
CONCEPTUAL DOMAIN ADAPTATION

USING DEEP LEARNING

A Dissertation Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Behrang Mehrparvar

August 2017

CONCEPTUAL DOMAIN ADAPTATION

USING DEEP LEARNING

Behrang Mehrparvar

APPROVED:

Ricardo Vilalta, Chairman
Dept. of Computer Science

Albert Cheng
Dept. of Computer Science

Carlos Ordonez
Dept. of Computer Science

Klaus Kaiser
Dept. of Mathematics

Dean, College of Natural Sciences and Mathematics

ii

CONCEPTUAL DOMAIN ADAPTATION

USING DEEP LEARNING

An Abstract of a Dissertation Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Behrang Mehrparvar

August 2017

iii

Abstract

Domain adaptation scenarios have been successively gaining attention in practical

applications of machine learning. Here, the source distribution in which the classifier

is trained, differs from the target distribution in which the classifier will ultimately

be applied. The discrepancy between source and target distributions often results in

poor predictive performance.

Recent work shows several approaches providing a solution to alleviate the problem

of distribution discrepancy. Deep neural networks extract high-level abstract repre-

sentations of data, and have been used to transform the source and target data into

a new common space, such that the aforementioned discrepancy is minimized.

In this document, we introduce conceptual domain adaptation where semantic in-

formation hidden in high-level concepts –as opposed to information from low-level

representational properties of the data– is directly used for adaptation. We investi-

gate current deep learning-based domain adaptation approaches and argue that due

to their reliance on representational properties of data, using them for domain adap-

tation is prone to failure under certain scenarios. These scenarios are investigated as

cases with inherently lower-level representational discrepancy.

In this project, we introduce an adjustment approach as a solution towards con-

ceptual domain adaptation. Accordingly, we propose a search framework to adjust

high-level representation of target data along with basic supervised, graph-based

and PCA-based fitness evaluation. Based on experimental results, we contend that

the proposed solution is beneficial for domain adaptation problems with lower-level

representational in supervised scenarios.

iv

Contents

1 Introduction 1

2 Background 4

2.1 Domain adaptation . 4

2.2 Deep learning . 6

2.2.1 Autoencoders . 8

2.3 Genetic algorithm . 11

3 Related Works 14

4 Problem Specification 19

4.1 Low-level representational discrepancy 20

5 Methods 25

5.1 Conceptual domain adaptation . 25

5.2 Supervised approach . 27

5.2.1 Mapping matrix . 28

5.2.2 Search framework . 30

5.2.3 Basic supervised alignment . 32

5.3 Unsupervised approach . 32

5.3.1 Unsupervised context-based alignment 33

v

5.3.2 Unsupervised graph-based alignment 36

5.3.3 Unsupervised PCA-based Alignment 36

6 Experiments and Analysis 41

6.1 Experiment settings . 41

6.2 CDA in presence of representational discrepancy 43

6.2.1 The Role of adjustment . 44

6.2.2 The Role of depth . 45

6.2.3 The Role of jointly learning new concepts 48

6.3 Unsupervised CDA . 50

6.3.1 Graph-based approach . 51

6.3.2 PCA-based approach . 53

7 Contributions 56

7.0.1 Future work . 57

8 Conclusion 60

Bibliography 62

vi

List of Figures

2.1 Filters trained using denoising autoencoder 10

2.2 Denoising autoencoder . 10

2.3 Stacked denoising autoencoder . 11

4.1 Local (a) and strictly local (b) representations of concept 7 21

4.2 The problem of alignment of source and target concepts using joint
training approach . 24

5.1 aligning target to source in adjustment approach 29

5.2 The encoding of a mapping matrix into its corresponding offspring . . 31

5.3 Superimposition of concepts 7 and 5 in their local representations . . 34

5.4 graph-based alignment of high level representation of data for concep-
tual domain adaptation . 37

5.5 PCA alignment of high-level representation of data for conceptual do-
main adaptation . 38

6.1 Improvement in domain adaptation accuracy using search based ad-
justment . 44

6.2 The mapping matrices for two domain adaptation scenarios 45

6.3 The adjustment degree for each layer of the network 46

6.4 The effect of depth on domain adaptation performance for MNIST to
rotated USPS scenario . 48

6.5 The effect of joint training versus separate training 49

vii

6.6 Relation between graph-matching score and domain adaptation error. 52

6.7 Distribution of domain adaptation error for pairs of common concepts
when graph matching is in it’s minimum value (0.0). 53

6.8 Relation between PCA-matching score and domain adaptation error. 55

viii

List of Tables

ix

Chapter 1

Introduction

In many practical machine learning applications, we have access to labeled data from

one domain, while another similar domain happens to be unlabeled. Consider the

case of sentiment classification, where we have a labeled dataset on Amazon book

reviews, but the kitchen appliances dataset is unlabeled. Another practical example

would be spam filtering, where the first user has already labeled his emails as spam

or non-spam (and induced a model on that data), while the data for the second user

is unlabeled. Similarly, we can think of labeled images of high-quality SLR cameras

versus unlabeled low-quality webcam images.

In all the cases above, the main idea is to apply the source model (dataset with

labels) on the target domain (dataset with no labels). Although we do not have

sufficient labeled samples in the target domain to train the model, we do know that

the labeling function in both domains is similar; this suggests using the source model

on the target domain.

1

Despite the motivation above, the main problem that emerges in domain adap-

tation is domain discrepancy; the data-generating distributions for the source and

target domain are different. Such discrepancy prevents the developer from using the

source model directly on the target data. Domain adaptation techniques are defined

to alleviate the discrepancy between source and target domain; one recent approach

to domain adaptation uses deep learning architectures.

Deep learning has recently been instrumental in transferring source and target

data into a common space with the hope that the discrepancy between the two

domains is minimized. Accordingly, through the use of multiple nonlinear layers,

common high-level concepts between two domains are extracted.

Although deep learning is able to extract high-level concepts, however, only the

representation of these concepts are naively used as an input to the classifier learned

on the source model. In other worlds, the nature of a concept, which is carrying

specific semantic meaning is not really exploited in domain adaptation solutions.

Furthermore, in order to truly benefit from the semantics of concepts for domain

adaptation, one would require the network to extract correspondent concepts between

two domains in the same hidden units. Therefore, the range of the problems that can

be tackled by these approaches would rely on representational similarities between

the correspondent concepts in two domains.

In this dissertation, I propose conceptual domain adaptation (CDA) as a novel

solution for domain adaptation techniques that fail to exploit conceptual information

in data. My proposed solution is specific to problems that suffer from inherently

2

lower-level representational discrepancy.

The specific approach followed in this dissertation is to separate concept extrac-

tion from concept alignment as different consecutive steps in conceptual domain

adaptation; such approach prevents the alignment step to affect the quality of the

concepts extracted during learning.

This document proposes conceptual domain adaptation and divides into the fol-

lowing chapters. The dissertation starts with background information in Chapter 2

and related work in Chapter 3. Later on, in Chapter 4 the main problem of applying

deep learning on domain adaptation is introduced; this refers to data with lower-

level representational discrepancy. The proposed solution is described in Chapter 5;

experiments and analysis of the results are provided in Chapter 6. Contributions

and future work are listed in Chapter 7. Finally, Chapter 8 gives a summary and

conclusions.

3

Chapter 2

Background

2.1 Domain adaptation

Although in many machine learning applications it is assumed that the source and

target data should be drawn from the same distributions, in real-world applications

this assumption is often not realistic; hence, there is a need to transfer knowledge

from one domain to the other. Accordingly, transfer learning [29] as a general subfield

of machine learning, has been introduced as a group of methods that enable the

transfer of knowledge whenever we observe differences between domains, such as in

the feature spaces and the sample distributions.

Transfer learning is divided into three main categories: inductive, transductive,

and unsupervised transfer learning. For more information about the three categories,

please see [29]. Domain adaptation is consider as transductive transfer learning with

4

the following properties:

• Only the source data is labeled and the target is unlabeled,

• The domains are different between source and target,

• The AI task is the same for both source and target domains.

