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ABSTRACT 

Dielectrophoresis (DEP)-based fluidic self-assembly of nanoscale building blocks, 

such as nanoparticles and nanowires, is a promising alternative to the current 

micro/nanofabrication techniques to manufacture functional micro/nanodevices.  While 

individual particles can be manipulated with reasonable precision, it remains a grand 

challenge to scale up the assembly process to reproducibly assemble a large number of 

particles.  This is partially due to the lack of a quantitative understanding of the complex 

fluid-particle dynamics when numerous nanostructures are interacting both electrically and 

hydrodynamically.  In this work, both experiment and numerical study were conducted to 

explore the electrohydrodynamic effects during the assembly of multiple nanostructures 

driven by DEP.  

Direct numerical simulations were conducted that combine the Maxwell Stress 

Tensor (MST) approach and the Distributed Lagrange Multiplier/Fictitious Domain 

(DLM/FD) method to solve the conjugate fluid-particle interaction problem.  The MST 

approach was used to compute the DEP forces and torques exerted on the particles, which 

yields rigorous solutions even for highly non-uniform electric field and for particles of 

irregular shapes.  The DLM/FD method was then employed to simulate the hydrodynamic 

equations of the particle-fluid system involving multiple particles.  The motion of the 

individual particles and the subsequent aggregation of adjacent particles under three major 

driving mechanisms for directed self-assembly, namely, DEP, traveling-wave DEP and 

electrorotation, were studied in details.  In addition, microfluidic DEP devices were 

fabricated and self-assembly experiments were carried out for polystyrene microparticles 
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suspended in colloidal solutions.  The observed particle motion and the assembly patterns 

were compared to the numerical simulation results.  The good agreement suggests the 

comprehensive numerical framework developed in this work can be used as a powerful 

tool for the fundamental study of colloidal hydrodynamics with coupled electrokinetic 

effects.    

With further advancement, this work will help to push forward the development of 

more effective and robust fluidic assembly techniques, and lay the foundation towards 

large-scale parallel manufacturing of functional nanostructures for various engineering 

applications. 
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Chapter 1 Introduction 

The burgeoning field of nanotechnology has called for new methods for fabricating 

and manufacturing functional structures and devices.  Due to the attractive nature of 

intermolecular forces, the individual nanoscale building blocks, such as the nanoparticles, 

nanotubes and nanowires, can be assembled into functional nano- and microsystems in a 

bottom-up manner.  The applications range from basic microelectronic components such 

as field-effect transistors [1-3] to more complex devices like logic circuits [4, 5] and 

electromechanical switches [6, 7].  Two grand challenges exist [8]: how to precisely 

position the nanoscale building blocks at a predefined location and orientation to form 

robust structures, and how to scale up the fabrication process to simultaneously produce a 

large number of such structures.  Among various methods proposed for assembling 

nanostructures, the electric field guided approach, particularly, the dielectrophoresis 

(DEP)-directed fluidic assembly, offers the opportunity to conveniently manipulate and 

position the nanostructures with high precision in colloidal dispersions where the 

nanostructures will not stick to the solid surface due to the van der Waal force.  It also has 

the advantage of being compatible with standard MEMS technologies, allowing on-chip 

assembly and integration.  

Dielectrophoresis is the motion of uncharged dielectric particles when they 

experience a net force and torque as the result of the interaction of the induced dipole on 

the particles with the applied electric field [9].  DEP has been employed as a powerful tool 

in a broad range of applications including particle separation and concentration, drug 

discovery, medical diagnostics and particle self-assembly [10-14].  One prominent 
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advantage of DEP is its ability to precisely manipulate small particles of micron/nanometer 

scale without physical contact.  This noninvasive feature is essential to many 

biological/biomedical applications where the completeness of the bioparticles must be 

maintained.  More importantly, it enables the directed self-assembly of micro/nanoparticles 

into pre-defined patterns, which constitutes the foundation for the development of more 

complex functional structures and devices in nanomaterials and nano/microelectronics [13, 

15]. 

At present, DEP-directed fluidic assembly is largely limited to sparsely distributed 

micro/nanoparticles (spherical and/or non-spherical).  One significant barrier is the lack of 

a quantitative understanding of the complex fluid-particle dynamics when numerous 

particles are involved, which interact both electrically and hydrodynamically.  For instance, 

the hydrodynamics interactions associated with DEP-directed assembly are often 

oversimplified by adding a friction term to the equations of motion of the particles, and 

very little information is known for the actual impact of the flow field on the assembly 

process.  In addition, most available models employ the effective dipole moment (EDM) 

approximation to characterize the electrical interactions, which is valid only when the 

particles are much smaller than the feature size of the non-uniformity of the electric field 

[16].  Recently, a more accurate model (the immersed electrokinetic finite element method) 

has been applied to simulate the electrohydrodynamic coupling of nanowires with the 

surrounding fluid [17-19], however, the number of nanowires that can be modeled are 

rather small (< 10), thereby restricting its use to dilute nanowire dispersions.  Therefore, 

the current modeling capability has lagged seriously behind the need for reliable predictive 
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tools that can be used to guide the design of scale-up parallel fluidic assembly of 

micro/nanostructures.    

 The overriding goal of the present work is to develop an accurate and efficient 

numerical model to simulate the colloidal electrohydrodynamics underlying DEP-directed 

fluidic assembly.  The objectives are to study the movement, aggregation and collision of 

large number of particles undergoing DEP and to investigate the effect of various system 

parameters on the DEP-directed fluidic assembly.  The ultimate aim is to lay the scientific 

foundation for large-scale parallel manufacturing of functional micro/nanostructures for 

engineering applications.   

In this work, the numerical model is developed by combining the Maxwell Stress 

Tensor (MST) approach and the Distributed Lagrange Multiplier/Fictitious Domain 

(DLM/FD) method.  The DEP forces and torques acting on each individual particle are 

calculated by integrating the Maxwell stress tensor over the entire surface of the particle.  

In the MST approach, the presence of the particle is included in the calculation of the 

electric field, and no assumptions need to be made regarding the field non-uniformity.  This 

guarantees the DEP forces/torques on the particle are correctly calculated even in regions 

with strong gradients such as in the vicinity of the electrodes.  Additionally, the MST 

formulation is flexible in dealing with particles of irregular shapes.  The hydrodynamic 

particle-particle and particle-fluid interactions are solved by the DLM/FD method.  In this 

method, the fluid-particle problem is reformulated in an extended domain, the fictitious 

domain, which is occupied by the fluid together with the interiors of the particles, over 

which the Navier-Stokes equations are enforced, and the flow inside and on each particle 

boundary is constrained to be a rigid-body motion using a distributed Lagrange multiplier.  
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By doing so, the fluid-particle interaction is treated implicitly via a combined weak 

formulation with which explicit calculation of the hydrodynamic forces and torques on the 

particles can be completely eliminated.  Another advantage of this method is that, 

structured, regular meshes can be used which significantly improves computational 

efficiency by avoiding mesh-regeneration.  To verify the numerical results, experiments 

are also conducted in this work with colloidal suspensions, in which the DEP motion of 

particles is recorded and analyzed.  Analytical solutions, when available, are used to test 

the validation of the numerical model and as a guideline for experiments.   

This dissertation is organized as follows.  Chapter 2 introduces the application 

background of DEP and summarizes the primary theoretical methods to calculate the DEP 

forces and torques on particles.   Chapter 3 details the numerical methods, including the 

governing equations of the particle-fluid interaction problem in the framework of the 

DLM/FD approach, the direct numerical simulation scheme, and the space and time 

discretization.  Chapter 4 presents the results of the analytical solutions, numerical 

simulations and experiment observations of a typical DEP-directed fluidic assembly 

process, particle chaining in a uniform electric field.  Chapter 5 describes the DEP motion 

of suspending colloidal particles confined in a microchannel when a traveling-wave field 

is applied.  Chapter 6 discusses the effect of electrohydrodynamics (EHD) on the DEP-

induced flow field when a temperature gradient exists.  Chapter 7 describes the 

electrorotation of microparticles in a rotating electric field.  Finally, the conclusions of the 

present study and recommendations for future work are summarized in Chapter 8. 
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Chapter 2 Fundamentals of Dielectrophoresis 

Dielectrophoresis (DEP) has been employed as a powerful tool in separating, 

trapping, sorting and translating cells, viruses and proteins in biological and biomedical 

research [20-23]. A sound understanding of the fluid-particle electrohydrodynamics is 

indispensable for successful implementation of DEP-directed fluidic assembly.  In this 

chapter, the historical retrospect of DEP is briefly reviewed, and the basic DEP theories 

are summarized.  In particular, various theoretical approaches for calculating the DEP force 

and torque are compared to highlight the strength and versatility of the Maxwell Stress 

Tensor (MST) method.   

2.1 A Historical Retrospect of DEP 

The phenomenon of DEP was discovered back in the early twentieth century [9].  

However, the first systematical study of DEP was conducted in 1950s by Pohl [24], who 

revealed dielectric polarization as the origin of DEP and laid the foundation for future 

theoretical models.  His work deals with the theory of dielectrophoresis based on the 

polarization of matter.   He also performed a series of experiments with colloidal 

suspensions and biological particles (yeast cells, red blood cells, chloroplasts mitochondria 

and bacteria) and enumerated the various factors that affect the particle separation process.   

By 1980s, a bulk of the research was on the manipulation of biological cells.  Pohl 

examined the behavior of single cells under dielectrophoresis [25] and Gvozadiak studied 

the separation of microorganisms from water with the help of dielectrophoresis [26].  

Subsequently, optical technique of registration, which permits a simultaneous registration 
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of orientation and dielectrophoretic precipitation, was used to study the dielectrophoretic 

motion of cells  and the electric properties of single cells can be extracted [27, 28].   

At the same time, DEP effect on various geometry such as spheres and shells were 

investigated experimentally by Jones [29] who applied both direct current (DC) and 

alternating current (AC) signals in colloidal suspensions.  Theoretically, Jones derived a 

general expression to estimate the dielectrophoretic forces for solid spheres and shells of 

lossy dielectric material in lossy dielectric medium.   

In the mid of 1980’s, more research were conducted on the use of dielectrophoresis 

for biological applications.  The focus became on more sophisticated applications such as 

cell soring, cell lysing and cell fusion [30-33].  Electroroation on single cells was studied 

by Arnold and Zimmermann with a rotating electric field [34].  It provides an accurate 

measurement for the bio-properties, such as membrane capacity and surface conductance 

of a single cell.   

A treatment of dielectrophoresis considering the particles to be lossy ones was 

given by Gherardi [35].  Instead of considering the particles to be pure dielectrics, their 

conductivity is also taken into account.  

A few computational studies were also reported during this period.  Henry 

performed numerical investigations on the particle collection efficiency of a fibrous filter 

[36].  The model took into account the effect of various factors such as dielectrophoresis, 

electrophoresis, Brownian motion and particle inertial and predict the collection efficiency 

of the filter under the influence of these factors.   
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Till this period dielectrophoresis was performed using electrodes made using 

conventional manufacturing processes.  For example, the pin-plate or the wire-wire 

arrangement used by Pohl in his experiments or the sophisticated geometry manufactured 

by numerically controlled milling machines [37].  Then, the technology of manufacturing 

dielectrophoretic devices was revolutionized [38-40] by introducing a novel device called 

fluid integrated circuit (FIC) [38].  In this device all the components were integrated into a 

single substrate using photolithography techniques.  These were the first dielectrophoretic 

devices manufactured using MEMS manufacturing process.  Using FIC, they were able to 

accurately control the electrostatic and hydrodynamic forces and therefore the 

manipulation of single cells [39]. 

This microfabrication technique was quickly adopted by Pethig for biological 

dielectrophoresis using microelectrodes [41].  The device has interdigitated castellated 

microelectrode design for live yeast suspension [41, 42].  The yeast cells were observed to 

experience positive dielectrophoresis above 10 kHz and negative dielectrophoresis below 

500 Hz [43].   Another contribution by Pethig was the studies of dielectrophoretic 

electrorotation [44-46].  He derived new theoretical relationships linking the dielectric 

properties of a colloidal suspension to both conventional dielectrophoresis and 

electrorotation.   

Electrorotation was later used to study cells, DNA and microorganism [47-49].  The 

properties of polarizability and conductivity are chosen as two typical parameters for the 

research by Jones [50].  He derived methods for determining the electrorotation forces and 

torques exerted by nonuniform electric fields on biological particles suspended in aqueous 

media.  Electrorotation devices were usually fabricated as four neighboring electrodes with 
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consecutive 90° phase-shift.  The electrodes can be as simple as platinum wires of 0.1 mm 

diameter bent in a U-turn shape by Holzel [51] in early years and as complicated as 

microfabricated electrodes designed with CAD software and used as electrical tweezer by 

Swami [52].  Negative dielectrophoresis comes along with electrorotation as 

dielectrophoretic field cage [53], which provides trapping and holding forces. 

Besides electrorotation, the phenomena of travelling-wave dielectrophoresis also 

attracted extensive attention.  This phenomena was originally observed by Batchelder in 

1983 [54].  Later, Fuhr were investigating this effect as the linear analog of 

dielectrophoresis [55, 56].  In order to obtain travelling wave dielectrophoresis, 

microelectrodes were arranged linearly with each electrode 90° phase advanced than the 

last [55], similar to electrorotation.  This produces an electric field that travels with the 

electrodes and the polarized particle will also move along with the field.  Liu and Garimella 

then developed the traveling-wave dielectrophoresis into an effective means for 

microfluidic flow actuation [57].  A prototype dielectrophoretic micropump was built and 

the experimental characterization of the induced flow velocity were reported and compared 

with numerical simulations.  They showed that by the interaction of the particle with the 

surrounding fluid, the particles actuated by traveling-wave dielectrophoresis can generate 

fluid flow inside the microfluidic channel.   

Theoretically, there had been three main analytical approaches in calculating the 

dielectrophoretic force experience by particles in a suspension.  The first one is the energy 

variation principle in which the particles and the suspending medium are treated as loss 

free dielectrics [58].  The second approach is the effective dipole/multipole method [59].  

The third approach is based on the Maxwell stress tensor method, which involves the 
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integration of the stress tensor on the entire particle surface [16].  Other methods such as 

image method were not widely used because it only applies to a certain simplified boundary 

condition [60].  These methods are compared and discussed in this work.  

When it comes to the numerical simulations of dielectrophoresis, at first, most of 

the studies are limited to the prediction of the electric field developed in the 

dielectrophoretic devices and the trajectories of the particle motion, without simulating the 

actual fluid-particle system [61, 62].  Then Kadaksham and Singh developed a numerical 

method based on the distributed Lagrange multiplier method for the direct simulation of 

electrorheological liquids [63, 64].  However, in their works, dipole approximation was 

adopted for dielectrophoretic force calculation.  Liu Y. also proposed a new method for 

modelling the electrokinetic-induced mechanical motion of particles in a fluid domain with 

immersed finite element method [65].  Assembly process of nano/biomaterials of various 

geometries were studied with this method.  The interactions between a few particles (less 

than 10) were investigated by Ai, House and Kang [66-69] in order to achieve precise 

control over the motion of the particles. 

2.2 Basic Theory of Dielectrophoresis 

DEP is the motion of uncharged particles when they experience a net force and 

torque as the result of the interaction of the induced dipole on the particles with the applied 

electric field [9].  In the simplest case, a dielectric particle suspended in a fluid medium is 

exposed to an applied external electric field (as shown in Figure 1).  The electrical charges 

redistribute in the particle, and net charges are established at the interface between the 

particle and the fluid, forming an induced dipole across the particle.  The induced dipole 
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tends to align with the applied field.  The induced dipole moment, p


, and the 

dielectrophoretic force, F


, are given by [70] 

 34
2

p m
m

p m

p r E
 

 
 
 

    


  and (1) 

  F p E 
 

 , (2) 

in which r is the radius of the particle, E


 is the applied electric field vector, and m and p 

are the dielectric permittivity of the fluid medium and the particle, respectively.  If the 

applied field is non-uniform ( 0E 


), the particle will experience a net force, and the 

resulting translational and rotational motion of the particle is termed dielectrophoresis [24, 

41].  It is noted that Eq. (1), or the effective dipole model, is valid only if the particle is 

much smaller than the length scale of the spatial variation of the electric field, which is also 

known as the dipole approximation.  More accurate approaches to calculate the 

dielectrophoretic force will be discussed later in this chapter. 

 

Figure 1. A sketch of positive DEP force (a) and negative DEP force (b) on a dielectric particle.  
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According to Eq. (2), the direction of the dielectrophoretic force and, therefore, the 

DEP-induced particle motion with respect to the applied field depend on the relative 

permittivity of the particle and the surrounding fluid medium.  If the particle is more 

polarizable (p > m), it experiences an attractive force and will move toward the local 

maxima of the electric field.  This process is called positive DEP.   In an opposite situation, 

the less polarizable particle (p < m) will move away from the local maxima of the field, 

leading to negative DEP.  In Figure 1(a), the particle is more polarizable than the fluid and, 

hence, the electric flux lines bend towards the particle, meeting its surface as if it were a 

metal particle.  Consequently, the field intensity near the upper portion of the particle is 

greater than that near the lower portion, leading to an imbalance of forces on the particle.  

The induced dipole conforms to the direction of the applied field, and the particle is 

attracted the point electrode where the maximum electric field exists, i.e., positive DEP 

occurs.  Similarly, Figure 1(b) illustrates the negative DEP for a particle that is less 

polarizable than the medium.   

DEP takes place not only in direct current (DC) but also in alternating current (AC) 

electric fields.  Sustained particle motion only occurs in AC DEP with the appropriate 

driving frequencies (in particular, in traveling-wave DEP), for which case, the permittivity 

 in Eq. (1) is replaced by the frequency-related counterpart, 

 i
 


   , (3) 

in which  and  are the permittivity and electrical conductivity, and  is the angular 

frequency of the electric field.   
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For a spherical particle suspended in a fluid in an AC electric field, the 

corresponding dipole moment is expressed as  

 34
2

p m
m

p m

p r E
 

 
 

 
    

 
 

 . (4) 

Hence, the dielectrophoretic force on the particle becomes 

   3 24
2

p m
DEP m

p m

F p E r E
 

 
 
 

      

   
 

 , (5) 

where the complex relative permittivity is also referred to as Clausius-Mossotti factor CMf  

 
2

p m
CM

p m

f
 
 






 
 

 . (6) 

Assuming the electric field varies with a single angular frequency , the time-

averaged dielectrophoretic force can be computed as [71]  

     23 3 2 2Re 2 ImDEP m CM m CM x x y yF r f E r f E E          
 

, (7) 

where Re[fCM] and Im[fCM] denote the real and imaginary parts of fCM, and Ex, Ey and Ez 

are components of the electric field vector; x, y and z are the phase angles if the electric 

field is spatially phase-shifted.  It is noted that the DEP force depends on the spatial non-

uniformities in both the field strength (
2

E


) and the phase (  ).  In fact, the first term 

on the RHS of Eq. (7) determines the alignment of the DEP force with respect to the 

maxima/minima of the electric field and is the regular DEP force component in DC DEP.  

The second term on the RHS of Eq. (7) only appears if the electric field has a spatially 
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varying phase, such as in a traveling-wave field, and therefore is the traveling-wave DEP 

(twDEP) force component. 

 

Figure 2. Real and imaginary components of Clausius-Mossotti factor as a function of frequency. 

 

The alignment of the DEP force with the applied field is contingent upon the 

Clausius-Mossotti factor fCM, which is frequency-dependent.  Figure 2 illustrates the real 

and imaginary parts of fCM as a function of the frequency of the applied field for polystyrene 

particles suspended in water.  Clearly, Re[fCM] is positive in the low-frequency range (f < 

1 kHz) in which the particles are more polarizable than the surrounding fluid, and crosses 

over to negative values as the frequency increases (f > 100 kHz) and the particles become 

less polarizable than the fluid.  If Re[fCM] > 0, the regular DEP force component aligns 

favorably with the field strength gradient, as indicated by Eq. (7).  As a result, the particles 

move towards the maxima of the electric field, which are usually located at the edges of 

the electrodes that are used to generate the electric field, and positive DEP occurs.  In the 
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opposite situation, a negative Re[fCM] brings about negative DEP where the particles move 

away from the maxima of the electric field, distancing themselves from the electrodes.   

The imaginary component of the Clausius-Mossotti factor, fCM, plays an important 

role in twDEP and electrorotation.  Im[fCM] vanishes at both extremes of the frequency 

spectrum but assumes non-zero values in the mid-range around the cross-over frequency.  

