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ABSTRACT 

This thesis studies the numerical seismic modeling of a simulated fractured 

medium to analyze variations of seismic reflection amplitudes with incident and 

azimuthal angles (AVAZ). The intent is to extract the information about the fracture 

orientation and intensity of a fractured medium. The effective compliance tensor for a 

fractured medium can be written as the sum of the compliance tensor of the unfractured 

background rock and the compliance tensor for the set of aligned fractures. Based on the 

assumption of rotationally invariant fracture sets, two fracture compliances—the normal 

and tangential compliance—are required to specify the fracture compliance tensor. The 

stiffness tensor can be attained by inverting the compliance tensor. The P-wave reflection 

coefficients for arbitrary anisotropic media are obtained by two methods (Chattopadhyay, 

2004; Schoenberg and Protazio, 1992). Rüger’s linear approximation can accurately 

estimate the exact reflection coefficients and hence it is widely used in the linear 

inversion. Analysis is applied in the decision to choose between the incident angle and 

the average angle for Rüger’s linear approximation.  

Linear AVAZ inversions, based on singular value decomposition (SVD), and non-

linear AVAZ inversion, based on generalized linear inversion (GLI), for fracture 

orientation and HTI anisotropy parameters, were applied on P-wave reflection 

coefficients with variable incident angle and azimuth. However, 90˚ ambiguity in the 

estimation of the fracture orientation always exists. Sensitivity analysis of the inversion 

results, including S/N ratio, maximum incident angle used, and error propagation, 

confirms the accuracy of the amplitude analysis.   
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CHAPTER 1 

INTRODUCTION 

With the rapid development of the oil and gas industry in the world, geophysicists 

play an important role in the exploration of all types of hydrocarbon reservoirs. These 

include fractured reservoirs, which have pervasively existed in carbonates, tight clastic 

sediments, and basements reservoirs. However, fractures have different effects on 

hydrocarbon production. One positive impact is fractures can provide more pore space 

for reservoirs to store gas and oil. Moreover, permeability is vastly increased by fractures 

so that hydrocarbons can be easily migrated. Unfortunately, fractures sometimes also play 

a detrimental role. Fractures may be the cause of leakage of traps in some reservoirs. As 

well, cemented and mineralized fractures may act as barriers of fluid flow (Nelson, 1985; 

Aguilera, 2003). Therefore, it is meaningful and challenging for not only geophysicists 

but also geologists and reservoir engineers to study the orientation and distribution of 

fractures when evaluating a reservoir. 

Seismic anisotropy can be defined as “the dependence of seismic velocity upon 

angle” (Thomsen, 2002). The velocity anisotropy may be caused by several reasons, such 

as rock fabric, grain-scale microcracks, rock layering, and aligned fractures at all scales, 

provided that seismic wavelengths are much larger than the size and spacing of the 

fracture (Worthington, 2008).  

Both direct and indirect methods can be used to characterize fractures. Well log 

curves and core samples are the most direct and simplest methods to analyze fractures. 
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However, these direct methods can only apply to a small area near well locations. Indirect 

exploration methods like seismic analysis are required to find the orientation and density 

of fractures. The azimuthal variation in reflection amplitude of seismic P-wave is used to 

study fractured reservoirs. The method to use reflection amplitudes for fracture 

characterization has advantages over seismic velocity, because reflection amplitudes have 

higher vertical resolution and are more sensitive to the properties of reservoirs. 

 In this work, linear slip theory (Schoenberg, 1980; Schoenberg, 1983) is used to 

specify the relationship between stress and strain by fracture compliance. Schoenberg 

suggests treating fractures as infinitely thin and highly compliant (soft) layers or planes 

of weakness (Bakulin et al., 2000). Linear slip boundary conditions are applied to the 

interface across which traction is continuous, but the displacement is discontinuous. The 

exact reflection coefficients are obtained by two different methods for arbitrary 

anisotropic media. In addition, Rüger’s linear approximation for transversely isotropic 

medium with a horizontal symmetry axis is introduced and applied for linear inversion. 

Both linear and non-linear inversions are used to invert for fracture orientation. Linear 

inversion, which is better for low S/N data, is used to invert for anisotropy parameters.  

P-wave seismic exploration has been widely used for fracture analysis for the past 

several years. Tsvankin and Lynn (1999) list the following reasons for using P-wave data: 

(1) lower cost of P-wave acquisition compared to surveys for S-waves, (2) usually higher 

data quality of P-wave compared to S-waves, and (3) development of azimuthal 

techniques on P-wave data for obtaining principal directions and magnitude of 

anisotropy.  
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1.1 Organization of the thesis 

In Chapter 2, I begin with a review of anisotropic media. Hooke’s law is 

introduced to relate stress and strain for isotropic and anisotropic media. Voigt notation is 

used to simplify the 3x3x3x3 stiffness tensor into 6x6 stiffness matrix. Thomsen (1986) 

introduces a widely used notation for transversely isotropic media with a vertical 

symmetry axis (VTI). Rüger (2002) provides another set of anisotropy parameters, which 

is similar to Thomsen’s notation, to describe a transversely isotropic medium with a 

horizontal symmetry axis (HTI). The first and the second Green-Christofel equations, 

which are used to obtain the phase velocity and group velocity, are described in detail in 

this chapter. 

In Chapter 3, two methods are presented to calculate the exact reflection 

coefficients for arbitrary anisotropic media. Rüger’s linear approximation provides a 

convenient way to obtain the P-wave reflection coefficients approximation for HTI 

media. The difference between this approximation and the exact reflection coefficients is 

acceptable at small angles. The choice of average angle (average of the incident and 

transmission angles across the boundary) and incident angle for Rüger’s linear 

approximation is analyzed in this chapter.  

The effective medium theory is described in Chapter 4 for a set of vertical, 

aligned fractures. The linear slip theory (Schoenberg, 1980; Schoenberg, 1983) is used to 

link the seismic signatures to the properties of fracture systems. Under certain conditions, 

Schoenberg and Douma (1988) express the fracture compliance in terms of crack density 

and the ratio of S-wave and P-wave velocity of the host isotropic rock. And a set of 
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vertical, aligned, rotationally invariant fractures leads to a particular HTI medium, which 

can be specified by only four independent parameters. 

The linear and non-linear inversions are introduced in Chapter 5. The singular 

value decomposition inversion (SVD), which is a linear inversion, is based on Rüger’s 

linear approximation. And the generalized linear inversion (GLI), which is a non-linear 

inversion, is based on Chattopadhyay’s method. Both of these two inversion methods are 

used to invert for the fracture orientation. The anisotropic parameters are obtained by the 

SVD method. Different error analyses are also discussed in this chapter.  

1.2 Contribution of the thesis 

Seismic amplitude variation for anisotropic media is very complicated. The seismic 

amplitude shows variation with azimuthal change for an interface between isotropic 

medium and HTI medium, which is the main concern of my work. Numerical modeling 

and inversion in this thesis show an outline to invert for the fracture orientation and 

density from seismic amplitude. The main contributions of this thesis are as follows: 

 The method to obtain phase and group velocities for arbitrary anisotropic media is 

introduced in detail.  

  Two methods for exact reflection coefficients for arbitrary anisotropic media are 

explained in detail.  

 Linear and non-linear inversions are applied to invert for the fracture orientation. 

The reason for 90˚ ambiguity in the inversion result is discussed.  

 Error analysis is applied for S/N ratio, maximum incident angle, and error 

propagation. 
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CHAPTER 2  

REVIEW OF SEISMIC ANISOTROPY 

2.1 Introduction 

Seismic anisotropy is defined to be the dependence of seismic velocity upon angle 

(Thomsen, 2002). However, there is no sharp criterion to demarcate isotropy and 

anisotropy. In general, we assume the medium is isotropic when it is hard to detect 

velocity variation with respect to direction, or when the effects of anisotropy are too 

small to affect any further processing or data interpretation (Helbig, 1994). By contrast, 

heterogeneity is defined to be the dependence of physical properties upon position. 

Small-scale ordered heterogeneity, such as the fabric of a rock, can result in large-scale 

seismic anisotropy. The terms large and small are compared to the seismic wavelength. 

When the seismic wavelength is large compared to the scale of ordered heterogeneities, 

we can assume the medium is anisotropic and it obeys the laws of anisotropic wave 

propagation. 

2.2 Hooke’s law for isotropic media 

Strain and stress in isotropic media have a linear relationship which is defined 

experimentally by Hooke’s law. Two constants (e.g. Lame parameters λ and μ) describe 

this relationship between the stress σ and strain ε,  

2ij ij kk ij     ,                                                  (2.1) 
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or 

1
[(1 ) ]ij ij ij

E
       ,                                            (2.2) 

where 

                                 ij = elements of the strain tensor, 

                                 ij =elements of the stress tensor, 

                                 =volumetric strain (sum over repeated index), 

                                 =mean stress times 3 (sum over repeated index), 

                                 ij =0 if i j and ij =1 if i j , 

                                  E=Young’s modulus, and 

                                  =Poisson’s ratio. 

Two constants are enough to specify the relationship between stress and strain for 

the linear elastic and isotropic medium. With bulk and shear modulus, the other elastic 

constants can be defined; however, there are only two independent constants. 

2.3 Hooke’s law for anisotropic media 

For arbitrary anisotropic media, there is also an equation that links the stress and 

strain. Hooke’s law for elastic anisotropic media states that the stress σ is linearly 

proportional to the strain ε through the fourth-rank stiffness or compliance tensor, as 

expressed by 

ij ijkl klC  ,                                                      (2.3) 
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or 

ij ijkl klS  ,                                                       (2.4) 

where ijklC  is the stiffness tensor and ijklS is the compliance tensor. 

 Both ijklC  and ijklS are fourth-rank tensor that contains 81 components. The nine 

elements of the strain tensor and the nine elements of the stress tensor are related to each 

other by the 81 elastic constants of the stiffness tensor (Fedorov, 1968; Winterstein, 

1990). However, not all 81 components are independent. Because of the symmetries 

existing in the stress tensor and strain tensor, we obtain a relationship between stiffness 

tensor by interchanging the indices i and j, k and l in ijklC
 
as 

ijkl jikl ijlk jilkC C C C  
                                                (2.5)

 

 In addition, the existence of unique strain energy potential provides another 

relationship ijkl klijC C
 
which further reduces the number of independent constants to 21. 

And 21 independent constants are sufficient to specify the lowest symmetry which is 

triclinic medium. The number of independent constants for the different symmetry 

systems reduces from 21 for triclinic medium to 9 for orthorhombic medium and 2 for 

isotropic media (Winterstein, 1990).  

2.4 Voigt notation 

It is more convenient and practical to use the abbreviated Voigt notion to represent 

stress, strain, stiffness, and compliance tensors with a two-subscript notation rather than 

the fourth-rank tensor. Thus, the stress and strain are written as six element column 

vectors instead of nine element square matrices following the convention: 11 →1, 22→2, 



8 

 

33→3, 23 & 32→4, 13 & 31→5, and 12 & 21→6. 

                      

1 11

2 22

3 33

4 23

5 13

6 12

T

 

 

 

 

 

 

 
 


 
 

  
 

 
   

                               

1 11

2 22

3 33

4 23

5 13

6 12

2

2

2

E

 

 

 

 

 

 

 
 


 
 

  
 

 
    .                        (2.6)

 

The factor of 2 is only introduced in the definition of strain. The stiffness matrix 

is then represented as 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

 
 
 
 
 
 
 
  
   ,                                   (2.7)

                                     

and similarly, the compliance matrix is represented as 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

 
 
 
 
 
 
 
  
  .                                     (2.8)

                          

Both the stiffness and compliance matrices in Voigt notation are symmetric. The 

21 independent constants in the upper triangle of the 6x6 matrix are sufficient to specify 

the lowest possible symmetric linear elastic material. And we can write the general 

Hooke’s law as 
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1 11 12 13 14 15 16 1

2 12 22 23 24 25 26 2

3 13 23 33 34 35 36 3

4 14 24 34 44 45 46 4

5 15 25 35 45 55 56 5

6 16 26 36 46 56 66 6

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

 

 

 

 

 

 

    
    
    
    

    
    
    
        
     .                         (2.9) 

                         

Note that the matrix in the Voigt notation is not tensor because the matrix in this 

notation no longer follows the laws of tensor transformation. There are two ways to do 

the tensor transformation from Voigt notation. We can convert the Voigt notation back to 

the four-index notation and then apply the tensor transformation. Or we can use the Bond 

transformation matrix which is more convenient and efficient to do the transformation. I 

will introduce this method in Chapter 4. And in this thesis, the capital C is used for the 

fourth-rank tensor and the minuscule c is used for the Voigt notation.  

2.5 Symmetry system 

Different symmetry systems can be defined by different elastic stiffness matrices 

as follows (Mavko et al., 2009) 

Isotropic: two independent constants 

11 12 12

12 11 12

12 12 11

12 11 44

44

44

44

0 0 0

0 0 0

0 0 0
,  c 2 .

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ij

c c c

c c c

c c c
c c c

c

c

c

 
 
 
 

   
 
 
 
             (2.10)

 

As mentioned before, the elastic constants in the stiffness matrix for isotropic 

media can be specified by two Lame parameters as c12 = λ, c44 = μ, and c11 = λ+2μ. 
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Cubic: three independent constants 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ij

c c c

c c c

c c c
c

c

c

c

 
 
 
 

  
 
 
  
     .                               (2.11)

 

Hexagonal or Transversely isotropic: five independent constants 

11 12 13

12 11 13

13 13 33

66 11 12

44

44

66

0 0 0

0 0 0

0 0 0
,  ( ) .

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ij

c c c

c c c

c c c
c c c c

c

c

c

 
 
 
 

   
 
 
  
           (2.12)

 

Orthorhombic: nine independent constants 

11 12 13

12 11 13

13 13 33

44

44

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ij

c c c

c c c

c c c
c

c

c

c

 
 
 
 

  
 
 
  
    .                                  (2.13) 

In my thesis, I mainly considered the transversely isotropic (TI) medium. The 

transversely isotropic medium is one with the physical property which is symmetric about 

an axis that is normal to a plane of isotropy. The TI medium has infinite planes of 

isotropy and thus, within this plane, the velocities are the same in all directions. The TI 

medium is very important because it is a good approximation to several geologic models. 

For instance, the transversely isotropic medium with a vertical symmetry axis (VTI) 

http://en.wikipedia.org/wiki/Symmetry
http://en.wikipedia.org/wiki/Isotropy
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approximates the horizontal layered sedimentary rock model. More importantly in 

today’s exploration for unconventional shale, a single set of vertical aligned fractures can 

be modeled by a transversely isotropic medium with a horizontal symmetry axis (HTI), if 

we consider the background rock as an isotropic medium.   

