Nonlinear wave interactions in bubble layers
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Due to the large compressibility of gas bubbles, layers of a bubbly liquid surrounded by pure liquid
exhibit many resonances that can give rise to a strongly nonlinear behavior even for relatively
low-level excitation. In an earlier papfDruzhininet al, J. Acoust. Soc. Am100, 3570(1996)] it

was pointed out that, by exciting the bubbly layer in correspondence of two resonant modes, so
chosen that the difference frequency also corresponds to a resonant mode, it might be possible to
achieve an efficient parametric generation of a low-frequency signal. The earlier work made use of
a simplified model for the bubbly liquid that ignored the dissipation and dispersion introduced by the
bubbles. Here a more realistic description of the bubble behavior is used to study the nonlinear
oscillations of a bubble layer under both single- and dual-frequency excitation. It is found that a
difference-frequency power of the order of 1% can be generated with incident pressure amplitudes
of the order of 50 kPa or so. It appears that similar phenomena would occur in other systems, such
as porous waterlike or rubberlike media. ZD03 Acoustical Society of America.
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I. INTRODUCTION thermal gas behavior and a quasi-equilibrium dependence of
the bubble radius on the external pressure were assumed.
The high compressibility of a bubbly mixture causes sig-Furthermore, in the presence of the saw-tooth shock wave
nificant nonlinear effects to arise even at relatively low presstructure that develops even at moderate pressure ampli-
sure amplitudes. For this reason, several authors have cofiides, the accuracy of the numerical method used in that
sidered the possibility of using such multiphase systems agork was questionable. It is the purpose of this paper to
active media in parametric array$Zabolotskaya and improve on the earlier analysis of the problem, both in the
Soluyan, 1973; Kustoet al., 1982; Ostrovskyet al, 1998.  mathematical model and in the numerical treatment. While,
The practical realization of this idea has not been very sucunlike the earlier work, the complexity of the model prevents
cessful due to the use of a mixture of bubble sizes containings from obtaining analytic results, the numerical simulations
resonant bubbles at the incident frequency: the large lossesnfirm the practical potential of the suggested arrangement.
that accompany bubble oscillations near resonance severely A schematic representation of the situation studied in
diminished the energy available for the parametric effect. this paper is shown in Fig. 1: a one-dimensional layer of
In an earlier papeDruzhininet al, 1996 we suggested liquid containing gas bubbles is located between0 and
that the problem could be addressed in a novel way by exx=L and is excited by a plane wave normally incident from
ploiting the resonances of bubbly liquid layers. It was arguedhe left. As a result of this excitation, a reflected wave at the
that, by adjusting the bubble size and the operating frequeneft of the layer and a transmitted wave at the right are gen-
cies so that the desired low-frequency output correspond terated.
layer resonances, it should be possible to operate efficiently Some further analysis and preliminary experiments on
while remaining far away from the individual bubble reso- the low-frequency sound generation in such an arrangement
nance: the result would be an increased efficiency of lowwere presented in Ostrovslgt al. (1998. The results were
frequency generation and a moderate energy loss. Althoughowever somewhat inconclusive as the layer was resonant
promising, it should be noted that the practical realization ofonly for the difference frequency of the two incident waves,
this concept requires the generation of bubbles smaller thapoth of which had frequencies close to the individual bubble
the resonant radius at the frequencies of interest which, dérequency and, therefore, were strongly dissipated.
pending on the specifics of the required system, may not be
an easy task.
Our earlier work demonstrated the validity of this expec-1l. MATHEMATICAL MODEL

tation in principle, but had a preliminary nature in that iso We consider the one-dimensional problem sketched in
Fig. 1. The mathematical model of the bubbly liquid consists
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Herep is the bubble internal pressuapproximated by the

gas pressure, the small vapor contribution being neglgcted

o is the surface tension coefficient, apdis the liquid vis-

FIG. 1. Schematic representation of the one-dimensional bubble layer e){;OSi_ty' FO.I’ an isolgted b!"bble} the ambient presamppear-_

cited by a normally incident plane wave from the left. ing in (4) is to be identified with the pressure at the location
of the bubble if the bubble were absent. In a dilute mixture

) ) ) the bubbles are subject to the averaged fieldRstiould be

in which p; and ¢, are the density and sound speed of thei,uen as the average pressure appearing in the momentum

pure liquid andP andu are the average mixture pressure a”dequation(Z) (see, e.g., Cafliscét al, 1985: Zhang and Pros-
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velocity, and of the momentum equation peretti, 1994 As before, in(4) we omit the convective term
of the material derivatives dRr.
ﬂ+ &P: ) In writing (3) and (4) we have implicitly taken the
Prav " ox bubble to be spherical, ignoring the distortion due to gravity,

flow, and bubble—bubble interaction. This we do for simplic-
This model is essentially that of Kogarkd964 and van ity and with little loss of accuracy since shape modes couple
Wijngaarden(1968 except that, as pointed out by Caflisch inefficiently to pressure perturbations when the spherical
et al. (1989, the convective term of the material derivative shape is stable. We have also neglected the corrections due to
can be omitted due to the assumed smallness of the gas valguid compressibility(see, e.g., Prosperetti and Lezzi, 1986
ume fractions; additional considerations on this point are which we had included in the early calculations for this pa-
given in Watanabe and Prosper¢ftb94), and further appli- per but found to have a very small influence on the results
cations of this and similar models can be found e.g., in Zabofsee Prosperett{1984 for a comparison of the various
lotskaya (1977, Kuznetsovet al. (1978, Gasenkoetal.  damping mechanisms
(1979, Nigmatulin (1993, Akhatov et al. (1994, Naugol- In order to close the system a relationship between the
nykh and Ostrovsky(1998, Colonius et al. (2000, and  gas pressurp and bubble radiuR is needed. This point has
many others. Buoyancy effects are neglecte@jrdue to the  peen treated at length in earlier papéPsosperetti, 1991;
smallness of the acoustic time scale compared with the timgyatanabe and Prosperetti, 199&uffice it to say that we
evolution of the bubble layer. The volume fraction is given approximate the gas pressure inside each bubble as spatially