The maximum of the absolute value of Im[fCM] occurs at a relaxation frequency (known as 

Maxwell-Wagner frequency [72]) 

 
21

2 2
p m

MW
p m

f
 

  
 

    
  (8) 

and the corresponding value of Im[fCM] is  

   1
Im

2 2 2
p m p m

CM
p m p m

f
   
   
  

     
 . (9) 

When Im[fCM] is not trivial, the resulting twDEP force in Eq. (7) propels the 

particles along or against the propagating traveling-wave field depending on the sign of 

Im[fCM].  Traveling-wave DEP can be exploited to achieve long-range transport of 

nanoscale components to desired on-chip sites for assembly.  The twDEP force is generally 

oriented in parallel to the electrode plane.  However, in practice, twDEP does not occur in 

isolation without the companion negative DEP, since the particles must be levitated from 

the electrode surface.  As such, the criteria for effective twDEP are Re[fCM] < 0 and Im[fCM] 

 0, which are designated by the shaded area on the frequency spectrum in Figure 2.  More 

details of twDEP and electrorotation will be discussed in Chapters 5 and 7. 
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DEP is produced by applying voltage signals to specially designed electrode arrays, 

and the solution of the electric field is required for the calculation of DEP forces and 

torques on the particles.  For the range of current and frequency typically found in DEP 

problems, the electric field can be described by the quasi-electrostatic form of the Maxwell 

equations [62] 

  , (10) 

   and (11) 

  , (12) 

where  and  are the electric permittivity and conductivity of the dielectric materials and 

 is the free charge density.  Eqs. (10) - (12) must be solved with proper boundary 

conditions, which are set by the geometry of the electrodes and the applied voltage signals. 

Under an AC field with an angular frequency , by using the phasor expression, 

the Maxwell equation can be reduced to 

   0j        
 , (13) 

where R Ij    , and the real and imaginary components of the phasor satisfy the 

Laplace’s equation  and , and 1j   .   In other words, the electric 

potential for an AC field of angular frequency  is [71]  

      , cos sinR Ix t t t     
. (14) 

E  


  0E
t

 
  





 E   


2 0R  2 0I 
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After solving for the electric potential, the electric field is obtained from  

          , , cos , sinR IE x t E x y t E x y t     
  

, (15) 

where  ,R RE x y  


 and  ,I IE x y  


. 

Past analytical solutions include approaches using Fourier series [71], the Green’s 

theorem [73], and the half-plane Green’s function [42, 74], while semi-analytical methods 

include the charge density method [42] and the Green’s function for a line source with 

conformal mapping [75].  All these solution approaches have used a linear approximation 

of the electric potential in the gap between consecutive electrodes as the boundary 

condition.  It has been shown that this is not a good assumption and can cause large errors 

in the analysis [57].  The calculation can be improved by employing numerical method 

[62].   

2.2.1 Multipole Approximation 

The effective dipole model (Eq. (5)) is the most common for the calculation of DEP 

force due to its simplicity, however, its validity is questionable when the particle size is 

comparable to the characteristic length scale of the electric field non-uniformity, e.g., in 

the vicinity of the electrode, or when the inter-particle distance becomes comparable to the 

particle size in the case of multiple particle interactions.  Therefore, a more precise estimate 

of the DEP force should be employed which takes into account of the higher-order 

multipoles [76-78].  In the framework of this general moment theory, the nth-order 

multipolar moment ( )np


 is first calculated  
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  

 
   
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 
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


, (16) 

where  n
CMf  is the nth order Clausius-Mossotti factor  

 1
n p m

CM
p m

f
n n

 
 




 

 
 

,  signifies 

the nth-order derivative, and  is the applied electric field.  Accordingly, the DEP force 

can be calculated by summing up all multiple contributions [47, 79]  

 
( ) ( )

1

1
Re

2 !

n n

DEP
n

p E
F

n





 
  

 


 
 , (17) 

where  represents the time average of a time-dependent quantity  

 
0

0

1
lim

t T

tT
X X dt

T




   , (18) 

where X is integrated from an arbitrary starting time t0 to a sufficiently large time T. 

Clearly, the effective dipole model is the first order approximation of the multipole 

moment model.  The higher-order terms are trivial compared to the first-order term.   

It should be noted that closed-form solution of the DEP force, such as Eq. (17), is 

only available for spherical particles, and there is no general analytical formula for particles 

of arbitrary geometries.  Green and Jones [80] developed a semi-analytical model to 

determine the higher-order moments ( )np


 for non-spherical particles, specifically, 

cylindrically symmetric particles [80].  

 
t

( ) 1
t 0

2 1
4 (cos )sin

2
n n

m R n

n
p R P d


    

   ,  (19) 

 n 
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where θ the polar angle in spherical coordinates, (cos )nP   the Legendre polynomials, 

   2

1 2cos( ), 3 cos( ) 1 / 2, ...P P     , (20) 

tR  is the electrical potential due to the particle on the spherical surface given by r = Rt, 

which is determined from the numerical solution, FEM , by subtracting the potential from 

the applied field: 

 
t

[ ]
tR FEM applied r R      , (21) 

which indicates that this method is a semi-analytical model.  In other words, this method 

uses the analytical expressions for the higher order potentials along with numerical 

solutions of these potentials to calculate the values of individual moments.   

By combining Eqs. (16) and (18), higher-order effective moments and the 

corresponding order dielectrophoretic forces can be obtained.  The accuracy of this method 

has been verified by comparing the calculated DEP force for a variety of particle shapes, 

such as sphere, truncated cylinder and ellipsoid, with the results obtained with FEM 

simulations.  

2.2.2 Maxwell Stress Tensor (MST) Approach 

In view of the inherent drawbacks of the effective dipole and multipole moment 

methods, the Maxwell Stress Tensor (MST) approach was developed for the calculation of 

the DEP force and torque [16].  The MST formulation is regarded the most rigorous 

approach since the presence of the particle is included in the calculation of the electric 

field, and no assumptions need to be made regarding the field non-uniformity.  This 
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guarantees the DEP force on the particle is correctly calculated even in regions with strong 

gradients such as in the vicinity of the electrodes.  In addition, the MST approach is very 

flexible in dealing with particles of irregular shapes.   

In this model, the DEP force is computed through a surface integral  

  
DEP

MST MF n dA 
    (22) 

and the electrorotation torque is given by 

  M
E r n dA   
    , (23) 

where n


 is the unit vector normal to the surface, the Maxwell stress tensor is 

    2* *1
Re

4
M

m EE E E E I       

       , A is the surface enclosing the particle, and M  is 

the Maxwell stress tensor defined as   

 
2 21 1

2 2
M EE E I HH H I              

           ,  (24) 

where   is the complex electric permittivity,   the complex magnetic permeability, E


 

the electric field, H


 the magnetic field, I


 the unit tensor, and the product of two vectors 

without a dot denotes the dyadic product.  

In DEP studies, the frequency of the applied electric field is usually much lower 

than 100 MHz.  Considering the near field approximation [16], the corresponding 

wavelength is several orders of magnitude larger than the DEP device.  Therefore, the effect 

of magnetic field can be neglected, and the MST reduces to  
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2
M EE E I      

      .  (25) 

For a harmonic AC field, the electric field can be written as  

    *1
, Re

2
jwtE r t E e E E     

   
 ,  (26) 

where *E


 is the conjugation of the complex electric field E


.  Using this notation, the 

Maxwell stress tensor in Eq. (25) becomes 

         * * * *1 1
Re

4 2
M E E E E E E E E I           

           , (27) 

which can be considered as the sum of two tensors,  

  
2* *

1

1
Re

4
M EE E E E I       

         and (28) 

    * * * *
2

1 1
Re

4 2
M EE E E E E E E I          

           .  (29) 

When calculating the time average of Eq. (29), it can be shown that the 

instantaneous term 2
M  equals to zero after expanding [16], which leads to 1

M M   .  

Hence, the time-averaged DEP force and torque on a particle can be obtained via 

integrating the tensor over the surface of the particle  

    2* *1
Re

4DEP

MSTF EE E E E I ndA   
           and (30) 

    2* *1
Re

4E r EE E E E I ndA     
          .  (31) 



 21  
 

The surface integrals in Eqs. (30) and (31) can be computed numerically using 

either finite element or finite difference method.   

2.3 Comparison of Various Models for DEP Calculation 

In this section, various approaches for DEP force/torque calculation will be 

compared using a point-to-plate system shown in Figure 3.  The distance between the 

particle and the point electrode and the aspect ratio of the particle are discussed.   

 

Figure 3. Scheme of the point-plate electrode structure.  

 

The electric field is generated by placing a point electrode above a ground plate 

with a separating distance of 20 μm.  The point electrode has a radius of 0.5 μm and the 

applied voltage is 2 V.  The sketch of the field lines is plotted in Figure 3.  In this study, 

the relative electric permittivities of the particle and the surrounding medium are specified 

as 2.8 and 78.4, respectively, which correspond to polystyrene and deionized (DI) water 

typically used in DEP experiments.  The electric field is obtained by solving the Gauss 

equation  
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 2 0   (32) 

with the following boundary conditions: 

 
0

0
y



   and (33) 

 0 ( ), 1,...,ion P t i N
n


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
 . (34) 

The contours of the electrostatic potential, Φ, and the electric field strength, E , 

are shown in Figure 4(a) and (b).  The distributions of Φ and E  along the symmetric axis 

(x = 0) are also presented as a function of the vertical position y to illustrate the numeric 

values.  It is seen that the electric field is largely uniform, but exhibit a sharp increase when 

approaching the point electrode.  The contour of E  is plotted in Figure 4(c), from where 

it is found that E  is almost trivial in the space except for near the point electrode.   

In dipole approximation, the DEP force is proportional to 2E


 (whose magnitude 

is E E  ), hence, the magnitude of the DEP force calculated via this assumption will 

increase if E  increases.  In multipole approximation, the magnitude of the DEP force is 

proportional to ( )n E


 (n = 1, 2, 3 … ), which are maximum near the point electrode from 

Figure 4 contours on the left.  Thus it can be predicted that the dielectrophoretic forces 

calculated by dipole/multipole approximation, according to Eq. (16), are significantly 

greater near the point electrode than other regions.   

On the RHS of Figure 4, it is clearly shown how the existence of a particle affects 

the local potential and the according electric field strength.  As follows, the DEP force is 
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computed and compared for an elliptic particle and a circular particle placed at various 

vertical locations (along y-direction in Figure 4). 

 

Figure 4. Electric field potential (a), strength (b) and gradient of the electric field strength (c).  
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2.3.1 DEP force on Circular Particle 

The 2D particles are the simplified versions of the ellipsoidal and spherical 

particles.  In particular, the elliptic shape is chosen as a representative of the non-spherical 

(non-circular) particles.  The semi-major and semi-minor axes are a and b along the x- and 

y-direction, respectively (as shown in Figure 3).  The circular particle is considered as a 

special case of the elliptic particle when a = b.   

Circular particles of three different radii are considered, (a) r = 1 μm, (b) r = 0.8 μm 

and (c) r = 0.5 μm, in order to examine how the particle size with respect to field non-

uniformity affects the accuracy of DEP force calculation.  The DEP force with first order 

approximation (dipole) and second order approximation (multipole) are 

 
1

Re
2DEPF p E   

    and (35) 

  (2) (2)1 1
Re

2 2DEPF p E p E      

      . (36) 

Figure 5 shows the DEP forces on the particle calculated from the dipole 

approximation (Eq. (17) and n = 1), the multipole approximation (Eq. (17) and n = 2) as 

well as the MST approach, respectively.  The negative value of the DEP force indicates 

negative DEP is taking place, i.e., the particle will be repelled from the point charge, since 

p < m for the polystyrene-water combination.  It is seen that as the particle is positioned 

closer to the point electrode, the magnitude of the DEP forces increase drastically, and, 

more importantly, the variance in the three model predictions widens.   
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Figure 5. Forces on circular disk particles positioned along y axis.  
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This is due to the fact that the field non-uniformity becomes stronger near the 

electrode (refer to Figure 4(c)) that renders the dipole and multipole approximations less 

accurate compared to the MST approach.  However, the variance diminishes as the particle 

size decreases, and the results eventually converge for the smallest particle size (Figure 

5(c)).  

Table 1 shows the non-uniformity factor [81] and the relative error with respect to 

the MST model prediction, which are defined as  

 max 100%av

av

E E
f

E


    and (37) 

 100%DM MST

MST

F F
Err

F


   , (38) 

where maxE  is the maximum value of electric field intensity inside the particle, avE  is the 

average value, DMF  is the DEP force acting on a particle from dipole or multipole 

approximation and MSTF  is the force calculated by Maxwell stress tensor.   

It is found that the error of the dipole moment model is 11.63% for 1 μm diameter 

particle, and drops to 0.38% as the Non-uniformity factor decreases, which means the 

electric field is more uniform.  Similar observations can be made for the multipole moment 

model as the errors decrease with the non-uniformity of the electric field.  Overall, the 

multipole approximation performs better than the dipole approximation at any given non-

uniformity value.  However, the error is not negligible if electric field has been distorted in 

a manner. 
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Table 1. Dipole approximation errors vs. non-uniformity of the electric field.  

Non-uniformity 
Factor (%) 

Dipole Approximation 
Error (%) 

Multipole Approximation 
Error (%) 

8.00 11.63 8.69 
7.00 8.44 6.10 
6.07 7.65 2.43 
5.14 1.09 0.87 
4.13 0.78 0.44 
3.95 0.38 0.31 

 

2.3.2 DEP force on Elliptical Particle 

Figure 6 shows the DEP forces calculated for an elliptic particle whose major axis 

is aligned with the x-direction.  Two different particle aspect ratios (defined as r = b/a) are 

considered, 0.5 in Figure 6(a) and 0.25 in Figure 6(b), where the semi-major axis is kept 

constant, a = 1 μm.   The general trend of the DEP force is similar to that for the circular 

particle.   

As the particle approaches the point electrode, the contribution from higher-order 

terms of multipole moment to the DEP force becomes more important, which is evidenced 

by the larger discrepancy between the dipole prediction and the MST.  In general, the errors 

in the DEP calculation from multipolar moment models are much greater for elliptic 

particles than for circular particles, given identical particle volume.  For instance, at z = 16 

μm, the error in the dipole approximation for a circular particle (a = 1 μm) is 1.01%, as 

compared to the error of 20.0% for an elliptic particle of aspect ratio r = 0.5 at the same 

location.  For an elliptic particle of a smaller aspect ratio r = 0.25, the error further increases 

to 41.3%.  
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Figure 6. Forces on ellipse particles positioned along y axis.  
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Chapter 3 Computational Models and Numerical Methods 

Assembly and manipulation of nano/biomaterials are of great interest and have 

become feasible with the development of advanced micro/nanoscale devices [14, 65, 66, 

82].  Among the applications, there is growing interest in the manipulation of individual 

polymer particles or cells [68, 69].  Forces resulting from an electric field can be 

advantageous for the manipulation of micro/nanoscale particles because both the amplitude 

and the direction of forces can be controlled by the applied electric field strength and 

frequency [83].  However, the fundamental mechanisms are not fully understood due to the 

complexity of the assembly processes at the micro/nanoscale.  The underlying mechanisms 

of electric field-driven assembly are yet to be elucidated, i.e., how large-scale assembly 

can be achieved in a precise manner by the electric/flow field-guided methods.  The main 

reason is that the potential for solid-liquid flows has yet to be fully realized.   

The fluid-particle and particle-particle interactions, both hydrodynamic and 

electrodynamic, are essential to the DEP-directed fluidic assembly of micro/nanoparticles.  

In the simplest case, the motion of a single particle under the influence of DEP can be 

described by the Stokes’ law, which states the particle’s instantaneous velocity is 

determined by balancing the DEP force with the drag force [82].  However, this model is 

only valid for sparsely distributed particles because it ignores the electrohydrodynamic 

interactions between neighboring particles.  When multiple particles are considered, a 

myriad of direct numerical simulation methods, which originate from the study of 

particulate flows, can be exploited to accurately capture the fluid-particle interactions [64, 

65, 84].   
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Several approaches exist for numerical modeling of particulate flows, which may 

be classified according to the length scale of numerical resolution compared with the length 

scales of the domain of interest (i.e., the size of industrial equipment), the flow scales or 

the size of the individual particles. At the fine extreme of the spectrum, Direct Numerical 

Simulation (DNS) methods have the capability of resolving all length and time scales and 

present an alternative route to experimentation for fundamental studies.  Several 

approaches exist here as well, including Arbitrary Lagrangian-Eulerian (ALE) methods 

with moving grids in changing geometries [85, 86], lattice-Boltzmann methods (LBM) [87, 

88], immersed finite element method [19], and  distributed Lagrange multiplier / fictitious 

domain methods [84, 89-92].  The ALE approach enables accurate solution, but the 

computational cost is very high due to the need for re-meshing at each time step, especially 

when many particles are considered in the analysis.  LBM gains increasing popularity in 

simulating complex fluid systems and is usually applied to study wetting and spreading 

phenomena [93], bubble collision and bubble rising phenomena [94].  The immersed finite 

element method was combined with the electrokinetic theory by Liu [19, 65] as the 

immersed electrokinetic finite element method (IEFEM), which can be used to model 

particles of irregular shapes in an electric field.  

In this work, a new methodology is developed by combining the distributed 

Lagrange multiplier/fictitious domain (DLM/FD) method with the Maxwell Stress Tensor 

(MST) approach to simulate the electrohydrodynamic fluid-particle interactions for DEP-

directed fluidic assembly.  As discussed in Chapter 2, the MST approach is known for its 

precision in modeling DEP forces and torques.  On the other hand, the DLM/FD method 

[91] is a powerful method to solve incompressible NS equations, based on the explicit 



 31  
 

utilization of Lagrange multipliers defined on the actual boundary and associated to the 

genuine boundary conditions.  It employs a global variation formulation, which obviates 

the need to compute the hydrodynamic forces due to the fluid-particle and particle-particle 

interactions explicitly in the simulation.  Moreover, regular structured grids (which are not 

boundary fitted) are used in the DLM/FD method over a simple shape auxiliary domain 

(the fictitious domain) to solve the NS equations around the moving bodies (i.e., the 

particles).  Hence, accurate solutions of the DEP flow involving interaction of numerous 

particles can be obtained with reasonable computational cost.   

3.1 Solution Strategy 

As illustrated in Figure 7, the computational flow chart consists of two modules.  For 

a given electrode configuration and the initial spatial distribution of particles, the first MST 

module (marked by the blue box) analyzes the electric field by solving the electrostatic 

problem, and calculates the DEP forces and torques by integrating the Maxwell stress 

tensor over the surfaces of the particles.  The resulting forces/torques are passed on as the 

external forces on the individual particles to the second DLM/FD module (marked by the 

red box).  Then, the hydrodynamics problem is solved to yield detailed information of the 

flow field as well as the particle motion, the latter including the orientation and 

translational/rotational velocities of the particle.  This completes the computation at one 

time step.  Subsequently, the locations of the particles are updated and the simulation 

moves to the next time step. In this work, FORTRAN 77 is used to implement the 

algorithms.  
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Figure 7. Solution strategy with electric solver in blue module and flow solver in red module. 

 

3.2 Governing Equations 

As shown in Figure 8, the computational domain containing N particles and a 

Newtonian fluid is denoted by Ω, its outer boundary by Γ, the interior space of the i-th 

particle by Pi (i = 1, …, N), and the interface between the particle and the fluid by ∂P.   

 

Figure 8.  A typical computational domain. 
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The motion of a Newtonian fluid mixture is governed by: 

    \H
m m

u
u u g in P t

t
  

     


    
 , (39) 

  0 \u in P t  


 , (40) 

 u u on 
 

 , (41) 

 ( ), 1,...,i i i iu U r on P t i N    
  

  and (42) 

  00
\ 0

t
u u in P


 

 
 . (43) 

Here u


 is the fluid velocity, m  the fluid density, g


 the gravitational force, iU


 

and  the translational and angular velocities of the i-th particle; the Cauchy stress tensor 

is  2H pI D u   
  

, where p is the fluid pressure, μ the fluid viscosity, and the rate-of-

strain tensor    1

2
T

D u u u     
   

.   

The particles experience a variety of external forces as they travel in the 

surrounding fluid.  The motion of the i-th particle is governed by 

 i
i i i

dU
m m g F

dt
 

 
 , (44) 

 i
i i
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I T
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 ,00i it
 


  , (47) 

where im  and iI are the mass and moment of inertia of the i-th particle, respectively; iF


 

and iT


 are the hydrodynamic force and torque on the i-th particle, which include 

contributions from both the Cauchy stress tensor (due to the viscous flow) and the Maxwell 

stress tensor (due to the dielectrophoretic force) 

   and (48) 

  
 

ˆ
i

H M
i i

P t

T r n dA 


     
   

 , (49) 

where n̂  is the unit normal vector pointing out of the particle. 

In addition, the following kinematic equations must be satisfied  

 i
i

dX
U

dt


 
 , (50) 

 i
i

d

dt


  , (51) 

 ,00i it
X X




 
  and (52) 

 ,00i it
   , (53) 

where iX


 and i  are the center of mass and the angular orientation of the i-th particle, 

respectively. 



 35  
 

3.3 Direct Numerical Simulation  

3.3.1 Distributed Lagrange Multiplier 

The distributed Lagrange multiplier/fictitious domain (DLM/FD) method is used to 

solve the coupled fluid-particle interactions [95].  One of the advantages of this method is 

that the fluid and particle equations are integrated into one weak equation of motion, i.e., 

the total momentum equation or the combined equation of motion, thereby eliminating the 

need to calculate the hydrodynamic forces and torques on the particles explicitly.  This is 

implemented through the DLM, which enforces the rigid-body motion in the particle 

interiors and on the boundary of each particle.  By this means, the DLM acts as an 

additional body force inside the boundary of the particle to maintain the rigid-body motion 

and is analogous to the pressure in incompressible fluid flow, whose gradient is the force 

maintaining the constraint of incompressibility.  The full details of the DLM/FD method 

can be found in [84], and only the key components are briefly reviewed here.   