More specifically in [1], the difference between domains is defined as the difference

between the marginal probability distributions of the input data (P (Xs) 6= P (Xt))

where unlike the more general transductive transfer learning categorization, the fea-

ture spaces are assumed to be the same (Xs = Xt).

Several approaches have been proposed to perform domain adaptation in the lit-

erature. Accordingly these approaches can be categorized into three main categories:

• Instance-based methods - The main idea in instance-based methods is to

weight each source instance with
PT (Xt

i ,Y
t
i)

PS(X
s
i ,Y

s
i)

while computing the loss for learning

the source model parameters. Weighting the samples would potentially reduce

the discrepancy between the source and target domains. More information

about the instance-based methods is provided in [30].

• Iterative methods - In the iterative methods, an initial model is trained on

the source model and further iteratively adjusted by providing more informa-

tion from the target domain. An example of iterative approaches is DASVM

proposed in [7] where the support vectors of the model are adjusted based on

the closest target samples to the margins in the source SVM.

5

• Feature-based methods - The main idea of feature-based methods in domain

adaptation is to transfer the source and target data into a new common rep-

resentation such that the discrepancy between the two domains is minimized.

Structured correspondence learning (SCL) [6] as an example, tries to find the

new representation by defining common pivot features between two domains

an trying to predict the pivots using other features.

In this document, we narrow the scope of domain adaptations into feature-based

methods that specifically apply deep learning techniques to transfer the data into

the new representation. Chapter 3 covers related work in this area.

2.2 Deep learning

Deep learning corresponds to learning multiple layers of non-linear transformation

of the data. Each layer provides a set of abstract features composed of the features

from the previous layer.

Although according to the universal approximation theory [10], a feed-forward

neural network with only one hidden layer and sufficient hidden units is able to ap-

proximate any continuous function, the main benefits of deep architectures compared

to shallow ones can be listed as follows [5]:

1. Feature re-use: Deep architectures promote re-use of the features detected in

the previous layers which has two benefits:

6

(a) Computational: Re-use of nodes in previous layers reduces the number of

computational nodes.

(b) Statistical: Re-use results in reduction in number of parameters which

need less number of examples to learn the parameters

2. Abstraction: More abstract concepts are captured in deeper layers of networks.

According to [20] features in deeper layers of networks are more invariant to

other data variations.

According to [5] single layer representation learning algorithms can be categorized

in two categories as follows:

1. Probabilistic models: including different variations of restricted Boltzmann

machines (RBMs) [21].

2. Neural network models: including different variations of Auto-encoders (AEs) [3],

convolutional neural networks (CNNs) [24], and recurrent neural networks

(RNNs) [31].

Furthermore, deep learning algorithms can be categorized into two general ap-

proaches:

1. With pre-training: Due to the problem of vanishing gradient [22], in [21] the

authors proposed a new method for learning deep networks. In this approach,

each layer is trained separately in an unsupervised manner and then the whole

network would be trained with supervised fine-tuning.

7

2. Without pre-training: Some architectures do not suffer from the problem of

vanishing gradient. Therefore, the whole network can be easily trained using

back-propagation of error. Convolutional neural networks [24], recurrent neural

networks [31] and some networks built with rectified linear units incorporating

dropout are trained without pre-training.

2.2.1 Autoencoders

An autoencoder as defined in [3] is a three layer neural network consisting of input

layer, middle layer and output layer. The network performs the encoding and de-

coding of the data so as to capture hidden data representations (middle layer).

The encoding of the input of the autoencoder is defined as follows:

H = σ(W1X + b1) (2.1)

where H is the hidden layer, X is the input, W1 is a set of weights and b1 is the

biases. The sigmoid function σ(.) is defined as follows:

σ(x) =
1

1 + exp(−x)
(2.2)

The decoder part of an autoencoder similarly maps the hidden layer back to the

output layer as follows:

8

Z = σ(W2H + b2) (2.3)

The goal of an autoencoder is to learn the hidden layer corresponding to the

underlying factors of the data by reconstructing the input on the output. As a result

the cost function defined for autoencoders is defined as the average reconstruction

error over the data samples.

Loss(X,Z) = ||X − Z|| (2.4)

By forcing the length of the hidden unit to be less than the input size or by

forcing some sort of sparsity, we would be able to learn meaningful filters that capture

existing variations in the data. Figure 2.1 illustrates the filters (templates) learned

over MNIST and USPS datasets.

By designing an autoencoder with number of hidden units equal or more than

the number of inputs, the network will potentially learn identity function and do

not learn meaningful filters. In order to help this issue, denoising autoencoders are

designed.

In denoising autoencoder [33], the network encodes a noisy version of the input

and tries to reconstruct the original version. Accordingly, the network would be

forced to capture the statistical dependencies between features in the input, in order

to undo the noise. Figure 2.2 illustrates the architecture of a denoising autoencoder.

9

(a) MNIST filters (b) USPS filters

Figure 2.1: Filters trained using denoising autoencoder

Figure 2.2: Denoising autoencoder

2.2.1.1 Stacked denoising autoencoders

Although denoising autoencoders help extract meaningful dependencies in the data,

however, in order to capture more complex variations, multiple layers of nonlin-

earity are required. Accordingly, stacked denoising autoencoderes [34] have been

introduced.

The main idea in stacked denoising autoencoders is to build an architecture of

10

multiple layers of autoencoders, each receiving the input from the hidden layer of

the autoencoder in the layer below. The training of stacked denoising autoencoder

is simply done by layer-wise training of the autoencoders from the lowest level to

the highest level. The weights of the encoder in each level can be later used as the

weights of a deep neural network which is fine-tuned during training. Figure 2.3

shows the architecture of a stacked denoising autoencoder.

Figure 2.3: Stacked denoising autoencoder

2.3 Genetic algorithm

Genetic algorithm is an instance of evolutionary algorithms [12] inspired by biological

evolution. This algorithm provides optimization and search solutions by performing

biological operations e.g., mutation and crossover over a pool of solution instances.

11

In order to perform genetic algorithm, one has to initially encode (represent) the

solutions of the problem in forms of genetic coding (chromosome). Each chromosome

consists of a set of genes. The chromosomes in computers are represented using

specific data structures such as binary arrays, integer arrays, character arrays, or

trees depending on the problem.

After choosing the encoding scheme for chromosomes, one would require to define

a fitness function that evaluates the goodness of the individual solution represented

in forms of a chromosome. The goodness of a solution provides the ability to perform

the optimization or search for the best solution.

A genetic algorithm performs two main operations on the pool of solutions listed

as follows:

• Crossover - The idea of crossover operation is to swap part of the chromosomes

of two parent individuals such that two new child solutions are generated. In

each crossover, a subset of genes from one parent is replaced with the corre-

sponding genes of the other parent and vice versa.

• Mutation - Similar to crossover, mutation also replaces part of the parent

genes but this time with random genes. Therefore only one parent participates

in each mutation operation.

Genetic algorithm is run in multiple iterations, each iteration with a new pool of

solution individuals. Accordingly, the next generation for each iteration is generated

either from selecting elite individuals with highest fitness directly from the previous

generation or by performing crossover and/or mutation operations.

12

By performing genetic algorithm using sufficient iterations and performing the ge-

netic operations with appropriate proportions, one often attains an optimal solution

by sorting the final pool of individuals based on their fitness values.

13

Chapter 3

Related Works

As introduced in Section 2.2, deep networks provide the ability to transform raw

data into high-level representations such that the underlying factors of variation are

disentangled. As a result, in highest layer of the deep network, abstract concepts are

extracted from the data that convey implicit semantic meanings.

Consider feature-based domain adaptation as introduced in Section 2.1; the

method transfers source and target data into a common space. It would be promising

to equip deep networks to perform this transformation. In this section, we provide

a brief summary of current work that applies deep networks to domain adaptation.

