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Abstract

Cities all around the world are in constant evolution due to numerous factors, such

as fast urbanization and new ways of communication and transportation. However,

the evolution of the composition of a city is difficult to follow and analyze. Since

understanding the evolution of cities is the key to intelligent urbanization, there is

a growing need to develop urban planning and analysis tools to guide the orderly

development of cities, as well as to enhance their smooth and beneficial evolution.

Urban patches which represent uniform areas of a city play a key role in studying

the composition of a city, as different types of urban patches typically are associated

with different functions, such as recreational areas and commercial areas. In order to

analyze the changes of the composition of cities, a polygon-based spatial clustering

and analysis framework for studying urban evolution is proposed in this thesis. A

spatial clustering algorithm named CLEVER is used to identify urban patches that

are clusters of polygons representing different elements of the city based on a domain

expert’s notion of uniformity, which has to be captured in a plug-in interestingness

function. The analysis methodology uses polygons as models for spatial clusters

and histogram-type distribution signatures to describe their characteristics. Finally,

popular signatures are introduced that describe distribution characteristics, which

occur frequently in contiguous sub-regions of a spatial dataset, and an approach

is presented that identifies and annotates urban patches with popular signatures.

Experiments on datasets of the city of Strasbourg, France serve as an example to

highlight the usefulness of the methodology.
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Chapter 1

Introduction

“Urbanization is the physical growth of urban areas as a result of global change

where increasing proportion of the total population becomes concentrated in towns.

The United Nations reported that since 2008 more than half of the world’s popula-

tion is living in urban areas”[1]. Thus, mastering urban evolution became a major

challenge for all major cities in the world. Consequently, there is a growing need

to develop urban planning and analysis tools to guide the orderly development of

cities, as well as enhance their smooth and beneficial evolution. The evolution of

cities is a very dynamic activity; therefore, modeling the dynamics of urban evolu-

tion is a quite challenging task. Data describing city dynamics are widely available

as they are collected on a regular basis, offering a great opportunity to develop urban

computing techniques, which can be used to analyze and model urban evolution. Un-

derstanding and monitoring urban evolution allows urban planners to make smarter

decisions because they can provide deep insights into a city with changing dynamics.

Moreover, it offers an opportunity to improve people’s knowledge about the impacts
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from urbanization on the territory.

The step of urbanization leads to different functional regions in a city, called urban

patches throughout the remainder of this thesis, such as residential areas, business

districts, industrial and recreational areas. Different types of urban patches support

different needs of people’s lives and “serve as a valuable organization technique for

framing detailed knowledge of a metropolitan area”[2]. Urban patches may be arti-

ficially created by urban planners, or may be the result of natural urban evolution;

both could change functions and territories with the development of a city.

When studying urban evolution, the first challenge is to collect, extract and

structure data so that they can be stored in a spatial-temporal database, storing

very detailed information about a city’s spatial composition at different times. As

analyzing evolution on the raw data is not feasible, the second challenge is to sum-

marize the composition of a city at a particular moment. In particular, in this step

urban patches of a city are identified and annotated with signatures that contain

summaries of their characteristics. The third challenge is to analyze and mine the

obtained data to extract interesting knowledge on how a city changes over time. The

last challenge is to develop simulation tools which aim at simulating a city’s evolution

based on rules which have been learnt from past experience. In this work, we are

mainly focusing on the second challenge, also presenting some preliminary results on

how to approach the third challenge.

In general, polygons play an important role in the analysis of spatial-temporal

data as they provide a natural representation of geographical objects, such as build-

ings or countries. Furthermore, polygons can serve as models for spatial clusters and
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(a) Year 1956 (b) Year 1976 (c) Year 1989 (d) Year 2002 (e) Year 2008

Figure 1.1: Building evolution of a neighborhood in Strasbourg, France between 1956
and 2008

can model nested and overlapping clusters. Polygons have been studied thoroughly

in geometry, and powerful software libraries are available to manipulate, analyze, and

quantify relationships among polygons. This work proposes novel polygon based data

mining techniques to identify urban patches to study their evolution. We evaluate

these techniques in case studies which center on the evolution of the building struc-

ture of the city Strasbourg in France. As depicted in Figure 1.1, polygons represent

buildings in five different years of a neighborhood of Strasbourg, France.

The thesis’s main technical contributions include:

1. Formal definition of the problem of finding uniform regions in spatial data as

a maximization problem.

2. Developing a novel spatial clustering approach for identifying regions based

on uniformity measures, which have to be expressed as reward-based fitness

functions which are then maximized by the spatial clustering algorithm. The

approach models the scope of spatial clusters as polygons and describes their

characteristics using histogram-style distribution signature.
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3. Introducing several interestingness measures to capture different notions of

uniformity.

4. Introducing popular signatures which are frequently occurring distribution sig-

natures in the subspaces of a spatial area of interest. A novel approach which

summarizes the composition of a spatial dataset by annotating regions with

popular signatures is presented.

5. Evaluating the proposed framework in a case study involving the building struc-

ture of the city of Strasbourg, France; in particular, the city is partitioned into

uniform regions which are annotated with signatures and the benefit for domain

experts of having such summaries is discussed.

The rest of the thesis is organized as follows: Chapter 2 gives the background

information regarding urban planning with polygon definition and several polygonal

distance functions. Chapter 3 explains the CLEVER clustering algorithm and its

variant DCLEVER, which is more capable in handling spatial clustering problems.

Chapter 4 introduces the spatial clustering approach to identify urban patches and

different interestingness functions which capture different notions of uniformity. In

Chapter 5, we present experimental results which identify urban patches based on

three different notions of uniformity for neighborhoods of the city of Strasbourg in

France. Chapter 6 concludes the thesis.
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Chapter 2

Background and Related Work

2.1 Urban Evolution and Planning

“An urban area is characterized by higher population density and vast human fea-

tures in comparison to areas surrounding it. Urban areas may be cities, towns or

conurbations, but the term is not commonly extended to rural settlements such as

villages and hamlets”[3]. More specifically, an urban area usually comprises several

residential areas, industrial and business areas, and complex human settlement of

variable size and industrial equipment with administrative functions.

Analyzing the past thirty years, urban evolution can be distinguished into two dif-

ferent categories. The first type of urban evolution usually occurs in the early period

of city development, it is also called urban explosion in the territory. For instance, the

urban evolution that happened at the end of 20th century only considers the efficiency

rather than the comfort of urban living. The development of urban functions, such

as habitations, commercial, services, and storage, usually needs the spatial support
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outside the building realm[4]. Urban explosions sometimes incur great social expense

without an explicit plan in terms of city organization. Therefore, urban explosions

have a predominant feature, which can be depicted as spatial-territorial centrifugal

expansion to different evolutionary poles with tendencies toward influencing and jus-

tifying future developments (Figure 2.1). This phenomenon is accompanied by a

variety of other evolutionary trends related to movement and population dynamics,

and dramatically changes the transportation module of the city.

Figure 2.1: Urban Explosion Directions

Urban areas start experiencing another type of evolution even before being fully

developed by spatial-territorial explosion, which is called centripetal evolution[4].