The key to derive the combined equation of motion is the combined velocity space 

   (54) 

The combined fluid-particle velocity ( , , )v U 
 

 must lie in the combined velocity 

space, ( )uV t



.  To derive the combined equation of motion, a combined variation ( , , )v V 


 

is taken from the combined variation space 

 
1 2 2

0 ( ) {( , , ) ( \ ( )) , , ,

( ), 0 }.

V t v V v H P t V R R

v V r on P t and v on

 



    

     

    

     (55) 
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Then, the single weak equation can be stated as  

 
 

\ ( )

0\ ( )
: [ ] , ( , , ) .

mP t

P t
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u u g v dx m g V I

t dt dt
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
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  (56) 

Here, both u


 and v


 must satisfy the no-slip boundary conditions  

 ( )u U r on P t   
  

  and (57) 

 ( )v V r on P t   
 

 . (58) 

Similarly, the fluid pressure P must lie in the space  

  2 2
0 \ ( )
( \ ( )) ( \ ( )) 0

P t
L P t q L P t qdx


    


 , (59) 

and the weak formulation of the problem is completed by the weak form of the 

incompressibility constraint 

 2

\ ( )
0, ( \ ( ))

P t
q u dx for all q L P t


   
 

 . (60) 

This scheme has two advantages over other methods due to the fact that the 

hydrodynamic force and torque have been eliminated in the derivation of the combined 

equation of motion.  The first one is that it saves computation time as the force and torque 

are implicit and need not be computed.  More importantly, the scheme is not subject to a 

numerical instability which arises when the equations of the fluid and particle motion are 

integrated as a coupled system [96]. 
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3.3.2 Fictitious Domain  

Once the combined weak form is obtained, it is necessary to extend the problem 

from the domain excluding the particles, denoted as \ ( )P t , to the whole domain  , 

while still forcing the solution to satisfy the no-slip condition on ( )P t .  Accordingly, the 

fictitious domain method is applied to achieve this goal.  The idea is to assume that the 

whole domain is filled with fluid, both inside and outside the particle boundaries.  The 

domain obtained as a result of this is simpler, which enables the use of a more simple 

regular mesh.  Moreover, the extended domain being time-independent allows the use of 

the same mesh for the entire simulation.  

With the fictitious domain method, the constraint of the rigid-body motion is still 

required to be satisfied on the surface of the particles.  In addition, the particle interior 

requires the rigid-body constraint as well, which is achieved by applying the distributed 

Lagrange multiplier.   

The extension in the fictitious method is implemented in two steps.  Firstly, the 

weak equation is extended from \ ( )P t  to the whole of  , by obtaining an analogous 

equation of motion for ( )P t .  The second step is to relax the constraint of the rigid-body 

motion by removing it from the combined velocity spaces and enforcing it as a side 

constraint using a Lagrange multiplier. 

In order to obtain a combined equation of motion in the first step, it is necessary to 

enforce the constraint of rigid-body motion for both u


 and v


 throughout ( )P t .  So it 

requires that 
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 ( )u U r in P t  
  

  and (61) 

 ( )v V r in P t  
 

 . (62) 

The weak equation in the fictitious domain can be stated as 
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  (63) 

To obtain the combined weak equation of motion for the entire domain  , the 

combined velocity and combined variation spaces are extended to ( )P t  by using the 

extended rigid-body motion constraint Eq. (62) 
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The extended fluid-particle velocity ( , , )v U 
 

 must lie in ( )uV t


 .  Hence, the 

combined weak equation of motion for the entire domain   can be obtained as 
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The second step is to relax the constraint of rigid-body motion.  In Eq. (66), the 

solution function u


 and variation v


 are required to satisfy the constraint of rigid-body 

motion throughout ( )P t .  This constraint can be relaxed by removing it from the combined 

velocity spaces, enforcing it as a side constraint in the weak sense and adding an 

appropriate distributed Lagrange multiplier term to the right hand side of the equation.  

This results in the following weak formulation of the problem in the extended domain: Find 

2 2
0, ( ), ( ),uu W p L t U R


    
 

 and R


 that satisfy  
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where 0u


 satisfies the compatibility conditions 
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Here  



 40  
 

 0 (0)r x X 
 

 , (73) 

 1 2{ ( ) ( ) }uW v H v u t on
     
     , (74) 

 1 2
0 ( )uW H


 


 , (75) 

  2 2
0 ( ) ( ) 0L q L qdx


    


 , (76) 

and ( )t  is 1 2( ( ))H P t , with 
( )

,
P t

   denoting an appropriate inner product. 

3.4 Computational Scheme 

The computational scheme used in this work is a generalization of the DLM finite 

element scheme [95, 97].  As the problem consists of unsteady flow due to the motion of 

the particles, it must be analyzed in two aspects: space and time.  The DLM and regular 

finite element method are employed for space discretization.  For time discretization, an 

operator slitting scheme is adopted.  

3.4.1 Space Discretization  

In this section, the fluid flow equations are solved in the combined fluid-solid 

domain, and the motion in particle interiors is enforced to be the rigid-body motion using 

a DLM.  The fluid and particle equations of motion are combined into a single weak 

equation, which helps improving the stability of the time integration.   

The solution and variation are required to satisfy the strong forms, which are the 

governing equations of the constraint of rigid body motion in ( )P t  [84, 98].  The constraint 
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is relaxed from the velocity space and enforced weakly as a side constraint using a DLM.  

Hence, the following weak equations hold in the extended domain. 

Find 2 2
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Here 'F


 is the additional body force used to limit the extent of overlap, λ the 

distributed Lagrange multiplier, 
( )

,
P t

   the 2L  inner product over the particle, i.e.,  

  ( )
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P t
v q v dx 
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 . (81) 

To solve the above equations numerically, the domain is discretized using a regular 

finite element triangulation mesh h  for u


, where h is the mesh size, and a regular twice 

coarser triangulation 2h  for p.  Then, the following finite dimensional spaces 

approximating 2 2
0 0, , ( ), ( )uW W L L


 
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 can be defined as 
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The particle inner product terms in (77) and (79) are obtained using the discrete 

inner product defined by Glowinski [84].  A coarser triangulation are used to ensure the 

numerical stability [99].  Here, we choose M points in ( )P t , 1 2, ,..., Mx x x
  

, that uniformly 

cover ( )P t , and define the finite dimensional spaces as 

 2
,

1

( ) ( ), ,...,
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h h h h i i h M
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t x x R     
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 
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 
      

 . (86) 

By this means, we can use these finite dimensional spaces to discretize Eqs. (77) - 

(80).  

3.4.2 Time Discretization  

Most Navier-Stokes solvers are based on operator-splitting algorithm [100-102] in 

order to enforce the incompressibility condition via a Stokes solver or an 2L -projection 

method [90, 103].  Eqs. (77) - (80) are systems of partial differential equations coupled 

through the nonlinear term ( )u u
 

 and the incompressibility condition 0u 


.  These 

equations can be solved by this approach to overcome three primary numerical problems 

[90]:  
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1. The incompressibility condition, and the related unknown pressure hp , 

2. The advection and diffusion terms, 

3. The constraint of rigid-body motion in ( )hp t , and the related distributed 

Lagrange multiplier h


.  

Each of these corresponds to a specific operator.  In this work, the Marchuk 

operator-splitting scheme [104] is applied to an initial value problem of the form  

 1 2 3( ) ( ) ( )
d

A A A f
dt

         and (87) 

 0(0)   , (88) 

where the operators 1A , 2A , 3A  can be multiple-valued.   

Although this approach is only first-order accurate, it is compensated by good 

stability and robustness properties.  If ∆t denotes the time step and 
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1, 2, 3, …), the (n+1) time step can be solved in the following steps. 

Step 1, find 1/3 1
,

n n
u hu W


 
   and 1/3 2

0,
n

hp L    satisfying 

 

1/3
1/3

1/3
0,2 [ ] : [ ] 0 ,

n n
n

m

n
h

u u
v dx p v dx

t

D u D v dx for all v W



 




 






   


  

 



     

     
  (89) 

 1/4 20,n
hq u dx for all q L


   
 

 . (90) 



 44  
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Step 3, compute 2/3nU 


  and 2/3nX 


  using the prediction procedure as follows. 
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End Do 

Then, set 2/3 ,n n kU U 
 

 and 2/3 ,n n kX X 
 
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Then compute 1nX 


 with the correction procedure.  Set 1,0n nX X 
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Do k = 1, K 
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End Do 

Then set 1 1,n n kX X 
 

. 

That is to say, the particle center-of-mass position is predicted in Eqs. (92) - (95) 

and used in Eqs. (96) and (97).  Then the particle center-of-mass position is corrected in 

Eqs.  (98) and (99).  Using this operator splitting scheme, we can use a small time step in 

these prediction and correction procedures.  In the current work, we use K=10 in the Eqs. 

(92) - (95), (98), and (99).  Also, in this step, we account for the electric forces that arise 

due to the dielectrophoretic effect.   
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3.5 Computational Treatment of Particle Collisions 

In order to prevent the particles from penetrating each other or passing over the 

boundaries of the domain, the following collision strategy is introduced [84].  The particle 

equation of motion for the i-th particle, Eq. (44), is to be replaced by  

 'i
i i i i

dU
m m g F F

dt
  

  
 , (100) 

where  
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Here '
iF


 is a short-range repulsive force acting on the i-th particle by the other 

particles and by the boundary walls.  The particle-particle repulsive force can be expressed 

as  
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where ,i j i jd X X 
 

 is the distance between the centers of the i-th and j-th particle, iR  is 

the radius of the i-th particle, ρ is the force range, and p  is a small positive stiffness 

parameter.  The particle-wall repulsive force is given by 
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where '
,i j i jd X X 

 
 is the distance between the centers of the i-th and an imaginary 

particle '
,i jP , located on the other side of the boundary as shown in Figure 9 and W  is a 

small positive stiffness parameter.   

 

Figure 9. Imaginary particle used for particle-wall repulsion model. 
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Chapter 4 Directed Self-Assembly of Particles into Chain 

Lattice Structures 

4.1 Introduction 

Nanowires and nanotubes, represent the smallest dimension for efficient transport 

of electrons, are ideal building blocks for hierarchical assembly of functional nanoscale 

electronic and photonic structures [13, 105, 106], that could overcome fundamental and 

economic limitations of conventional lithography-based fabrication [107].  Several 

approaches have been proposed to assemble the nanowires and nanotubes into functional 

nanostructures and devices, including chemical biding [14], magnetic field directed 

assembly [108], electro-optical assisted assembly [109] and dielectrophoresis directed self-

assembly [65, 110].  Particularly, the electric field directed self-assembly method in 

aqueous solutions makes it possible to control the structure of the patterns that are to be 

formed in a convenient and precise manner [110].  While the building blocks, i.e., the 

nanowires and nanotubes, are traditionally synthesized by chemical or electrochemical 

means [14, 111, 112], they have been fabricated in recent years by using nanoparticles to 

enable further scale-down and reconfiguration of the manufacturing process.  For instance, 

it was demonstrated that micro/nanowires can be assembled from individual gold 

nanoparticles by dielectrophoresis effect [15, 113-116].  In the existing studies, the key 

underlying physical process is known as “pearl chaining” in the literature of 

dielectrophoresis, during which the constituent dielectric particles attract to each other and 

align with the direction of the applied electric field, forming a one-dimensional (1D) chain 

lattice structure [23, 70, 72, 117].   
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Pearl chaining process is primarily driven by the attractive DEP force between 

neighboring particles, which is, however, short-ranged, i.e., it decays rapidly as a function 

of R-4 where R is the inter-particle distance [118].  Therefore, disturbances in the 

surrounding fluid medium can easily affect the quality and even destabilize the 

morphological structure of the chain lattice formed.  Unfortunately, current understanding 

of the pearl chaining process is limited to the electrostatic aspect of the particle-particle 

interactions, whereas the fluid-particle hydrodynamic interactions and their possible 

impact on the self-assembly of 1D chain lattice have been largely neglected.   Hence, there 

is a significant gap between the present fundamental knowledge of pearl chaining and the 

future technological development of DEP directed self-assembly of nanoparticles. 

To provide the missing piece of knowledge, the DLM/FD method and the MST 

approach are used together in this chapter to simulate the DEP directed self-assembly of 

nanoparticles into chain lattice structures in a uniform external electric field.  The DEP 

force and torque acting on the particles are calculated by integrating Maxwell stress tensor 

over the surface of the each particle.  Then, the DLM/FD method is applied to solve the 

particle-particle and particle-fluid hydrodynamic interactions.  In addition, microfluidic 

experiments are conducted to observe the directed self-assembly process of three model 

systems consisting of two, three and six microparticles with diameter of 3.2 μm, 

respectively, under a uniform AC electric field.  The numerical simulation results of the 

trajectory and the final pattern of the particles are compared to the experimental data, and 

very good agreements have been found.   
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4.2 Pearl Chaining  

To elucidate the key features of pearl chaining, a simple model system consisting 

of two particles (shown in Figure 10(a)) is firstly analyzed in this work.  A pair of spherical 

particles of radius a are marked by their center positions, P1 and P2, respectively.  They 

are placed in a uniform electric field, which is along the horizontal direction (the applied 

electrostatic potential is  on AB and  on CD), with an intitial inter-particle 

distance of R.  The angle between the electric field and the line connecting the centers of 

the two particles is θ.  After the electric field is actuated, the two paricles experience DEP 

particle-particle interaction forces and tend to align with the external field.   

 

Figure 10. Illustration of the computation domain (a) and force analysis (b).  

 

The particle-particle interaction and the resulting motion of the pair of particles can 

be analyzed as follows.  Here we consider the dielectric interaction and the resulting 

relative motion of two spherical particles submerged in an electrolyte medium in which a 

uniform electric field of E is applied.  The two particles have the same electric properties 

and radius a.  Application of electric field can raise the temperature of the medium due to 

1  2 
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Joule heating, resulting in change of material properties.  Here, the material properties are 

assumed fixed, i.e., without being affected by Joule heating.   

To determine the trajectory of the particles, Kang and Li [82] assume that the Stokes 

drag force counteracts the dielectric force.  Then the velocity of a particle is determined by  

 (6 )Eu F a


 , (104) 

where μ is the dynamic viscosity of the fluid and EF


 is the dielectric force acting on the 

particle.  Yariv [119] proposed an approximation for the dielectric force as an analytical 

solution for the trajectory  
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where E  is the applied electric field. x̂


 and ŷ


 are the unit vector in x and y direction, 

respectively.  By using the force balance between the dielectric force and the Stokes force, 

the velocity is obtained in dimensionless form with *R R a  as 
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Accordingly, we can obtain the motion equations in a (R, θ) polar coordinate 

system: 

 4

* 2 2

* *

2cos sindR

dt R
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2sin cosd
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  
   . (108) 

From Eq. (107), it is obvious that the sign (direction) of the force will be changed 

at θ = 63.4°, at which the right-hand side becomes zero.  According to Eq. (108), the 

dielectric force always tends to align the particles in parallel direction to the electric field. 

For example, if we consider the range 0 2    , the right-hand side of Eq. (108) is 

always negative.  That is, the angle θ is always decreasing to zero. It means that the stable 

configuration is formed only when the particles are in the parallel orientation. 

To better understand the particle motion during pearl chaining, the DEP forces on 

the particles can be derived using the MST method.  Due to symmetry considerations, the 

two particle experience DEP forces with the same magnitude but of opposite directions.  

Figure 10(b) illustrates the x- and y-components of the DEP force on particle P2 

(normalized by the maximum force experienced) with respect to their relative orientations, 

i.e., as a function of θ.  Clearly, a positive value indicates an attractive force whereas a 

negative value corresponds to a repulsive force.  When , the centerline connecting 

the particles is aligned with the field direction,  and .  Thus, the two 

particles only experience attractive forces in the x direction and tend to move towards each 

other.  Consequently, the equilibrium configuration for this two-particle system will be two 

touching particles with their centerline lying along the x-direction.  When θ deviates 

slightly from the equilibrium value, e.g., , both force components are positive, 

suggesting that the field tends to bring the particles back to the equilibrium positions.  

When θ falls in the interval of ,  becomes negative, which will push the 
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two particles away from each other in x direction; however, the positive force  will pull 

the particles closer along the y direction, thereby offseting the effect of  and decreasing 

θ.  Hence, the particles will eventually be attracted to each other.  As  futher increases to 

over 63.4°,  and , the particles are repelled from each other in both x and y 

directions.  This critical angle  is also verified theoretically by Kang [82] as the 

threshold to distinguish the attraction and repulsion zones.  If the two particles are released 

from an initial orientation, 63.4 90    ,  and  are both negative, but  is 

always greater than  in magnitude.  Accordingly, the repulsive DEP forces will cause 

them to rotate outward orbitally with respect to the middle point between the centers of the 

particles.  At  , which indicates a perpendicular orietation to the external electric 

field, the induced particle-particle interaction force  is repulsive while the force in x 

direction is .   Under such circumstance, the particles keep pushing each other away 

unless they are stopped by other external forces.  In reality, two particles can not maintain 

the angle at exactly  due to the inevitable Bownian motion of the particles. 

Therefore, the DEP particle-particle interaction forces always tend to attract and align 

particles in a chain parallel to the applied electric field.  

Figure 11(a) shows an electric field when two particles are positioned close to each 

other.  The most intensified field occurs in the gap between the two particles because the 

electric permittivity of the particle is greater than the fluid.  Under such circumstance, 

particles tend to move to stronger electric field region.  Also, it is obvious that the local 

electric field in the vicinity of each particle is distorted by the other particle.    
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Based on the local electric field, Maxwell stress tensor is calculated on the surface 

of the particles and shown in Figure 11(b).  Forces and torques are obtained by integrating 

the MST over the surface of the particles.  The particles motion induced fluid flow is shown 

in Figure 11(c) including the flow vector field and the pressure contour.   

 

Figure 11. The electric field intensity (a), MST (b), and fluid pressure/velocity field (c). 

 

4.2.1 Particle-Fluid Interactions 

The fluid-particle hydrodynamic interactions have been discussed in details in 

Chapter 2, and will not be repeated here for the sake of brevity.  In the numerical simulation 

work of this chapter, no-slip boundary conditions are applied on the walls AC and BD in 

Figure 10(a), and periodic boundary conditions on AB and CD.  

4.2.2 Brownian Motion 

Brownian motion is the random motion of small colloidal particles suspended in a 

liquid or gas medium, caused by collisions between these particles and the medium's 

molecules with the particles.  Even at room temperature, the effect of Brownian motion of 

nanoparticles on DEP-directed self-assembly may not be neglected.  The importance of 

Brownian motion with respect to the DEP motion can be evaluated by the Péclet number 
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 , (109) 

where , ,  are the particle radius, particle velocity due to DEP and the diffusion 

coefficient, respectively [120].  The physical significance of the Péclet number can be 

revealed by rewriting Eq. (109) as 

 . (110) 

Therefore, the Péclet number can be interpreted as the ratio of time that is needed 

for the particle to travel a distance of a due to Brownian motion and DEP, respectively.  

When Pe >> 1, the effect of Brownian motion can be safely neglected; otherwise, it must 

be taken into consideration in the DEP-directed self-assembly process.  

The DEP velocity of the particle can be obtained from  

  , (111) 

where  is the DEP force and  is the fluid viscosity.  In the case of two spherical 

particles aligned perfectly with the electric field, the DEP force can be estimated as [82] 

  , (112) 

where  and  are the dielectric permittivity of the fluid and the electric field strength.  

The diffusion coefficient of the particle is expressed as [120] 
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  , (113) 

where K and T are the Boltzmann constant and the temperature, respectively.   

 Accordingly, the Péclet number can be recast as [66] 
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As an example, for E = 10 kV/m, a = 3.2 μm, εf  = 7.09 × 10-10 F/m, and T = 300 K, 

if two particles are located at a distance of R = 4a, the corresponding Péclet number is 10.3; 

if R increases to 7.17a, then Pe ≈ 1.  Therefore, the Brownian motion must be considered 

during the early stage of DE-directed self-assembly when the inter-particle distance is 

relatively large.  

4.2.3 Numerical Simulation  

Numerical simulations are conducted to compute the trajectories of multiple 

particles during the DEP-directed fluidic self-assembly.  The computation domain is shown 

in Figure 10(a), where the dimensionless width of the square domain is L = 1, and the 

dimensionless radius of the particle is a = 0.05.  In the simulations, 65536 nodes are used 

to discretize the domain and 475 nodes are used for each particle.  The time step is chosen 

to be ∆t = 0.001 s.  Electric potentials are applied to the boundaries AB and CD as ΦAB = 

20 V and ΦCD = 0 V.  For fluid flow, no slip boundary conditions are specified for AB and 

CD.  Periodic boundary conditions are assumed on the boundaries AC and BD.   
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4.3 Experiments  

In order to validate the numerical simulation results, an experimental apparatus is 

designed and constructed to perform DEP-directed fluidic self-assembly of microparticles.  

The setup illustrated in Figure 12 consists of a microfluidic chip, a fluorescent microscope, 

and an imaging system.   

 

Figure 12. Sketch of experiment setup to observe and record particle motion.   