In [19] the authors propose learning intermediate representation to remove the gap

between the source and target domains. The higher level representation is learned

using information from all available domains. Then the classifier is trained in the new

space using the data from source domain. They used stacked denoising autoencoders

14

as deep architecture. They realize that in the new space, unlike [2], the domain

discrepancy is higher than in the raw space. However they reported a good transfer

of the model. They claim that disentangling domain-specific information would be

the reason for high transfer quality despite domain discrepancy.

Similar to [19], in [8] the authors train a common space using the data from

all domains and then train the classifier on the source domain. However, they use

marginalized stacked denoising autoencoders as an alternative architecture with lower

computational costs and scalability to higher-dimensional features.

In [9], the authors propose using the information about the distribution shift from

source to target in domain adaptation. The path from source to target is interpolated

by generating intermediate sample datasets where the proportion of source samples

gradually decrease. They train one deep network on each sample dataset and then

concatenate the representations for each input sample for classification. They claim

that their approach bridges the gap between the source and target distributions and

decreasing the A-distance between the two domains. The main difference between

the proposed approach and other methods is considering the distribution of the

interpolated datasets.

In [27], the authors propose using a sparse and hierarchical network (DASH-N)

for domain adaptation. Their main contribution is jointly learning the hierarchy of

features and addressing the domain mismatch between source and target. In their

approach, adaptation is performed in multiple levels of hierarchy. At each level, they

obtain sparse codes by using common dictionaries between domains which are used

for discovering common structures between domains.

15

In [11], the authors initially train a model on the target domain and then use

it as a regularizer to train the source model. The regularizer reduces the distance

between the weights of the source data and the target model, therefore, the weights

of the target model are used as prior knowledge for training the source model.

In [14], the authors propose an architecture based on backpropagation that jointly

learns a common representation space, learns a classifier and minimizes the domain

discrepancy between source and target domain. They measure the disparity between

distributions based on their separability by a deep discriminatively trained classifier.

The learned representation is discriminative for the main learning task on source

domain while also remains invariant with respect to the domain shift. The architec-

ture is composed of feature extractor followed by label predictor and also a gradient

reversal layer that connects the domain classifier. The role of the gradient reversal

layer leaves the input unchanged during forward propagation and reverses the gra-

dient by multiplying it by a negative scalar during the backpropagation. It ensures

that the feature distributions over the two domains are made similar.

In [16], the authors propose using human knowledge as an auxiliary information

to leverage the domain mismatch between source and target. The architecture they

proposed (DHN) is composed of a sparse autoencoder followed by stacked restricted

Boltzmann machine. They perform their experiments on MNIST as source domain

and noisy (local or global) MNIST or USPS as target domain. A variant of their

architecture imposes sparse locally connected weights in the bottom layer in addition

to the sparsity regularizer. They train the network entirely on source domain and

test it on target domain. They have achieved high performance both in in-domain

16

and cross-domain experiments. The key contribution of their approach is the human

knowledge about the noise in the target data, which is not usually available in real

world domain adaptation problems.

In [17] the authors propose an architecture (DaNN) that minimizes the distri-

bution difference between source and the target using a new regularizer. Maximum

Mean Discrepancy (MMD) is used as a measure of distance between distributions

and the network is trained to minimize this measure along with the classification

error on the source domain. Although they achieved good results on hand-crafted

features and raw features, they realized that deeper architectures do not necessarily

result in improving the performance against distribution mismatch.

In [15] the authors propose an architecture for domain generalization. The archi-

tecture MTAE is composed of an encoder followed by multiple decoders. Using this

architecture they learn a shared representation, across all domains by reconstructing

the input from one domain into the analogs in all other domains.

A different direction is to alleviate the distribution discrepancy between source

and target by shifting domains. [23] proposed an architecture composed of one

encoder followed by two decoders one for each domain; the encoder captures both

source and target data into a common space, while each decoder is responsible to

decode the data on the corresponding domain.

In [25] the authors base their proposed approach on the fact that feature trans-

ferability drops in the higher layers of deep networks while domain discrepancy in-

creases. In their approach, they explicitly increase the transferability in higher layers

17

by decreasing domain discrepancy using mean embedding matching of multi-layer

representations across domains in a reproducing kernel Hilbert space.

In [18] the authors propose a multi-task learning architecture for domain adap-

tation composed of an encoder followed by a source class predictor and a target

reconstruction. The target reconstruction network works as a regularizer to prevent

the source classifier from over-fitting the source data. They realized that using only

target data for reconstruction is sufficient for training. They also studied the domain

correspondence and realized that the reconstructed image of the source data more

looks like the target data. They also theoretically showed that their training is ap-

proximately equivalent to solving a semi-supervised learning problem on the target

domain.

18

Chapter 4

Problem Specification

By considering related work in Chapter 3, we can conclude that deep networks can be

beneficial to domain adaptation by providing two main functionalities; (i) extraction

of common concepts, which transforms the data into a new common space and (ii)

minimization of discrepancy, which forces the distribution of source and target data

to be similar in the new common space.

In this section, we introduce a type of discrepancy between the domains and

explain that existing deep learning solutions providing the main functionalities listed

above are not able to solve domain adaptation problems with inherent introduced

discrepancy. Accordingly, we argue that common concept extraction would fail in

presence of inherently low-level representational discrepancy. As a result, we provide

our intuitions respectively in Section 4.1 and later investigate it experimentally in

Section 6.2.

19

The failure of common concept extraction due to low-level representational dis-

crepancy had led us to introduce a new domain adaptation approach using deep

learning: conceptual domain adaptation, which will be introduced in Chapter 5.

4.1 Low-level representational discrepancy

A high-level concept in domain D is captured by a pattern of output values at the

top level of a deep network; it is an abstract entity that is assumed to convey a clear

semantic meaning in D. An ideal network in future should be able to capture high

level concepts such as man, sitting, slowness, adjacency, and table from data (in text,

video or any other modality) conveying information about a man sitting slowly next

to a table. Concepts can be represented in various low-level representations in the

data. In a more simple example, in the domain of hand-written digits, seven is a

high-level concept that carries the same meaning regardless of the writing form or

style.

Concept csi in domain Ds is correspondent to concept ctj in domain Dt, csi ↔ ctj,

if and only if they carry the same semantic meaning.

Concepts can be represented in mainly two ways: local representations and dis-

tributed representations. In local representation, activation of one hidden unit is

necessary to represent the concept while in distributed representation, the concept is

represented by an activation pattern over more than one hidden unit [35]. In higher

layers of deep networks, the representations tend to be more local, rather than dis-

tributed. In this document, we consider (strictly) local representations of high-level

20

concepts defined as follows:

Definition 1 ((strictly) local representation). A representation is local [32] if for

each concept only one (output) unit is active (Figure 4.1(a)).

∀r ∈ c∃hj : r(hj) = 1, (∀hk, j 6= k : r(hk) = 0) (4.1)

where r ∈ c is the representation of a pattern from concept c and r(hj) is the jth

hidden unit of representation r.

In case of strictly local representation, activation of other units does not affect

the representation of the concept [35](Figure 4.1(b)).

∀r ∈ c∃hj : r(hj) = 1 (4.2)

(a) local (b) strictly local

Figure 4.1: Local (a) and strictly local (b) representations of concept 7

Definition 2 (Aligned local representations). Assuming (strictly) local representa-

tions, representation rs of concept cs in domain Ds is aligned to representation rt of

21

its correspondent concept ct in domain Dt, if and only if the activating unit of rs is

also activated in rt.

∀csi ∈ Ds, ctj ∈ Dt : csi ↔ ctj ⇐⇒ (∀rs ∈ csi , rt ∈ ctj : rs = rt) (4.3)

where

∀rs ∈ cs, rt ∈ ct : rs = rt ⇐⇒ (rs(h) = 1 ⇐⇒ rt(h) = 1) (4.4)

In previous approaches to domain adaptation using solely single deep network

such as [19], the source and target data are fed to the same network. The alignment

of high-level representations is performed during the learning process assuming that

the hidden unit capturing concept cs ∈ Ds is also able to capture its corresponding

concept ct ∈ Dt at the same time.