Centripetal evolution is characterized by city functional modifications, adaptations,

restructuring and implementation. This phenomenon usually occurs in the cen-

ter area of the city, as well as the areas with great development potential. In big

cities, centripetal evolution is summarized by extending the commercial buildings,
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transforming among different building types, positioning of important landmarks in

specific locations in the city, and demolition of low-rise buildings and constructing

of medium-and high-rise buildings, etc. Consequently, the second stage of urban

evolution – centripetal evolution – focuses more on city structure change instead of

spatial enlargement.

Rapid growth of urban areas makes it more and more attractive for people to

live in the urban area. Along with the trend of people moving from villages and

farms to cities, the rapid growing cities like Chicago (Figure 2.2) in the late 19th

Figure 2.2: Chicago Downtown Aerial View (from Wikipedia)[1]

century and Mumbai a century later became the symbol of this rural-urban migration.

“Urbanization, urbanisation or urban drift is the physical growth of urban areas as

a result of global change”[1]. Urbanization can describe a specific condition at a set
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time, i.e. the proportion of total population or area in cities or towns, or the term

can describe the increase of this proportion over time. “So the term urbanization

can represent the level of urban relative to overall population, or it can represent the

rate at which the urban proportion is increasing”[1].

Today, this type of rapid urban growth usually occurs in developing countries, and

may be attributed to the growth of new job opportunities. The rate of urbanization

varies between countries, but Figure 2.3 depicts the rapid urbanization around the

world. According to Figure 2.3, half of the world’s population lived in urban areas at

the end of 2008. There are many reasons for people to move out of rural area into big

cities. Firstly, the desire of an individual or company to reduce the commuting time

and cost associated with urban living. Secondly, people intend to take advantage

of the increasing opportunities for jobs, housing, education and transportation in

an urban area. Also, there are better basic services as well as other special services

available in cities that are not found in rural areas. Lastly, urban areas usually have a

great variety of entertainment activities and diverse social communities which makes

it attractive to move to cities.

There are different types of urbanization that can be identified depending on

the style of architecture, planning methods, as well as historic growth of areas. In

the early stage of the developed area, urbanization traditionally showed the trend

of concentration of human activities. This phenomenon is called “in-migration”[1],

and usually refers to the migration from former colonies and similar areas to the

center of the cities. Another interesting type of urbanization is called “counter

urbanization”[1] or “suburbaniztion”[1], which is represented by the population flow

8



Figure 2.3: Percentage of World Population[1]

that shifts outward from an urban center. Counter urbanization usually is a recent

development of modern cities, and is caused by improved public transportation,

environmental pollution, and extremely high density populations in downtown areas.

However, there are several important effects caused by urbanization that need to

be discussed. Firstly, the environmental problem caused by urbanization has become

a growing concern. Specifically, the heat generated by urban and industrial areas is

highest in city centers. This phenomenon is known as the “urban heat island”[4],

which is exacerbated by less vegetation and exposed soil in urban area. Hence, during

warm daylight hours, less evaporative cooling in cities causes surface temperatures

to rise higher than rural area[1]. Secondly, the economic changes in urban areas is

also significant. In contrast to the fast growth of cities, a major phenomenon occurs

in rural area which is known as “rural flight”[1]. Because of the rural flight, the size

of labor markets in rural area is shrinking dramatically. As shown in Figure 2.4,
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urban areas attract more younger people than rural areas. Thus, it is very difficult

for rural families, especially small families, to improve their standard of living due

to the outgoing flow of the younger population. Similar problems are more severe in

the developing world, causing rising inequality between rural areas and cities.

Figure 2.4: Population Comparison Between Rural and Urban Areas[1]

The evolution of any urban area or city reflects countless decisions and actions

from the time of initial settlement to the present. Urban planning has always been a

main concern for a long time: abundant evidence has been unearthed in the ruins of

cities in China, India, Egypt, Asia Minor, the Mediterranean world, and South and

Central America. Early examples of urban planning include orderly street systems

with rectilinear and sometimes radial patterns; division of a city into specialized func-

tional quarters; development of commanding central sites for palaces, temples and

civic buildings; and advanced systems of fortification, water supply, and drainage[5].

Urban planning generally refers to the design and regulation of the use of space that

focuses on housing, water system, transportation, etc. The various fields that play

important roles in urban planning includes social and political concerns, engineering

10



and architecture etc.

In modern societies, more and more city planners have started to analyze the

urban evolution issues, including land-use planing, densities, number and location of

building permits, traffic flow, land price and rents, etc.[5]. Because public construc-

tion requires higher and higher expenses from the government, it becomes extremely

important for a city to pursue a long term plan based on its own characteristics and

needs. Moreover, the city blueprint should not only include the explicit plan on how

to use the land, but also measure the benefits of social and physical infrastructure

planning. The inability to create or implement a city blueprint is one of the most

glaring failures in urban development.

2.2 Spatial Data Mining

Data mining is an important and an extremely active research field in the Computer

Science area that focuses on finding valid, interesting, and useful patterns with large

datasets. It has been playing an evolutionary and crucial role in laying the foundation

for the next generation of major advances in many domains such as geography,

biology, medicine, and social and political science.

With a variety of research domains in the data mining area, spatial and spatial-

temporal data mining is becoming more and more interesting. Spatial data mining

is one of the research areas in the data mining field that focuses on spatial datasets.

However, extracting interesting patterns from spatial datasets is more complicated

than from traditional datasets due to the complexity of the data types, spatial rela-

tionships, and spatial autocorrelation. As the rapid growth of the number of sensors
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and their precision level, the explosive widespread use of large spatial datasets em-

phasizes the urgent need for automating the discovery of spatial knowledge. All of the

difficulties stated above limit the usefulness of conventional data mining techniques

for extracting interesting spatial patterns. The algorithms or tools for extracting

spatial knowledge from large datasets are extremely important for many individuals

or organizations making decisions; for example, the National Aeronautics and Space

Administration (NASA), the National Imagery and Mapping Agency (NIMA), the

National Cancer Institute (NCI), and the United States Department of Transporta-

tion (USDOT). Thus, spatial knowledge extraction applications are widely studied

across public safety, transportation, earth science, epidemiology, and environmental

management.

Moreover, spatial data mining usually is more challenging as it contains more

complex data objects, such as trajectories and polygons. In conventional datasets,

non-spatial attributes are used for characterizing non-spatial relations among data

objects. However, as there is a need for defining spatial locations and extent of spa-

tial objects, spatial datasets consist of spatial attributes in addition to non-spatial

attributes. The spatial attributes exclusively depict the geographical information

including longitude, latitude, convexity, elongation, and elevation. In contrast to

explicit objects in non-spatial attributes, it is not straightforward to analyze the

implicit relationships based on spatial attributes such as overlap, intersect, and ori-

entation (Table 2.1). One possible way to deal with implicit spatial relationships is

to materialize the relationships into traditional data input columns and then apply

classical data mining techniques[6]. In order to reduce the loss of information during

12



Non-spatial Relationships (Explicit) Spatial Relationships (Implicit)
Arithmetic Set-oriented: union, intersection, membership
Ordering Topological: meet, within, overlap

Is instance of Directional: North, NE, left, above, behind
Subclass of Metric: e.g., distance, area, perimeter

Part of Dynamic: update, create, destroy
Membership of Shape-based and visibility

Table 2.1: Non-spatial and Spatial Attributes Relationships[7]

this materialization process, developing a model or technique to incorporate spatial

attributes into the spatial data mining process is needed.

