


c© Copyright by Souvick Mukherjee 2019

All Rights Reserved



SEMI SUPERVISED MACHINE LEARNING AND DEEP

LEARNING BASED ANALYSIS FOR HYPERSPECTRAL

REMOTE SENSING IMAGES

A Dissertation

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Electrical and Computer Engineering

By

Souvick Mukherjee

August 2019



SEMI SUPERVISED MACHINE LEARNING AND DEEP LEARNING BASED 

ANALYSIS FOR HYPERSPECTRAL REMOTE SENSING IMAGES 

 

       _________________________ 

                                        Souvick Mukherjee 

 

Approved:              _________________________________ 

                           Chair of the Committee, 

          Dr. Saurabh Prasad, Assistant Professor, 

                                                              Electrical and Computer Engineering 

Committee Members:        _________________________________ 

                     Dr. David Mayerich, Assistant Professor, 

                                                              Electrical and Computer Engineering                  

   _________________________________ 

                     Dr. Thomas Hebert, Associate Professor, 

                                                               Electrical and Computer Engineering 

   _________________________________ 

                        Dr. Miao Pan, Associate Professor, 

                                                              Electrical and Computer Engineering 

   _________________________________ 

                    Dr. Demetrio Labate, Professor, 

                                                                              Mathematics 

          _________________________________ 

                     Dr. Dalton Lunga, Research Scientist, 

                                                                      Oak Ridge National Laboratory 

 

________________________________                                        _________________________________ 

Dr. Suresh K. Khator, Associate Dean,                                          Dr. Badrinath Roysam, Chair, 

Cullen College of Engineering        Electrical and Computer Engineering           

 

 



SEMI SUPERVISED MACHINE LEARNING AND DEEP

LEARNING BASED ANALYSIS FOR HYPERSPECTRAL

REMOTE SENSING IMAGES

An Abstract

of a

Dissertation

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in Electrical and Computer Engineering

By

Souvick Mukherjee

August 2019



Abstract

Hyperspectral Image Analysis has been an active area of research, especially in scenar-

ios where discriminative features from classes having similar spectral characteristics

have to be learned. We propose and implement novel machine learning techniques to

address research problems in the field of Hyperspectral Image Analysis using remote

sensing images. Each chapter in this dissertation presents a novel method from the

field of machine learning with the end goal of robust classification of Hyperspectral

Remote Sensing Images.

We describe common problems faced in the field of Hyperspectral Image Analysis,

and addresses those problems by proposing novel techniques. One common problem

is the lack of large quantities of labeled data, which leads to the problem of models

overfitting to the limited number of labeled training samples. We propose a spatial-

spectral unsupervised feature extraction / reduction approach in Chapter 2 of this

dissertation. Another approach to address the specific problem of the lack of large

quantities of labeled data samples is to use the large number of available unlabeled

data samples to perform Semi-Supervised learning. Towards this goal, we propose

a Semi-Supervised feature extraction / reduction approach in Chapter 3 of this dis-

sertation. Following the same idea, and inspired by the recent advancements in the

field of Deep Learning, we also propose a Semi-Supervised Deep Learning approach

in Chapter 4 of this dissertation. Another recent development in the field of Deep

Learning for color image analysis involves new variants of neural network architec-

tures called Capsule Neural Networks, which can capture the spatial information

along with the underlying context from the original images in a much more robust

manner. We propose Semi-Supervised Capsule Neural Networks tailored towards hy-

perspectral image analysis in Chapter 5 of this dissertation. In the final Chapter
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of this dissertation, Chapter 6, we propose an algorithm to perform label expansion

for Semi-Supervised Deep Learning tasks, applied to the domain of large scale Road

Segmentation of big cities (we show our results for Road Segmentation in the city of

Las Vegas and Caracas, the capital of Venezuela).
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Chapter 1

Introduction

Machine learning based techniques have been used to address research problems

in the field of Hyperspectral Image Analysis using remote sensing images, for a long

time. Recently, with advances in the field of Deep Learning, Deep Learning has also

been extensively used for Analysis of Hyperspectral Remote Sensing Images [4].

This dissertation describes general problems faced in the field of Hyperspectral

Image Analysis, and addresses those problems by proposing and implementing novel

techniques. Several mathematically based approaches have been proposed to address

the major issues with hyperspectral remote sensing data, over the last few decades.

It is well known that for hyperspectral images the lack of large quantities of labeled

samples lead to the problem of overfitting on the training dataset and very poor per-

formance on the test dataset [5, 6]. The loss of spatial details / information / context

in the extracted features, with respect to the original images is another major issue.

Researchers have proposed several novel statistically based approaches as spatial-

spectral feature extraction and classification, semisupervised feature extraction and

classification, to address the issues as mentioned before [7, 8]. With the intention of

incorporating spatial details / context into the extracted features, we propose and

implement a spatial-spectral unsupervised feature extraction / reduction approach
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in Chapter 2 of this dissertation. Hyperspectral images contain a very large num-

ber of unlabled data samples. One way to exploit the structure of the underlying

data is to use the unlabeled data samples in addition to the labeled data samples

to perform Semi-Supervised learning / classification. Following this idea, in Chapter

3 of this dissertation we propose and implement a feature extraction / dimension

reduction algorithm. Inspired by the recent advancements in the field of Deep Learn-

ing [9, 10, 11, 12], we also propose and implement a Semi-Supervised Deep Learning

approach in Chapter 4 of this dissertation. Following some more recent develop-

ments in the field of Deep Learning, where researchers propose new types of neural

networks called Capsule Neural Networks [13, 1, 14], which can preserve the spatial

details from the original images, we propose and implement Semi-Supervised Capsule

Neural Networks in Chapter 5 of this dissertation. In the penultimate Chapter of

this dissertation, Chapter 6, we propose an algorithm to perform label expansion for

Semi-Supervised Deep Learning tasks, applied to the domain of large scale Road Seg-

mentation of big cities (we show our results for Road Segmentation in the city of Las

Vegas and Caracas: the capital of Venezuela). The final Chapter of this dissertation,

Chapter 7, contains the Conclusions and Future Work.

Contributions of this Dissertation:

• Chapter 1 of this Dissertation introduces the problem of Hyperspectral Image

Analysis in the context of Remote Sensing Images.

• Chapter 2 of this dissertation proposes an algorithm which incorporates spatial

details / context into the extracted features. We propose and implement a spatial-

spectral unsupervised feature extraction / reduction approach.
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• Chapter 3 of this dissertation proposes an algorithm which incorporates spa-

tial details / context into the extracted features, in a similar manner as the previous

Chapter. However, here we propose and implement a spatial-spectral Semi-Supervised

feature extraction / reduction approach to make use of the available labeled samples.

• Chapter 4 of this dissertation proposes and implements a Semi-Supervised Deep

Learning algorithm.

• Chapter 5 of this dissertation proposes an algorithm which can preserve the spa-

tial context of the objects from the original images using a Semi-Supervised Learning

approach.

• Chapter 6 of this dissertation proposes an algorithm to perform label expansion

for Semi-Supervised Deep Learning tasks, applied to the domain of large scale Road

Segmentation of big cities (we show our results for Road Segmentation in the city of

Las Vegas and Caracas: the capital of Venezuela).

• The final chapter of this dissertation, Chapter 7, contains the Conclusions and

Future Work.
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Chapter 2

Unsupervised Local Angle

Distance Preserving Embeddings

with Spatial Context for

Hyperspectral Image Analysis

Dimensionality reduction is an important pre-processing step for hyperspectral

image analysis. High dimensional signals as hyperspectral signals have a large pro-

portion of redundant information and it is necessary to find a good low dimensional

projection subspace in order to train robust classifiers. The intra-class samples in

hyperspectral or high-dimensional data often exhibit a large variability. This pre-

vents the back-end classifier from learning a robust discriminative representation of

the data. Dimensionality reduction also helps to potentially address the issue of

computational and time constraints when training a classifier. It is also known that

a large number of hyperspectral images are impacted by illumination variances and

low quality pixels due to shadows or faults in capturing the images. In other words,

intra-class samples may differ from each other due to illumination differences between
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different parts of the image, likewise confusing the back-end classifier and leading to

classification errors. Moreover, hyperspectral images tend to have a large number of

unlabeled samples compared to labeled samples. Labeling samples in such images

is costly as human intervention is required. To address these issues we propose an

unsupervised spatial-spectral dimensionality reduction algorithm based on angular

distances as a preprocessing step to spatial-spectral angular distance based back-end

classification algorithms.

2.1 Introduction

Hyperspectral images capture a scene at a large number of wavelengths in contrast

to RGB images. The high-dimensionality of the data normally helps to distinguish

between classes which potentially have same reflectances, when captured at lower

wavelength resolutions. Most of the hyperspectral images capture redundant infor-

mation due to the very detailed spectral resolution. Hence, when traditional machine

learning algorithms are used for training classifiers with such data, they are known

to exhibit the curse of dimensionality. The redundant information in the images

tends to increase the sparsity in the data, which in turn leads to an increase in the

computational and time complexity of the algorithms. In a high dimensional space

the data samples belonging to the same classes appear to exhibit different reflectance

signatures, thereby making it difficult for the classifier to learn. This is tradition-

ally known as the curse of dimensionality. To overcome such problems, usually the

high-dimensional data is projected onto low dimensional subspaces by applying fea-

ture reduction or dimension reduction approaches. Several such feature reduction

approaches are already in use as - [15, 16, 17, 18, 19, 20, 21, 22]. Supervised dimen-

sion reduction algorithms as [23, 24, 25, 26], which utilize the labeled data generally

try to focus on reducing the within-class variance and increase the between class vari-

5



ance of the data samples. Whereas, the goal of unsupervised dimension reduction

approaches [27] is to find an inherent structure in the data and arrange it, so as to

reduce a distance measure between similar samples and increase the same distance

measure between dissimilar samples. It has also been observed that certain hyper-

spectral images in which the intra-class samples are impacted highly by illumination

differences and shadows, tend to work well with Angular feature extraction algorithms

such as [24, 28] than Euclidean feature extraction algorithms [29, 30]. Traditionally,

it has also been observed that spatial-spectral feature extraction algorithms perform

better than only-spectral based algorithms [31, 32, 33, 34, 35, 36]. This can be at-

tributed to the fact that knowing the spatial neighbors of a pixel of interest in a

hyperspectral image, can provide knowledge about the class or label of the pixel

of interest. Introducing spatial-contextual knowledge into the feature extraction or

classification algorithms tends to reduce noisy classification results. The goal of this

chapter is two fold: (1) To present a spatial-spectral unsupervised feature reduction

algorithm, based on Angular distances instead of Euclidean distances, (2) To kernelize

the proposed algorithms, so as to make them work when the datasets are governed

by non-linear distributions.

The chapter is organized as follows: Section 4.1 introduces the problem of feature

reduction specific to the context of Hyperspectral Image Analysis. Section 2 gives a

brief perspective or description of the work related to our proposed method. Section

2.3 presents the proposed work. Section 2.4 describes the back-end classifier used to

classify the features extracted by the proposed algorithms. Section 2.5 and Section 2.6

discuss about the Experimental Settings with Results and Conclusion, respectively.
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2.2 Motivation and Related Work

2.2.1 Motivation

For the hyperspectral images, where the pixels are impacted by illumination dif-

ferences and shadows it is well known that angular distance based algorithms play a

more important role than euclidean distance based algorithms [24, 28]. This can be

attributed to the fact that projecting the sample pixels of interest onto a unit hyper-

sphere removes the illumination differences from the pixels and preserves the shapes

of the objects from the original hyperspectral image, thereby generating illumination

invariant features from the pixels of interest during training. Figure 2.1 depicts this

observation. This phenomenon helps the back-end classifier to learn better by elim-

inating the intra-class variance in the reflectances of pixels belonging to the same

class, which happens due to the presence of shadows, or low-quality pixels in the

image. In simple words, intra-class samples from an image must not have different

reflectances due to illumination differences between different regions in the image, the

l2 normalization approach to project the features onto a hypersphere, as discussed

in this chapter, addresses this problem by removing the illumination differences and

generating illumination invariant features. More recently, a similar observation in

the field of face recognition, where the final classifier was learning only about the

high quality facial images and ignoring the low quality facial images during training,

led researchers to develop an angle based classifier [37], in the field of deep learning.

Several other angular distance based classifiers have also been proposed recently in

the field of deep learning, with the intention of addressing similar issues as discussed

in this chapter [38, 39, 40].

It is also known that spatial-spectral algorithms perform better than algorithms

which only focus on utilizing the spectral properties of the data. Thus we extend

our proposed algorithm by embedding spatial-contextual information to it. In simple
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words, we preserve the spatial neighbors of the pixels of interest from the original

higher dimensional space, to the final lower dimensional subspace, by introducing

spatial-contextual information to our proposed method, through the use of fixed sized

rectangular windows or superpixels surrounding the pixels of interest.

Figure 2.1: The effect of projecting samples onto a unit hypersphere. (Left) The
original image impacted by illumination differences/clouds. (Right) l2-
normalized image where illumination difference is removed

2.2.2 Related Work

A semi-supervised discriminative feature reduction / extraction method related

to this work has also been published by our group [28], but it assumes the availability

of abundant labeled training samples, which is not always available for hyperspectral

images. It is known that hyperspectral images contain abundant unlabeled samples,

and we propose an unsupervised dimension reduction / feature extraction method in

this chapter to exploit the information contained in them.

The proposed work is also inspired from and built upon the arXiv pre-print as

proposed in [41], which uses fixed sized rectangular windows to incorporate spatial

context to the pixels instead of superpixels as used in our proposed work. Superpixels

can capture the spatially neighboring spectrally similar pixels and incorporate spatial

context to the pixels in a much robust manner. In our proposed work we also kernelize

our algorithms to make the features linearly separable in an infinite dimensional

hyperspace. Our proposed feature extraction / dimension reduction algorithm is

entirely unsupervised, in the sense that it does not need any unlabeled data samples
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to find the corresponding projection matrix or lower dimensional projection subspace.

Our contribution in this chapter is to introduce spatial contextual information in the

dimension reduction algorithm by embedding superpixels, which are suited to capture

the spectrally similar spatial neighbors. We also kernelize all our proposed algorithms

so that they are able to produce more robust features when the datasets are inherently

governed by non-linearity.

Local Angular Discriminant Analysis: LADA

LADA proposed in [42] finds a lower dimensional subspace by minimizing the

ratio of within-class to between-class angular distance of its samples. Let x̃i ∈ Rd

be the ith training sample, which is normalized and projected onto the surface of a

unit hypersphere, T ∈ Rd×r be the projection matrix to be obtained, where d, is

the dimension of original higher-dimensional space and r, is the dimension of the

obtained lower-dimensional subspace. l and nl be the class labels and the number of

samples belonging to a certain class, respectively. The the optimization equation for

finding the subspace corresponding to the LADA algorithm can be formulated as a

generalized eigen-value problem as:

TLADA ≈ argmin
T∈Rd×r

[(
T tO (lw)T )−1(T tO (lb)T

)]
, (2.1)

where O(lw) and O(lb) are the within-class and between-class angular outer product

matrices, respectively, as:

O (lw) =
n∑

i,j=1

W̃
(lw)
ij x̃ix̃

t
j and (2.2)

O (lb) =
n∑

i,j=1

W̃
(lb)
ij x̃ix̃

t
j , (2.3)

where the within-class (W̃ (lw)) and between-class (W̃ (lb)) angular affinity matri-
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ces, between samples xi and xj, are given by

W̃
(lw)
ij =


W̃ij/nl, if yi, yj = l,

0, if yi 6= yj, and

(2.4)

W̃
(lb)
ij =


W̃ij(1/n− 1/nl), if yi, yj = l,

1/n, if yi 6= yj.

(2.5)

where the angular affinity W̃ij ∈ [0, 1], depicts the affinity between samples x̃i and

x̃j.

W̃ij = exp

(
−‖x̃i − x̃j‖2

σ

)
, (2.6)

where σ is the parameter in the heat kernel, T is the projection matrix and r is the

dimension of the reduced lower dimensional subspace.

2.3 Proposed Work: Superpixel Driven Spatial Con-

text based LSPP and Kernel SLSPP

Figure 4.2 shows a simple block diagram representation of the proposed algorithms

as described in this section. The yellow region in the figure below represents the spa-

tial neighborhood for the unlabeled red pixel. The unlabeled image is segmented using

the mentioned superpixel algorithm and utilized by the proposed SLSPP algorithm

to find the projection subspace. The projection matrix obtained from the proposed

feature extraction algorithm and unlabeled samples is then used to transform the

labeled samples. The obtained features are then used for the purpose of classifica-

tion using the SOMP classification algorithm. Figure 3.2 provides an overview of the

feature embeddings for the algorithms described in this section. Upper half of the
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Figure 2.2: Block diagram representation of the proposed architecture

figure shows how the features get aligned when the LSPP algorithm is used for feature

reduction and the lower half of the figure shows how introducing spatial-context in

the LSPP algorithm helps to generate more robust features.

2.3.1 Algorithm

Algorithm 5 briefly describes the flow of processes used by us to implement our

proposed algorithms. Entropy Rate (ER) superpixel generation is used to oversegment

the image. In Algorithm 5 the entropy rate term H(A) increases with the addition

of any edge to the set A, but the increase is larger when selecting edges that form

compact and homogeneous clusters as described in [43]. The balancing term B(A)

helps to generate clusters of similar sizes when the number of clusters are fixed.

Thus, the algorithm tends to find clusters which are compact, homogeneous and of

similar sizes in nature. Since the objective function in [43] increases monotonically,

the number of connected components (clusters) in the graph (NA) is exactly found to

be equal to the number of desired superpixels (N), due to the additional constraints.
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Figure 2.3: Neighborhood embedding of points for purely spectral (top) and spatial-
spectral (bottom) feature extraction algorithms
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Local Spectral angle Preserving Projections: LSPP

The optimization problem as proposed for the unsupervised Local Spectral angle

Preserving Projection (LSPP) can be written as in equation (2.7). Let x̃i be an l2-

normalized training sample and T ∈ Rd×r be the d× r projection matrix, where r is

the reduced dimensionality, then the objective function of LSPP is reduced to:

TLSPP =
∑
i

∑
j

W̃ij(T
tx̃i)

t(T tx̃j)

TLSPP ≈
∑
i

∑
j

tr[W̃ij(T
tx̃i)

t(T tx̃j)]

TLSPP ≈
∑
i

∑
j

tr[W̃ij(T
tx̃j)(T

tx̃i)
t] ,

TLSPP ≈
∑
i

∑
j

tr[T t(W̃ijx̃jx̃
t
i)T ] ≈ tr[T tX̃W̃ X̃

t
T ]

(2.7)

TLSPP ≈ argmax
T∈Rd×r

[
T tX̃ W̃ X̃ tT

]
s.t. (T tX̃ D̃X̃ tT ) = I , and (2.8)

X̃ W̃ X̃
t
ψ = λX̃ D̃X̃ tψ , (2.9)

where the angular affinity W̃ij ∈ [0, 1], depicts the affinity between samples x̃i and

x̃j, W̃ij = exp
(
−‖x̃i−x̃j‖2

σ

)
, σ is the parameter in the heat kernel, X̃ represents a

matrix containing l2-normalized unlabeled samples and W̃ represents the affinity

matrix of all those normalized unlabeled samples. The constraint (T tX̃ D̃X̃ tT ) =

I, where D̃ii =
∑

j W̃ij is imposed to avoid biases caused by different samples. Smaller

the value of D̃ii, corresponding to the ith training sample, more important the ith

training sample is. The projection matrix T are the eigenvectors corresponding to

the r largest eigenvalues, obtained after solving Equation (3.11), by simple eigen-value

decomposition.
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Spatial Local Spectral angle Preserving Projections (SLSPP) using Super-

pixels

The optimization problem for the proposed Spatial-LSPP algorithm can be written

as in equation (2.10). Let x̃k, k ∈ Ωi be the l2-normalized spatial neighborhood as

defined by a superpixel, of labeled samples around a normalized labeled training

sample x̃i and T ∈ Rd×r be the d × r projection matrix, where r is the reduced

dimensionality, then the objective function of SLSPP is reduced to:

T SLSPP =
∑
i

∑
k∈Ωi

W̃ik(T
tx̃i)

t(T tx̃k)

T SLSPP ≈
∑
i

∑
k∈Ωi

tr[W̃ik(T
tx̃i)

t(T tx̃k)]

T SLSPP ≈
∑
i

∑
k∈Ωi

tr[W̃ik(T
tx̃k)(T

tx̃i)
t]

T SLSPP ≈
∑
i

∑
k∈Ωi

tr[T t(W̃ikx̃kx̃
t
i)T ] ≈ tr[T tM̃T ]

(2.10)

where M̃ =
∑

i

∑
k∈Ωi

(W̃ikx̃kx̃
t
i)

TSLSPP ≈ argmax
T∈Rd×r

[
T tM̃T

]
s.t. T tX̃D̃spX̃

tT = I , (2.11)

where X̃ represents a matrix containing unlabeled samples and W̃ represents the

affinity matrix of all those unlabeled samples.

Kernel SLSPP

Samples from different classes may not always be linearly separable in the original

space due to the inherent non-linear structure of the data. For such instances the

SLSPP algorithm will fail to find a subspace that can angularly separate the samples.

