresponding characteristics. We can see that, across different market conditions, the

shifts in Coefs tend to coincide with those in CEQs: as market conditions change from Up
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to Down, the Hot and Alpha sorted portfolios turn to be losers from winners, meanwhile,

the magnitudes of their estimated coefficients decline substantially; on the other hand, the

performance and coefficient of Active exhibit almost the opposite pattern. Again, the re-

sults support the robustness of BSV estimation procedures. It is also interesting to point

out that no single characteristic dominates in either Coef or CEQ across all market states,

suggesting that constantly picking funds with a particular characteristic is unlikely to be the

most efficient way to form a portfolio of mutual funds.

2.5.2.2 Out-of-sample investment results

Next, I compare the performance of the proposed optimal composite strategies with that

of various alternative investment strategies available to investors at the same time. Specif-

ically, I consider four sets of competing strategies. The first set includes seven low-cost

Vanguard index funds.25 The idea here is to use actually traded investment vehicles rather

than non-traded indexes to represent the passive investment opportunities available to real-

world investors. The second set consists of the five single characteristic sorted strategies that

I introduced and analyzed in Section 2.5.1. Each of these strategies relies on a particular

fund characteristic to form a long-only and equal-weighted portfolio by recursively selecting

the top 10% funds based on the lagged characteristic measure at each re-balancing date.

The sorting-based rule has been extensively utilized to take advantage of the cross-section

predictability in asset returns in the finance literature . The third set contains five single

25I choose the Vanguard index family because of its well-known cost efficiency and market-leading role
in the index fund industry. To conduct accurate and concise comparisons, I exclude funds that (i) hold
more than 10% international stocks; (ii) have missing net return data for the period of 1996-2013 in the
Morningstar mutual fund database; (iii) are already spanned by existing funds for each category. The
screening process results in seven Vanguard index funds, each of which measures a specific segment of the
market. Table A1 in Appendix A gives detailed information about the seven index funds.
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characteristic optimized strategies, each of which exploits the predictive power of an individ-

ual characteristic and is optimized using the BSV portfolio approach introduced in Section

2.3.1. Although both aim to capitalize on the cross-section performance predictability based

on a particular fund characteristic, the optimization-based approach is different from the

sorting-based method: the former parsimoniously takes into account an investor’s prefer-

ences and risk appetite, whereas the latter excels in simplicity. The fourth alternative is a

näıve composite strategy that simply allocates equally across the five single characteristic

sorted portfolios in the second set.26 Compared with the optimization-based strategies, the

most appealing feature of this strategy is that it makes good use of the predictive informa-

tion in all fund characteristic signals without involving portfolio weight estimation, as there

is evidence, e.g. DeMiguel et al. (2009), showing that simple portfolio rules can outperform

more complex optimized peers out-of-sample due to estimation error. For all the investment

strategies except the passive ones, portfolio weights are derived and rebalanced recursively

at the end of each month starting from December 1995 and through November 2013. The

month-t realized net excess return on each portfolio is calculated by multiplying the desired

weights of month t−1 by the month-t realized net excess returns (i.e. after fees and expenses,

and above the risk-free rate) of funds included in the portfolio.

The out-of-sample investment results of all the strategies are presented in Table 2.4.

On the columns, I report the first to fourth sample moments of portfolio net excess return

distributions (Mean, Std, Skew, Kurt) and three risk-adjusted performance measures: 4-

Factor alphas (Alpha), Sharpe ratios (Sharpe) and CEQs with three risk aversion levels (i.e.

26In the equity market, Asness et al. (2013) construct an equal-weighted 50/50 momentum and value
combination strategy and find that the resulting portfolio outperforms each individual one.
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RRA=3, 5, 10). Panel A, B, C and D of Table 2.4 provide the results for the passive, single

characteristic sorted, single characteristic optimized and composite strategies, respectively.

In particular, Panel D includes three types of composite strategies: the näıve, unconditional

and conditional.

[Table 2.4]

The insights about these investment strategies can be inferred from comparisons along several

dimensions. Let us first compare the results of passive investments using index funds and

the unconditional optimal composite strategy (i.e. Panel A vs. Unc). Panel A shows that

index funds that focus on different segments of the market exhibit large heterogeneity in

their return distribution and across all performance measures. For the sake of brevity, I

will center the following discussion on the comparisons between the unconditional composite

strategy and the best-performing index fund measured by both Sharpe ratio and CEQ —

the one that focuses on the Mid-Blend sector in this case. Needless to say, all the results

also qualitatively apply to other index funds in Panel A. Starting with the sample moments,

we see that the optimal composite strategy generates the mean return of 11.70% per year

and annualized standard deviation of 16.85%, whereas the corresponding figures are 9.36%

and 18.22% for the best-performing index fund during the same period. In addition, the

composite portfolio’s returns have a slightly positive skewness of 0.09, whereas the returns

of the index fund is negatively skewed at -0.77. Despite exhibiting a higher kurtosis than

the passive peer, the optimal composite portfolio’s positively skewed returns suggest that
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the associated high kurtosis is more likely driven by large positive, rather than negative,

realized portfolio returns, which is desirable. These return moments indicate that an investor

would have achieved a preferable risk-return profile by investing with the optimal composite

strategy rather than passively indexing with any of the low-cost index funds.

Moving to the risk-adjusted performance measures in next few columns, we find that the

results from the return moment examination are further strengthened: the unconditional

composite strategy, net of fees and expenses, consistently outperforms all the index funds

and this result holds across all performance measures and for investors with all levels of risk

aversion. For instance, a moderately risk-averse investor (RRA=5) who holds the Mid-Blend

index fund would be willing to pay up to 4.29% per year in CEQ to switch to the composite

strategy. By doing so, she earns an extra annual 4-Factor alpha of 3.35%, which is eco-

nomically and statistically significant, and also increases the Sharpe ratio from 0.51 to 0.69.

The above results suggest that when we allow for the predictability in fund performance,

investing in active equity mutual funds can be value adding relative to passively holding

index funds even when both short-selling and leveraging are precluded.

As introduced earlier, I consider two methods for forming portfolio strategies exploiting

the predictability of single fund characteristics: the sorting rule and the optimization of the

investor’s expected utility. Let us compare the two approaches (i.e. Panel B vs. Panel

C). In general, the optimization-based strategies appear to outperform their sorting-based

counterparts in almost all cases. In particular, a moderately risk-averse investor who adopts

the Size sorted strategy would be willing to pay up to 1.12% per annum in CEQ to switch

to the Size optimized strategy. For other characteristics, such as Hot, Alpha and Active, the

investor also enjoys moderate gains ranging from 49 to 12 bps per year in CEQ by switching
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from the sorted to optimized portfolios. The results show that the optimization method,

given the same ex-ante information from a certain characteristic, tends to be more effective

than the sorting rule. Hence, hereinafter and unless otherwise stated, I will continue strategy

comparisons by benchmarking composite strategies on the single characteristic optimized

ones. Of course, the results hold qualitatively for single characteristic sorted strategies.