Traditional non-spatial data objects are considered as independent observation

samples, whereas spatial data objects are usually autocorrelated. The property of

similar things to cluster in space is so fundamental that geographers have elevated it

to the status of the first law of geography: “Everything is related to everything else but

nearby things are more related than distant things”[8]. Figure 2.5[7] demonstrates

the difference between independent distribution dataset and spatial dataset with

autocorrelated distribution.

Hence, the algorithms or techniques that ignore spatial autocorrelation usually

perform poorly in the presence of spatial data. In reality, common sense or the

domain experts’ needs are converted into multiple computational constraints that

are applied in the spatial data mining algorithms.

2.3 Polygon Model for Spatial Clustering

In geometry, a polygon is a flat shape consisting of straight lines that are joined to

form a closed chain or circuit[9]. The segments that form the polygon figure are

13



Figure 2.5: Independent Identical Distribution and Spatial Autocorrelation

called edges or sides, and the points where two edges meet are the polygon’s vertices

or corners. Many types of polygons have been adopted in different domains to

suit various needs. Instead of complex polygons that cross themselves, geographers

and city planners are more interested in the polygons with closed polygonal chain

and simple polygons which do not self-intersect. Simple polygons that are adopted

in spatial analysis can be roughly classified into two types: convex, and concave

polygons. In Figure 2.6, a convex polygon can be generalized as following properties

of a simple polygon:

1. Every internal angle is less than or equal to 180 degrees.

2. Every line segment between two points inside the polygon remains inside or on

the boundary of the polygon.

14



Figure 2.6: Convex Polygon

Figure 2.7: Concave Polygon

In contrast, concave polygon always has at least one interior angle with a measure

that is greater than 180 degrees as in Figure 2.7.

Any polygon, simple or complex, convex or concave, has as many corners as it

has sides. Each corner is characterized by an interior angle and an exterior angle.

Basically, the interior angle is classified as the angle that faces the inner side of the

polygon figure, and the exterior angle is the supplementary angle to the interior

angle. In general, the sum of all the interior angles is related with the number of

sides of the polygon figure. If a n-gon has n segments, the sum of degrees of all

the interior angles can be computed using the following formula
∑

= 180 − 360
n

.

Although the interior angles can be determined using the formula, the sum of the

15



exterior angles of polygon will always be 360 degrees.

The area of the polygon is the size of the 2-dimensional region enclosed by the

polygon[9]. The centroid, or geometric center, is the intersection of all the straight

lines that start from vertices and divide the polygon into two equal regions. Suppose

a simple polygon P has n segments where n = 5, then P can be represented by

Figure 2.8:

Figure 2.8: 5-segment Polygon

Generally, the area A of P with n segments can be determined by the following

formula:

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi) (2.1)

Suppose point C is the centroid of P , the coordinates of Cx and Cy are given by

Formula 2.2 and Formula 2.3:

Cx =
1

6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (2.2)

Cy =
1

6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi) (2.3)

In a broad sense, the definition of the area and centroid of the polygon might vary

in different domains.
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Among different spatial data types, the polygon is a very complicated and im-

portant model in spatial data mining applications that analyze the relationships and

changes in spatial datasets. Moreover, the polygon model represents specific spa-

tial objects more naturally and efficiently. Polygon analysis is particularly useful to

mine relationships between multiple, related datasets, as it provides a useful tool

to analyze discrepancies, progression, change, and emergent events[10]. Figure 2.9

shows an example of using polygons to represent the changes of earthquake areas

around the world. The polygons in the figure provide a clear and recognizable result

of the earthquake regions to domain experts by denoting the location and shape of

the earthquake regions.

Figure 2.9: Representation of Spatial Changes by Using Polygons[11]
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Convex Hull Method
Voronoi Diagram Method

Characteristic Shapes
Grid-based Method (S-shapes and R-shapes)

Gift-wrapping Method (Concave Hull Algorithm)
Alpha Shapes

A-shapes
Density Contouring Method (DContour)

Table 2.2: Polygon Model Generating Algorithms[12]

There are plenty of algorithms available regarding generating a polygon model

based on a set of points, some of which are listed in Table 2.2. Since the computa-

tional complexity increases dramatically as the precision of polygon enhances, it is

essential to generate efficient polygon model without a dramatic increase of the com-

putational cost. Three typical polygon models generated by the same set of points

are shown in Figure 2.10.

It is obvious that Figure 2.10(a) is not a good polygon model because it includes

too much empty space, which is not relevant to the spatial object. The model

with too much irrelevant information leads to inaccurate results by data mining

algorithms, or wrong conclusions in statistical analysis. Therefore, it is necessary

to generate a polygon model that excludes irrelevant information. On the other

hand, Figure 2.10(b) is not an ideal model either due to the extremely high polygon

complexity. Although it does not have large empty areas, it is more complex than it

should be. This phenomenon is called overfitting, and it is computationally expensive

to import such models into data mining algorithms. Figure 2.10(c) has the best

overall quality among all three models. It represents the shape of the points set very

well, and does not have too many edges and cavities. Therefore, it is more efficient
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Figure 2.10: Different Polygons Generated by Existing Algorithms[12]

in terms of storage space and processing cost compared to the other two models. In

general, the desired polygon model should have the following properties for spatial

data mining systems[12]:

1. The polygons should reflect the density of points in the dataset. Large empty

areas inside the polygons are not desirable.

2. The polygons should be as smooth as possible: A smooth polygon is the one

that does not have too many sharp angles (zigzags), and the number of edges

is as small as possible. A very tight polygon that has too many cavities is not

desirable.
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Based on the constraints listed above, most of the polygon generation algorithms

are not suitable for spatial data mining problems. However, the two-step fitness

function method has proved to be effective in generating balanced polygon models.

According to the criteria of the effective model, it is desirable that the generated

polygon has a small area as well as a short perimeter. Because area and perimeter

are inversely proportional in most cases, a fitness function that is able to find the

balance between smaller area and shorter perimeter is needed. Given the polygon p

we can define the fitness function f(p)[12] as:

f(p) = area(p)× perimeter(p) (2.4)

where area(p) is the area of polygon p and perimeter(p) is the perimeter of polygon

p. Fitness function Formula 2.4 is used to plug into multiple existing polygon model

generation algorithms to obtain the optimized parameter setting. As stated above,

polygons with smoother edges (lower number of edges and cavities) are preferred to

polygons with a complicated shape. Hence a polygon smoothing step is included in

the model generated in the first step, referred to pf , in order to reduce the number

of edges under certain constraints. Generally, the second step is defined as a fitness

function f2(p)[12]:

f2(p) = numEdges(p) (2.5)

where numEdges(p) represents the total number of edges in the polygon p. Moreover,

Fitness function Formula 2.5 should be minimized with the restrictions defined as

follows:

area(p) < area(pf)× (1 + th area), (0 < th area < 1) (2.6)
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where th area is the area increasing threshold,

numEdges(p) < numEdges(pf)× (1− th edges), (0 < th edges < 1) (2.7)

where th edges stands for the number of edges decreasing threshold. The polygon

model with a minimum number of edges whose area and number of edges meet

both constraints is considered as the fittest model. By adopting the two-step fitness

function method in Characteristic Shapes algorithm[13], a set of smooth polygons

can be generated without cavity and overfitting problems based on Complex8 dataset

as shown in Figure 2.11 and Figure 2.12.