by uniform, which leads to
B(x,t)=47R3(x,t)n, 3 w3l AR
%R (y 1)kar ) Yol (5

whereR(x,t) is the instantaneous radius of the bubbles con- _
tained in a small volume centered arourcand n is the  WhereT is the local gas temperature to be found from

bubble number density. In the same assumpgBiefsil under y pldT 4T 1 9 JT

which (1) and(2) hold, the bubble number densitycan be - —(—+U —|=p+ = —(kr2—>, (6)
taken as independent of time: for simplicity, we further as- Y~ 1 T\t~ dr reor or

sume it to be spatially uniform. The expressi@ can be \yith

readily extended to a distribution of bubble sizes by inserting

in the right-hand side an integral over the probability distri- 1 aT 1 |

bution of the bubble radi(Zhang and Prosperetti, 1994; " (y=Dkor=37p). @

Prosperetti, 2001but, for simplicity, here we assume that all i . -
bubbles have the same radius. Generally speaking, if the siZB these equationy and k=Kk(T) are the ratio of specific
distribution is such that all the bubbles have a resonancBeats and thermal conductivity of the gas arid the radial
frequency greater than those of interest, one would not ex¢oordinate measured from the center of the bubble. As
pect very different resultésee, e.g., Naugolnykh and Ostro- Shown in Kamattet al. (1993, at the surface of the bubble,
vsky, 1998. On the other hand, if a significant fraction of @ Suitable boundary condition f@6) is
resonant or near-resonant bubbles were present, dispersion TR=T ®)
would be very different, dissipation greatly increased, and ’ .
the phenomena that we discuss strongly and adversely afvhereT., is the undisturbed liquid temperature. It should be
fected. noted that, inside the bubble centeredxathe temperature
In spite of its appearance, the previous model retains &ield T depends om as well as and, hence, in principle, the
strong nonlinearity in the manner in whidRis calculated. set of equationg5)—(7) must be solved at all spatial loca-
Again on the basis of the smallness@ffor this purpose we tions in the layer.
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In Druzhininet al. (1996 we considered a much simpler JP IP P
model of the bubble behavior that was obtained fr@nby Tt G 25 atx=0. (13
assuming an instantaneous equilibrium between internal and
external pressures and ignoring viscosity and surface tensidiroceeding similarly at the right boundary we find
so thatp=P; in addition, the bubble internal pressure was IP JP
related to the radius by a polytropic assumption so that Eqs. 3 +c|§=0 at x=L. (14
(1) and (2) were closed by the simple relation

R.\ 3% Because of this argument, the problem is reduced to solving
po(—0> p:p, (9) the equations of Sec. Il subject to the conditiqd8) and

R (14) atx=0 andx=L. After the pressur® inside the bubble

with «, a polytropic index. While the neglect of viscosity layer is determined, the reflected and transmitted waves are

and surface tension is not very limiting for bubble sizesfound from(11).
above a few tens of micrometers, the neglect of inertia on the

left-hand side of(4) restricts the validity of this quasi- 1. LINEAR RESULTS
equilibrium model to frequencies much lower than the . . .
bubble resonance frequency. In this limit, in most parameter For a better und_erstandlng of the material tha_t follows, it
regions of interest, the bubbles behave isothermally so that useful to summarize here some resuilts of the linear analy-
Eq. (9) is justified with x,=1. Outside this very restricted Sis of the previous model.

domain of validity, however, the model of our earlier paper As shown in tCotr)nrpand?rr] and Zr?s%etrrgétQSQ, for lin- i
cannot be expected to be accurate. ear pressure perturbations the model of the previous section

A model intermediate between the quasi-equilibrium anogives the foIIowing_disper_sion relation for monochrpmatic
complete models can be formulated by using, in thePressure waves with a time dependence proportional to

Rayleigh—Plesset equatidd), the polytropic relation(9) in expgwt) and wave numbex in a bubbly liquid:

place of (5) for the bubble internal pressure. This model, K2 1 330/R§

termedpolytropicin the following, accounts for the inertia of w2 2 + D= w2t 2ibe (15

the bubble radial motion, but not for the strongly dissipative : 0

thermal effects. A relation of this type has been derived by many authors
. starting from several similar modelsee, e.g., Carstensen

A. Boundary conditions and Foldy, 1947; Clay and Medwin, 1977; Waterman and

As the layer compresses and expands under the action dfuell, 1961; Twersky, 1962; Omta, 1987; d’Agostino and
an incident pressure wave, the planes defining its boundaridgdrennen, 1988; Nigmatulin, 1991; Medwin and Clay, 1997
will move normal to themselves. If the gas volume fraction isHere
small, by the same argument that enables us to neglect the Bo=4mR3n (16)
convective term in the material derivatives, we may disre- o s
gard this effect and approximate the layer boundaries ais the gas volume fraction at equilibriumy/27 is the effec-
fixed in space. As shown in Druzhiniat al. (1996, this tive undamped resonance frequency of the bubblesp&aad
approximation permits a great simplification of the problem.the effective damping parameter; these quantities depend on
Indeed, since the medium outside the bubble layer cathe driving frequencyw and are given by
be regarded as linear and is nondispersive, one may assume

o i 2 1
that the incident, reflected, and transmitted waves have the wgz Poz( K|~ 7 ) k== Red, (17)
form PR RoPo 3
Pinc=Pi(X=Cit), Pyans= Pi(X—Cit), b= Z_’MIZ p02 Im®, (18)
(10) pIRG  2pRpw

Prer=Pr(x+cit). . . o
. . where k| is the linear-theory value of the polytropic index
At the layer boundaries the pressure should be continuous $ghich is calculated from the complex functidn defined by

that if, as beforeP denotes the pressure in the layer, (Prosperetti, 1991
Pi(0Ot)+P,(0t)=P(0t), P(L,t)=P«(L,t). (11 3y
The velocity or, equivalently, the pressure gradients should *= 1-3(y—1)iz[(i/z)**cothi/z)"*~ 1]’ (19
also be continuous which, at=0, gives with z=D/wR?, in which D is the gas thermal diffusivity.
P, 9P, 9P The ratioc,,= w/ k is the phase velocity of the wave which