To investigate the economic significance of incorporating predictions from multiple fund

characteristics, I compare single characteristic optimized strategies with the unconditional

optimal composite strategy (i.e. Panel C vs. Unc). It is worth repeating that these strate-

gies are optimized using the same portfolio approach specified in Section 2.3.1, but differ in

the number of fund characteristics utilized in deriving optimal portfolio weights. Therefore,

the differences in their investment outcomes should reflect the distinctions of exploiting sin-

gle vs. multiple characteristic predictability. Again, we first examine the sample moments.

One initial observation is that the composite strategy is able to produce an average return

that is comparable to that of the best single characteristic optimized strategy (i.e. Hot)

but with lower volatility. It is also interesting that most single characteristic strategies,

except Hot, have negative skewness, while the returns of the optimal composite portfolio

are slightly positively skewed. These results suggest that combining fund characteristics in

a single investment strategy could achieve more desirable risk-return profiles for risk-averse

investors through risk reduction without sacrificing high mean returns. Moving to the portfo-

lio performance measures, the results appear to be clearly outlined: the composite strategy

consistently delivers superior performance over all single characteristic peers regardless of

metrics or risk aversion levels. Quantitatively, the composite strategy, benchmarked on the

best-performing single characteristic portfolio — Hot, still outperforms by 1.79% per year
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in CEQ (RRA=5) or 90 bps in 4-Factor alpha, and 11% in Sharpe ratio. These results

highlight the advantages of diversifying across fund characteristics and, more importantly,

that such qualities can translate into significant economic gains for investors when exploited

in investment strategies.

Despite not being the main focus of this paper, it is still interesting to point out that

all single characteristic strategies (both sorted and optimized), except the one based on size

sorting, outperform the top-performing index fund in terms of both Sharpe ratio and CEQ.

The results indicate that even though inferior to the optimal composite strategy, portfolio

strategies that utilize the predictions from single fund characteristics can perform better than

passive investment strategies using index funds, highlighting the promise of predictability-

based active investment strategies in the U.S. equity mutual fund space.

Next, I continue the empirical analyses by focusing on comparisons within the compos-

ite strategy category. Motivated by recent findings in the asset allocation literature on the

superiority of simple portfolio formation approaches, such as the 1/N rule of DeMiguel et al.

(2009), over more complex optimized methods, I also compare the out-of-sample perfor-

mance of the näıve with that of the optimal composite strategy (i.e. Näıve vs. Unc). The

results appear to be clear-cut: the näıve composite portfolio that equally combines five sin-

gle characteristic sorted portfolios produces a much lower mean return and similar volatility

compared with the optimal composite strategy. In addition, the näıve strategy has a negative

and lower skewness of -0.53, which mirrors the findings by Brown, Hwang, and In (2013)

that näıve diversification relative to optimal diversification comes with increases in tail risk

and reduced upside potential associated with the concave payoff. Moving to the performance

measures, the näıve strategy substantially underperforms its optimized counterpart across
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all metrics, suggesting that when applied within the space of equity mutual funds, the BSV

approach based on expected utility maximization is preferable to the 1/N rule advocated in

other asset universes, such as stocks.

Finally, I examine the economic value of incorporating macroeconomic information into

the investor’s portfolio allocation decisions. In the spirit of Avramov and Wermers (2006)

and Banegas et al. (2013), the variables used to characterize economic states include the

dividend yield, short-term interest rate, term spread and default spread. The last row (Con)

of Table 2.4 reports the investment outcomes. We can see that the conditional compos-

ite strategy delivers slightly higher mean return as well as volatility than its unconditional

counterpart. However, the conditional strategy’s returns are more positively skewed, mak-

ing it more favorable for investors who care about higher-order moments and also indicating

that conditioning on macroeconomic variables helps mitigating downside risk of the resulting

portfolio. Looking through the performance measures, we see that the strategy condition-

ing on macroeconomic variables outperforms the unconditional peer, but the outperformance

appears to be marginal. For example, incorporating the macroeconomic information, a mod-

erately risk-averse investor is better off by earning only 13 bps in CEQ or comparably 14

bps in 4-Factor alpha. The results seems to imply that the information content conveyed by

these variables can hardly translate into economic gains in asset allocation excises. One pos-

sible reason could be that the macroeconomic variables are slow-moving over time, whereas

in order to capture the short persistence in fund characteristics’ predictive power we need

to employ a short look-back window (typically, 24 months). Another possible reason is

that the set of state variables does not sufficiently characterize the economic conditions that

are associated with mutual fund performance and thus introduce additional noise into the
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portfolio optimization process. As a result, it erodes part of the improvement in portfolio

performance.27

To complete my empirical analyses, in Figure 2 I plot the differences in cumulative wealth

of the unconditional and conditional optimal composite strategies and the three sets of al-

ternative investment opportunities, namely the passive, single characteristic optimized and

näıve composite strategies. In particular, each graph from A to M depicts the cumulative

wealth paths (relative to corresponding benchmarks) of a $100 investment in the uncon-

ditional and conditional optimal composite strategies starting from 1996:01. The results

support the previous findings that both unconditional and conditional composite strategies

outperform all the alternative investment strategies in terms of long-term terminal wealth

levels. An interesting observation is that the conditional composite strategy (dashed line)

produces comparable performance to its unconditional counterpart (solid line) during the

earlier part of the sample period (1996–2009), but starts to outperform significantly since

2010.

[Figure 2]

To summarize, the above analyses demonstrate that simultaneously incorporating the in-

formation conveyed by multiple fund characteristics into a single composite portfolio strategy

generates significant economic value, which makes the resulting portfolio outperform several

27It is worth keeping in mind that I have considered only the set of macroeconomic variables that have
been used in the mutual fund literature. Nevertheless, a broader range of macro variables have been found
to be related to stock returns in the finance literature. Hence, it would be interesting to see whether other
macro variables are able to produce superior performance for the conditional composite strategy. I leave this
extension for future research.

111



passive investments using the Vanguard index funds, the single characteristic sorted and op-

timized strategies that rely on the predictions from a particular fund characteristic and the

näıve composite portfolio that simply averages all single fund characteristic sorted portfolios

without involving estimation. The superior performance is pronounced after subtracting

funds’ fees and expenses as well as precluding short-sales and leverage. Moreover, condi-

tioning on a set of macroeconomic variables improves the investment outcomes, but the

improvement appears to be marginal.

2.5.2.3 Portfolio attributes of investment strategies

In this section, I address the question of what explains the superior performance of optimal

composite strategies relative to other benchmarks. To do so, I first examine the portfolio

weight distribution of optimal composite strategies and then analyze their portfolio-level

characteristics.

A. Portfolio weights

The superior performance of optimal composite strategies might be the results of unrea-

sonably large bets on very few funds that perform well in short periods. To mitigate this

concern, I show the statistics of optimal composite strategies’ portfolio weight distributions

in Table 2.5.