 

The microfluidic chip consists of an array of two electrodes fabricated using 

photolithography.  With a glass wafer as a substrate, the device is comprised of two layers: 

the parallel electrodes on the bottom and an isolation layer on the top.  At the bottom, a 

layer of 400 nm copper on top of 100 nm silver layer was deposited with a sputtering 

system (AJA UHV six-source sputtering system) on a glass wafer.  This layer is then 

deposited with AZ 1512 and photolithography followed by wet-etching.  The top layer is 

comprised of SU-8 layer used as a dielectric layer to protect the metal electrodes from 

oxidation and corrosion.  A layer of 0.6 μm SU-8 is deposited with a spin coater (Brewer 
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Cee 200 Spin Coater).  Then the wafer was baked to make sure its resistance to heat, 

electricity, or liquid.   

The colloidal solution is prepared by mixing fluorescent polystyrene particles of 

3.2 μm diameter (Thermo Scientific, CA) with deionized (DI) water.  The conductivities 

of polystyrene and DI water are measured to be 5×10-5 S/m and 5.5×10-6 S/m; while the 

relative dielectric permittivity are 2.8 and 78.4, respectively.  The colloidal solution 

contains 0.2 wt% solids, resulting in a mixture density of 1.05 g/cm3.   

 

Figure 13. Experiment Setup. 

 

During the experiments, the microfluidic chip is mounted to a probe station, and 

the electrodes are connected to an AC arbitrary waveform function generator (FLUKE 

294), as shown in Figure 13.  Sinusoidal wave signals are generated and applied to the 

electrodes.  The applied voltage is 20 V and the frequency is 1 MHz.  A digital oscilloscope 

(Tektronix TDS 310) is used to monitor the voltage, frequency and waveform of the electric 

signal applied.  The particle motion is captured by a CCD camera (PixeLINK PL-B742U) 

installed on the microscope.  An Olympus LMPLFLN 50 × objective lens (N.A. = 0.5, 
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W.D. = 10.6 mm, F.N. = 26.5 mm) is used for visualization.  Positions of the particles will 

be recorded via the imaging system at a frame rate of 7 frame per second (fps), and an in-

house Matlab code is used to extract the stationary images and for further image processing 

and analysis. 

Figure 14(a) shows the initial random distribution of the particles in the colloidal 

solutions.  After the AC electric field (V = 20 V, f = 1 MHz) is switched on, positive DEP 

occurs, and the particles interact with each other and spontaneously self-assemble into 

multiple chain lattices along the direction of the electric field.  Figure 14(b) shows the 

ordered chain structures after the field is applied for 30 seconds.  This process is reversible, 

i.e., if the electric field is revoked, the lattices will disassemble and the particles will 

gradually resume their random distribution under the influence of Brownian motion.   

 

Figure 14. Images of the aqueous suspension captured at (a) t=0s and (b) t=30s.  

 

4.4 Results and Discussion 

In this section, the numerical and experimental results will be presented for DEP-

directed self-assembly of two, three and six polystyrene particles suspended in DI water, 

respectively.  Both the patterns and the trajectories of the particles will be compared and 

discussed. 
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4.4.1 Directed Assembly of Two Particles 

For the experiments, two particles, which are at sufficient distance from all the 

surrounding particles, have been carefully selected to ensure that they are isolated from the 

hydrodynamic and electrical interactions with their closest neighbors.  In Figure 15(a), the 

initial positions of the two particles are (24.85, 37.33) and (52.48, 19.28) in terms of pixels.  

This indicates the initial angle between the line connecting the centers of the particles and 

the electric field is about .  According to the forgoing analysis in Section 4.2, 

these two particles experience a repulsive force in the x direction and an attractive force in 

the y direction.  To examine the subsequent motion of the partiecles, their trajectories are 

illustrated in Figure 16, where both the measured instaneous particle locations and the 

simulated trajectories are shown as circles and dash lines, respectively.  It can be seen that 

the two particles are at first pushed out in the x direction but pulled toward the equilibrium 

positions in the y direction.  As θ decreases, both x- and y-direction DEP force components 

become attractive (see Figure 10).  Hence, the two particles will eventually move towarch 

each other, as evidenced by the image sequences after t =  0.43 s in Figure 15.  From the 

comparison in Figure 16, it can be concluded that the particle trajectories obtained from 

from the numerical simulations agree fairly well with the experimental measurements.  

 

Figure 15. Experimental (a) and Numerical (b) results of DEP assembly of two particles. 

 

33.17  
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Figure 16. Comparison of trajectories of two particles from experiments and simulation.   

 

4.4.2 Directed Assembly of Three Particles 

Similarly to the case of two particles, DEP-directed self-assembly of three particles 

is also investigated to validate the numerical models.  As shown in Figure 17(a), at t = 0 s, 

three particles (P1, P2 and P3) are located at (15.86, 30.26), (58.92, 54.40) and (91.40, 

48.14), respectively, from left to right.  Since P2 and P3 are closer to each other than P1, 

the stronger DEP interactions between them leads to a faster assembly process: the two 

particles P2 and P3 quickly come into contact and form a dumb-bell structure that aligns 

to the electric field.  Afterwards, the P2-P3 conjugate travels slightly to the left while P1 is 

attracted to it and eventually joins the entity to form a chain lattice.  Both the experimental 

and the numerical simulation results show the self-assembly process accomplishes and the 

particle chain becomes stable at around t = 0.86 s.  The trajectories of the three particles 

during the assembly process are depicted in Figure 18.  A very good agreement can be 

found between the experimental data and the numerical simulation results.  
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Figure 17. Experimental (a) and Numerical (b) results of DEP assembly of three particles. 

 

 

Figure 18. Comparison of trajectories of three particles from experiments and simulation. 

 

4.4.3 Directed Assembly of Six Particles 

Figure 19 shows the DEP-directed self-assembly of six particles in DI water.  

Initially, the particles are located at (28.36, 62.00), (79.18, 60.16), (87.07, 21.02), (115.64, 

48.05), (135.04, 29.84) and (155.20, 62.49), from left to right.  The particles are named as 

P1, P2, …, P6, according to the sequence of increasing x value.   
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Figure 19. Experimental (a) and Numerical (b) results of DEP assembly of six particles.  

 

 

Figure 20. Comparison of trajectories of three particles from experiments and simulation.  

 

Figure 19 shows that, in the initial configuration, particles P4 and P5 have the 

smallest inter-particle distance compared to all other particles.  After the electric field is 

switched on, P4 and P5 attract to each other instantaneously, giving rise to a dumb-bell 

entity similar to that in Figure 15.  After this two-particle structure is formed, the 

neighboring particles P3 and P6 will join it and enlarge it into a four-particle chain.  This 
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process then recurs to particles P1 and P2.  Finally, at t = 1.14 s, all six particles are lined 

up into a linear chain in the direction parallel to the external electric field.  The trajectories 

of the six particles during the assembly process are depicted in Figure 20.  A very good 

agreement can be found between the experimental data and the numerical simulation 

results.  

4.5 Conclusions 

In this Chapter, the DEP-induced particle-particle interactions are analyzed in 

details, and it is found that the particles will attract to each other if the relative orientation 

angle , and repel otherwise.  Furthermore, DEP-directed self-assembly of 

multiple particles (two, three and six particles) into linear chain lattices is investigated both 

experimentally and numerically.  The particle-fluid and particle-particle interactions are 

accurately captured by the numerical simulation with the Distributed Lagrange-multiplier 

based fictitious-domain method (DLM/FD).  Numerical simulations show good agreement 

with experiments, in terms of both the particle patterns for each time frame and the 

trajectory of each single particle.   

 

 

 

  

63.4  
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Chapter 5 Traveling-Wave Dielectrophoresis 

5.1 Introduction 

Dielectrophoresis has been employed extensively as a powerful tool for 

manipulating particles in biological research, such as in separation [20, 44, 56, 121-126], 

trapping [21], sorting [22, 34, 52, 127, 128] and translation [23, 129-131] of cells, viruses, 

proteins and DNA.  However, DEP research to date has focused on controlling the 

electromechanical response of the solid particles, while largely neglecting the 

hydrodynamic interactions between the particles and the surrounding fluid, i.e., the motion 

of the surrounding fluid induced by drag from the dielectrophoretic particle motion due to 

viscous effects.  In spite of the advances in colloid science and electromechanics [70, 132, 

133], a gap still persists in the application of advances in the science of particle dynamics 

and low Reynolds-number hydrodynamics to the DEP technique.  This gap must be bridged 

to facilitate the implementation of DEP in a broader range of applications.  In particular, 

the potential of traveling-wave DEP (twDEP) as an effective means for micro/nanoparticle 

manipulation and microfluidic flow actuation has not yet been explored.  

In this Chapter, the fundamentals of twDEP are explored by examining the particle-

particle and particle-fluid interactions in colloidal solutions flowing through a 

microchannel.  Numerical methods using the DLM/FD and MST models are employed to 

probe the particle motion and flow distribution under AC electric fields with various 

driving frequencies.  Model systems consisting one, two and one hundred particles are 

investigated.  In addition, an interdigitated microelectrode array is fabricated on a silicon 

wafer to generate the four-phase traveling-wave field, and micro-particle image 
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velocimetry (μPIV) experiments are performed to measure the velocity field produced by 

twDEP.   

5.2 Theory of Traveling-Wave Dielectrophoresis 

Figure 21 depicts the cross-section view of the test device for the study of twDEP. 

A four-phase planar electrode array is fabricated at the bottom surface of the flow channel.  

The width of the electrodes and the interspacing between neighboring electrodes are d1 = 

d2 = 40 μm.  The height of the channel is h = 80 μm.  The channel is confined by a glass 

cover at the top, which also acts as an electric insulator.  

 

Figure 21. Cross-section view of the microchannel. 

 

The fluid and particles are assumed to be homogeneous linear dielectric materials, 

so that the electric field in the particle suspension in the flow channel can be solved using 

Laplace’s equation [123] 

  , (115)   0j        

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where the phasor expression of the field is , and the real component ϕR and 

the imaginary component ϕI satisfy  and , respectively.  In the time 

domain, the electric potential for an AC field of angular frequency  is given by 

      , cos sinR Ix t t t      . (116) 

Specifically, when a four-phase traveling-wave field is applied, the voltages on 

consecutive electrodes are phase-shifted by 90, such that I(x,y) = R(x/4,y), where the 

wavelength  = 4(d1+d2).   

Figure 22(a) shows the contour of the real component of the electric potential R , 

and Figure 22(b) shows the imaginary component I .  It is seen that the electric potential 

decreases rapidly with increasing distance from the electrodes.  Since the density of the 

field lines is proportional to the strength of the electric field 2 2
R IE      , the 

maxima of the electric field E appears at the edges of the electrodes and decay 

exponentially with increasing distance from the edges, as shown in Figure 23.  

Following the discussions in Chapter 2, the dielectrophoretic force is [70] 

      223 2 22 Re 2 ImDEP m CM CM x x y yF a f E f E E        
   

,  (117) 

where Re[fCM] and Im[fCM] denote the real and imaginary parts of fCM, and Ex and Ey are 

components of the electric field vector; x and y are the phase angles since the electric 

field is spatially phase-shifted.  It is noted that the DEP force depends on the spatial non-

uniformities in both the field strength (
2

E


) and the phase (  ).  In fact, the first term 

R Ij   

2 0R  2 0I 
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on the RHS of Eq. (117) determines the alignment of the DEP force with respect to the 

maxima/minima of the electric field and is the regular DEP force component in DC DEP.  

The second term on the RHS of Eq. (117) only appears if the electric field has a spatially 

varying phase, such as in a traveling-wave field, and therefore is the traveling-wave DEP 

force component.  When Im[fCM] is not trivial, the resulting twDEP force in propels the 

particles along or against the propagating traveling-wave field depending on the sign of 

Im[fCM].  The twDEP force is generally oriented in parallel to the electrode plane.   

 

Figure 22. Distribution of the electric potential and field lines (a) ϕR and (b) ϕI. 

 

 

Figure 23. Magnitude of the electric field using logarithmic scale. 
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The alignment of the twDEP force with the applied field is contingent upon the 

Clausius-Mossotti factor fCM, which is frequency-dependent.  Figure 24 illustrates the real 

and imaginary parts of fCM as a function of the frequency of the applied field for polystyrene 

particles suspended in water.  Clearly, Re[fCM] is positive in the low-frequency range (f < 

1 kHz) in which the particles are more polarizable than the surrounding fluid, and crosses 

over to negative values as the frequency increases (f > 100 kHz) and the particles become 

less polarizable than the fluid.  If Re[fCM] > 0, the regular DEP force component aligns 

favorably with the field strength gradient, as indicated by Eq. (117).  As a result, the 

particles move towards the maxima of the electric field, which are usually located at the 

edges of the electrodes that are used to generate the electric field, and positive DEP occurs.  

In the opposite situation, a negative Re[fCM] brings negative DEP where the particles move 

away from the maxima of the electric field, distancing themselves from the electrodes.   

The imaginary component of the Clausius-Mossotti factor, fCM, plays an important 

role in twDEP and electrorotation.  Im[fCM] vanishes at both extremes of the frequency 

spectrum but assumes non-zero values in the mid-range around the cross-over frequency.  

When Im[fCM] is not trivial, the resulting twDEP force in Eq. (117) propels the particles 

along or against the propagating traveling-wave field depending on the sign of Im[fCM].  

Traveling-wave DEP can be exploited to achieve long-range transport of nanoscale 

components to desired on-chip sites for assembly.  The twDEP force is generally oriented 

in parallel to the electrode plane.  However, in practice, twDEP does not occur in isolation 

without the companion negative DEP, since the particles must be levitated from the 

electrode surface.  As such, the criteria for effective twDEP are Re[fCM] < 0 and Im[fCM]  

0.  
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Figure 24. Real and imaginary components of Clausius-Mossotti factor as a function of frequency. 

 

The Re[fCM] and Im[fCM] terms related components of the DEP force at different 

driving frequencies can be distinguished in Figure 25.  It shows the vector fields of the 

DEP force at (a) low, (b) moderate and (c) high frequency range.  Clearly, Figure 25(a) and 

(c) present the positive DEP and negative DEP, respectively.  As shown in the vector plots, 

the direction of the forces are towards or outwards the electrodes edges, and the magnitude 

of the force increases exponentially near the edges.   

Figure 25(b) represents the twDEP force at the frequency of 10 kHz.  At this mid-

range frequency, the imaginary part of the Clausius-Mossotti factor dominates.  The DEP 

force in the region at certain height becomes nearly uniform and acts against the 

propagating traveling wave in the horizontal direction.  At a lower height near the edges of 

the electrodes, the forces are much greater in magnitude and the direction depends on the 

local electric field.   The normalized traveling-wave DEP torque is shown in Figure 26.  



 71  
 

The maximum of the torque occurs around the electrodes edges and decays as the height 

increases.  The sign of the torque is positive in most regions.  A particle suspending in the 

fluid under such an electric field is expected to spin counterclockwise around the center of 

the particle.   

 

Figure 25. Magnitude of the DEP force at different frequencies using logarithmic scale.  

 

 

Figure 26. Normalized traveling wave DEP torque.  
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5.3 Numerical Simulations 

In this section, numerical simulations are conducted for model systems consisting 

of one, two and one hundred particles under various driving frequencies to study their 

dynamics in twDEP.  The case with one hundred particles are analyzed in details in terms 

of flow patterns and velocity field.  The velocity profile along the height of the 

microchannel from this case will be compared with experimental measurement.  

5.3.1 twDEP of a Single Particle  

First, the motion of a single particle undergoing twDEP is simulated.  The 

computational domain is shown in Figure 27 where the coordinates are normalized with 

respect to the channel height, i.e., x* = x/h and y* = y/h.   Hence, the dimensionless domain 

size is 4 in width by 1 in height.   

 

Figure 27. Particle positions and trajectories at different electric frequencies.   
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Initially, the particle located at (0.3, 0.3) is at rest.  Once applying an electric field 

of a specific frequency, e.g., 10 Hz, 10 kHz and 10 MHz, to the electrodes, the particle will 

experience positive, negative or traveling-wave DEP forces, accordingly.  At the low 

frequency f = 10 Hz, the particle is attracted to the electrode, as shown by the particle 

trajectory in Figure 27.   

The positive DEP force increases rapidly when the particle approaches the 

electrode.  Hence, as the particle moves towards the electrodes, it accelerates till it impact 

on the electrodes at t = 0.62 s.  At the high frequency f = 10 MHz, the particle is repelled 

away from the electrode while the repulsive force decreases exponentially with the distance 

from the electrodes.  Consequently, the particle decelerates as it moves away.  At the 

moderate frequency f = 10 kHz, the particle experiences a significant twDEP force as well 

as a negative DEP force.  The particle is pushed away from the electrode while being 

pushed forward against the direction of the propagation of the electric field.  At t = 0.6 s, 

the particle travels to the location of (0.746, 0.570).  Then, the particle is further pushed 

forward and elevated to (2.346, 0.852) at t = 4.82 s.  After that, the particle stays at an 

approximately constant height.  The equilibrium state of the particle is reached as the 

particle travels to y* ≈ 0.86 and the velocity remains at 0.32/s in the x direction.  

5.3.2 twDEP of Two Particles 

The numerical simulations are extended to study the different DEP modes of a pair 

of particles, P1 and P2, that are released from above an electrode.  The electric field is 

applied at the time instant t = 0, and then the particles motion driven by the electric field 

are recorded.   
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Figure 28. Positions and trajectories of two particles at f = 10 Hz (a), 10 kHz (b), and 10 MHz (c).  
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At the frequency f = 10 Hz, the centers of the particles are initially located at (2.00, 

0.30) and (2.15, 0.30), as shown in Figure 28(a).  Since the twDEP force on the particles is 

negligible at this frequency, the motion of the particles is dominated by positive DEP.  

Thus, the two particles are attracted to and eventually land on the electrodes.  Similarly, 

when the driving frequency is increased to f = 10 MHz, the particles experience negative 

DEP.  As presented in Figure 28(c), the two particles are repelled away and levitated to a 

certain height above the electrode array.   

At f = 10 kHz, the conventional DEP and the twDEP force components are 

equivalently important.  Two particles are released from two adjacent locations (1.25, 0.10) 

and (1.40, 0.20), and they are pushed away from the electrodes as the real part of the 

Clausius-Mossotti factor, Re[fCM], is negative, i.e., negative DEP occurs.  After levitation, 

both particles move against the propagation direction of the traveling-wave electric field 

due to the twDEP force.   

5.3.3 twDEP of 100 Particles 

The twDEP dynamics of 100 particles is discussed in this section with emphasis on 

the flow actuation effect, i.e., “pumping”, generated by the collective motion of the 

particles.  Since the numerical simulation results will be compared with the experimental 

measurements, the applied frequency of the electric field is set to be f = 6.9 kHz.   

The spatial distribution of the DEP force is presented in Figure 29 where the 

magnitude of the force is color coded.  From the contour and the vector field, it is seen that 

the twDEP force is in the negative direction at y ≥ 0.25 and vortex occurs at y ≤ 20 μm.  
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Also, the magnitude of the force reaches local minima at y ≈ 15 μm, which is the dark blue 

region.  

 

Figure 29. Distribution of the DEP force at f = 6.9 kHz using logarithmic scale.  

 

Figure 30(a) shows that, at t = 0 s, 100 particles are uniformly distributed in the 

flow channel with an inter-particle spacing of 0.2 in both the vertical and horizontal 

directions.  The orientation of each individual particle is indicated by the red dot marked 

on the particle.  The subsequent positions of the 100 particles at t = 0.02 s and 3.0 s are 

shown in Figure 30(b) and (c).  After applying the electric field, the particles start spinning, 

as evidenced by the orientation of the red markers, because of the DEP torques acting on 

them.  As shown by the DEP torque distribution in Figure 26, the torque decreases with 

increasing height from the electrode array.  Consequently, the particles located near the 

electrodes exhibit faster spinning than those at higher positions.  The positions of the 

particles at t = 3.0 s are shown in Figure 30(c), where some are levitated after the electric 

signal is actuated while some near the bottom are attracted to the local maxima of the 

electric field.   
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Figure 30.  Particle locations at t = 0 s (a), t = 0.02 s (b), and t = 3.0 s (c). 

 

While the particle travels via DEP in a surrounding fluid, it suffers a retarding drag 

force if the fluid is either moving slower than the particle or otherwise stationary.  The 

fluid surrounding the particle is in turn dragged by viscous effects to accelerate in the 

same direction as the particle.  The momentum exchange between the particle and the 

fluid reduces the velocity lag between the phases and eventually leads to an equilibrium 

state.  A steady flow field is then established around the particle in the fluid as a result of 

this hydrodynamic interaction.  In a particle suspension, a large collection of particles are 

present and the particles further interact hydrodynamically with neighbors.  Consequently, 

the induced flow field is intensified and an appreciable net flow is produced by the 

collective pumping action. Figure 31 illustrates the velocity field generated by this 
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mechanism where a nearly parabolic velocity profile can be found in the microchannel.  

It is noteworthy that the velocity profile changes slightly with time.  In the next section, 

the velocity profile at t = 0.5 s and t = 1.2 s will be compare with the μPIV measurements.   

 

Figure 31. Velocity field at t = 0.5s (a), t = 1.2s (b), t = 3.7s (c). 