Formulating SLSPP in a Reproducible Kernel Hilbert Space (RKHS) H will overcome
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Algorithm 1: Pseudo code of the proposed feature extraction algorithms

Input:
• Image: I ∈ Rrw×cl×d
• Number of superpixels to be generated: N

{Superpixel Segmentation} [28]

•Generate compact, homogeneous and balanced Entropy-Rate superpixels: Xi = {xj}ni
j=1

for i = 1, 2, ....,N (where i : superpixel index and j : pixel index in the ith superpixel)
from [43, 44]:

maxAH(A) + λB(A)
s.t. A ⊆ E, NA ≥ N and λ ≥ 0

where A: selected edge set for segmenting the graph, H(A): Entropy Rate term, B(A):
balancing term, λ: weight of the balancing term, E: Edges in the graph and NA: number
of connected components in the graph

{Spectral-angle based Merging} [28]

• Generate merged superpixel corresponding to or encompassing each pixel:
for all i ∈ 1, 2, ...,N do
for all j ∈ 1, 2, ..., neighbors of superpixel i do
θ = cos−1

[
E[Xi]� E[Xj ]

T / (||E[Xi]|| ||E[Xj ]||)
]

if θ ≤ δ (minimum angle) do
{Xi} = {Xi ∪Xj}

end if
end for

end for Where E represents the mean over a window of superpixels.
{Feature Extraction}

• Extract training samples: {x̃}ni=1 ∈ Rd - from I; n: number of samples
• Compute M̃ using unlabeled data from X̃ as defined in Equation 2.10.
• Form an objective function to minimize the optimization Equation for SLSPP:

TSLSPP ≈ argmax
T∈Rd×r

[
T tM̃T

]
s.t. T tX̃D̃spX̃

t
T = I (2.12)

Where M̃ =
∑

i

∑
k∈Ωi

(W̃ikx̃kx̃
t
i)

Output:
• Training points after projection: {p}ni=1 ∈ Rr

• Projection Matrix: T ∈ Rd×r.

this limitation.

By applying the kernel trick [45], SLSPP can be extended to its kernel variant.

Let n be the number of available samples and m be the number of neighbors for
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each of those samples. Then, the term

(
M =

∑
i

∑
k∈Ωi

W̃ ikx̃kx̃
t
i

)
can be simplified to

n∑
s=1

Z̃sW̃sX̃
t
s by using basic matrix algebra. Where:

Z̃ =



Z̃1

Z̃2

Z̃3

Z̃n


=



X̃1,1 X̃1,2 X̃1,3 . . . X̃1,m

...
...

...
...

X̃n,1 X̃n,2 X̃n,3 . . . X̃n,m



W̃ =

[
W̃1 W̃2 W̃3 . . . W̃n

]

=



W̃1,1 W̃2,1 W̃3,1 . . . W̃n,1

...
...

...
...

W̃1,m W̃2,m W̃3,m . . . W̃n,m


and

X̃t =

[
X̃ t

1 X̃ t
2 X̃ t

3 . . . X̃ t
n

]
Substituting equations 2.10 and 2.11 into equation 3.11, for spatially constrained

LSPP, the eigen-value problem simplifies to:

(
n∑
s=1

Z̃sW̃sX̃s
t

)
ψ = λ

[
X̃ D̃spX̃

t
]
ψ , (2.13)

where X̃ represents a matrix containing unlabeled samples, Z̃ represents a matrix

in which each row contains all the neighbors of individual pixels of interest, and

W̃ represents the affinity matrix for unlabeled samples (where each column of W̃

represents the affinity of a pixel of interest with all its spatial-neighbors).
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By multiplying X̃
t

from the left and X̃ from the right side of Equation (3.3.2),

we obtain the following generalized eigenvalue problem.

(
n∑
s=1

K̃Zs W̃sK̃Xs

)
ψ = λ

[
K̃DspK̃

]
ψ , (2.14)

where K̃ is a symmetric kernel matrix between elements of X̃ and X̃ ; K̃Xs represents

the kernel matrix between elements of X̃ and X̃s; and K̃Zs represents the kernel

matrix between elements of X̃ and Z̃s. Here K̃ij = κ(x̃i, x̃j) = 〈x̃i, x̃j〉 represents a

simple linear kernel, although it can be replaced with any valid (nonlinear) Mercer

kernel. A commonly used non-linear kernel function is the Gaussian radial basis

function (RBF) which is defined as: κ(x̃i, x̃j) = exp
(
− ‖x̃i−x̃j‖2

2σ2

)
, where σ is a free

parameter. Similar to SLSPP, the projection matrix or the eigenvectors corresponding

to the r largest eigenvalues are found.

2.3.2 Obtaining optimal Spatial Neighbors using Superpixels

Entropy Rate Superpixels: Superpixel Segmentation is an important module

for many Computer Vision applications as object recognition [46], image segmenta-

tion [47, 48] and single view 3-D reconstruction [49, 50]. A superpixel is commonly

defined as a perceptually uniform region in the image. The goal of designing the opti-

mization function for superpixel segmentation usually considers the following features:

(1) Every superpixel should overlap with only one object; (2) The set of superpixel

boundaries should be a superset of object boundaries; (3) The mapping from pixels to

superpixels should not reduce the achievable performance of the intended application;

(4) The above properties should be obtained with as few superpixels as possible. The

Entropy Rate Superpixel Segmentation approach was proposed in [43], to represent

the superpixel segmentation problem as an optimization problem on graph topology.

The objective function is based on the entropy rate of a random walk in a graph.
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The objective function of the ER-Superpixel algorithm contains two terms: (1) The

Entropy Rate of random walk on a graph (which favors the formulation of compact

and homogeneous clusters), and (2) A balancing term (which favors clusters of sim-

ilar sizes). An efficient solution with a bound on the optimality of the solution was

derived in the mentioned chapter.

The Entropy Rate superpixel [43] algorithm was modified to over-segment hyper-

spectral images instead of RGB images in [44]. We use superpixels generated by

this modified version of the Entropy Rate superpixel algorithm to define the spatial

neighorhood for each pixel.

Merging spectrally similar superpixels: Oversegmentation generates very

small sized superpixels as some spatially adjacent pixels belonging to the same class

gets segmented to multiple superpixels. From Equations 2.10 and 2.11, we find that

very small sized superpixels would negatively impact the quality of the subspace

projection as they would force the angular outer product matrix M in SLSPP to be

calculated using a very small number of neighboring pixels (the points belonging to

the same superpixel). In other words the number of samples {xk, k ∈ Ωi} belonging

to the spatial neighborhood of a training sample xi would be very small for very small

sized superpixels. To negate this effect we merge the very small superpixels with

spatially neighboring superpixels which have similar spectral angles, to form larger

superpixels. All the applications using superpixels from hereon utilize these modified

merged superpixels as describe above.
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2.4 Sparse Representation-Based Classification us-

ing Orthogonal Matching Pursuit

2.4.1 Simultaneous Orthogonal Matching Pursuit (SOMP)

Classifier

The SOMP [51] classifier is a sparse representation based classification method us-

ing the orthogonal matching pursuit algorithm, as shown in Equations 2.15 and 2.16.

In addition to utilizing the class label of the pixel of interest it utilizes the samples

surrounding a particular pixel of interest in order to classify that particular pixel.

Thus this type of classifier is specially suited to explore the information contained in

the neighboring pixels surrounding a pixel of interest while making a decision during

classification.

The classification method employed after feature extraction using the SLSPP al-

gorithm and its variants is SOMP based sparse representation classifier. SLSPP and

its other derivatives as proposed in this chapter minimizes the angular distance be-

tween the spatially-neighboring points belonging to the same angular neighborhood

and preserves the angular distance between the pixels belonging to different angular

neighborhoods in the projected lower dimensional subspace. This implies that spatial

neighbors in the projected lower dimensional subspace are more likely to be spectrally

similar pixels belonging to the same spatial neighborhood in the original space and

by using the SOMP classifier we can exploit the local neighborhood structures very

efficiently. We need a spatial-classifier as SOMP at the back-end so as to utilize the

spatial information preserved by our proposed dimension reduction algorithm, from

the original space, in the reduced feature subspace. Any pixel-wise classifier would

disregard the spatial information between the samples in the feature subspace and

result in poor classification accuracies in comparison to spatial classifiers. Also since
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we are proposing a feature reduction algorithm, we keep the back-end classifier to be

the same (SOMP) for all the other feature reduction algorithms, during comparison.

This was done in order to make the comparisons fair.

The extracted features generated using Algorithm 5 are used for training the

SOMP classifier. Assume S to be the set of training samples, A to be the set of

test samples - obtained from the group of spatial neighbors provided to the SOMP

algorithm, and C to be the coefficient matrix learned through SOMP [51]. The class

residuals for each class (Equation 2.15) are calculated using the SOMP algorithm as

described in [51], and class-labels (Equation 2.16) are calculated by selecting the class

corresponding to the minimal residual, as in traditional Sparse Representation based

Classifier (SRC). Here c is the number of classes and δk is an indicator activating

entries corresponding to the k’th class in the coefficient matrix. The Equation for

SOMP is given as follows,

rk(S) = ‖S−Aδk(C)‖2, k = 1, 2, . . . , c , and (2.15)

ω = argmin
k=1,2,... ,c

(rk(S)) . (2.16)

2.5 Experimental Settings and Results

2.5.1 Hyperspectral Datasets

We validate our proposed methods on two well known datasets: (1) The University

of Pavia dataset and the (2) University of Houston dataset.

Grid Search Technique: We divide our datasets into three different parts with

no overlap between the samples (samples are randomly selected) - (1) The training

subset set, (2) the validation subset, and (3) the testing subset. First we tune our
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model to find the free parameters using only the validation subset. Then we train the

model using the training dataset and test using the unseen testing dataset, in order

to evaluate the performance of the algorithms.

University of Pavia Data

An image covering the University of Pavia in Italy, captured using the Reflective

Optics System Imaging (ROSIS) sensor [52], was the first hyperspectral dataset to

be captured. It has 103 spectral bands ranging from 430 nm to 860 nm containing 9

classes of interest. It has a spatial coverage of 610×340 pixels and a spatial resolution

of 1.3 m.

University of Houston Data

An image of the University of Houston and the neighboring urban area was cap-

tured using the ITRES-CASI (Compact Airbone Spectrographic Imager) 1500 hy-

perspectral imager. It has 144 spectral bands spanning the visible and near-infrared

spectrum from 380 nm to 1050 nm. It has a spatial coverage of 349 × 1905 pixels,

with a spatial resolution of 2.5 m. Fifteen different classes of interest were identified

in the data.

2.5.2 Experimental Setup

The algorithms proposed in this chapter are shown to be better than other state

of the art feature extraction methods in terms of learning effective subspaces. We

compare the proposed algorithms with a wide variety of other traditional and state-

of-the-art feature extraction algorithms — Principal Component Analysis (PCA)

[53], Local Fisher Discriminant Analysis (LFDA) [54], Locality Preserving Projec-

tions (LPP) [55], Local Angular Discriminant Analysis (LADA) [42] and their kernel

variants, Semi-Supervised LFDA (SELF) [56]; and Spatial-Spectral- Superpixel based

multi-kernel SVM (SC-MK) [57].
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Comparison with simple Fixed size Rectangular Windows: Using rect-

angular windows as spatial neighborhoods does not improve the accuracies to the

extent when superpixels are used as spatial neighborhoods. This is understandable,

as rectangular windows might contain samples belonging to multiple classes, which

can be categorically avoided by using superpixels (which are designed for the purpose

of segmenting the image to generate spectrally similar spatial-neighborhoods).

2.5.3 Results and Analysis

Tables 3.2 and 5.3 show the overall classification accuracies as a function of the

number of training samples for the University of Pavia and the University of Houston

datasets, respectively. 100 samples per class were chosen for testing. We notice for

all cases, the overall classification accuracies improve significantly when our proposed

dimension reduction approaches are used instead of the baseline or traditional state-

of-the-art methods.

2.6 Conclusion

In this work we propose an unsupervised approach to utilize the unlabeled samples

during feature extraction and also propose a general method which can be applied

to utilize the spatial information by embedding the spectrally similar spatial neigh-

borhoods using small fixed sized rectangular windows or superpixels, for angular

discriminant based spatial-spectral feature extraction algorithms such as LSPP. We

also kernelize our proposed linear algorithm in order to extract features from data

samples which are governed by non-linear decision surfaces. We show that embedding

the spatial neighborhoods (as quantified by superpixels) during the process of feature

extraction significantly improves the classification accuracies by applying the neigh-

borhood embedding algorithms to LSPP, and we also show that embedding spatial
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Table 2.1: Overall accuracies (%) for the University of Pavia data.

Algorithm / N 10 20 30 40 50

PCA 66.02±2.6 69.21±3.1 71.23±2 72.62±1.2 73.46±2.7

KPCA 67.86±3.5 71.79±2.2 72.48±1.8 75.60±1.7 73.36±2

LFDA 55.44±3 68.17±3 72.27±1.8 73.89±1.3 73.73±2.2

KLFDA 81.34±2.2 86.21±2.3 90.14±2.2 91.58±1.6 92.11±1.2

LPP 36.38±2.5 67.68±2.5 74.48±2.2 78.6±2.2 79.79±2.1

LADA 74.54±2.5 77.81±2.4 79.18±2.5 79.14±1.7 81.12±1.9

KLADA 79.92±3.2 83.81±2.5 86.36±1.4 85.38±1.1 87±1.6

SELF 72.42±3.09 75.74±2.8 78.51±3.0 82.13±1.9 81.92±2.4

SC-MK 75±4.1 83.72±1.2 86.95±2.2 90.2±1.7 91.27±1.3

LSPP. 74.01±3 78.12±2.5 79.39±1.2 79.43±1.7 80.8±2.2

SLSPP-rect. 78.27±1.8 80.04±2.2 81.76±1.8 79.86±1.4 81.46±2.2

KSLSPP-rect. (proposed) 86.58±2.7 91.47±1.2 92.84±1.6 93.16±0.8 93.62±1.1

SLSPP-sp. (proposed) 80.92±1.5 83.07±2.4 84.5±1.4 84.32±1.9 85.37±1.6

KSLSPP-sp. (proposed) 88.41±1.3 92.21±1.3 94.26±0.6 94.60±0.8 94.69±0.7

information using superpixels produces more robust features compared to embedding

spatial information using fixed sized rectangular windows. This makes sense intu-

itively as superpixels are known to extract spectrally homogeneous spatial neighbors

by over-segmenting the image, while fixed sized rectangular windows may suffer from

impure spectral pixels, due to the presence of pixels from multiple classes in one

rectangular window. We also clearly show the benefit of kernelizing our proposed

algorithms compared to the corresponding linear variants. We show that our pro-

posed methods are able to extract more robust features which can train the back-end

classifier in a more effective manner and produce higher classification accuracies than

other state of the art baseline feature extraction or dimension reduction approaches.
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Table 2.2: Overall accuracies (%) for the University of Houston data.

Algorithm / N 10 20 30 40 50

PCA 65.81±2.5 69.10±2 69.95±1.7 71.56±1.8 72.39±1.9

KPCA 64.59±1.7 68.95±1.7 69.85±2.1 71.34±1 72.52±1.6

LFDA 57.37±5.4 74.13±3 76.51±2.6 78.53±1.3 78.9±2.5

KLFDA 78.75±2.4 82.17±2.5 83.79±2.3 85.72±2.7 84.55±2.2

LPP 50.87±2.8 75.61±2 81.35±2.1 85.41±1.7 88.65±2.6

KLPP 79.87±4.2 86.62±1.2 90.53±1.4 90.11±1.4 92.02±1.6

LADA 83.37±2.6 88.14±1.9 90.10±1.5 91.93±1.7 92.70±1.3

KLADA 83.89±2.2 90.77±1.5 92.69±0.7 94.91±1.4 96.19±0.8

SELF 74.47±2.8 78.93±2.3 79.5±2.4 80.47±1.8 82.17±1.7

SC-MK 86.26±1.9 91.32±1.7 93.56±1.0 94.6±0.9 95.18±1.3

LSPP. 82.39±1.5 87.75±1.9 90.71±1.2 92.75±0.8 93.94±1.3

SLSPP-rect. 88.49±1.3 92.89±1.2 94.15±1 95.49±0.7 96.25±0.7

KSLSPP-rect. (proposed) 88.23±1.3 93.45±1.2 95.47±0.8 97.07±1 97.52±0.7

SLSPP-sp. (proposed) 89.03±2 94.14±1.1 95.7±0.8 96.96±0.8 97.67±0.7

KSLSPP-sp. (proposed) 89.20±0.6 94.67±1.2 96.58±0.7 98.47±0.5 98.67±0.4
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Chapter 3

Semisupervised Spatial-Spectral

Angular Discriminant Analysis for

Hyperspectral Image Classification

3.1 Introduction

Hyperspectral images are typically captured at a very large number of wavelengths

in the visible, near infrared and short-wave infrared region of the electromagnetic spec-

trum. Some information added to the image by many of these wavelengths (channels)

is redundant and hence feature extraction is an important pre-processing step prior

to classification. This is done in order to decrease the computational burden as well

as train the classifier more effectively using a small number of available labeled train-

ing samples. Over the last two decades many algorithms have been proposed to

extract useful features from images. Various feature extraction or subspace learn-

ing algorithms have been used in the literature as Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA) [53] and their variants [58]. Various

manifold learning algorithms, such as Local Linear Embedding (LLE) [59], ISOMAP
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[60], Laplacian Eigenmap [61], Locality Preserving Projection (LPP) [55] and Lo-

cal Fisher Discriminant Analysis (LFDA) [54] were designed to preserve the local

structure in the resulting embeddings by the nearest neighbors of every point on the

manifold. It is well known [62] that hyperspectral data also lies on a low-dimensional

manifold embedded in a high-dimensional space. Traditional dimension reduction

algorithms utilize the Euclidean distance information for finding the subspace pro-

jection. Different from most traditional feature extraction algorithms, Angular Dis-

criminant Analysis [42] was proposed in order to separate between-class samples and

reduce the distance between the within class-samples in an angular sense. Local

Angular Discriminant Analysis (LADA), which preserves the local structures in the

resulting embeddings for ADA was also proposed.

Spatial-spectral algorithms have been used widely in the field of hyperspectral

imaging with the purpose of generating robust features which utilize both the spatial

context as well as the spectral information from the pixels in the image [31, 32, 33, 34].

The aim of this chapter is three fold— (1) To propose a method to capture the

spatial contextual information for subspace learning, (2) To propose a semi-supervised

algorithm that utilizes unlabeled samples for improving the subspaces learned and

(3) To kernelize our algorithms to account for the presence of non-linearities in the

underlying data topology. We compare our proposed methods with different state of

the art methods and show that our algorithms are able to produce better features

which train the back-end classifier in a more effective manner. As we showed in our

previous work with LADA, LADA subspaces are beneficial to classifiers that leverage

sparsity [63, 51, 64]. Hence, at the backend, we use a sparse representation classifier

based on Simultaneous Orthogonal Matching Pursuit (SOMP) [51] that uses spatial

information coupled with a sparse representation classifier.

The outline of this chapter is as follows. In Section 1 we briefly introduce the

problem and provide the background. Section 2 briefly describes the LADA algorithm
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from [42]. Section 3 proposes the semi-supervised spatial-spectral subspace learning

algorithm. Section 4 provides a brief description of the SOMP classifier. Section

5 describes the datasets, experimental setup and results. Section 6 concludes this

chapter.

3.2 Related Work: Local Angular Discriminant

Analysis: LADA

LADA seeks to find an “optimal” subspace where the ratio of the angular distance

between the within-class samples and the between-class samples gets minimized. Let

x̃i ∈ Rd be the normalized i-th training sample and T ∈ Rd×r be the d× r projection

matrix, where r is the reduced dimensionality. Let l denote the individual class labels

and nl denote the number of samples belonging to that class. Then the optimization

function of LADA can be reduced to a generalized eigenvalue problem as

TLADA ≈ argmin
T∈Rd×r

[(
T tO (lw)T )−1(T tO (lb)T

)]
, (3.1)

Where the within class and between class angular scatter matrices O(lw) and O(lb)

respectively are defined as

O (lw) =
n∑

i,j=1

W̃
(lw)

ij x̃ix̃
t
j, and (3.2)

O (lb) =
n∑

i,j=1

W̃
(lb)

ij x̃ix̃
t
j , (3.3)
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where the normalized weight matrices are defined as

W̃
(lw)

ij =


W̃ ij/nl, if yi, yj = l,

0, if yi 6= yj,

(3.4)

W̃
(lb)

ij =


W̃ ij(1/n− 1/nl), if yi, yj = l,

1/n, if yi 6= yj.

(3.5)

The normalized affinity W̃ ij ∈ [0, 1] between x̃i and x̃j is defined as

W̃ij = exp

(
−‖x̃i − x̃j‖2

σ

)
, (3.6)

where σ is the parameter in the normalized heat kernel. The projection matrix T are

the eigenvectors corresponding to the r smallest eigenvalues.

3.3 Proposed Work: Semi-supervised Spatial LADA:

SSLADA

3.3.1 Motivation

For hyperspectral images it is well known that providing a spatial context to

spectral classification algorithms is helpful [34, 65, 66, 67]. This is based on the fact

that the spatially neighboring pixels in images belong to the same classes of interest,

hence, they are spectrally similar. In order to utilize the spatial neighbors of a pixel

of interest in the lower dimensional subspace we preserve the spatial neighbors of the

pixels of interest for our algorithms. With this is in mind we propose a spatial-spectral

feature extraction method that builds upon pixel-level supervised LADA.

Figure 4.2 shows a simple block diagram representation of the proposed algorithms
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as described in this section. The yellow region in the figure below represents the

spatial neighborhood for the red pixel. As shown in the figure, in this chapter:

(1) We propose a semi-supervised subspace learning algorithm which leverages both

labeled and unlabeled samples to learn the embedding, (2) We add spatial context to

the resulting embedding and (3) We kernelize the resulting projections to implement

them in the Reproducible Kernel Hilbert Space (RKHS).

Figure 3.1: Block diagram representation of the proposed architecture

Figure 3.2 provides an overview of the proposed algorithms described in this sec-

tion. Upper half of the figure shows a part of the University of Houston image. The

red boundaries overlayed on the image show superpixel segmentation boundaries.