Figure 2.11: Polygons Generated for Complex8 Dataset at First Step

Figure 2.11 depicts the polygon group generated after the first fitness function,

and Figure 2.12 illustrates the result after the smoothing process that occurs at

the second step. It is obvious that the polygons smoothed by the second fitness

function contain fewer edges while keeping the area increases less than the threshold.

Thus, the existing polygon model generation algorithms work well with two fitness

functions, which ensure quality as well as effectiveness.
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Figure 2.12: Polygons Generated for Complex8 Dataset at Second Step

2.4 Polygon Distance Functions

Spacial datasets can be divided into point spatial datasets, trajectory spatial datasets,

and polygonal datasets. Points can be easily represented by using longitude and lati-

tude, yet trajectory and polygonal datasets are more complicated in nature. Further-

more, it is very common that several spatial objects lie inside the same region that is

shared by one or two polygons, e.g. rivers or bridges cross the lakes or small roads cut

through highways. Therefore, it is essential to represent spatial objects accurately in

order to do further analysis. Generally, spatial objects are represented by both spa-

tial and non-spatial attributes that comprehensively describe spatial structure and

organization information. The spatial structure usually includes the information re-

lated to geography knowledge, for example location, shape, height, etc. On the other

hand, non-spatial attributes describe other information of the spatial object includ-

ing age, texture, category, etc. Dissimilarity function, also called distance function,

is used for measuring the difference or distance between two polygons along with the

problems associated with their use. There are many existing dissimilarity functions
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particularly designed for polygonal models that take both spatial and non-spatial

attributes into account, and they will be introduced in the following paragraphs.

1. Centroid Distance: because a polygon has complex shape, the simplest way

to approximate a polygon object is to represent each polygon as a single rep-

resentative point. Hence, the distance between two polygons is the distance

between two representative points. Figure 2.13 shows the distance between

polygon P1 and P2 by using centroid distance function. The centroids are

calculated based on Formula 2.2 and Formula 2.3. However, it is not very ef-

fective to use centroid distance function in this situation because the extent

of the polygons is ignored by centroid approximation. Moreover, it makes this

case even worse if the centroid is outside of the polygon.

Figure 2.13: Centroid Distance Function

2. Minimum Bounding Rectangle Distance: the minimum bounding rectan-

gle of a polygon can be used for approximating the shape of the polygon object.

This distance function finds the distance between two polygons by using the

distance between two minimum bounding rectangle. Specifically, the distance

between two rectangles is the distance between the centers of two rectangles.

Unfortunately, drawbacks exist with the centroid distance function that also

limit the efficiency of minimum bounding rectangle distance functions due to
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the ignorance of polygon extents.

3. Separation Distance: given two polygons P1 and P2, the distance d can be

defined by the separation distance as defined by Formula 2.8

d = min{d(Q1, Q2)} (2.8)

where Q1 and Q2 are the points set for polygon P1 and P2 respectively. From

Formula 2.8, the distance between two polygons is determined by the minimum

distance between any pair of points in P1 and P2. This distance function solves

the bottlenecks of centroid distance function and minimum bounding rectangle

distance by taking the extents of the polygons into account. However, it is not

quite satisfactory for geospatial application because the distance will be zero

even if two polygons share a point. As in Figure 2.14, the distances between P1

Figure 2.14: Separation Distance Function[14]

and P2, and P2 and P3 are zero, based on the definition of separation distance.
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Thus, the distance between P1 and P3 should be zero based on the transitive

relationship. However, it is obvious that P1 and P3 are separated and do not

share a border in Figure 2.14. Hence, the separation distance function does

not work well among adjacent polygon models.

4. Min-Max Distance: another way to measure the distance between polygon

models is to find the maximum or minimum distance between each pair of

vertices of polygons[14].

Figure 2.15: Separation Distance Function[14]

Several distance measurements are shown in Figure 2.15(a) including: separa-

tion distance (a), minimum distance between vertices (b), maximum distance

between vertices (c), and centroid distance (d). The Min-Max distance b and c,

violates the intuitive distance measurement in the geospatial application, caus-

ing confusion and inaccurate results. Moreover, the Min-Max distance function

can not take the polygon shape into account as shown in Figure 2.15(b). In

other words, the shortest and longest distance between two polygons (shown

in red and blue respectively) remain the same as long as the specific vertices

are fixed. Therefore, it is not feasible to use the Min-Max distance function in

spatial datasets as the shape of the objects is very important.
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5. Hausdorff Distance: Conventionally, a polygon object is represented by a

set of points. In order to overcome the drawbacks of previously stated distance

functions, the Hausdorff distance function has been proposed. It measures the

distance between two sets of points A and B by using Formula 2.9.

h(A,B) = max
a∈A

(min
b∈B

d(a, b)) (2.9)

where a and b are points sets of A and B, and d(a, b) is the distance between

two points a and b. Based on this defined formula, the distance between two

polygons is determined by the maximum distance of a point in A to the nearest

point in B. Generally, the centroid distance function usually performs well for

convex polygon objects; however the Hausdorff distance function gives a more

accurate distance between concave polygons, as can be seen in the second and

third examples in Figure 2.16. The distance will often be underestimated or

overestimated if the centroid of the polygon falls outside of the area of the

polygon. In comparison, the Hausdorff distance Dh gives a more accurate

solution than any of the discussed distance functions so far.

Figure 2.16: Hausdorff and Centroid Distance Comparison[14]

6. Fréchet Distance: The Féchet distance function is intuitively defined by
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imagining that a dog and its handler are walking on their respective polygon

boundaries. Although the speed of the walking is adjustable, both can not go

backward. Therefore, the Fréchet distance between these two polygon bound-

aries is defined as minimal length of any leash necessary for the dog and the

handler to move from the starting points of the two curves to their respective

endpoints. Let S be a metric space. A curve A in S is a continuous map from

the unit interval into S. Let A and B be two given curves in S. Then, the

Fréchet distance between A and B is defined as the infimum over all reparam-

eterizations α and β of [0, 1] of maximum over all t ∈ [0, 1] of the distance

in S between A(α(t)) and B(β(t))[15]. In mathematical notion, the Fréchet

distance F (A,B) is:

F (A,B) = inf
α,β

max
t∈[0,1]

{d(A(α(t)), B(β(t)))} (2.10)

where d is the distance function of S. Because the Fréchet distance function

takes the flow of two curves into account, it provides a better measurement

of similarity for curves over the Hausdorff distance function. However, it is

important to mention that the Fréchet distance function is used for shape

matching instead of measuring the geographic distance between two polygons

in spatial data mining applications. The Fréchet distance function has been

shown to have a better performance than Hausdorff distance function in shape

measurement.
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2.5 Related Work

Work in[16, 17] proposed a region discovery framework based on a fitness function

to maximize. The framework adapts four representative clustering algorithms, ex-

emplifying prototype-based, grid-based, density-based, and agglomerative clustering

algorithms to optimize the fitness function. The fitness function is defined accord-

ing to the application, and the goal is to model the interestingness of a region.