12 (15) shows to be complex: the imaginary part describes the
attenuation of the wave in the bubbly mixture due to the
By virtue of the particular forn{10) of the functional depen- energy losses in the bubbles. In a water—air system viscous
dence onx andt of P; and P,, the spatial derivatives are losses, described by the first term on the right-hand side of
readily related to time derivatives and, upon taking the timg18), are much smaller than the thermal ones except for
derivative of(11), we can eliminat@P, /Jt. The result is the bubble radii in the micrometer range. If liquid compressibil-
condition ity effects were retained if4), an acoustic loss contribution

X ax X
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bac= w?Ry/(2¢;) would be added to the right-hand side of conditions, we use the total variation diminishing method of

(18); this term is also small fow below the bubble reso- Harten(1983, the implementation of which is now briefly

nance frequencwg. described. It is convenient to use dimensionless variables
For the quasi-equilibrium model of E¢Q) the relation defined according to

corresponding tq15) is

, X ¢ C|t , PiC
2 X' = =-—, uU'=—-u

K 1 ’ 3 ’

w® ¢  KpPu B (27)
whereP., is the undisturbed pressure in the liquid. This re-  P'= p. L B'= By’
lation demonstrates the extreme sensitivity of the effective ] ]
speed of sound/w to the gas concentration; for example, in Put we drop the primes for convenience.
water p,c2/P..~2.25< 10* and, with xkp=1 and =103, The continuity and momentum equatiol) and (2)
we have from(20) ¢, /c,,=S5. may be compactly written as

For a monochromatic wave with unit a_m_plitude nor- oW  IF  pBoC?
mally incident on a bubble layer of thickneksit is easy to “tx=p : (28
show that the amplitudes of the transmitted and reflected * _
waves, A, andA, are given by standard acoustic relationswhere the vectorss, F, andb are given by
(see, e.g., Pierce, 1989, Secs. 3—-7; Commander and Prosper- p u Bl ot
etti, 1989 W=l F= Pl =0 ‘ (29

expliwlL/c))

(22) This system is discretized explicitly in time and in space as

A= :
" cog kL) + Li[wl(xC)) + kel w]sin kL)

w - N Flea2— 'EirLlIZZ p1BoCt pn+ 12 (30
3i[w/ (k) — ke /w]sin(kL) 22 At AX P, ™ '
rer cog kL) + 3i[w/(kC))+ kC)/w]sin( kL) ' where superscripts indicate time levels and subscripts spatial
The corresponding results for the quasi-equilibrium modefwdes' The_ modified fluxef are given by the following
. . . ; . expression:
are conveniently written in the following form:
4A F ! (Fii1+F)
_ i+12= 5 (Fi+1 i
A= AT )2 (A—1)%exp — 2iAwlic)’ 23 2
2
2_ _ o _ S
A= B ZRGLIOZL (o #2310+ gl ey Qrsd!+ 7l RY,
¢ (A+ 1) —(A—1)%exp —2iAwl/c) =1
where the nondimensional paramefers defined by (31)
5 wheres=c;At/Ax is the Courant number and
C P1BoCi
A=—=1\/1+ (25) 1 1
Cm PocKp R(l)zll’ R(D:’ 1 a(l)z 1’ a(z)z—l, (32)

with the second equality following frorf20). Equationg23)
and(24) give a simple estimate of the resonance frequencies aﬁ)m: HPi 1~ Pi+U 1 —up),

of the incident wave: 33
A F =3P 1= Pi— Uit uy), 33
B nc,

“nTAL n=12... (26) ) 21(9521_%('))/%(21/2 if afl;,#0, 34
This estimate can be refined by calculating numerically the e 0 if “521/2: 0.
maxima and minima of the moduli &, andA given by  The functionQ is defined by
(21) and(22). y2l(4e)+e, for |y|<2e,
Q(y):[lw, for [y|=2e, %

IV. NUMERICAL METHOD

] with e=0.1, and plays the role of an artificial viscosity. Fur-
The problem to be solved can be decomposed in tWQnarmore

components, the integration of the continuity and momentum _ 21 () _—
equations in the bubbly liquid, and the calculation of the min([[Q(s) —s*lai /1), [[Q(S) — sl 12])
temperature inside the bubbles. While these two components () _ if V. .. =0
. . . gi'= Aj+ 120 —1/2= Vs

are coupled, their nature is very different and so must be |

. . 0 o, ., . <0.
their numerical treatment. i+1207-1/2

In view of the strong nonlinear effects in the bubble (36)
layer, steep waveforms develop in the system. To avoid th&he terms in the summation i(81) are a correction to the
well-known numerical oscillations that can arise in thesecomponents of the fluk along the characteristic directions,
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which are introduced to account for the discretization error .1 . x ' . ' x T '
and guarantee second-order accuracy in space. 1.0
The time integration is a variant of a predictor-corrector — o.of = * =~
method abbreviated so as to result in a faster execution with. gL
out significant loss of accuracy. Briefly, the procedure is as |
follows. Suppose that everything is known at time letfel
At all interior nodes we generate a preliminary estimate of\a\g '
the pressur®"*! at time levelt""*=t"+ At from (30) in o
which (4;8)" is used in the vectob on the right-hand side
(here and in the following, tildes denote provisional esti-
mated values at tim&"*1.) With this updated pressure we
calculate new values of)fR)""* and (¢R)"** and use an

approximation to the trapezoidal rule in the form 05 06 07 08 09 10 1.1 12 13 14 15
w/w,

R I=R"+ JAt[(4,R)"+ (a,R)" "], (37)
.. . . . FIG. 2. Pressure amplitudes of the component at the incident wave fre-
and similarly for all the other variables. In executing this guencyw for the transmittedcircles and reflectedsquareswaves as func-
step, in principle it would be necessary to update the timeions of the incident frequency normalized by the first linear eigenfre-

derivative of the bubble pressu(é) as well, which would guency of the layer according to the quasi-equilibrium mode}/2m
however significantly slow down the calculation. We found =1.347 kHz; the solid and dotted lines are the linear results given in Egs.