The white pixels represent one particular class from the image. All pixels which are

located inside one superpixel represent a spatial neigborhood. We visually depict

how spatially constraining the within-class angular scatter matrix effects the angular

distance between the projected points belonging to the same class (depicted by the

white pixels) on an l2-normalized hyperspehere, through this figure. For the spatial-

spectral algorithm the within-class angular scatter matrix is calculated using only the

spatial neighbors which belong to the same class as the pixel of interest but for the

spectral-only algorithms the samples do not have to belong to the same spatial neigh-
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borhood as the pixel of interest, they only have to belong to the same class. The black

points are the pixels of interest and the blue points surrounding them are the spatial

neighborhoods extracted from superpixels. Since each point is best represented by its

spatial neighbors which belong to the same class, we propose that in the normalized

hypersphere for spatial-spectral algorithm, the within-class samples will come closer

to a much higher degree than for the purely spectral algorithms as shown in Figure

3.2. Our results in later sections visualizing the samples (from University of Houston

Image) projected onto the hyperspheres clearly demonstrate that this claim holds.

Figure 3.2: Neighborhood embedding of a point for spatial-spectral (left) and purely
spectral (right) feature extraction algorithms (only for within-class affini-
ties)

LADA is a supervised feature extraction algorithm which requires class labels of

individual pixels during implementation. Traditionally, hyperspectral images contain

few labeled samples as it is difficult to obtain a large number of samples with class

labels. Thus the aim to find a projection matrix so as to minimize the ratio of O(lb)

and O(lt), will not work when the number of labeled training samples are not sufficient,

as overfitting will occur. A usual way to prevent overfitting is to impose a regularizer
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[68]. Based on a similar idea, a model of Linear Discriminant Analysis (LDA) with

the popular Tikhonov regularizer, referred to as Regularized Discriminant Analysis

(RDA), has been proposed in [69]. The Semi-supervised Discriminant Analysis (SDA)

algorithm based on another regularized version of LDA has been proposed in [58].

Although the number of labeled samples available for the purpose of training and

testing is low, hyperspectral images generally contain a large number of unlabeled

pixels present in the image. For this reason semi-supervised approaches which can

utilize the labeled data to minimize the separability between pixels belonging to the

same class (and / or maximize the separability between pixels belonging to different

classes) and the unlabeled data to cluster the pixels depending upon the inherent

angular or euclidean structure of the data, are very popular for hyperspectral image

analysis [70, 6, 71]. The premise of our approach is that in the resulting subspace,

spatial neighbors will be clustered together, thus preserving spatial-spectral affinities.

Based on this idea, we propose a semi-supervised approach and embed the spatial

neighborhood to the individual pixels of interest in our Semisupervised-Spatial LADA

(SSLADA) algorithm.

3.3.2 Algorithm

Algorithm 5 briefly describes the flow of processes used by us to implement our

proposed algorithms. Entropy Rate (ER) superpixel generation is used to oversegment

the image. In Algorithm 5 the entropy rate term H(A) increases with the addition

of any edge to the set A, but the increase is larger when selecting edges that form

compact and homogeneous clusters as described in [43]. The balancing term B(A)

helps to generate clusters of similar sizes when the number of clusters are fixed.

Thus, the algorithm tends to find clusters which are compact, homogeneous and of

similar sizes in nature. Since the objective function in [43] increases monotonically,

the number of connected components (clusters) in the graph (NA) is exactly found to
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be equal to the number of desired superpixels (N), due to the additional constraints.
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Algorithm 1: Pseudo code of the proposed feature extraction

Input:
• Image: I ∈ Rrw×cl×d

• Ground Truth: Y ∈ Irw×cl
• Number of superpixels to be generated: N

{Superpixel Segmentation}

• Generate compact, homogeneous and balanced Entropy-Rate superpixels: Xi =
{xj}ni

j=1 for i = 1, 2, ....,N (where i : superpixel index and j : pixel index in the ith

superpixel) from [43, 44]:
maxAH(A) + λB(A)
s.t. A ⊆ E, NA ≥ N and λ ≥ 0

where A: selected edge set for segmenting the graph, H(A): Entropy Rate term,
B(A): balancing term, λ: weight of the balancing term, E: Edges in the graph
and NA: number of connected components in the graph

{Spectral-angle based Merging}

• Generate merged superpixel corresponding to or encompassing each pixel:
for all i ∈ 1, 2, ...,N do

for all j ∈ 1, 2, ..., neighbors of superpixel i do
θ = cos−1

[
E[Xi]� E[Xj]

T/ (||E[Xi]|| ||E[Xj]||)
]

if θ ≤ δ (minimum angle) do
{Xi} = {Xi ∪Xj}

end if
end for

end for

{Feature Extraction}

• Extract training samples: {x̃}ni=1 ∈ Rd - from I and Y . n: number of samples
• Compute Olb and Olt using labeled data from X; Compute W̃u using unlabeled
data from X̃u as defined in Equations 3.9, 3.10 and 3.7 respectively.
• Form an objective function to minimize the ratio of within-class to between-
class angular scatter by utilizing both the labeled and unlabeled data and using
Equation 3.7:
TSSLADA

= argmin
T∈Rd×r

[
tr(T tO (lb)T )

tr(T t(O(lt) +αX̃uW̃uX̃ t
u)T )

]

≈ argmin
T∈Rd×r

(
tr

[
(T tO (lb)T )

(T t(O (lt) +αX̃uW̃uX̃ t
u)T )

])
Output:
• Training points after projection: {p}ni=1 ∈ Rr

• Projection Matrix: T ∈ Rd×r.
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Linear SSLADA

The optimization problem for the proposed regularized Semisupervised-Spatial

LADA can be written as in equation (3.7). Let x̃k, k ∈ Ωi be the l2-normalized spatial

neighborhood of labeled samples around a normalized labeled training sample x̃i and

T ∈ Rd×r be the d× r projection matrix, where r is the reduced dimensionality, then

the objective function of SSLADA is reduced to

TSSLADA ≈ argmin
T∈Rd×r

[
(T t(O (lt) +αX̃uW̃uX̃ t

u)T )−1(T tO (lb)T )
]
, (3.7)

O (lw) =
∑
i

∑
k∈Ωi

W̃
(lw)

ik x̃ix̃
t
k , (3.8)

O (lb) =
n∑

i,j=1

W̃
(lb)

ij x̃ix̃
t
j , (3.9)

O (lt) = O (lw) + O (lb) , and (3.10)

O (lb)ψ = λ(O (lt) +αX̃uW̃uX̃ t
u)ψ , (3.11)

where X̃u represents a matrix containing all unlabeled samples and W̃u represents the

affinity matrix of all those unlabeled samples. The projection matrix T are the eigen-

vectors corresponding to the r smallest eigenvalues, obtained after solving Equation

(3.11), by simple eigen-value decomposition. The objective function in equation (3.1)

remains equivalent if the within class scatter matrix O(lw) is replaced by the total scat-

ter matrix O(lt). We propose SSLADA governed by the objective function in equation
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(3.7), based on this idea. Equation (3.7) uses unlabeled samples in addition to the

labeled samples and the total scatter matrix instead of the within-class scatter matrix

when compared to Equation (3.1). Use of the unlabeled samples improves the projec-

tion as shown by the results. Singularity of the within-class scatter matrix is a known

problem of the LDA algorithm, which makes the ratio of the between-class scatter

matrix and the within-class scatter matrix undefined or unbounded [72, 73, 74]. For

our algorithm we replace the within-class scatter matrix with the total scatter matrix,

as in [58, 75], so that the optimization function in Equation (3.1) is bounded when

either of the between-class angular scatter matrix (Olb) or within-class angular scat-

ter matrix (Olw) is non-zero. The regularizer term X̃uW̃uX̃ t
u incorporates our prior

knowledge about the underlying data distribution. When a set of unlabeled samples

are available, our intention is to construct a regularizer which can incorporate the

inherent angular structures present in the data and preserve those in the embedding.

The term T X̃uW̃uX̃ t
uT−1 in equation (3.7) portrays the unsupervised part of the

algorithm, which helps to reduce the angular distance between the spatial neighbors

in the lower dimensional projected subspace. In other words spatial neighbors in the

higher dimensional subspace remain spatial neighbors in the projected subspace due

to the presence of this term. This term in the objective function is natural because

if two unlabeled data points have very low spectral angle difference between them in

the projected subspace, implying a greater value of the term T X̃uW̃uX̃ t
uT−1 , then

they are likely to belong to the same class. Moreover, data points lying on dense

subgraphs in the angular space are also likely to belong to the same classes. Thus,

the goal is to maximize this term by adding its scaled value to the within-class or

total scatter matrix, in the projected lower dimensional subspace. All the other terms

are based on the supervised part of the algorithm. The coefficient α, which controls

the balance between supervised and unsupervised components of the algorithm, is

determined by a grid search technique and its value is fixed to the value which results
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in the highest classification accuracies.

Kernel SSLADA

Samples from different classes may not always be linearly separable in the original

space due to the inherent non-linear structure of the data. For such instances the

SSLADA algorithm will fail to find a subspace that can angularly separate the between

class samples. Formulating SSLADA in a Reproducible Kernel Hilbert Space (RKHS)

H will overcome this limitation.

By applying the kernel trick [45], SSLADA can be extended to its kernel variant.

Let n be the number of available samples and m be the number of neighbors

for each of those samples. Then, the term

(∑
i

∑
k∈Ωi

W̃
(lt)

ik x̃ix̃
t
k

)
can be simplified to

n∑
s=1

X̃sW̃
lw
s Z̃t

s by using basic matrix algebra. Where:

X̃ =

[
X̃1 X̃2 X̃3 . . . X̃n

]
,

W̃ lw =



W̃1

...

W̃n


=



W̃1,1 W̃1,2 W̃1,3 . . . W̃1,m

...
...

...
...

W̃n,1 W̃n,2 W̃n,3 . . . W̃n,m


and

Z̃t =

[
Z̃t

1 Z̃t
2 Z̃t

3. . . Z̃t
n

]
,

=



X̃1,1 X̃2,1 X̃3,1 . . . X̃n,1

...
...

...
...

X̃1,m X̃2,m X̃3,m . . . X̃n,m


Where W̃i,j is as defined in Equation 3.6.
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X̃ represents a matrix containing all labeled samples, Z̃ represents a matrix in

which each row contains all the neighbors of individual pixels of interest, X̃u represents

a matrix containing all unlabeled samples and W̃u represents the affinity matrix for

all unlabeled samples.

By multiplying X̃
t

from the left and X̃ from the right side of Equation (3.3.2),

we obtain the following generalized eigenvalue problem.

K̃W̃
(lb)

K̃ψ = λ

[(
n∑
s=1

K̃Xs W̃s
(lw)

K̃Zs

)
+K̃ W̃

(lb)
K̃ +αK̃uW̃u K̃u

]
ψ (3.12)

where K̃ is a symmetric kernel matrix between elements of X̃ and X̃ ; K̃Xs represents

the kernel matrix between elements of X̃ and X̃s; K̃Zs represents the kernel matrix

between elements of X̃ and Z̃s; and K̃u represents the kernel matrix between elements

of X̃ and X̃u. Here K̃ ij = κ(x̃i, x̃j) = 〈x̃i, x̃j〉 represents a simple linear kernel,

although it can be replaced with any valid (nonlinear) Mercer kernel. A commonly

used non-linear kernel function is the Gaussian radial basis function (RBF) which is

defined as

κ(x̃i, x̃j) = exp
(
− ‖x̃i − x̃j‖2

2σ2

)
, (3.13)

where σ is a free parameter.

Similar to SSLADA, the projection matrix or the eigenvectors corresponding to

the r smallest eigenvalues are found.
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3.3.3 Visualization of Embeddings

The superpixels were obtained by implementing the Entropy Rate superpixel al-

gorithm. The superpixels so obtained were used in designing the dimension reduction

algorithm to find the projection matrix (only the components in the direction of

the 3 smallest eigen-values after solving the optimization problem were retained).

The samples from the original space were projected using this projection matrix and

they were visualized in a hypersphere using our proposed algorithms (SSLADA-sp.

and KSSLADA-sp.) and the nearest baseline algorithms (LADA and KLADA), for

comparison. The points are shown in the hypersphere for the purpose of better vi-

sualization. As the pixels lie in a 3 dimensional space (corresponding to the three

smallest eigenvalues resulting from their optimization functions as described in detail

earlier), we plotted them on the hyperspheres to make visualization easier for the

readers. The samples were projected onto a unit normalized sphere by using an l2

norm on the data points.

SpecTIR Dataset: We performed the analysis with the SpecTIR Dataset. Fig-

ure 3.3 below shows 18 random samples per class chosen from the SpecTIR image in

the projected subspaces.

From Figures 3.3a and 3.3b we notice that the within-class samples come closer to

each other to a higher degree in the SSLADA-sp. projected subspace compared to the

LADA projected subspace (samples belonging to the classes represented by the blue,

yellow and magenta circles; green, blue, cyan and red crosses show this explicitly). We

also notice that between class samples move farther apart (even get separated) from

each other in the projected subspace of SSLADA-sp. than the subspace of LADA

(samples belonging to the classes represented by the magenta circles, red, blue and

cyan crosses; red, yellow circles and cyan crosses; blue circles, blue and green crosses,

show this explicitly). We perform similar analysis with KLADA and KSSLADA and

observe similar results. The samples represented by the cyan, red and blue crosses
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come closer to each other for KSSLADA-sp. compared to KLADA. Also the samples

represented by cyan, red and blue crosses move farther apart (even get separated)

from each other for KSSLADA-sp. compared to KLADA. This is shown in Figures

3.3c and 3.3d.

(a) LADA (b) SSLADA-
sp.

(c) KLADA (d) KSSLADA-
sp.

Figure 3.3: Samples from the SpecTIR image after projection by (a) LADA, (b)
SSLADA-sp, (c) KLADA and (d) KSSLADA-sp.

The red, yellow, blue and magenta circles represent Sesbania (rattlebox), Sabal

Mexicana (palm tree), Upland Grass and Phragmites Austrails respectively. The

blue, green, cyan and red crosses represent Juncus Roemerianus, Batis maritima /

Distichlis Spicata, Baccharis halimifolia and Distichlis Spicata respectively. This helps

the classifier to distinguish between samples belonging to different classes and predict

samples which belong to the same classes. We attribute these observations to the

nature of our proposed algorithm as described in the previous sections. In short, we

conclude that there is an overall benefit when we use our proposed feature extraction

algorithms.

Next we describe the way using which we provide spatial context to our algorithms.

3.3.4 Obtaining optimal Spatial Neighbors using Superpixels

The Entropy Rate superpixel [43] algorithm was modified to over-segment hyper-

spectral images instead of RGB images in [44]. Initially we use superpixels generated
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by this modified version of the Entropy Rate superpixel algorithm to define the spa-

tial neighorhood for each pixel. We first generate a very large number of superpixels

in order to make sure that class boundaries in the image are well respected and we

do not have pixels belonging to multiple classes inside a particular superpixel.

Merging spectrally similar superpixels: We deliberately oversegment the

image so that each superpixel contains samples from only one class. However, this

generates very small sized superpixels as some spatially adjacent pixels belonging to

one class get segmented to multiple superpixels. From Equation 3.8 we find that very

small sized superpixels would negatively impact the quality of the subspace projection

as they would force the within-class angular scatter matrix O(lw) in SSLADA to be

calculated using a very small number of neighboring pixels (the points belonging to

the same superpixel). In other words the number of samples {xk, k ∈ Ωi} belonging

to the spatial neighborhood of a training sample xi would be very small for very small

sized superpixels. To negate this effect we merge the very small superpixels with

spatially neighboring superpixels which have similar spectral angles. The upper half

of Figure 3.2 shows a part of the University of Houston image after segmentation and

merging. The superpixels are obtained in the same way as described in Section 2.3.2.

3.4 Sparse Representation-Based Classification us-

ing Orthogonal Matching Pursuit

3.4.1 SOMP Classifier

The simultaneous orthogonal matching pursuit is a sparse representation based

classification method using the orthogonal matching pursuit algorithm. In addition

to utilizing the class label of the pixel of interest it utilizes the samples surrounding a

particular pixel of interest in order to classify that particular pixel. Thus this type of

40



classifier is specially suited to explore the information contained in the neighboring

pixels surrounding a pixel of interest while making a decision during classification.

Assume Ai contains spatial neighborhood samples (based on superpixels) around pi

(inclusive of pi), S contains the spatial neighborhood samples (based on superpixels)

around pt (inclusive of pt) and K is the sparsity level. Here, Ai = {pk}k∈Ωi
, S =

{pk}k∈Ωt , Ωi : spatial neighborhood around the training pixel xi and Ωt : spatial

neighborhood around the test pixel xt. SOMP estimates the coefficient Ĉ based on

the K mostly correlated training samples in A.

Classification via SOMP: The classification method employed after feature

extraction using SSLADA algorithm and its variants is Simultaneous Orthogonal

Matching Pursuit as described in algorithm 2. SSLADA and its other derivatives

as proposed in this chapter minimizes the angular distance between the spatially-

neighboring points belonging to the same class and maximizes the angular distance

between the pixels belonging to different classes in the projected lower dimensional

subspace. This implies that spatial neighbors in the projected lower dimensional

subspace are more likely to be spectrally similar pixels belonging to the same spatial

neighborhood in the original space and by using the SOMP classifier we can exploit

the local neighborhood structures very efficiently. We need a spatial-classifier such

as SOMP at the back-end so as to utilize the spatial information preserved by our

proposed dimension reduction algorithm, from the original space, in the reduced

feature subspace. Any pixel-wise classifier would disregard the spatial information

between the samples in the feature subspace and result in poor classification accuracies

in comparison to spatial classifiers. Also since we are proposing a feature reduction

algorithm, we keep the back-end classifier to be the same (SOMP) for all the other

feature reduction algorithms, during comparison. This was done in order to make the

comparisons fair.

The extracted features generated using Algorithm 5 are used for training the
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SOMP classifier as described next, in Algorithm 3. The performance of the feature

extraction methods are evaluated by analyzing the classification accuracies.

Algorithm 2: SOMP

1: Input: Projected training data points A = {Ai}ni=1, projected test data S and
row sparsity level K.

2: Initialize R0 = S, Λ0 = ∅, and the iteration counter m = 1.
3: while m ≤ K do
4: Update the support set Λm = Λm−1 ∪ λ by solving

λ = argmax
i=1,2,... ,n

‖At
iR

m−1‖2,1.

5: Derive the coefficient matrix Cm based on

Cm =
(
At

ΛmAΛm

)−1
At

ΛmS

6: Update the residual matrix Rm

Rm = S− AΛmCm

7: m← m+ 1
8: end while

9: Calculate the coefficient matrix: Ĉ = Cm−1.

10: Calculate residuals for each class

rk(S) = ‖S− Aδk(Ĉ)‖2, k = 1, 2, . . . , c

11: Determine the class label of S based on

ω = argmin
k=1,2,... ,c

(rk(S)).

12: Output: A class label ω.
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3.5 Experimental Settings and Results

3.5.1 Hyperspectral Datasets

We validate the proposed algorithms by applying them on two well known hy-

perspectral datasets—(1) The University of Houston dataset (2) The University of

Pavia dataset and a dataset published by our lab to study the coastal Wetlands of

Galveston, Texas (3) The SpecTIR dataset. All parameters from the datasets were

obtained by using a cross-validation or grid search technique which resulted in the

maximum accuracy values.

Grid Search Technique: The labeled data was randomly divided into 3 subsets:

Training set, validation set and the testing set. The training data was used to train

the algorithms and validation set was used to tune the free parameters to values

which resulted in the best classification accuracies. Testing results as reported in this

chapter were acquired using the testing data.

University of Houston Data

The dataset covering the University of Houston campus and the neighboring urban

area was captured using an ITRES-CASI (Compact Airbone Spectrographic Imager)

1500 hyperspectral imager. It covers 144 spectral bands spanning the visible and

near-infrared spectrum from 380 nm to 1050 nm. The image has a spatial size of

349×1905 with a spatial resolution of 2.5 m. Fifteen different classes of interest were

identified in the data. Free parameters for the algorithm were learned using a grid

search technique.

University of Pavia Data

The first Hyperspectral dataset covering the University of Pavia in Italy was

captured using the Reflective Optics System Imaging (ROSIS) sensor [52]. The image
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contains 103 spectral bands spanning from 430 nm to 860 nm with 9 classes of interest.

It has a spatial coverage of 610 × 340 pixels with a spatial resolution of 1.3 m. Free

parameters for the algorithm were learned using a grid search technique.

SpecTIR Airborne Data

The data was acquired in a study conducted in the coastal wetland of Galve-

ston, Texas. Wetland vegetation, which is a crucial part of the wetland ecosystem,

is found to change dramatically with respect to both coverage and species distribu-

tion. Marshes in Mission-Aransas estuary used to be dominated by smooth cordgrass,

but are now mostly covered by black mangroves. Such transitions in coastal vege-

tation are likely to influence the quality of coastal wetlands for supporting shrimps,

fishes, birds and change the ability of the coastal habitats to buffer wind and wave

energy. Therefore, mapping the wetland species would help us to better manage the

endangered wetland ecosystems.

An airborne hyperspectral image was captured using the ProSpecTIR VS sensor on

August 14, 2015. The image is captured at 360 wavelength bands ranging from 400 nm

to 2450 nm, at a spectral resolution of 5 nm. The radiance data were radiometrically

and spectrally calibrated before they were converted to the reflectance data using

the ATCOR 4 software. The output reflectance data of multiple flight lines were

eventually geo-corrected and mosaiced as an image with spatial coverage of 3462×5037

pixels at a 1 m spatial resolution.

Since labeling samples through photo-interpretation is not applicable in this situ-

ation, a field survey was made on September 16, 2016. Upland grass, St. Augus-

tine grass, Sesbania / rattlebox, Upland tree, Phragmites austrails, Sabal

mexicana / palm tree, Spartina alterniflora, Juncus roemerianus, Batis

maritima / Distichlis spicata, Distichlis spicata, Baccharis halimifolia

and Avicennia germinans / black mangrove were identified to be the 12 dis-
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tinct classes. The dataset contains a total of 7219 labeled samples. Free parameters

for the algorithm were learned using a grid search technique.