[Table 2.5]

In particular, the left (right) panel of Table 2.5 reports the statistics for the unconditional
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(conditional) composite portfolio. As short positions and leverage are precluded, the min-

imum weight on a specific fund is zero and the cross-sectional weights always sum up to

1. Hence, these two statistics are omitted. In each panel, I compute two statistics on the

columns: the cross-sectional average and maximum weights. For each statistic, I report

its time-series average, minimum and maximum for the full out-of-sample investment period

(1996:01–2013:12) on the rows. Let us first look at the time-series statistics of cross-sectional

average weights, i.e. Avg{wi,t}: the unconditional (conditional) strategy produces a time-

series average, minimum and maximum of 0.29% (0.26%), 0.17% (0.17%) and 0.63% (0.52%),

indicating that the optimal weights of both portfolios are stable over time. Moving to the

distribution of cross-sectional maximum weights, i.e. Max{wi,t}, we can see that the time-

series mean of the maximum weights is low (1.45% for unconditional; 1.42% for conditional)

and that the all-time maximum weight on a single fund is only 5.41% for the unconditional

optimal portfolio and 3.76% for the conditional one. Overall, these time-series weight distri-

butions show that the optimal portfolios do not involve extremely large weights on individual

funds. Therefore, the outperformance of optimal composite strategies is unlikely driven by

taking extreme bets on very few funds at certain times.

B. Portfolio characteristics

What could explain the superior performance of optimal composite strategies? To answer

this question, I compute and compare the portfolio-level characteristics of all investment

strategies. In particular, for each strategy, its time-t portfolio characteristics are computed

as follows:

[c1, · · · , cK ]p,t =
Nt∑
i=1

ωi,t[z1, · · · , zK ]i,t (2.11)
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where ωi,t is the desired portfolio weight assigned to fund i at time t; [z1, · · · , zK ]i,t are fund

i’s K standardized characteristics; Nt is the number of investable funds; [c1, · · · , cK ]p,t are

the portfolio’s desired characteristics at time t. As all the active investment strategies are

constructed on the basis of fund characteristics, it is straightforward to compare the variation

in portfolio characteristics across these strategies.

Table 2.6 reports the statistics of portfolio characteristics ([c1, · · · , cK ]p,t) of all portfolio

strategies and the performance (Sharpe and CEQ) of single characteristic sorted portfolios

under different market conditions.

[Table 2.6]

Specifically, Panel A, B, C and D, respectively, provide the results for single characteris-

tic sorted strategies, single characteristic optimized strategies, composite strategies and the

performance of single characteristic sorted portfolios. For all sub-tables in each panel, the

first row (Full) shows the average characteristics for the full sample; the second to fifth rows

present the averages under four market conditions from good to poor: Up, Mid-Up, Mid-

Down and Down. Let us first look at Panel A, the figures for single characteristic sorted

strategies. Not surprisingly, we see that each strategy concentrates on its desired charac-

teristic and that the loadings are evenly distributed across all market conditions, reflecting

the nature of sorting-based portfolio approach. Further looking at the performance (CEQ)

of single characteristic sorted strategies in Panel D, we find that concentrating on a single

fund characteristic seems implausible, as no single characteristic dominates in performance
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all the time.

Moving to Panel B, we can see that single characteristic optimized strategies on average

allocate even more aggressively on their desired characteristics than do their sorting-based

counterparts. However, in contrast to their sorted peers, the optimized strategies produce

substantial variation in desired characteristic loadings across different market states. In-

terestingly, the variation appears to capture the state-dependent relative performance of

single characteristic sorted portfolios, as evidenced by CEQs in Panel D. For example, the

Alpha sorted strategy turns from the second best performer to be the worst as the market

shifts from the Up to Down state; meanwhile, the Alpha optimized strategy’s loadings on

the Alpha characteristic decline significantly from 4.8 to 2.56, suggesting that it allocates

less capital toward high alpha funds. The results may explain the outperformance of single

characteristic optimized strategies relative to their sorting-based peers. Recall that both the

sorted and optimized strategies are constructed based on the same conditioning information,

i.e. each individual fund characteristic, but using different portfolio methods. Therefore, the

added value could be attributed to the superiority of optimization-based portfolio method

over the sorting rule.

Next, let us examine the characteristics of composite strategies shown in Panel C. By its

nature, the characteristics of näıve composite strategy (Näıve[comp]) appear to have no bias

toward any single characteristic and are evenly distributed across all market states. Turning

to the unconditional composite strategy (Unc[comp]), we can see that, over the full sample pe-

riod, it allocates aggressively in high alpha and hot-hand funds, moderately in highly active

and large inflow funds but not concentrated on very small-sized funds. Interestingly, such an

allocation scheme closely reflects the rankings of overall performance of single characteristic
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strategies: Hot and Alpha are the two top performers, Active and Flow perform moderately

and Size is the worst-performing one. The results indicate that the optimal composite strat-

egy seems to be able to exploit fund characteristics according to their overall performance for

the full sample. Next, I examine how the optimal composite strategy changes its allocation

in response to different market conditions. The results are reported in the second to fifth

rows of Table 2.6. A few interesting observations are worth mentioning here. First, all the

characteristics, except Size, exhibit large dispersions across different market states. More

specifically, the optimal composite strategy tends to overweight high alpha, hot-hand and

large inflow funds in good market states. However, as the market worsens, the strategy starts

loading off those funds, and meanwhile increases holdings on highly active funds. Second,

and perhaps most interestingly, the direction of shifts in the optimal composite strategy’s

portfolio holdings across funds with different characteristics is consistent with that of changes

in relative performance of single characteristic concentrated strategies. For example, in the

Up market, high alpha and hot-hand funds are the top-performers and Alpha and Hot are

the two most prominent characteristics of the optimal composite portfolio; at the same time,

highly active funds perform poorly and also Active is much less pronounced in the portfolio

characteristics. In the Down market, highly active funds become the top-performers among

all five characteristics, meanwhile, the allocation toward them increases substantially as ev-

idenced from the changes in portfolio characteristics. As the characteristics of conditional

composite strategy are very comparable to those of the unconditional one, I skip the discus-

sions here to conserve the space. These results imply that the optimal composite strategy

is able to rotate its allocation to exploit the conditioning information contained in different

fund characteristics, and more importantly, the shifts in portfolio allocation plausibly align
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with the changes in relative performance of funds with different characteristics as market

conditions evolve over time.

In summary, the results demonstrate that the optimal composite strategy’s superior

performance relative to the alternative strategies can be attributed to its efficacy in exploiting

the conditioning information contained in multiple fund characteristics about future fund

performance to shift its portfolio allocation away from (toward) funds that are likely to

underperform (outperform) as market conditions change over time.

2.5.2.4 State-dependent performance of single characteristic strategies: evi-
dence from factor loadings

What could possibly explain the state-dependent performance of funds with distinct charac-

teristics? I explore this question by examining their conditional factor loadings. In particular,

I estimate the regression coefficients of the 4-factor model of Carhart (1997) for each single

characteristic sorted strategy (i.e. the top-decile mutual fund portfolio based on a single fund

characteristic) conditioning on the four market states defined in Section sec:BSVEstimates.

I report summary statistics of loadings on the market (MKT), size (SMB), value (HML) and

momentum (UMD) factors in Table 2.7. More specifically, Panel A, B, C and D of Table 2.7

respectively present the results for the Up, Mid-UP, Mid-Down and Down markets.