2.6 Thomsen’s notation and its equivalence for HTI media 

For transversely isotropic media with a vertical symmetry axis (VTI) with weak 

elastic anisotropy, Thomsen (1986) introduces a widely used notation. Thomsen’s 

notation regrouped the elastic constants into three anisotropic parameters (δ, ε and γ) 

which simplifies the equations of the phase velocities of the P-, SV-, and SH-waves.  

Thomsen suggests the following convenient notation for VTI media in terms of the P-

wave and S-wave velocities along the symmetry axis, α and β, plus three additional 

constants, 

33

44

11 33

33

66 44

44

2 2

13 44 33 44

33 33 44

/  ,

/  ,

 ,
2

 ,
2

(c c ) (c c )
 .

2 (c c )

c

c

c c

c

c c

c

c

 

 

















  




 

We can also invert the Thomsen parameters for the elastic constants to Voigt notation as 
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2

33

2

44

11 33

66 44

2

13 33 33 44 33 44 44

,

,

(1 2 ),

c (1 2 ),

c 2 (c c ) (c c )

c

c

c c

c

c c















 

 

     
.

 

Note for c13 there is a plus and minus sign before the square root which makes the sign of 

(c13+c44) ambiguous; but, Tsvankin (2001) suggests that it is appropriate to choose the 

positive sign before the square root. They also places some limits on the values of 

Thomsen parameters 

                                          

 2 2 2 21 / / 2 2 / ( / 1),

,

0,

    

 



    





 

Where α and β are P-wave and S-wave velocities in the direction of the symmetry axis 

(see figure 2.1). 

 The phase velocities for P-, SV-, and SH-waves are written conveniently as 

2 2 4

2
2 2

2

2

( ) (1 sin cos sin ),

( ) (1 ( )sin cos ),

( ) (1 sin ),

p

SV

SH

V

V

V

      


     



   

  

  

 
                       (2.14)

 

Where VP is the phase velocity of P-wave, VSH is the phase velocity of S-wave, VSV is the 

phase velocity of the S-wave which polarized normal to the SH-wave, and θ is the angle 

between the wave vector and x3-axis or symmetry axis.  

Berryman (2008) introduces another set of equations for P-wave and SV-wave 

velocities based on Thomsen’s expressions in order to enhance the validity for wider 
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ranges of angle and stronger anisotropy. The expressions are 

 

 

2 2 2
2

2 2 22

2

2sin sin cos
( ) 1 sin ,

1 cos 2 cos 2

2sin sin cos
V ( ) 1 ,

1 cos 2 cos 2

m
p

m

m
SV

m

V
  

     
 

  
   

  

 
    

 

  
    

               (2.15)

 

where  

2 33 44

11 44

tan m

c c

c c






.  

Berryman’s formulas accurately predict the angle where the SV-wave has a 

maximum or minimum value, thus the phase velocity of SV-wave calculated by 

Berryman’s formula has a more accurate result than the result obtained by Thomsen’s 

equation. However, the phase velocity of P-wave calculated by Berryman’s equation is 

not always more accurate. Thomsen’s equation for P-wave is sometimes more accurate at 

small angles. 

Based on the assumption of weakly anisotropic media, we defined the constant   

as the fractional difference between the P-wave velocities orthogonal and parallel to the 

symmetry axis 

(90 ) (0 )

(0 )

P P

P

V V

V





.                                            (2.16)

 

Similarly, we defined the constant γ as the fractional difference between the SH-wave 

velocities orthogonal and parallel to the symmetry axis. And we also can describe it as the 

difference between the velocities of S-waves polarized normal and parallel to the 

symmetry axis, both propagating normal to the symmetry axis 
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(90 ) (0 ) (90 ) (90 )

(0 ) (90 )

SH SH SH SV

SH SV

V V V V

V V


 
 

 .                     (2.17)

 

 Transversely isotropic media with a vertical symmetry axis (VTI) and 

transversely isotropic media with a horizontal symmetry axis (HTI) are of the same 

symmetry type, however the stiffness matrices for VTI media and HTI media are 

different because of the symmetry axes are perpendicular. The symmetry axis of VTI 

model is pointing in the x3-direction and the symmetry axis of HTI model is pointing in 

the x1-direction.  

 

 

Figure 2.1. The symmetry axis for VTI and HTI models (Rüger, 2002). 
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However, they both have 5 parameters to specify the anisotropic medium 

11 11 66 13

11 66 11 13

13 13 33

55

55

66

( 2c ) 0 0 0

( 2c ) 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

VTI

c c c

c c c

c c c
c

c

c

c

 
 


 
 

  
 
 
  
  ,                     (2.18)

 

11 13 13

13 33 11 66

13 11 66 33

44

55

55

0 0 0

( 2c ) 0 0 0

( 2c ) 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

HTI

c c c

c c c

c c c
c

c

c

c

 
 


 
 

  
 
 
  
  .                     (2.19)

 

Because of the similarity between VTI and HTI media, we can use the equivalent 

Thomsen’s parameters to describe the HTI model as follows 

                     

(V) 11 33

33

2 2
(V) 13 55 33 55

33 33 55

(V) 66 44

44

,
2

(c c ) (c c )
,

2 (c c )

.
2

c c

c

c

c c

c










  







                              (2.20)

 

Thomsen’s HTI parameters can be related to the Thomsen’s VTI parameters since the 

only difference between VTI and HTI is the direction of symmetry axis. So we can write 

Thomsen’s HTI parameter in terms of VTI parameters as 
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(V)

(V)

(V)

,
1 2

2 (1 )

,
2

(1 2 )(1 )

,
1 2

f

f







 











 


 



 

 
                                         (2.21)

 

where 

 
2

0 01 (V / V )S Pf   . 

VP0 and VS0 are the velocities along the horizontal symmetry axis. Then we can make a 

short conclusion about the parameters for VTI medium and HTI medium in exact 

formand the approximate form (weak anisotropy) as shown in Table 2.1. 
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TABLE 2.1. Thomsen’s equivalence for HTI media and its relation to the generic Thomsen 

parameters. 

 Voigt notation 

Generic Thomsen 

notation 

Weak anisotropy 

  33 /c   
0 1 2PV   0(1 )PV   

  
44 /c   

0 1 2SV   0 (1 )SV   

 
 55 /c   

0SV  0SV  

(V)  

2 2

13 55 33 55

33 33 55

(c c ) (c c )

2 (c c )c

  


 

2 (1 )

2
(1 2 )(1 )

f

f


 




 

 

 2   

(V)  
11 33

332

c c

c


 

1 2







   

(V)  
66 44

442

c c

c


 

1 2







   

  44 66

662

c c

c


     

Note: The ijc corresponds to the symmetry axis pointing in the x1-direction. β denotes SH-wave 

and β
┴
 denotes SV-wave. The equations in the far right column are approximations in week 

anisotropy media; all other expressions are exact. 
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2.7 Phase velocity and group velocity  

Phase velocity and group velocity are two important concepts for anisotropy 

media. The raypath for the phase velocity is perpendicular to a surface of constant phase 

in anisotropic media. And the group velocity is the velocity with which the energy in the 

wavetrain travels (Sheriff, 1991). The relationship between phase velocity (Vp) and group 

velocity (Vg) can be written as 

p gV V n
   ,                                              (2.22)

 

where n is a unit vector along the wave normal. 

Figure 2.2 illustrates the relationship between ray angle, , and phase angle, . 

The direction of the wave vector follows the direction that has the maximum rate of 

increase in phase. And the wave vector is always perpendicular to the wave front. 

However, the direction of the ray vector, which is the direction of energy propagation, is 

always from source to the wave front. 

 

 

Figure 2.2. The relationship between phase angle and group angle (Chen, 2000). 
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Daley and Hron (1977, 1979) provide an analytic solution for phase velocity in a 

transversely isotropic medium with a vertical symmetry axis (VTI). To calculate the 

phase velocity for arbitrary anisotropy media, it is necessary to use the Green-Christoffel 

equation 

2[ ] 0ik ik kV U    ,                                                (2.23) 

where ρ is density, V is the phase velocity of the wave, δik is the Kronecker delta,Uk is the 

unit displacement, and ik is the Green-Christoffel second-rank symmetric tensor which 

equals 

ik ijkl j lC n n 
,                                                       (2.24) 

where ijklC is the stiffness tensor of the medium and n is the wave direction (phase angle) 

for the incident wave. The Green-Christoffel equation has a unique solution when 

2det( ) 0ik ikV   
,                                                  (2.25)

 

or in a matrix form                 

     

2

11 12 13

2

12 22 23

2

13 23 33

0

V

V

V







   

    

   
.                                 (2.26)

 

In order to calculate the phase velocity, we have to solve the determinant of the equation. 

The equation can be expanded as 

2 3 2 2 2

3 2 1 0( ) ( ) 0C V C V C V C      ,                           (2.27) 
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where 

0 11 22 33 12 23 31 13 21 32 31 13 22 23 32 11 21 12 33

1 31 13 23 32 21 12 11 33 33 22 22 11

2 11 22 33

3 1

C

C

C

C

                       


                 


     
  

(2.28)

 

Then we can solve for phase velocity V of the given incident angle by solving the cubic 

polynomial for ρV
2
.  

Before calculating the group velocity, we have to solve the Green-Christoffel 

equation to obtain the polarization for the wave. We can write the Green-Christoffel 

equation in a component form 

2

11 1 12 2 13 3

2

12 1 22 2 23 3

2

13 1 23 2 33 3

( ) 0

( ) 0

( ) 0

V U U U

U V U U

U U V U







       

      

       .                          (2.29)

 

And we have one more equation comes from the definition of the normalized polarization 

2 2 2

1 2 3 1U U U  
.                                            (2.30)

 

In order to find Ui, we have to solve the Green-Christoffel equation. And to do this, let us 

rewrite it in a form 

2

11 1 12 2

13 3 13 3

2

12 1 22 2

23 3 23 3

13 1 23 2

2 2

33 3 33 3

( )
1 0

( )
1 0

1 0
( ) ( )

V U U

U U

U V U

U U

U U

V U V U





 

   
  

 

  

  
 

  
  

    ,                      (2.31)

 

or      
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11 1 12 2

21 1 22 2

31 1 32 2

1

1

1

A x A x

A x A x

A x A x

  


  
    ,                                               (2.32)

 

where  

                  

1 2
1 2

3 3

2

11 12
11 12

13 13

2

12 22
21 22

23 23

1 1
2 2

33 33
31 32

13 23

,  

( )
,

( )
,

( ) ( )
,

U U
x x

U U

V
A A

V
A A

V V
A A





 
 


 


   

 
 


  

  
 


      

          .

 

The first two equations above yield 

                                     
11 1 12 2

21 1 22 2

1

1

A x A x

A x A x

  


   ,                                                 (2.33)

 

and 

1 12 22
1

3 11 22 21 12

2 21 11
2

3 11 22 21 12

1 1 12 22
3

2 2 21 11

U A A
x

U A A A A

U A A
x

U A A A A

U x A A
x

U x A A

 
 


 

 


 
  

 .                                      (2.34)

 

From the above equations, we find 
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1 1 3

2 2 3

3 1

1

1

U x U

U x U

U U
x


 




 
 .                                                      (2.35)          

 

Using the above equation and the definition of normalized polarization, we obtain 

 2 2 2

1 2 31 1x x U  
,                                               (2.36)

 

and 

 
2

3 2 2

1 2

1

1
U

x x


 
.                                                (2.37)

 

Analogously, for 1 2 and  U U  

2

1 2 2

2

1 1

2

2 2 2

1

2 2

1

1
1

1

1
1

U
x

x x

U
x

x x



            


 
    
     
     .                                            (2.38)

 

Thus the three components U1, U2, and U3 of the polarization have been obtained.  

Knowing the phase velocity and polarization, the group velocity can be calculated. Group 

velocity is defined as gV
k





. From the second Green-Christoffel equation, we have 

2

ijkl j l i kC n nU V U
.                                                 (2.39)
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And we multiply Uk and 
2

2

4


on both side of above equation, we obtain 

2

ijkl i j l kC U k k U 
.                                            (2.40)

 

After differentiation with respect to k and using the definition of the group velocity, we 

can write the group velocity in terms of the phase velocity as 

1
g ijkl i k lV C U U n

k V






 
 .                                       (2.41)

 

It is necessary to introduce the second Green-Christoffel tensor here to simplify the 

equation for group velocity. The second Green-Christoffel tensor can be written as: 

jl ijkl i kG C U U
 ,                                                (2.42)

 

where ijklC is the stiffness tensor for the medium and, Ui and Uk 
are two components of 

the polarization. Then the group velocity has the form 

1
g jl lV G n

k V






 
 .                                          (2.43)

 

Illite which has VTI symmetry is used to illustrate how the phase and group 

velocities change with respect to the angles measured from the three axes (see Figure 2.3 

and Figure 2.4). From the three-dimensional plots of phase and group velocities, it is 

obvious that triplication occurs in the group velocity for SV-wave. It is difficult to 

understand this phenomenon in the symmetry models lower than TI and its significance 

to seismic interpretation.  
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Figure 2.3. The phase velocities of P-wave, SV-wave, and SH-wave for illite. The elastic 

constants for illite are given in Appendix A.  

 

 
Figure 2.4. The group velocities of P-wave, SV-wave, and SH-wave for illite. The elastic 

constants for illite are given in Appendix A.  
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2.8 Conclusion 

For both isotropic and anisotropic media, the relationship between stress and 

strain can be expressed by the Hooke’s law. Voigt notation, which is the abbreviate 

notation, is used to simply the 3x3x3x3 stiffness tensor into 6x6 stiffness matrix. Because 

of the symmetry property, only 21 independent elastic constants are required to specify 

the lowest symmetry model (triclinic model). Thomsen’s notation, which contains three 

anisotropy parameters, can be used to describe TI media. In order to obtain phase and 

group velocities for arbitrary anisotropic media, the first and second Green-Christoffel 

equations need to be used. 
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CHAPTER 3 

REFLECTION AND TRANSMISSION 

COEFFICIENTS FOR ANISOTROPIC MEDIA 
 

3.1 Introduction 

Reflection and transmission phenomenon of elastic waves is considered to be the 

hot topic for the past several years in the field of exploration seismology, especially in the 

area of amplitude-versus-offset (AVO) technology. When fractures are embedded in an 

isotropic host rock, azimuthal amplitude-versus-offset (AVOZ) technology is widely used 

for predicting the properties of fractures. Depending on the accuracy required, it can be 

significantly more difficult to calculate the reflection and transmission coefficients in 

anisotropic media compared to isotropic media. The propagation of body waves and 

surface waves in anisotropic media are different from their propagation in isotropic media 

because velocity in anisotropic media is dependent on the direction of propagation.  