3.5.2 Experimental Setup

The algorithms proposed in this chapter are shown to be better than other state

of the art feature extraction methods in terms of learning effective subspaces. We

compare the proposed algorithms with other feature extraction algorithms — Prin-

cipal Component Analysis (PCA) [53], Local Fisher Discriminant Analysis (LFDA)

[54], Locality Preserving Projections (LPP) [55], Local Angular Discriminant Anal-

ysis (LADA) [42] and their kernel variants. We also compare our algorithms to

a semi-supervised feature extraction algorithm — SELF [56] and a spatial-spectral

classification algorithm based on entropy-rate superpixels and multiple-kernel SVM’s

— SC-MK [57]. The algorithms are evaluated as a function of the number of training

samples. For every case, the training samples are used to train the feature extraction

algorithm in order to extract the relevant features, using which the classification algo-

rithm is trained and used to predict the class labels of the test samples. The training

and test samples were generated using a repeated random subsampling method. The

number of labeled training samples for each case, N, is mentioned in the columns

of Table 5.3, Table 3.2 and Table 3.3. The number of unlabeled training samples

used for each case for semi-supervised methods is fixed to be equal to the number of

labeled training samples. The number of test samples was fixed to 100 when the Uni-

versity of Houston and University of Pavia datasets were used and for the SpecTIR

dataset all the available labeled samples excluding those used for training were used

as test samples. All the reported accuracies are the average accuracies of 10 repeated

random subsampling results. The notation LADA-SOMP means that LADA is used

as the feature extraction algorithm and SOMP is used as the back-end classifier. All

the other notations have similar meanings.
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Comparison with simple Fixed size Rectangular Windows: We use fixed

sized rectangular windows around each pixel of interest to define its spatial neigh-

borhood in order to observe if very basic spatial neighborhoods (simple rectangular

windows) can improve the subspace projections as well. We use rectangular windows

which are of sizes equal to the mean size of all superpixels after merging, in order to

keep our experimental designs equivalent. Our results show that simple rectangular

windows also provide an improvement in accuracy over LADA but the gain is not

as high as compared to the case when superpixels are used. This happens because

even for small sized rectangular windows there is a chance of generating rectangular

windows which contain pixels belonging to multiple classes. This introduces inaccu-

racy in the calculation of the within-class outer product scatter matrix (O(lw)) in our

algorithms, which, assume that all pixels inside the generated patches belong to the

same class.

For the case of superpixels this problem (mixing of pixels belonging to different

classes) can be avoided to a significant degree as superpixels are able to generate

patches in the image which contain spectrally similar pixels. This idea gets reflected

in the results which show that the superpixel based SSLADA leads to higher classifica-

tion accuracies compared to the rectangular window based SSLADA. It is interesting

to note that even though the rectangular window based SSLADA performs slightly

poorly compared to the superpixel based SSLADA, it still outperforms LADA in

terms of generating features which can train the classifier more effectively. Thus by

providing a spatial context (albeit in a very simplistic manner) to the spectral angle

based feature extraction method LADA, we can considerably improve the quality of

subspace projection.

3.5.3 Results and Analysis

The best linear algorithm among all linear algorithms and the best kernel algo-
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rithm among all kernel algorithms are shown using bold black symbols.

University of Houston Dataset: Table 5.3 shows the overall classification ac-

curacies as a function of the number of training samples for the University of Houston

dataset. Table 3.4 shows the class specific accuracies when 10 samples are used for

training and 100 samples are used for testing for the University of Houston dataset.

We notice from Table 5.3 that for all cases, the overall classification accuracies im-

prove when our proposed dimension reduction approaches are used instead of the

baseline methods. We notice from Table 3.4 that for the classes which are harder

to classify as — Residential area, Roads, Parking lot 1 and Parking lot 2 — our

algorithms significantly outperform the other baseline algorithms.

University of Pavia Dataset: Table 3.2 shows the overall classification accu-

racies as a function of the number of training samples for the University of Pavia

dataset. Table 3.5 shows the class specific accuracies when the number of training

samples is 10 and 100 test samples per class are used for the University of Pavia

dataset. We notice from Table 3.2 that for all except one case, the overall classi-

fication accuracies improve when our proposed dimension reduction approaches are

used instead of the baseline methods. There is one case when the kernel LFDA algo-

rithm performs slightly better than the kernel version of our proposed algorithm, but

even for that case the classification accuracy produced by the proposed algorithm

is still very close to the best accuracy (difference of 0.42% compared to KLFDA,

when the number of training samples per class is 40). For this specific case angular

distances do not offer significant advantages as classes are already well separated in

the euclidean space. This is further suggested by the reported observations, where

completely deviating from the trends observed using the University of Houston and

SpecTIR datasets, Euclidean distance based KLFDA algorithm performs better than

the angular distance based KLADA algorithm, for the University of Pavia dataset.

This could simply be due to the fact that the University of Pavia dataset is impacted
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less by illumination differences and other factors which are exploited by angular dis-

tance based algorithms. This happens as this dataset has a separate class representing

‘Shadows’, which implies that majority of the other classes are not impacted by un-

wanted shadows or illumination differences. We notice from Table 3.5 that for the

classes which are harder to classify as — Asphalt, Gravel, Soil and Bricks — our

algorithms significantly outperform the other baseline algorithms.

SpecTIR Dataset: Table 3.3 shows the overall classification accuracies as a

function of the number of training samples for the SpecTIR dataset acquired by

our lab. Table 3.6 shows the class specific accuracies when the number of training

samples is 12 and all available test samples are used during classification. We notice

from Table 3.3 that for all cases, the overall classification accuracies improve when our

proposed dimension reduction approaches are used instead of the baseline methods.

We notice from Table 3.6 that for the classes which are harder to classify as — Sabal

mexicana (palm tree) and Avicennia germinans (black mangrove) — our algorithms

significantly outperform the other baseline algorithms.

Tables 3.7, 3.8 and 3.9 show the overall accuracy as a function of the reduced

dimensionality of the data for the University of Houston, University of Pavia and

SpecTIR datasets, respectively. For both Table 3.7 and 3.8: 50 samples per class

were used for training the algorithms and testing was done on 100 randomly selected

samples. For Table 3.9: 30 samples per class were used for training and all the

other labeled samples were used for testing.

We notice that the overall accuracy does not change significantly with respect to

the reduced dimensionality after the dimensionality increases beyond 20. Thus, we

limit our experiments to compare only 2 algorithms here and focus primarily on the

more interesting observations where the overall accuracy is a function of the number

of training samples per class. In our comparison our proposed KSSLADA-sp. algo-

rithm produces the highest classification accuracy followed by the SC-MK algorithm.
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However, we do not need feature reduction for SC-MK, as feature reduction doesn’t

theoretically benefit SVMs, since the kernel algorithm ultimately projects the data to

an infinite dimensional subspace. Thus we limit the comparison of the linear version

of our proposed algorithm (SSLADA-sp.) only to the SELF algorithm.

Figures 3.4-3.5 show the classification maps of the entire datasets for the Uni-

versity of Houston and University of Pavia images, respectively, with our proposed

KSSLADA-sp. algorithm and the best baseline algorithm SC-MK. For the University

of Pavia classification maps - Asphalt roads (depicted by gray color) are much bet-

ter classified using the proposed KSSLADA-sp. algorithm than SC-MK algorithm.

The asphalt roads in the classification map using our algorithm are less impacted

by noise. For the University of Houston classification maps - The SC-MK algorithm

misclassifies parking lot 2 (depicted by light blue color) as commercial area (depicted

by greyish blue color) or assigns other classes to the pixels belonging to parking lot

2.

Figure 3.4: Classification maps with the proposed KSSLADA-sp. and baseline SC-
MK algorithm for University of Houston dataset
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Table 3.1: Overall accuracies (%) for the University of Houston data.

Algorithm / N 10 20 30 40 50

PCA 65.81±2.5 69.10±2 69.95±1.7 71.56±1.8 72.39±1.9

KPCA 64.59±1.7 68.95±1.7 69.85±2.1 71.34±1 72.52±1.6

LFDA 57.37±5.4 74.13±3 76.51±2.6 78.53±1.3 78.9±2.5

KLFDA 78.75±2.4 82.17±2.5 83.79±2.3 85.72±2.7 84.55±2.2

LPP 50.87±2.8 75.61±2 81.35±2.1 85.41±1.7 88.65±2.6

KLPP 79.87±4.2 86.62±1.2 90.53±1.4 90.11±1.4 92.02±1.6

LADA 83.37±2.6 88.14±1.9 90.10±1.5 91.93±1.7 92.70±1.3

KLADA 83.89±2.2 90.77±1.5 92.69±0.7 94.91±1.4 96.19±0.8

SELF 74.47±2.8 78.93±2.3 79.5±2.4 80.47±1.8 82.17±1.7

SC-MK 86.26±1.9 91.32±1.7 93.56±1.0 94.6±0.9 95.18±1.3

No feature reduction 77.47±2.3 83.59±1.2 86.19±1.1 88.33±0.9 90.04±1

SSLADA-rect. (proposed) 83.95±2.3 89.33±1.9 90.75±1.1 92.58±1.6 93.60±1.4

KSSLADA-rect. (proposed) 85.81±1.7 91.45±1.7 93.87±1.5 96.07±1.2 97.29±0.7

SSLADA-sp. (proposed) 87.1±1.8 92.53±1.3 94±0.8 95.63±1.2 97.3±1

KSSLADA-sp. (proposed) 87.82±1.6 93.28±0.9 94.69±0.8 96.67±0.6 98.2±0.7
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Table 3.2: Overall accuracies (%) for the University of Pavia data.

Algorithm / N 10 20 30 40 50

PCA 66.02±2.6 69.21±3.1 71.23±2 72.62±1.2 73.46±2.7

KPCA 67.86±3.5 71.79±2.2 72.48±1.8 75.60±1.7 73.36±2

LFDA 55.44±3 68.17±3 72.27±1.8 73.89±1.3 73.73±2.2

KLFDA 81.34±2.2 86.21±2.3 90.14±2.2 91.58±1.6 92.11±1.2

LPP 36.38±2.5 67.68±2.5 74.48±2.2 78.6±2.2 79.79±2.1

LADA 74.54±2.5 77.81±2.4 79.18±2.5 79.14±1.7 81.12±1.9

KLADA 79.92±3.2 83.81±2.5 86.36±1.4 85.38±1.1 87±1.6

SELF 72.42±3.09 75.74±2.8 78.51±3.0 82.13±1.9 81.92±2.4

SC-MK 75±4.1 83.72±1.2 86.95±2.2 90.2±1.7 91.27±1.3

No feature reduction 70.5±2.1 75.92±1.4 75.24±1.9 76.77±1.9 78.7±1.3

SSLADA-rect. (proposed) 75.40±3 78.83±2.6 80.53±2.3 80.42±1.8 81.77±2.2

KSSLADA-rect. (proposed) 82.24±3.2 86.53±2.3 88.61±1.9 89.59±1.1 90.82±1.5

SSLADA-sp. (proposed) 77.51±1.9 80.38±2.1 82.07±2 82.02±1.3 83.67±2.3

KSSLADA-sp. (proposed) 83.5±2.7 87.92±1.5 90.53±1.6 91.16±1.3 92.13±1
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Table 3.3: Overall accuracies (%) for the SpecTIR dataset.

Algorithm / N 6 12 18 24 30

PCA 59.49±3.5 62.59±3.6 64.7±4 64.24±2 64.27±2.7

KPCA 66.88±4.2 69.89±1.8 70.99±1.5 71.9±1.3 72.28±1.3

LFDA 66.38±3.8 71.93±3 73.48±3 77.51±2.8 78.43±2

KLFDA 71.79±3 74.91±2.3 76.77±2.8 76.7±2.7 77.57±1.6

LPP 49.05±4 51.47±3.4 77.27±3.5 80.79±2.1 81.2±2

KLPP 66.31±4.3 72.11±2.7 81.38±0.8 82.21±2.3 82.76±1.3

LADA 75.99±4.4 78.42±3.2 77.84±2.5 79.48±2.7 79.99±1.2

KLADA 75±3.2 78.32±2.3 80.02±1.2 79.56±2 80.47±1.2

SELF 60.99±2.9 73.03±2.5 77.11±2.2 76.87±2.7 76.03±2.4

SC-MK 69.34±2.6 72.13±1.37 72.42±1.73 74.16±2.9 73.86±2.3

No feature reduction 65.41±2.8 69.2±1.8 70±1.2 72.1±1.8 71.8±1.6

SSLADA-rect. (proposed) 75.19±3.3 81.21±2.7 80.87±2.3 82.07±2.4 82.9±1.7

KSSLADA-rect. (proposed) 77.49±2.1 80.03±2.5 83.76±1.8 83.77±2.9 85.9±1.5

SSLADA-sp. (proposed) 77.37±3.4 82.57±1.5 82.76±1.9 83.71±2.6 84.67±1.6

KSSLADA-sp. (proposed) 77.68±3 81.82±1 83.96±2.4 83.73±1.5 86.05±1.2
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Table 3.4: Class-specific accuracies (%) for the University of Houston data.

Classes / Algorithm LADA KLADA SELF SC-MK SSLADAs KSSLADAs

1. Grass-healthy 97.8 98.8 99.4 96.1 95.6 98.2

2. Grass-stressed 94.2 99.2 89.5 98.7 98.5 98.1

3. Grass-synthetic 100 100 96.8 98.3 100 100

4. Tree 98.3 99.4 94.6 98.7 97 99.6

5. Soil 99.4 97.2 98.1 93.9 99.9 99.9

6. Water 84.7 90.6 82.9 95.9 94.1 97.6

7. Residential 73.9 74.3 55.1 80 85.2 82.9

8. Commercial 72.3 60.6 56.5 61.8 71.7 59

9. Road 56.3 72.4 40.5 79 63.2 79.5

10. Highway 87.9 76.3 73.9 87.2 85.5 88.2

11. Railway 70 77.2 66 84.7 83.9 95.5

12. Parking Lot 1 66.2 60.1 55.6 68.7 68.9 62.7

13. Parking Lot 2 49.7 52.3 32.3 55.2 63.7 56.9

14. Tennis Court 99.7 100 95.7 97 100 99.7

15. Running Track 100 100 80.1 98.8 99.3 99.5

Overall Accuracy 83.36 83.89 74.5 86.3 87.1 87.82
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Table 3.5: Class-specific accuracies (%) for the University of Pavia data.

Classes / Algorithm LADA KLADA SELF SC-MK SSLADAs KSSLADAs

1. Asphalt 44 74.3 38.4 68.6 45.8 76.8

2. Meadows 70 81.9 66.6 74 71.3 73.1

3. Gravel 75.5 85.7 73 70.5 76.9 85.5

4. Trees 88.2 51.9 84.1 89.1 86.2 76.1

5. Metal Sheets 100 91.1 99.2 99.1 99.4 97.6

6. Soil 70.5 78.1 63.5 70.6 71.2 80.7

7. Bitumen 90.1 95.5 86 84.1 91.2 90.5

8. Bricks 57.8 84.6 60 70.5 59.7 72.6

9. Shadows 74.6 76 81 99 95.9 98.6

Overall Accuracy 74.54 79.92 72.4 75 77.51 83.5

Table 3.6: Class-specific accuracies (%) for the SpecTIR data.

Classes / Algorithm LADA KLADA SELF SC-MK SSLADAs KSSLADAs

1. Upland grass 63.4 96.4 98.4 25.2 98.2 97.4

2. St. Augustine grass 40.2 52.8 42 32.8 58.5 60

3. Sesbania (rattlebox) 97.4 97.5 90 77.8 89.2 92.9

4. Upland tree 54.9 57.4 59 52.7 52.5 45.4

5. Phragmites austrails 23.6 20.4 43.5 25.9 34.4 22.6

6. Sabal mexicana (palm tree) 3.4 5 0.9 17.1 17.5 47.7

7. Spartina alterniflora 61.4 53.5 65.4 58.9 63.6 75.9

8. Juncus roemerianus 90.2 97.7 97.9 96.7 87.7 95.93

9. Batis maritima / Distichlis spicata 100 100 99.4 100 100 99.6

10. Distichlis spicata 99.9 100 94.7 99.7 99.9 100

11. Baccharis halimifolia 95.2 89 71.4 91.6 97.9 95.1

12. Avicennia germinans (black mangrove) 89.3 82.1 73 81.1 88.2 85

Overall Accuracy 78.4 78.3 73 72.1 82.6 81.9
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Table 3.7: Overall accuracies (%) for the University of Houston data versus reduced
dimensionality of the data (50 training samples per class used)

Algorithm / r 10 20 40 80 100

SELF 78.51±1.7 82.17±1.7 81.49±1.3 81.59±1.7 81.63±2

SSLADA-sp. 92.73±1.1 97.3±1 95.97±0.9 96.41±0.5 96.48±0.9

Table 3.8: Overall accuracies (%) for the University of Pavia data versus reduced
dimensionality of the data (50 training samples per class used)

Algorithm / r 10 20 40 80 100

SELF 76.21±3.6 81.92±2.4 80.57±2.2 80.04±1.5 78.88±3.1

SSLADA-sp. 77.83±1.9 83.67±2.3 82.39±2 81.11±2 81.83±1.8

Table 3.9: Overall accuracies (%) of the SpecTIR data versus reduced dimensionality
of the data (30 training samples per class used)

Algorithm / r 20 40 80 160 200

SELF 76.03±2.4 76.64±2.4 74.72±2.8 74.67±2.5 73.7±2.6

SSLADA-sp. 84.67±1.6 82.96±2.5 81.6±2.3 82.17±2.1 81.52±2.9
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Figure 3.5: Classification maps with the proposed KSSLADA-sp. and baseline SC-
MK algorithm for University of Pavia dataset
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3.6 Conclusion

In this work we propose a semi supervised approach to utilize the unlabeled sam-

ples during supervised feature extraction and also propose a general method which

can be applied to utilize the spatial information by embedding the spectrally similar

spatial neighborhoods using superpixels and small fixed sized rectangular windows,

for angular discriminant based feature extraction algorithms such as LADA. We also

kernelize our proposed linear algorithm in order to extract features from data which

are non-linearly separable. We show that embedding the spatial neighborhoods during

the process of feature extraction significantly improves the classification accuracies

by applying the neighborhood embedding algorithms to LADA. We show that our

proposed methods are able to extract better features which train the classifier in a

more effective manner and produce higher classification accuracies than other state

of the art baseline feature extraction or dimension reduction approaches.
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Chapter 4

A Spatial-Spectral Semisupervised

Deep Learning Framework using

Siamese Networks and Angular

Loss

Deep learning has gained popularity in recent times in the field of feature-extraction,

object-identification, object-tracking, change-detection, image-classification, spatio-

temporal-data analysis, and hyperspectral imaging. Most of the supervised tasks

using deep learning require a large number of labeled samples, barring which the

model tends to overfit and do not generalize well to the test data. Semi-supervised

learning is very beneficial for hyperspectral images which contain abundant unla-

beled data samples in comparison to labeled data. Furthermore, it is known that

for datasets in which samples are related to each other in all three dimensions such

as videos, three-dimensional biological images and hyperspectral images, the use of

spatial-spectral / spatial-temporal based deep learning strategies, which can exploit

the relationship between pixels in all three-dimensions, has also seen a rise in the past
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few years. Moreover, to date, deep feature extraction and classification has been done

using euclidean distance based metrics. Foray into the field of angular feature extrac-

tion and classification, which is known to work better when samples are impacted by

resolution or illumination differences, has not yet been made. We propose a novel

spatial-spectral semisupervised deep learning approach based on angular distances by

projecting the deep features onto the surface of an l2-normalized unit hypersphere.

4.1 Introduction

Deep learning has been an area of research since many years [76]. The rise of

accelerated computational power has led to a growing interest and revival of deep

learning based image analysis methods [77]. The remarkable results in the field of

image classification based tasks [77] in recent times has made deep learning popular in

the field of hyperspectral image classification as well. To date, a majority of the work

has exploited euclidean distances for deep feature extraction and classification. To

counter the major disadvantage of overfitting in the field of deep learning i.e. to pre-

vent overfitting due to a low number of available labeled data, many research groups

have explored the field of semi-supervised deep learning. For hyperspectral image

classification, since the unlabeled samples are available very easily compared to the

labeled samples, semi-supervised deep learning is a very important and a burgeoning

field of research. There are papers in recent literature which have already started

to explore the field of semi-supervised deep learning in the domain of hyperspectral

image analysis [78, 71]. Our contribution in this chapter is three fold: (1) We propose

a 1D-Semi-Supervised Spectral deep feature extraction and classification method to

make use of the unlabeled samples in addition to the labeled samples to learn sev-

eral million parameters from our deep network, (2) To exploit the Spatial-Spectral

relationship between the pixels we integrate the above setup with 3D-CNN’s which
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are capable of learning three-dimensional spatial-spectral filters from the data and

(3) We also make our objective function for deep feature extraction and the back-end

classification softmax function to utilize angular distances between pixels / frames

instead of euclidean distances, which is normally used. To the best of our knowl-

edge even though there has been a foray in the first field, to pre-train deep networks

using unsupervised objective functions in the past, and the second field, to exploit

the spatial-temporal [79, 80] and spatial-spectral [81, 82] relationship between pixels

by using 3D-CNN’s, it is still an emerging area within hyperspectral image analysis.

To the best of our knowledge, angular distance based deep feature extraction and

classification of hyperspectral images has not been developed or studied previously

either.

4.2 Related Work: Semi-Supervised Deep Learn-

ing

Deep Learning has been used in the field of machine learning for a long time

[83, 84]. Recently, due to the improved hardware availability it has been possible to

train the deep models in realistically short periods of time. However, most supervised

models still require a large number of labeled samples during training, in order to

learn models which generalize well on the validation / testing data. Thus the use of

unlabeled data is of prime importance in the field of deep learning.

Semi-supervised deep learning based on discriminative learning [78, 85] have been

proposed. Discriminative models aim to directly map the inputs and outputs of

systems and avoid any modeling of the underlying distributions. In the paper [85],

the authors use an Euclidean distance based metric learning approach to perform

deep semi-supervised learning. They implement a loss function for their deep network,

which reduces the euclidean distance between the deep features of similar samples and
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increases the euclidean distance between the deep features of the dissimilar samples.