. . n . ... (23 and(24). The incident wave amplitudB;,./P..=0.05 is smaller than
that simply using the valuetp| does not lead to a signifi- the threshold value for shock formation given t88). The gas volume

cant loss of accuracy. fraction is 8,=0.133%, the ambient pressufe =100 kPa, the liquid den-
After a variable transformation that fixes the bubblesity py=10° kg/n?, the liquid speed of sound=1.5x 10° m/s, the liquid
boundary, the energy equation in the gésis turned into a v?scosity,u_|_=10‘3 N s/n?, the gas adiapatic index=1.4, the surface ten-
- . - . L ._sion coefficientoc=0.07 N/m, and the width of bubble layer=0.1 m.
set of ordinary differential equations in time by the Galerkin
spectral method described in Kamath and Prosp&fa89. ) )
The temperature is expanded over a set of even Chebysh#{ich corresponds to a bubble volume fractiof
polynomials; the number of polynomials used in the expan== 0.133%. Furthermpre, we estimate the bubbly layer lowest
sion varies in time according to the procedure given in Ka-Modew; from (26) with n=1 and«,=1. o
math and Prosperettl989. Before turning to th_e results of the cqmple_t_e model, it is
To generate the numerical results that follow we have!Seful to study those given by the quasi-equilibrium model
typically used between 800 and 3200 spatial nodes per wavé?9) for which the e_arller results of Druzhinigt al._(199©, as
length depending on the amplitude and the volume fraction'ell as the analytical ones of Sec. Ill, are available; clearly,
stronger incident waves lead to shock formation the resoluth® predictions of the quasi-equilibrium model are indepen-
tion of which requires more nodes. The appropriate numbefl€nt of the bubble radius.
of nodes was chosen by successively refining the grid until
the results stabilized. For each level of discretization the time\. Quasi-equilibrium model
ts;zflA()tzwas chosen such that the Courant number was less Druzhinin et al. (1996 give the following criterion for
It i's .clear from the preceding description that the prob_the threshold amplitude of an incident monochromatic wave
. g . that leads to shock formation in the layer:
lem is solved as an initial-value problem. The time necessary
to reach a steady state depends on the driving amplitude and P}L‘C 43,(2) 1
the value of the parametéy For weak excitation one typi- P.  y(1) nyAZ_1’ (39)
cally needs about 20\, cycles, where\,, is the wave-
length in the bubbly mixture. For larger amplitudes dissipa-where J, , are Bessel functions, and it is assumed that the
tion is stronger and the numerical constant of 20 can béncident frequency corresponds to tieh resonance fre-
considerably reducetDruzhinin et al,, 1996. quency of the layer. FoA= 31, n=1, and isothermal os-
cillations, this relation gives a value of 0.18. Thus, in order
to start with the linear regime, we consider first a case with
an incident wave amplitud®;,./P..=0.05. Figure 2 shows
In all the examples that follow we use the physical prop-the transmittedcircles and reflectedsquaresamplitudes as
erties of an air—water system at standard conditions. Speciffunctions of the ratiaw/ w; of the incident frequency to the
cally, we take P.=100kPa, p;=10°kg/m®, ¢,=15 lowest layer eigenfrequency which, here, i®/2m7
x10° m/s, andu; =10 3 Ns/n?, y=1.4,0=0.07 N/m; the =1.347 kHz as given by26). The amplitudes shown are for
air thermal conductivity is calculated fronk(T)=AxT  the components at the same frequency as the incident wave,
+Bx with A¢=5.528<10 ° J/(msK) and Bx=1.165 which are found by taking the Fourier transforms of the total
X 1072 J/(msK), which provides a good fit to the data in transmitted and reflected waves; the relative power of the
the range 200 K T<3000 K. The width of the bubble layer higher-frequency components is smaller than 0.0004. In the
is taken to b&-=0.1 m and the coupling parametedefined figure the lines are the analytical resul®3) and (24). The
in Eq. (25), evaluated fork,=1, is taken to be/31=5.57, agreement is excellent, which suggests that the numerical

V. RESULTS: SINGLE-FREQUENCY EXCITATION
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FIG. 4. Pressure field inside the bubble layer at timx @2 for different
amplitudes of the incident wavé,,./P..=0.01, 0.1, 0.2dotted, 0.3, 0.5,
0.9 according to the quasi-equilibrium model. The frequency of the incident
wave is equal to the first linear eigenfrequency of the layerw,, with
w,/27w=1.347 kHz. The gas volume fraction &= 0.133%; other condi-
tions as specified at the beginning of Sec. V.

Pinc/P.=0.7, is shown in Fig. 5. The circles and squares
connected by dashed lines are the numerical results while the
solid and dotted lines show the linear theory predictions.
Now that the threshold value is far exceeded, nonlinear ef-
fects are dominant, and the discrepancy between the two sets
of results is very pronounced, especially when the incident

L ( It 1 s |

190 191 192 193 194 199 196 197 195 199 200 frequency is close to the first linear eigenfrequency of the
tw/em layer, w/ w1~ 1. The maximum of the resonance curve of the
FIG. 3. Steady-state shape of transmittegper paneland reflected waves ~transmitted wave is about 0.6, rather than 1, and it occurs at
for different amplitudes of the incident wave;,./P,,=0.01, 0.1, 0.2dot-  a value ofw/w, shifted to the left of the linear resonance
ted, 0.3, 0.5, 0.9 according to the quasi-equilibrium model. The frequencycondition, which indicates the expected softening behavior
of the incident wave is equal to the first linear eigenfrequency of the IayerOf the nonlinear oscillator. The considerable dissipation seen

-1.0

w=wy, With w27=1.347kHz. The gas volume fraction 8, . . . . -
=0.133%, the ambient pressure,=100 kPa, the liquid density, in this case is a consequence of shock formation in the layer.

=10® kg/n?, the liquid speed of soung|=1.5x 10> m/s, the liquid viscos- The transient process that culminates in the formation of

ity u;=10"% N s/n?, the gas adiabatic index=1.4, the surface tension
coefficiento=0.07 N/m, and the width of bubble layer=0.1 m.