In Chapter 2, the method to solve for phase velocity and polarization are 

discussed. In this chapter, two different methods are presented for calculating anisotropic 

reflection and transmission coefficients for a plane wave at the interface between two 

arbitrary anisotropic half-spaces. The often used Rüger’s linear approximation for PP 

reflection coefficients for transversely isotropic media with a horizontal axis (HTI) is also 

included in this chapter.  
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3.2 Reflection and transmission coefficients (Chattopadhyay) 

The following development for the anisotropic reflection and transmission 

coefficients was developed by Chattopadhyay (2004).  

For a half-space model with two arbitrary anisotropic layers (see Figure 3.1), we 

assume the upper layer is the region 
3 0x   and the lower layer is the region

3 0x  . A 

quasi-P-wave is incident at the surface of the boundary
3 0x  .  

 

Figure 3.1. Scheme of an incident wave hits an interface.   denotes the angle between the 

slowness vector of the incident wave and vertical axis.   is the azimuthal angle which is defined 

with respect to the symmetry axis pointing in the 
1x - direction (Rüger, 2002). 

 

The incident wave generates three reflected waves which are quasi-P-wave, fast 

quasi-S-wave, and slow quasi-S-wave in the upper layer and three transmitted waves 

which are quasi-P-wave, fast quasi-S-wave, and slow quasi-S-wave in the lower layer. 

We assume 0,  1, 2, 3, 4, 5, 6n  are for the incident quasi-P-wave, reflected quasi-P-wave, 

fast quasi-S-wave, and slow quasi-S-wave and transmitted quasi-P-wave, fast quasi-S-

θ
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wave, and slow quasi-S-wave respectively. The angles made by the incident quasi-P-

wave, reflected quasi-P-wave, fast quasi-S-wave, and slow quasi-S-wave and transmitted 

quasi-P-wave, fast-quasi-S wave, and slow quasi-S-wave with the x3-axis which is 

vertically downward are 0 1 2 3 4 5, 6, , , , ,  and        , respectively (see Figure 3.2).  

 
Figure 3.2. Reflected and transmitted waves caused by an incident quasi-P-wave hits the interface 

between two anisotropic half-spaces. 

 

At the interface where 
3 0x  , the displacement and stress of waves in both half-

spaces are written in the following forms 

                                  1 1 2 3 32

1 1

( )

2 2

3 3

n n n
n n

n n

ik x p x p x p c tn n

n

n n

u d

u A d e

u d

  

   
   

   
   
      ,                                 (3.1)

 

0
1

2

3

4

5

6

Incident quasi-P-wave 

Reflected quasi-P-wave 

Reflected fast quasi-S-wave 

Reflected slow quasi-S-wave 

Transmitted quasi-P-wave 

Transmitted fast quasi-S-wave 

Transmitted slow quasi-S-wave 

1x

3x



29 

 

 

1 1 2 3 32

1 1 2 3 32

1 1 2 3 32

( )

13 13

( )

23 23

( )

33 33

,

,  

,

n n n
n n

n n n
n n

n n n
n n

ik x p x p x p c t

kl kl n n n

ik x p x p x p c t

kl kl n n n

ik x p x p x p c t

kl kl n n n

C ik A e P

C ik A e Q

C ik A e R

 

 

 

  

  

  

 

 

 
                                (3.2)

 

 

where 

51 1 1 52 2 2 53 3 3 54 3 2 2 3

55 3 1 1 3 56 2 1 1 2

41 1 1 42 2 2 43 3 3 44 3 2 2 3

45 3 1 1 3 46 2 1 1 2

31 1 1 32 2

( )

( ) ( ),

( )

( ) ( ),

n n n n n n n n n n

n

n n n n n n n n

n n n n n n n n n n

n

n n n n n n n n

n n n

n

P c p d c p d c p d c p d p d

c p d p d c p d p d

Q c p d c p d c p d c p d p d

c p d p d c p d p d

R c p d c p d

    

   

    

   

  2 33 3 3 34 3 2 2 3

35 3 1 1 3 36 2 1 1 2

( )

( ) ( ),

n n n n n n n

n n n n n n n n

c p d c p d p d

c p d p d c p d p d

  

   
                  (3.3)

                  

 

and 

                                   

0 : incident quasi-P-wave

1: reflected quasi-P-wave

2 : reflected fast quasi-S-wave

n 3: reflected slow quasi-S-wave

4 : transmitted quasi-P-wave

5 : transmitted fast quasi-S-wave

6 : transmitted slow quasi-S-wave






 






 .

 

p denotes the unit propagation vector, d is the component of a unit displacement vector, 

and cn is the phase velocity of the incident quasi-P-wave, reflected quasi-P-wave, fast 

quasi-S-wave, and slow quasi-S-wave and transmitted quasi-P-wave, fast quasi-S-wave, 

and slow quasi-S-wave. The capital C here denotes the fourth-rank stiffness tensor and 

the miniscule c is used for the Voigt notation. 
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For n=4, 5, and 6, which denote the waves in the lower medium, the elastic 

constants cij are to be replaced by cij' and then equations (3.1), (3.2), and (3.3) can be 

written for the transmitted waves in the lower half-space. 

The boundary conditions at 
3 0x   can be written as 

1 1

2 2

3 3

13 13

23 23

33 33

I II

I II

I II

I II

I II

I II

u u

u u

u u

 

 

 












,                                                         (3.4)

 

where I denotes the upper half-space and II denotes the lower half-space. When one plane 

wave is considered at the interface, we can write the equation as 

0 1 2 3 4 5 6

1 1 1 1 1 1 1

0 1 2 3 4 5 6

2 2 2 2 2 2 2

0 1 2 3 4 5 6

3 3 3 3 3 3 3

0 1 2 3 4 5 6

13 13 13 13 13 13 13

0 1 2 3 4 5 6

23 23 23 23 23 23 23

0 1 2 3 4 5 6

33 33 33 33 33 33 33

u u u u u u u

u u u u u u u

u u u u u u u

      

      

      

     

     

     

     

     

     
.                              (3.5)

 

By substituting the displacement and stress into boundary conditions, we have 
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1 2 3 4 5 6

1 1 1 1 1 1

0 0 0 0 0 0

1 1 1 1 1 1

1 2 3 4 5 6

2 2 2 2 2 2

0 0 0 0 0 0

2 2 2 2 2 2
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3 3 3 3 3 3
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0 0 0 0 0 0 0
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1
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 
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    
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    

         
    
            

 
 
    
        , (3.6)

 

where kn is the wave number for three reflected waves and three transmitted waves, and 

m

nd  denotes the n-th component of the unit displacement for the m-th type wave. An is the 

reflection or transmission coefficients for three reflected waves and three transmitted 

waves. In order to obtain these coefficients, solve the inversion of the matrix. 

3.3 Reflection and transmission coefficients (Schoenberg and 

Protazio) 

Our second method for computing anisotropic reflection and transmission 

coefficients was introduced by Schoenberg and Protazio (1992). This solution involves 

submatrices of the coefficient matrix for the Zoeppritz equation. Before the submatrices 

are obtained, we need to calculate the slowness of three reflected waves and three 

transmitted waves, because Snell’s law predicts that the two components of the slowness, 

which are parallel to the interface, are the same for all waves: incident, reflected, and 

transmitted. There is one very important assumption made and that is the frequency and 
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phase of the reflected and transmitted waves are equal to that of the incident wave. Based 

on this assumption, we can obtain the relationship for two components of the slowness, s, 

which are parallel to the interface as follows 

0 1 2 3 4 5 6

1 1 1 1 1 1 1

0 1 2 3 4 5 6

2 2 2 2 2 2 2

s s s s s s s

s s s s s s s

      


      ,                                    (3.7)

 

where m and n in 
n

ms denote the component of the slowness and the type of wave. The 

number n from 0 to 6 are incident wave, reflected quasi-P-wave, fast quasi-S-wave, and 

slow quasi-S-wave as well as transmitted quasi-P-wave, fast quasi-S-wave, and slow 

quasi-S-wave. The third components 3

ns
 
(n=1, 2,…, 6) are perpendicular to the interface, 

and these are the only parameters we are going to calculate. They can be obtained by 

solving a sixth-order equation which is from Green-Christoffel equation but in terms of 

slowness 

                                   [ ( ) ] 0ik is I U   ,                                            (3.8)
 

where  

ik ijkl i kC s s  . 

The above equation can be written in the following form 

2

3 3 ( )ik ik ik ikD s E s F s I    
,                                    (3.9)
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where 

3 3

1 3 3 1 1 2 3 3 2 2

2 2

1 2 2 1 1 2 1 1 1 2 2 2

( )s (C )s
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i k
ik

i k i k i k i k
ik

i k i k i k i k
ik ik

C
D

C C C
E

C C s C s C s
F












   



   

 
 .

 

We can write the equation (3.9) in matrix as follows and solve the determinant of the 

matrix in order to obtain the s3 

2 2 2

11 3 11 3 11 12 3 12 3 12 13 3 13 3 13

2 2 2

21 3 21 3 21 22 3 22 3 22 23 3 23 3 23

2 2 2

31 3 31 3 31 32 3 32 3 32 33 3 33 3 33

0

D s E s F D s E s F D s E s F

D s E s F D s E s F D s E s F

D s E s F D s E s F D s E s F

     

      

     
.     (3.10)

 

The determinant of the matrix can be written as a sixth-order equation and thus there will 

be six roots for the equation, denoted by 2 2 2

3 3 1 3 2,  ,p s ss s s   , with their associated 

polarization respectively. As convention for
2

3 ps , 
2

3 1ss , and 
2

3 2ss , 

  

2 2 2

3 3 1 3 2p s ss s s 
,
 

where s3i is the vertical slowness component for the i-th type wave. Any imaginary values 

for the vertical slowness component indicate that the corresponding wave is 

inhomogeneous or evanescent (Schoenberg and Protazio, 1992). The impedance matrices 

can be written as: 
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1 2 1 2 2
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  
      
  
 
  

,

55 1 45 2 3 55 1 45 2 3 1 55 1 45 2 3 2

55 1 45 2 3 55 1 1 45 2 1 3 1 55 1 2 45 2 2 3 2

45 1 44 2 3 45 1 44 2 3 1

45 1 44 2 3 45 1 1 44 2 1

{ (c s s )e { (c s s )e { (c s s )e

(c e e )s } (c e e )s } (c e e )s }

{ (c s s )e { (c s s )e

(c e e )s } (c e e )s

p s s

p p p s s s s s s

p s

p p p s s

c c c

c c c

c c
Y

c c

     

     

   


   

45 1 44 2 3 2

3 1 45 1 2 44 2 2 3 2

3 3 1 3 2

{ (c s s )e

} (c e e )s }

s
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 

  
 
 
 
 

, 

(3.11) 

where s1 and s2 are the horizontal components of the slowness which are constant for the 

incident, reflected, and transmitted wave; s3p , s3s1, and s3s2 are the vertical components of 

the slowness for quasi-P-wave, fast quasi-S-wave, and slow quasi-S-wave; eip, eis1, and 

eis2 are the i-th components of the associated eigenvectors calculated by Green-Christoffel 

equation; and cij are the elements of stiffness matrix in Voigt notation. X' and Y', which 

are the impedance matrices for the lower medium, have the same form but all the 

parameters of the upper half-space are replaced with parameters of lower half-space.  

T and R are the solutions of Zoeppritz equation can be written as 

1 1 1

1 1 1 1 1

2(X X' Y Y') ,

(X X' Y Y')(X X' Y Y') ,

T

R

  

    

 

                                  (3.12) 
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where T and R are the transmission and reflection coefficient matrices. T and R can be 

expressed as 

                       

1 2

1 1 1 2 1

2 1 2 2 2

pp s p s p

ps s s s s

ps s s s s

R R R

R R R R

R R R

 
 

  
 
  ,

          

1 2

1 1 1 2 1

2 1 2 2 2

pp s p s p

ps s s s s

ps s s s s

T T T

T T T T

T T T

 
 

  
 
  ,                   (3.13)

 

where the first subscript denotes the type of incident wave and the second subscript 

denotes the type of reflected or transmitted wave. And we assume that X and Y are 

singular and X' and Y' are invertible, the solutions can finally be written as 

 

1 ' 1 1 1 ' 1

' 1 1 ' 1 1 1

1 1 ' 1 1 ' 1

(Y' Y X X) (Y' Y X X)

2 X X(Y' Y X X) Y' Y

or

2 Y' Y(Y' Y X X) X X

R

T

T

    

    

    

  

 

  .                                     (3.14)

 

The limitation of this method is we can only use these formulas to calculate the 

reflection and transmission coefficients when both upper and lower half-spaces have at 

least monoclinic symmetry with a horizontal symmetry plane (Mavko et al., 2009). 

Numerical tests of exact reflection coefficients are shown in Figures 3.3 to 3.5.  
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Figure 3.3. Exact reflection coefficients for an isotropic half-space over a VTI half-space with 

elastic constants given in Appendix B.  

 
Figure 3.4. Exact reflection coefficients for an isotropic half-space over a HTI half-space with 

elastic constants given in Appendix B. 
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Figure 3.5. Exact reflection coefficients for a VTI half-space over a HTI half-space with elastic 

constants given in Appendix B. 



38 

 

Figure 3.3 shows the exact reflection coefficients for an isotropic half-space over 

a VTI half-space. The phase velocity in the VTI medium does not change with azimuth, 

thus the reflection coefficients in Figure 3.3 are azimuthally invariant. The exact 

reflection coefficients for an isotropic half-space over a HTI half-space are illustrated in 

Figure 3.4. The coefficients vary with both incident angle and azimuthal angel. The 

azimuthal variation has a constant period due to the special properties of the lower HTI 

half-space. So analyzing these variations, caused by incident angle and azimuthal angle, 

will give us an instructive view of the interface. Figure 3.5 has similar variation trends to 

that of Figure 3.4. The difference of models used in Figure 3.4 and Figure 3.5 is the upper 

half-space. An isotropic medium is used in Figure 3.4 as the upper half-space while a VTI 

medium is used in Figure 3.5. Values in Figure 3.5 are smaller than that in Figure 3.4 and 

the lowest value even goes down to negative. For the case like shown in Figure 3.5 which 

is an anisotropic half-space over another anisotropic half-space with different symmetry 

model is very difficult to recover the elastic information about the upper and lower half-

space.  

3.4 Reflection coefficient approximations for HTI media (Rüger) 

The analytic expressions for exact and approximate reflection coefficients have 

been studied for a long time. But most of these studies are focused on VTI models (Daley 

and Hron, 1977; Banik, 1987; Graebner, 1992; Thomsen, 1993; Blangy, 1994). However, 

Rüger (2002) introduces both the exact and approximate reflection coefficients for HTI 

models. When a plane P-wave is incident on an interface, three plane waves with 

different polarization directions in the lower HTI half-space will be generated if the 



39 

 

incident wave is outside either the vertical symmetry plane or the isotropic plane (Rüger, 

1997). The three waves are: 

 A quasi-P-wave. The polarization of this wave has a slight deviation angle from 

its propagating direction. 