 

5.4 Experiments 

In order to verify the results from the numerical simulations, an experiment setup 

is constructed and μPIV is used to obtain the instantaneous velocity field induced by 

twDEP.  The setup includes an interdigitated microelectrode array fabricated on a silicon 

wafer, a fluorescent microscope, a function generator and an image acquisition system.   
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5.4.1 Microfabrication 

A twDEP test device was designed and fabricated.  The device consists of an array 

of interdigitated microelectrodes fabricated using photolithography.  With a silicon wafer 

as a substrate, the device is comprised of four distinct layers.  The four layers, from the 

bottom to top, are an array of a bus bar sublayer, a dielectric film, the parallel electrodes 

and a top layer.  At the bottom layer, two parallel bus bars representing Phase 2 and 3 of 

the traveling-wave are created by depositing 0.3 μm of Al with a sputtering system (AJA 

UHV six-source sputtering system) on a 3” silicon wafer.  This layer is then deposited with 

AZ 1512 and photolithography followed by wet-etching.  The second layer is comprised 

of SU-8 layer used as a dielectric layer to separate the electrode array and bus bar layer.  A 

layer of 0.6 μm SU-8 is deposited directly on top of the bus bar layer with a spin coater 

(Brewer Cee 200 Spin Coater).  Then a mask and photolithography is used to create the 

windows of electrical contact between the electrodes and the underlying bus bars.   

Then, another layer of 0.5 μm Aluminum is deposited via the same sputtering 

system as used in the bottom layer.  The aluminum oxide can form easily on the underlying 

layer of Al, which can increases the electric contact resistance between the two layers. 

Hence, a brief Ar sputter-etch is performed under vacuum before the deposition in order to 

remove the aluminum oxide.  Then this layer of Al is patterned by wet-etching with AZ 

1512 photolithography as before.  The top dielectric layer is then deposited over the 

previous parallel electrodes layer to protect the metal electrodes from oxidation and 

corrosion.  Then the wafer was baked to make sure its resistance to heat, electricity, or 

liquid.  The detailed fabrication process is summarized in Table 2.  The microfabrication 

is conducted in the Nanofabrication Facility at the University of Houston. 



 80  
 

Table 2. Microfabrication procedures of four-phase electrodes.  

1. Start with 3” silicon wafer  

2. Solvent clean  

3. Evaporate (or sputter deposit) Al ~0.3 μm thick 

4. Solvent clean 

5. Hard bake wafer in oven for 5 min at 120 °C 

6. Spin coat with AZ 1518 

7. Soft bake wafer in oven for 5 min at 90 °C 

8. Expose photoresist with mask 

9. Develop AZ 1512 photoresist 

10. Rinse with DI water and dry with N2 

11. Hard bake wafer in oven for 5 min at 120 °C 

12. Aluminum wet etch exposed metallized regions 

13. Strip AZ 1512 photoresist with solvent clean 

14. Check for shorting with electrical isolation tests across different pads 

15. Solvent clean 

16. Rinse with DI water and dry with N2 

17. Hard bake wafer in oven for 5 min at 120 °C 

18. Spin coat a layer of SU-8 0.6um 

19. Solvent clean 

20. Soft bake wafer in oven for 5 min at 90 °C 

21. Expose photoresist with mask 

22. Develop SU-8 photoresist 

23. Hard bake wafer in oven for 5 min at 120 °C 

24. Sputter etch in Ar plasma 

25. Sputter deposit Al 0.5 μm thick 

26. Solvent clean 

27. Repeat steps 7 -18 with another mask 

28. Spin coat a layer of SU-8 0.6um 

29. Hard bake wafer in oven for 5 min at 120 °C 

30. Check for shorting across phases 
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The details of the twDEP device are shown in Figure 32.  The array contains 50 

sets of the electrodes, with each set consists of four electrodes, which are assigned to four 

electric phases.  Each electrode measures 40 μm in width and is separated by 40 μm from 

the neighboring electrodes.   

 

Figure 32. Prototype traveling wave DEP device with electrodes on a silicon wafer.  

 

5.4.2 Experimental Procedure  

In the experiments, the silicon wafer is mounted to a probe station with the 

electrodes connecting to an AC arbitrary waveform function generator (FLUKE 294), as 

shown in Figure 33.  Spacers and a glass cover slide are placed on top the wafer to create 

a recirculating channel flow path which is 80 μm deep.  The function generator is used to 

electrically activate each of the four phases on the fabricated circuit.  The applied voltage 

is 20 V and the frequency is 6.9 kHz.  A digital oscilloscope (Tektronix TDS 310) is used 

to monitor the voltage, frequency and waveform of the sinusoidal signal applied.   



 82  
 

 

Figure 33. Experiment apparatus for traveling wave DEP. 

 

Time-resolved images for particle image velocimetry (PIV) are captured through 

an Olympus microscope with a 50× objective lens (N.A. = 0.5, W.D. = 10.6 mm, F.N. = 

26.5 mm) and a high speed CCD camera (PixeLINK PL-B742U).  The camera can provide 

24 fps at a full pixel resolution of 1280×1024 and up to 7200 fps at 724×8.  The colloidal 

solution is prepared by mixing fluorescent polystyrene particles of 780 nm diameter 

(Thermo Scientific, CA) with DI water.  The conductivity of the polystyrene particles and 

the DI water are measured to be 5×10-5 S/m and 5.5×10-6 S/m, respectively, while the 

relative dielectric permittivity are 2.8 and 78.4.   

5.4.3 Experiment Results 

The motion of the particles in the twDEP is recorded and presented in Figure 34 at 

three different heights: (a) h = 0, (b) h = 20 μm and (c) h = 70 μm.  The consecutive images 

of the particle positions are recorded at 25 fps with an applied AC electric field (V = 20 V, 

f = 6.9 kHz).   
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Figure 34. Snapshots of particle motion with twDEP at (a) h = 0, (b) h = 20 μm, and (c) h=70 μm.  

 

Microparticle image velocity (μPIV) software EDPIV is then used to analyze all 

the images to obtain the quantitative measurements of the spatial velocity field at those 

heights.  The results are shown in Figure 35.  Figure 35(a) shows that at h = 0, the velocity 

is positive in most regions and the velocity is strong near the edges of the electrodes.  This 

observation matches the dielectrophoretic force distribution in Figure 29 and the velocity 

profile in Figure 31.  At h = 20 μm, Figure 35(b) shows that the average velocity is around 

65 μm/s, which is approximately the maximum velocity along the height of the 

microchannel.  When the height further increases to h = 70 μm, the average velocity 

reduces to 20.5 μm/s, almost half of that at h = 20 μm, as shown in Figure 35(c).  This is 

not surprising since the twDEP force decays exponentially with the distance from the 

electrodes.  
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Figure 35. Velocity field with μPIV measurement at height h = 0 (a), h=20μm (b), h=70μm (c). 

 

 

Figure 36. Comparison of velocity profile between the experiments and numerical simulations. 
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The mean velocity at each height of the channel is then obtained by averaging all 

the velocity data at that height from the μPIV measurement.  In Figure 36, the velocities 

are plotted as a function of the height of the microchannel (from h = 0 to 80 μm).  The 

velocity profile from numerical simulation at a steady flow state is also included.  From 

the comparison, it can be concluded that the experiment data and the simulation results 

show a satisfactory agreement.  

5.5 Conclusions 

In this chapter, both numerical simulations and experimental measurements are 

undertaken to investigate the twDEP motion of particles and the collective fluid flow in a 

microchannel.  The particle motion and trajectory are first studied numerically using model 

systems consisting of one, two and a hundred particles.  The effects of the driving 

frequency of the applied electric field on DEP are investigated in great detail.  A four-phase 

microelectrode test piece is fabricated, and μPIV measurements are conducted to obtain 

the instantaneous velocity field induced by the twDEP of nanoparticles suspended in a 

colloidal solution.  The measured velocity profile is compared with the numerical results. 
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Chapter 6 Electrohydrodynamics vs Traveling Wave DEP 

6.1 Introduction 

In this Chapter, we discuss another phenomena, called electrohydrodynamics, 

which comes along with traveling wave dielectrophoresis, when a temperature gradient is 

introduced in the colloidal solutions by Joule heating effect.  This effect could interfere, 

synergistically or competitively, the flow induced by traveling wave dielectrophoresis.  

This work has been published [134].  

The ability to generate fluid flow in small amounts with high precision is critical to 

the continued growth of microfluidic technology, which is now widely applied in drug 

delivery [135], chemical synthesis [136], biological diagnostics [137] and electronics 

cooling [138].  Conventional pumping methods driven by mechanical means are proven 

unsuitable for microfluidic applications due to their limits in miniaturization and lack of 

precision and flexibility in controlling low flow rates [139, 140].  Among the alternative 

solutions, a particularly attractive scheme is to exploit the AC electrokinetic effects, i.e., to 

generate the flow by inducing electrical forces in the fluid with an applied traveling-wave 

electric field.  Based on the origin of the electrical forces, electrokinetic micropumps can 

be classified as the induced-charge electroosmotic (ICEO) micropump [141, 142], 

dielectrophoretic (DEP) micropump [57], and electrohydrodynamic (EHD) micropump 

[143-145], etc.   

In ICEO micropumps, the electrical double layer (EDL) is formed by the normal 

component of the traveling wave field at the interface between the electrode and the 

electrolyte solution.  The tangential component of the field then acts on the mobile charges 
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accumulated in the EDL, pulling the fluid along the direction of the traveling wave.  The 

EHD micropumps are also generated through the interaction of an electric field with 

induced charges (ions).  However, the charge induction usually occurs in the bulk of a fluid 

medium by the presence of a temperature gradient through anisotropic heating.  The 

induced ions can be attracted or repelled by the traveling-wave field, so that the fluid moves 

together with the ions owing to viscous drag.  Although both ICEO and EHD micropumps 

involve a traveling-wave field, they can be discerned without ambiguity because they 

operate at very different frequency range [57, 146].  For instance, the maximum effect of 

EHD occurs near the charge relaxation frequency fc = m/(2m) [147], while the optimal 

frequency of ICEO is around fICEO = [m/(2m)]/(D/L), where D is the Debye length and 

L is the characteristic length of the system, and fICEO is several orders of magnitude smaller 

than fc.   

Traveling-wave DEP (twDEP) is the sustained motion of dielectric particles in a 

fluid when exposed to a multi-phase (> 2 phases) traveling-wave field [9].  The driving 

force is derived from the interaction of the field with the induced electric dipole in the 

particles.  When the moving particles drag the surrounding fluid together with them, an 

appreciable net flow, i.e., the twDEP micropumping, is generated [9].  The maximum 

twDEP is expected to take place near the Maxwell-Wagner relaxation frequency, fM-W,  
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 . (118) 

This frequency is of the same order of magnitude of the charge relaxation frequency 

of EHD (fc) at which the maximum EHD pumping occurs.  In fact, they can coincide for 
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certain particle-fluid combinations.  For instance, if p << 2m and p << m, fM-W will 

reduce to fc.  Furthermore, the velocity fields produced by twDEP micropumping and EHD 

micropumping are typically comparable in magnitude, however, their flow directions may 

be totally opposite (as will be discussed below).  Consequently, when a traveling-wave 

electric field is applied to transport colloidal suspensions, where the subject of interest can 

be either the particles or the carrier liquid, the twDEP-induced flow and EHD-induced flow 

are simultaneously present.  These two pumping mechanisms may cooperate or compete 

with each other, depending on their relative flow directions with respect to the applied 

electric field.  Thus it is important to analyze the EHD-twDEP coupled flow and its 

potential variations in order to ensure satisfactory liquid/particle delivery capability of a 

microfluidic system that employs the AC electrokinetic effects [57, 148-150].   

In this Chapter, the coupled EHD and twDEP electrokinetic flow is studied 

numerically in a microchannel which has an interdigitated microelectrode array fabricated 

at the bottom surface.  The EHD flow is induced by the Joule heating effect in the 

electrolyte solution.  Both the repulsion-type and the attraction-type EHD were considered.  

The flow field due to twDEP is solved using an equivalent mixture.  The results show, 

depending on the frequency range of the traveling-wave field and the thermal boundary 

condition, the EHD effect and the twDEP effect can work either synergistically or 

competitively to strengthen or weaken the net flow generated.     
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6.2 Theory and Analysis 

6.2.1 Electrohydrodynamics 

Electrohydrodynamic (EHD) flow arises as the result of the interaction of an 

electric field with free charges induced in a fluid medium.  The charge induction occurs 

when a temperature gradient T exists in the bulk of the liquid, which brings about 

gradients in the temperature-dependent electrical conductivity and permittivity.  Upon the 

application of an electric field, the electrical force drives the free charges into motion, 

thereby producing the bulk fluid flow.  EHD pumping due to preexisting temperature 

gradient, e.g., a temperature difference imposed across the boundaries of the fluid, has been 

studied extensively for heat transfer enhancement applications [147, 151-153].  Under a 

difference circumstance, when the fluid medium has a non-negligible electrical 

conductivity, the high electric field normally used in electrokinetics studies can generate 

appreciable Joule heating, which causes a substantial temperature gradient in the bulk 

liquid [154].  EHD originating from Joule heating is also termed the electrothermal effect 

[155], and is considered in this work.  The steady-state energy equation for the fluid is 

given as 

   2 2
pc u T k T E    


 , (119) 

where the heat generation source term E2 is due to Joule heating.    

The electrical force due to EHD is given by [156]  

 2
2

1

2e qf E E   
 

 , (120) 
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where q is the free charge density, and E


 is the electric field.  The two terms at the right 

hand side (RHS) of Eq. (120) represent the Coulomb and dielectric forces, respectively.  

The free charge density is related to the electric field by Gauss’s law 

  q E 


 , (121) 

and the charge conservation equation is  

 0q J
t


 




 , (122) 

where the current density J


 consists of the convection current, the conduction current and 

the diffusion current, and is given by 

 q qJ u E D     
 

 , (123) 

where D is the diffusivity.  The convection and diffusion currents can be neglected in this 

work since they are much smaller than the conduction current [155, 157]. 

Assuming small variations in the permittivity and electrical conductivity, the 

electric field can be written as the sum of the applied component 0E


 and the perturbation 

component 1E


, where 0 1E E E 
  

 and 0 1E E
 
 .  The electrical force becomes 

   2
0 1 0 0

1

2ef E E E E        
   

 . (124) 

Eqs. (121) and (122) can be combined as  
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In an applied AC field of angular frequency ,    0 0Re i tE t E e 
 

 and / t i  

, where Re(…) is the real part of a complex quantity.  From Eq. (125), it follows 
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Putting Eqs. (124) and (126) together, the time-averaged electrical force can be 

given by  
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where * denotes the complex conjugate.  Alternatively, Eq. (127) can be recast as 
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where  = / is the charge relaxation time.  The variations in permittivity and conductivity 

are related to the temperature gradient as 
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  and (129) 
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. (130) 

The EHD-induced flow field can be described by the Navier-Stokes equations for 

an incompressible fluid 
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 , (131) 

and the continuity equation is 

 0u 


 , (132) 

where bf


 is other body forces if present.  Considering the small velocity involved in most 

microfluidic studies, the inertia term can be omitted from Eq. (131) since the Reynolds 

number is usually less than unity ( Re / 1uL   ).  Further neglecting the body force, 

Eq. (131) reduces to the Stokes equation 

 20 ep u f    


 . (133) 

6.2.2 Dielectrophoresis 

As introduced before, dielectrophoresis (DEP) is the motion of dielectric particles 

in colloidal suspensions when exposed to non-uniform electric fields [9].  When an electric 

field is applied, the re-distribution of electrical charges in the particle gives rise to an 

induced dipole across the particle.   

The induced dipole tends to align with the applied field.  The induced dipole 

moment, p


, and the dielectrophoretic force, F


, are given by  

 34
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  and (134) 

   3 22
2

p m
m

p m

F p E a E
 

 
 
 

      

  
 . (135) 



 93  
 

If the applied field is non-uniform ( 0E 


), the particle will experience a net force 

and move [9, 72].  In a DC field, the particles can either undergo positive DEP, i.e., they 

are attracted to the maxima of the field, or experience negative DEP, i.e., they are repelled 

to the field minima.   

Sustained particle motion is possible when an AC traveling-wave field is applied 

with appropriate driving frequencies.  The AC dielectrophoretic force on the particle can 

be expressed using the frequency-dependent permittivity as [72] 

 3 22
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 , (136) 

where   is  /i      and 1i   .  In the time domain, the time-averaged DEP 

force becomes [150] 

     23 3 2 2Re 2 ImDEP m CM m CM x x y yF a f E a f E E          
 

 , (137) 

where the Clausius-Mossotti factor, fCM is a complex parameter, defined as 

 
2

p m
CM

p m

f
 
 






 
 

 . (138) 

Here Re(fCM) and Im(fCM) denote the real and imaginary parts of fCM, Ex, Ey and Ez 

are the three directional components of the electric field; and x, y and z are the phase 

angles.  The first term on the RHS of Eq. (137) determines the alignment of the DEP force 

with respect to the maxima/minima of the electric field.  The second term appears only in 
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a traveling-wave field and therefore, is called the traveling-wave DEP (twDEP) force 

component.   

When the particles are driven into motion by twDEP, the viscous drag will pull the 

surrounding fluid to move together with the particles.  Eventually, the twDEP driving force 

is balanced by the viscous drag force 

  6DEP f m pF a u u   
  

 . (139) 

Once the equilibrium state is reached, a steady flow field will be established around 

the particle.  In a particle suspension where a large number of particles are present, the 

particle-particle hydrodynamic interactions take place as the inter-particle distance 

decreases, which will intensify the induced flow field [158].  Consequently, an appreciable 

net flow can be produced by the collective pumping action [57].   

6.2.3 Interference between EHD and twDEP 

The direction of EHD flow with respect to the traveling-wave field is determined 

by the temperature distribution in the fluid [147].  When the lowest fluid temperature 

happens to be near or at the electrodes where the electric field is most intense, the induced 

free charges will be attracted toward the traveling wave and the fluid will follow the electric 

field in the same direction, resulting in the attraction-type EHD.  Conversely, in the case 

of repulsion-type EHD where the fluid temperature is higher near the electrodes, the 

induced flow will be opposite to the direction of the traveling wave.   

The twDEP motion of particles with respect to the traveling wave field is contingent 

upon the Clausius-Mossotti factor, fCM, as indicated by Eq. (137).  Figure 37 illustrates 
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Re(fCM) and Im(fCM) as a function of the frequency of the applied field (polystyrene 

particles suspended in the 2.2  10-5 M KCl solution).   

 
 

Figure 37. Frequency-dependence of Re(fCM) and Im(fCM). 

 

It is seen Re(fCM) is always negative over the entire frequency range, ensuring the 

particles can move freely without being immobilized onto the electrodes.  Im(fCM) vanishes 

at both extremes of the frequency spectrum, and only assumes non-zero values in the mid-

range around the cross-over frequency (fM-W).  When Im(fCM) is not trivial, the resulting 

twDEP force will propel the particles either along or against the propagation direction of 

the traveling wave, depending on the sign of Im(fCM).  For the particle-fluid combination 

used in this work, Figure 37 shows Im(fCM) < 0, the particles as well as the twDEP-induced 

flow always move against the traveling wave.  Therefore, when both EHD and twDEP 

effects are present, the net induced flow can be either enhanced if the EHD-induced flow 

is repulsion-type (i.e., also against the traveling wave), or diminished if the EHD-induced 
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flow is attraction-type (i.e., along the traveling wave), depending on the temperature 

distribution in the fluid. 

6.3 Numerical models 

The microfluidic system to be modeled consists of an array of three-phase, planar 

parallel microelectrodes fabricated on a silicon substrate, a microchannel, and a glass cover 

slide, as shown in Figure 38.  The height of the microchannel formed is 50 m.  The 

electrodes are very thin (~ 100 nm) and are 8 mm long.   

 

 

Figure 38. The microfluidic system. 
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Figure 39. The computational domain and the electrical boundary conditions. 

 

They have a width and a spacing of d1 = 6 m and d2 = 12 m, which yield a 

wavelength of  = 3(d1 + d2) = 54 m.  The electrode array can be treated as a two-

dimensional system because the length (8 mm) along the transverse direction is considered 

infinite relative to the other two dimensions.  The computational domain is shown in Figure 

39, for which the electric, temperature and velocity fields will be solved.  Due to periodicity 

consideration, only a distance along the electrodes of one wavelength is modeled that 

covers three electrodes and their inter-spacing gaps. 

A low-concentration KCl solution (2.2  10-5 M) is used as the working fluid for 

both EHD and twDEP simulations.  The solution has an electrical conductivity of  = 5.43 

 10-4 S/m, a dielectric constant of r = 80, and the temperature coefficients of 2.11% K-1 

for  and – 0.4% K-1 for  [147].  The density, viscosity and thermal conductivity of the 
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KCl solution are assumed to be the same as water ( = 997 kg/m3,  = 5.2810-4 N s/m2 

and k = 0.7 W/(m K).  In the twDEP simulation, polystyrene microparticles of 2.9 m 

diameter are dispersed in the KCl solution at a volume fraction of 1%.  The electrical 

conductivity and dielectric constant for polystyrene are  = 5.2  10-5 S/m and r = 2.8, 

respectively. 