1.0

method is accurate and so is the computer code that imple 0.9
ments it. 0.8
As the amplitude of the incident wave increases, nonlin- 7
ear effects eventually lead to shock formation as demon- 2 ¢
strated in Fig. 3, which shows the normalized transmitted™; .|
(upper panel and reflected waves at steady state for ™
Pinc/P.=0.01, 0.1, 0.2dotted ling, 0.3, 0.5, and 0.9; these

waveforms are shown during the 20th cycle, by which time

steady state has been reached. The result®fptP..=0.2 021 ]
are singled out using a dotted line beca(3® gives a value 01F 1
of 0.18 for the shock-wave threshold, which is seento be in 29555 05 65 o5 10 11 12 13 14 1.5
good agreement with the numerical results. At the lowest W/,

drive the wave is essentially completely transmitted: the re-

flected component is very small and almost entirely consistE!G- 5. Pressure amplitudes of the component at the incident wave fre-
. . . uencyw for the transmittedcircles and reflectedsquareswaves as func-
ing of the second harmonic. Indeed, the linear theory reSUIt%ons of the incident frequencyw normalized by the first linear eigenfre-

(23) and (24) predict 100% transmission and zero reflectionguency of the layer according to the quasi-equilibrium modej/2
for these conditions. Figure 4 is the pressure distribution in=1.347 kHz. The dashed lines connecting circles and squares are only
the layer at time 28 27/ for all six driving amplitudes; guides to the eye. The solid and dotted lines are the linear results given in

; ; ; _ ; Egs. (23) and (24). The incident wave amplitud®;,./P..=0.7 is greater
again, the line corresponding ®./P.=0.2 is dotted and than the threshold value for shock formation given(88). The gas volume

shows the incipience_ of shock formation. _ _ fraction is B,=0.133%; other conditions as specified at the beginning of
The analog of Fig. 2, but at the much higher amplitudesec. v.
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FIG. 7. Steady-state shape of the transmitted wave for the case of Fig. 6
(Pine/P.=0.058¢=0.133%w=9w,) according to the quasi-equilibrium
model.

culation, and must therefore be considered an artifact of the
numerical method used.

P//‘Pinc

B. Complete model

We now turn to the complete model in which the bubble
behavior is described by Eq&)—(7). The inertia affecting
the bubble pulsations now causes a strong dependence of the
pressure wave upon the bubble radius, and thermal effects
O TTEr Y 04 o5 o8 o7 08 09 10 contribute to the damping of the wave. Thus, it is interesting

x/L to compare the predictions of this model with those of the

polytropic approximatioriwhich includes inertia but no ther-
mal damping and of the quasi-equilibrium modélvhich
includes neither

In choosing a suitable value of the polytropic index for
use with the polytropic model we face the usual problem of

a shock is due to the gradual build-up of the multiple reflecthe lack of a basis for this choice when the gas is neither

tions that occur at the layer boundaries and is demonstratédearly adiabatic nor isothermal. In our calculations we use

in Fig. 6. The upper panel shows, as a function of the nor{Of ¥p the linear-theory valug, defined in(17). Note that

malized time wt/27, the normalized transmitted wave, andwo as 9“’8” by the linearized theory of S¢itl) depend
which is seen to be progressively reinforced each time th&" the driving frequency; the values that we quote below are

shock developing inside the bubbly layer reflects at the Iaye?ak:l“'l"’lted for the driving frequency of the incident wave

s . In order to illustrate the effect of the bubble radius we
boundary atx=L. Here the frequency of the incident wave : . o
. . . . consider the response of a layer driven near its first mode for
is equal to the ninth linear eigenfrequency of the layer

-~ . - 'two cases, both with the same gas volume fractig,
/©,=9, and the polytropic index equals 1. The InCIdent=0.133%, but with a different radius of the constituent

wave has ampI'IUdEP_i”C/P“:O'OS and _thus e_xceeds the bubbles,Ry=0.121 and 1.21 mm. Again, the isothermal lin-
threshold valu€38) which, for these conditions, is 0.02. The ear frequency of the lowest layer mode, according®, is
time needed for the wave to travel from the left boundaryw1/2W:1'347 kHz.
x=0 tox=L and back is about 82m/w, and this is the In the first case the bubble equilibrium radius Rg
approximate time separation of the steps that are clearly seeng 191 mm; the linear bubble resonance frequency, 23.27
in the first few reflections. The lower panel of the figure kHz, is thus much greater than that of the layer mode. With
shows the pressure field inside the layer at the end of thg,— y, the linear polytropic index of the bubbles as given by
calculation shown in the upper panel, 48w/w. The (17)is x,=1.035, which confirms the essentially isothermal
steady-state shape of the transmitted wave is shown in Fig. hehavior of the gas.
with a clearly evident shock structure as expected. Figure 8 shows the transmitted wave at steady state nor-
The results of Figs. 6 and 7 should be compared withmalized by the amplitude of the incident wave as a function
those presented in Fig. 3 of Druzhinit al. (1996. The  of the dimensionless timéw/27 for two incident ampli-
numerical scheme used in that work introduced numericajudes,P;,./P..=0.01(upper panglandP;,./P..=0.7 (lower
dispersion due to the discretization, which led to oscillationgpane). The solid lines are the results of the complete model,
near the shock. By testing their code we realized that thesahile the dotted and dashed lines are the results for the poly-
oscillations are sensitive to the spatial step used in the catropic and quasi-equilibrium models witk,=1, respec-

FIG. 6. Transmitted wavéupper pangland pressure field inside the bubble
layer at timet=45X 27/ for P;,./P.,,=0.05, 8,=0.133%, andw=9w,
=2mwX12.1 kHz according to the quasi-equilibrium model.
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FIG. 9. Power spectrum of the transmitted wave for the case of the lower
panel of Fig. 8 according to the complete modetcles, compared with
Pmc:Oj polytropic (squarep and quasi-equilibriunttriangles models withx,=1;
2.5 T T T T T T T T T Pinc/P.=0.7, w/27m=1.347 kHz,R,=0.121 mm. The lines are only guides
to the eye.
g.o - .
150 non 4 why this feature is encountered at this higher amplitude but

not at the lower amplitude of the upper panel of Fig. 8 is that

the formation of the shock introduces a much shorter char-
acteristic time scale in the wave, which is not too far from

the resonant period of the bubbles. Due to the absence of
thermal effects, the polytropic model is less dissipative than
the complete one, and the shock time scale is accordingly
shorter: the smaller damping and the shorter time scale com-
bine to cause the prominent oscillations of the result. If these