 A quasi-SV-wave. The polarization of this wave is in the plane formed by the 

slowness vector and the symmetry axis. 

 A quasi-SH-wave. The polarization of quasi-SH-wave is orthogonal to the quasi-

P-wave and quasi-SV-wave and it is within the isotropic plane.  

Based on the assumption that the anisotropic media is weakly anisotropy, Rüger 

derived the approximate compressional plane wave reflection coefficient as the function 

of incident and azimuthal phase angles 

2
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And i is the incident phase angle and   is the azimuthal phase angle with the symmetry 

axis. All the elastic constants are written in their average values and relative differences 

across the interface. For example 

    

1 2

2 1

( )
,

2

( ).

 


  




  

 

Note that α and β in Thomsen’s notation denote the P-wave and S-wave velocities 

propagating along the symmetry axis. However, here we use α and β to represent the P-

wave and SH-wave velocities propagating in the isotropic plane.  

Before quickly using this approximation, it is instructive first to compare some 

exact reflection coefficients with their approximations. Model parameters listed in Table 

3.1 are used. By analyzing the difference between exact reflection coefficients and the 

approximations with different anisotropy, it is easy to study the accuracy of the 

approximation equation.  

TABLE 3.1. Model parameters used to study the accuracy of the approximation equation. 

Model 




 

Z

Z


 

G

G


 

(V)  (V)    

A 0.1 0.1 0.2 0 0 0.1 

B 0.1 0.1 0.2 -0.1 0 0 

C 0.1 0.1 0.2 0 -0.1 0 

D 0.1 0.1 0.2 -0.05 -0.05 0.15 

Note: The model has an isotropic half-space on the top and an anisotropic half-space on the 

bottom with the following parameters: vertical P-wave velocity in the isotropic plane α2 =2.5, 

vertical SH-wave velocity in the isotropic plane β2 =1.5 and 2 =2.7. The units for velocity and 

density are km/s and g/cm
3
. 
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Figure 3.6. Reflection coefficients for an isotropic half-space over a HTI half-space. Dashed lines 

are the exact results and solid lines are the results calculated by linearized approximation for 

azimuths of 0˚, 30 ˚, 60 ˚, and 90 ˚. Model parameters are given in Table 3.1 (A). 

 

 
Figure 3.7. Reflection coefficients for an isotropic half-space over a HTI half-space. Dashed lines 

are the exact results and solid lines are the results calculated by linearized approximation for 

azimuths of 0˚, 30 ˚, 60 ˚, and 90 ˚. Model parameters are given in Table 3.1 (B). 
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Figure 3.8. Reflection coefficients for an isotropic half-space over a HTI half-space. Dashed lines 

are the exact results and solid lines are the results calculated by linearized approximation for 

azimuths of 0˚, 30 ˚, 60 ˚, and 90 ˚. Model parameters are given in Table 3.1 (C). 

 

 
Figure 3.9. Reflection coefficients for an isotropic half-space over a HTI half-space. Dashed lines 

are the exact results and solid lines are the results calculated by linearized approximation for 

azimuths of 0˚, 30 ˚, 60 ˚, and 90 ˚. Model parameters are given in Table 3.1 (D).  
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The first three sets of parameters in the Table 3.1 only have one non-zero 

anisotropy parameter for each model. Figure 3.6, which corresponds to Model A, shows 

reflections from a transversely isotropic medium with a horizontal symmetry axis which 

has a 10% shear-wave splitting parameter. The approximations have almost the same 

values as the exact reflection coefficients for all azimuths but a small visible deviation for 

the 60˚ and 90˚ azimuths at the incident angles beyond 30˚. The reflection coefficients of 

Model B which has a non-zero δ
(V)

 in the reflecting medium are shown in Figure 3.7. The 

approximations have a good fit to the exact reflection coefficients for 60˚ and 90˚ 

azimuths. However, approximation of reflection coefficients for 0˚ and 30˚ 

underestimated the exact values especially for large incident angles. Model C shown in 

Figure 3.8 only has a non-zero value for ε
(V)

. According to Rüger’s approximation, the 

value of ε
(V)

 hardly affects the reflection coefficients and it will only make a small 

difference at large incident angles which matches the results in Figure 3.8. Even for the 

incident angle between 0˚ to 20˚, the exact reflection coefficients for different azimuths 

are very similar and only split when the incident angle beyond 20˚. Model D is a more 

realistic case which has three non-zero anisotropy parameters with shear wave splitting 

coefficients of 15%. The deviations between the approximations and the exact reflection 

coefficients as shown in Figure 3.9 are larger than the previous three models. The 

accuracy of the approximation increases with increasing azimuths from 0˚ to 90˚.  
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Figure 3.10. Deviation between exact P-wave reflection coefficients and approximations for 

Model A. The exact reflection coefficients and the linearized approximations are shown in Figure 

3.6. 

 
Figure 3.11. Deviation between exact P-wave reflection coefficients and approximations for 

Model B. The exact reflection coefficients and the linearized approximations are shown in Figure 

3.7.  
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Figure 3.12. Deviation between exact P-wave reflection coefficients and approximations for 

Model C. The exact reflection coefficients and the linearized approximations are shown in Figure 

3.8. 

 
Figure 3.13. Deviation between exact P-wave reflection coefficients and approximations for 

Model D. The exact reflection coefficients and the linearized approximations are shown in Figure 

3.9. 
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Figures 3.10 to 3.13 show the deviations between the exact reflection coefficients 

and its approximation for Models A, B, C, and D respectively. By comparing these four 

figures, it is obviously that non-zero value of δ
(V)

 makes the largest difference to 

reflection coefficients. And except for Figure 3.10, the 0 azimuth, which is the vertical 

symmetry axis, has the lowest accuracy for the reflection coefficients. Rüger (2002) 

states that this phenomenon is because we use the S-wave velocity β
┴
 in terms of β and γ . 

The error in the approximation of phase velocity will propagate and even increase when 

we use it to calculate the reflection coefficients. In order to increase the accuracy for 

azimuths near 0˚, we need to replace β with β
┴
 in the approximation equation.  

To obtain more accurate approximations, the background and the anisotropy 

parameters need to be specified for specific azimuth observation (Rüger, 2002). In the 

isotropic plane, it is better to use the fast S-wave to calculate the reflection coefficients. 

And the slow S-wave is the best choice for calculating the reflection coefficients in the 

vertical symmetry plane. 

3.5 Incident angle versus average angle 

Both the analytic derivation of the plane-wave Aki and Richards (1980) 

approximation for isotropy and its extension by Rüger (1997) for HTI, “i” is the incident 

angle. However, Shuey (1985) suggests using the average angle (average of the incident 

and transmission angles across the boundary) for “i” for isotropic case. The average 

angle yields better approximation than the incident angle. In order to study the validation 

of this suggestion in anisotropy, Model D in Table 3.1 is used to compare the reflection 

coefficients calculated by incident and average angle.  
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The reflection coefficients approximation obtained by incident angle and average 

angle are shown in Figures 3.14 to 3.17. At small azimuthal angles, which are shown in 

Figure 3.14 and Figure 3.15, the approximation calculated by incident angle is closer to 

the exact reflection coefficients compared to the approximation calculated by average 

angle. When the azimuthal angle increases to 60˚ which shown in Figure 3.16, the 

approximation obtained by average angle has better fit. However, Figure 3.17 shows that 

the approximation calculated by incident angle almost accurately estimate the exact 

reflection coefficients. Consequently, the incident angle gives better approximation at 

least in this model. But the value of the difference between the reflection coefficients 

approximation obtained by incident and average angle is very small. Thus both angles 

can provide an accurate result in Rüger’s approximation. 
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Figure 3.14. Reflection coefficients with azimuthal angle of 0˚ calculated by incident angle and 

average angle. Exact reflection coefficients are calculated by azimuthal angle of 0˚. 

 
Figure 3.15. Reflection coefficients with azimuthal angle of 30˚ calculated by incident angle and 

average angle. Exact reflection coefficients are calculated by azimuthal angle of 30˚. 
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Figure 3.16. Reflection coefficients with azimuthal angle of 60˚ calculated by incident angle and 

average angle. Exact reflection coefficients are calculated by azimuthal angle of 60˚. 

 

Figure 3.17. Reflection coefficients with azimuthal angle of 90˚ calculated by incident angle and 

average angle. Exact reflection coefficients are calculated by azimuthal angle of 90˚. 

0 5 10 15 20 25 30 35 40 45
0.04

0.042

0.044

0.046

0.048

0.05

0.052

Incident angle (degree)

R
e
fl
e
c
ti
o
n
 c

o
e
ff

ic
ie

n
t

 

 

Approximation by average angle

Approximation by incident angle

Exact reflection coefficient

0 5 10 15 20 25 30 35 40 45
0.025

0.03

0.035

0.04

0.045

0.05

Incident angle (degree)

R
e
fl
e
c
ti
o
n
 c

o
e
ff

ic
ie

n
t

 

 

Approximation by average angle

Approximation by incident angle

Exact reflection coefficient



50 

 

3.6 Conclusion 

Chattopadhyay (2004), and Schoenberg and Protazio (1992) provide different 

methods to calculate the exact reflection coefficients for arbitrary anisotropic media. 

Knowledge for calculating phase velocity and polarization (discussed in Chapter 2) is 

required to calculate exact reflection coefficients. Rüger’s linear approximation for 

reflection coefficients for HTI provides an explicit equation to obtain the reflection 

coefficients. And the approximation is accurate enough to estimate the exact reflection 

coefficients. Thus, both for forward modeling and linear inversion, Rüger’s linear 

equation is widely used. Shuey (1985) introduces the average angle (average of the 

incident and transmission angles across the boundary), instead of incident angle, for the 

approximation in order to obtain more accurate results. However, the choice of average 

angle and incident angel will not affect the accuracy of the approximation.  



51 

 

CHAPTER 4 

EFFECTIVE MEDIUM THEORY 

4.1 Introduction 

Sheriff states that fractures are planar discontinuities in rocks (Sheriff, 1991). 

Fractures are of interest in hydrocarbon exploration because they may significantly affect 

the flow characteristics of the reservoir (Schoenberg and Sayers, 1995). The flow 

characteristics depend on whether the fractures are open (increasing formation fluid flow) 

or sealed (decreasing formation fluid flow). Fracture orientation and density are two main 

parameters that can be recovered from seismic wave propagation to describe sets of 

fractures. For instance, the permeability anisotropy has the same orientation as the 

fracture sets and thus, the determination of the orientation of fracture sets by seismic 

anisotropy is of great value.  

For fracture research, using borehole logs or cores are the direct and intuitive 

methods to study the subsurface fractures. However, there are some limitations and 

problems from the method itself and the sampling problem is the most important one. For 

example, commonly fractures in the subsurface are nearly vertical. And most boreholes 

are vertical which means the wellbores are parallel to the fractures. If the wellbores do 

not intercept the fracture sets, the information recovered from the logs might be of 

limited value. Because of this limitation, a more challenging method, based on seismic 

exploration, is required and it leads to a valuable and reliable tool for fracture 

characterization. In order to determine the orientation and density of fracture sets from 



52 

 

seismic data, assumptions are made about fracture orientation, openness, size, shape, and 

spatial distribution.  

Numerous articles have been published that introduce different theories to specify 

the fracture-induced anisotropy. Most of the literature (O’Connell and Budiansky, 1974; 

Budiansky and O’Connell, 1976; Bruner, 1976; Hoenig, 1979; Henyey and Pomphrey, 

1982; Hudson, 1980, 1981, and 1986) assumes fractures have ellipsoidal cavities with a 

low aspect ratio. In this chapter, I restrict my discussion to those cracks which have a size 

much smaller than the seismic wavelength. Based on this assumption, the low-frequency 

seismic response of a fractured medium can be specified as an appropriate selected 

homogeneous and anisotropic medium. Therefore, we can use the effective medium 

theory to replace the micro-heterogeneous material with a homogenous one which has the 

same elastic properties as the former one. Numerous papers have been published to 

address the issue of seismic exploration in fracture characterization. But even after 

substantial progresses in effective medium theory, the theory published by Hudson (1980) 

and Schoenberg (1980) are still widely used today.  

In this chapter, I will introduce Schoenberg’s linear slip theory and compare it 

with Hudson’s theory. I will also discuss the situation that violates some assumptions we 

made in effective medium theory. 

4.2 Crack density 

In exploration geophysics, the crack density as defined by Barton (2006) is 

3Na
e

V


,                                                       (4.1)
 

where a is the crack radius which is cubed because of the argument that this relates to the 
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energy of elastic deformation associated with the crack (O’Connell and Budiansky, 

1974). N is the number of cracks in the volume V. The value for crack density ranges 

from 0.01 to 0.05 in most geological and tectonic situations (Leary et al., 1990). Based on 

the definition of crack density, I am going to present three different fracture scenarios that 

have the same crack density: (1) ten million microcracks with 10μm crack radius in a 

10cm cube host rock; (2) ten fractures with 1m crack radius in a 10m cube host rock; and 

(3) ten minor faults with 100m crack radius in a 1km cube host rock. These three 

different scenarios have the same value for crack density but certainly would have totally 

different mechanical and fluid flow properties. However, the elastic properties especially 

the anisotropic properties, once adjusted for scale, are supposed to be the same for the 

three scenarios.   

4.3 Parallel fractures: linear slip theory 

Schoenberg (1980, 1983) treats orientated fractures as: (1) planes of weakness or 

(2) infinitely thin and soft layers that obey the linear-slip boundary conditions regardless 

of the shape and microstructure of the fractures. These two representations limit this 

effective medium theory to low-frequency seismic exploration which has a long 

wavelength compared to the size and spacing of the fracture sets. According to 

Schoenberg’s theory, the seismic response of the wave propagating through the fractured 

medium can be determined by the elastic modulus and density, and the presence of 

fracture sets can be recovered from the elastic modulus of the equivalent medium. The 

fractured rock density is considered to be the same as the unfractured host rock because 

of the assumption that the fracture volume is infinitesimal compared to the entire volume.  
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Figure 4.1. Diagrammatic view of a vertically fractured medium (Schoenberg and Sayers, 1995). 

 

In an unfractured host rock, the relationship between strain (ij) and stress (kl) 

can be expressed by the elastic compliance tensor (Sijkl) as 

                                                     ij ijkl klS 
.
                                                      (4.2) 

When the medium has fracture sets, we can write the strain over a representative volume 

V as 

                                     
1

([u ]n [u ]n )ds
2

q

ij ijklb kl i j j i

q s

S
V

     ,                           (4.3) 

where ijklbS is the compliance tensor, where b denotes the unfractured host rock, which 

can have arbitrary anisotropy. sq is the surface of the q-th fracture located within the 

medium (See Figure 4.1). ni is the component of the unit normal to the fracture surface. 