A feature in an autoencoder is captured by updating its corresponding weights

when patterns having similar variations are sufficiently frequently observed in the

data during the learning process. Accordingly, the formation of high-level concepts

are dependent on the similarity of the low-level representation of their corresponding

patterns.

Based on the dependency of concept extraction on low-level representations, in

order to align correspondent concepts in same hidden units using solely joint training,

we would require the correspondent concepts to exhibit lower-level representational

similarities.

As investigated in this document, in real-world scenarios, the source and target

22

data might exhibit inherently low-level representational discrepancy where the repre-

sentation of correspondent concepts in source and target domain in lower levels are

not similar. In such cases, the joint training approach in domain adaptation would

potentially capture correspondent concepts in two different hidden units in their high-

level local representations and results in misalignment between the representation of

the two concepts as follows:

∀rsi ∈ cs, rtj ∈ ct, cs = ct∃h : rsi (h) = 1 6⇐⇒ rtj(h) = 1 (4.5)

The misalignment of local representation of correspondent concepts between two

domains trained using joint training directly affects domain adaptation performance.

Consider concept cs in source domain represented by activating hidden unit h in its

local representation rs so rs(h) = 1. The corresponding concept ct in target domain

is also trained using the same network while they are not locally aligned. The

misalignment will result in deactivation of hidden unit h in rt (the local representation

of ct) so rt(h) = 0.

Assume a classifier trained on source data that is supposed to discriminate cs

from non-cs. The learning algorithm for the classifier would find a hyperplane that

separates the space into two regions based on the activation of h and concept cs

would fall into the region where h is activated. However, when the target data is fed

into the source classifier, based on the deactivation of h for ct, the source classifier

would classify ct as non-cs while they were correspondent concepts carrying same

semantic meanings.

23

Figure 4.2 illustrates the problem of alignment for local representations of high-

level concepts for hand-written digits, using joint training approach in presence of

inherently low-level representational discrepancy.

Figure 4.2: The problem of alignment of source and target concepts using joint

training approach

24

Chapter 5

Methods

5.1 Conceptual domain adaptation

In order to define conceptual domain adaptation, we consider each domain consisting

of a set of high-level abstract underlying concepts c•i ∈ D•. Each concept itself is

represented in multiple low-level representations of instances in the dataset r• ∈ c•i .

In this document, for each instance of data, we assume two types of properties:

representational and conceptual.

Representational property of a data item tells us about the shape, style and form

of the data item. For instance, digit 7 can be written in several forms and shapes

which are considered as representational properties. Similarly, for example, datasets

containing Huskies have representational similarities between them. On the other

hand, in all forms and styles, 7 has a single semantic meaning which gives us the

25

ability to distinguish it from other digits. Similarly, the concept of sitting or running

is common between all domains of different dogs. A property that is not related to

how the raw data is represented, is called a conceptual property of the data.

Deep learning provides the ability to transform low-level representations of data

into their high-level concepts. The transformation is performed by disentangling

factors of variations and furthermore, performing a sort of abstraction in each layer

of the network. Ideally, we would expect the network to extract underlying abstract

concepts of the data in their local representations in the top layer of the network.

In this document, we propose conceptual domain adaptation as follows:

Definition 3 (Conceptual domain adaptation). Conceptual domain adaptation is a

new approach in domain adaptation in which:

• Correspondences between high-level concepts in two domains are considered

as direct evidence of the relatedness between the domains,

• Conceptual information is used alone to perform the alignment of source

and target.

Accordingly we perform conceptual domain adaptation in three main steps:

1. Extracting high-level concepts from source and target domain using deep net-

work,

2. Aligning the concepts in source and target by adjusting their representations,

3. Performing AI task e.g. classification on aligned target representations.

26

According to definition 3, considering hierarchical representations of the data in

two domains, a domain adaptation solution is considered conceptual (as opposed to

representational) if the alignment between high-level correspondent concepts in the

two domains does not rely on their lower-level representations.

Relying on representational domain adaptation solutions, where the alignment

is dependent on the lower-level representations of the concepts as mentioned in sec-

tion 4.1, limits the range of solvable problems into those with low-level similarities

between the correspondent concepts in two domains. Therefore, by relaxing this

dependency in conceptual domain adaptation, we would potentially be able to solve

a rich variety of domain adaptation problems.

5.2 Supervised approach

Considering the three main steps to conceptual domain adaptation as mentioned

in Section 5.1 and the definition of conceptual domain adaptation in definition 3,

defining the alignment step is a basic step to clearly propose the new approach.

As mentioned before, alignment of local representations is essential for conceptual

domain adaptation (definition 2). However, joint training of source and target data

is not able to align correspondent concepts without representational relationships

and it would result in separation of the hidden units representing the correspondent

concepts (equation 4.5). In this section we propose an alignment method that does

not rely on low-level representational relationship between the concepts and provides

the basis for a conceptual domain adaptation solution.

27

5.2.1 Mapping matrix

Assuming local representations trained by deep network, we propose the adjustment

approach for alignment of high-level concepts. As illustrated in figure 5.1(a), the

target representation is adjusted in a way that correspondent concepts from target

and source fall into the same hidden units in the representation.

The data in the target is adjusted into the source representation by defining

a function that maps the target units into each source hidden unit. Accordingly,

the mapping function corresponding to each hidden unit in the new source-adjusted

representation is defined as follows:

rn(hj) =
∑
i

vijr
t(hi)

s.t. vij ∈ {0, 1}, ∀j :
∑
i

vij ≤ 1
(5.1)

such that the new source-adjusted target representation is aligned with the source

representation:

∀csi ∈ Ds, ctj ∈ Dt : csi ↔ ctj ⇒ (∀rs ∈ csi , rn ∈ ctj : rs = rn) (5.2)

and rs = rt have been defined as in equation 4.4.

Using vij’s, each hidden unit in source-adjusted representation will reflect either

one or none of the original hidden units in the initial target representation.

We implement the mapping functions by defining a mapping matrix (figure 5.1(b))

with ht rows, and hs columns, equivalent to number of units in target and source

28

(a) adjustment of target (b) Mapping matrix

Figure 5.1: aligning target to source in adjustment approach

representations, respectively. Activation of each element in the mapping matrix

corresponds to a mapping from the specified target unit to the source unit. Each

source-adjusted unit can only be activated by either one or none of the units in

target.

Using the mapping matrixM∗, the aligned target representation Tnew is calculated

as follows:

Tnew = T ×M∗ |M∗
i,j ∈ {0, 1},∀j :

∑
i

M∗
i,j ≤ 1 (5.3)

The proposed adjustment approach directly maps one or none of the initial target

units into a hidden unit in the source-adjusted representation. The intuition behind

this type of adjustment is based on the assumption that the deep learning process in

the previous step had already been able to extract meaningful concepts from the data

29

in both source and target domains. As a result, a simple adjustment, as proposed

in this section, would be sufficient to align the correspondent concepts with same

semantic meanings.

The main question in conceptual domain adaptation using adjustment approach

is finding the mapping matrix M∗, without relying on the lower-level representations

of the concepts. Accordingly, search framework is proposed to find the mapping

matrix between source and target representations with maximum measured score as

follows:

M∗ = arg max
M

Score(S, T ;M) (5.4)

Accordingly, the score of a mapping matrix indicates the goodness of the matrix

in depicting the correspondences between the concepts in two domains.

5.2.2 Search framework

In order to find the best mapping matrix, one requires to provide measurements

to evaluate the score of the mapping without relying on low-level representational

properties of the concepts.