[Table 2.7]

Focusing on Panel A and B, we can see that, in good market states, the Alpha and Hot

portfolios have higher market, size and momentum factor loadings than the Size and Active
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portfolios, suggesting that these funds invest aggressively in high beta, small and momentum

stocks. Turning to Panel C and D, we find that the Alpha and Hot portfolios still maintain

high loadings on the market, size and momentum factors; on the contrary, the Active port-

folio loads weakly on the three factors but has relatively high exposure to the value factor,

suggesting that highly active funds tend to hold value stocks.

The above results, combined with the findings from previous literature that small-cap

and momentum (value) stocks perform relatively well in bull (bear) markets but not in

bear (bull) markets, indicate that funds having the same characteristic tend to consistently

pick certain styles of stocks, implying that strategies that select and invest in funds based

on a single fund characteristic is unlikely to benefit from stock characteristic timing (i.e.

holding high beta, small, value or momentum stocks when they perform relatively well).

Interestingly, the optimal composite strategy that maintains tactical exposures to multiple

fund characteristics appears to have the ability to time stock characteristics as evidenced by

the changes in its portfolio characteristics documented in Section 2.5.2.3.

2.5.3 Robustness of the results

In this section, I undertake additional checks to see how sensitive the baseline results are to

changes in the number of funds the investor can invest in as well as to different investment

sub-periods.

2.5.3.1 Number of funds

In the baseline results, a single characteristic sorted strategy allows the investor recursively

to take equal-weighted long positions in the top 10% funds, ranked by one of their character-

istics, at each re-balancing date. By doing so, each portfolio on average contains about 160
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funds over the entire out-of-sample period. For robustness, I now relax this assumption and

let the investor pick the top 5% and 2.5% funds instead. As a result, each sorted portfolio

becomes much smaller and respectively contains about 80 and 40 funds on average.28 Table

2.8 provides the out-of-sample investment results of the reduced-size strategies.

[Table 2.8]

Essentially, the reported values show that the superior performance of optimal composite

strategies still remains economically large relative to the alternative investment strategies,

confirming that the baseline results are robust to different numbers of funds available for

forming the investor’s portfolios.

Specifically, comparing the results of Panel A with B, we can see that reducing the number

of funds included in portfolios leads to a more favorable risk-return profile for all strategies:

increases in mean and skewness of the return distribution, while the volatility remains little

changed. The figures from performance measures show that reducing portfolio sizes boosts

investment outcomes, as evidenced by higher and more significant 4-Factor alpha as well

as higher Sharpe ratio and CEQ. Interestingly, we can also observe that the performance

increases associated with reduced-size portfolios seem to be more pronounced in optimal com-

posite strategies: the performance of unconditional composite strategy increases by 93bps

in CEQ(RRA=5), whereas the best-performing single characteristic optimized strategy, i.e.

Hot, gains 36 bps. Therefore, the results support to the conclusion that incorporating cross-

28I consider the alternative cases with smaller counts of funds, because they may more closely represent
the typical situation faced by investors in practice.
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sectional predictability in fund performance substantially improves investment profitability.

2.5.3.2 Portfolio performance in sub-periods

The mutual fund industry has grown rapidly in the sample period of 1996:01–2013:12. As a

result, there are many more funds available for investment in the second part of the sample.

It is of interest to see if the main results hold for different time periods. To do so, I split

the entire out-of-sample investment period into two separate periods, 1996:01–2004:12 and

2005:01–2013:12, and report their results in Panel A and B of Table 2.9, respectively. Each

sub-period covers very different market conditions, such as the bull market of 1990s, Asian

financial crisis and Dot-Com bust in the first period; the subprime mortgage crisis and

European debt crises in the second period. For the sake of brevity, I report only the Sharpe

ratio and CEQ for each strategy.

[Table 2.9]

Looking at the first investment sub-period (Panel A), we find that optimal composite strate-

gies produce remarkably large economic gains and substantially outperform all alternative

strategies in both Sharpe ratios and CEQs. Compared to the full sample results, the Mid-

Blend index fund still the best-performing index fund, but single characteristic strategies

focusing on highly active funds dominate other single characteristic strategies and become

the top-performer. Moreover, the conditional composite strategy underperforms its uncon-

ditional counterpart, implying that conditioning on the macroeconomic variables may have

introduced noise to the portfolio allocation process and thus erodes its performance. Turning
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to the second sub-period (Panel B), we find that all mutual fund strategies deliver signifi-

cantly lower performance than do they during the first sub-period. This observation tends

to support the empirical evidence documented by Pástor et al. (2015) that a fund’s ability

to outperform passive benchmarks declines as the size of the active mutual fund indus-

try increases. Despite suffered from the effect of diseconomies of scale, the unconditional

(conditional) composite strategies still outperforms the best-performing passive benchmark

(Large-Blend) by 1.81% (2.50%) per year in CEQ. In contrast to the full sample results,

the Hot optimized strategy performs as well as the unconditional composite strategy, but

still underperforms the conditional composite strategy by 64 bps in CEQ, suggesting that

macroeconomic variables provide complementary and valuable information that is not cap-

tured in fund characteristics. Overall, the sub-period analysis indicates that the superior

performance of optimal composite strategies that allow for predictability based on fund

characteristics and macroeconomic variables still prevails under these separate investment

periods. Therefore, the main results of this paper hold across sub-periods.

2.6 Conclusion

In this paper, I explore the question of whether investing in the universe of active equity

mutual funds may be value enhancing for an investor. Relying on a large sample of U.S.

domestic active equity mutual funds, I employ a parametric portfolio approach to construct

optimal composite strategies that simultaneously exploits the cross-sectional predictability

in fund performance based on multiple fund characteristics as well as on macroeconomic

variables. I find that the resulting composite strategies significantly outperform (i) a set of

passive investments using low-cost index funds that focus on different segments of the mar-
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ket, (ii) single characteristic strategies that rely on the sorting-based trading rule to utilize

the predictive power of individual fund characteristics, (iii) single characteristic strategies

formed using an optimized portfolio approach, (iv) the näıve composite strategy that simply

averages all single characteristic sorted portfolios. The findings shed new light on the value

of investing in active equity mutual funds. Specifically, strategies that use an optimization-

based portfolio approach and allow for the cross-sectional predictability in fund performance

make investing in active equity funds value adding relative to passive investments in index

funds. In addition, the results provide new insights into the economic significance of jointly

exploiting the predictive power of fund characteristics in a composite investment strategy

relative to its single characteristic counterparts. Moreover, within the space of active equity

mutual funds, the optimization-based approach that takes into account investors’ preferences

is more effective in capitalizing on the predictability in fund performance in comparison to

simpler portfolio methods, such as the sorting-based rule and the 1/N policy. I further

demonstrate that the outperformance of the optimal composite strategy can be attributed

to its efficacy in smartly weighing different fund characteristic signals and in effectively ro-

tating portfolio allocation among funds with future outperformance as market conditions

evolve over time.