The brackets [ ] in the formula denotes the discontinuous jump in displacement. Here we 
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make the assumption that the interaction between fractures can be ignored or there is no 

interaction so that the displacement can be specified in stress.  

When there are more than one fracture set in the host rock, which is a common 

situation for naturally occurring fractures, orientation of different fractures can be used as 

a standard to divide them into different sets. Figure 4.2 is an example of joint traces in 

two different directions which are exposed on a horizontal limestone unit of the 

Pennsylvanian-Permian Rico Formation.  

According to the boundary conditions of linear slip theory, the jump in 

displacement vector [u] across a plane of weakness can be expressed by stress, “fracture 

system compliance tensor”, and unit normal as 

                                                           
1

[u ]ds Z

q

i ij jk k

q s

n
V

  ,                                   (4.4) 

Where Zij is defined as the symmetric and non-negative compliance tensor which is 

similar to the crack compliance tensor used by Kachanov (1992). The extra strain in 

equation (4.3) can be written in the same form as the strain for the host rock 

    ij ijklf klS   .                                                      (4.5) 

By substituting equation (4.4) into equation (4.3), the extra strain yields  

        

1
(Z n n Z n n )

2

1
(Z n n Z n n )

2 2

ijklf kl ir rs s j jr rs s i

rk sl rl sk
ir s j jr s i kl

S   

   


 


 

.                       (4.6)

 

And, we can obtain the expression for ijklfS  

1
(Z n n Z n n Z n n Z n n )

4
ijklf ik l j jk l i il k j jl k iS      .                        (4.7) 
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Figure 4.2. Maps of joint traces in two directions on bedding surface of Rico Formation, 

Monument upwarp, southeastern Utah (Schoenberg and Sayers, 1995). 

Note: (a) Both joint sets. (b) East-West set. (c) North-South set. 
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We apply this excess compliance tensor to equation (4.3). For more than one set 

of aligned fractures, the unit normal, fracture system compliance tensor, and excess 

compliance tensor of each set can be expressed as 
(m) (m)

,  Z
j ij

n , and 
( )m

ijklf
S . The compliance of 

the medium with multiple sets of aligned fracture is  

( )

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)1
(Z n n Z n n Z n n Z n n )

4

m

ijkl ijklb ijklf

ijklb ik l j jk l i il k j jl k i

m

S S S

S

 

    
.   (4.8)

 

Note that even if the host rock is isotropic, sets of aligned fractures in arbitrary 

orientation can result in a triclinic medium as the effective medium. In order to calculate 

the phase velocity, group velocity, and the reflection coefficient for waves propagating in 

the fractured medium, we have to obtain the stiffness tensor of the effective medium by 

simply inverting the compliance tensor. 

For rotationally invariant fracture sets, we let the normal compliance of the 

fractures be given by ZN and the tangential compliance by ZT . The behavior of the 

rotationally invariant fracture is going to be invariant with respect to rotation about the 

axis normal to the fracture so that we can write the compliance as 

( )

( )

ij N i j T ij i j

T ij N T i j

Z Z n n Z n n

Z Z Z n n





  

  
.                                          (4.9)

                                                            

For a single rotationally invariant fracture set, we substitute the compliance in equation 

(4.9) into equation (4.7) 

( n n n n n n n n ) ( ) .
4

T
ijklf ik l j jk l i il k j jl k i N T i j k l

Z
S Z Z n n n n                (4.10) 

As an example, we take a single set of rotationally invariant vertical fracture which has a 
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unit normal as (1, 0, 0). The fracture set is parallel to the x2-axis and its normal is parallel 

to the x1- axis. For this case 

1111 f NS Z
,
 

1212 2121 1221 2112 1313 3131 1331 3113
4

T
f f f f f f f f

Z
S S S S S S S S         .   (4.11) 

The other compliance components, which are not mentioned in the above 

equation, are equal to zero. In order to write the compliance in a compact form, we 

follow the method published by Nye (1957). In the condensed compliance matrix, we 

have the following relationship 

11 1,

22 2,

33 3,

23 4,

13 5,

12 6.













 

Because of the symmetry property of compliance tensor, factors 2 and 4 are 

ijkl pqS S  when both p, q are 1,2, or 3; 

 2 ijkl pqS S  when one of p, q are 4, 5, or 6; 

                                     4 ijkl pqS S  when both p, q are 4, 5, or 6. 

Then we write equation (4.11) in a condensed 6x6 matrix form as 
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0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

N

T

T

Z

Z

Z

 
 
 
 
 
 
 
 
   .                                    (4.12)

                                         

Considering a single set of aligned rotationally invariant fractures embedded in an 

isotropic host rock, the effective medium of the fractured rock becomes transversely 

isotropic with its symmetry axis perpendicular to the set of fractures. But this TI medium 

is little different from general TI medium due to it is only controlled by two elastic 

modulus of the host rock, say Lame parameters μb and λb , and two non-negative fracture 

compliance ZN and ZT . And we called such TI medium as TI (LSD). We can write the 

compliance of TI (LSD) as 
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   . (4.13) 

Since ZN and ZT  are assumed to be positive, there are some constraints we can 

find in the compliance matrix of TI (LSD) medium, 
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Any transversely isotropic media satisfying the constraints in equation (4.14) can be 

defined as TI (LSD) medium (Schoenberg and Sayers, 1995). With a full knowledge of 

the TI (LSD) compliance, the parameters of the host rock and fracture compliance are 

possible to be recovered (Hsu and Schoenberg, 1993).  

In order to obtain the stiffness matrix of the effective medium, we invert the 

compliance matrix as 
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,(4.15) 

where 
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∆N and ∆T, called normal and tangential weaknesses (Bakulin and Molotkov, 1997), are 

dimensionless quantities introduced by Hsu and Schoenberg (1993). They can be written 

in terms of ZN and ZT  as 
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Both of these two weaknesses are from 0 to 1 according to the mathematical definition. 

And we can also find some constraints in the stiffness matrix which are similar to 

equation (4.14), 

55 44
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,
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c c

c
c c c
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                                  (4.17)

                                 

By simply inverting equation (4.13) and substituting the fracture compliance ZN and ZT  

with ∆N and ∆T, we can write the stiffness matrix of the fracture as 
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When a S-wave is propagating in the isotropic plane of the effective medium, it 

propagates with two different velocities depending on its polarization. The fast S-wave 

velocity which has a polarization parallel to the isotropic plane is controlled by c44. The 

slower S-wave velocity which has a polarization perpendicular to the isotropic plane is 

controlled by c55. So the difference of the two S-wave velocities can be written as 

44 55/ / / (1 1 )s fast s slow b b b bV V c c T           .         (4.19) 

4.4 Aligned penny-shaped crack  

One of the simplest fracture rock models is an isotropic host rock with a set of 
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aligned penny-shaped cracks which have the similar form of oblate spheroids. The aspect 

ratio / ac  for penny-shaped crack (a denotes the semi-major axis of the spheroid and 

c denotes the semi-minor axis) is much small than unity because the thickness of the 

crack is very small. Thomsen (1988) suggests that the crack density of isolated penny-

shaped cracks is valid when the crack density is smaller than 0.05. 

Hudson (1980, 1981) introduces a first-term expression for excess stiffness 

caused by thin isolated penny-shaped cracks as  
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where U11 and U33 are dimensionless quantities. This method simulates high-frequency 

behavior which is appropriate to ultrasonic experiments in laboratory. Because the wave-

induced pore-pressure increment to flow equilibrates in the low-frequency case, it is 

suggested to use Brown and Korringa low-frequency relations to saturate the dry cracks 

with fluid in order to use Hudson’s method to calculate the effective stiffness of fluid-

filled cracks embedded in a host rock. Several assumptions are required before using this 

method. They are 
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 Cracks inside the host rock are idealized penny-shaped cracks with very small 

aspect ratios and small crack density. And the crack radius and the distance 

between cracks are assumed to be much smaller than a wavelength. 

 Cracks are isolated which means no fluid will flow from one crack to another. The 

interaction between cracks is not considered in this method. 

Comparing equation (4.18) to equation (4.20), both equations of the stiffness matrix, 

calculated by Schoenberg’s method and Hudson’s method, give exactly the same form of 

the excess stiffness caused by a set of vertical aligned fractures if the fracture weaknesses 

satisfy the following relations 
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                                          (4.21)

 

The results of U11 and U33 can be written in terms of ∆N and ∆T for fractures which are 

filled with a weak solid with bulk modulus 'k  and shear modulus '  by substituting the 

expressions for U11 and U33 given by Hudson (1981) into equation (4.21), 
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where 

 ,
2

b

b b

g


 



 

and α is the aspect ratio of cracks. VP and VS 
are P-wave and S-wave velocities in the 

isotropic host rock.  

Isolated penny-shaped dry cracks that are embedded in an isotropic host rock are 

a special case which has simpler expressions for ∆N and ∆T as shown in equation (4.22). 

For dry cracks, both the bulk and shear modulus of the infill material are close to zero, so 

we have 
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The effective medium for an isotropic host rock with a set of vertical isolated penny-

shaped dry cracks equals a special transversely isotropic medium with a horizontal axis 

(HTI). And we can use two elastic constants and three anisotropy parameters to specify a 

HTI medium according to Chapter 2. Thus, we write the anisotropic parameters (δ
(V)

, ε
(V)

, 

γ
(V)

) which are introduced by Rüger (1997) in terms of the crack density e and the squared 

VS /VP ratio (g) of the host rock as 
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Note that expressions in equation (4.24) are linear approximations. If we make an 

assumption that VS /VP ratio is between 0.35 and 0.65, which is common for most cases, 

the range of three anisotropic parameters can be obtained according to equation (4.24) as 

(V)

(V)

(V)

( 2.82 0.05)e ,

2.68  ,

( 1.10 0.13)  .

e

e







  

 

  
                                      (4.25)    

                                          

The exciting evidence we can find in equation (4.25) is that the absolute value of γ
(V) 

is 

very close to the crack density e (Thomsen, 1995). This means the time delay in S-wave 

splitting at vertical incidence is a direct indication of the crack density. And in the next 

chapter, inversions based on this discover are applied to invert for crack density in an 

isotropic host rock with a set of vertical aligned dry cracks. 
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Figure 4.3. Phase velocities of P-wave, SV-wave, and SH-wave of a fractured medium, with P-

wave velocity in the isotropic host rock equals to 2.5 km/s; S-wave velocity in the isotropic host 

rock, 1.5 km/s; density, 2.7 g/cm
3
; and, crack density, 0.03. 
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Figure 4.4. Group velocities of P-wave, SV-wave, and SH-wave of a fractured medium, with P-

wave velocity in the isotropic host rock equals to 2.5 km/s; S-wave velocity in the isotropic host 

rock, 1.5 km/s; density, 2.7 g/cm
3
; and, crack density, 0.03. 
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A numerical test is shown in Figure 4.3 (phase velocity) and Figure 4.4 (group 

velocity) for a set of vertical aligned dry cracks embedded in the isotropic rock, where P-

wave velocity in the isotropic host rock is 2.5 km/s, S-wave velocity in the isotropic rock 

is 1.5 km/s, density is 2.7 g/cm
3
, and crack density is 0.03. The difference between phase 

velocity and group velocity is only in magnitude. However, the phase velocity will have 

different values for different crack densities. Figure 4.5 and Figure 4.6 show the change 

in P-wave velocity in the vertical symmetry plane and isotropic plane for different crack 

densities. In both figures, higher values of crack density have more variation in the P-

wave phase velocity. An interesting phenomenon happens in Figure 4.7 where the SV-

wave velocity is illustrated. When the crack density is 0.01, the SV-wave phase velocity 

is concave up while the velocity for a crack density 0.05 is concave down. Schoenberg 

and Sayers (1995) note that this phenomenon is caused by the sign of anellipticity and it 

can be expressed as 

24 (M )
(Z Z )

(1 Z )(1 Z M )

b b b
T N

T b N b

 






 
 .                               (4.26) 

If ZT < ZN the positive anellipticity will happen just like the red line of crack density 0.01 

in Figure 4.7, and this is a usual geological situation. If ZT = ZN , the anellipticity will 

vanish and the medium simulates an elliptical medium, as shown by the black line for the 

crack density 0.03 in Figure 4.7. The SV-wave velocity in symmetry plane is almost a 

constant value. If ZT > ZN , the velocity will look like the blue line of density 0.05 in 

Figure 4.7, which has negative anellipticity. Another interesting point occurs in Figure 4.9 

and Figure 4.10 where the SH-wave velocity is illustrated. In the isotropic plane, the SH-

wave velocity does not change, no matter what crack density is given. The reason for the 
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constant velocity in the isotropic plane is that the SH-wave velocity in that plane is 

controlled by c44 of the effective stiffness matrix, and c44 is not affected by the crack 

density, as it is only dependent on the shear module μb of the host matrix according to 

equation (4.15). This phenomenon is obvious in Figure 4.10 and also in Figure 4.9 when 

the incident angle equals 0. As mentioned before, the TI (LSD) has a special property that 

it is only controlled by four independent parameters, which is one less than general TI 

model.   
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Figure 4.5. Phase velocity of P-wave in the vertical symmetry plane. Model parameters are the 

same as Figure 4.3 except for crack density. 

   

 

 

Figure 4.6. Phase velocity of P-wave in the isotropic plane. Model parameters are the same as 

Figure 4.3 except for crack density. 
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Figure 4.7. Phase velocity of SV-wave in the vertical symmetry plane. Model parameters are the 

same as Figure 4.3 except for crack density. 

 

 

 
Figure 4.8. Phase velocity of SV-wave in the isotropic plane. Model parameters are the same as 

Figure 4.3 except for crack density. 
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Figure 4.9. Phase velocity of SH-wave in the vertical symmetry plane. Model parameters are the 

same as Figure 4.3 except for crack density. 

 

 

 

Figure 4.10. Phase velocity of SH-wave in the isotropic plane. Model parameters are the same as 

Figure 4.3 except for crack density. 
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Next I will illustrate the reflection coefficients for a model with an isotropic upper 

medium and a fractured lower medium (dry cracks). The isotropic medium has a P-wave 

velocity of 2.3 km/s, a S-wave velocity of 1.3 km/s, and a density of 2.7 g/cm
3
. The 

fractured medium is the same as that shown in Figure 4.3 and Figure 4.4.  