Other than discriminative learning, generative learning approaches have also been

used to perform unsupervised and semi-supervised deep learning [86, 87, 88, 89, 90,

91]. Generative models produce a probability distribution over all variables in a

system and manipulate it to perform classification. Recently, approaches combining

generative and discriminative models as [92, 93, 94, 95, 96] have been used to perform

semi-supervised learning. These models penalize the generative model as long as the

samples drawn from it do not perform well in a discriminative model, in a mini-

max optimization game. In [92], the authors train feed-forward neural networks with

additional penalty from an auto-encoder. [78] proposed a pre-training strategy where

the initial layers of the deep network are trained using data and cluster labels and

then a few tunable layers are added at the end of the network to learn from the

limited number of training samples. This paper uses the strategy of pre-training

and transfer learning in an efficient manner. By pre-training using cluster labels the

initial layers of the network are able to learn filters which will be able to discriminate

between samples belonging to different clusters and group samples which belong to

the same cluster. The same filters (along with a few more learnable filters at the end)

are then used to discriminate between samples belonging to different classes (due

to oversegmentation of the image, we assume that samples belonging to different

classes belong to different clusters) by fine-tuning on the limited number of labeled

samples. Though an efficient strategy, this method is not optimized for hyperspectral

image classification: (1) It neglects the spatial information contained in hyperspectral

image cubes by vectorizing and using spectral data pixels; (2) It neglects the use of

regularizers that are directly related to unsupervised embedding algorithms, which

is known to be a very important approach in the field of semisupervised learning

[85, 97, 98, 99, 100]; (3) It extracts features and performs classification using euclidean

distance based metrics, which are not optimal for hyperspectral images impacted
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by shadows and illumination differences. In this chapter we propose a deep neural

network which will address each of the mentioned issues.

4.3 Proposed Work: Semi-Supervised Deep Learn-

ing via Angular distance embedding

4.3.1 Motivation

It well known that for hyperspectral datasets, features which are Angularly dis-

criminative perform better than features which are generated based on Euclidean

distance based metrics, in terms of classification performance on data which have

illumination differences between pixels belonging to the same class [24]. 4.1 clearly

shows this phenomenon. Furthermore, it has also been observed that task specific

unsupervised pre-training to learn the millions of parameters in deep neural net-

works improves the deep features and increases the classification performance of the

back-end softmax classifier (which is generally used for classifying the extracted deep

features) [78]. It can also be hypothesized that the availability of a large number of un-

labeled samples or unlabeled frames along with a deeper network can help to increase

the complexity of the deep layers during the pre-training stage, without leading to the

problem of over-fitting. We expect that the framework we present in this chapter will

allow us to construct deeper networks with a large number of trainable parameters

that can be learned from unlabeled data in a semi-supervised manner. Futhermore,

we also know that utilizing the spatial contextual information from images helps to

improve the generation of more robust features. Thus we propose a Spatial-Spectral-

Semi-Supervised-Angular feature extractor followed by an Angular-distance metric

based back-end Softmax classifier in our current chapter.
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Figure 4.1: Removal of clouds from UH image after l2-normalization, i.e. after sam-
ples are projected onto a unit hypersphere

Figure 4.2: Block diagram representation of the proposed 3D Network architecture
(CE and CL functions are as defined in Equation 4.1. A-Contrastive and
A-Softmax Loss are as defined in Equations 4.3 and 4.7, respectively)
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4.3.2 Algorithm

The block diagram representation of our proposed work is shown in Figure 4.2.

The algorithm for the proposed method is described in Section 4.3.2 under the Ex-

planation paragraph.

As shown in the figures and in Section 4.3.2 under the Explanation paragraph we

first cluster the unlabeled samples from our image using a Constrained Dirichlet Pro-

cess Mixture Model (C-DPMM) based approach as proposed in [101]. DPMM based

models find clusters by minimizing an optimzation function, which considers: (1) The

distance of the samples of interest from other clusters, (2) The density of samples in

nearby clusters and (3) The cost of forming new clusters. The optimization function

is formed using Bayesian probabilistic approaches. C-DPMM is a variant of DPMM

having additional no-link (between inter-class samples) and to-link (between intra-

cluster samples) constraints. Next we perform unsupervised pre-training using a joint

loss function which combines the angular cross-entropy and angular contrastive loss

functions, using a siamese neural network [102]. Finally, we add a few tunable layers

at the end of the network to learn the specialized features from unseen data (having

a very low number of labeled samples) to perform supervised fine-tuning.

Explanation:

Preprocessing: The input hyperspectral image and ground truth is available: Image ∈

Rrw×cl×d and Ground Truth: Y ∈ Rrw×cl. Clustering of the image is done by applying

the C-DPMM algorithm [101] to generate i different clusters denoted by: ζi = {zj}ni
j=1

for i = 1, 2, ....,N (where i : cluster index and j : pixel index within the ith cluster,

ζ are the different clusters, z represents the individual pixels within a cluster, N is

the total number of clusters and ni are the total number of points in each cluster).

We then form spatial-rectangular-window-frames Xd and Xe around the unlabeled

sample pixels xd and xe, respectively. We form a set G containing pairs of spatial-

window-frames according to the cluster label of the central pixel in each frame. Let
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G = [ ] initially, and:

if xd =⇒ ζi and xe =⇒ ζi, then

G = G ⊂ {Xd, Xe, ∆1 = 1}

else

G = G ⊂ {Xd, Xe, ∆0 = 0}

Where G contains similar and dissimilar spatial window frames generated according

to the cluster labels of the central pixel of each frame; and ∆1 = 1 if the frames are

similar, else ∆0 = 0.

Unsupervised Pre-training: We acquire γl = fl(Xl), γm = fm(Xm), where γl

and γm are the feature descriptors generated from the penultimate layer of the deep

neural networks, produced by non-linear mapping (parameterized by the deep neural

network) of the window frames Xl and Xm, respectively. We then constrain these

features to lie on the surface of a unit hypersphere by performing l2−normalization.

Finally, we minimize the angularly discriminative loss function (inspired by the con-

trastive loss function defined for Euclidean space as proposed in [85]):

H(c, c′) + max
cos (∠γl−∠γm)

[∆lm(cos (∠γl − ∠γm))2

+(1−∆lm)(min(0,Θ− cos (∠γl − ∠γm))2)] ,

(4.1)

where H(c, c′) is the categorical cross-entropy function when only cluster labels are

used to train the sample frames, c is the true cluster label of the sample frame, c′ is

the cluster label predicted by the deep network, ∆lm = 1 or 0 depending on whether

the central pixels of Xl and Xm have the same cluster labels or not, Θ makes sure

that the final deep features of dissimilar samples are separated from each other by at

least some minimum angular distance.

Supervised Fine-tuning: We then proceed by fixing the layer parameters (weights

and biases) of all the layers before the l2−normalization layer, to the final layer pa-

65



rameters after optimization of the unsupervised pre-training loss. Finally, we optimize

the loss function for Angular Softmax Classifier

min

[
− 1

M

M∑
p=1

log
exp(W T

ypf(Xp) + byp)∑Ξ
q=1 exp(W T

q f(Xp) + bq)

]

s.t. ||f(xp)||2 = 1 ∀p = 1, 2, ...,M ,

(4.2)

where Xp is the input rectangular frame in batch of size M, yp is the corresponding

class label of the pth sample, f(Xp) is the feature descriptor obtained from the penul-

timate layer of the deep neural network (layer before the Angular Softmax Classifier),

Ξ is the number of classes, W and b are the weights and bias of the last layer of the

network, which is the softmax classifier. The decision boundary of Angular Softmax

Classifier is calculated using the features which are projected onto a hypersphere and

separated based on angular distances instead of euclidean distances.

4.3.3 Angular Deep feature extraction by Pre-training

Clustering and Pairing via CDPMM

As we propose a general framework, our model can use any state-of-the-art clus-

tering methods. But in our work here we use Constrained-DPMM based clustering

as proposed in [101].

Angular Loss Function

Inspired by the Euclidean distance based metric learning approach from [85] we

propose a joint angular based loss function for the purpose of pre-training most of

the initial layers of our deep network.
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H(c, c′) + max
cos (∠γl−∠γm)

[∆lm(cos (∠γl − ∠γm))2

+(1−∆lm)(min(0,Θ− cos (∠γl − ∠γm))2)] ,

(4.3)

where H(c, c′) is the categorical cross-entropy function when only cluster labels are

used to train the sample frames, c is the true cluster label of the sample frame, c′ is

the cluster label predicted by the deep network, γl and γm are the non-linear feature

descriptors generated by the penultimate layer (before the angular softmax classifier)

of the deep neural network corresponding to the input frames Xl and Xm respectively,

∆lm = 1 or 0 depending on whether Xl and Xm have the same cluster indices or not,

Θ makes sure that the final deep features of dissimilar samples are separated from

each other by at least some minimum angular distance.

4.4 Classification of Angularly Discriminative fea-

tures

4.4.1 Softmax Classification

Normally an euclidean distance based softmax classifier is used at the back-end

to classify the extracted deep features. The equation for the Softmax Classifier will

be

Ps =
exp(W T

s f(x) + bs)∑Ξ
r exp(W T

r f(x) + br)
, (4.4)

Where W and b are the weights and biases for the final softmax classification layer;

and f(x) is the non-linear mapping parameterized by the penultimate layer of the

deep neural network (just before the final softmax classification layer) whose input is
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x. The predicted label will be assigned to class s if Ps > Pr ∀r ∈ {1, 2, 3, 4, ...,Ξ}.

Where Ξ is the total number of classes in the dataset. Thus the optimization function

for the softmax classifier would be

min

[
− 1

M

M∑
p=1

log
exp(W T

ypf(Xp) + byp)∑Ξ
q=1 exp(W T

q f(Xp) + bq)

]
, (4.5)

where all the symbols are as defined before in Section 4.3.2 under the Explanation

section.

4.4.2 Angular Softmax Classification

It has been seen that angle based classifiers [39, 103] work better when data sam-

ples are impacted by illumination differences (if samples belonging to the same class

have illumination differences between them), especially in the field of Hyperspectral

Image Analysis [24]. Euclidean distance based classifiers fit to the high-resolution

data samples but completely ignore the low-resolution data samples [103]. Features

which are discriminative in an angular space or the surface of a hypersphere do not

face the same problem. Thus, we implement an angular softmax classifier, by in-

troducing an l2-normalization layer just before the final softmax classification layer

and after the penultimate layer in the deep neural network. This projects the deep

features onto the surface of a unit hypersphere, as shown in Figure 4.3. On a hyper-

sphere, minimizing the softmax loss is equivalent to maximizing the cosine similarity

between intra-class samples, and minimizing it for inter-class samples. The angular

softmax loss (as proposed in [103]) is also able to model the difficult cases with intra-

class illumination variance within samples in a more robust manner, as all the angular

features have the same l2-norm. Qualitatively, as seen before, projecting the samples

onto the surface of a hypersphere removes the illumination differences or shadows

between samples. The equation for angular softmax will then become (as proposed
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in [103])

Ps =
exp(W T

s f(x) + bs)∑Ξ
r exp(W T

r f(x) + br)
s.t. ||f(x)||2 = 1 . (4.6)

Thus the optimization function for the angular softmax classifier would be:

min

[
− 1

M

M∑
p=1

log
exp(W T

ypf(Xp) + byp)∑Ξ
q=1 exp(W T

q f(Xp) + bq)

]

s.t. ||f(xp)||2 = 1 ∀p = 1, 2, ...,M .

(4.7)

where all the symbols are as defined before in Section 4.3.2 under the Explanation

section.

Figure 4.3: Visual representation of the data samples from different classes being
separated by original softmax and angular softmax
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4.5 Experimental Settings and Results

4.5.1 Hyperspectral Datasets

We validate our proposed algorithms on two datasets: (1) The well-known urban

University of Houston dataset from 2013 and (2) The SpecTIR Wetlands dataset

which was acquired by our lab at University of Houston, and which captures the

Wetlands of Galveston in 2015.

Dataset Partitioning and Parameter Optimization: The entire data was

randomly partitioned into three subsets including the - training, validation and test-

ing datasets. It was made sure that the random samples are non-overlapping and also

belong to different spatial parts of the image. Since we are using a spatial-spectral

approach for classification, it is important to make sure that the training and the val-

idation / testing datasets do not have any spatial overlap between them. This is done

to prevent testing on the training data. After obtaining the point samples, window-

size×window-size frames surrounding the individual pixels were acquired. These

were then used as the training, validation and testing frames. All the free parameters

were obtained by tuning them to result in the highest validation accuracy on the

validation data frames.

University of Houston Data

The University of Houston dataset captures the campus and the neighboring urban

area, using an ITRES-CASI (Compact Airbone Spectrographic Imager) 1500 hyper-

spectral imager. It covers 144 spectral bands spanning the visible and near-infrared

spectrum from 380 nm to 1050 nm. The image has a spatial size of 349× 1905 with

a spatial resolution of 2.5 m. It contains 15 different classes of interest.
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SpecTIR Airborne Data

The data was acquired in a study conducted in 2015, in the coastal wetlands of

Galveston, Texas. Wetland vegetation, a crucial part of wetland ecosystem is found

to have an immense impact on the species coverage and distribution. Marshes in

Mission-Aransas estuary which used to be dominated by smooth cordgrass are now

covered mostly by black mangroves. Such sudden drastic changes tend to influence

the quality of coastal wetlands, which support a wide variety of marine / aquatic

animals as shrimps, fishes, birds and have an impact on the ability of the coastal

habitats to buffer wind and wave energy. Therefore, mapping and monitoring the

wetland ecosystems will help us to better manage and monitor the endangered wetland

ecosystems.

An airborne hyperspectral image was captured using the ProSpecTIR VS sensor

on August 14, 2015. Ranging from 400 nm to 2450 nm, the image was captured

at 360 wavelength bands, at a spectral resolution of 5 nm. The radiance data were

radiometrically and spectrally calibrated before they were converted to the reflectance

data using the ATCOR 4 software. The output reflectance data of multiple flight

lines were eventually geo-corrected and mosaiced as an image with spatial coverage

of 3462× 5037 pixels at a 1 m spatial resolution.

Since labeling samples through photo-interpretation was not possible in this situ-

ation, a field survey was made on September 16, 2016. Upland grass, St. Augus-

tine grass, Sesbania / rattlebox, Upland tree, Phragmites austrails, Sabal

mexicana / palm tree, Spartina alterniflora, Juncus roemerianus, Batis

maritima / Distichlis spicata, Distichlis spicata, Baccharis halimifolia ,

Avicennia germinans / black mangrove, Roads, Sand, Soil, Rocks and

Urban constructions were identified to be the 17 distinct classes. The dataset

contains a total of 7219 labeled samples.
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4.5.2 Network Architecture

The Deep Neural Network (DNN) architectures used for all our Experiments are

as shown in Table 5.1.

Table 4.1: Network Architecture of 3D Deep Neural Networks

Dataset Layer Kernels Filters ReLU Pooling Dropout

Conv 3D-1 32× 2× 2 32 Y es No 50%

Conv 3D-2 32× 2× 2 64 Y es No 50%

UH Conv 3D-3 32× 2× 2 64 Y es 2× 2× 2 50%

Conv 3D-4 32× 2× 2 128 Y es 2× 2× 2 50%

l2 norm-5 − − − − −
Softmax-6 − 15 − − −
Conv 3D-1 32× 2× 2 32 Y es No 50%

Conv 3D-2 32× 2× 2 64 Y es No 50%

Conv 3D-3 32× 2× 2 64 Y es No 50%

Wetlands Conv 3D-4 32× 2× 2 128 Y es 2× 2× 2 50%

Conv 3D-5 32× 2× 2 128 Y es 2× 2× 2 50%

l2 norm-6 − − − − −
Softmax-7 − 17 − − −

4.5.3 Experimental Setup

We compare our proposed algorithms with several other state-of-the-art algo-

rithms. The comparisons show that our methods extract better features compared

to other methods, as our methods result in higher classification accuracy values. The

training, validation and test frames were generated by using a repeated random sub-

sampling method. We use 10 labeled samples / frames per class and a total of 50,000
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unlabeled samples / frames for training, validate on 20 labeled samples / frames

per class, and test on 100 labeled samples / frames per class, for all datasets. We

found that a frame size of 5 × 5 works best for our datasets. We run each of the

experiments 5 times using a random sample selection strategy and report the aver-

age results showing the mean and standard deviations. We compare our methods

with - (1) Supervised Spectral classification methods including the KNN and SVM

wih RBF kernel; (2) Discriminative Semi-Supervised-Spectral classification methods

including Label-Propagation [97] - [It propagates labels along the high-density areas

defined by unlabeled data], Transductive SVM’s (T-SVM) [104] - [Were proposed to

modify SVM’s with the aim of max-margin classification ensuring minimum number

of unlabeled data samples near the margins], Laplacian SVM’s (LapSVM) [105] -

[The loss function is a combination of the supervised loss function of normal SVM’s

and an additional term which introduces a regularization term on the geometry of

both supervised and unsupervised samples by using the graph Laplacian], and PL-

SSDL(CDPMM) [78] - [Uses cluster labels and data samples to pre-train the initial

layers of a DNN, to perform transfer learning capable of learning filters which can

discriminate between clusters]; (3) A Generative Semi-Supervised-Spectral classifier -

Ladder Networks [106] - [Uses a discriminative approach to learn from labeled samples

and a generative approach which aims to minimize the difference between encoder in-

puts and decoder outputs at each stage. All the layers of the encoder-decoder network

share lateral connections with each other]. For the sake of clarity we disintegrate our

approach to a set of basic steps and show the results for each and every step, thereby

making it clear about how the addition of an approach / concept improves the final

overall classification accuracy on a particular dataset.
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4.5.4 Results and Analysis

1-D Classification (at the level of pixels): For the sake of comparison we

implement our model using 1D CNN’s, having the exact same parameters and con-

figuration as the one with 3D CNN’s. For normal softmax classification when pixel

level training is done, we observed that we get performance similar to other baseline

algorithms. Angular Softmax substantially increases the accuracy for the UH dataset

and slightly increases the accuracy for the SpecTIR dataset. With pre-training using

only pseudo-labels we are able to further boost the performance for both the datasets

to a large extent. We also observe that by adding the second contrastive angular

based loss as shown in Equation [4.3], we are able to further boost the performance

for both the datasets.

3-D Classification (at the level of patches): To utilize the spatial-spectral

features from the data we use 3D CNN’s. For both the datasets we observe a sig-

nificant boost in performance when we move to 3D CNN’s compared to 1D CNN’s.

The Angular-Softmax based 3D CNN gives us performance similar to the normal-

Euclidean based 3D CNN for the UH dataset, but there is an improvement for the

Wetlands SpecTIR dataset. Pre-training the initial layers of the 3D CNN network

with only the cluster labels significantly boosts the performance for both the datasets.

Similar to the observations for 1D CNN’s, we observe that adding the contrastive an-

gular based loss function improves the accuracy for both the datasets.

Classification Maps: As observed from Figures 5.5 and 4.5, depicting the classi-

fication maps for the UH and SpecTIR Images, respectively, we see that our proposed

method can preserve the inherent / coherent clusters from the original image in a much

better manner than the baseline method. The finer details from all regions in the

maps are much better reconstructed using our method. The baseline method shows

an inclination to smooth through the boundaries of different objects.

Specifically for the UH Image represented by Figure 5.5, the commercial buildings
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under shadows are much better reconstructed using our methods compared to the

baselines. The baseline method erroneously misclassifies the commercial buildings as

to belong to several other unrelated classes. Moreover, the baseline method misclas-

sifies several roads under the clouded region as Synthetic Grass, whereas our methods

correctly classify those pixels as roads. We also notice that our method performs much

better at the borders of the clouded region compared to the baseline method. The

area impacted by cloud which is misclassified in the map created using our algorithm

is less than the case when the other baseline method is used. In simple words, clouds

have a much severe effect on the maps constructed using baseline methods compared

to our methods. Moreover, the baseline method erroneously classifies many roads and

highways as railways, our proposed method can reconstruct these classes in a much

better manner. It is also known that most of the grass inside particular stadiums

should be well-manicured healthy grass. Our method classifies the corresponding

pixels correctly, but the baseline methods do not. It shows a tendency to mislabel

many pixels as to belong to the class depicted by stressed-grass. The tennis court is

much better reconstructed using our method compared to the baseline. The classes

depicting roads, highways and residential area are much better represented using our

proposed methods compared to the baseline methods.

Specifically for the SpecTIR image as represented by Figure 4.5, a large part of the

image near the center is incorrectly labeled as Urban area when baseline method is

used for classification, and it is known that the corresponding area does not belong to

the urban class. The class depicting roads are much better depicted using our method

compared to the baseline method. Moreover, it is known that in the original image

most roads are bordered by soil. This is represented in class maps reconstructed using

our proposed method in a much better manner compared to the baseline method.

The baseline method erroneously classifies the soil bordering some roads as Distichlis

spicata, represented by white color as shown in the maps above.
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Figure 4.4: Classification maps of UH image dataset with our proposed (last row in
Table 1) algorithm (top) and with the baseline method of 3D-CNN with
normal softmax (bottom)

Figure 4.5: Classification Maps of SpecTIR Image Dataset with our proposed (last
row in Table 2) algorithm (left) and with the baseline method of 3D-CNN
with normal Softmax (right)
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Table 4.2: Overall accuracies (%) for the University of Houston data.