6.3.1 Electric field 

The electric fields are generated by applying a traveling-wave voltage signal to the 

three-phase electrode arrays.  For a harmonic electric field of angular frequency , the 

electrical potential in the computational domain can be written in phasor notation as [62]  

    , Re[ ]i tx t x e     , (140) 

where the phasor 1 2i    , and 2 f   (f is the frequency of the applied field).  The 

harmonic electric field is obtained from    , Re[ ]i tE x t E x e 
   , where 

   1 2E x i        
   .  Since the fluid and the particles are assumed to be 

homogeneous, linear dielectric materials, both 1 and 2 satisfy Laplace’s equation 

2 0i  (i = 1, 2).   

The boundary conditions are specified as follows.  On the top glass surface, a 

Neumann condition ( / 0n   ) is assumed, where n is the normal to the boundary [157].  

On the bottom surface, three-phase traveling-wave potentials are assigned to the electrodes, 

as shown in Figure 39.  A sinusoidal voltage (t) = Re[V0eit] is applied to the first 

electrode, and the signals on consecutive electrodes are phase-shifted by 2/3.  The 
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corresponding boundary values of 1 and 2 on the electrodes are illustrated in Figure 39.  

For the inter-spacing gaps, the Neumann condition is specified since the neighboring 

electrodes are isolated from each other by using dielectric films, resulting in zero potential 

flux in the gaps.  Periodic boundary conditions are imposed at the left and right boundaries 

of the computational domain. 

6.3.2 Temperature and velocity fields 

Since the thermal conductivities of glass and silicon are two orders of magnitude 

different (i.e., they are 1.4 W/mK and 148 W/mK, respectively), two kinds of thermal 

boundary conditions are considered in this work.  Under the first thermal boundary 

condition (BC-1), the top surface is assumed adiabatic ( / 0T n   ), and the bottom 

surface is assumed to be equal to the room temperature 300 K as a result of good conduction 

through the silicon substrate.  This is the standard thermal boundary condition used in 

solving heat transfer problems in microchannel flows [159].  When heat losses due to 

natural convection are considerable, the second kind of thermal boundary condition (BC-

2) is possible, where a convective heat transfer coefficient of 30 W/m2 K is applied to both 

boundaries [160].  Under steady state, thermally fully developed boundary conditions are 

assigned to the vertical edges of the computational cell.  The boundary conditions for the 

velocity field calculation are: (1) no-slip conditions for the top and bottom surfaces and (2) 

periodic conditions for the left and right boundaries, i.e., the flow inlet and outlet. 

6.3.3 Numerical methods 

A commercial computational fluid dynamics (CFD) software package, FLUENT, 

is employed to solve the electrothermal and electrohydrodynamic problems [160, 161].  
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The general solution procedures are as follows.  First, the electrical potential () and the 

electric field ( E


) are acquired by solving the Laplace's equation 2 0  .  Then the 

solutions are used in conjunction with the user-defined functions to compute the EHD force 

and DEP force defined in Eqs. (128) and (137).  Finally, the Stokes equations are solved to 

obtain the velocity field.   

In the EHD simulation, the velocity and temperature fields are coupled and can be 

calculated by solving Eqs. (119), (131) and (132) simultaneously.  It is noted that if the 

temperature gradient in EHD is established by a pre-existing constant temperature 

difference across the boundary of the fluid (T = constant), the electrical force can be 

calculated directly from Eqs. (128) through (130) without having to solve the energy 

equation.   

In the DEP calculation, the electrical force acts on discrete solid particles rather 

than on the continuous fluid elements.  Here, instead of using the two way coupled fluid-

particle interactions DLM/FD method, a simplified, equivalent mixture model is adopted 

here.  The DEP force is treated as a continuous body force in the fluid by volume-averaging, 

i.e., the DEP force on one particle is averaged over the fluid volume surrounding that 

particle, whose size is determined by the particle volume fraction.   

This continuous approach is warranted by the fact that there are ample particles in 

the suspension and their random passages in space make their presence ergodic [9].  The 

DEP force is then used as the electric force term in Eq. (131) to solve for the induced flow 

field.  By following this procedure, the complex solid-liquid two-phase flow problem is 

converted to an equivalent, but more straightforward single-phase fluid flow problem. 
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In the simulations, the computational domain is discretized using a 106  200 (x-y) 

grid.  Simulations with different grids show a satisfactory grid-independence for the results 

obtained with this mesh size.  The simulations are performed for V0 =10 V and three 

frequencies of f = 10 kHz, 100 kHz and 1 MHz, respectively.   

 

Figure 40. Solution of the electric field: (a) the electric potential  and (b) the electric field E. 
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6.4 Results and Discussion 

6.4.1 Electric field solution 

Numerical results for the electric potential and the electric field are illustrated in 

Figure 40 for V0 = 10 V.  Figure 40(a) shows that the electric potential decays rapidly with 

increasing distance from the electrode surface.   

Since the density of the field lines is proportional to the strength of the electric field, 

Figure 40(b) shows clearly that the field maxima are located near the edges of the 

electrodes, and the local minima appear in the inter-spacing gaps.  In all the simulations, 

the applied traveling-wave propagates from the left side to the right of the computational 

domain. 

6.4.2 Electrohydrodynamics 

Figure 41 presents the temperature distributions in the microchannel under the two 

different thermal boundary conditions.  The frequency of the electric field is f = 100 kHz.  

In both cases, Joule heating is concentrated near the electrodes where the field strengths 

are at the maximum.  Under BC-1, the maximum temperature is found near the top of the 

microchannel due to poor thermal conductivity of the glass cover.  In contrast, the highest 

fluid temperature under BC-2 occurs in the region close to the electrodes, since the 

convection thermal resistances are equal on both the top and the bottom surfaces of the 

microchannel.  It is noted that the temperature variation across the microchannel height is 

minuscule (~ 0.01 K), however, the resulting temperature gradient is sufficient (200 K/m) 

to induce EHD flows [157].   
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Figure 41. The temperature fields under (a) BC-1 and (b) BC-2 (at V0 = 10 V and f = 100 kHz).   

 

Figure 42 illustrates the calculated EHD velocity vectors at various streamwise 

locations.  As expected, attraction-type EHD occurs under BC-1 and the flow velocity 

follows the direction of the traveling wave (Figure 42(a)), i.e., going from the left to right, 

whereas repulsion-type EHD arises under BC-2 and the flow is against the traveling wave 

(Figure 42(b)).   
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Figure 42. The EHD velocity vectors at various streamwise locations. 

 

Figure 43 illustrates the comparison of the EHD velocity for three different 

frequencies at the midway location of the flow channel (x = 30 m).  It is known that the 

maximum EHD effect occurs at the relaxation frequency of the KCl solution, fc = 122 kHz.  

At lower frequencies, the induced charges will decay during the long residence time and 
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the EHD force exerted in the fluid is small.  If the frequency is too high, the charges will 

not be able to fully transit from one electrode to the next before the voltages on the 

electrodes change, again reducing the EHD force [147].   

 

Figure 43. Comparison of the EHD velocity at the streamwise location x = 30 m. 

 



 106  
 

The results in Figure 43 show that, in both repulsion-type and attraction-type EHD, 

the fluid velocity rises up drastically when the frequency is increased from 10 kHz to 100 

kHz (close to the optimal frequency of 122 kHz), and decreases rapidly with further 

increasing the frequency to 1 MHz.  The maximum velocity in the repulsion-type EHD (~ 

12 m/s) is about three times that in the attraction-type EHD (~ 4 m/s).  This is consistent 

with the greater temperature gradient observed under BC-2 (as shown in Figure 41), which 

leads to a stronger EHD driving force. 

6.4.3 Dielectrophoresis 

The DEP-induced velocity fields in the microchannel are shown in Figure 44(a).  

Since Im(fCM) < 0, the DEP flow is opposite to the direction of the traveling wave.  Velocity 

profiles at various streamwise locations resemble the asymmetric shape of the EHD flows, 

however, reverse flows are found in the near-wall area.  Flow velocities at x = 30 m are 

plotted in Figure 44(b) for the applied frequencies of 10 kHz, 100 kHz and 1 MHz, 

respectively.   

It can be seen that the maximum velocity occurs at f = 100 kHz, which is close to 

the Maxwell-Wagner relaxation frequency, fM-W = 126 kHz for the fluid-particle 

combination used in this work.  The velocity reductions at the lower and higher frequencies 

(10 kHz and 1 MHz) are due to the decreased values of Im(fCM) in both frequency ranges 

(as shown in Figure 37).    
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Figure 44. (a) The twDEP velocity vector field and (b) the twDEP velocity profile at x = 30 m. 
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6.4.4 EHD and twDEP 

The simulation results in Figure 43 and Figure 44 suggest that EHD and twDEP 

operating in the same frequency range can simultaneously induce flow fields of a 

comparable velocity magnitude.  The direction of the net flow depends on the relative 

directions of the individual flows with respect to that of the applied field.  Figure 45 shows 

the velocity profile at the streamwise location x = 30 m when the DEP-induced and EHD-

induced flow fields are superimposed.  In Figure 45(a), the repulsion-type EHD and the 

twDEP act in the same direction (from the right to left), both contributing synergistically 

to the net flow.  This is evidenced by the increase in the maximum velocity at all three 

frequencies.   

Figure 45(b) depicts that, when the attraction-type EHD competes with the twDEP, 

the net flow field will be suppressed.  For instance, at f = 100 kHz, the maximum twDEP 

velocity reduce from 8 m/s (Figure 44(b)) to 5.5 m/s; moreover, the twDEP flow 

directions are totally reversed at f = 10 kHz and 1 MHz.  As a consequence, when utilizing 

twDEP for particle manipulation or micropumping, great caution must be exercised to 

ensure both the frequency range of the traveling-wave field and the thermal boundary 

condition of the microfluidic device are appropriate so that the effects of EHD will not 

interfere obstructively with twDEP.   
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Figure 45. Velocity profile at x = 30 m when EHD interferes with twDEP. 
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6.5 Conclusions 

In this Chapter, the coupled EHD- and twDEP-driven flows were studied 

numerically in a microchannel.  The EHD flow was caused by the Joule heating effect in 

the electrolyte solution.  Both the repulsion-type EHD and the attraction-type EHD were 

considered, each determined by the corresponding thermal boundary condition.  The flow 

field due to twDEP was solved using an equivalent mixture model and the calculated flow 

velocity was compared to that induced by EHD.  The results show, depending on the 

frequency range of the traveling-wave field and the thermal boundary condition, the EHD-

induced flow and the twDEP-induced flow can work either synergistically or 

competitively.    
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Chapter 7 Electrorotation 

7.1 Introduction 

In this Chapter, another powerful tool to manipulate micro/nanoparticles with 

dielectrophoresis, electrorotation (ROT), will be introduced.  This technique shares some 

similarities with traveling-wave dielectrophoresis, except that the phase-shifting electric 

field is applied to electrodes that arranged in a loop configuration.  Electrorotation was 

firstly discovered in 1892 by Arno [162], who reported that small particles can be made to 

spin when placed in a rotating electric field.  This phenomenon was then named as the 

Born-Lertes effect [163-165].  Pickard analyzed ROT by using the concepts of dielectric 

loss and effective conductivity, and constructed a theoretical curve to characterize the 

relationship between the ROT torque and the frequency of the applied field [166].  The 

first electrorotation experiment of cells was conducted by Holzapfel [167] to demonstrate 

the dependence of the speed of rotation of mesophyll protoplast cells of Avena sativa on 

the field intensity.  The cellular rotational speed increases with the square of the electric 

field. 

The electrokinetic method of electrorotation (ROT), where 90-degree phase-shifted 

fields are applied to four neighboring electrodes to rotate particles in a co-field or counter-

field manner, depending on the angle between the induced dipole and the rotating electric 

field, has been demonstrated as a powerful, nondestructive, and label-free method for 

determining the dielectric properties of cells from their rotational frequency spectra [52, 

168, 169].  Electrorotation has become a very powerful tool to study cells [47], DNA [49, 

170] and bioparticles [171] based on the electric polarizability and conductivities  [172, 
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173]. Current studies for electrorotation focus primarily on obtaining analytical solutions 

of the dynamics of a single particle or collecting experimental data for the 

separation/concentration of bioparticles.  There is very little information on the quantitative 

understanding of particle dynamics when multiple particles are involved.   

Accordingly, in this Chapter, the DLM/FD method and the MST approach are used 

together to simulate the nanoparticles electrorotation in an external rotating electric field.  

The DEP force and torque acting on the particles are calculated by integrating Maxwell 

stress tensor over the surface of each particle.  Then, the DLM/FD method is applied to 

solve the particle-particle and particle-fluid hydrodynamic interactions.  In addition, 

microfluidic experiments are conducted to observe the rotation of two and eight 

microparticles with diameter of 3.2 μm, respectively, under a rotating electric field.  The 

numerical simulation results of the trajectory and the final steady motion of the particles 

are compared to the experimental data, and very good agreements have been found. 

7.2 Theory of Electrorotation 

The theory of electrorotation is very similar to the traveling-wave dielectrophoresis 

discussed in the previous Chapters.  For convenience, we briefly summaries here the 

theoretical background of the electrorotation motion.  As shown in Figure 46, the electrodes 

are fabricated at the four corners of a silicon wafer.  The study only concerns the particle 

motion in the x-y plane whereas the vertical movement in the z direction will be not 

considered.  
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Figure 46. A sketch of the electrorotation device. 

 

As described in previous Chapters, a single dielectric particle suspended in a 

medium in a non-uniform electric field experiences dielectrophoretic force.  The analytical 

expression of the dipole moment and the dielectrophoretic force are 

 34
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where the Clausius-Mossotti factor CMf  is given by 
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For a polystyrene particle suspended in DI water ( p m   and p m  ), Re[fCM] 

is positive at low frequencies and negative at high frequencies.  In order to observe the 

sustained electrorotation, the particles should experience negative DEP force in order to be 

repelled away from the electrodes as shown in Figure 46(b).   

As introduced before, the DEP forces and torques are computed through a surface 

integral of the Maxwell stress tensor  

    2* *1
Re

4DEP

MSTF EE E E E I ndA   
           and (144) 

    2* *1
Re

4E r EE E E E I ndA     
          .  (145) 

The motion of particles and fluid are solved by the DLM/FD method as we 

discussed before. 

7.3 Numerical Simulation 

Numerical results of the electric potential are shown in Figure 47.  The real 

components of the electric potential R  and the imaginary components I  are shown in 

Figure 47(a) and (b), respectively.  Since the density of the field lines is proportional to the 
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strength of the electric field 2 2
R IE      , the maxima of the electric field E 

appears at the edges of the electrodes and decay exponentially with increasing distance 

from the edges, as shown in Figure 48.   

 

Figure 47. Distribution of the electric potential and field lines (a) ϕR and (b) ϕI. 

 

 

Figure 48. Magnitude of the electric field using logarithmic scale. 
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As discussed in Chapter 2, the dielectrophoretic force can be expressed as 

      223 2 22 Re 2 ImDEP m CM CM x x y yF a f E f E E        
   

 , (146) 

where Re[fCM] and Im[fCM] denote the real and imaginary parts of fCM, and Ex and Ey are 

components of the electric field vector; x and y are the phase angles since the electric 

field is spatially phase-shifted.  As discussed in Chapter 5, the alignment of the twDEP 

force with the applied field is contingent upon the Clausius-Mossotti factor fCM, which is 

frequency-dependent.  Re[fCM] is positive in the low-frequency range (f < 1 kHz) in which 

the particles are more polarizable than the surrounding fluid, and crosses over to negative 

values as the frequency increases (f > 100 kHz) and the particles become less polarizable 

than the fluid.  If Re[fCM] > 0, the regular DEP force component aligns favorably with the 

field strength gradient, as indicated by Eq. (146).  As a result, the particles move towards 

the maxima of the electric field, which are usually located at the edges of the electrodes 

that are used to generate the electric field, and positive DEP occurs.  In the opposite 

situation, a negative Re[fCM] brings negative DEP where the particles move away from the 

maxima of the electric field, distancing themselves from the electrodes. 

Im[fCM] vanishes at both extremes of the frequency spectrum but assumes non-zero 

values in the mid-range around the cross-over frequency.  When Im[fCM] is not trivial, the 

resulting rotational DEP force in Eq. (146) propels the particles against the rotating electric 

field. 
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Figure 49. Magnitude of the DEP force at different frequencies using logarithmic scale. 
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The Re[fCM] and Im[fCM]  terms related components of the DEP force at different 

driving frequencies can be distinguished in Figure 49.  It shows the vector fields of the 

DEP force at (a) low, (b) moderate and (c) high frequency range.  Clearly, Figure 49(a) and 

(c) present the positive DEP and negative DEP, respectively.  As shown in the vector plots, 

the direction of the forces are towards or outwards the electrodes edges, and the magnitude 

of the force increases exponentially near the edges.  Figure 49(b) represents the DEP force 

field at the frequency of 10 kHz.   

The normalized electrorotation torque at 10 kHz is shown in Figure 50.  The 

maximum of the torque occurs uniformly in the center of the domain.  The sign of the 

torques are all positive in Figure 50, suggesting that most of the particles suspended will 

spin in the same direction with equal speed.   

In this work, the DEP force and torque on a particle are obtained via integrating the 

Maxwell stress tensor over the surface of the particle, as discussed in Chapter 2.  Hence, 

the details are skipped here. 

 

Figure 50. Normalized electrorotation torque at f = 10 kHz. 
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7.4 Experiments 

In order to validate the numerical simulation results, an experimental apparatus is 

designed and constructed to perform electrorotation directed fluidic self-assembly of 

microparticles.  The setup consists of a microfluidic chip, a fluorescent microscope, and an 

imaging system, the same as used in Chapter 4.  The microfluidic chip consists of an array 

of four electrodes fabricated using photolithography.  The microfabrication process is also 

the same as introduced in Chapter 4.   

The electrodes and the contact pads on the silicon wafer can be seen from top view 

in Figure 51(a).  Under a microscope with 20x magnification, Figure 51(b) clearly shows 

that the distance between two opposite electrodes is 50 μm.  With a 50x magnification, the 

details of the electrodes is shown in Figure 51(c).   

The colloidal solution is prepared by mixing fluorescent polystyrene particles of 

3.2 μm diameter (Thermo Scientific, CA) with deionized (DI) water.  The conductivities 

of polystyrene and DI water are measured to be 5×10-5 S/m and 5.5×10-6 S/m; while the 

relative dielectric permittivity are 2.8 and 78.4, respectively.  The colloidal solution 

contains 0.2 wt% solids, resulting in a mixture density of 1.05 g/cm3.   

During the experiments, the microfluidic chip is mounted to a probe station, and 

the electrodes are connected to an AC arbitrary waveform function generator (FLUKE 

294).  Sinusoidal wave signals are generated and applied to the electrodes.  The applied 

voltage is set to be 5 V to 10 V and the frequency to be 10 kHz, so that the particles rotate 

at a reasonable angular speed.  Refer to Chapter 4 for other devices.   
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Figure 51. Prototype electrorotation device with electrodes on a silicon wafer. 
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7.5 Results and Discussion 

In this section, the numerical and experimental results will be presented for 

electrorotation directed self-assembly of two and eight polystyrene particles suspended in 

DI water, respectively.  Both the patterns and the trajectories of the particles will be 

compared and discussed.  

7.5.1 Electrorotation Assembly of Two Particles 

For the experiments, two particles, which are at sufficient distance from all the 

surrounding particles, have been carefully selected to ensure that they are isolated from the 

hydrodynamic and electrical interactions with their closest neighbors.  In Figure 52(a), the 

initial positions of the two particles are (22.71, 30.79) and (9.62, 17.84) in terms of pixels.  

This indicates the initial angle between the line connecting the centers of the particles and 

the horizontal line is θ = 44.7°.  According to the forgoing analysis in Section 7.3, these 

two particles experience a rorational force along the direction of the rotating electric field 

and a torque.  To examine the subsequent motion of the partiecles, their trajectories are 

illustrated in Figure 53, where both the measured instaneous particle locations and the 

simulated trajectories are shown as circles and dash lines, respectively.  After t = 1.9 s, the 

two particles touch each other and then rotate as a unity at a constant angular speed.  From 

the comparison in Figure 53, it can be concluded that the particle trajectories obtained from 

from the numerical simulations agree perfectly with the experimental measurements.  
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Figure 52. Experimental (a) and Numerical (b) results of electrorotation assembly of two particles. 

 

 

Figure 53. Comparison of trajectories of two particles from experiments and simulation. 
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7.5.2 Electrorotation Assembly of Eight Particles 

Similarly to the case of two particles, electrorotation directed self-assembly of eight 

particles is also investigated to validate the numerical models.  The reason to select this 

combination is that when the particle aggregation is completed, there exists an outer 

particle, which indicates the direction of the particle aggregation.   

As shown in Figure 54(a), at t = 0 s, the eight particles are located at are (37.0, 

55.1), (45.0, 32.0), (52.4, 73.5), (59.2, 52.9), (68.5, 29.0), (76.9, 70.0), (84.6, 46.9) and 

(101.0, 64.9), respectively.  At this moment, the angle of the outer particle with reference 

to the center point (0.5, 0.5) is θ = -16.0°.  After 0.2 s, the aggregation rotates to θ = 32.2°.  