Figure 4.11 shows the reflection coefficients for the interface between an isotropic 

medium and a fractured medium with different incident and azimuthal angles. The 

reflection coefficients change periodically with azimuthal angles. And this phenomenon 

is obvious at a large incident angle, whereas it is difficult to see this change for a small 

incident angle. Based on this change, the orientation and the crack density of the fracture 

can be recovered from the amplitude of the seismic wave. I will discuss this inversion 

problem in the next chapter. 
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Figure 4.11. Reflection coefficients for the interface between an isotropic medium and a fractured 

medium. 
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4.5 Bond transformation 

In real field studies, the orientation of the fractures or anisotropic medium is not 

exact the same as the orientation used in modeling. So, we have to rotate our coordinate 

system to fit the coordinate system of field data. In this study, I introduce Bond 

transformation to rotate the coordinates in order to obtain the effective medium of a set of 

vertical fractures which has different orientations. The azimuthal angle I gave in the 

rotation is equal to the fracture orientation. After using Voigt notation to specify a fourth-

rank tensor in terms of a six by six matrix, the Voigt notation no longer obeys the tensor 

transformation, and we have to use Bond transformation to rotate the coordinates. I 

assume the three axes before rotation are X, Y, and Z and the three axes after rotation are 

X', Y', and Z'. The relationship of the cosine values between these two coordinate systems 

can be expressed as Table 4.1. 

 

TABLE 4.1. Coordinate cosine values between pre- and post-rotation. 

 X Y Z 

X' 1  
1  

1  

Y' 2  
2  

2  

Z' 3  
3  

3  

Note: Prime values are post- and unprimed are pre-rotation. 

 

I assume that σ, ε, and c , and ' , ' , and c' are the stress, strain, and stiffness matrix 

before rotation and after rotation. Then, we can obtain two equations for strain and stress 

as 
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' M    ,                                                 (4.27) 

'TM    ,                                                (4.28) 

where 

2 2 2

1 1 1 1 1 1 1 1 1

2 2 2

2 2 2 2 2 2 2 2 2

2 2 2

3 3 3 3 3 3 3 3 3

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

1 3 1 3 1 3 1 3 3 1 1 3 3 1 1 3 3 1

1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1

2 2 2

2 2 2

2 2 2
M

        

        

        

                 

                 

                 






 
  

   


  










  .

  

We can write the relationship between stress and strain based on equation (4.27) and 

equation (4.28) as 

' 'TM c M     .                                           (4.29) 

Then 'c can be written as 

' Tc M c M     .                                             (4.30) 

Following the steps presented above, I rotate the model, which has the same parameters 

shown in Figure 4.3 and Figure 4.4, by 25˚ in a clockwise direction. Figure 4.12 shows 

how the P-wave velocity changes after rotation. We can also invert for the orientation of 

fractures based on the amplitude method which will be discussed in the next chapter and 

then match the observation system with the effective medium.  
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Figure 4.12. P-wave velocity of a fractured rock before rotation and after rotation. The model 

parameters are the same as those given for Figure 4.3. 
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4.6 Accuracy  

We discussed the effective medium theory above based on several assumptions. 

The theory assumes that the cracks in the host rock are isolated and penny-shaped. Real 

fractures, however, are not always isolated voids with low aspect ratio in the host rock. 

So the validation of the effective medium theory to practical field data seems to be a 

critical issue for the use of this theory. It is very important to know if the results of this 

effective medium theory are accurate enough, in spite of the fact that some of the basic 

theoretical assumptions are violated.  

For real field data, most aligned sets of fractures are connected, non-circular, 

microcorrugated, and have a considerable aspect ratio. If there is more than one fracture 

set in a host rock, intersecting fractures might occur. However, Grechka and Kachanov 

(2006) state that, “Micromechanics analysis identified a number of geometric features of 

cracks that are insignificant for the effective properties. These features are (1) Fracture 

intersections; (2) Microcorrugation of fracture faces; and (3) Random irregularities of 

fracture shapes, provided that the cracks are flat.” For a single set of fractures, I am 

mainly concerned with the effect caused by the interaction and the irregularities of 

fracture shapes which violate basic assumptions.  
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Figure 4.13. Anisotropic paramters (a) (V) (b) (V) and (c) (V) for a single set of vertical penny-

shaped dry cracks (Grechka and Kachanov, 2006).  

Note: The background P-wave velocity is 3.0 km/s and S-wave velocity is 1.0 km/s; and density 

is 2.2 g/cm
3
. Symbols indicate different theoretical predictions: red  - the first-order Hudson’s 

method, red ∆-the second-order Hudson’s method,     - Schoenberg’s method, and blue -the 

non-interaction approximation (Grechka and Kachanov, 2006) that takes into account the crack 

aspect equals 0.05 for all fractures. Bars correspond to the 95% confidence intervals (the mean 

values  2 standard deviations) of the numerically computed anisotropic parameters obtained for 

100 random realizations of the fracture locations.  

 

Figure 4.13 (Grechka and Kachanov, 2006) shows how the interaction of fractures 

affect the anisotropic parameters with increasing crack density. When the crack density is 

lower than 0.05, the effects in Figure 4.13(a) and Figure 4.13(b) for ε
(V)

 and δ
(V)

 are 

tolerable. And with crack density decreasing, the effect is decreasing and it is vanished 

when crack density becomes 0 which is reasonable. We care more about the effect on γ
(V)

  

in figure 4.13(c) which is the direct estimation of crack density. Surprisedly, the 

interaction almost has no effect on γ
(V)

 so that violating the assumption of non-interaction 

is not going to reduce the accuracy of the result calculating by Schoenberg’s theory.  
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Figure 4.14. Irregular vertical cracks. All fractures are planar; Their normals are directed along 

the 
1x - axis . The faces of cracks 2, 3, and 4 have sharp edges. Geometries 4, 5, and 6, that 

contain interior rock islands, represent partially closed fractures (Grechka and Kachanov, 2006). 

 

 

 

Figure 4.15. Misfits 
nrm

c  for six fracture shapes in Figure 4.14 (Grechka and Kachanov, 2006). 
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For non-circular cracks, Grechka and Kachanov (2006) give six irregular fracture 

shapes, which are shown in Figure 4.14. They use each of the six irregular fractures to 

build a single vertical fracture. The fractures in the host rock have random locations and 

random orientations in the vertical plane. They compute the average rotations in effective 

stiffness e
C  and the excess stiffness can be written as 

e bC C C    .                                             (4.31)     

And the fitting method is used to find the crack density and aspect ratio for each fracture 

in Figure 4.14. Then, the excess stiffness which caused by penny-shaped crack can be 

written as 

                 
P P

e bC C C    .                                               (4.32) 

The stiffness misfit is expressed as 

P

c C C     .                                             (4.33) 

The magnitude of the misfits of excess stiffness is evaluated by calculating the maximum 

norm, 

max
100%

max

cnrm

c
C


  


 .                                   (4.34)  

 

Figure 4.15 shows the maximum norm of the misfits of excess stiffness which is 

smaller than 0.65%. A conclusion can be made that the flat cracks with random shape and 

random location can be represented by penny-shaped cracks according to the effective 

elasticity. Although only dry cracks are discussed here, this conclusion is also valid for 

fluid-filled cracks due to much weaker influences are made on fluid-filled cracks.  
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4.7 Conclusion 

When the seismic wavelengths are much larger than the fracture size and spacing, 

it is convenient to use elastic compliance to formulate the equivalent anisotropic medium 

problem for seismic modeling of sets of aligned fractures embedded in host medium. The 

linear slip theory (Schoenberg and Sayers, 1995) provides a direct method to relate the 

seismic signatures to the properties of fracture systems. Normal (∆N) and tangential (∆T) 

weaknesses, introduced by Hsu and Schoenberg (1993), are two essential parameters of 

linear slip theory for rotationally invariant fractures. For penny-shaped cracks, by 

comparing Schoenberg’s method and Hudson’s method (1981), the normal and tangential 

weaknesses can be expressed in terms of the crack density and the ratio of P-wave and S-

wave velocities of the host rock. A set of vertical, aligned, rotationally invariant fracture 

leads to a particular HTI medium called TI (LSD). Only four independent parameters are 

required to specify a TI (LSD) medium. Rüger’s anisotropic parameters for TI (LSD) 

media (δ
(V)

, ε
(V)

, γ
(V)

) can be expressed in an approximated linear form in terms of the 

normal and tangential weaknesses and the ratio of P-wave and S-wave velocities. If the 

cracks are dry, the γ
(V)

 approximately equals the crack density. Interactions between 

fractures and the shape of cracks do not affect the accuracy of Schoenberg’s method, 

according to Grechka and Kachanov (2006). The information that can be obtained from 

seismic data is only the fracture orientation and a rough estimate of crack density. The 

estimation of shape, size, and distribution of the fracture is beyond the capability of long 

wavelength seismic data. 
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CHAPTER 5 

AVAZ INVERSION 

5.1 Introduction 

Reflectivity inversion of P-wave data for fracture orientation and density are 

discussed in this chapter. Two different inversion methods are applied. The first is based 

on Rüger’s linear approximation and the second on the exact reflection coefficients, 

which are discussed in Chapter 2. This chapter follows the method suggested by Minsley 

et al. (2003) to invert for fracture orientation from P-wave reflectivity. After obtaining 

information about the fracture orientation, three anisotropic terms (δ
(V)

, ε
(V)

, γ
(V)

) and three 

isotropic terms ( , ,  and )
  

  

  
 are inverted by the modified Rüger’s linear 

approximation. Moreover, errors caused by factors such as S/N ratio, maximum incident 

angle, and error propagation are analyzed in this chapter.  

5.2 SVD inversion 

Singular value decomposition (SVD) is a popular and precise method to solve 

linear least-squares problems (Sheriff, 1991). Jin et al. (1993) state that SVD is effective 

for the stabilization of AVO inversion, because it provides a precise way to analyze a 

matrix and obtain a stable but approximate inversion. Therefore, the SVD method is 

widely used for various linear inversions in geophysics. The SVD method decomposes a 

general rectangular matrix G of m rows and n columns in terms of a multiplication of 

three matrices as 



84 

 

TG U V  ,                                                     (5.1) 

where U is the matrix of eigenvectors of TGG which span the data space, and V is the 

matrix of eigenvectors of TGG which span the model space.   is a rectangular diagonal 

matrix in decreasing order, which contains singular values (or principle values) of the 

matrix G. And the SVD matrix of G can also be written in a reduced SVD form as 

(Menke, 1989) 

 
T T

p p pG U V U V     ,                                             (5.2) 

where p  is the diagonal matrix of matrix G with non-zero diagonal elements.

1[u u ] R p p

p pU    and 1[v ] Rn p

p pV v    are the matrices which contain first p 

columns of U and V. Because of the non-zero diagonal elements in p , the generalized 

inversion which is the Lanczos inverse of matrix G can be defined as 

 
1 1 1T T

g p p p p p

p

G V U V diag U


 
  

      
   

 .                             (5.3) 

For the generalized inverse matrix in equation (5.3), we obtained the following equations,  

1 1 1

g g gG GG G    ,                                                (5.4) 

1

gGG G G    .                                                  (5.5) 

Consider a matrix, 

Gm d ,                                                        (5.6) 

where m is the matrix of the model, d is the matrix of the data and G is a mapping from 

the model space to the data space. We can apply the generalized inverse matrix 
1

gG
 to 
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both sides of equation (5.6) and yield 

1 1

g gG Gm G d   .                                                  (5.7) 

Form equation (5.7), we can express the estimated solution vector estm  as 

1est

gm G d  .                                                    (5.8) 

According to equation (5.8) and equation (5.6), estm  becomes 

                 
1 1( )m ( )mest T

g g p pm G d G G V V     ,                               (5.9) 

where 
1

gG G
 is defined as model resolution matrix and yields the following form 

1R T

g p pG G V V   .                                            (5.10) 

The model resolution matrix evaluates how well the estimated solution estm  

resolves the true solution m. When the resolution matrix becomes an identity matrix, estm

is the perfect solution for the inversion problem. And, it is a good way to analyze the 

diagonal elements of the resolution matrix in order to evaluate the model resolution. The 

non-unit diagonal elements means that the estimated values in estm  are linear 

combinations of the true values. Replacing the 
1

g
G


 by its definition in equation (5.3), the 

estimated solution vector can be written as 

1est T

p p pm V U d   .                                            (5.11) 

Based on equation (5.8), estm  can be obtained by knowing the data matrix d and the 

matrices pV , 
1

p

 , and pU  from matrix G.  

The condition number of a matrix, which is defined as the ratio of the largest to 

the smallest singular values, is a good measure for the singularity of the matrix. Jin et al. 
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(2002) suggest that a well-posed matrix has a condition number which is not far from 

unity, and a matrix is ill-posed when the condition number becomes very large. 

Consequently, the condition number is considered as an important factor to estimate the 

singularity of the matrix. 

The matrix   is also an identifier for the possible instability in the numerical 

calculation of estm . A common difficulty occurs in inverting a matrix when some 

elements in the matrix are very small, even close to zero, that the inverted results 

become very large and are dominated by numerical round off error. One way to 

overcome this problem is to pick some cutoff size for singular values and set the values 

which are smaller than this value to zero. This method excludes the small singular 

values in the matrix and thus a better solution is obtained with a smaller variance. 

Another way to solve this problem is to include these small singular values but damp 

them. Menke (1989) states “This change has little effect on the larger eigenvalues but 

prevents the smaller ones from leading to large variances.” The damped generalized 

inverse can be written as 

1 2 2 1( I) T

g p p p pG V K U      ,                                    (5.12) 

and the model resolution matrix yields the form  

2 2 2 1( I) T

p P p pR V K V     ,                                      (5.13) 

where 
2K  is the damping factor. The value for the damping factor is chosen by a trial-

and-error process which weighs the relative merits of having a solution with small 

variance against one that is well resolved (Menke, 1989). The ability to make reliable 

interpretations from an unknown parameter estm  requires good resolution and small 
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variance. However, it is always a trade-off to make a choice between resolution and 

variance. Thus, it is important to choose the appropriate value for the damping factor.  

Comparing the SVD method and the least-squares method, both of their 

equations yield similar forms. The difference is that the SVD method is going to find the 

least-squares best compromise solution. The merit of SVD is it provides a solution when 

the matrix is singular or numerically very close to singular.   

5.3 Generalized linear inversion 

The generalized linear inversion (GLI) is discussed here following the notation 

introduced by Cooke and Schneider (1983). GLI is based on Taylor series expansion of 

the forward model and it yields the following form 

2 2

2

F(IG) F(IG)(I IG)
(I) F(IG) (I IG)

(IG) (IG) 2!
F

  
    

 
 ,           (5.14) 

where,    I = True solution, 

              IG = Initial guess of the solution, 

              I IG = Error in the above guess, 

               F= Forward modeling function, 

              F(I) = Observed seismic data, 

              F(IG) = Data calculated using IG  in the forward modeling algorithm, and 

             
F(IG)

(IG)




=   Partial derivative matrix. 