Algorithm Accuracy

kNN 67.60±1.05

SVM 71.67±1.58

Label Propagation 67.56±0.81

Baselines TSVM 72.17±2.26

LapSVM 74.29±1.09

Ladder Networks 72.00±1.24

PL-SSDL (CDPMM) 77.07±1.31

No pre-training normal softmax 69.41±2.7

No pre-training angular softmax 74.59±1.71

ASSDL with pre-training using angular softmax (proposed) 79.88±0.76

ASSDL with pre-training using angular softmax

Proposed and contrastive loss (proposed) 81.73±1.23

3D-CNN with normal Softmax 75.73±1.09

3D-CNN with Angular Softmax (proposed) 75.61±1.37

3D-CNN with Angular Softmax and Pre-trained using pseudo-labels only (proposed) 81.88±1.5

3D-CNN with Angular Softmax and Pre-trained using pseudo-labels and contrastive-loss (proposed) 82.37±1.46

Table 4.3: Overall accuracies (%) for the Wetlands data.

Algorithm Accuracy

kNN 66.11±1.46

SVM 72.72±1.19

Label Propagation 65.54±1.04

Baselines TSVM 74.67±0.7

LapSVM 77.17±1.33

Ladder Networks 64.63±1.54

PL-SSDL (CDPMM) 77.97±2.7

No pre-training normal softmax 67.56±2.04

No pre-training angular softmax 68.22±1.24

ASSDL with pre-training using angular softmax (proposed) 78.22±0.8

ASSDL with pre-training using angular softmax

Proposed and contrastive loss (proposed) 78.45±1.2

3D-CNN with normal Softmax 75.25±1.05

3D-CNN with Angular Softmax (proposed) 76.94±1.89

3D-CNN with Angular Softmax and Pre-trained using pseudo-labels only (proposed) 77.52±1.08

3D-CNN with Angular Softmax and Pre-trained using pseudo-labels and contrastive-loss (proposed) 81.79±0.6

4.6 Conclusion

The results show that deep features learned from the large number of available

unsupervised data samples or frames can be helpful and used for pre-training the

neural network. The classification accuracy improves if the millions of learnable
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parameters are learned from the large number of unlabeled data samples or frames

instead of the very low number of labeled data samples or frames.

We also show that angularly discriminative deep feature extraction along with an

angular softmax classification layer at the back-end can be very helpful for hyperspec-

tral image classification. The results show that our proposed algorithms are capable

of generating results which are better than most of the state-of-the-art algorithms.

The 3D filters of the 3D CNN’s preserve the spatial-spectral neighbors from the

original hyperspectral image, in the final deep feature space. Therefore, using 3D-

CNN’s to utilize the spatial features in addition to the spectral features, makes the

deep features more robust and leads to better overall classification accuracy values.

This shows the importance of exploiting the spatial-contextual information between

the sample pixels in hyperspectral images.

78



Chapter 5

Deep Feature Extraction by

Semisupervised Capsule Neural

Networks for Hyperspectral Image

Classification

Deep Neural Networks (DNN’s) have been known to suffer from the problem of

over-fitting on a limited amount of training data and deliver poor performance on

the validation or test datasets. Convolutional Neural Network (CNN) architectures

were proposed in the late eighty’s with the intent of solving this problem. In recent

years, CNN’s have emerged as the building blocks of most of the state-of-the-art DNN

architectures. In order to counter the problem of over-fitting to the limited number

of training samples or reduce the number of parameters in the networks and also

introduce a certain degree of invariance between the intra-class features extracted,

different forms of pooling operations are introduced in the Deep Neural Networks

which use CNN’s as their building blocks. Recently, it has been clearly shown and

scientifically proven that arbitrarily eliminating features using random pooling oper-
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ations severely degrade the quality of the extracted deep features. Capsule Neural

Networks have been proposed with a scientific rational approach based on routing

algorithms, which work to reduce the parameters between the different layers in the

networks by an intelligent routing mechanism, and optimize for the coupling between

the neurons of those layers. Due to this efficient pooling strategy, it has been shown

that Capsule Neural Networks perform better than the state-of-the-art CNN’s when

limited number of training samples are available. Since, hyperspectral remote sensing

images contain come with limited ground truth (due to the inherent cost of labeling),

we propose the use of Capsule Neural Networks for performing hyperspectral remote

sensing image classification. Moreover, due to the availability of very large quantities

of unlabeled data samples we propose a semisupervised framework, which can exploit

the inherent structure in the dataset to perform the image classification.

5.1 Introduction

Recent advances in the field of machine learning have shown that the use of deep

neural networks can result in significant improvements for tasks such as - image clas-

sification, segmentation, object detection and hyperspectral image analysis. Most of

the deep networks use architectures similar to the CNN + Pooling architecture as

proposed in [76]. The architecture in [107] was shown to reduce the problem of over-

fitting in DNN’s, by introducing a pooling layer in between the Convolutional layers,

in order to reduce the number of learnable parameters in the network. The primitive

form of pooling layer generally implemented by the state-of-the-art max-pooling or

average-pooling mechanisms, allow neurons in the later layer to ignore all but the

most active feature detector in a local pooling window in the layer below or averages

all the feature detectors in the pooling window, respectively. This primeval form of

operation introduces an invariance between the intra-class features during the process
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of deep feature extraction. But, Intra-class variance may generally be very useful to

separate features belonging to different classes, or in other words - Intra-class variance

or spatial details may be very important for inter-class separation. In such cases, loss

of intra-class detail information degrades the quality of the features extracted by the

deep neural network. For this reason, over the last few decades many researchers have

questioned the rationale behind the arbitrary pooling operations even though the sim-

ple operation has been known to produce good results. A better strategy proposed

was to introduce covariance or equivariance [108, 109], instead of intra-class feature

invariance. Recently many different intelligent and adaptive spatial pooling strategies

have been developed in order to replace the arbitrary forms of pooling operations as

maximum or average pooling [110, 111, 112]. More recently, [113, 14, 1, 13, 114] have

shown that the arbitrary pooling operation which randomly neglects most of the fea-

tures from previous layers, can be replaced by routing algorithms which have strong

fundamental scientific principles governing them. [1] show that such networks can

extract more robust features and outperform the state-of-the-art CNN based deep

neural networks. Moreover, in this chapter we show that due to the strategic pooling

approach behind the proposed neural networks as shown in papers describing Capsule

Neural Networks [115, 113], the networks can work much better in the absence of a

large number of labeled training samples, compared to the state-of-the-art CNN’s.

Since, it is known that the high dimensionality and a very limited number of labeled

training samples [5] makes the problem of hyperspectral remote sensing image classi-

fication [116, 117, 118] extremely challenging, we propose the use of Capsule Neural

Networks (as they can extract features which are more robust in the absence of a large

number of labeled training samples) to perform hyperspectral remote sensing image

classification and show that they perform better than the state-of-the-art convolu-

tional neural network architectures (both qualitatively and quantitatively), which are

traditionally in use.
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Remote Sensing using Sensors as the Hyperion Imaging Spectrometer has been

captured and studied for a long time, for Earth Observation (EO) applications. Hy-

perspectral Images can capture spectral level differences between different objects /

classes but RGB images cannot. For this reason, hyperspectral images having high

spectral resolution and capturing hundreds of observation channels are studied and

captured. Hyperspectral remote sensing images have their own set of problems: Large

spatial variability of hyperspectral signatures over land cover classes, atmospheric ef-

fects / inteference and the curse of dimensionality [119, 120, 121]. It has already been

proven that deep learning models may not be effective to extract robust features from

hyperspectral images unless abundant training samples are available [122], our results

in this chapter confirm this fact. Additionally, we also know that despite having very

low number of labeled training samples, hyperspectral images contain a very large

number of unlabeled samples. Following these arguments, we extend the use of Cap-

sule Neural Networks to propose a Semi-Supervised Capsule Neural Network in order

to utilize the unlabeled samples in the datasets, and exploit the inherent structure

between the unlabeled data samples.

5.2 Related Work: Capsule Neural Networks

Neural networks have been known to suffer from the problem of overfitting since

its inception. Near the end of the last century, [76] proposed Convolutional Neu-

ral Network architectures to overcome this problem. Pooling layers in the form of

Maximum-Pooling or Average-Pooling layers were inserted between subsequent layers

in order to reduce the number of trainable parameters in such networks and overcome

the problem of overfitting. The pooling layers in convolutional neural networks also

helps to introduce a degree of translational invariance in the architecture. This strat-

egy is known to work very well for known problems in the field of machine learning
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such as image segmentation, image classification and object detection. However, this

very primitive form of routing which allows neurons in subsequent layers to ignore all

but the most active feature or find the average of the features belonging to the local

pooling window in the preceding layer, can be euphemistically termed as a random

arbitrary operation, defying the statistical properties governing the data. Moreover,

it is known that the pooling operation causes the network to lose spatial informa-

tion from the image being analyzed [123, 124]. Arbitrarily eliminating the features

generated from convolutional layers in an unintelligent manner causes the network to

loose much of the local spatial-information from the image. Capsule Neural networks

were proposed to perform intelligent pooling operation by applying a novel scientifi-

cally sound routing mechanism, which would allow the network to preserve the local

spatial information or details. For this operation, the scalar output feature detectors

generated by CNN’s are replaced by vector output capsules and the arbitrary pooling

operation is replaced by an intelligent routing by agreement mechanism. Capsules

are groups of neurons whose activity vectors represent the instantiation parameters

for specific types of entities as objects or object parts, belonging to a certain class.

Capsule Neural Networks were originally proposed in [13], mainly to address the

issues of arbitrary pooling operations and loss of local spatial information between

the subsequent layers of neural networks. However, the network proposed in [13]

did not perform well and led to further research and proposal of the Capsule Neural

Networks as in proposed in [1]. [1] shows that the Capsule Neural Network produces

state-of-the-art performance on many known and state-of-the-art datasets in the field

of computer vision. The primary idea behind moving away from the state-of-the-art

neural network architecture as proposed in [76] and moving towards the architecture

as proposed in [1], is to introduce the idea of intelligent pooling which can preserve

the local spatial information from the original image. This is done by replacing the

scalar output feature detectors produced by CNN’s with vector output capsules and
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replacing the arbitrary pooling operations as maximum / average - pooling with an

intelligent dynamic routing mechanism, based on a routing by agreement algorithm.

[125] uses Capsule Neural Networks for hyperspectral image classification. Dif-

ferent from that work, in this chapter our primary objective is to perform Semi

Supervised Learning using Capsule Neural Networks, by exploiting the information

contained in the abundantly available unsupervised samples from the hyperspectral

remote sensing images. We also make a direct comparison of the features learned

by our proposed Capsule Networks and state-of-the-art 2D-CNN + Maxpooling Net-

works. Our comparison shows that our proposed Capsule Networks are able to learn

features of higher quality and are also able to capture illumination invariant features

from images which are severely impacted by illumination variances, as the University

of Houston hyperspectral image.

5.2.1 Pseudocode for Dynamic Routing Algorithm [1]

Algorithm 5 shows the algorithm governing the dynamic routing process which

replaces the arbitrary pooling operation in the traditional deep neural network archi-

tectures.

The squashing function is applied to the output vector of a capsule sj as shown

in Algorithm 5, in order to make sure that the maximum length of all output length-

vectors are equal to 1. The squashing function makes sure that when the predicted

output is correct the length of the corresponding output capsule vector is 1, and the

length of the corresponding output vector is close to 0, otherwise. cij’s as shown in

Algorithm 5 are the coupling coefficients and they are determined by the iterative

dynamic routing mechanism. The coupling coefficients are found from the log-prior

probabilities (bij) which denote the coupling between capsules i and j. The Softmax
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Algorithm 1: Pseudo code of the dynamic routing algorithm [1]

Input:
• Output of capsule from previous ith layer: ui
• Number of routing iterations: r
• Layer notation: l

{Iterative Dynamic Routing Algorithm}

• Find the prediction vectors uj|i by multiplying the output of the previous capsule
layer ui with the weight matrix Wij

uj|i = Wijui
• Let bij’s be the log probabilities that represent that the lower level capsule i and
the next higher level capsule j are coupled
for all capsules i in layer l and capsules j in layer (l + 1):
Let bij = 0

for r iterations do:
for capsule i in layer l: ci = softmax(bi)
for capsule j in layer l + 1: sj =

∑
i cijuj|i

for capsule j in layer l + 1 apply the squashing function:

vj =
||sj ||2

1+||sj ||2 ·
sj
||sj ||

for capsule i in layer l and capsule j in layer l + 1:
bij = bij + uj|i · vj

return vj
Output:
• The squashed length vector from capsules vj
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operator will then lead to the equation as follows

cij =
exp(bij)∑
k exp(bik)

(5.1)

The softmax operator on bij makes sure that all the coupling coefficients between

the neurons in the two consecutive capsule layers sum up to 1. In simple words, it

makes sure that a neuron is fractionally connected (or weighted) to other neurons

from the preceding layer, such that the sum of all fractions (or weights) is equal to 1.

k represents the total number of available connections which can be made between

successive capsule layers.

In simple words, the iterative dynamic routing process makes sure that the cou-

pling coefficients between the lower level and higher level capsules keep on increasing

if the dot product between the output vectors generated by the corresponding lower

and higher level capsule layers is large, and the coupling coefficients keep on decreas-

ing otherwise. It implies that if there is an agreement between the vectors generated

by the lower and higher level capsule layers, then the coupling coefficients between

the capsules belonging to the consecutive capsule layers keep on increasing, and the

coefficients decrease otherwise. This is why the iterative dynamic routing mechanism

is said to work using a routing by agreement algorithm.

5.2.2 Block Diagram of Capsule Neural Networks [1]

Figures 5.1 and 5.2 show the block diagram representation and the decoder struc-

ture representation of the Capsule Neural Networks as used in our proposed work,

and as proposed in [1]. The Capsule Network as shown in Figure 5.1, has 3 layers:

The initial Relu-Convolutional Layer, the intermediate Primary Capsule Layer and

the final Classification Layer. For future research work, it would be interesting to ob-

serve the effect of going deeper with Capsule Layers. The decoder as shown in Figure
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5.2 focuses on reducing the Euclidean distance measure between the image and the

reconstructed output obtained from the deep neural network. This is a constraint

which makes sure that the deep neural network learns features which can accurately

reproduce the input image from the corresponding deep features. The length of the

Figure 5.1: CapsNet with 3 layers as proposed in [1] and used in this work.

activity vector of each capsule in Final Layer indicates the presence of an instance

of each class and is used to calculate the classification loss. Wij is the weight matrix

between each capsule ui from Primary Capsule Layer and vj from the Final Capsule

Layer. The Euclidean distance between the image and the output of a Reconstruction

Figure 5.2: Decoder structure to reconstruct the Hyperspectral Image from the Final
Capsule Layer feature representation [1].

layer (which uses the deep features extracted by this network) is minimized during
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training. True label is used as reconstruction target during training.

5.2.3 Margin Based Loss function [1]

The loss function governing the described network is a margin based loss function

which makes sure that the length of the corresponding capsule vector generated for

the correct matching class of interest is no less than 0.9 units, when the length of the

vector can be any number from 0 to 1 units. It also makes sure that the length of the

capsule vector for all non-matching classes other than the class of interest in no more

than 0.1 units. In simple words, the capsule vector is large, almost equal to 1, when

the predicted class of interest matches with the true class, and is very small, almost

close to zero, otherwise. The margin based loss function is defined as follows:

Lk = Tk max(0,m+ − ||vk||)2 + λ(1− Tk) max(0, ||vk|| −m−)2

Where Lk is the loss of the network, vk is the deep feature extracted from the last

capsule layer as described earlier, and Tk = 1 iff a sample of class k is present and m+

= 0.9 and m− = 0.1. The λ down weighting of the loss for the absent classes stops

the initial learning from shrinking the lengths of the activity vector of all the higher

layer capsules. Here λ = 0.5 is used. The total loss is simply the sum of losses of all

the higher level capsules from the last capsule layer.

5.3 Proposed Work: Semi-supervised Capsule Neu-

ral Networks for Hyperspectral Image Classi-

fication

Since the recent revival of deep learning based algorithms in the field of machine

learning and computer vision [77], hyperspectral image analysis has also benefited

significantly from the use of deep learning based algorithms. It is also known that
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Hyperspectral remote sensing images benefit from the use of spatial information con-

tained in the image pixels [28, 31, 32, 33]. Exploiting the spatial information between

pixels from the image has been shown to substantially improve the robustness of the

extracted features, compared to the cases when only spectral information of the pix-

els were used to learn the features. Moreover, it is also known that hyperspectral

image analysis can benefit significantly from the use of spatial-spectral deep learning

architectures compared to the use of only spectral based deep learning methods. We

have also seen this explicitly in our recently submitted research work, submitted to a

different journal.

More recently, Capsule Neural Networks have been used in the field of Computer

Vision [1, 14, 126], Biological Image Analysis [127, 128] and others, but this is the

first time that it is being used in the field of Hyperspectral Image Analysis for semi

supervised feature extraction.

We expand the proposed Capsule Neural Networks to perform Hyperspectral Im-

age Classification instead of RGB image classification as performed in the Computer

Vision Community. Our image is of size m×n×d, where m is the number of rows in

the image, n is the number of columns and d is the number of wavelengths at which

the image is captured (or the dimensionality of the image). We input rectangular

frames surrounding the pixels belonging to specific classes of interest to the first 2D-

Convolutional Layer in the Deep Capsule Neural Network. The 2D-Convolutional

Layer has d number of input channels.

It is known that unsupervised pre-training using pseudo-labels or cluster labels

can help to improve the performance compared to purely supervised classification

for hyperspectral remote sensing images, when the number of labeled samples during

supervised classification is very low [78]. Semi-supervised learning helps to generalize

the model and prevent over-fitting in the absence of a high number of labeled training

samples. In our recent work which is currently under review in a different journal, we
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also found that more the complexity of the unsupervised pre-training network, more

is the robustness of the features generated. Following this, we hypothesize that in

the presence of a low number of labeled training samples Capsule Neural Networks

(which are much more complex than the traditionally used CNN architectures), can

generalize much better than the state-of-the-art Convolutional Neural Networks, and

thus we propose the use of Capsule Neural Networks for Semi-Supervised learning in

order to extract more robust features during the unsupervised pretraining stage. This

will help to generate more robust features from the abundantly available unsupervised

data by exploiting the inherent structure and the statistical properties governing the

data.

The goal of this chapter is two fold: First, we perform hyperspectral image clas-

sification using capsule neural networks and show that the features extracted are

better than those extracted from the corresponding traditionally used 2-D CNN’s.

Next, we propose a semisupervised architecture in order to perform semisupervised

learning to make the extracted deep features more robust and improve the subsequent

classification performance. We provide both - detailed quantitative and qualitative

comparisons to demonstrate our ideas and validate our conjectures or hypothesis.

5.3.1 Motivation

Since we know that Capsule Neural Networks can preserve the spatial details from

the images as compared to the state-of-the-art Convolutional Neural Networks and

Pooling operations, and we also know that spatial details are very important in hy-

perspectral images, we propose the use of Capsule Networks to perform hyperspectral

image classification. We understand that our hypothesis is only valid for hyperspec-

tral images having high spatial resolution and may not work with images having low

spatial resolution, but most of the hyperspectral images captured in modern times

have high spatial resolution or enormous amounts of spatial details in them. More-

90



over, if the intra-class details are important for performing inter-class discrimination

during classification then traditionally used state-of-art CNN and pooling operations

will not generate robust deep features, due to the loss if information. This is because

the pooling operation introduces an invariance between the intra-class features and

consequently causes the network to lose important spatial context which could be

extremely useful for discriminating between inter-class features during classification.

In general Capsule Neural Networks generate more robust features due to the

preservation of spatial context from the images compared to Convolution Neural Net-

works and the primitive pooling operations. In this chapter, we propose the use of

the abundantly available unsupervised data samples to learn the robust features in

order to perform semisupervised classification for hyperspectral images. We antici-

pate that these features will be much more robust than the features learned through

the normal CNN-Pooling operations when the same network configuration and same

set of training samples are used for pretraining and finetuning the corresponding neu-

ral networks, following the exact same semisupervised learning strategy. Our results

clearly show that our hypothesis is in fact true and a fact.

It is also known that semisupervised learning increases the quality of extracted fea-

tures and makes them more robust compared to purely supervised learning [28] and

we implement this to improve the features extracted by purely supervised Capsule

Neural Networks.

Comparison of features extracted using Semisupervised Capsule Networks

and Semisupervised 2D-CNN’s: Figures - 5.3 and 5.4 show the features extracted

by the proposed Semisupervised Capsule Neural Networks and the traditionally used

2D-CNN based Networks. It can be clearly observed that the features extracted by

Capsule Neural Networks are much more discriminative than those extracted by the

CNN + Pooling based network. Capsule Networks are able to preserve the object

boundaries (objectness) of the distinct objects from the original hyperspectral image
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in a much better way. Qualitatively these features appear to preserve the information

from the original image in a much better way than the corresponding 2D-convolutional

neural networks. Most of the features extracted by the 2D-CNN appear to be darker

and in a sense lose much of the spatial details and information from the original image,

leading to the reduction of discriminativeness between the inter-class features. Fur-

thermore, as observed from the feature map, as shown in Figure 5.3, and as described

in the paragraph below, we observe that certain dimensions of the penultimate layer

of the Capsule Neural Network captures illumination invariant features from the Uni-

versity of Houston hyperspectral image, which is severely impacted by cloud shadows.

These cloud shadows are known to drastically degrade the performance during Hyper-

spectral Image Classification, as they introduce varying noises between the intra-class

samples, extracted from the well-lit and cloudy region in the image. In simple words,

intra-class samples belonging to different spatial neighborhoods of the image, and

impacted by different degrees of illumination, will naturally have very different distri-

butions governing them. The difference in distributions for such intra-class samples

makes it extremely difficult for any feature-extractor and classifier to classify them as

to belong to the same class. This decreases the robustness of the extracted features

and leads to classification errors. These observations clearly motivate for the use of

Semisupervised Capsule Neural Networks for Hyperspectral Image Classification over

the traditionally used Convolutional Neural Networks.