Other works find uniform regions for spatial regression[18, 19] by using quite differ-

ent methods. Both approaches partition the space into regions related with different

regression functions. Uniformity in this work is associated with a set of points shar-

ing the same or a similar relationship between a dependent variable and a set of

independent variables.

Joshi et al.[20] proposes a dissimilarity function for clustering geo-spatial poly-

gons. The proposed dissimilarity function takes into account different characteristics

of the polygon separated in different groups: non-spatial attributes, intrinsic spatial

attributes, and extrinsic spatial attributes. The dissimilarity function computes the

dissimilarity between polygons as a weighted function that computes the distance

between two polygons in the different attribute spaces. This approach is different

from our approach, which supports plug-in interestingness functions that allow as-

sessing cluster quality using non-distance-based interestingness measures. Moreover,

our approach generates clusters which are contiguous in the subspace of the spatial

attributes.

The topic discovery approach[2, 21] to identify urban regions has gained some

popularity recently. The idea of this approach is to “learn” popular signatures,
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called topics, from small sub-regions of a city. Then the next regions that have a

strong association with a single or a mixture of topics are identified. There are two

major differences between our approach and the topic discovery approach. Firstly,

our approach is supervised based on a domain expert’s notion of uniformity, which

has to be expressed by a plug-in interestingness function. But popular signatures are

identified by an unsupervised topic discovery approach in the other approach. Sec-

ondly, the topic discovery approach requires an apriori given partitioning of the city

as an input. However our approach uses spatial clustering algorithms to determine

such a partitioning which is optimal with respect to a given notion of uniformity. For

example, the popular signature clustering approach that was proposed in this paper

directly identifies the scope of a particular popular signature, which is the union of

contiguous spatial clusters matching this signature.
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Chapter 3

CLEVER

3.1 CLEVER

Before the discussion of discovering uniform regions in the next chapter, we need

a spatial clustering algorithm that is capable of finding contiguous spatial clusters

maximizing a plug-in reward function, which captures a particular notion of unifor-

mity. A spatial clustering algorithm named CLEVER[22, 23] will be adapted for the

task to find uniform clusters in spatial datasets. As the algorithm relies on comput-

ing distances between polygons when used to cluster buildings, we first introduce the

distance function we use for this purpose, before discussing CLEVER in more detail.

CLEVER is a prototype-based, k-medoid-style[24] spatial clustering algorithm

which employs randomized hill climbing to maximize a plug-in reward function. Re-

ward functions are assumed to have the following form when assessing the quality of
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a clustering X = {c1, . . . , ck}:

q(X) =
∑
c∈X

reward(c)β =
∑
c∈X

i(c)× |c| (3.1)

where |c| denotes the number of objects in a cluster c, and i(c) is an interesting-

ness function which assesses how interesting the cluster c is. Three different such

interestingness functions will be introduced in Chapter 4. Moreover β ≥ 1 is a

parameter which determines how much reward is put on cluster size; β indirectly

controls the numbers of clusters in X, as cluster size is rewarded using a non-linear

function. Usually fewer clusters are obtained when larger values for β are used. The

reward function assesses the quality of a clustering as the sum of the rewards of the

individual clusters; The pseudo-code of CLEVER is given in Algorithm 1.

Input: Dataset O, k′, neighborhood-size, p, q, β, object-distance-function d,
imax
Output: Clustering X, fitness q(X), rewards for cluster in X
Algorithm:

1. Create a current solution by randomly selecting k′ representatives from O.

2. If imax iterations have been done terminate with the current solution.

3. Create p neighbors of the current solution randomly using the given
neighborhood definition.

4. If the best neighbor improves the fitness q, it becomes the current solution. Go
back to step 2.

5. If the fitness does not improve, the neighborhood of the current solution is
re-sampled by generating p× q more neighbors. If re-sampling does not lead to
a better solution, terminate; otherwise, go back to step 2 replacing the current
solution by the best solution found by re-sampling.

Algorithm 1: CLEVER algorithm pseudo-code

CLEVER maintains a current set of representatives which are objects in the

dataset and forms clusters by assigning the remaining objects in the dataset to the
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closest polygon in the representative set. It samples p solutions in the neighborhood

of the current representative set by adding, deleting, and replacing representatives.

This process continues as long as a better clustering with respect to q(X) is found.

The algorithm begins its search from a randomly created set of k′ representatives,

where k′ is an input parameter of the algorithm. CLEVER has recently been gener-

alized to cluster complex spatial objects, such as lines and polygons.

To give an example let us assume we cluster a dataset O = {o1, . . . , o200} with k′

set to 3. In this case, the algorithm starts with a random representative set, let us say

{o3, o9, o88}, and forms clusters by assigning the remaining 197 objects to the closest

representative which takes O(k · (n − k)), where n is the number of objects in the

dataset and k is current number of representatives. Next, the algorithm samples p

new clusterings in the neighborhood of the current solution by inserting, deleting, or

replacing representatives. For example, assuming p is 3, the algorithm might create

clusterings for the representative sets {o3, o9, o88, o92},{o3, o88}, and {o3, o17, o88}, all

of which have been obtained by a single insertion/deletion/replacement applied to

the current representative set {o3, o9, o88}. Next, the algorithm computes q(X) for

these three clusterings, and if the best of the three clusterings improves the cluster-

ing quality, its representative set becomes the new current solution; otherwise, the

algorithm terminates. In general, assuming that CLEVER runs for t iterations its

complexity1 is of the order of O(t · p · k · n) with t and k usually being much smaller

than n.

1The analysis of the complexity of CLEVER is further complicated by the fact that the number of
representative/clusters change between iterations; that is, the algorithm might start with k′ = 100
clusters but the final clustering might contain 83 or 113 clusters. That is, CLEVER seeks for
“optimal” number of clusters with respect to the dataset O and the fitness function q.
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3.2 DCLEVER

As CLEVER needs to search the neighborhood intensively, distance computing be-

comes very expensive if CLEVER is applied on complex spatial objects. In order to

address this problem, a variant of CLEVER — called DCLEVER — is created to

avoid redundant distance computation. Hence, DCLEVER works like CLEVER ex-

cept that CLEVER computes distance between objects on the fly, whereas DCLEVER

first reads the entries in the distance matrix.

DCLEVER requires a distance matrix D as an additional input parameter. The

distance matrix has to be created in a pre-processing stage. The pre-processing is

a stand-alone computing procedure that takes a dataset O as input, and produces

distance matrix D as output. The pseudo-code of distance computing procedure is

shown in Algorithm 2.

Input: Dataset O, object-distance-function d
Output: Distance matrix D
Algorithm:

1. Compute the distance between objects based on input distance function d.

2. Store the distance value in an upper triangular matrix D.

Algorithm 2: Distance computing procedure pseudo-code

In step 2, the distance matrix is generated as an upper triangular matrix. As

in the case study that will be introduced in Chapter 4, the number of objects in

spatial data mining problem is huge. By storing the distance matrix in upper tri-

angular matrix, DCLEVER has lower memory consumption and shorter executing

time compared to full distance matrix loading strategy.
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3.3 Experiment

In this section, original CLEVER and DCLEVER are compared based on the earth-

quake dataset. The dataset contains 2000 objects with three attributes: longitude,

latitude, and earthquake depth. The interestingness function used in the experiment

rewards high variance with respect to earthquake depth, which means CLEVER and

DCLEVER will maximize the cluster’s depth variance. Hausdorff distance function

is used in this experiment to compute the distance between different objects, other

parameters are set as in Table 3.1.