1 L

70 T Tz 13 Tie 115 116 117 118 118 120 oscillations are averaged out in the mind’s eye, one sees a
tw/2m substantial similarity among the different profiles which is
relatively slowly varying,
complete modesolid line), compared with polytropiddotted ling and ~ Wave structure is only slightly damped in all models. In any
quasi-equilibrium(dashed ling models withx,=1; upper paneP;,./P.. event, it may be noted that the high-frequency oscillations of
=0.01, lower panelPi,./P.=0.7; w/2m=1.347 kHz, B,=0.133%, Ry  the complete model are so strongly damped that the quasi-

FIG. 8. Steady-state shape of the transmitted wave according to thgjue to the fact that the underlylng,

=0.121 mm. equilibrium model ends up being a better approximation to

the actual behavior than the polytropic model.

tively. When the incident amplitude is smdlipper panel The power spectrum of the transmitted wave for
the polytropic and quasi-equilibrium models give essentiallyP;,./P,,=0.7 is shown in Fig. 9. The circles represent the
the same result, which is expected in this case in which theomplete model, the squares the polytropic model, and the
incident frequency is much smaller than the bubble resotriangles the quasi-equilibrium model; the lines connect the
nance frequency. The complete model predicts a somewhaymbols as an aid to the eye. The more dissipative nature of
smaller amplitude and a small phase shift, both due to théhe complete model is evident from this comparison, as ex-
inclusion of thermal dissipation in the bubble motion, butpected. The polytropic model exhibits several peaks corre-
behaves otherwise very similarly. In principle, these featuresponding to the harmonics of the drive and reflecting the
contain information about the bubble size and possibly othestrong oscillations of the lower panel of Fig. 8; these features
guantities, although its extraction might be problematic inare caused by the strongly nonlinear bubble response. The
practice. complete model, instead, only shows a mild resonance in

For the larger-amplitude excitatidiower panel of Fig. correspondence with the bubble fundamental resonance at
8) all three models predict shock formation, but the differ- w/w,=186.
ences among them are more pronounced. The complete In order to illustrate the behavior of the layer when the
model (solid line) shows a transmitted wave with slight os- bubble natural frequency is not as different from the layer
cillations near the maximum, while these oscillations aremodal frequency as in the previous case, we consider now
highly exaggerated by the polytropic modglotted ling.  bubbles with an equilibrium radius of 1.21 mm, for which
The same qualitative difference is encountered when the twey/27=2.647 kHz andx;=1.35. In this case the bubble
models are applied to shock waves in bubbly liquitda-  natural frequency is about twice that of the lowest eigen-
tanabe and Prosperetti, 199&ince these oscillations are a mode of the layer.
consequence of bubble inertia, their absence in the quasi- Figure 10 shows the components of the transmittgd
equilibrium model(dashed lingis not surprising. The reason per panel and reflectedlower panel waves at the incident
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FIG. 11. Steady-state waveform of the transmitted wavePigy/P..=0.7
and o/ w,=0.975 according to the complete modsblid line), compared
with polytropic (dotted line and quasi-equilibrium(dashed ling models
with «,=1.35; all conditions as in Fig. 10.

the closer they are to the bubble natural frequency: the de-
creasing spacing between maxima and minima with increas-
ing frequency is evident from the figure. In the quasi-
equilibrium model, on the other hand, the absence of
dispersion gives an equal spacing between maxima and
minima.
The transmitted waveforms near the first resonance,
wl/w,=0.975, are shown in Fig. 11 for an incident wave
850 0.75 1.00 1.25 1.50 1.75 2.00 amplitudeP;,./P..=0.7. In this case, in which the bubbles
w/ W, behave nearly adiabatically, the total damping is small and
_ . the completgsolid line) and polytropic(dotted ling model
FIG. 10. Pressure amplitudes of the component at the incident wave fre- It dinal | the dashed i is th .
quency o for the transmitted(upper panel and reflected(lower panel res“, _S _are’ accor mg_y' close, the dashe ) me IS the quasi-
waves as functions of the incident frequeneynormalized by the first — equilibrium model, which shows an unrealistic shock struc-
quasi-equilibrium linear eigenfrequency of the layer/2mr=1.347 kHz.  ture that is eliminated by inertia in the other models.
The circles and squares are the numerical results of the complete model for The power spectrum of the transmitted wave is shown in

amplitudesP;,./P..=0.05 andP;,./P..= 0.7, respectively. The solid curves _. . . .
are the linear results given K1) and (22). The dotted lines connecting Fig. 12. As compared with the previous case of Fig. 8, the

squares are only guides to the eye. The bubble radius is 1.21 mm. spectrum for the complete mod@ircles exhibits a much
faster decay due to the fact that all these modes are above the

fundamental bubble resonance; the polytropic result
frequency for P;,./P..=0.05 (circles and P,,./P.,=0.7 (squaresis similar, confirming that thermal damping effects
(squares according to the complete model as functions of

F)w/Pinc

the normalized incident frequencw/w,, with /27 10° : , : , ,
=1.347 kHz as before; the dotted lines connect the symbols
as an aid to the eye. The lower-amplitude results match very 107 3

well the analytic linear results a21) shown by the solid i
line. Remarkably, when normalized by the incident pressure 1072
as here, the higher-amplitude results are only slightly differ- = i
ent, with somewhat less pronounced maxima and minima %vw"’-
and a slight shift to lower frequencies. This is surprising in »° |
view of the earlier results shown in Fig. 5, where a much ~ 107}
greater difference was encountered. The explanation lies it ‘
the fact that shock formation in that case caused a strong 107
energy dissipation that is absent in the complete-model re: g
sults of Fig. 10. 1075 T 2 16 i85 20
The frequency range in Fig. 10 is near the bubble reso- w/w
nance where, for equal bubbles, the phase speed of pressure _ _
waves decreases substantia(lsee, e.g., Commander and FIG. 12. Power spectrum of the transmltted wave for the case of F!g. 11
) L. according to the complete modétircles, compared with polytropic
Prosperetti, 1989 This circumstance has the effect of mov- (squaresand quasi-equilibriuntriangles models withx,=1.35. The lines
ing all the layer resonances to lower frequencies, the morere only guides to the eye.
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are small, while the quasi-equilibrium model spectr(int culations have the same value as given at the beginning of

angles decays much more slowly due to the presence of th&ec. V.