Features extracted using Semisupervised Capsule Networks which cap-

ture the specific property of Illumination invariance: The original Capsule

Neural Network paper [1] shows that different dimensions of the penultimate Digit-

Caps Layer capture different properties which inherently govern the MNIST dataset

/ MNIST training samples, such as - scale and thickness, stroke thickness, local skew,

width and translation - of the digits. For our hyperspectral image which captures

the University of Houston and its neighboring urban area, we notice that the Semisu-
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pervised Caspule Neural Network as proposed here is able to capture illumination

invariant features as shown in Figure 5.3. Several dimensions of the penultimate

layer of the Capsule Neural Network capture these illumination invariant features as

shown. The features show that Capsule Networks are able to learn features after

removing the clouds and learning about the shapes of the objects underneath the

clouds. The shapes of the distinct objects are preserved from the original image in

the extracted features. Our intuitive explanation for this observation is: There are

certain properties as shapes and sizes of objects which govern the hyperspectral image

being studied, and these properties are illumination invariant. Here, we are observ-

ing the feature dimensions which are governed by those specific properties which are

illumination invariant. As shown in Figure 5.3, we observe that Capsule Neural Net-

works are able to extract such high-quality illumination invariant features (which as

shown in Figure 5.4, is not the case for traditionally used 2D-CNN + Pooling based

deep network architectures). This property is known to be very desirable during

hyperspectral image analysis.

5.4 Experimental Settings and Results

5.4.1 Hyperspectral Datasets

We validate our proposed algorithms on two datasets: (1) The well-known urban

University of Houston dataset from 2013 and (2) The SpecTIR Wetlands dataset

which was acquired by our lab at University of Houston, and which captures the

Wetlands of Galveston in 2015.

Dataset Partitioning and Parameter Optimization: The entire data was

randomly partitioned into three subsets including the - training, validation and test-

ing datasets. It was made sure that the random samples are non-overlapping and also

belong to different spatial parts of the image. Since we are using a spatial-spectral

93



Figure 5.3: 3 Feature maps from the penultimate layer of the Capsule Neural Net-
work, showing the features captured in multiple dimensions / capturing
illumination invariant features.
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Figure 5.4: 3 Feature maps from the penultimate layer of the traditional 2D-
Convolutional Neural Network, showing the features captured in multiple
dimensions. Features lacking illumination invariance.
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approach for classification, it is important to make sure that the training and the val-

idation / testing datasets do not have any spatial overlap between them. This is done

to prevent testing on the training data. After obtaining the point samples, window-

size×window-size frames surrounding the individual pixels were acquired. These

were then used as the training, validation and testing frames. All the free parameters

were obtained by tuning them to result in the highest validation accuracy on the

validation data frames.

University of Houston Data

The University of Houston dataset captures the campus and the neighboring urban

area, using an ITRES-CASI (Compact Airbone Spectrographic Imager) 1500 hyper-

spectral imager. It covers 144 spectral bands spanning the visible and near-infrared

spectrum from 380 nm to 1050 nm. The image has a spatial size of 349× 1905 with a

spatial resolution of 2.5 m. Grass-Healthy, Grass-Stressed, Grass-Synthetic,

Trees, Soil, Water, Residential area, Commercial area, Roads, High-

ways, Railways, Parking Lot 1, Parking Lot 2, Tennis Courts and Run-

ning Tracks were identified to be the 15 different classes of interest.

SpecTIR Airborne Data

The data was acquired in a study conducted in 2015, in the coastal wetlands of

Galveston, Texas. Wetland vegetation, a crucial part of wetland ecosystem is found

to have an immense impact on the species coverage and distribution. Marshes in

Mission-Aransas estuary which used to be dominated by smooth cordgrass are now

covered mostly by black mangroves. Such sudden drastic changes tend to influence

the quality of coastal wetlands, which support a wide variety of marine / aquatic

animals as shrimps, fishes, birds and have an impact on the ability of the coastal

habitats to buffer wind and wave energy. Therefore, mapping and monitoring the
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wetland ecosystems will help us to better manage and monitor the endangered wetland

ecosystems.

An airborne hyperspectral image was captured using the ProSpecTIR VS sensor

on August 14, 2015. Ranging from 400 nm to 2450 nm, the image was captured

at 360 wavelength bands, at a spectral resolution of 5 nm. The radiance data were

radiometrically and spectrally calibrated before they were converted to the reflectance

data using the ATCOR 4 software. The output reflectance data of multiple flight

lines were eventually geo-corrected and mosaiced as an image with spatial coverage

of 3462× 5037 pixels at a 1 m spatial resolution.

Since labeling samples through photo-interpretation was not possible in this situ-

ation, a field survey was made on September 16, 2016. Upland grass, St. Augus-

tine grass, Sesbania / rattlebox, Upland tree, Phragmites austrails, Sabal

mexicana / palm tree, Spartina alterniflora, Juncus roemerianus, Batis

maritima / Distichlis spicata, Distichlis spicata, Baccharis halimifolia ,

Avicennia germinans / black mangrove, Roads, Sand, Soil, Rocks and

Urban constructions were identified to be the 17 distinct classes. The dataset

contains a total of 7219 labeled samples.

5.4.2 Network Architecture

The Deep Neural Network (DNN) architectures based on Capsule Neural Networks

as used for all our Experiments are as shown in Table 5.1.

5.4.3 Experimental Setup

We compare our proposed algorithms with several other state-of-the-art algo-

rithms. The comparisons show that our methods extract better features compared to

other methods, as quantitatively our methods result in higher classification accuracy

values, and qualitatively our methods extract features which are more appealing vi-
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Table 5.1: Network Architecture of Deep Capsule Neural Networks

Dataset Layer Kernels Filters Activation Dropout

Conv-2D-1 2× 2 4096 Y es 50%

Conv-2D (Primary Capsule)-2 2× 2 dimension-of-capsules (80) × number-channels (128) ReLU No

Routing+Classification-3 − dimensions (256) × number-classes (15) − −
UH Decoder-Network-4 (FC-1) − dimensions (512) ReLU −

Decoder-Network-5 (FC-2) − dimensions (1024) ReLU −
Decoder-Network-6 (FC-3) − Input-Shape Sigmoid −

Conv-2D-1 2× 2 64 ReLU 50%

Conv-2D (Primary Capsule)-2 2× 2 dimension-of-capsules (60) × number-channels (32) No No

Routing+Classification-3 − dimensions (64) × number-classes (17) − −
SpecTIR Decoder-Network-4 (FC-1) − dimensions (8) ReLU −

Decoder-Network-5 (FC-2) − dimensions (16) ReLU −
Decoder-Network-6 (FC-3) − Input-Shape Sigmoid −

FC: Fully-Connected Layer

sually. The training, validation and test frames were generated by using a repeated

random subsampling method. We use 10 labeled samples / frames per class, validate

on 20 labeled samples / frames per class, and test on 100 labeled samples / frames per

class, for all datasets. We found that a frame size of 5×5 works best for our datasets.

We run each of the experiments 5 times using a random sample selection strategy

and report the average results showing the mean and standard deviations. We com-

pare our methods with - (1) Supervised Spectral classification methods including the

KNN and SVM wih RBF kernel; (2) Discriminative Semi-Supervised-Spectral classi-

fication methods including Label-Propagation [97] which propagates labels along the

high-density areas defined by unlabeled data, Transductive SVM’s (T-SVM) [104]

which were proposed to modify SVM’s with the aim of max-margin classification

ensuring minimum number of unlabeled data samples near the margins, Laplacian

SVM’s (LapSVM) [105] where the loss function is a combination of the supervised

loss function of normal SVM’s and an additional term which introduces a regulariza-

tion term on the geometry of both supervised and unsupervised samples by using the

graph Laplacian; (3) A Generative Semi-Supervised-Spectral classifier, Ladder Net-

works [106] which use a discriminative approach to learn from labeled samples and
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a generative approach which aims to minimize the difference between encoder inputs

and decoder outputs at each stage. All the layers of the encoder-decoder network

share lateral connections with each other. For the sake of clarity we disintegrate our

approach to a set of basic steps and show the results for each and every step, thereby

making it clear about how the addition of an approach / concept improves the final

overall classification accuracy on a particular dataset.

5.4.4 Results and Analysis

For the sake of comparison with the proposed Capsule Neural Networks we im-

plement a model using 2D-CNN + Max-Pooling, having the exact same parameters

and configuration as the one with Capsule Neural Network, only difference being in

the substitution of the routing layer with a max-pooling layer. For classification with

2D-CNN’s, we observe that we get performance similar to other baseline algorithms.

The proposed Capsule Neural Network performs better than all the proposed baseline

methods (including the 2D-CNN’s) for Hyperspectral Image Classification, using the

two well-known datasets as described. Since Capsule Neural Networks can preserve

the spatial information from the original image in the extracted deep features, we

also note that hyperspectral images which have high spatial-resolution perform much

better during classification using Capsule Neural Networks compared to using the

state-of-the-art Convolutional Neural Networks. Thus, the improvement of classifi-

cation performance for the SpecTIR dataset is much larger than the improvement

for UH dataset, as the spatial resolution of the SpecTIR image is higher than that

of the UH image, and as more spatial details from the SpecTIR dataset are pre-

served by the Capsule Neural Networks as compared to the UH dataset. Moreover,

as hypothesized we show that for the same set of training samples and same layer

parameters, the features learned by Capsule Neural Networks during Semisupervised

learning are qualitatively much more robust than those learned by the traditional
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2D-Convolutional Neural Networks. Due to the qualitative robustness of the un-

supervised features, Semisupervised classification performance using Capsule Neural

Networks is much better than compared to the traditionally used Semisupervised 2D-

Convolutional Neural Networks. This leads to higher classification accuracy values

and extraction of features which are of higher quality.

Table 5.2: Overall accuracies (%) for the University of Houston data.

Algorithm Accuracy

kNN 67.60±1.0

SVM 71.67±1.6

(Baselines) Label Propagation 67.56±0.8

TSVM 72.17±2.2

LapSVM 74.29±1.1

Ladder Networks 72.00±1.2

Traditional 2-D CNN-Pooling 73.47±1.0

Semisupervised 2-D CNN-Pooling 81.12±2.0

Capsule Neural Networks 76.82±1.3

(Proposed) Semisupervised Capsule Neural Networks 83.00±1.0

5.5 Conclusion and Future Work

The search space to optimize the network used to perform Hyperspectral Image

Classification here is very large. We work within our environment respecting certain

computational constraints in order to tune the network parameters. The results as

shown here show us that Capsule Neural Networks are able to produce state-of-the-
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Table 5.3: Overall accuracies (%) for the Wetlands data.

Algorithm Accuracy

kNN 66.11±1.4

SVM 72.72±1.1

(Baselines) Label Propagation 65.54±1.0

TSVM 74.87±0.7

LapSVM 77.17±1.3

Ladder Networks 64.63±1.5

Traditional 2-D CNN-Pooling 66.54±1.9

Semisupervised 2-D CNN-Pooling 75.52±1.6

Capsule Neural Networks 76.41±1.9

(Proposed) Semisupervised Capsule Neural Networks 80.95±0.9

Figure 5.5: Classification map obtained using the traditional CNN (top) and using
the proposed Semisupervised Capsule Network (bottom)
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art performance on Semisupervised Hyperspectral Image Classification tasks using the

two well known datasets. For all cases the performance produced by Capsule Neural

Networks is much better than the state-of-the-art 2D-CNN’s. This observation is in

accordance with the results and observations from the Computer Vision community

[1, 14]. Future research concerning efficient and intelligent ways to tune the Capsule

Neural Networks will be an interesting domain to explore. As hypothesized, we

show that Capsule Neuural Networks outperform the traditionally used 2D-CNN’s

both for purely supervised as well as semisupervised classification tasks. We show

that the quality of the features extracted by the proposed Semisupervised Capsule

Neural Networks are much better than those extracted by the traditionally used

Semisupervised 2D-Convolutional Neural Networks. We also show that certain feature

dimensions of the penultimate Capsule Layer is able to capture illumination invariant

features by eliminating the impact of cloud shadows and capturing the shape and size

based properties of the objects underneath those shadows. This observation leads us

to hypothesize that Capsule Neural Networks will be extremely useful for domain

adaptation tasks, as domain adaptation requires us to generate feature properties

which are domain invariant. Since some dimensions of the learned filters in Capsule

Networks can capture specific property invariant features, as shown in this chapter,

we think that it is going to be very beneficial for domain adaptation tasks. Some

authors have already started to investigate this for domain adaptation and cross

domain learning tasks [129, 130, 131, 132, 133], but we think that the Capsule Neural

Networks hold a much greater promise in the near future.
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Chapter 6

For single pixel wide labeled

datasets: Towards a more robust

approach for Semantic

Segmentation

Semantic Segmentation of roads after learning road networks is an important do-

main of research. However, the training data for road segmentation models generally

depict only the center of the roads and not the entire roads. This is primarily done in

order to reduce the cost of labeling the roads, which differ widely in terms of shapes.

Due to the inconsistency between different road geometries (unlike building segmen-

tation, where most of the buildings can be labeled using small polygonal units) it is

not possible to label roads using polygonal units, and generally line units are used.

Lines to depict center of the roads, used as ground truth, will confuse the deep neural

network and train the semantic segmentation models incorrectly, as pixels belong-

ing to the non-central part of the roads are incorrectly depicted as non-roads. In this

chapter we propose a method to expand the ground truth to the edge of homogeneous
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roads and cover the entire roads in the image, instead of only the center of the roads.

Our proposed method is general and can be applied to any images (other than roads),

in order to generate abundant ground truth information from single pixel wide super-

vised labeled images. This idea is of great significance in scenarios where acquiring

abundant labeled data is a very expensive process and requires costly human inter-

vention. We evaluate our proposed algorithm on the well known large scale SpaceNet:

Vegas Road Segmentation Dataset, SpaceNet: Shanghai Road Segmentation Dataset,

as well as the large scale Caracas Road Segmentation Dataset (which captures the

city of Caracas in the country of Venezuela, and was captured using the Worldview-2

sattelite by DigitalGlobe. We introduce this Road Segmentation dataset for the first

time from our lab located in Oak Ridge National Laboratory).

6.1 Introduction

Barring a few state-of-the-art Road Segmentlation datasets as KITTI [134], most

remote sensing imagery data have pixel-level segmentation ground truth labels, which

demarcate only the center of the wide roads using a single pixel wide line [135]. Label

miss-assignment is a well known problem in the field of road segmentation. The

ground truth for road segmentation images only label the center of the roads and

mislabel all the other pixels in the roads as non-roads. This drastically degrades the

prediction performance, as the model learns to incorrectly assign parts of roads that

do not belong to the center of the roads to the background class or non-roads. Whilst,

this problem has non been completely eradicated so far, many solutions have been

proposed by different researchers working in the field of road segmentation. One such

approach is to apply the principle of flood-filling to expand the central one pixel wide

ground truths to all the spatially connected pixels having similar color [2]. While this

method improves the performance of semantic road segmentation, it is still arbitrary
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in a sense where only the color of the pixels are taken into account when determining

the road clusters or groups of pixels belonging to the roads. Moreover, the ground

truth is still not able to capture the entire roads, and is especially very inaccurate near

the edges as shown in Figure 6.1. In this chapter our goal is four fold: (1) Propose a

method which will be able to detect roads and background to a much higher degree

of precision, from the raw images, by learning only from a limited number of labeled

data samples or by learning from single pixel wide supervised datasets, (2) Wide area

deployment to expand the labels from their thin one pixel wide versions depicted

by the center of the roads, to correctly capture the entire roads/drivable surfaces,

(3) Pre-processing of the generated labels to smooth out the center of roads, and

also respect the road boundaries/edges and (4) An accelerated city-scale mapping for

big data semantic segmentation. We use these newly generated ground truth labels,

extracted by using our proposed approach, to train a well known deep network in

order to perform semantic segmentation of roads. The prediction and evaluation

results from the deep network shows the benefit of using our approach for improving

the accuracy of the related semantic road segmentation tasks.

6.2 Related Work

Semantic Segmentation has been studied by researchers since a long time [136,

137], but the recent revival of deep learning methods [77], has seen a diverse set of

semantic segmentation tasks and various domains benefiting immensely [138, 139,

140, 141, 142, 143, 144, 145, 146, 147]. Road Segmentation, belonging to the domain

of semantic segmentation has also been an area of research for a long time, and in

a similar way has also gone through significant boosts in performance improvement

over the last few years, especially after the revival of deep learning methods. Several

papers including novel datasets in the literature have been proposed with the idea of
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Figure 6.1: Motivation for the proposed work: State-of-the-art expansion of one pixel
wide road labels using NVIDIA’s flood-filling approach [2]. Image chips
are egenrated from SpaceNet: Vegas dataset.
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performing road segmentation for — autonomous driving [148, 149, 150, 151], vehicle

identification [152, 153, 154, 155, 156, 157, 158], obstacle detection [159, 160, 161,

162, 163] and road-lane-detection [164, 165, 166, 167, 134].

In this chapter we strive towards obtaining correctly labeled ground truth labels

for Road Segmentation tasks, by expanding the original single pixel ground truth

labels to encompass the entire width of the roads. Our proposed method is especially

applicable in scenarios where we have limited number of labeled training data, and

require unsupervised learning methods to obtain more labeled training samples, for

the purpose of training a deep neural network without overfitting on the limited

number of available training samples.

6.3 Proposed Work

6.3.1 Pseudocode for creating clusters corresponding to the

single pixel wide ground truths

Algorithm 5 shows the algorithm governing the proposed semi-supervised ground

truth expansion method. The generated ground truth along with the original 16 bit

images are then used to train a deep neural network as proposed in [3] to perform

semantic road segmentation.

6.3.2 Block Diagram of the proposed approach

The Block Diagram Representation of our proposed approach is shown in Figure

6.2. Our proposed algorithm takes the image and corresponding line based single

pixel ground truth as the inputs. We expand the single pixel wide ground truths to

the edges of the roads, in order to cover the entire roads as shown in the Figure. We

then use the newly obtained ground truth, along with the original 16 bit images, in
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Algorithm 1: Pseudo code of the proposed algorithm

Input:
• RGB Image: I ∈ r × c× 3
• 1 pixel wide Ground Truth: Y ∈ r × c
• Number of clusters: n
• Minimum distance for merging clusters: d
• Kernel window for smoothing: k × k

{Hierarchial Density Based Clustering Algorithm [168]}

• Cluster input image I to generate n clusters

{Merging Based on Wasserstein similarity [169, 170]}

• Assume the n clusters to represent a distribution for each of the Red, Green and Blue bands
For clusters 1, 2, ....., n, and image pixels I1, I2, ....., n which belong to the corresponding clusters
respectively. We assume:
for each of Red, Green and Blue color bands:
P1,band = I1,band;
P2,band = I2,band;
P3,band = I3,band;
...
Pn,band = In,band

end for
Where P1,band represents the color distribution for the Red, Green or Blue colored band of cluster
1, P2,band represents the color distribution for the Red, Green or Blue colored band of cluster 2
and so on.
• Compare each of the obtained n clusters (generated by each band) to calculate the n×n Wasser-
stein similarity matrix between clusters (there will be 3 such similarity matrices representing the
Red, Green and Blue bands respectively).
• Wasserstein Similarity Matrix between color matrices, for clusters i and j, represented by color
distributions Pi and Pj is denoted as:
W : W (Pi,Pj) = infγ∈

∏
(Pi,Pj) E(x,y)≈γ [ ||x− y|| ]

• Merge clusters based on the similarity matrix W : W (Pi,Pj):
for each of Red, Green and Blue color bands:

for two clusters i, j:
if W (Pi,Pj) ≤ d:

i = j
end for
• Where

∏
(Pi, Pj) is the set of all joint distributions γ(x, y) whose marginals are respectively

Pi and Pj . Intuitively, from the field of optimal transport, γ(x, y) indicates how much “mass”
or “earth” must be transported from x to y in order to transform the distribution Pi into the
distribution Pj . The EM distance is then the “cost” of the optimal transport plan

{Nearest neighbor based smoothing [171]}

• Find the m+ 1 samples within the k × k rectangular kernel window
• Perform nearest neighbor smoothing as follows:
Y (Xl) = 1/(m+ 1)× ||X0 +X1 + ....+Xl + ....+Xm||

Where X0, X1, ...., Xl, ...., Xm represent the m + 1 samples belonging to the neighborhood of
the pixel Xl, and contained within the k × k kernel. Y (Xl) is the approximated smoothed value
of Xl, obtained by performing the kernel smoothing operation over its neighborhood.
• Where X0 is the 1st closest neighbor of the pixel Xi, X1 is the 2nd closest neighbor of the pixel
Xi, ..... , and Xm is the (m+ 1)th closest of the pixel Xi

Output:

• The smoothed wide roads covering the entire width of roads: L



order to train the Deeplab Semantic Segmentation Network [3]. We use very high

atrous rates to capture features using larger filters, in order to capture the global

details from the original images to a very high degree of precision. The parameters

and settings for our experiments are described in details in the Experimental Setup

Section of this chapter.

Figure 6.2: Block Diagram Representation of our proposed approach

The block diagram in Figure 6.3 shows an approach from [3] which uses atrous

convolutional filters to expand the filter sizes, so that the global properties and spa-

tial context from the original images are captured in the final deep feature space.