From equation (5.14), we calculate (I IG)  in order to correct the initial guess to make it 

closer or even equal to the true solution. However, (I IG)  cannot be inverted from the 
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infinite series in equation (5.14). Thus a truncated linear equation is used to solve this 

problem. And it can be written as 

F(IG)
F(I) F(IG) (I IG)

(IG)


  


 .                                 (5.15) 

In equation (5.15), (F(I) F(IG))  is defined as the difference vector which is generated 

by subtracting the data computed by forward modeling from observed seismic data. The 

term 
F(IG)

(IG)




 , which is a partial derivative, is the so-called sensitivity matrix. And the 

term to be solved for, (I IG) , is called the correction vector. This correction vector is 

used to solve for I  by adding the correction vector to initial guess as following 

I IG (I IG)    .                                              (5.16) 

Equation (5.16) is an approximation, because the equation (5.15), we used to calculate 

the correction vector, is not the infinite Taylor series, but a truncated linear equation. 

Consequently, the solution for I  is also an approximation. When there is more than one 

parameter to be inverted for, it is better to use the matrix form of equation (5.15) which 

can be expressed as 

1 1 1

1 2

1 2 1 1

2 2 2

1 2 2 2

1 2

1 2

F(IG ) F(IG ) F(IG )

(IG ) (IG ) (IG )
(I ) F(IG ) I IG

F(IG ) F(IG ) F(IG )
(I ) F(IG ) I IG

(IG ) (IG ) (IG )

(I ) F(IG ) I IG
F(IG ) F(IG ) F(IG )

(IG ) (IG ) (IG )

N

N

M M M M

M M M

N

F

F

F

  

  
 

  
 

  


 
  

  
    , (5.17)

   

 where M is the number of observations (points in the observed data), and N is the 
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number of parameters. In order to reduce the error in equation (5.16), iterations are 

applied where the corrected initial guess in equation (5.16) is used as a new initial guess 

in equation (5.15) or equation (5.17). The procedure is shown in Figure 5.1. 

 

Figure 5.1. Workflow for generalized linear inversion (Cooke and Schneider, 1983). 

 

If the initial guess lies within the range of convergence, the error decreases in a 

roughly exponential manner with each iteration. This error can be defined by the 

Euclidean norm as 

2
[F(IG) F(I)]  .                                           (5.18) 

Before the iteration, we have to choose a value for the error level. When the error 

drops below this level or the new loop cannot provide an improvement over the last 

iteration, the iteration stops.  

In order to solve for the correction vector, the modified least-squares error 

procedure is applied. A damping factor is included in the modification and the 

G 

Observed seismic 
data 

Initial guess 

Forward model 

Calculate difference  
(f(I)-f(IG)) 

Is (f(I)-f(IG)) small 
enough? 

Solve inversion equation for (I-IG) 

Yes 

No 

Done 

Update initial guess 
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modification yields, 

2(I IG) (S S K I)S [F(IG) F(I)]T T     ,                          (5.19) 

where 

                                             

(IG)

IG

i

j

F
S





(sensitivity matrix), 

                                            
2K   damping factor, 

                                             I   identity matrix. 

The role that the damping factor plays in GLI is similar to the prewhitening 

(adding white noise to diagonal of the matrix) usually applied in deconvolution. In real 

situations, there is always noise in the difference vector or sensitivity matrix, which can 

lead to a large error in the correction vector. By damping the magnitude of the difference 

vector, a solution for the difference vector, which favors signal and discriminates against 

noise, is possibly obtained. Instead of using a constant value for the damping factor, we 

use different values for each iteration. According to the book Numerical Recipes (2007), 

damping factors are chosen in the following steps: 

1. Pick a modest value for the damping factor like 2 0.001K  . 

2. Solve equation (5.17) for the correction vector and evaluate the difference vector. 

3. If the Euclidean norm of the difference vector is equal or larger than the 

Euclidean norm of the difference vector of last iteration, then increase 
2K  by a 

factor of 10 and go back to step 2; if the Euclidean norm of the difference vector 

is less than the Euclidean norm of the difference vector of last iteration, then 

decrease 
2K  by a factor of 10 and go back to step 2.  
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Equation (5.17) is a system of linear equations which solves for the correction vectors. 

There is no priori information to constrain the results in the correction vector. Sometimes 

the correction vector, calculated from equation (5.17), is not realistic. For example, the 

inversion result of P-wave velocity may be negative. However, it does not necessarily 

mean that the inversion process is unstable. For this inversion problem, an experienced 

interpreter has some useful information about the range where the true solution probably 

lies; e.g. geology background, lithology analyzing, and even general physical constraints, 

like values for velocity and density are always positive. Constraints are applied to remove 

the non-sensical results and make the iteration process only work in the realistic bounds.  

5.4 Inversion for fracture orientation 

When only small incident angle reflections are considered, the third term of 

Rüger’s approximation for PP reflection coefficients can be ignored. The linear 

approximation equation for reflection coefficients in HTI medium yields 

2

( ) 2 2 21 1 2 2
( , ) 2( ) cos sin  

2 2

      

HTI V

P

Z G
R i i

Z G

  
   

  

       
          

     
 . (5.20) 

In a real field situation, however, the fracture orientation is unknown. Thus,   should be 

expressed by the difference between the azimuthal direction of the symmetry axis sym  of 

the fractured medium and the azimuthal direction 
k  of the k-th observed azimuth. So, 

equation (5.20) can be written as 

2 2[ cos ( )]siniso ani

PP k symR A B B i      ,                       (5.21) 

where 
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1

2

Z
A

Z




,
 

                                         

2

1 2

2

iso G
B

G

 

 

   
   

    , 

                                        
( ) 2 21 2

2( ) cos ( )
2

ani V

k symB


   


 
     

  .

 

In order to use SVD to do inversion, equation (5.21) must be linearized. Based on the two 

trigonometric identities 

2 1
cos ( ) (1 cos(2 2 ))

2
k sym k sym       ,                         (5.22) 

cos(2 2 ) cos2 cos2 sin 2 sin 2k sym k sym k sym         ,                  (5.23) 

equation (5.21) can be written in a linear from as 

2 2 21 1 1
(B B )sin ( B cos2 )cos2 sin ( B sin 2 )sin 2 sin

2 2 2

iso ani ani ani

pp sym k sym kR A i i i        , 

(5.24) 

or in terms of four unknowns 

2 2 2

1 2 3 4sin cos2 sin sin 2 sinpp k kR C C i C i C i      ,              (5.25) 

where 

1

2 2

3 4

2

4

5

,

2 ,

1
,

2

1
tan .

2

ani

iso ani

sym

A C

B C C

B C B

C
art

C




  

 


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According to the inversion results, the fracture orientation which is perpendicular 

to the symmetry axis can be recovered. Numerical tests are applied based on SVD and 

equation (5.25) to invert for the fracture orientation (or the direction of the symmetry 

axis). Exact reflection coefficients are acquired along 18 azimuths with an interval of 10.  

There are 40 receivers located in each azimuth with 1 incident-angle interval. The model 

parameters in these tests are as follows: 
(V)0.1,  0.1, 0.2, 0.05,

Z G

Z G






  
      

(V) 0.05,  and 0.15    . The P-wave velocity for the lower HTI medium in the 

isotropic plane is 2.5 km/s, the SH-wave velocity in the isotropic plane is 1.5 km/s, and 

the density is 2.7 g/cm
3
. The data are calculated by the exact reflection coefficients 

method introduced by Chattopadhyay (2004). The Bond transformation, discussed in 

Chapter 4, is applied to rotate the symmetry axis in the lower HTI medium by 20 and 

110. The rotation angles have 90 difference, which is used to test the ambiguity of the 

inversion results. Figures 5.2 to 5.12 show the inversion results of the fracture orientation 

based on the SVD and Rüger’s equation for reflection coefficients with different noise 

levels. Figure 5.13 and Figure 5.14 show the results which used GLI and 

Chattopadhyay’s method. These two different sets of results provide some insight on how 

to choose the proper method to invert for fracture orientation. In Figure 5.2, the inversion 

result with S/N ratio of 20 is approaching 20 after using four azimuthal lines. Figure 5.3 

shows the error is within a tolerable range when three azimuthal lines are used in the 

inversion. However, increasing the number of azimuthal lines does not decrease the error 

after five azimuthal lines. Five azimuthal lines have already provided an almost exact 



94 

 

solution for fracture orientation. Figure 5.4 shows the inversion result with the same S/N 

but with a different rotation angle. Although the rotation angle for Figure 5.4 is 110, the 

inversion result is still approaching 20, and it remains the same after using three 

azimuthal lines. This phenomenon also happens in Figures 5.8 and 5. 11. If we ignore the 

90 error in Figures 5.4, 5.8, and 5.11, all the numerical tests yield good results for S/N as 

low as 5. For the model with S/N=5, the damping factor is not required in the SVD 

inversion. The inversion for fracture orientation does not seem to be sensitive to mild 

noise contamination (S/N > 5), which means with reasonably high-quality field data, it is 

possible to obtain accurate enough information about the fracture orientation.   

 In order to analyze the 90 ambiguity, we have to look at equation (5.21) again. 

For a given incident angle, the reflection coefficients will plot as a sinusoid curve with a 

period of 180. And the ambiguity is intrinsic when equation (5.21) is used for inversion. 

From a mathematical aspect, there is no unique solution for equation (5.21), even with 

redundant data. If the sign of aniB  is changed, isoB  will be regrouped in order to satisfy 

the equation, and at the meantime sym  is rotated by 90. In other words, for a given set 

of azimuthal reflection coefficients, there are always two sets of solutions, 

( , , , )iso ani

symA B B   and ( , ', ', ')iso ani

symA B B   for equation (5.21), where 'iso iso aniB B B  , 

'ani aniB B  , and ' 90sym sym   .  
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Figure 5.2. Inversion result for the fracture orientation. The lower HTI medium is rotated by 20. 

S/N = 20. 

 

 
Figure 5.3. Error of inversion result for the fracture orientation. The lower HTI medium is rotated 

by 20. S/N = 20. 
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Figure 5.4. Inversion result for the fracture orientation. The lower HTI medium is rotated by 110. 

S/N = 20. 

 

 
Figure 5.5. Error of inversion result for the fracture orientation. The lower HTI medium is rotated 

by 110. S/N = 20. 
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Figure 5.6. Inversion result for the fracture orientation. The lower HTI medium is rotated by 20. 

S/N = 10. 

 

 
Figure 5.7. Error of inversion result for the fracture orientation. The lower HTI medium is rotated 

by 20. S/N = 10. 
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Figure 5.8. Inversion result for the fracture orientation. The lower HTI medium is rotated by 110. 

S/N = 10. 

 

 
Figure 5.9. Error of inversion result for the fracture orientation. The lower HTI medium is rotated 

by 110. S/N = 10. 
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Figure 5.10. Inversion result for the fracture orientation. The lower HTI medium is rotated by 

20. S/N = 5. 

 

 
Figure 5.11. Error of inversion result for the fracture orientation. The lower HTI medium is 

rotated by 20. S/N = 5. 
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Figure 5.12. Inversion result for the fracture orientation. The lower HTI medium is rotated by 

110. S/N = 5. 

 

 
Figure 5.13. Error of inversion result for the fracture orientation. The lower HTI medium is 

rotated by 110. S/N = 5. 
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Figure 5.14. Inversion result for the fracture orientation based on the exact reflection coefficient 

inversion. The lower HTI medium is rotated by 20˚.  

 

 
Figure 5.15. Inversion result for the fracture orientation based on the exact reflection coefficient 

inversion. The lower HTI medium is rotated by 110˚.  
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Actually, there is no information about the sign of aniB  before inversion. Most 

practitioners of azimuthal anisotropy force aniB  to be positive and thus the estimated 

fracture orientation might have a 90 error, because aniB  could be either positive or 

negative. In addition, the polarity of the real seismic data also can cause an ambiguity in 

the inversion result. When the polarity is changed by 180, which is equivalent to 

multiplying by -1 to the both sides of equation (5.21), most practitioners assume aniB  is 

always positive, thus the estimated fracture orientation will have a 90 error. Although the 

ambiguity always exists in the inversion of equation (5.21), this method still has some 

advantages. Because Rüger’s approximation is a linear equation, there are few 

calculations in the inversion. It will help one save time and have a quick look at the data. 

Moreover, It is very stable, even for the lower quality data which have S/N = 5 (See 

Figures 5.9 to 5.13).   

In order to study this inversion problem, the GLI method, which is discussed in 

this chapter, and the method to calculate exact reflection coefficients are used to invert 

for the fracture orientation. Figure 5.14 shows the inversion result for a model with 20 

rotation angle. The inverted angle is approaching 20 after 30 iterations and after that, it 

remains constant. Figure 5.15 shows the inversion result using the same method but with 

a different exact reflection coefficient model, which has a 110 orientation angle. After 35 

iterations, the inverted angle is about 110 and has less than 10 error. It finally 

approaches 110 after 90 iterations. Comparing Figure 5.14 and Figure 5.15, it looks like 

that the problem of ambiguity of 90 is solved. Two models with 90 difference are used 

in these two figures and fracture orientations are recovered correctly, compared with 
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those results inverted by SVD method and Rüger’s linear approximation. However, the 

GLI exact reflection coefficient inversion approach depends on the initial guess. If the 

initial guess is not close to the true solution, then a 90 ambiguity will happen again. 

Thus, more information is required to give an appropriate initial guess.  

Although the method used in Figures 5.14 and 5.15 has advantage in recovering 

the fracture orientation, there are some limitations for using it. They are very sensitive to 

noise so that data with high S/N are required. Also the initial fracture orientation guess 

must be within the convergent region; otherwise, the result turns out to be incorrect. In 

short, the inversion results will be incorrect.   

5.5 Inversion for anisotropy parameters 

After obtaining the fracture orientation, Rüger’s linear approximation in equation 

(3.15) can be written in terms of six parameters ( 
( ) ( ),  ,  , , ,  and V V  

  
  

  
   ) 

as 

( ) ( )( , ) (i) (i) (i) (i, ) (i, ) (i, )HTI V V

PR i A B C D E F
  

      
  

  
             , 

(5.26) 

where 
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The method, discussed in Chapter 3, for exact reflection coefficient is used to 

calculate a numerical model which has 24 azimuthal lines, and the interval of each 

azimuthal line is 15. Within each azimuthal line, there are 40 receivers with an incident-

angle interval of 1. Model parameters are the same as those used for inverting for 

fracture orientation except the rotation angle. In this numerical test, the fracture 

orientation is set to zero. The main goal of this inversion is to estimate the three 

anisotropy parameters (δ
(V)

, ε
(V)

 and γ), the most important of which is γ, because it is 

directly related to crack density in fracture-induced anisotropic media. The inversion for 

the three anisotropy parameters is obtained by using all azimuthal and incident angle 

data. The inversion error, calculated by comparing the inversion results and input model 

parameters, are shown in Figures 5.16 to 5.18. Favorable results are successfully 

achieved for the three anisotropy parameters, especially for γ. 
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Figure 5.16. Inversion error for (V) . 