Table 3.1: Experiment Parameter Setting.
p q β k′ η Threshold

20 20 2.8 8 2.0 1.2

CLEVER and DCLEVER are run separately under the same initialization and

sampling rate. In order to load the matrix into the memory, DCLEVER takes 48.1s

to load the distance matrix that is 16MB from the hard drive. Table 3.2 lists the

computation time comparison between CLEVER and DCLEVER for 5 different runs.

Table 3.2: CLEVER and DCLEVER Comparison.
Run No. of

Iterations
No. of

Clusterings
No. of

Regions
CLEVER DCLEVER

1 26 1660 15 6.1s 48.1s+ 3.9s
2 30 2480 10 8.3s 48.1s+ 5.7s
3 29 3500 7 8.8s 48.1s+ 6.2s
4 40 2220 12 9.1s 48.1s+ 6.5s
5 23 1770 14 5.7s 48.1s+ 4.1s

Because DCLEVER eliminates the demands of distance computation that oc-

curs in CLEVER by pre-processing, it is easier to apply expensive distance functions

in DCLEVER such as Hausdorff distance function, Féchet distance function, etc.,
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because DCLEVER computes the distance matrix in a pre-processing procedure.

Moreover, DCLEVER increases the computation performance by 20% compared to

the original CLEVER algorithm as in Table 3.2 although this does not compensate

for 48.1s, which is the distance matrix loading time of DCLEVER. As the compu-

tation time of CLEVER is positively correlated with the number of iterations and

clusterings, a large number of iterations makes DCLEVER more attractive than

CLEVER, e.g. when the number of iterations exceeds 700. However, the loading

time of distance matrix for DCLEVER increases following O(n2) as the number of

objects n increases, which kills DCLEVER with big datasets.
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Chapter 4

Identifying Uniform Regions in a

City

4.1 Problem Definition

Cities all around the world are in constant evolution due to numerous factors, such

as fast urbanization and new ways of communication and transportation. However,

the evolution of the composition of a city is difficult to follow and analyze. Since

understanding the evolution of cities is the key to intelligent urbanization, there is

a growing need to develop urban planning and analysis tools to guide the orderly

development of cities, as well as to enhance their smooth and beneficiary evolution.

When studying urban evolution, the first challenge is to collect, extract, and

structure data so that they can be stored in a spatial-temporal database, storing

very detailed information about a city’s spatial composition at different times. As

analyzing city evolution using the raw data is not feasible, the second challenge is
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to summarize the composition of a city at a particular point of time. In particular,

in this step urban patches of a city are identified and annotated with signatures

which are with summaries of their characteristics. The third challenge is to analyze

and mine the obtained data to extract interesting knowledge on how a city changes

with respect to time. The last challenge is to develop simulation tools which aim

at simulating a city’s evolution based on rules which have been learnt from past

experience.

Spatial clustering groups the objects in a spatial dataset and identifies contiguous

regions in the space of the spatial attributes. Spatial clustering algorithms can be

used for hotspot discovery, change analysis, and data summarization. One important

spatial clustering task is to create a partitioning of a given space into uniform regions

based on a domain experts notion of uniformity, such as partitioning the space of a

city into different urban patches. However, traditional clustering algorithms are not

suitable for this task as they minimize distance-based objective functions, whereas

assessing uniformity relies on non-distance based uniformity measures, such as purity,

entropy or variance with respect to a continuous non-spatial attribute. In this work,

we develop novel spatial clustering algorithms which identify uniform regions in a

spatial dataset by maximizing a plug-in measure of uniformity.

So far we did not clearly discuss what distinguishes a uniform region of a city

from one that is not uniform. In general, we assume that distribution signatures are

used to characterize the objects that belong to an urban patch. Examples of such sig-

natures include histogram-style building type signatures which give the proportions
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of different building types that occur in an urban patch, such as 15% are commer-

cial buildings and 85% are residential buildings. Moreover, the similarity between

different building type signatures can be easily assessed: for example, we could take

the Euclidian distance between the vectors associated with different building type

signatures. More formally, we are interested in obtaining spatial clusters using the

following maximization procedure:

Input: a dataset O containing spatial objects belonging to p classes
Task: Find a spatial clustering X = {C1, . . . , Ck} of O such that

(1) Ci ⊆ O for i = 1, . . . k

(2) Cp
⋂
Cq = ∅

which maximizes the following objective function ϕ(X):

ϕ(X) =
∑

C∈X and C′∈X and neighboring (C,C′)

d(s(C), s(C ′))/b (4.1)

where b is the number of pairs of neighboring clusters in X, s(C) denotes the sig-

nature of cluster C and d is a distance function which assesses the similarity of two

signatures.

In summary, we are interested in obtaining a spatial clustering in which the

average Euclidian distance between the signatures of neighboring clusters is as large

as possible. It should be emphasized that only distances between neighboring clusters

are considered in the definition of ϕ. In order to find uniform partitions, we can devise

a search procedure which maximizes the disagreement of neighboring clusters with

respect to their signatures.

However, developing a spatial clustering algorithm which directly maximizes

ϕ(X) is quite challenging, as this would require to identify and to keep track of

38



which spatial clusters are neighboring in order to compute ϕ(X), which leads to

quite significant clustering overhead, and to theoretical problems1. Consequently, we

are using different heuristics to find uniform spatial clusters without having to deal

with the question which clusters are neighboring, and rely on approaches which use

simplified versions of ϕ(X) instead; in particular:

1. We use prototype-based spatial clustering algorithms that are guaranteed to ob-

tain contiguous spatial clusters without the necessity of knowing which clusters

are neighboring. These algorithms maximize reward functions which encourage

the merging of similar neighboring clusters and the splitting of non-homogeneous

clusters if it leads to a significant increase in the total reward.

2. We reformulate the above optimization task in two ways:

i. We make the problem supervised, by using interestingness functions which

assess the quality of spatial clusters based on uniformity measures which

capture a domain expert’s notion of uniformity. Moreover, as we will see later,

those uniformity measures assume that certain signatures are more desirable

than other signatures. Two such interestingness functions will be introduced

in Sections 4.2.1 and 4.2.2.

ii. Instead of comparing the signatures of all neighboring clusters — as ϕ does —

1If prototype-based clustering algorithms, such as K-medoids or K-means are used, a Voronoi
tessellation can be used to derive cluster models from the set of cluster prototype which are convex
polygons; unfortunately, it is not computationally feasible to compute Voronoi cells in higher dimen-
sional spaces, as the complexity of the algorithm is exponential with respect to the dimensionality
of the dataset. Consequently, it is only feasible to compute the Voronoi tessellation in 1D, 2D, and
for small datasets in 3D. For density-based clustering algorithm the situation is even worse; for
example, we are not aware of any methods which are capable of producing cluster models from a
DBSCAN clustering.
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we employ an approach which identifies a set of popular2 signatures and then

uses those signatures to annotate clusters. In particular, this approach seeks

for a spatial clustering which maximizes the match of a cluster’s signature

with the closest signature in the popular signature set, as will be explained

in Section 5.2.3.