A number of zeros are appended to the filters in between the non-zero elements of

the filters, in order to increase the filter sizes so as to capture lager spatial contexts,

without increasing the number of filter parameters. We use this Semantic Segmenta-

tion network [3] for performing Semantic Segmentation using the original rich 16 bit

image and the expanded labels generated by our algorithm.
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Figure 6.3: Block Diagram from the Deeplab paper [3]

6.3.3 Motivation

Since its inception [172, 173, 76], deep learning has been known to suffer from some

well-known problems as: The lack of labeled training data leading to overfitting of the

learned models on the training data and producing weak models due to overfitting on

single pixel wide labeled datasets. In this chapter we try to analyze the cases where

we have single pixel wide labeled ground truths denoting only the center pixel of

the roads and expand the ground truth to cover the entire roads using our proposed

algorithms. Figure 6.4 depicts the effectiveness of our approach to expand the single

pixel wide thin label ground truths to the entire width of the roads. This helps us

to reduce the mislabeled data, and effectively helps to improve the robustness of the

deep learning model which is trained based on these labels and the corresponding

images.
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Figure 6.4: RGB images from SpaceNet3: Vegas Dataset (left), corresponding 1 pixel
wide ground truth labels for roads (middle), generated thick labels cov-
ering entire roads using our proposed approach (right)
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Figure 6.5: RGB images from SpaceNet3: Shanghai Dataset (left), corresponding 1
pixel wide ground truth labels for roads (middle), generated thick labels
covering entire roads using our proposed approach (right)
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Figure 6.6: RGB images from Venezuela: Caracas Dataset (left), corresponding 1
pixel wide ground truth labels for roads (middle), generated thick labels
covering entire roads using our proposed approach (right)
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6.3.4 Spectrally pure Clustering

Clustering is an unsupervised technique used for grouping spectrally similar pixels

together, so as to preserve the purity of the groups in order to avoid mixing of

pixels from different objects. Many papers have been proposed in the literature as

[174, 175, 176, 177, 178, 179, 180, 181, 182], which analyze various forms of clustering,

so as to group spectrally similar pixels together using different statistical measures. In

this chapter we use the Hierarchial Density Based Clustering Algorithm as proposed

in [168] to perform clustering. The Hierarchial Density Based Clustering Algorithm is

based on the Density Based Spatial Clustering of Applications with Noise (DBSCAN

[183]) Algorithm. It converts the DBSCAN algorithm into a hierarchical clustering

algorithm, and then uses a technique to perform clustering based on stability of the

clusters. We make sure that the extracted clusters are very small so as to avoid

obtaining clusters which have pixels from multiple objects / classes.

Known statistical properties governing data distributions as the density of groups

of pixels belonging to same objects are used as paradigms to formulate algorithms to

perform unsupervised clustering of images. However, most of the existing methods

suffer from “flat” labeling of the data objects (DBSCAN [183] and DENCLUE [184]),

based on a global density threshold. A global density threshold cannot lead to the

generation of optimum clusters in datasets having clusters belonging to very different

density levels, other methods as gSkeletonClu [185] are not able to automatically

extract clusters which can be interpreted easily so as to represent the most significant

clusters, other methods as gSkeletonClu [185] are limited to work for specific classes

of problems as networks, and as DECODE [186] and Generalized Single Linkage

[187] work for point sets in the real coordinate space. Most of the methods depend

on multiple critical input parameters which are very difficult to tune [183, 184, 186,

187, 188]. To solve these problems the authors of [168] propose a clustering method

which can work automatically to find clusters of widely varying densities from images,
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requiring only the minimum number of samples in the smallest cluster as the input.

The authors of [168] further show that their method is relatively tolerant to changes

in the input parameter.

6.3.5 Wasserstein Distance based merging of clusters

Wasserstein distance or Kantorovich-Rubinstein metric is a distance function de-

fined between distributions on a given metric space M . Intuitively, if each distribution

is viewed as a unit amount of “dirt” piled on M , the metric gives us the minimum

cost of turning one pile into the other, or turning one distribution into the other.

This metric is assumed to be the amount of dirt that needs to be moved times the

mean distance it has moved. As a result of this analogy this distance if also popularly

known as the Earth mover’s distance in the field of computer science. We obtain small

clusters to preserve the spectral purity of the clusters as explained in the preceding

paragraphs. But such pure and small clusters do not accurately represent the entire

road from the original images. For this reason, we merge the clusters based on a dis-

tance metric governed by the fundamentals of the optimal transport theory, known as

the Wasserstein distance. The problem of optimal transport theory was first defined

by french mathematician Gaspard Monge in 1781 [189]. In simple words, it formulates

a way of redistributing mass, such as a pile of soil and optimizes how that mass can be

transported or reshaped to form a mound with minimal effort. This particular prob-

lem remained unsolved for a period of 200 years (it was not even known whether this

problem was solvable during those years), until recent mathematical advancements in

1980’s and 1990’s. Since then the field of optimal transport theory has flourished and

it has been applied to several other relevant domains of research as: PDE’s, geome-

try, statistics, economics and image processing [190, 191, 192, 193, 194, 195]. More

recently, it has gained immense popularity and relevance in the field of deep learning

[196, 197, 198, 199].
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We use the Wasserstein distance metric to calculate the similarity between differ-

ent cluster sets and merge the cluster sets which are similar to each other. In this

paragraph we show in the figures how the Wasserstein similarity metric looks for the

similar and dissimilar clusters. We see that clusters which have visually similar ob-

jects are quantitatively deemed to be similar by the Wasserstein similarity metric, and

the clusters which are visually dissimilar are quantitatively deemed to be dissimilar.

The Wasserstein distance metric would then be given by

W (Pi,Pj) = inf
γ∈

∏
(Pi,Pj)

E(x,y)≈γ[ ||x− y|| ] , (6.1)

where
∏

(Pi, Pj) is the set of all joint distributions γ(x, y) whose marginals are re-

spectively Pi and Pj. Intuitively, from the field of optimal transport, γ(x, y) indicates

how much “mass” or “earth” must be transported from x to y in order to transform

the distribution Pi into the distribution Pj. The EM distance is then the “cost” of

the optimal transport plan.

Benefit of Wasserstein Distance: The primary benefit of using the Wasser-

stein distance is that the distance metric or similarity between individual clusters

is calculated irrespective of the number of samples in the individual clusters. Since

this distance measures the distance between multiple distributions irrespective of the

number of samples in each distribution, it is ideal for our case. This is because the

clusters generated from our experiments are very heterogeneous with respect to the

number of samples in each cluster, and we want to measure the similarity between

such clusters irrespective of the number of samples in the individual clusters.

After obtaining the spectrally pure clusters we assume each of the three bands:

Red, Green and Blue bands for each of the clusters to represent a color distribution.

Since it is known that clusters can have widely varying density of samples depending

on the scale of the object they represent, we propose the comparison of the color
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distributions (and not a direct comparison between the widely varying number of

samples representing different clusters) obtained from the clusters. The Wasserstein

distance metric is a well known distance metric used for the comparison of multiple

distributions, and it calculates the amount of “work” required to convert one distri-

bution into the other. In our proposed work we use this similarity metric to compare

between the Red, Green and Blue bands of color distributions obtained from the dif-

ferent clusters. A small Wasserstein distance for each of the three color bands imply

that the distributions governing the clusters are similar. We merge the clusters if

they belong to similar distributions, else they remain as they are. This method helps

us to expand the ground truth for the roads to cover the entire roads, starting from

the one pixel representing the center of the roads, as represented by the Figures. The

distance based merging of the clusters help us to connect the similar clusters to each

other.

6.3.6 Nearest Neighbor based smoothing

Even after merging the small clusters to form large groups of objects, we still have

noisy labels. To eliminate this we implement a smoothing constraint and smooth

out the noisy labels. We implement this smoothing algorithm since we realize that

roads are mostly smooth except at the boundaries/edges. We implement a smoothing

algorithm with a small rectangular kernel, having a size of 7× 7, so as to smooth the

pixels belonging to the road and simultaneously respect the road boundaries/edges.

This smoothing operator leads us to get the labels as shown below. We finally use this

version of the generated ground truth, along with the corresponding original 16-bit

images to train the back-end semantic segmentation network.

A kernel smoother is a statistical technique to estimate a real valued function

f: Rp → R as the weighted average of the neighboring observed data. The weight

is defined by a kernel K, such that closer points are given higher weights. The
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estimated function obtained as a result is smooth. The nearest neighbor smoother

is based on the following idea: For each point Xi, take m nearest neighbors, and

estimate the value of Y (Xi) by averaging the values of these neighbors. The kernel

size k is determined empirically from the dataset. Higher the value of k, larger is the

kernel size, resulting in smoother images. A very large value of k, causes the edges

and separate objects in the images to smoothen out. Thus, we empirically find the

optimum value of k so as to smoothen the roads, as simultaneously respect the road

boundaries. Mathematically,

Y (Xi) = 1/(m+ 1)× ||X0 +X1 + ....+Xi + ....+Xm|| , (6.2)

where X0 is the 1st closest neighbor of the pixel Xi, X1 is the 2nd closest neighbor of

the pixel Xi, ..... , and Xm is the (m+ 1)th closest of the pixel Xi.

6.3.7 Deeplab based training

Most of the deep networks proposed since [172, 173, 76], have been known to

be known to suffer from the problem of overfitting. To address this issue and also

incorporate a degree of translational invariance to the extracted deep features, most

of the state-of-the-art deep networks utilize the pooling layers (either max-pooling

or average-pooling). But since its inception and more recently, the science govern-

ing such arbitrary pooling operations have been questioned by a large number of

scientists/researchers [13, 110, 200, 1]. More recently, many of the proposed deep

neural networks as Capsule Neural Networks [1, 14], have been proposed to replace

this arbitrary idea of pooling with a statistically and scientifically sound approach,

which is governed by a routing algorithm between deep layers. In the field of semantic

segmentation, researchers have replaced the pooling operations with strided convolu-

tional networks, moreover to preserve or utilize a large field of view from the original
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images, atrous convolutions have been used within the proposed deep networks.

Atrous convolutions since their inception, have been used in the field of wavelets

[201, 202, 203, 204], for the purpose of enlarging the field of view of the filters to

incorporate larger global context within the learned deep features, without increasing

the filter parameters. The term “a-trous algorithm” is a French word, meaning “holed

algorithm”. In simple words, it grows the small sized filters by incorporating zeros

in between the filter elements, thereby increasing the filter sizes, without increasing

the number of non-zero parameters, which are required to represent the filters. More

recently, they have been used to capture features at a large field of view, so as to

capture the important global details from the images without compromising the local

details, in the field of deep learning [3]. The primary benefit of using atrous con-

volutions in deep networks is that they allow us to increase the filter size so as to

capture global details from training images, by increasing the field of view, without

increasing the number of parameters in the deep neural networks. This helps the

deep network to capture the important global details from the images and capture

the spatial context of the objects with respect to each other without requiring large

number of training parameters [3], which as seen from literature inevitably leads to

the problem of overfitting on the training dataset [205, 206, 9].

Deeplab [3] was recently proposed for performing Semnatic Segmentation, and it

incorporates both strided convolutions and atrous convolutions as discussed before.

For performing the backend segmentation utilizing our proposed algorithm, we use

this approach as the state-of-the-art method for performing Semantic Segmentation

of Roads.

6.3.8 Training and Testing using 16 bit images

Most of the recent state-of-the-art images are aquired using the 16 bit data format.

The 16 bit data format is exceptionally rich from the perspective of representing the
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variation of spectral content, and also from the perspective of capturing the fine

spatial details from any particular scene of interest. Any 16 bit image can represent

655363 = 2.8147498e+ 14, distinct shades of colors.

However, in most of the backend deep learning libraries as Tensorflow, most of

the default configurations of the modules operate using 8 bit images. 8 bit RGB

images can only represent 2563 = 16777216 distinct color shades. Due to this reason

most of the deep learning approaches including the recently proposed state-of-the-art

Semantic Segmentation approaches [3, 207], downconvert the original spectrally and

spatially rich 16 bit images to the corresponding 8 bit images, in order to learn the

corresponding deep features using the in built deep learning libraries as tensorflow,

in which the default configuration can handle only the 8 bit downconverted data.

Most of the recently proposed Deep Learning Frameworks have enough parameters

to learn direct representations of the large, rich and detailed 16 bit original images,

and downconversion of the original images to 8 bit is not required. In simple words,

downconverting the rich 16 bit representations to the corresponding 8 bit represen-

tations result in a loss of useful spatial / spectral information, and decreases the

robustness of the learned deep features.

We have seen that 16 bit representations are able to represent 16777216 times more

color variations compared to the corresponding 8 bit representations. To address this

issue, we modify the default configuration of the original Tensorflow library, in order

to utilize the original 16 bit images. Our network directly learns the deep features

from the original 16 bit images and the corresponding thick labels as generated by

our proposed algorithm. We show the impact of learning from the original detailed

16 bit images, instead of the downconverted 8 bit images, using Figure 6.7. For both

the cases, the newly generated expanded ground truth, obtained from our proposed

algorithm is used for training the deep network. We notice that the predictions when

learning is done using the original 16 bit images, are much detailed, less impacted
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by noise, and are able to capture detailed representations from the original images,

when compared to the predictions when learning is done using the downconverted

8 bit images. More precisely, for the image at the top the 16 bit predictions are

much less noisy compared to the 8 bit predictions. For the second image from the

top, the 16 bit predictions represent the edges and the crevices of the parking lot in

a much detailed manner compared to the corresponding 8 bit predictions. For the

third image from the top, the 16 bit prediction accurately captures the road around

the tree, at the bottom left end of the image, in a much better manner compared to

the corresponding 8 bit prediction. For the 8 bit image, the road around the tree is

mislabeled as non-road, and this erroneously creates a detachment in the generated

prediction labels for the road. For the bottom most image, the 16 bit prediction is

again much less impacted by noise than the corresponding 8 bit prediction.

6.4 Experimental Settings and Datasets

Modern satellite images can capture detailed images of entire countries. Millions

of miles of Roads still remain unmapped in those satellite images. Non-profit orga-

nizations as - The Humanitarian Open Street Map Team, The Missing Maps Project

have been mapping large areas from satellite images. Machine Learning techniques

hold a great promise of accelerating the process of road mapping, by automating

the process and requiring minimal human intervention. Advancing automatic feature

extraction and road segmentation algorithms will tremendously help in formulating

disaster responses and developing disaster management strategies. It would help to

combat natural disasters as some of the recent natural disasters: The recent flooding

in Bangladesh, hurricane Harvey in Texas, hurricane Irma in Florida and hurricane

Maria in Puerto Rico. It will also significantly boost in unleashing the power of robust

state-of-the-art machine learning algorithms applied to remote sensing applications
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in both the private and public sectors. The SpaceNet Road Detection and Routing

challenge was designed to assist the development of techniques for generating road

maps from high quality satellite images [135]. The SpaceNet Roads dataset was es-

pecially created for this purpose. The dataset maps 8000 km of roads centerlines,

which is the ground truth for the dataset. All roads were digitized from the existing

SpaceNet data: 30 cm GSD worldview 3 satellite imagery, over the four cities of —

Las Vegas, Paris, Shanghai and Khartoum.

SpaceNet Road Segmentation Dataset: Vegas dataset

Las Vegas is one of the four cities captured by the road segmentation dataset.

Las Vegas has a total of 3685.0 km of roads. The data is distributed as 1300× 1300

pixelated image tiles, of 16 bit images. Figure 6.4 shows the results of expanding

the 1 pixel wide lined road labels using our proposed approach, when the SpaceNet:

Vegas Road segmentation image dataset is used as the input images.

SpaceNet Road Segmentation Dataset: Shanghai dataset

Shanghai is one of the four cities captured by the road segmentation dataset.

Shanghai has a total of 3537.9 km of roads. The data is distributed as 1300 × 1300

pixelated image tiles, of 16 bit images. Figure 6.5 shows the results of expanding

the 1 pixel wide lined road labels using our proposed approach, when the SpaceNet:

Shanghai Road segmentation image dataset is used as the input images.

Venezuela Caracas Road Dataset

High quality spatially rich 16 bit images capturing the capital city of Venezuela

i.e. Caracas has been captured using the WorldView-2 dataset by DigitalGlobe. This

dataset is being first introduced by our laboratory located at the Oak Ridge National

Laboratory in this thesis. We actively participated in creating the ground truth road
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maps for this dataset. Figure 6.6 shows the results of expanding the 1 pixel wide

lined road labels using our proposed approach, when the Venezuela: Caracas Road

segmentation image dataset is used as the input images.

6.5 Results and Analysis

In Figure 6.8 the numbers below each image show the Wasserstein dissimilarity

metric between images from the top row and other images, for each of the Red, Green

and Blue Bands.

Table 6.1: Overall Mean-IOU (%) for the SpaceNet3 Las Vegas data.

Algorithm Accuracy

NVIDIA’s Floodfill ∗ 49.63

Proposed Approach 65.42
* https://devblogs.nvidia.com/solving-spacenet-road-detection-challenge-deep-learning/

Table 6.2: Overall Mean-IOU (%) for the Caracas data.

Algorithm Accuracy

NVIDIA’s Floodfill ∗ 74.39

Proposed Approach 80.87
* https://devblogs.nvidia.com/solving-spacenet-road-detection-challenge-deep-learning/

6.5.1 Challenges for large scale road segmentation

Large scale road segmentation datasets generally have high intra-class variance

between samples. The SpaceNet dataset as used in this chapter, has 7 different classes

of interest within the general road class. The general roads can be further separated

into: Motorways, Primary Roads, Secondary Roads, Tertiary Roads, Residential Area
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Figure 6.7: Predictions by the proposed method for Vegas Roads. Original RGB
images (left), Predictions when training and testing using downconverted
8 bit images (middle) and original 16 bit images (right).
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Figure 6.8: Wasserstein Distance Matching between RGB images. Original RGB im-
ages (top row), RGB images for comparison (all other rows). Each column
shows a distinct comparison.
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Figure 6.9: Visualization of predictions by the proposed method for SpaceNet, Vegas
Road Segmentation Dataset when trained and tested with 16 bit images.
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Figure 6.10: Visualization of predictions by the proposed method for in house
Venezuela: Caracas Road Segmentation Dataset when trained and tested
with 16 bit images.
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Roads, Unclassified Roads and Cart Tracks. The high degree of intra-class variance

makes it difficult for any feature extractor or classifier to extract robust features from

the original images. This problem can be avoided by using a large number of training

samples. Using a large number of training samples, will in turn make the process of

training the deep network very slow. To avoid this problem [3] uses byte array data

types for training, validation and testing of the deep networks. For our proposed

work, as described in this chapter, we also follow the same approach.

6.5.2 Wasserstein Distance based similarity

Figure 6.8 shows the Wasserstein distance matching between several images. The

top row represents 3 distinct RGB images. Each column shows a distinct comparison

between the image from the top row and all the other images below the top row, which

belong to the same column. The dissimilarity metrics, as shown below each image for

each of the Red (R), Green (G) and Blue (B) bands individually, clearly show that

visually similar images have a low dissimilarity value between them. Images which are

visually very different from each other have a high value of Wasserstein dissimilarity

metric. As described in previous paragraphs, we merge similar clusters using this

Wasserstein distance metric, and let the dissimilar clusters remain separated.

6.5.3 Visualization of Road Segmentation

Figure 6.9 and Figure 6.10 shows the 16 bit RGB images and the corresponding

segmentation mask predicted by our proposed algorithm as described in this chapter.

We notice that the generated or predicted segmentation masks are of very high visual

quality, such that they are able capture the finely detailed representations of the roads

from the original RGB images.
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6.6 Conclusion and Future Work

In this chapter we present a novel method to expand the road segmentation ground

truth from the original 1 pixel thin labels, in order to cover the entire roads instead of

the center of the roads. Previously, this has been done by [2]. This helps to correctly

label the incorrect ground truth pixels and helps to train a more robust model. We

show that our methods generate visually accurate segmentation masks.
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Chapter 7

Conclusion and Future Work

In this thesis we focus on developing novel Spatial-Spectral Semi-Supervised ma-

chine learning techniques used for image analysis. We show that the proposed ap-

proaches which use the inherent structure of the underlying unlabled data samples

can train feature extractors and classifiers which are much more robust than the

corresponding learning methods which make use of only the labeled data samples.

Furthermore, we clearly show that our proposed Spatial-Spectral Semi-Supervised

Deep Learning methods can perform better than the traditional machine learning

methods and corresponding state-of-the-art Deep Learning methods. Another major

observation of this thesis is that using the Spatial properties of remote sensing images

can help us to learn more robust feature extractors and classifiers compared to using

only the Spectral properties of the data. From Chapter 5 of this dissertation, we

also observe that by using intelligent pooling mechanisms and Semi-Supervised Deep

Learning strategies we can train more robust deep feature extractors and classifiers.

In Chapter 6 of this dissertation we also explore novel Semi-Supervised Deep Learn-

ing strategies for large scale city wise Semantic Segmentation problems. The task

under consideration being Semantic Segmentation of Roads. We show that by using

our novel techniques, we can segment the roads from the images in a much robust
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manner compared to using the original one pixel wide supervised ground truth labels.

A general observation in the the field of Deep Learning is: Since the recent revival

of Deep Learning methods, researchers have started to explore the use of unsupervised

data to train their models. This is primarily done in order to exploit the inherent /

underlying structure or distribution of the data so as to prevent overfitting of the deep

learning models on the limited number of training samples. In this thesis our focus

is primarily on exploring Semi-Supervised Learning strategies for traditional machine

learning methods and novel deep learning methods. The field of Semi-Supervised

Deep Learning has received a significant boost in terms of novel important contri-

butions, but we believe that there is still a large space remaining for researchers to

explore in this particular field.

Chapters in this dissertation appear in (or are in preparation for submission) as

the following publications [28, 208, 209].

Assumptions and Limitations:

• Chapter 2 of this dissertation assumes that the unlabeled samples in the image

can be discriminated from each other based on a similarity metric. The choice of the

similarity metric which governs the back-end superpixel algorithm determines the ef-

fectiveness of the proposed algorithm.

• Chapter 3 of this dissertation has the same limitations as Chapter 2, as men-

tioned before.

• Chapter 4 of this dissertation uses a Siamese Neural Network for training the

Deep Network. It assumes that both the branches of the Siamese Network will ulti-

mately converge in the same direction. If the branches of the Siamese Network learn

opposing features, the the Network will fail.
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• Chapter 5 of this dissertation uses a Capsule Neural Network to train the Deep

Network. A limitation of this chapter is that we did not experiment with the depth

of the Capsule Network, due to time constraints. It would be interesting to observe

whether the features become more robust if the depth of the network is increased.

• Chapter 6 of this dissertation assumes the availability of enough single pixel wide

ground truth labels for creating label expansion on the training set. It also assumes

that the spectral properties of the Roads are different from the spectral properties of

non-roads. The approach fails when roads are covered by trees or urban constructions.
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