 

 

Figure 5.17. Inversion error for (V) . 
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Figure 5.18. Inversion error for  . 
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5.6 Error analysis 

It is observed that the data S/N and some other input factors in the inversion 

process have noticeable effects on the inversion results for both fracture orientation and 

anisotropy parameters. How S/N affects the inversion results for fracture orientation are 

shown Figures 5.2 to 5.13. Now, I am going to discuss the effect of S/N on the inversion 

results for anisotropy parameters. In Figures 3.6 to 3.9, the reflection coefficients show 

no azimuthal variation at small incident angles. Only at large incident angles, there are 

noticeable azimuthal variations in the reflection coefficients. An obvious practical 

question is how large is the required maximum incident angle for accurate inversion 

results. Therefore, I am going to analyze how the selection of the maximum incident 

angle makes a difference in the inverted anisotropy parameters. My entire inversion can 

be divided into two steps. The first step is to invert for fracture orientation. And then, 

using the fracture orientation, obtained in first step, to invert for six parameters. I will 

discuss what the inverted anisotropy parameters will be if there are errors in the inversion 

for fracture orientation.  
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Figure 5.19. Inversion error results with S/N = 20. a, b, c, d, e, and f denote ,  , ,
  

  

  

( ) ( ), ,  and V V   , respectively. 

 

Figure 5.20. Inversion error results with S/N = 10. a, b, c, d, e, and f denote ,  , ,
  

  

  

( ) ( ), ,  and V V   , respectively. 
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Figure 5.21. Inversion error results with S/N = 5. a, b, c, d, e, and f denote ,  , ,
  

  

  

( ) ( ), ,  and V V   , respectively. 

 

Figure 5.22. Inversion error results with S/N = 2. a, b, c, d, e, and f denote ,  , ,
  

  

  

( ) ( ), ,  and V V   , respectively. 
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Noise is always a problem for seismic inversion. It will affect the stability and the 

accuracy of the inversion results. The choice between stability and accuracy depends on 

the experience of the interpreter, as I will discuss how noise affects the accuracy of 

inversion. Figures 5.19 to 5.22 show four inversion results for the six parameters from six 

different models. These six models have the same model parameters: 0.1,







(V) (V)0.2, 0.2, 0.05, 0.05, and 0.15
Z G

Z G
  

 
        but with different S/N. The 

reflection coefficients are obtained by Rüger’s linear approximation for PP reflection 

coefficients using 18 azimuthal lines with 10 intervals and 40 receivers with 1 incident-

angle interval in each azimuthal line. The S/N in Figures 4.19 to 4.22 are 20, 10, 5, and 2. 

The inversion is applied based on SVD and Rüger’s approximation for PP reflection 

coefficients. It makes sense that the inversion errors increase when S/N decrease. In these 

figures, a, b, c, d, e, and f denote 
( ) ( ), , , , ,  and V V  

  
  

  
, respectively. The 

maximum error in Figure 5.22, which has signal noise ratio of 2, is -225% for (V) . 

However, the parameter  , which directly relates to crack density, is of most interest. 

Fortunately, the   error is tolerable even in the model with S/N = 2 in Figure 5.22. Thus, 

when   is the only parameter that we want to recover from seismic data, the SVD 

method using Rüger’s linear approximation for PP reflection coefficients is reliable. Even 

in Figure 5.22,   has an acceptable error of -38% which is acceptable. The inversion 

errors for variations in P-wave velocity, S-wave velocity, and density, appear to be less 

than the inversion errors for the three anisotropy parameters. When S/N is larger than 10, 
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which are shown in Figures 5.19 and 5.20, the inversion errors are acceptable for most 

interpretations. 
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Figure 5.23. Inversion errors from data with incident angles from 0 to 10. ( ) ( ), V Va b   , 

and .c 
 

 

 

 

Figure 5.24. Inversion errors from data with incident angles from 0 to 15. ( ) ( ), V Va b   , 

and .c   
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Figure 5.25. Inversion errors from data with incident angles from 0 to 20. ( ) ( ), V Va b   , 

and .c 
 

 

 

 

 

 

Figure 5.26. Inversion errors from data with incident angles from 0 to 25. ( ) ( ), V Va b   , 

and .c   
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Figure 5.27. Inversion errors from data with incident angles from 0 to 30. ( ) ( ), V Va b   , 

and .c   

 

 

 

Figure 5.28. Inversion errors from data with incident angles from 0 to 35. ( ) ( ), V Va b   , 

and .c   
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Figure 5.29. Inversion errors from data with incident angles from 0 to 40. ( ) ( ), V Va b   , 

and .c   

 

 

 

Figure 5.30. Inversion errors from data with incident angles from 0 to 45. ( ) ( ), V Va b   , 

and .c   
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Figure 5.31. Inversion errors from data with incident angles from 0 to 50. ( ) ( ), V Va b   , 

and .c   
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Figures 5.23 to 5.31 show the inversion errors for three parameters (V) (V)( ,  ,   

and ) , which are denoted by a, b, and c, with different maximum incident angles. And 

the model parameters are the same as those for Figures 5.19 to 5.22. The input exact 

reflection coefficients are obtained by the method introduced by Chattopadhyay (2004). 

Different maximum incident angles will provide different errors for the anisotropy 

parameters. From the small maximum incident angle to large maximum incident angle, 

the inversion errors for (V)  and (V)  are increasing. The reason for this phenomenon can 

be found in Chapter 3. In Chapter 3, I compared the exact reflection coefficients and its 

approximations, calculated by Rüger’s method, for different models (See Table 3.1). The 

difference between the exact and approximated reflection coefficients as a function of 

incident angle are shown in Figures 3.7 and 3.8, where only the anisotropic parameters

(V)  and (V) are non-zero. Rüger’s linear approximation deviates from the exact 

reflection coefficients as the incident angle increases. Unfortunately, Rüger’s linear 

approximation cannot estimate the exact reflection coefficient accurately at large incident 

angles. Consequently, inversion errors for (V)  and (V) , shown in Figures 5.23 to 5.31, 

increase when the maximum incident angle increases. But   is better estimated at large 

incident angles than (V)  and (V) . In Figure 3.6, the approximation is very close to the 

exact reflection coefficients, when only   is non-zero and other two anisotropy 

parameters are zero, which means Rüger’s approximation is less sensitive to the 

maximum incident angles in this case. The inversion errors for   in Figures 5.23 to 5.31 

are very small and they are decreasing while the maximum incident is increasing. Thus, 

we can make a conclusion that the choice of the maximum incident angle will definitely 



118 

 

affect the inversion result. However, the value of the inverted  , which is of most 

interest, will not change significantly with maximum incident angles.  

In this chapter, we first inverted the fracture orientation and then the fracture 

orientation was used as an input to invert for the other six parameters 

( ( ), , ,  ,V  


  

   ( ) ,  and V  ). And the error in first step will propagate to the second 

step, so that the estimations of six parameters are less accurate. Rüger’s linear 

approximation is used for both forward modeling and inversion. In the next modeling 

examples, the model parameters and geometry are the same as those used in Figures 5.23 

to 5.31. And a, b, and c, in Figures 5.33 to 5.35, denote (V) (V), ,  and    . Figure 5.32 

shows that the difference between the reflection coefficients with a rotation angle of 0 

and 5. The difference is less than 5%. The difference is small but it increases with 

increasing incident angle. As inferred earlier, this difference is periodic with azimuth. 

Figure 5.33 shows the inversion error for the three anisotropy parameters, if there is a 5 

error in the first step. The inversion results are very good and the errors are small, less 

than 2%. When the error in the first step becomes 10, the reflection coefficient 

difference, shown in Figure 5.34, is less than 10%. Figure 5.35 shows the anisotropy 

parameter inversion is very encouraging, as even if there is 10 error in estimating the 

fracture orientation, the inversion results for the three anisotropy parameters have a small 

error. This phenomenon allows for some errors in the inversion of the fracture orientation.  
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Figure 5.32. Difference between the reflection coefficient for rotation angles of 0 and 5. 
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Figure 5.33. Inversion errors for anisotropic parameters for an error of 5 in the estimated fracture 

orientation. ( ) ( ), , and V Va b c     .  
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Figure 5.34. Difference between the reflection coefficient for rotation angles of 0 and 10. 
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Figure 5.35. Inversion errors for anisotropic parameters for an error of 10 in the estimated 

fracture orientation. ( ) ( ), , and V Va b c     . 
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5.7 Conclusion 

In this chapter, the inversion for fracture orientation and the six parameters 

( ( ) ( ), , , , ,  and V V  
  

  

  
) in the anisotropic reflection coefficient equation are 

applied by two different methods. In the first method, SVD and Rüger’s linear 

approximation for P-wave reflection coefficients are used. In the second method, 

inversions using GLI and exact reflection coefficients are compared to the first method. 

The fracture orientation estimated by the first method may have a 90 ambiguity. With an 

appropriate initial guess, the second method can overcome the ambiguity problem. But 

the first method is fast and the calculations are efficient. The second method requires 

more calculations and it is very sensitive to noise. When the first method inverts for 

anisotropy parameters from the exact reflection coefficients, the error for   results is 

acceptable. This is directly related to crack density. Different S/N values are used to test 

the reliability of the first method. The inversion for the six parameters is more sensitive 

than the inversion for fracture orientation. But the results can still provide useful 

information about the value of   even with low S/N.  

The three anisotropy parameters (V) (V)( , ,  and )    have different sensitivities to 

the maximum incident angle according to Figure 3.6 to 3.8 in Chapter 3. When the 

maximum incident angle increases, the inversion errors for (V)  and (V)  increase 

concurrently. However, the inversion result for   is more accurate at large incident 

angles. Thus, the choice of the maximum incident angle needs to be carefully considered 

before inversion. And the error propagation happens, because there are two steps in the 
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inversion. The fracture orientation is estimated before inverting for the three anisotropy 

parameters. But it is encouraging that the error in the estimation of the fracture 

orientation will not problematize the results of three anisotropy parameters, even if the 

error increases to 10˚. 
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CHAPTER 6 

CONCLUSION 

The main goal of this thesis is to determine whether information, including the 

anisotropy and direction of the symmetry plane of a fractured medium, can be extracted 

from an amplitude analysis. Numerical seismic modeling is used in this study. The first 

and second Green-Christofel equations provide a solution to obtain phase and group 

velocities in arbitrary anisotropic media. Two approaches (Chattopadhyay, 2004; 

Schoenberg and Protazio, 1992) are introduced to calculate the exact reflection 

coefficients in arbitrary anisotropic media. However, both of these two approaches are 

complicated and time-consuming. In order to simplify the process, Rüger (1997) 

introduces a linear equation for reflection coefficients approximation for HTI media. The 

linear approximation can accurately estimate the exact reflection coefficients at small 

incident angles. When the azimuth observation lines are closer to the isotropic plane, the 

estimation is more accurate. Shuey (1985) suggests using the average angle instead of 

incident angle in the linear equation for the reflection coefficients approximation in 

isotropic media. The test shows that the choice of average angle and incident angle does 

not make an obvious difference in the reflection coefficients approximation in HTI 

media. In other words, the choice of average angle and incident angle will not 

significantly affect the result in HTI media. 

It is convenient to use elastic compliance to formulate the equivalent anisotropic 

medium problem for seismic modeling of sets of aligned fractures embedded in host 
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medium, when the seismic wavelengths are much larger than the fracture size and 

spacing. The linear slip theory, introduced by Schoenberg (1980, 1983), can be used to 

relate the stress and strain by fracture compliance. For rotationally invariant fractures, 

two weaknesses, normal ( N ) and tangential ( T ) weaknesses, are required to form the 

compliance matrix. By comparing the linear slip theory and Hudson’s method (1980, 

1981), the normal and tangential weaknesses can be expressed in terms of the crack 

density and the ratio of P-wave and S-wave velocities. TI (LSD), which is only required 

four independent parameters, is used to specify a set of vertical, aligned, rotationally 

invariant fractures. Even though some assumptions of the effective medium theory are 

violated, this effective medium theory remains accurate. The information that can be 

obtained from seismic data is only the fracture orientation and a rough estimate of crack 

density. The estimation of shape, size, and distribution of the fracture is beyond the 

capability of long wavelength seismic data.  

Linear (SVD) and non-linear (GLI) inversions are used to invert for fracture 

orientation. However, the 90˚ ambiguity, which is an intrinsic mathematic problem, 

always exists in the inversion result. By appropriately choosing the initial guess for the 

non-linear inversion, this ambiguity may be solved. And three anisotropy parameters 

(V) (V)( , ,  and )    are inverted by linear inversion. The inversion error for   , which is 

directly related to crack density, is acceptable. Factors, which are S/N ratio, maximum 

incident angle, and error propagation, are analyzed for the inversion results. The 

inversion error increases when S/N ratio decreases. By comparing the inversion errors for 

(V)  and (V)  with the inversion error for  , which is of most interest,   is less sensitive 
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to S/N ratio. The choice of maximum incident angle for the inversion will affect the 

accuracy of inversion results for different anisotropy parameters. Using large maximum 

incident angle for the inversion may be better for  , but worse for (V)  and (V) . Error 

propagation from inverted fracture orientation to the inverted anisotropy parameters is 

non-significant. Even though the inverted fracture orientation has a 10˚ error, the 

inversion errors for three anisotropy parameters are less than 10%. 
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APPENDIX A 

Stiffness matrix of illite (Gpa):  

179.9 39.9 14.5 0 0 0 

39.9 179.9 14.5 0 0 0 

14.5 14.5 55 0 0 0 

0 0 0 11.7 0 0 

0 0 0 0 11.7 0 

0 0 0 0 0 70 

 

Density: 2.79 g/cm
3
. 
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APPENDIX B 

Isotropic medium (Gpa): 

13.81378 3.872866 3.872866 0 0 0 

3.872866 13.81378 3.872866 0 0 0 

3.872866 3.872866 13.81378 0 0 0 

0 0 0 4.970455 0 0 

0 0 0 0 4.970455 0 

0 0 0 0 0 4.970455 
Density: 2.7 g/cm

3
. 

VTI medium (Gpa):  

16.875 4.725 3.632606 0 0 0 

4.725 16.875 3.632606 0 0 0 

3.632606 3.632606 15.1875 0 0 0 

0 0 0 4.673077 0 0 

0 0 0 0 4.673077 0 

0 0 0 0 0 6.075 
Density: 2.7 g/cm

3
. 

HTI medium (Gpa): 

15.1875 6.653714 6.653714 0 0 0 

6.653714 16.875 4.725 0 0 0 

6.653714 4.725 16.875 0 0 0 

0 0 0 6.075 0 0 

0 0 0 0 4.673077 0 

0 0 0 0 0 4.673077 
Density: 2.7 g/cm

3
.  
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