As a result of a constant rotating speed, at t = 1.0 s, this aggregation rotated ∆θ = 336°, 

compare to the initial position.  The trajectories of the outer particle in experiments and 

numerical simulations can be observed in Figure 55.  A very good agreement can be found 

between the experimental data and the numerical simulation results. 

 

Figure 54. Experimental (a) and Numerical (b) results of electrorotation assembly of eight particles. 

 



 124  
 

 

Figure 55. Comparison of trajectories of the outer particle from experiments and simulation. 

 

7.6 Conclusions 

In this Chapter, the rotating electric field induced electrorotation is analyzed in 

details.  Electrorotation directed self-assembly of multiple particles (two and eight 

particles) into a constantly rotating aggregation is investigated both experimentally and 

numerically.  The particle-fluid and particle-particle interactions are accurately captured 

by the numerical simulation with the Distributed Lagrange-multiplier based fictitious-

domain method (DLM/FD).  Numerical simulations show good agreement with 

experiments, in terms of both the particle patterns for each time frame and the trajectory of 

each single particle.   
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Chapter 8 Conclusions and Future Work 

8.1 Conclusions 

To cope with challenges arising from the dielectrophoresis-directed fluidic 

assembly of nanoparticles, the fundamentals of the fluid-particle electrohydrodynamic 

interactions are investigated in this dissertation.   

First, an accurate and efficient numerical framework is established to simulate the 

movement and aggregation of multiple particles undergoing DEP and to investigate the 

effect of various system parameters on the DEP-directed fluidic assembly.  The numerical 

models are developed by combining the Maxwell Stress Tensor (MST) approach and the 

Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method.  As compared to 

the existing methods, the MST approach ensures the DEP forces/torques on the particle are 

correctly calculated even in regions with strong gradients such as in the vicinity of the 

electrodes, and can be easily applied to model particles of irregular shapes.  The DLM/FD 

method solves the hydrodynamics by reformulating the fluid-particle problem in the 

fictitious domain and adopting structured, regular meshes to significantly improve the 

computational efficiency.  Subsequently, three major fluidic assembly mechanisms, 

namely, pearl chaining, twDEP and electrorotation, are studied in details with the 

numerical models developed.  The key features, such as the particle motion and the 

equilibrium pattern structure, of the DEP-directed fluidic assembly process are 

characterized.  To verify the numerical results, microfluidic experiments are also conducted 

in this work with colloidal suspensions, in which the DEP motion of particles is recorded, 

analyzed and compared with the numerical simulations.   
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In conclusion, the numerical framework developed in this work provides a powerful 

tool to further investigate the motion and interaction of micro/nanoparticles in DEP-

directed fluidic assembly applications.  It will help to lay the scientific foundation for large-

scale parallel manufacturing of functional micro/nanostructures for engineering 

applications.   

8.2 Future Work 

The direct numerical simulation framework developed in this work shows great 

promise for studying DEP-directed fluidic assembly of micro/nanoparticles, however, the 

current results are restricted to 2D configurations of the modeling system.  In future work, 

this numerical framework can be extended to more realistic 3D simulations.  In addition, it 

is expected that the numerical scheme can be applied to simulate DEP of soft particles, 

which represents another important application in biological and biomedical engineering.  

Lastly, innovative experiments with improved device design can provide enormous 

possibilities to manipulate particles of various shape and material origin.  

 

  



 127  
 

REFERENCES 

1. Martel, R., T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Single- and multi-

wall carbon nanotube field-effect transistors. Applied Physics Letters, 1998. 

73(17): p. 2447-2449. 

2. Duan, X.F., Y. Huang, Y. Cui, J.F. Wang, and C.M. Lieber, Indium phosphide 

nanowires as building blocks for nanoscale electronic and optoelectronic devices. 

Nature, 2001. 409(6816): p. 66-69. 

3. Zheng, G.F., W. Lu, S. Jin, and C.M. Lieber, Synthesis and fabrication of high-

performance n-type silicon nanowire transistors. Advanced Materials, 2004. 

16(21): p. 1890-+. 

4. Bachtold, A., P. Hadley, T. Nakanishi, and C. Dekker, Logic Circuits with Carbon 

Nanotube Transistors. Science, 2001. 294(5545): p. 1317-1320. 

5. Javey, A., Q. Wang, A. Ural, Y.M. Li, and H.J. Dai, Carbon nanotube transistor 

arrays for multistage complementary logic and ring oscillators. Nano Letters, 

2002. 2(9): p. 929-932. 

6. Kaul, A.B., E.W. Wong, L. Epp, and B.D. Hunt, Electromechanical Carbon 

Nanotube Switches for High-Frequency Applications. Nano Letters, 2006. 6(5): p. 

942-947. 

7. Cha, S.N., J.E. Jang, Y. Choi, G.A.J. Amaratunga, D.J. Kang, D.G. Hasko, J.E. 

Jung, and J.M. Kim, Fabrication of a nanoelectromechanical switch using a 

suspended carbon nanotube. Applied Physics Letters, 2005. 86(8). 



 128  
 

8. Vijayaraghavan, A., S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. 

Gerthsen, H. Hahn, and R. Krupke, Ultra-large-scale directed assembly of single-

walled carbon nanotube devices. Nano Letters, 2007. 7(6): p. 1556-1560. 

9. Pohl, H., The motion and precipitation of suspensoids in divergent electric fields. 

Journal of Applied Physics, 1951. 22: p. 869. 

10. Morgan, H., M.P. Hughes, and N.G. Green, Separation of submicron bioparticles 

by dielectrophoresis. Biophysical Journal, 1999. 77(1): p. 516-525. 

11. Pethig, R., Dielectrophoresis: An assessment of its potential to aid the research and 

practice of drug discovery and delivery. Advanced Drug Delivery Reviews, 2013. 

65(11-12): p. 1589-1599. 

12. Gangwal, S., O.J. Cayre, and O.D. Velev, Dielectrophoretic Assembly of 

Metallodielectric Janus Particles in AC Electric Fields. Langmuir, 2008. 24(23): 

p. 13312-13320. 

13. Huang, Y., X.F. Duan, Q.Q. Wei, and C.M. Lieber, Directed assembly of one-

dimensional nanostructures into functional networks. Science, 2001. 291(5504): p. 

630-633. 

14. Rao, S.G., L. Huang, W. Setyawan, and S.H. Hong, Large-scale assembly of carbon 

nanotubes. Nature, 2003. 425(6953): p. 36-37. 

15. Hermanson, K.D., S.O. Lumsdon, J.P. Williams, E.W. Kaler, and O.D. Velev, 

Dielectrophoretic assembly of electrically functional microwires from nanoparticle 

suspensions. Science, 2001. 294(5544): p. 1082-1086. 



 129  
 

16. Wang, X.J., X.B. Wang, and P.R.C. Gascoyne, General expressions for 

dielectrophoretic force and electrorotational torque derived using the Maxwell 

stress tensor method. Journal of Electrostatics, 1997. 39(4): p. 277-295. 

17. Zhang, L., A. Gerstenberger, X. Wang, and W.K. Liu, Immersed finite element 

method. Computer Methods in Applied Mechanics and Engineering, 2004. 193(21–

22): p. 2051-2067. 

18. Liu, Y.L., J.H. Chung, W.K. Liu, and R.S. Ruoff, Dielectrophoretic assembly of 

nanowires. Journal of Physical Chemistry B, 2006. 110(29): p. 14098-14106. 

19. Liu, Y., W.K. Liu, T. Belytschko, N. Patankar, A.C. To, A. Kopacz, and J.H. 

Chung, Immersed electrokinetic finite element method. International Journal for 

Numerical Methods in Engineering, 2007. 71(4): p. 379-405. 

20. Gascoyne, P.R.C. and J. Vykoukal, Particle separation by dielectrophoresis. 

Electrophoresis, 2002. 23(13): p. 1973-1983. 

21. Hughes, M.P. and H. Morgan, Dielectrophoretic trapping of single sub-micrometre 

scale bioparticles. Journal of Physics D-Applied Physics, 1998. 31(17): p. 2205-

2210. 

22. Fiedler, S., S.G. Shirley, T. Schnelle, and G. Fuhr, Dielectrophoretic sorting of 

particles and cells in a microsystem. Analytical Chemistry, 1998. 70(9): p. 1909-

1915. 



 130  
 

23. Suehiro, J. and R. Pethig, The dielectrophoretic movement and positioning of a 

biological cell using a three-dimensional grid electrode system. Journal of Physics 

D-Applied Physics, 1998. 31(22): p. 3298-3305. 

24. Pohl, H.A., Dielectrophoresis. 1987: Cambridge university press. 

25. Chen, C.S. and H.A. Pohl, Biological Dielectrophoresis - Behavior of Lone Cells 

in a Nonuniform Electric-Field. Annals of the New York Academy of Sciences, 

1974. 238(Oct11): p. 176-185. 

26. Gvozdiak, P.I. and T.P. Chekhovckaia, Electroretention of microorganisms. 

Mikrobiologiya, 1976. 45(5): p. 5. 

27. Fomcenkov, V.M. and B.K. Gajriljuk, Dielectrophoresis of Cell-Suspensions. 

Studia Biophysica, 1977. 65(1): p. 35-46. 

28. Fomchenkov, V.M. and B.K. Gavrilyuk, The study of dielectrophoresis of cells 

using the optical technique of measuring. Journal of Biological Physics, 1978. 6(1-

2): p. 29-68. 

29. Jones, T.B. and G.A. Kallio, Dielectrophoretic Levitation of Spheres and Shells. 

Journal of Electrostatics, 1979. 6(3): p. 207-224. 

30. Pohl, H.A. and K. Pollock, Dielectrophoretic Cell Sorting. Journal of the 

Electrochemical Society, 1983. 130(3): p. C121-C121. 

31. Groth, I., H.E. Jacob, W. Kunkel, and H. Berg, Electrofusion of Penicillium 

Protoplasts after Dielectrophoresis. Journal of Basic Microbiology, 1987. 27(6): p. 

341-344. 



 131  
 

32. Glassy, M., Creating hybridomas by electrofusion. Nature, 1988. 333(6173): p. 

579-580. 

33. Sukharev, S.I., I.N. Bandrina, A.I. Barbul, L.I. Fedorova, I.G. Abidor, and A.V. 

Zelenin, Electrofusion of Fibroblasts on the Porous Membrane. Biochimica Et 

Biophysica Acta, 1990. 1034(2): p. 125-131. 

34. Arnold, W.M. and U. Zimmermann, Electro-Rotation - Development of a 

Technique for Dielectric Measurements on Individual Cells and Particles. Journal 

of Electrostatics, 1988. 21(2-3): p. 151-191. 

35. Gherardi, L., E.R. Mognaschi, and A. Savini, The Dielectrophoretic Motion of a 

Lossy Dielectric Sphere in a Liquid of Non-Zero Conductivity. Ieee Transactions 

on Electrical Insulation, 1985. 20(2): p. 385-388. 

36. Henry, F.S. and T. Ariman, NUMERICAL CALCULATION OF PARTICLE 

COLLECTION IN ELECTRICALLY ENHANCED FIBROUS FILTERS. Particulate 

Science and Technology, 1986. 4(4): p. 455-477. 

37. Adamson, R.J. and K.V.I.S. Kaler, An Automated Stream-Centered 

Dielectrophoretic System. Ieee Transactions on Industry Applications, 1988. 24(1): 

p. 93-98. 

38. Masuda, S., M. Washizu, and T. Nanba, Novel Method of Cell-Fusion in Field 

Constriction Area in Fluid Integrated-Circuit. Ieee Transactions on Industry 

Applications, 1989. 25(4): p. 732-737. 



 132  
 

39. Washizu, M. and O. Kurosawa, Electrostatic Manipulation of DNA in 

Microfabricated Structures. Ieee Transactions on Industry Applications, 1990. 

26(6): p. 1165-1172. 

40. Washizu, M., T. Nanba, and S. Masuda, Handling Biological Cells Using a Fluid 

Integrated-Circuit. Ieee Transactions on Industry Applications, 1990. 26(2): p. 

352-358. 

41. Gascoyne, P.R.C., Y. Huang, R. Pethig, J. Vykoukal, and F.F. Becker, 

Dielectrophoretic Separation of Mammalian-Cells Studied by Computerized 

Image-Analysis. Measurement Science & Technology, 1992. 3(5): p. 439-445. 

42. Wang, X.B., Y. Huang, J.P.H. Burt, G.H. Markx, and R. Pethig, Selective 

Dielectrophoretic Confinement of Bioparticles in Potential-Energy Wells. Journal 

of Physics D-Applied Physics, 1993. 26(8): p. 1278-1285. 

43. Pethig, R., Y. Huang, X.B. Wang, and J.P.H. Burt, Positive and Negative 

Dielectrophoretic Collection of Colloidal Particles Using Interdigitated 

Castellated Microelectrodes. Journal of Physics D-Applied Physics, 1992. 25(5): 

p. 881-888. 

44. Wang, X.B., Y. Huang, R. Holzel, J.P.H. Burt, and R. Pethig, Theoretical and 

Experimental Investigations of the Interdependence of the Dielectric, 

Dielectrophoretic and Electrorotational Behavior of Colloidal Particles. Journal 

of Physics D-Applied Physics, 1993. 26(2): p. 312-322. 



 133  
 

45. Wang, X.B., R. Pethig, and T.B. Jones, Relationship of Dielectrophoretic and 

Electrorotational Behavior Exhibited by Polarized Particles. Journal of Physics D-

Applied Physics, 1992. 25(6): p. 905-912. 

46. Ying, H., R. Holzel, R. Pethig, and X.B. Wang, Differences in the Ac 

Electrodynamics of Viable and Nonviable Yeast-Cells Determined through 

Combined Dielectrophoresis and Electrorotation Studies. Physics in Medicine and 

Biology, 1992. 37(7): p. 1499-1517. 

47. Pethig, R., Review Article-Dielectrophoresis: Status of the theory, technology, and 

applications. Biomicrofluidics, 2010. 4(2). 

48. Pethig, R., A. Menachery, S. Pells, and P. De Sousa, Dielectrophoresis: A Review 

of Applications for Stem Cell Research. Journal of Biomedicine and Biotechnology, 

2010. 

49. Chou, C.F., J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, T. Duke, 

and R.H. Austin, Electrodeless dielectrophoresis of single- and double-stranded 

DNA. Biophysical Journal, 2002. 83(4): p. 2170-2179. 

50. Jones, T.B., Basic theory of dielectrophoresis and electrorotation. Ieee Engineering 

in Medicine and Biology Magazine, 2003. 22(6): p. 33-42. 

51. Holzel, R., Electrorotation of single yeast cells at frequencies between 100 Hz and 

1.6 GHz. Biophysical Journal, 1997. 73(2): p. 1103-1109. 



 134  
 

52. Rohani, A., W. Varhue, Y.H. Su, and N.S. Swami, Electrical tweezer for highly 

parallelized electrorotation measurements over a wide frequency bandwidth. 

Electrophoresis, 2014. 35(12-13): p. 1795-1802. 

53. Korlach, J., C. Reichle, T. Muller, T. Schnelle, and W.W. Webb, Trapping, 

deformation, and rotation of giant unilamellar vesicles in octode dielectrophoretic 

field cages. Biophysical Journal, 2005. 89(1): p. 554-562. 

54. Batchelder, J.S., Dielectrophoretic Manipulator. Review of Scientific Instruments, 

1983. 54(3): p. 300-302. 

55. Fuhr, G., T. Schnelle, and B. Wagner, Traveling Wave-Driven Microfabricated 

Electrohydrodynamic Pumps for Liquids. Journal of Micromechanics and 

Microengineering, 1994. 4(4): p. 217-226. 

56. Fuhr, G., S. Fiedler, T. Muller, T. Schnelle, H. Glasser, T. Lisec, and B. Wagner, 

Particle Micromanipulator Consisting of 2 Orthogonal Channels with Traveling-

Wave Electrode Structures. Sensors and Actuators a-Physical, 1994. 41(1-3): p. 

230-239. 

57. Liu, D. and S.V. Garimella, Microfluidic Pumping Based on Traveling-Wave 

Dielectrophoresis. Nanoscale and Microscale Thermophysical Engineering, 2009. 

13(2): p. 109-133. 

58. Sher, L.D., Dielectrophoresis in Lossy Dielectric Media. Nature, 1968. 220(5168): 

p. 695-&. 



 135  
 

59. Jones, T.B., Dielectrophoretic Force Calculation. Journal of Electrostatics, 1979. 

6(1): p. 69-82. 

60. Liu, R.M. and J.P. Huang, Theory of the dielectrophoretic behavior of clustered 

colloidal particles in two dimensions. Physics Letters A, 2004. 324(5-6): p. 458-

464. 

61. Leonardi, A., G. Medoro, N. Manaresi, M. Tartagni, and R. Guerrieri, Simulation 

methodology for dielectrophoresis in microelectronic lab-on-a-chip. Iccn 2002: 

International Conference on Computational Nanoscience and Nanotechnology, 

2002: p. 107-110. 

62. Green, N.G., A. Ramos, and H. Morgan, Numerical solution of the 

dielectrophoretic and travelling wave forces for interdigitated electrode arrays 

using the finite element method. Journal of Electrostatics, 2002. 56(2): p. 235-254. 

63. Kadaksham, A., P. Singh, and N. Aubry, Dielectrophoresis of nanoparticles. 

Electrophoresis, 2004. 25(21-22): p. 3625-3632. 

64. Kadaksham, J., P. Singh, and N. Aubry, Dynamics of electrorheological 

suspensions subjected to spatially nonuniform electric fields. Journal of Fluids 

Engineering-Transactions of the Asme, 2004. 126(2): p. 170-179. 

65. Liu, W.K., Y.L. Liu, D. Farrell, L. Zhang, X.S. Wang, Y. Fukui, N. Patankar, Y.J. 

Zhang, C. Bajaj, J. Lee, J.H. Hong, X.Y. Chen, and H.Y. Hsu, Immersed finite 

element method and its applications to biological systems. Computer Methods in 

Applied Mechanics and Engineering, 2006. 195(13-16): p. 1722-1749. 



 136  
 

66. Ai, Y. and S.Z. Qian, DC dielectrophoretic particle-particle interactions and their 

relative motions. Journal of Colloid and Interface Science, 2010. 346(2): p. 448-

454. 

67. House, D.L., H.X. Luo, and S.Y. Chang, Numerical study on dielectrophoretic 

chaining of two ellipsoidal particles. Journal of Colloid and Interface Science, 

2012. 374: p. 141-149. 

68. Kang, S. and R. Maniyeri, Dielectrophoretic motions of multiple particles and their 

analogy with the magnetophoretic counterparts. Journal of Mechanical Science and 

Technology, 2012. 26(11): p. 3503-3513. 

69. Hossan, M.R., R. Dillon, A.K. Roy, and P. Dutta, Modeling and simulation of 

dielectrophoretic particle-particle interactions and assembly. Journal of Colloid 

and Interface Science, 2013. 394: p. 619-629. 

70. Jones, T.B., Electromechanics of particles. 2005: Cambridge University Press. 

71. Morgan, H., A.G. Izquierdo, D. Bakewell, N.G. Green, and A. Ramos, The 

dielectrophoretic and travelling wave forces generated by interdigitated electrode 

arrays: analytical solution using Fourier series. Journal of Physics D-Applied 

Physics, 2001. 34(10): p. 1553-1561. 

72. Morgan, H. and N.G. Green, AC Electrokinetics: colloids and nanoparticles. 2003: 

Research Studies Press Ltd  



 137  
 

73. Wang, X.J., X.B. Wang, F.F. Becker, and P.R.C. Gascoyne, A theoretical method 

of electrical field analysis for dielectrophoretic electrode arrays using Green's 

theorem. Journal of Physics D-Applied Physics, 1996. 29(6): p. 1649-1660. 

74. Clague, D.S. and E.K. Wheeler, Dielectrophoretic manipulation of 

macromolecules: The electric field. Physical Review E, 2001. 64(2). 

75. Garcia, M. and D. Clague, The 2D electric field above a planar sequence of 

independent strip electrodes (vol 33, pg 1747, 2000). Journal of Physics D-Applied 

Physics, 2000. 33(20): p. 2669-2669. 

76. Washizu, M. and T.B. Jones, Multipolar Dielectrophoretic Force Calculation. 

Journal of Electrostatics, 1994. 33(2): p. 187-198. 

77. Jones, T.B. and M. Washizu, Multipolar dielectrophoretic and electrorotation 

theory. Journal of Electrostatics, 1996. 37(1-2): p. 121-134. 

78. Washizu, M. and T.B. Jones, Generalized multipolar dielectrophoretic force and 

electrorotational torque calculation. Journal of Electrostatics, 1996. 38(3): p. 199-

211. 

79. Nili, H. and N.G. Green, Higher-order dielectrophoresis of nonspherical particles. 

Physical Review E, 2014. 89(6). 

80. Green, N.G. and T.B. Jones, Numerical determination of the effective moments of 

non-spherical particles. Journal of Physics D-Applied Physics, 2007. 40(1): p. 78-

85. 



 138  
 

81. Ryan, H.M. and C.A. Walley, Field Auxiliary Factors for Simple Electrode 

Geometries. Proceedings of the Institution of Electrical Engineers-London, 1967. 