The total number of possible solutions for a ht × hs mapping matrix is hhs
t . Due

to the large space complexity of the problem, we chose genetic algorithms [12] to

perform the search on the space of mapping matrix solutions. Accordingly, each

mapping matrix M is encoded as an offspring as follows:

30

E(M) = V ⇒ (∀i : V (i) = j ⇐⇒ M(j, i) = 1) (5.5)

Figure 5.2 illustrates a sample encoding of a mapping matrix.

Figure 5.2: The encoding of a mapping matrix into its corresponding offspring

We performed three main operations of elite selection, crossover and mutation to

generate the next population in each iteration.

Using the search framework for adjustment of high-level representations, one

might be able to define different fitness functions for conceptual domain adaptation.

We propose basic supervised and context-based fitness evaluation as introduced in

Sections 5.2.3 and 5.3.1.

31

5.2.3 Basic supervised alignment

In order to evaluate the fitness of the offspring, we can train a classifier on high-level

representation of source data and perform classification on the mapped high-level

representations of target data. Then we use the domain adaptation accuracy as the

fitness value. The algorithm to compute the score of a mapping M is defined as in

algorithm 1.

Data: source data S, target data T , mapping matrix M

Result: score of mapping matrix M

Tnew = T ×M ;

θ∗ = train(SX , SY);

score = classify(TX
new, T

Y
new, θ

∗);

retrun score;

Algorithm 1: Computing the score of mapping matrix M using graph-based eval-

uation

5.3 Unsupervised approach

Although the basic supervised approach to conceptual domain adaptation has been

proposed as a solution to correspondent concept misalignment in presence of lower-

level representational discrepancy, reliance of the evaluation function on labeled tar-

get data can be impractical for real-world applications. Therefore, in this section,

we introduce unsupervised approaches to conceptual domain adaptation including

context-based, graph-based and PCA-based approaches.

32

5.3.1 Unsupervised context-based alignment

As mentioned in Section 5.1, the basic requirement of conceptual domain adaptation

that makes it different from other domain adaptation methods using deep learning is

the independence of the adaptation on the lower-level representational properties of

the data. In Section 5.2.3, we proposed using a basic supervised score in evaluating

the fitness of the mapping matrices. In this section, we introduce a new approach

that (i) does not rely on lower-level representational properties of the data, solely

depends on conceptual properties, and (ii) it does not require the target data to be

labeled.

According to Section 5.1(b), the role of the mapping matrix is to indicate the cor-

respondent concepts between source and target domains. Furthermore, correspon-

dent concepts are defined as abstract entities that carry same semantic meaning. In

order to provide a solution that characterizes the correspondence between concepts,

we need to provide a clear definition of semantic meaning.

As mentioned in Section 5.1, concepts are represented in the highest (top) layer

of a deep network. While we consider local representation of the concepts in this

document, we introduce superimposition of concepts as follows:

Definition 4 (superimposition). According to [26], superimposition happens when

two or more concepts are represented using the same distributed pattern. The repre-

sentation rs is a superimposition of concepts defined as follows:

33

rs = {csj : csj ∈ Ds} (5.6)

We consider cases where multiple concepts are represented through a single high-

level representation, each represented locally by a single unit.

Figure 5.3: Superimposition of concepts 7 and 5 in their local representations

In this document, we assume that the meaning of a concept cs is dependent on

the context it appears in and the context is defined based on the other concepts that

are in superimposition with the cs. The context of cs is defined as follows:

X(cs) = {csi ∈ Ds∃rs : cs ∈ rs, csi ∈ rs} (5.7)

Based on the definition above, as the context of a concept reflects its semantic

meaning, we redefine correspondence between concepts as similarity of their contexts

as follows:

cs ↔ ct ⇐⇒ X(cs) = X(ct) (5.8)

34

and the similarity between two contexts is defined as follows:

X(cs) = X(ct) ⇐⇒ ∀csi ∈ X(cs)∃ctj ∈ X(ct) : csi ↔ ctj (5.9)

In order to provide a good measurement for the fitness of the mapping matrix,

we need to evaluate the distance between two contexts as the number of concepts

that do not co-occur with both correspondent concepts and it is defined as follows:

∀cs ∈ Ds, ct ∈ Dt, U = {c : c ∈ Ds ∪Dt}, V = {c ∈ U : c∆cs, c∆ct} :

||X(cs)−X(ct)|| = n(U)− n(V)
(5.10)

where c∆cs is the co-occurrence of concepts c and cs defined as follows:

csi∆c
s
j ⇐⇒ ∃zsk : csi ∈ zsk, csj ∈ zsk (5.11)

where zsk is a superimposed pattern over the concepts in domain Ds.

By defining the measure of distance between the two contexts, we can evaluate

the fitness of mapping matrix M as follows:

∀i, j, cti ∈ Dt, csj ∈ Ds : score(M) =

√∑
i,j

|X(cti)−X(csj)| (5.12)

35

5.3.2 Unsupervised graph-based alignment

In another approach to unsupervised conceptual domain adaptation, we propose

performing graph matching to align the source and target representations.

By considering each hidden unit as a vertex of a graph and using the co-occurrences

between them (can be implemented as mutual information, both activation, etc) as

edges, we build the adjacency matrix corresponding to the high level representation

of the data. Using the two adjacency matrices for source and target, we would be

able to match the two graphs by minimizing the following equation:

SCgraph = ||Ds − PAtP T ||2F (5.13)

where Ds and Dt are the adjacency matrices of data in source and target domains.

For our experiments, we used GraphM tool 1 with PATH matching algorithm [36].

Using the score, we would be able to find the best mapping between source and

target domains. Figure 5.4 illustrates the process of domain adaptation using the

unsupervised graph-based method.

5.3.3 Unsupervised PCA-based Alignment

In previous section, we concluded that due to representational discrepancy between

domains, after concept extraction we require alignment between concepts such that

1http://projects.cbio.mines-paristech.fr/graphm/

36

Figure 5.4: graph-based alignment of high level representation of data for conceptual

domain adaptation

source concepts are aligned with their correspondent concepts in target domain.

Using the aligned target concepts, we would be able to perform AI task on a model

trained on source domain.

Accordingly, in this section we propose using principal component analysis (PCA)

to align the two high-level representations of the data. The architecture proposed is

37

illustrated in Figure 5.5. The main idea is that principal components can be helpful

in aligning the two domains. For instance, by projecting source and target data on

their principle components, one could assume that the first eigenvector of the source

which captures the highest variation, corresponds to the similar principal component

of the target and so on. Similarly, we can assume that eigen values of two domains

should be nearly equal as they are suppose to show correspondence between the

domains.

Figure 5.5: PCA alignment of high-level representation of data for conceptual domain

adaptation

38

In order to evaluate the goodness of the alignment in PCA-based alignment ap-

proach, we propose three methods including i) minimizing discrepancy between do-

mains, ii) minimizing the angle between correspondent eigen vectors between two

domains and iii) minimizing the difference between eigen values between two do-

mains.

In the first experiments mentioned above, we use discrepancy measure for evaluat-

ing the goodness of the alignment. As a result, we train a classifier that discriminates

source from target data. The goodness score would be:

scdisc = |2acc− 1| (5.14)

where acc is the accuracy of the classifier.

In the second trial, we use the change of variation between the correspondent

principle components as a measure of goodness of the alignment. Accordingly, the

score is defined as follows:

scvar =

√∑
i

(λci − λti)2 (5.15)

where λ•i is the eigen vector corresponding to the ith eigen value in • domain.

The intuition behind this measure is that by aligning the principal components,

the source data, and target data, should have similar variances along the correspon-

dent principle components.

39

In the third attempt, instead of variations, we use the angle between two principle

components.

cos θ =
vs · vt

||vs||||vt||
(5.16)

Using this method, the less the angle between correspondent principle compo-

nents, the better the alignment is applied and that would increase the domain adap-

tation performance.