4.2 Interestingness Functions for Uniform Regions

In this section, two interesting functions are described, which will be used later to

identify urban patches based on two notions of uniformity: uniformity with respect

to building sizes and uniformity with respect to proportions of building types.

4.2.1 Purity

The purity interestingness function is used for analyzing interestingness with respect

to a categorical non-spatial attribute. Purity interestingness i(r) of a cluster r is

computed using the following formula:

i(r) =


0 maxcpc(r) < th

(maxcpc(r)− th)η otherwise

c ∈ cl(O) (4.2)

where cl(O) is the set of classes in the dataset O, pc is a function that computes the

proportion of a class c in cluster r, η > 0 is the scaling factor, and th > 0 is the

threshold. For example, assuming that th = 0.4, η = 1, and r contains examples of

2Popular signatures are distribution characteristics which occur frequently in contiguous sub-
spaces of a spatial dataset.
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3 classes distributing (0.6, 0.3, 0.1): i(r) = 0.6 − 0.4 = 0.2 for cluster r. In general

when using the purity interestingness function, we are interested to obtain clusters

which are dominated by instances of a single category.

4.2.2 Low Variance Interestingness Function

The low variance interestingness function assesses the variance of a continuous at-

tribute in a cluster; the interestingness of the cluster c is inversely proportional to

the variance of the continuous attribute in the cluster:

i(r) =



0 var(c) > var(D)

1 var(c) = 0

min(1, (log100var(O))/var(c))η otherwise

(4.3)

where var(c) is the variance for a continuous attribute in cluster c, var(O) is variance

of the continuous attribute in the dataset O, and η > 0 is the scaling factor. For

example, assuming η = 2 and the variance of the continuous attribute in cluster c is

4% of its variance of the dataset, we obtain:

i(c) = (log10025)2 = 0.0906

In general, if this interestingness function is used, low variance clusters are obtained,

somewhat similar to regression trees.
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4.2.3 Discovering Uniform Regions Using Popular Signa-

tures

Analyzing change in urban environments allows identifying new trends in a city’s

composition, helps assessing if certain policies have been successful, and produces

valuable knowledge to predict how a city will evolve in the future. However, change

analysis for urban data is challenging, as it requires aggregation and summarization

of the data to be useful for city planners and scientists. There are many ways to

aggregate and summarize urban data. Past work[2, 25, 21] in this area relies on

identifying urban patches which represent homogeneous areas in a city and then

analyze how the scope and signature of urban patches change.

4.2.3.1 Features of the Proposed Urban Patch Analysis Framework

The urban patch analysis framework proposed in this thesis relies on:

1. Polygonal spatial clustering algorithms, which support plug-in interestingness

functions to capture different notions of uniformity, are used to identify urban

patches.

2. Histogram-style signatures are used to characterize the distribution of spatial

clusters; in general, signatures are normalized vectors. Different types of sig-

natures are used for different measures of interestingness.

3. Polygons are used as models of urban patches and concave hull algorithms are

used to approximate the scope of an urban patch.
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4. Evolution is analyzed by comparing how the scope and signatures of spatial

clusters change.

5. Three change analysis approaches are proposed:

• The first approach applies a spatial clustering algorithm with a plug-in

uniformity measure and then directly analyzes how the scope and signa-

tures of spatial clusters change.

• The second approach, which is advocated in[2], clusters the signatures

and replaces individual region signatures by popular signatures; popular

signatures are signatures which occur frequently in contiguous subspaces

of a city. Finally, change is analyzed by analyzing how the scope of each

popular signature changed.

• The third approach is an improvement of approach b. Here a spatial

clustering algorithm is used to identify regions which exhibit particular

popular signatures.

Determining the scope of a spatial cluster is a challenging task. The easiest ap-

proach is to compute the convex hull of the spatial objects in the cluster, but the

obtained convex hull polygon is usually not very tight, frequently enclosing empty

spaces, as can be seen in the scope visualizations in Figure 4.1, which uses the con-

vex hull as a cluster model. Alpha shapes[26] and the concave hull algorithm[27]

generalize the convex hull algorithm, allowing for the generation of much tighter

polygons which might contain holes; both algorithms recently gained popularity and

became part of spatial extensions of popular database systems, such as Postgres
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Figure 4.1: Example of a Spatial Clustering of Buildings Annotated by Popular
Signatures

and Microsoft SQL Server. However, in cases that the density in spatial clusters

is not uniform, these methods are generating less than perfect polygons; recent

research[12, 28] tries to enhance these methods to deal with varying densities. In our

proposed methodology we use the concave hull algorithm for computing the scope

of spatial clusters; we believe this approach is more effective than using the convex

hull algorithm, as it wraps a much tighter line around a set of polygons, resulting in

less overlap with respect to the scope for neighboring clusters.

4.2.3.2 Distribution Signatures Used in the Thesis

Basically, we use two kinds of signatures in this thesis which correspond to two

interestingness functions introduced earlier. The first type of signature captures the

distribution of a continuous attribute in a cluster; in particular the following 7-value

signature is used in the experiments:
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Let µ be the mean value for building size in the datasets and σ the standard

deviation for the observed building sizes.

1. Mean value for building size in the cluster, reported as a z-score based on (µ, σ)

2. Standard deviation sC for building size in the cluster, reported as:

min(1,max(−1, log10(sC/σ))) ∗ 0.5 + 0.5

3. Proportion of buildings whose size is below µ− σ

4. Proportion of buildings whose size is above µ− σ and below µ− 0.25 ∗ σ

5. Proportion of buildings whose size is above µ− 0.25 ∗ σ and below µ+ 0.25 ∗ σ

6. Proportion of buildings whose size is above µ+ 0.25 ∗ σ and below µ+ σ

7. Proportion of buildings whose size is above µ+ σ

For example, the signature (1, 0.5, 0, 0, 0, 0.6, 0.4) indicates that the mean value of

the continuous attribute in cluster c is exactly one standard deviation larger than the

mean value of the continuous variable in the entire dataset; its variance is identical

with the variance in the dataset; 40% of the values are higher than the mean value

of the dataset plus one standard deviation and the remaining 60% of the values of

the continuous attribute are between 0.25 and 1 times of standard deviations plus

the mean value of the continuous variable in the dataset.

A second type of signature is used to analyze the decomposition of a city with

respect objects belonging to p(p > 1) categories. In this case, signatures S(V ) =

(sl, . . . , sp) with sl+· · ·+sp = l give the proportions of the examples in V belonging to
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the p categories in a cluster. For example, the signature (0.6, 0, 0, 0, 0.4, 0) indicates

that 60% of the objects belong to the first category, and 40% of the objects belong

to the fifth category.

Urban patch discovery and change analysis using these two signatures will be

further discussed in the experimental evaluation section of this thesis.

4.2.3.3 Characterizing Spatial Clusters Using Popular Signatures

If urban patches are identified using spatial clustering in conjunction with the purity

interestingness function, we could identify regions that are dominated by a single

category, such as industrial areas with a large percentage of industrial buildings.