shock. We consider a bubble layer excited by a biharmonic in-
cident wave with components at frequencies’ and w®
close to the ninth and tenth eigenmodes of the layer; for all

VI. RESULTS: DUAL-FREQUENCY EXCITATION cases considered in this section both incident components

have the same amplitud®,., A?=31, andx,=1. In order

"o operate much below the bubble resonance fre
o ; e ) p guency, we
the incident wave contains two frequencies,’ and »®. increase the thickness of the layerlte- 0.4 m; for isother-

The nonllngarlty W'” then prod_uce several Fourier C?zr)npo'mal conditions the frequency of the fundamental model is
nents and in particular the difference frequen@y w _
w1/27w=0.337 kHz.

— oM i inci i
d'f?:a re.ncBg f?gangn'rc]g Igrctc))(r):z m(;:rl](?je?; :S?mugr%?d:n%ft?ﬁ A typical example of the steady-state shape of the trans-
! quency sP s itted wave is shown in the upper panel of Fig. 13 where

layer, an effective generation of the low-frequency compo-w(l):9w1:277x3.03 KHz andw® =100, =2mx3.37 kHz,

nent may be expected to take place. q';o that the difference frequency equals the first eigenfre-

i e e e e e P ency o ey, 0 337 i, roviing e resonnce
P y 19 P YStonditions for the low-frequency signal. The amplitude of

it is important to operate under conditions in which theeach one of the incident componentsRs,/P..=0.5. In

bubble natural frequency is higher than either incident fre-_ | ... . ! )
quency. As noted before in Sec. Il, this condition correspond addition to the nonlinearly generated low-frequency compo

to the assumptions that justify the quasi-equilibrium modelﬁem’ the slow modulation of the_\{vaveform refle_cts _the stqn-

of Eq. (9) with x,=1 and, for this reason, we start the study dard beat; due to the superposition of. twq c.)smll.auor.ws with

of thé Iow—frequ?ency sigr’1al generation v:/ith this model Ex_close periods(the same phenomenon is visible in Fig. 17
' elow). The pressure field inside the bubble layer at the

cept where explicitly noted, the parameters used in the cak es t=8X 27w, and t=8.5X2m/w, is shown in the

lower panel of Fig. 13. Since the amplitude of the incident

0.5 1 L ' ' i » ' T wave is much larger than the threshold value for shock for-
04} § mation(equal to 0.02 for this cageshocks form in the layer
and are reflected at the boundaries, which is responsible for
the characteristic double shock-front structure present in the
02r 1 pressure field in the lower panel of Fig. 13. The internal
shocks confer a sawtooth structure to the transmitted wave as
shown in the upper panel of Fig. 13. The relative power of
the difference-frequency harmonic in the transmitted wave,
i.e., (Po/Ping?, is 1.12<10 2.

The dependence of the low-frequency output on the in-

We now consider the behavior of the bubble layer whe

7
P/ P

_0'2_

sl cident frequencies is shown in Fig. 14 where the pump fre-
' quencieso™ and w'? are changed in such a way that the

—0.4 ' L | ! ! 1 1

40 81 52 85 84 B85 86 57 B8 89 90 difference-frequency is fixed and equal to the layer first
tw,/2m eigenfrequencyQ = 0'?— wM=w,. The circles, squares,

L L L 1 1 1 1
O'Ooé,ﬁ 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4

C‘)(\)//w1

FIG. 13. Steady-state shape of transmitted wangper panglproduced by  FIG. 14. Relative power of the low-frequency component in the transmitted
the quasi-equilibrium model and pressure field inside the bubble layer aivave according to the quasi-equilibrium model for dual-frequency excita-

time t=8X27/w; (solid line) andt=8.5x 27/ w, (dotted ling for dual- tion as a function ofw™® with ©®@=w®+w;. The circles, squares, and
frequency excitation witho®=9w,;=27x3.03kHz, 0®=10w,=27 triangles are the results fd?;,./P..=0.1, 0.2, and 0.5 respectively. The
X 3.37 kHz and amplitud®;,./P..=0.5. lines are only guides to the eye.
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FIG. 15. Relative power of the low-frequency component predicted by the
quasi-equilibrium model for dual-frequency excitation as a function of the 07
gas volume fraction in the layeryM=9w,;=27x3.03 kHz, »®= 10w, 06
=27x%3.37 kHz, andP;,./P..=0.1. o;
Q4
and triangles are the results fB,./P..=0.1, 0.2, and 0.5, 0’3

respectively. The lines are only guides to the eye. As ex- , ©2
pected, the relative power of the low-frequency signal has ag’g 01 T
maximum arounds"=9w; when both pump frequencies o °°f =
are at resonance conditions. o1
Figure 15 shows the relative low-frequency transmitted
power as a function of the parameteg for P;,./P..,=0.1,
again for the quasi-equilibrium model. With increasing gas  _g sl
volume fraction, the amplitude of the difference-frequency _qs _ _
transmitted wave quickly saturates to an approximately con- 001 0z 03 04 :"/E'L 06 07 08 08 10
stant value, after which it begins to decline. We have found ’
that, in order to obtain converged results, the number of gridFIG. 17. Steady-state shape of transmitted waysper panelproduced by
points had to be increased to 6400 at the higher volumé&e complete model and pressure field inside the bubble layer at times

=8X 27w, andt=8.5X 27/ w; for dual-frequency excitation witlw)

fractions. For example, the difference between the values 019%:277)(3.03 KHz, ©®)—10w,—27x3.37kHz, and amplitude

2 . . .
(Pa/Pino)“ as computed W'th 3200 or 6400 points is 2.4%p,_ /p_=0.5. These results should be compared with those given by the
for B=1.11x10 3, and increases to 5.8% fo8=2.84  quasi-equilibrium model presented in Fig. 13.