40

Chapter 6

Experiments and Analysis

6.1 Experiment settings

With appropriate initialization of the network and also using ReLU nonlinearities,

there would be no necessity for pre-training the network; directly full-training could

achieve comparable performance on the data. However, in order to observe the

results of our experiments on each layer separately and provide analysis of the effect

of depth, we used stacked denoising autoencoder [34] architecture for training the

model and a modified version of Matlab implementation of the network provided in

[28]1. The model is comprised of nine layers of denoising autoencoders, each using

batch gradient descent for training. The stopping criteria for training were set to no

improvement in the last 20 iterations or the number of iterations exceeding 500. For

learning-rate scheduling, we used the method mentioned in [4] as follows:

1https://github.com/rasmusbergpalm/DeepLearnToolbox

41

εt =
ε0τ

max(t, τ)
(6.1)

where τ is the minimum iterations that need to be passed in order to reduce the

learning rate and it was set to 20 iterations.

As mentioned in [4], we performed layer-wise search for finding hyper-parameters.

Accordingly, we performed a grid search on sets of hyper-parameter values and chose

the best setting. The size of the hidden layer was chosen from {1L, 2L/3, 1L/2, 1L/5}

where L is the size of the previous layer. Similarly, the range of the learning rate

and corruption level hyper-parameters where chosen from {10−3, 10−2, 10−1, 1} and

{0.0, 0.3, 0.5} correspondingly. The final setting was chosen manually by visualizing

the reconstruction error and number of iterations over hyper-parameters. The chosen

hyper-parameters were set to 2L/3, 1, and 0.3, respectively.

For the genetic algorithm, at each iteration we kept 20% of the population as

elite instances. Also, 80% of the rest of the population would be generated using

crossover operation and 20% using mutation. The size of the population was set to

100 instances. The mutation operator would mutate one gene at each time. The

algorithm would stop if the best score of the population would not improve for at

least 200 iterations. For the classification in the fitness function, we used nearest

neighbor classifier with k = 1 and L1 distance. Using this approach, each instance

would be labeled similar to the instance in the training set with maximum number

of similar concepts activated in both.

42

We performed domain adaptation on digit recognition task and used MNIST [24]2,

USPS [13]3 and rotated USPS. The datasets where processed to standard format of

16× 16 grayscale images. Using MNIST versus rotated USPS, provides us a domain

adaptation scenario with inherent lower-level representational discrepancy along with

similar semantically correspondences between the domains.

6.2 CDA in presence of representational discrep-

ancy

In the first set of experiments, we evaluate the performance of conceptual domain

adaptation in the presence of inherently low-level representational discrepancy. Ac-

cordingly, we compared the domain adaptation accuracy on two datasets MNIST

and rotated USPS tested using solely joint-training approach and conceptual domain

adaptation. We hypothesize that the solely joint training approach would suffer from

the representational discrepancy in lower levels as introduced in Section 4.1.

We investigated three main aspects of the conceptual domain adaptation includ-

ing the role of adjustment, role of depth and role of joint training.

2http://yann.lecun.com/exdb/mnist/
3http://statweb.stanford.edu/ tibs/ElemStatLearn/data.html

43

6.2.1 The Role of adjustment

In our initial experiments, we performed the adjustment approach on two domain

adaptation scenarios including MNIST to USPS and MNIST to rotated USPS. Based

on accuracy performance, we chose a 5 layer architecture with each layer 2/3 of the

size of the previous layer. Figure 6.1 shows the improvement of domain adaptation

performance in each scenario using adjustment approach.

Figure 6.1: Improvement in domain adaptation accuracy using search based adjust-

ment

In the MNIST to USPS scenario, correspondent concepts between the two do-

mains have stronger representational similarities compared to the other scenario

(MNIST to rotated USPS). Therefore, the proposed approach shows only a small

44

(a) MNIST to USPS (b) MNIST to rotated USPS

Figure 6.2: The mapping matrices for two domain adaptation scenarios

increase in performance. On the MNIST to rotated USPS scenario, the adjustment

approach displays a significant performance improvement due to the high degree of

low-level representational discrepancy. Overall, the proposed search-based frame-

work shows improved performance, regardless of the presence –or lack of– low-level

representational discrepancy.

Furthermore, as illustrated in Figure 6.2, we realize that unlike MNIST to rotated

USPS, in MNIST to USPS scenario the mapping matrix will be nearly identity

matrix. This observation confirms that MNIST to USPS contains representational

similarities between correspondent concept so there would be less requirement for

adjustment in the next step.

6.2.2 The Role of depth

In order to assess the effectiveness of the proposed mapping with respect to the

number of hidden layers in the deep autoencoder, we capture the deviation of M∗

45

from the identity matrix In (where we assume M∗ and In are square matrices).

In the extreme case where M∗ = In, then the mapping is direct: concepts are

represented by the same hidden unit. Figure 6.3 shows the adjustment degree for

each no. of layers in a deep autoencoder, on the two domain-adaptation scenarios

described above. The adjustment degree is the percentage of the hidden units in

source-adjusted representation that are not mapped from the same hidden unit in

target representation through adjustment.

Figure 6.3: The adjustment degree for each layer of the network

Figure 6.3 shows that in lower layers we observe more identity mappings. In other

words, low-level less abstract features contain more representational rather than

conceptual relationships; therefore, in order to achieve better domain adaptation

performance in lower layers, representational alignments applied by joint training

are sufficient and no further conceptual alignments using adjustments are required.

46

Figure 6.3 shows that adapting MNIST to rotated USPS requires more adjust-

ment compared to USPS. This observation agrees with the fact that MNIST and

USPS contain more representational similarities that can be equipped in alignment

by joint training. But, rotated USPS contains correspondent concepts with less

representational similarities and more conceptual similarities with MNIST concepts.

If we consider the performance of layers 1 to 5 in Figure 6.4 we realize that

using adjustment, adding layers would generally improve the performance of domain

adaptation comparing to the raw data in layer 1. However, the performance by

the solely joint training approach is not affected by the depth factor. The same

behavior has been observed in MNIST to USPS scenario. This observation leads to

the conclusion that conceptual domain adaptation compared to joint training truly

benefits from the depth in deep networks by extracting more abstract concepts.

Although conceptual domain adaptation benefits from depth in layers 1 to 5,

after layer 5, as seen in Figure 6.4, the performance decreases by adding layers.

This observation suggests an increase in adjustment degree (Figure 6.3) in higher

layers: Due to representational discrepancy in higher layers, there would be more

adjustments required to align the correspondent units. Therefore, more hidden units

are required to maintain the information contained in the correspondent hidden

units. However, due to the 2/3 rule for designing the architecture, in each layer

we are reducing the size of the network, so more information would be lost and the

performance will degrade by adding layers.

47

Figure 6.4: The effect of depth on domain adaptation performance for MNIST to

rotated USPS scenario

6.2.3 The Role of jointly learning new concepts

The first step in conceptual domain adaptation is learning high-level concepts (Sec-

tion 5.1). We compared two approaches in learning the concepts including (i) jointly

learning the source and target concepts in the same network and (ii) separately learn-

ing the source and target concepts in different networks. Also, we considered a third

case (iii) where the representation of each data point is constructed by concatenating

the representation from the previous two approaches. For each case, the adjustment

was performed by constructing the mapping matrix. The size of the mapping matrix

is dependent on the output size of the network used for training the source and target

data in each case as follows:

In joint adjustment, similar to the previous experiments, we searched for the best

mapping matrix with h rows and columns where h is the number of hidden units in

48

(a) MNIST to USPS (b) MNIST to rotated USPS

Figure 6.5: The effect of joint training versus separate training

the high-level representation. In separate adjustment, the size of the matrix is ht×hs,

where ht and hs correspond to the size of high-level representations trained by target

and source separate networks, respectively. Finally, in concatenated adjustment, the

mapping matrix is a (h + ht) × (h + hs) matrix initiated as four sub-matrices as

follows:

M =

J 0

0 S

 (6.2)

where J is the a sub-matrix corresponding to jointly learned concepts and S corre-

sponding to the separately learned concepts. The J and S matrix are initiated as

diagonal matrix and random mapping, respectively. Figure 6.5 compares the domain

adaptation performance for the three approaches.