114(10): p. 1529-&. 

82. Kang, K.H. and D.Q. Li, Dielectric force and relative motion between two spherical 

particles in electrophoresis. Langmuir, 2006. 22(4): p. 1602-1608. 

83. Lee, K.H., J. Chung, and J. Lee, Superimposed AC- and DC electric field guided 

deposition of a single DNA molecule along a microfabricated gap. 2003 Third Ieee 

Conference on Nanotechnology, Vols One and Two, Proceedings, 2003: p. 729-

732. 

84. Glowinski, R., T.W. Pan, T.I. Hesla, and D.D. Joseph, A distributed Lagrange 

multiplier fictitious domain method for particulate flows. International Journal of 

Multiphase Flow, 1999. 25(5): p. 755-794. 

85. Johnson, A.A. and T.E. Tezduyar, 3D simulation of fluid-particle interactions with 

the number of particles reaching 100. Computer Methods in Applied Mechanics 

and Engineering, 1997. 145(3-4): p. 301-321. 

86. Choi, H.G. and D.D. Joseph, Fluidization by lift of 300 circular particles in plane 

Poiseuille flow by direct numerical simulation. Journal of Fluid Mechanics, 2001. 

438: p. 101-128. 

87. Aidun, C.K. and J.R. Clausen, Lattice-Boltzmann Method for Complex Flows. 

Annual Review of Fluid Mechanics, 2010. 42: p. 439-472. 



 139  
 

88. Wu, J.S. and C.K. Aidun, Simulating 3D deformable particle suspensions using 

lattice Boltzmann method with discrete external boundary force. International 

Journal for Numerical Methods in Fluids, 2010. 62(7): p. 765-783. 

89. Glowinski, R., T.W. Pan, T.I. Hesla, D.D. Joseph, and J. Periaux, A distributed 

Lagrange multiplier/fictitious domain method for the simulation of flow around 

moving rigid bodies: application to particulate flow. Computer Methods in Applied 

Mechanics and Engineering, 2000. 184(2-4): p. 241-267. 

90. Glowinski, R. and O. Pironneau, Finite-Element Methods for Navier-Stokes 

Equations. Annual Review of Fluid Mechanics, 1992. 24: p. 167-204. 

91. Pan, T.W. and R. Glowinski, Direct simulation of the motion of neutrally buoyant 

circular cylinders in plane Poiseuille flow. Journal of Computational Physics, 

2002. 181(1): p. 260-279. 

92. Pan, T.W. and R. Glowinski, Direct simulation of the motion of neutrally buoyant 

balls in a three-dimensional Poiseuille flow. Comptes Rendus Mecanique, 2005. 

333(12): p. 884-895. 

93. Huang, H.B., Z.T. Li, S.A.S.A. Liu, and X.Y. Lu, Shan-and-Chen-type multiphase 

lattice Boltzmann study of viscous coupling effects for two-phase flow in porous 

media. International Journal for Numerical Methods in Fluids, 2009. 61(3): p. 341-

354. 



 140  
 

94. Inamuro, T., T. Ogata, S. Tajima, and N. Konishi, A lattice Boltzmann method for 

incompressible two-phase flows with large density differences. Journal of 

Computational Physics, 2004. 198(2): p. 628-644. 

95. Glowinski, R., T.W. Pan, T.I. Hesla, D.D. Joseph, and J. Periaux, A distributed 

Lagrange multiplier/fictitious domain method for flows around moving rigid 

bodies: Application to particulate flow. International Journal for Numerical 

Methods in Fluids, 1999. 30(8): p. 1043-1066. 

96. Hu, H.H., D.D. Joseph, and M.J. Crochet, Direct simulation of fluid particle 

motions. Theoretical and Computational Fluid Dynamics, 1992. 3(5): p. 285-306. 

97. Singh, P., D.D. Joseph, T.I. Hesla, R. Glowinski, and T.W. Pan, A distributed 

Lagrange multiplier/fictitious domain method for viscoelastic particulate flows. 

Journal of Non-Newtonian Fluid Mechanics, 2000. 91(2-3): p. 165-188. 

98. Bertrand, F., P.A. Tanguy, and F. Thibault, A three-dimensional fictitious domain 

method for incompressible fluid flow problems. International Journal for Numerical 

Methods in Fluids, 1997. 25(6): p. 719-736. 

99. Glowinski, R., T.W. Pan, and J. Periaux, Distributed Lagrange multiplier methods 

for incompressible viscous flow around moving rigid bodies. Computer Methods in 

Applied Mechanics and Engineering, 1998. 151(1-2): p. 181-194. 

100. Chorin, A.J., A numerical method for solving incompressible viscous flow problems 

(Reprinted from the Journal of Computational Physics, vol 2, pg 12-26, 1997). 

Journal of Computational Physics, 1997. 135(2): p. 118-125. 



 141  
 

101. Chorin, A.J., On the Convergence of Discrete Approximations to the Navier-Stokes 

Equations. Mathematics of Computation, 1969. 23(106): p. 341-353. 

102. Chorin, A.J., Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 

1973. 57: p. 785-796. 

103. Turek, S., A comparative study of time-stepping techniques for the incompressible 

Navier-Stokes equations: From fully implicit non-linear schemes to semi-implicit 

projection methods. International Journal for Numerical Methods in Fluids, 1996. 

22(10): p. 987-1011. 

104. Marchuk, G.I., Splitting and alternating direction methods, in Handbook of 

Numerical Analysis, P.G. Ciarlet and J.L. Lions, Editors. 1990, Elsevier. p. 197-

462. 

105. Chen, R.J., S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y.M. Li, 

W. Kim, P.J. Utz, and H.J. Dai, Noncovalent functionalization of carbon nanotubes 

for highly specific electronic biosensors. Proceedings of the National Academy of 

Sciences of the United States of America, 2003. 100(9): p. 4984-4989. 

106. Cui, Y., Q.Q. Wei, H.K. Park, and C.M. Lieber, Nanowire nanosensors for highly 

sensitive and selective detection of biological and chemical species. Science, 2001. 

293(5533): p. 1289-1292. 

107. Hu, J.T., T.W. Odom, and C.M. Lieber, Chemistry and physics in one dimension: 

Synthesis and properties of nanowires and nanotubes. Accounts of Chemical 

Research, 1999. 32(5): p. 435-445. 



 142  
 

108. Smith, B.W., Z. Benes, D.E. Luzzi, J.E. Fischer, D.A. Walters, M.J. Casavant, J. 

Schmidt, and R.E. Smalley, Structural anisotropy of magnetically aligned single 

wall carbon nanotube films. Applied Physics Letters, 2000. 77(5): p. 663-665. 

109. van der Zande, B.M.I., G.J.M. Koper, and H.N.W. Lekkerkerker, Alignment of rod-

shaped gold particles by electric fields. Journal of Physical Chemistry B, 1999. 

103(28): p. 5754-5760. 

110. Chung, J.Y., K.H. Lee, J.H. Lee, and R.S. Ruoff, Toward large-scale integration 

of carbon nanotubes. Langmuir, 2004. 20(8): p. 3011-3017. 

111. Holmes, J.D., K.P. Johnston, R.C. Doty, and B.A. Korgel, Control of thickness and 

orientation of solution-grown silicon nanowires. Science, 2000. 287(5457): p. 

1471-1473. 

112. Cassell, A.M., N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, and H.J. Dai, 

Directed growth of free-standingsingle-walled carbon nanotubes. Journal of the 

American Chemical Society, 1999. 121(34): p. 7975-7976. 

113. Kretschmer, R. and W. Fritzsche, Pearl chain formation of nanoparticles in 

microelectrode gaps by dielectrophoresis. Langmuir, 2004. 20(26): p. 11797-

11801. 

114. Husken, N., R.W. Taylor, D. Zigah, J.C. Taveau, O. Lambert, O.A. Scherman, J.J. 

Baumberg, and A. Kuhn, Electrokinetic Assembly of One-Dimensional 

Nanoparticle Chains with Cucurbit[7]uril Controlled Subnanometer Junctions. 

Nano Letters, 2013. 13(12): p. 6016-6022. 



 143  
 

115. Zhang, L. and Y.X. Zhu, Directed Assembly of Janus Particles under High 

Frequency ac-Electric Fields: Effects of Medium Conductivity and Colloidal 

Surface Chemistry. Langmuir, 2012. 28(37): p. 13201-13207. 

116. Lumsdon, S.O., E.W. Kaler, and O.D. Velev, Two-dimensional crystallization of 

microspheres by a coplanar AC electric field. Langmuir, 2004. 20(6): p. 2108-

2116. 

117. Velev, O.D. and K.H. Bhatt, On-chip micromanipulation and assembly of colloidal 

particles by electric fields. Soft Matter, 2006. 2(9): p. 738-750. 

118. Simonova, T.S., V.N. Shilov, and O.A. Shramko, Low-frequency dielectrophoresis 

and the polarization interaction of uncharged spherical particles with an induced 

Debye atmosphere of arbitrary thickness. Colloid Journal, 2001. 63(1): p. 108-115. 

119. Yariv, E., Inertia-induced electrophoretic interactions. Physics of Fluids, 2004. 

16(4): p. L24-L27. 

120. Wilson, H.J., L.A. Pietraszewski, and R.H. Davis, Aggregation of charged particles 

under electrophoresis or gravity at arbitrary Peclet numbers. Journal of Colloid 

and Interface Science, 2000. 221(1): p. 87-103. 

121. Masuda, S., M. Washizu, and M. Iwadare, Separation of Small Particles Suspended 

in Liquid by Nonuniform Traveling Field. Ieee Transactions on Industry 

Applications, 1987. 23(3): p. 474-480. 

122. Hagedorn, R., G. Fuhr, T. Muller, and J. Gimsa, Traveling-Wave Dielectrophoresis 

of Microparticles. Electrophoresis, 1992. 13(1-2): p. 49-54. 



 144  
 

123. Morgan, H., A.G. Izquierdo, D. Bakewell, N.G. Green, and A. Ramos, The 

dielectrophoretic and travelling wave forces generated by interdigitated electrode 

arrays: analytical solution using Fourier series (vol 34, pg 1553, 2001). Journal of 

Physics D-Applied Physics, 2001. 34(17): p. 2708-2708. 

124. Hughes, M.P., R. Pethig, and X.B. Wang, Dielectrophoretic forces on particles in 

travelling electric fields. Journal of Physics D-Applied Physics, 1996. 29(2): p. 

474-482. 

125. Talary, M.S., J.P.H. Burt, J.A. Tame, and R. Pethig, Electromanipulation and 

separation of cells using travelling electric fields. Journal of Physics D-Applied 

Physics, 1996. 29(8): p. 2198-2203. 

126. Morgan, H., N.G. Green, M.P. Hughes, W. Monaghan, and T.C. Tan, Large-area 

travelling-wave dielectrophoresis particle separator. Journal of Micromechanics 

and Microengineering, 1997. 7(2): p. 65-70. 

127. Lin, Z.H., Two Phase Flow Measurement With Sharp Edge Orifices. Int. J. 

Multiphase Flow, 1982(8): p. 10. 

128. Lo, Y.J., Y.Y. Lin, U. Lei, M.S. Wu, and P.C. Yang, Measurement of the Clausius-

Mossotti factor of generalized dielectrophoresis. Applied Physics Letters, 2014. 

104(8). 

129. Qian, C., H.B. Huang, L.G. Chen, X.P. Li, Z.B. Ge, T. Chen, Z. Yang, and L.N. 

Sun, Dielectrophoresis for Bioparticle Manipulation. International Journal of 

Molecular Sciences, 2014. 15(10): p. 18281-18309. 



 145  
 

130. Sebastian, A., A.M. Buckle, and G.H. Markx, Tissue engineering with electric 

fields: Immobilization of mammalian cells in multilayer aggregates using 

dielectrophoresis. Biotechnology and Bioengineering, 2007. 98(3): p. 694-700. 

131. Braff, W.A., D. Willner, P. Hugenholtz, K. Rabaey, and C.R. Buie, 

Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on 

Their Surface Properties. Plos One, 2013. 8(10). 

132. Robins, M. and A. Fillery-Travis, Colloidal dispersions. Edited by W. B. Russel, D. 

A. Saville & W. R. Schowalter, Cambridge University Press, Cambridge, UK, 1989, 

xvii + 506 pp., price: £60.00. ISBN 0 521 34188 4. Journal of Chemical Technology 

& Biotechnology, 1992. 54(2): p. 201-202. 

133. Happel, J. and H. Brenner, Low Reynolds number hydrodynamics: with special 

applications to particulate media. Vol. 1. 2012: Springer Science & Business 

Media. 

134. He, G.L. and D. Liu, Coupled Electrohydrodynamic-Dielectrophoretic Pumping of 

Colloidal Suspensions in a Microchannel. Proceedings If the Asme 9th 

International Conference on Nanochannels, Microchannels and Minichannels 

2011, Vol 1, 2012: p. 219-227. 

135. Hilt, J.Z. and N.A. Peppas, Microfabricated drug delivery devices. International 

Journal of Pharmaceutics, 2005. 306(1-2): p. 15-23. 



 146  
 

136. Sahoo, H.R., J.G. Kralj, and K.F. Jensen, Multistep continuous-flow microchemical 

synthesis involving multiple reactions and separations. Angewandte Chemie-

International Edition, 2007. 46(30): p. 5704-5708. 

137. Erickson, D. and D.Q. Li, Integrated microfluidic devices. Analytica Chimica Acta, 

2004. 507(1): p. 11-26. 

138. Singhal, V. and S.V. Garimella, Induction electrohydrodynamics micropump for 

high heat flux cooling. Sensors and Actuators A: Physical, 2007. 134(2): p. 650-

659. 

139. Iverson, B.D. and S.V. Garimella, Recent advances in microscale pumping 

technologies: a review and evaluation. Microfluidics and Nanofluidics, 2008. 5(2): 

p. 145-174. 

140. Singhal, V., S.V. Garimella, and A. Raman, Microscale pumping technologies for 

microchannel cooling systems. Applied Mechanics Reviews, 2004. 57(3): p. 191-

221. 

141. Cahill, B.P., L.J. Heyderman, J. Gobrecht, and A. Stemmer, Electro-osmotic 

pumping on application of phase-shifted signals to interdigitated electrodes. 

Sensors and Actuators B: Chemical, 2005. 110(1): p. 157-163. 

142. Ramos, A., H. Morgan, N.G. Green, A. Gonzalez, and A. Castellanos, Pumping of 

liquids with traveling-wave electroosmosis. Journal of Applied Physics, 2005. 

97(8): p. 084906 - 084906-8  



 147  
 

143. Go, D.B., S.V. Garimella, T.S. Fisher, and R.K. Mongia, Ionic winds for locally 

enhanced cooling. Journal of Applied Physics, 2007. 102(5): p. 053302 - 053302-

8  

144. Singhal, V. and S.V. Garimella, A novel valveless micropump with 

electrohydrodynamic enhancement for high heat flux cooling. Ieee Transactions on 

Advanced Packaging, 2005. 28(2): p. 216-230. 

145. Zhang, W., T.S. Fisher, and S.V. Garimella, Simulation of ion generation and 

breakdown in atmospheric air. Journal of Applied Physics, 2004. 96(11): p. 6066-

6072. 

146. Ramos, A., H. Morgan, N.G. Green, and A. Castellanos, AC electric-field-induced 

fluid flow in microelectrodes. Journal of Colloid and Interface Science, 1999. 

217(2): p. 420-422. 

147. Iverson, B.D., L. Cremaschi, and S.V. Garimella, Effects of discrete-electrode 

configuration on traveling-wave electrohydrodynamic pumping. Microfluidics and 

Nanofluidics, 2009. 6(2): p. 221-230. 

148. Melcher, J.R., Traveling-Wave Induced Electroconvection. Physics of Fluids, 1966. 

9(8): p. 1548-&. 

149. Melcher, J.R. and M.S. Firebaugh, Traveling-wave bulk electroconvection induced 

across a temperature gradient. The Physics of Fluids, 1967. 10(6): p. 1178 - 1185. 

150. Morgan, H., A.G. Izquierdo, D. Bakewell, N.G. Green, and A. Ramos, The 

dielectrophoretic and travelling wave forces generated by interdigitated electrode 



 148  
 

arrays: analytical solution using Fourier series. Journal of Physics D: Applied 

Physics, 2001. 34(17): p. 2708-2708. 

151. Seyed-Yagoobi, J. and J.E. Bryan, Enhancement of heat transfer and mass 

transport in thermal equipment with electrohydrodynamics, in Electrostatics, D.M. 

Taylor, Editor. 1999. p. 127-130. 

152. Yazdani, M. and J. Seyed-Yagoobi, Heat transfer augmentation of parallel flows 

by means of electric conduction phenomenon in macro- and Microscales. Journal 

of Heat Transfer-Transactions of the ASME, 2010. 132(6): p. 062402 - 062402-9. 

153. Yazdani, M. and J. Seyed-Yagoobi, An electrically driven impinging liquid jet for 

direct cooling of heated surfaces. Ieee Transactions on Industry Applications, 2010. 

46(2): p. 650-658. 

154. Lian, M. and J. Wu, Microfluidic flow reversal at low frequency by AC 

electrothermal effect. Microfluidics and Nanofluidics, 2009. 7(6): p. 757-765. 

155. Ramos, A., H. Morgan, N.G. Green, and A. Castellanos, AC electrokinetics: a 

review of forces in microelectrode structures. Journal of Physics D: Applied 

Physics, 1998. 31(18): p. 2338-2353. 

156. Stratton, J.A., Electromagnetic theory. 1941, New York: McGraw-Hill. 

157. Green, N.G., A. Ramos, A. Gonzalez, A. Castellanos, and H. Morgan, 

Electrothermally induced fluid flow on microelectrodes. Journal of Electrostatics, 

2001. 53(2): p. 71-87. 

158. Happel, J. and H. Brenner, Low Reynolds Number Hydrodynamics. 1983: Springer. 



 149  
 

159. Lee, P.S., S.V. Garimella, and D. Liu, Investigation of heat transfer in rectangular 

microchannels. International Journal of Heat and Mass Transfer, 2005. 48(9): p. 

1688-1704. 

160. Incropera, F.P., D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of 

Heat and Mass Transfer. 2005, Hoboken: John Wiley & Sons. 

161. FLUENT 6 User's Guide, 2000. FLUENT Inc.: Lebanon, NH. 

162. Arno, R., Camo Elettrico Rotante per Mezzo di Difference di Potenziali Alternative. 

Atti Accad. Nuz. Lincei Rend, 1892. 1. 

163. Keis, A., Über die Beweglichkeit der elektrolytischen Ionen. Über 

Erkennungsenergie und Sublimationswärme bei Alkalihalogeniden und 

Halogenwasserstoffen. Zeitschrift für Elektrochemie und angewandte 

physikalische Chemie, 1920. 26(19-20): p. 408-412. 

164. Lertes, P., Untersuchungen über Rotationen von dielektrischen Flüssigkeiten im 

elektrostatischen Drehfeld. Zeitschrift für Physik, 1921. 4(3): p. 315-336. 

165. Lertes, P., Der Dipolrotationseffekt bei dielektrischen Flüssigkeiten. Zeitschrift für 

Physik, 1921. 6(1): p. 56-68. 

166. Pickard, W.F., On the born-lertes rotational effect. Il Nuovo Cimento, 1961. 21(2): 

p. 316-332. 

167. Holzapfel, C., J. Vienken, and U. Zimmermann, Rotation of Cells in an Alternating 

Electric-Field - Theory and Experimental Proof. Journal of Membrane Biology, 

1982. 67(1): p. 13-26. 



 150  
 

168. Goater, A. and R. Pethig, Electrorotation and dielectrophoresis. Parasitology, 

1999. 117(07): p. 177-189. 

169. Chan, K.L., P.R.C. Gascoyne, F.F. Becker, and R. Pethig, Electrorotation of 

liposomes: verification of dielectric multi-shell model for cells. Biochimica Et 

Biophysica Acta-Lipids and Lipid Metabolism, 1997. 1349(2): p. 182-196. 

170. Swami, N., C.F. Chou, V. Ramamurthy, and V. Chaurey, Enhancing DNA 

hybridization kinetics through constriction-based dielectrophoresis. Lab on a Chip, 

2009. 9(22): p. 3212-3220. 

171. Sanghavi, B.J., W. Varhue, J.L. Chavez, C.F. Chou, and N.S. Swami, Electrokinetic 

Preconcentration and Detection of Neuropeptides at Patterned Graphene-Modified 

Electrodes in a Nanochannel. Analytical Chemistry, 2014. 86(9): p. 4120-4125. 

172. Fauss, E.K., R.I. MacCuspie, V. Oyanedel-Craver, J.A. Smith, and N.S. Swami, 

Disinfection action of electrostatic versus steric-stabilized silver nanoparticles on 

E. coli under different water chemistries. Colloids and Surfaces B-Biointerfaces, 

2014. 113: p. 77-84. 

173. Chiou, C.H., J.C. Pan, L.J. Chien, Y.Y. Lin, and J.L. Lin, Characterization of 

Microparticle Separation Utilizing Electrokinesis within an Electrodeless 

Dielectrophoresis Chip. Sensors, 2013. 13(3): p. 2763-2776. 

 



   
 

 