X103,

Figure 16 shows the relative power of the low-frequency(squareswaves as a function of the amplitude of the incident
signal (Pq/Pjn0)? of the transmittedcircles and reflected  wave componentsP;,./P.. when oM=9w®,; and w?

=10w,; the solid and dotted lines are for the complete

0.0150 . ‘ . . » ' ' model while the dot-dash and dashed lines are for the quasi-
equilibrium model. Here the bubble radius k=50 um,
with a linear resonance frequenayy/27m=55.86 kHz and
Kk =1.01.

The relative power of the low-frequency signal increases
with the amplitude of the incident wave, but the proportion-
ality to the square of the incident wave amplitude predicted
by the weakly nonlinear theoryDruzhinin et al, 1996 is
found only for small amplitudes?;,./P..<0.01, and is not
apparent from this figure. The quasi-equilibrium-model re-
sults of Fig. 16 are much lower than the numerical results

0.0000 8 a , . , K ‘ , presented in Figs. (6 and (b) of Druzhinin et al. (1996,

o 01 02 03 04 05 06 07 08 09 apparently once again due to numerical artifacts of that
P_/P
work.
FIG. 16. Relative power of the low-frequency component in the transmitted Figure 17 shows the steady-state temporal transmitted
(circles and reflected'squares waves for dual-frequency excitation as a waveform (upper panel and the pressure field inside the
function of the amplitudeP;,./P.. of the incident wave components for ppple layer at timet=8x2m/w, for w(l)zgwl, 0@

0®P=9w,;=27x3.03 kHz andw®=10w,=27X3.37 kHz. The lines are ~ _ _ : -
only guides to the eye. The solid and dotted lines are for the complete model 1001, Pinc/P.=0.5, for 50um-radius bubbles. This fig-

while the dot-dash and dashed lines are for the quasi-equilibrium model withl"€ _Sh_0U|d be compared With Fig. 13_ for the quasi-
kp=1. The bubble radius is 5am. equilibrium model. The transmitted wave still has a sawtooth
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TABLE |. Relative power of the transmitted and reflected waves produced by the complete model for a
dual-frequency incident wave with¥=9w;, ©®=100,, P;,./P..=0.1; other conditions as given at the
beginning, of Sec. V except that the layer thickness is 0.4 aq/qmw=337 Hz) and 0.1 m §,/27

=1,347 Hz).
(Transmitted power)P;,|? (Reflected power)P;,d|?
Rg wol2m wq/27

(mm) (Hz) K| (Hz) Total At Q Total At Q)
0.05 55,86 1.01 337.0 0.16 xa03 0.77 6.1x107*
0.05 55,90 1.08 1,347 0.02 %5804 0.95 1.7 104
0.1 28,76 1.08 337.0 0.02 %404 0.97 1.6x10°4
0.1 30,57 1.22 1,347 0.02 2404 0.94 1.6x1074
1 3,22 1.36 337.0 2x410°° 2.4x10°° 1.72 2.0<10°°
1 3,24 1.38 1,347 0.20 251076 1.79 6.3x10°°

appearance, but the peaks are less sharp, which is evidenaeter remains. Thus, we find a propensity for shock-wave
of the stronger damping affecting the higher frequenciesgeneration in the bubbly layer which gives rise to a transmit-
Due to the increased dissipation, the shocks inside the layeed wave with a sawtooth character.
are strongly damped before they reach the right end and their We have also studied the possibility of enhanced low-
reflection there is thus less strong than before, which exfrequency difference-wave generation through the exploita-
plains the marked differences between the lower panels dion of the resonances of the bubbly layer. We have con-
Figs. 17 and 13. Now oscillations near the back of the shockluded that the estimates presented in our earlier work were
are present; these are related, as before, to bubble inertiexcessively large due to a combination of the idealizations of
The relative power of the difference-frequency harmonic inthe model and an insufficiently accurate numerical scheme.
the transmitted wave is 7610 3; for the same conditions, However, even after correction, we find that a difference-
but at P;,/P..=0.1, the relative power is 1:010 3. The  wave power of the order of 1% of the incident powEig.
corresponding results for the quasi-equilibrium model arel6) can be generated using incident wave amplitudes of less
11.2<10 2 and 4.05< 103, respectively, folP;,./P..=0.5 than 100 kPa. Thus, this technique for the parametric genera-
and 0.1. In both cases the relative power of the transmittetion of low-frequency waves may have practical value.
difference-frequency predicted by the complete model is  An important aspect of the phenomenon, confirmed by
smaller than that of the quasi-equilibrium model. this study, is that operation near the resonance frequency of
The present problem contains a large number of paramthe individual bubbles is detrimental to the energy conver-
eters, and it is not practical to present an exhaustive investsion efficiency due to the strong dissipation of the bubble
gation of the entire parameter space. Some further insighnhotion in this frequency range.
into the dependence of the low-frequency transmitted com-  In order to avoid the practical difficulties connected with
ponent on various quantities can be gained from Table the generation and control of suitable bubbles, it might be
which summarizes the results of several calculations for difexpedient to apply the principle described in this paper to
ferent parameters of the layer and air bubbles. In all casesther systems. For example, one would expect similar phe-
A= \/3_1 and the layer is excited by a biharmonic wave athomena to occur in porous waterliker rubberlike media in
frequencies w®=9w; and w®=10w,; with amplitude  which the shear modulus is small and plays the role of gas
Pic/P.=0.1. The bubble layer has a thickness of 40 cmcompressibility in bubbles; some experiments of this type are
(w1/2m=337 Hz) and 10 cmd,/2m=1,347 Hz);k,= K is ~ reported in Belyaeva and Timani(l99). Like bubbles,
evaluated at(®). These results show that the relative powerpores in such media provide very strong nonlineatige,
of the low-frequency signal is larger when the frequencies of.g., Naugolnykh and Ostrovsky, 1998, Sec.).14t the
the incident wave are much smaller than the bubble rescsame time, it is much easier to have small and almost equal-
nance frequency and the bubble oscillations are isothermasize pores, the system is more stable, and losses are typically
These conditions might suggest the use of the simpler quassmaller.
equilibrium model; however, in all cases, we have found that
the latter tends to overpredict the amplitude of the 'OW'ACKNOWLEDGMENTS
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