Figure 6.5 shows separate networks in MNIST to rotation of USPS significantly

49

improves the domain adaptation accuracy compared to using a single joint network.

The reason can be traced to the inability of the joint network in capturing corre-

spondent concepts for each domain separately when there is low representational

similarity between the two concepts. In other words, we can conclude that in single

joint network architecture, when the concepts have low representational relation-

ships, the information coming from one concept affects the ability of capturing other

corresponding concepts from other domains, therefore performance decreases. Using

separate networks for each domain, will force the networks to capture each correspon-

dent concept separately without interfering in the learning process of each other.

Despite the fact that separate networks will assist in learning correspondent con-

cepts, there would be still some concepts between two domains with representa-

tional similarities that can be captured with joint network. Therefore, in practical

applications, it might be a reasonable approach to use the concatenation of both

representations to achieve improved performance.

6.3 Unsupervised CDA

After applying the supervised version of our algorithm on a scenario having lower-

level representational discrepancy, we observe increase in domain adaptation perfor-

mance.

Despite the improvement in performance, however, in supervised domain adap-

tation, we require the target dataset be labeled. Therefore, the need for an unsuper-

vised version of conceptual domain adaptation is essential.

50

In this section, considering the proposed approaches in 5.1, we will try to achieve

similar domain adaptation performance compared to the supervised one.

6.3.1 Graph-based approach

In order to experiment with the graph-based approach in conceptual domain adap-

tation, we used an exhaustive search over the 9th layer of the stacked denoising

autoencoder trained on MNIST to rotated USPS domain adaptation scenario. Per-

forming the exhaustive search increases the computational cost, but it will help us

diagnose the process and verify if the results are related to the search mechanism or

the goodness evaluation approach.

We used GraphM package4 for finding a matching matrix between two adjacency

matrices of source and target. Using the matching matrix, we will be able to adjust

the two domains by simply finding correspondent common concepts in target domain

and assign it to the corresponding source concepts.

While each layer of the network consists of certain number of hidden units, a

certain portion of them should be chosen in our experiment as common concepts.

Common concepts can be considered as concepts that are not domain-specific. Set-

ting the size of common concepts to two, we find all combinations of pairs of concepts

from source and pairs of concepts from target followed by a matching between cor-

responding adjacency graphs.

4http://projects.cbio.mines-paristech.fr/graphm/

51

Using the matching score from all combinations, we did not observed any im-

provement in domain adaptation error. Furthermore, as shown in Figure 6.6, the

graph matching score does not show any correlation to domain adaptation error.

Therefore, graph matching score is not be a good evaluation measure for goodness

of unsupervised conceptual domain adaptation.

Figure 6.6: Relation between graph-matching score and domain adaptation error.

We assumed that minimizing the graph-matching score we would be able to min-

imize domain adaptation error, having plotted the error for minimum score (Fig-

ure 6.7). But we realized that the graph-matching score doesn’t provide sufficient

52

information to find the best combination of common concepts that satisfy the mini-

mum domain adaptation error.

Figure 6.7: Distribution of domain adaptation error for pairs of common concepts

when graph matching is in it’s minimum value (0.0).

6.3.2 PCA-based approach

The graph-based conceptual domain adaptation results in Figure 6.6 suggest graph-

matching is not an appropriate method for aligning correspondent concepts. We now

experiment with a second method: PCA-based conceptual domain adaptation.

53

The idea of PCA-based conceptual domain adaptation is that PCA would provide

us the orthogonal principle components of the data in order of eigenvalues, and that

we can use this in order to align the correspondent concepts.

The concepts in the source and target in PCA-based approach are separately pro-

jected onto their principle components unlike the graph-based approach. Figure 5.5

shows the different steps for this method.

The first PC in source corresponds to the first PC in target. We train the classifier

on source and use it to classify the target using this idea for aligning the PCs,

Using PCA as the alignment method, similar to graph-based approach, we require

defining specific measures that evaluate the goodness of the alignment. We have

tested two measures defined as follows:

• Principle components In the first attempt, we used the mean of angles

between correspondent PCs of two domains. If the data in source and target

are aligned, the score proposed would return a low value and vice versa.

• Discrepancy In the second approach we use the discrepancy measure defined

in equation below:

S = |2× acc− 1| (6.3)

where acc is the classification accuracy for a classifier that discriminates source

from target data.

54

As we didn’t observe good results applying the graph-based method, we switched

to the next option (PCA-based). In PCA-based approach, although the semantics

of concepts in higher-layers are changed, we use the idea of correspondence between

units in two domains as the direction to align the two domains.

After running an exhaustive search over combinations of two hidden units with

discrepancy measure as the score, we realize that similar to the graph-based approach,

the score from PCA-based approach does not correlate with domain adaptation ei-

ther. Figure 6.8 shows that minimizing the PCA-based score (discrepancy in this

experiment), does not help minimizing domain adaptation error.

Figure 6.8: Relation between PCA-matching score and domain adaptation error.

55

Chapter 7

Contributions

By implementing multiple layers of non-linearities, deep networks have been able to

extract high-level complex concepts from data. Despite the value behind extracting

high-level concepts from data, deep networks have been naively used as new rep-

resentations for classification. In other words, the use of extracted concepts have

been limited to simply providing new representations that would facilitate the task

of building improved models due to the capacity to disentangle factors of variation.

After introducing conceptual domain adaptation, we not only used deep networks

to extract high-level concepts, but also we equipped the technique specifically for an

alignment step required to perform domain adaptation. In this regard, apart from

providing disentangled representations, the high-level concepts provide underlying

semantic meaning that provides the basis for correspondences in conceptual align-

ment. In other words, the information provided by high-level neurons have been

previously only used for generating new models, but in the new proposed approach,

56

correspondence between concepts (assuming local representation) provides informa-

tion for alignment as well.

In general, two domains are suitable for domain adaptation when they are differ-

ent but related. In conceptual domain adaptation, we consider the relatedness of two

domains as having correspondent concepts with same semantic meaning. Further-

more, we identified a discrepancy between two domains called inherently lower-level

representational discrepancy.

By relaxing the dependency of the alignment on representational similarities be-

tween concepts and solely relying on conceptual similarities, conceptual domain adap-

tation is beneficial for novel domain adaptation problems with inherently lower-level

representational discrepancy between domains.

7.0.1 Future work

Apart from the supervised version of conceptual domain adaptation, we have at-

tempted three other approaches to solve the problem of conceptual domain adapta-

tion in the unsupervised version.

The main problem with unsupervised approaches is that their score does not align

with the equivalent supervised score. In other words, when the unsupervised score

(as in context-based, graph-based or PCA-based methods) is minimized, it doesn’t

guarantee that the domain adaptation error is also minimized. Therefore, further

investigation is required in this regard.

57

Specifically, in graph-based and PCA-based approaches we restricted our experi-

ment to the 9th layer of the network with a total of 8 hidden units and we chose size

2 as the number of common concepts. This limitation on the size of the experiment

prevents us from getting a broad view of the problem.

As introduced in Section 5.2.3, initially we proposed a supervised version of con-

ceptual domain adaptation. Although the proposed approach requires the target data

fully labeled, it might also be practical to apply this method in a semi-supervised

scenario where the target data is partially labeled.

The basic assumption regarding conceptual domain adaptation proposed in this

document is the (strictly) local representation of high-level concepts in two domains.

Accordingly, in future works, one might consider finding correspondences between

concepts in their distributed –rather than local– representations.

Performing conceptual domain adaptation between two domains not only pro-

vides us the ability to transfer the model from one domain to the other, but also

it facilitates the transfer of knowledge between the domains in forms of correspon-

dences. Accordingly, the alignment model itself could be used as a translation model

between two domains that indicates the correspondences between the two domains.