This paper suggests several avenues for future research. First, although U.S. domestic

equity mutual funds are examined, the framework proposed in the present paper could be

applied to other mutual fund classes (e.g., fixed income, non-U.S. equities, commodities)

and other active investment vehicles (e.g., hedge funds, ETFs). Given the limited or even

nonexistent research in these areas, these extensions could offer further insights into the value

of active asset management. In addition, this study could also be extended to include a multi-
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period investment objective, within which the time-varying variation in fund performance

predictability might play an even larger role. Such extensions could be of interest to a target

fund that typically pursues a long-term investment strategy.
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Appendix

Vanguard index fund list

This table provides the list of selected Vanguard index funds used as alternative passive investments.

The listed fund names, category and tickers are provided by Vanguard. All funds seek to track

the performance of a benchmark index that measures the investment return of a specific U.S. stock

category and are available for trading over the period of 1996:01–2013:12.

Fund name Category Ticker

Vanguard Value Index Fund Large Value VVIAX

Vanguard 500 Index Fund Large Blend VFIAX

Vanguard Morgan Growth Fund Large Growth VMRGX

Vanguard Strategic Equity Fund Mid Blend VSEQX

Vanguard Extended Market Index Fund Mid Growth VEXMX

Vanguard Small Cap Index Fund Small Blend NAESX

Vanguard Explorer Fund Small Growth VEXPX
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Pástor, L., and R. F. Stambaugh. 2002. Investing in equity mutual funds. Journal of
Financial Economics 63:351–380.
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Table 2.1 The predictive power of fund characteristics for the cross-section of fund performance

This table reports the out-of-sample performance of five sets of mutual fund decile portfolios over the period of 1996:01–2013:12. The

decile portfolios in each set are formed based on rankings of a single fund characteristic. Decile 10 represents the “top-decile” or “best-

performing” portfolio, Decile 1 is the “bottom-decile” or “worst-performing” portfolio and L-S denotes the long-short portfolio that longs

the top-decile portfolio and shorts the bottom-decile one. The performance of all portfolios is measured by three metrics: the annualized

4-Factor alpha (Alpha), Sharpe ratio (Sharpe) and certainty equivalent excess returns (CEQ) with a relative risk aversion coefficient of

5 (RRA=5). Funds included in each decile portfolio are equal-weighted and re-balanced monthly.

Alpha Hot Flow Size Active

Decile Alpha Sharpe CEQ Alpha Sharpe CEQ Alpha Sharpe CEQ Alpha Sharpe CEQ Alpha Sharpe CEQ

10 .0187 .60 .0211 .0151 .60 .0219 .0007 .49 .0072 -.0019 .44 .0014 .0029 .52 .0185
[1.48] [1.11] [0.10] [-0.25] [0.27]

9 -.0001 .50 .0091 .0000 .54 .0155 -.0045 .46 .0016 -.0039 .45 .0045 .0052 .52 .0154
[-0.01] [0.00] [-0.71] [-0.59] [0.59]

8 -.0054 .47 .0075 -.0036 .52 .0136 -.0084 .42 -.0031 -.0004 .47 .0083 -.0050 .45 .0015
[-0.81] [-0.49] [-1.42] [-0.06] [-0.70]

7 -.0068 .44 .0038 -.0089 .47 .0065 -.0076 .41 -.0030 -.0073 .44 .0003 -.0046 .45 .0018
[-1.23] [-1.48] [-1.39] [-1.15] [-0.70]

6 -.0089 .42 .0002 -.0103 .42 .0000 -.0088 .40 -.0046 -.0064 .42 -.0034 -.0077 .42 -.0030
[-1.67] [-1.81] [-1.63] [-0.96] [-1.39]

5 -.0081 .40 -.0025 -.0106 .39 -.0057 -.0081 .40 -.0039 -.0097 .42 -.0031 -.0086 .40 -.0076
[-1.48] [-1.83] [-1.36] [-1.51] [-1.41]

4 -.0086 .40 -.0039 -.0123 .35 -.0133 -.0056 .43 .0011 -.0115 .39 -.0088 -.0124 .38 -.0095
[-1.56] [-1.92] [-0.93] [-1.81] [-2.20]

3 -.0102 .36 -.0102 -.0122 .31 -.0221 -.0072 .41 -.0030 -.0131 .38 -.0108 -.0132 .36 -.0142
[-1.71] [-1.56] [-0.99] [-2.18] [-2.70]

2 -.0153 .32 -.0199 -.0154 .24 -.0378 -.0119 .37 -.0124 -.0117 .38 -.0094 -.0157 .34 -.0177
[-2.28] [-1.57] [-1.48] [-2.13] [-3.02]

1 -.0303 .20 -.0542 -.0167 .15 -.0680 -.0136 .36 -.0159 -.0091 .38 -.0074 -.0160 .34 -.0193
[-3.14] [-1.18] [-1.59] [-2.01] [-2.93]

L-S .0489 .75 .0528 .0318 .53 .0235 .0143 .38 .0144 .0072 .29 .0060 .0189 .31 .0098
[3.29] [1.38] [1.73] [1.27] [1.70]
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Table 2.2 Statistical properties of single characteristic sorted strategy returns

This table reports sample moments, correlations and factor loadings of excess returns of five single

characteristic sorted strategies over the period of 1992:02–2013:12. The p-values associated with the

estimated factor loadings are reported in parentheses in Panel C. Each portfolio strategy is formed

by taking equal-weighted long positions in the funds that are ranked in the top-decile portfolio on

basis of one lagged fund characteristic. All portfolios are re-balanced monthly.

Alpha Hot Flow Size Active

Panel A: Sample Moments

Mean .1124 .1168 .0831 .0730 .0766
Std .1759 .1832 .1567 .1474 .1338
Skew -.11 .18 -.59 -.80 -.89
Kurt 5.58 6.36 4.68 4.80 5.55

Panel B: Correlations

Alpha 1
Hot .97 1
Flow .98 .94 1
Size .91 .83 .96 1
Active .89 .82 .94 .98 1

Panel C: Factor Loadings

MKT .9687 .9671 .9406 .9281 .8363
(.000) (.000) (.000) (.000) (.000)

SMB .5181 .5337 .3358 .1859 .1832
(.000) (.000) (.000) (.000) (.000)

HML -.0403 -.1171 -.0194 .0985 .1882
(.149) (.000) (.232) (.000) (.000)

UMD .1562 .3213 .0896 -.0138 .0134
(.000) (.000) (.000) (.017) (.347)
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Table 2.3 BSV coefficient estimates and single characteristic sorted portfolio performance

This table reports the out-of-sample BSV coefficient estimates (Coef) and corresponding single characteristic portfolio performance (CEQ

with RRA=5) over the period of 1996:01–2013:12. The first row (Average) provides the time-series averages over the full sample period.

The second to the fifth row (Up - Down) present the time-series averages under different market conditions. The BSV coefficients are

estimated using the methodology specified in Section 2.3.1.

Alpha Hot Flow Size Active

Market Coef CEQ Coef CEQ Coef CEQ Coef CEQ Coef CEQ

Full 1.80 .0211 1.17 .0219 1.17 .0072 .98 .0014 1.45 .0185

Up 2.09 .4629 1.36 .4883 1.04 .4288 1.58 .4006 .81 .3754

Mid-Up 2.14 .2449 2.14 .2304 1.70 .2043 1.39 .1955 1.61 .1805

Mid-Down 2.14 -.0710 .74 -.0953 1.63 -.0660 .76 -.0599 1.51 -.0529

Down .67 -.4805 .23 -.4546 .03 -.4739 .14 -.4739 1.75 -.3844137



Table 2.4 Out-of-sample investment results of portfolio strategies

This table reports out-of-sample results of mutal fund portfolio strategies over the period of 1996:01–

2013:12. Reported metrics include the first four sample moments of portfolio realized excess returns

(Mean, Std, Skew and Kurt), the annualized 4-Factor alpha (Alpha), Sharpe ratio (Sharpe) and cer-

tainty equivalent excess returns (CEQ) with three levels of risk aversion coefficients (RRA=3,5,10).

Panel A reports the results for seven passive strategies using Vangard index funds; Panel B presents

the results for five single characteristic sorted strategies, each of which takes equal-weighted long

positions in the top 10% funds sorted on a specific lagged characteristic measure; Panel C shows

the results for five single characteristic optimized strategies, each of which is formed based on a

single characteristic predictive signal and using the methodology specified in Section 2.3.1; Panel

D reports the results for composite strategies which combine predictive signals from five fund char-

acteristics (and macroeconomic state variables). Figures in parentheses denote the block-bootstrap

p-values under the null hypothesis that the performance of the competing strategy is equal or su-

perior to that of the unconditional composite strategy (one-sided test). All strategies except the

passive ones in Panel A are re-balanced monthly.

Strategy Mean Std Skew Kurt Alpha Sharpe
CEQ

RRA=3 RRA=5 RRA=10

Panel A: Vanguard Index Funds

Large-Value .0659 .1601 -.72 4.32 -.0020 .41 .0257 -.0032 -.0843
(.000) (.000) (.000) (.000) (.000)

Large-Blend .0654 .1575 -.65 3.86 .0020 .42 .0268 -.0006 -.0762
(.000) (.000) (.000) (.000) (.000)

Large-Growth .0723 .1798 -.71 4.08 .0039 .40 .0213 -.0156 -.1208
(.000) (.000) (.000) (.000) (.000)

Mid-Blend .0936 .1822 -.77 4.99 -.0004 .51 .0408 .0018 -.1148
(.000) (.000) (.000) (.000) (.000)

Mid-Growth .0873 .2042 -.62 4.21 -.0072 .43 .0213 -.0269 -.1670
(.000) (.000) (.000) (.000) (.000)

Small-Blend .0895 .2041 -.51 4.14 -.0127 .44 .0242 -.0230 -.1582
(.000) (.000) (.000) (.000) (.000)

Small-Growth .0896 .2105 -.31 3.86 -.0073 .43 .0212 -.0272 -.1620
(.000) (.000) (.000) (.000) (.000)

Panel B: Single Characteristic Sorted Strategies

Alpha[sort] .1126 .1883 -.10 5.14 .0187 .60 .0588 .0211 -.0823
(.070) (.003) (.005) (.000) (.000)

Hot[sort] .1178 .1953 .18 5.93 .0151 .60 .0609 .0219 -.0824
(.000) (.005) (.033) (.000) (.000)

Flow[sort] .0821 .1676 -.57 4.31 .0007 .49 .0384 .0072 -.0801
(.000) (.000) (.000) (.000) (.000)

Size[sort] .0691 .1583 -.76 4.35 -.0019 .44 .0297 .0014 -.0789
(.000) (.000) (.000) (.000) (.000)

Active[sort] .0738 .1427 -.87 5.16 .0029 .52 .0417 .0185 -.0480
(.000) (.000) (.000) (.000) (.044)
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Table 2.4 (Continues)

Panel C: Single Characteristic Optimized Strategies

Alpha[optm] .1130 .1856 -.08 5.12 .0229 .61 .0608 .0245 -.0747
(.216) (.019) (.008) (.016) (.000)

Hot[optm] .1178 .1905 .19 5.84 .0241 .62 .0637 .0268 -.0714
(.014) (.044) (.041) (.018) (.000)

Flow[optm] .0822 .1684 -.58 4.44 .0013 .49 .0380 .0063 -.0827
(.000) (.000) (.000) (.000) (.000)

Size[optm] .0807 .1593 -.70 4.23 .0022 .51 .0410 .0126 -.0565
(.000) (.000) (.000) (.000) (.000)

Active[optm] .0688 .1346 -.92 5.24 .0023 .51 .0403 .0197 -.0389
(.000) (.000) (.000) (.000) (.194)

Panel D: Composite Strategies

Nave[comp] .0911 .1650 -.53 4.23 .0086 .55 .0489 .0190 -.0641
(.000) (.000) (.000) (.000) (.000)

Unc[comp] .1170 .1685 .09 6.11 .0331 .69 .0745 .0447 -.0345
(1.00) (1.00) (1.00) (1.00) (1.00)

Con[comp] .1205 .1731 .35 6.42 .0345 .70 .0764 .0460 -.0323
... ... ... ... ...
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Table 2.5 Statistics of optimal composite portfolio weights

This table reports the time-series statistics of cross-sectional portfolio weights of unconditional and

conditional optimal composite strategies over the period of 1996:01–2013:12.

Unc[comp] Con[comp]

Avg{wi,t} Max{wi,t} Avg{wi,t} Max{wi,t}

Average 0.29% 1.45% 0.26% 1.42%

Min 0.17% 0.37% 0.17% 0.65%

Max 0.63% 5.41% 0.52% 3.76%
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Table 2.6 Portfolio-level characteristics of all investment strategies

This table reports the statistics of fund characteristic holdings in portfolio strategies over the investment period of 1996:01–2013:12. Panel

A shows the results for single characteristic sorted strategies, Panel B present the results for single characteristic optimized strategies,

Panel C dipicts the results for composite strategies, and Panel D reports the out-of-sample performance (Sharpe and CEQ with RRA=5)

of single characteristic sorted strategies. In each panel, the first row (Full) provides the time-series averages over the full sample period.

The second to the fifth row present the time-series averages under four market conditions from good to poor: Up, Mid-Up, Mid-Down

and Down.