Although by definition of domain adaptation, transferring a model can be per-

formed where there is only discrepancy between the marginal probability distribution

of the two domains, a more general case such as transductive transfer learning as

introduced in [29], shows that the difference between the two domains might lie in

their feature spaces. In conceptual domain adaptation, one might be able to tackle

58

such transductive transfer learning problems as well simply by training two different

networks, one for each domain.

Following up with the idea above, one should be able to tackle domain adapta-

tion problems where not only the labeled samples are not available from the target

domain, but also the target data itself is not available at the training phase of the

model. In such cases, the source network can be trained independently of the target

domain; when the target data is available, a separate network can then be trained

and concepts can be aligned to perform domain adaptation.

Finally, conceptual domain adaptation is the first attempt that combines deep

networks to extract high-level concepts with the semantic information hidden in the

same concepts. In the future, we expect more research taking place showing new

perspectives regarding the type of conceptual information amenable for extraction

using deep networks.

59

Chapter 8

Conclusion

Assuming an ideal extraction of underlying high-level concepts using deep networks,

in Section 5.2 we proposed performing simple target representation adjustment in

order to align two domains. Our adjustment approach for aligning representations

of correspondent concepts between source and target domain achieves reasonable

performance results, supporting the fundamental hypothesis proposed in conceptual

domain adaptation, namely that there exists correspondent concepts that can be used

to measure the relatedness between two domains. The problem of domain adaptation

is thus assumed to be solvable conditioned on prior knowledge about the proposed

relatedness between domains.

Having assumed a lower-level representational discrepancy to the domain adap-

tation problem by rotating the target dataset in hand-written digit recognition prob-

lem, we observed a significant drop in domain adaptation accuracy. For this case

specifically, conceptual domain adaptation using basic supervised fitness evaluation

60

of mapping matrix proved to provide a novel alternative solution to existing joint

training approaches. Furthermore, by observing patterns across mapping matrices,

we realized that the failure of the joint training approach is due to misalignment of

correspondent concepts in different hidden units.

One of the main challenges in conceptual domain adaptation is finding corre-

spondences between concepts in two domains which requires a measurable definition

of semantic meaning of concepts. Assuming the context of a concept as an indi-

cator of its semantic meaning, and furthermore, assuming that superimposition of

concepts provide contextual information about concepts, we proposed context-based

fitness evaluation of correspondences. We hypothesize that relying on the proposed

evaluation method would relax the dependency of alignment on lower-level represen-

tational properties of data, while maintaining the domain adaptation performance

comparable to the basic supervised evaluation approach.

We also explored an unsupervised conceptual domain adaptation that does not

rely on labeled target data. We proposed three approaches including context-based,

graph-based and PCA-based conceptual domain adaptation. Here we proposed three

search techniques: (i) genetic algorithm, (ii) exhaustive search, (iii) heuristic search.

To be able to evaluate the proposed approach, we used exhaustive search for graph-

based and PCA-based methods. Using exhaustive search on a layer with a fixed

number of common concepts helps us evaluate the score regardless of the goodness

of the search mechanism. We concluded that more research is needed in the unsu-

pervised approach to efficiently identify correspondent concepts.

61

Bibliography

[1] A. Arnold, R. Nallapati, and W. W. Cohen. A comparative study of methods for
transductive transfer learning. In Data Mining Workshops, 2007. ICDM Work-
shops 2007. Seventh IEEE International Conference on, pages 77–82. IEEE,
2007.

[2] S. Ben-David, J. Blitzer, K. Crammer, F. Pereira, and others. Analysis of rep-
resentations for domain adaptation. Advances in neural information processing
systems, 19:137, 2007.

[3] Y. Bengio. Learning deep architectures for ai. Foundations and Trends in
Machine Learning, 2(1):1–127, 2009.

[4] Y. Bengio. Practical recommendations for gradient-based training of deep ar-
chitectures. In Neural Networks: Tricks of the Trade, pages 437–478. Springer,
2012.

[5] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, 2013.

[6] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural
correspondence learning. In Proceedings of the 2006 conference on empirical
methods in natural language processing, pages 120–128. Association for Compu-
tational Linguistics, 2006.

[7] L. Bruzzone and M. Marconcini. Domain adaptation problems: A dasvm clas-
sification technique and a circular validation strategy. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(5):770–787, 2010.

[8] M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized denoising autoen-
coders for domain adaptation. arXiv preprint arXiv:1206.4683, 2012.

62

[9] S. Chopra, S. Balakrishnan, and R. Gopalan. Dlid: Deep learning for domain
adaptation by interpolating between domains. In ICML Workshop on Challenges
in Representation Learning.

[10] B. C. Csáji. Approximation with artificial neural networks. Faculty of Sciences,
Etvs Lornd University, Hungary, 24:48, 2001.

[11] J. Deng, Z. Zhang, F. Eyben, and B. Schuller. Autoencoder-based unsupervised
domain adaptation for speech emotion recognition.

[12] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing, vol-
ume 53. Springer, 2003.

[13] J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning,
volume 1. Springer series in statistics Springer, Berlin, 2001.

[14] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backprop-
agation. In International Conference on Machine Learning, pages 1180–1189,
2015.

[15] M. Ghifary, W. Bastiaan Kleijn, M. Zhang, and D. Balduzzi. Domain general-
ization for object recognition with multi-task autoencoders. In Proceedings of
the IEEE International Conference on Computer Vision, pages 2551–2559.

[16] M. Ghifary, W. B. Kleijn, and M. Zhang. Deep hybrid networks with good
out-of-sample object recognition. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5437–5441. IEEE,
2014.

[17] M. Ghifary, W. B. Kleijn, and M. Zhang. Domain adaptive neural networks
for object recognition. In Pacific Rim International Conference on Artificial
Intelligence, pages 898–904. Springer, 2014.

[18] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li. Deep
reconstruction-classification networks for unsupervised domain adaptation. In
European Conference on Computer Vision, pages 597–613. Springer, 2016.

[19] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale senti-
ment classification: A deep learning approach. In Proceedings of the 28th Inter-
national Conference on Machine Learning (ICML-11), pages 513–520, 2011.

[20] I. J. Goodfellow, Q. V. Le, A. M. Saxe, H. Lee, and A. Y. Ng. Measuring
Invariances in Deep Networks. In NIPS, volume 9, pages 646–654, 2009.

63

[21] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006.

[22] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies. A field guide
to dynamical recurrent neural networks. IEEE Press, 2001.

[23] M. Kan, S. Shan, and X. Chen. Bi-shifting auto-encoder for unsupervised do-
main adaptation. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3846–3854, 2015.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[25] M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transferable features with
deep adaptation networks. In International Conference on Machine Learning,
pages 97–105, 2015.

[26] B. B. Murdock Jr. Convolution and correlation in perception and memory.
Perspectives on Learning and Memory, pages 105–119, 2014.

[27] H. V. Nguyen, H. T. Ho, V. M. Patel, and R. Chellappa. Dash-n: Joint hier-
archical domain adaptation and feature learning. IEEE Transactions on Image
Processing, 24(12):5479–5491, 2015.

[28] R. B. Palm. Prediction as a candidate for learning deep hierarchical models of
data. Technical University of Denmark, 5, 2012.

[29] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[30] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence.
Dataset Shift in Machine Learning. The MIT Press, 2009.

[31] H. Sak, A. Senior, and F. Beaufays. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In Fifteenth Annual
Conference of the International Speech Communication Association, 2014.

[32] S. Thorpe. Localized versus distributed representations. In The Handbook of
Brain Theory and Neural Networks, pages 549–552. MIT Press, 1998.

[33] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning, pages 1096–1103. ACM,
2008.

64

[34] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion. Journal of Machine Learning Research, 11:3371–
3408, 2010.

[35] R. A. Wilson and F. C. Keil. The MIT Encyclopedia of the Cognitive Sciences.
MIT press, 2001.

[36] M. Zaslavskiy, F. Bach, and J.-P. Vert. A path following algorithm for graph
matching. Image and Signal Processing, pages 329–337, 2008.

65