Panel A: Single Characteristic Sorted Strategies

Market Alpha[sort] Hot[sort] Flow[sort]

C̄Alpha C̄Hot C̄Flow C̄Size C̄Active C̄Alpha C̄Hot C̄Flow C̄Size C̄Active C̄Alpha C̄Hot C̄Flow C̄Size C̄Active

Full 1.83 1.25 .52 .07 .65 1.24 1.84 .56 .06 .35 .60 .62 1.88 .18 .21
Up 1.81 1.18 .52 .09 .63 1.20 1.81 .53 .07 .33 .61 .59 1.86 .18 .26
Mid-Up 1.83 1.23 .52 .03 .71 1.22 1.85 .59 .05 .26 .60 .65 1.89 .18 .20
Mid-Down 1.85 1.31 .52 .07 .70 1.28 1.83 .56 .07 .33 .61 .64 1.89 .19 .20
Down 1.81 1.26 .50 .08 .55 1.27 1.86 .54 .06 .50 .58 .60 1.87 .18 .18

Size[sort] Active[sort]
C̄Alpha C̄Hot C̄Flow C̄Size C̄Active C̄Alpha C̄Hot C̄Flow C̄Size C̄Active

Full -.05 -.10 .14 .27 .29 .26 .03 .09 .10 2.25
Up -.04 -.10 .15 .28 .31 .16 -.04 .13 .11 2.22
Mid-Up -.05 -.11 .13 .27 .30 .34 -.07 .08 .09 2.23
Mid-Down -.04 -.11 .13 .27 .27 .36 .04 .10 .11 2.29
Down -.05 -.05 .14 .27 .27 .15 .24 .06 .09 2.27

Panel B: Single Characteristic Optimized Strategies

Market Alpha[optm] Hot[optm] Flow[optm]

C̄Alpha C̄Hot C̄Flow C̄Size C̄Active C̄Alpha C̄Hot C̄Flow C̄Size C̄Active C̄Alpha C̄Hot C̄Flow C̄Size C̄Active

Full 4.80 3.41 1.30 .03 .76 2.34 3.41 1.02 .00 -.27 1.23 1.45 5.76 .21 .04
Up 5.00 3.50 1.43 .09 .63 2.34 3.37 .96 .02 -.39 1.10 1.16 4.64 .18 .10
Mid-Up 5.70 3.90 1.56 .00 1.09 2.95 4.56 1.47 -.01 -.45 1.55 1.95 7.49 .28 .03
Mid-Down 5.50 4.01 1.45 .03 .98 2.47 3.45 1.00 .01 -.14 1.50 1.76 7.20 .25 .08
Down 2.56 1.94 .65 .03 .18 1.37 1.85 .51 .00 -.09 .60 .70 2.77 .11 -.05

Size[optm] Active[optm]

C̄Alpha C̄Hot C̄Flow C̄Size C̄Active C̄Alpha C̄Hot C̄Flow C̄Size C̄Active

Full .07 .04 .41 2.32 .32 .98 -.15 .08 .18 6.22
Up .19 .10 .38 1.31 .39 .59 -.55 .12 .19 5.21
Mid-Up -.01 -.01 .46 3.26 .33 1.29 -.44 .07 .18 6.89
Mid-Down .06 .02 .48 2.86 .39 1.24 -.09 .10 .21 7.38
Down .08 .09 .29 1.40 .16 .64 .53 .01 .12 4.89
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Table 2.6 (Continues)

Panel C: Composite Strategies

Market Nave[comp] Unc[comp] Con[comp]

C̄Alpha C̄Hot C̄Flow C̄Size C̄Active C̄Alpha C̄Hot C̄Flow C̄Size C̄Active C̄Alpha C̄Hot C̄Flow C̄Size C̄Active

Full .78 .73 .64 .14 .75 1.26 1.18 .72 .11 .97 1.20 1.17 .79 .11 1.04
Up .75 .69 .64 .15 .75 1.47 1.34 .70 .13 .70 1.43 1.36 .70 .12 .79
Mid-Up .79 .71 .64 .13 .74 1.28 1.13 .74 .10 .89 1.22 1.17 .94 .10 .86
Mid-Down .81 .74 .64 .14 .76 1.21 1.07 .87 .12 1.04 1.16 1.04 .90 .12 1.09
Down .75 .78 .62 .13 .75 1.09 1.25 .55 .11 1.23 1.00 1.15 .53 .11 1.43

Panel D: Single Characteristic Sorted Strategy Performance

Sharpe CEQ
Alpha[sort] Hot[sort] Flow[sort] Size[sort] Active[sort] Alpha[sort] Hot[sort] Flow[sort] Size[sort] Active[sort]

Full .60 .60 .49 .44 .52 .0211 .0219 .0072 .0014 .0185
Up 3.64 3.82 4.04 4.10 4.21 .4629 .4883 .4288 .4006 .3754
Mid-Up 1.95 1.70 2.05 2.14 2.07 .2449 .2304 .2043 .1955 .1805
Mid-Down -.15 -.22 -.18 -.17 -.19 -.0710 -.0953 -.0660 -.0599 -.0529
Down -1.50 -1.46 -1.66 -1.83 -1.62 -.4805 -.4546 -.4739 -.4739 -.3844
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Table 2.7 Conditional factor loadings of single characteristic sorted strategies

This table reports the conditional loadings on the 4 factors (MKT, SMB, HML and UMD) of single characteristic sorted strategies for the

overall period of 1992:02–2013:12. Panel A, B, C and D report the results for Up, Mid-Up, Mid-Down and Down markets, respectively.

Corresponding p-values are reported in parentheses.

Factor Alpha[sort] Hot[sort] Flow[sort] Size[sort] Active[sort] Alpha[sort] Hot[sort] Flow[sort] Size[sort] Active[sort]

Panel A: Up Panel B: Mid-Up

MKT 1.123 1.112 1.024 .9991 .8327 .9212 .9654 .8973 .9432 .8765
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

SMB .5520 .4920 .3241 .2287 .1930 .5120 .5199 .3202 .1859 .1511
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

HML -.0669 -.1367 -.0590 .0722 .0125 -.2156 -.3325 -.1189 .0772 .1308
(.558) (.257) (.356) (.044) (.786) (.000) (.000) (.000) (.029) (.012)

UMD .0776 .2460 .0624 .0165 -.0358 .1838 .3558 .0966 -.0392 -.0300
(.133) (.000) (.033) (.297) (.089) (.000) (.000) (.000) (.065) (.333)

Panel C: Mid-Down Panel D: Down

MKT .9390 .9924 .9146 .8914 .8126 1.013 .9066 .9635 .9346 .8452
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

SMB .4462 .4123 .3192 .2401 .2634 .3877 .4978 .2957 .1271 .1408
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.010) (.059)

HML -.0017 -.0489 .0130 .1237 .2121 -.0095 -.0782 .0073 .1102 .2302
(.967) (.309) (.629) (.000) (.000) (.838) (.162) (.826) (.002) (.000)

UMD .1948 .3538 .0983 -.0382 .0332 .2080 .3409 .1063 -.0148 .0407
(.000) (.000) (.000) (.134) (.313) (.000) (.000) (.000) (.535) (.267)
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Table 2.8 Out-of-sample investment results of reduced-size portfolio strategies

This table reports out-of-sample results of reduced-size mutal fund portfolio strategies over the investment period of 1996:01–2013:12.

Reported metrics include the first four sample moments of portfolio realized excess returns (Mean, Std, Skew and Kurt), the annualized

4-Factor alpha (Alpha), Sharpe ratio (Sharpe) and certainty equivalent excess returns (CEQ) with risk aversion coefficient of 5 (RRA=5).

Panel A and B, respectively, report the results for taking equal-weighted long positions in the top 5% and 2.5% funds ranked on a specific

lagged characteristic measure in single characteristic sorted strategies. All strategies are re-balanced monthly.

Panel A: Top 5% Panel B: Top 2.5%

Mean Std Skew Kurt Alpha Sharpe
CEQ

Mean Std Skew Kurt Alpha Sharpe
CEQ

RRA=3 RRA=5 RRA=10 RRA=3 RRA=5 RRA=10

Single Characteristic Sorted Strategies

Alpha[sort] .1231 .2009 .07 5.58 .0270 .61 .0624 .0203 -.0954 .1298 .2119 .11 5.83 .0328 .61 .0623 .0153 -.1145
[1.68] ... ... ... ... [1.81] ... ... ... ...

Hot[sort] .1282 .2034 .27 6.37 .0252 .63 .0667 .0246 -.0890 .1404 .2079 .28 6.65 .0384 .68 .0762 .0320 -.0896
[1.51] ... ... ... ... [1.94] ... ... ... ...

Flow[sort] .0841 .1689 -.55 4.67 .0005 .50 .0397 .0079 -.0819 .0809 .1696 -.57 4.52 .0006 .48 .0361 .0040 -.0865
[0.07] ... ... ... ... [0.07] ... ... ... ...

Size[sort] .0698 .1588 -.77 4.44 -.0037 .44 .0301 .0015 -.0799 .0688 .1559 -.73 4.17 -.0047 .44 .0307 .0034 -.0730
[-0.48] ... ... ... ... [-0.61] ... ... ... ...

Active[sort] .0662 .1319 -.87 5.08 -.0037 .50 .0390 .0195 -.0357 .0558 .1189 -.94 5.70 -.0026 .47 .0337 .0178 -.0268
[-0.48] ... ... ... ... [-0.22] ... ... ... ...

Single Characteristic Optimized Strategies

Alpha[optm] .1209 .1911 .03 5.45 .0292 .63 .0660 .0279 -.0757 .1272 .1960 .09 5.63 .0352 .65 .0696 .0298 -.0783
[1.70] ... ... ... ... [1.88] ... ... ... ...

Hot[optm] .1247 .1944 .25 6.16 .0310 .64 .0687 .0304 -.0717 .1320 .1982 .29 6.54 .0395 .67 .0738 .0340 -.0738
[1.75] ... ... ... ... [2.00] ... ... ... ...

Flow[optm] .0848 .1695 -.54 4.56 .0036 .50 .0402 .0083 -.0813 .0843 .1710 -.51 4.63 .0031 .49 .0388 .0064 -.0847
[0.37] ... ... ... ... [0.30] ... ... ... ...

Size[optm] .0848 .1578 -.66 4.15 .0069 .54 .0461 .0184 -.0589 .0864 .1556 -.59 4.01 .0094 .56 .0489 .0223 -.0509
[0.73] ... ... ... ... [0.91] ... ... ... ...

Active[optm] .0680 .1293 -.89 5.08 .0041 .53 .0418 .0231 -.0297 .0651 .1240 -.85 5.19 .0036 .53 .0411 .0241 -.0238
[0.32] ... ... ... ... [0.25] ... ... ... ...
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Table 2.8 (Continues)

Panel A: Top 5% Panel B: Top 2.5%

Mean Std Skew Kurt Alpha Sharpe
CEQ

Mean Std Skew Kurt Alpha Sharpe
CEQ

RRA=3 RRA=5 RRA=10 RRA=3 RRA=5 RRA=10

Composite Strategies

Nave[comp] .0850 .1597 -.65 4.18 .0059 .53 .0452 .0168 -.0626 .0951 .1639 -.44 4.25 .0143 .58 .0538 .0247 -.0552
[0.63] ... ... ... ... [1.17] ... ... ... ...

Unc[comp] .1209 .1719 .27 6.72 .0374 .70 .0771 .0458 -.0351 .1297 .1757 .62 7.90 .0456 .74 .0849 .0551 -.0237
[1.78] ... ... ... ... [1.99] ... ... ... ...

Con[comp] .1258 .1768 .56 7.36 .0410 .71 .0803 .0503 -.0291 .1346 .1813 .70 7.69 .0489 .74 .0873 .0558 -.0220
[1.98] ... ... ... ... [2.04] ... ... ... ...
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Table 2.9 Sub-period performance of portfolio strategies

This table reports the out-of-sample performance of portfolio strategies over two sub-periods:

1996:01–2004:12 (Panel A) and 2005:01–2013:12 (Panel B). Reported metrics include the Sharpe

ratio (Sharpe) and certainty equivalent excess returns (CEQ) with risk aversion coefficient of 5

(RRA=5). All strategies are re-balanced monthly.

Panel A: 1996/01 - 2004/12 Panel B: 2005/01 - 2013/12

Sharpe
CEQ

Sharpe
CEQ

(RRA=5) (RRA=5)

Vanguard Index Funds

Large-Value .43 -.0004 .39 -.0060
Large-Blend .42 -.0017 .41 .0004
Large-Growth .38 -.0271 .43 -.0040
Mid-Blend .65 .0313 .40 -.0274
Mid-Growth .38 -.0440 .48 -.0097
Small-Blend .42 -.0280 .46 -.0179
Small-Growth .41 -.0408 .45 -.0136

Single Characteristic Sorted Strategies

Alpha[sort] .71 .0375 .47 .0049
... ... ... ...

Hot[sort] .69 .0298 .50 .0141
... ... ... ...

Flow[sort] .58 .0190 .39 -.0045
... ... ... ...

Size[sort] .50 .0118 .37 -.0089
... ... ... ...

Active[sort] .68 .0428 .36 -.0054
... ... ... ...
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Table 2.9 (Continues)

Panel A: 1996/01 - 2004/12 Panel B: 2005/01 - 2013/12

Sharpe
CEQ

Sharpe
CEQ

(RRA=5) (RRA=5)

Single Characteristic Optimized Strategies

Alpha[optm] .72 .0428 .47 .0065
... ... ... ...

Hot[optm] .70 .0346 .52 .0190
... ... ... ...

Flow[optm] .58 .0192 .38 -.0065
... ... ... ...

Size[optm] .60 .0267 .41 -.0015
... ... ... ...

Active[optm] .67 .0421 .34 -.0024
... ... ... ...

Composite Strategies

Nave[comp] .67 .0368 .42 .0013
... ... ... ...

Unc[comp] .88 .0802 .51 .0185
... ... ... ...

Con[comp] .82 .0668 .59 .0254
... ... ... ...
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Figure 2.1 Sample property: number of funds
This figure shows how the number of funds included in the sample set changes over time. The dashed

line on the top represents the number of funds with at least one non-missing characteristic measure.

The solid line at the bottom shows the number of funds with all five non-missing characteristic

measures.
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Figure 2.2 Differences in cumulative wealth: optimal composite strategies vs. alternative investment strategies
This figure depicts differences in cumulative wealth between optimal composite strategies and alternative investment strategies from

1996:01 to 2013:12. In January 1996, each strategy starts with $100 USD one-time investment. The solid (dashed) line represents the

wealth difference between the unconditional (conditional) optimal composite strategy and the alternative investment strategy as titled

in each subplot.
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