However, many urban patches are characterized by particular proportions of class

densities without a dominating class. For example, collective houses usually have

a lot of garages next to them and these kinds of regions cannot be discovered by

using a spatial clustering algorithm in conjunction with the purity interestingness

function. This is the motivation for the following alternative approach which seeks

to find regions which exhibit popular building type signatures which occur frequently

in contiguous subspaces of a city. In general, we assume that urban patches serving

different functions to the citizen of a city are characterized by significantly different

building-type signatures, whereas different regions serving the same or a similar

function, such as two industrial areas, exhibit similar building signatures. In general,

when using popular signature clustering, the quality of a clustering X with respect

to a signature set P is measured using the following quality measure:

Quality(X,P ) =
∑
c∈X

(
|c|
|X|

) ∗ d(sig(c), closest(sig(c), P )) (4.4)
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where X = c1, . . . , ck denotes a spatial clustering and sig(c) denotes the signature

of a clustering c; P is a set of popular signatures; closest(s, P ) is a function which

computes the closest signature in P to s; d is the Euclidian distance function; and

‘||’ computes set cardinality, e.g. {a, b, c} = 3.

In summary, the quality of X with respect to P is computed as the weighted

sum of the Euclidian distance of each cluster signature to its nearest signature in P .

Each distance is weighted by the number of objects in the cluster. The Euclidian

distance of a cluster signature to its closest signature in P receives a higher weight

if this cluster contains more objects. As the closest signature in P will be used as a

summary of each cluster, it is desirable that this signature in P is close to the cluster

signatures; therefore, the Euclidian distance between those two signatures assesses

the error in this approach.

Next, we introduce an algorithm to identify regions which exhibit popular sig-

natures based on the quality measure introduced in the previous paragraph. It first

collects signatures using a sampling approach; second, from the collected signatures

it identifies a set of popular signatures using a clustering approach; third, it uses

a spatial clustering algorithm to identify regions which exhibit one of those popu-

lar signatures; finally, a color display is created from the spatial clustering result

in which the closest popular signature for each region is represented in a different

color. The four procedures to identify and visualize regions which exhibit popular

signatures are described in more detail:

Procedure 1: Extract a large number of signatures from randomly generated spatial

clusters.

47



Step 1: randomly picking k representative objects in the dataset.

Step 2: Obtain k spatial clusters by assigning the other objects in the dataset to

the closest of the k representatives.

Step 3: Compute the signatures for each cluster.

Step 4: Repeat step 1 to 3, also varying k, until a large set of signatures S is

obtained.

Step 5: Remove outliers from S.

Procedure 2: Generate set of popular signatures P using a clustering algorithm to

cluster the signatures in S.

Step 1: Cluster the signatures into a small number of (e.g. 5-15) clusters.

Step 2: Return the centroids of each cluster as the set of popular signatures.

Step 3: Return the best popular signature set P.

Procedure 3: Generate spatial clustering for each dataset associating popular sig-

natures with obtained clusters. To obtain spatial clusters which are annotated by

popular signatures, apply CLEVER to each dataset using the following interesting-

ness function i(c):

i(c) =


0 d(sig(c), closest(sig(c), P )) > D

D − d(sig(c), closest(sig(c), P ))θ otherwise

(4.5)

Procedure 4: Generate the color map of each clustering; the concave hull of each

cluster is colored based on its closest signature in {s1, . . . , s7}; e.g. if s1 is the

closest signature in {s1, . . . , s7} to cluster 1, cluster 1 is colored red, if s2 is the

closest signature in {s1, . . . , s7} to cluster 2, cluster 2 is colored in orange.
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4.3 Concave Hull Algorithm

In general, determining the scope of a spatial cluster is a challenging task. The goal is

to create a spatial representation of a set of spatial objects in order to easily visualize

it on the plane. One of easiest approaches is to compute the convex hull of the spatial

objects in the cluster. However, the obtained convex hull polygon is usually not very

tight and frequently enclosing empty spaces. In our proposed methodology, we used

the concave hull algorithm for computing the scope of spatial clusters; we believe

this approach is more effective than the convex hull algorithm, as it wraps a much

tighter line around a set of spatial objects, resulting in less overlap with respect to

the scope of neighboring clusters.

As we will introduced in the next chapter, the case study we conducted in this the-

sis adopts the concave hull functions in open-source Geographic Information Systems

(GIS) platform - OpenGIS. The function provides the creation of concave polygon

by the control of two main parameters — the compression parameter 0 ≤ c ≤ 1 and

boolean hole control value h. The higher value of c gives faster processing speed but

looser defined concave hull shape as output. The hole control value determines if the

output hull shape can have hole inside if possible. For the experiments in Chapter 5,

we set parameters c = 0.5 and h = ture for better performance and visualization.
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Chapter 5

Case Study: Clustering Building

Dataset

5.1 Identifying Uniform Regions in City

Figure 5.1 gives an example spatial clustering result in which buildings of different

types (e.g., schools and industrial buildings) of a city are clustered.

The proposed methodology characterizes spatial clusters using their scope and

signature. The scope of a spatial cluster captures the model of a cluster. In our

approach, we use polygons as models for spatial clusters as depicted in Figure 5.1;

that is, if a spatial object is inside the polygon which describes the scope of a spatial

cluster, it belongs to that spatial cluster. Secondly, the proposed methodology uses

signatures to annotate spatial clusters. Signatures summarize the distribution of the

objects that belong to a cluster. As the clusters in the example contain buildings
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#0 71 (3%, 1%, 92%, 1%, 3%, 0%)

#1 383 (83%, 2%, 10%, 2%, 3%, 0%)

#2 17 (12%, 0%, 24%, 0%, 65%, 0%)

#3 258 (92%, 2%, 2%, 0%, 3%, 0%)

#4 222 (37%, 15%, 4%, 14%, 27%, 3%)

#5 41 (10%, 12%, 0%, 0%, 76%, 2%)

#6 129 (90%, 3%, 1%, 2%, 1%, 4%)

#7 120 (89%, 0%, 2%, 1%, 8%, 0%)

#8 293 (90%, 3%, 1%, 2%, 4%, 0%)

#9 270 (90%, 3%, 1%, 3%, 1%, 1%)

#10 151 (97%, 0%, 0%, 0%, 3%, 0%)

#11 84 (86%, 8%, 4%, 0%, 2%, 0%)

Figure 5.1: Example of a Spatial Clustering of Buildings Belonging to Different
Building Types

belonging to different types, building type histograms are used as signatures to an-

notate spatial clusters. In our case study, there are six building types: single house,

garages, industrial buildings, light buildings, collective buildings, and schools. For

example, the leftmost cluster is identified as cluster 0 containing 71 buildings, and

its building type signature is (3%, 1%, 92%, 1%, 3%, 0%), indicating that 3% of the

buildings in cluster 0 are single houses, 1% are garages, 92% are industrial buildings,

1% are light buildings, 3% are collective houses, and there are no schools in this

spatial cluster. Moreover, the similarity between different building type signatures

can be easily assessed: for example, we could use the Euclidian distance between the

vectors associated with different building type signatures to assess the similarity of

the contents of two spatial clusters.
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Since understanding the evolution of cities is the key to intelligent urbaniza-

tion, there is a growing need to develop urban planning and analysis tools to guide

the orderly development of cities, as well as to enhance their smooth and beneficiary

evolution. However, it is a big challenge for urban planners to come up with method-

ologies to analyze how cities are changing. Partitioning a city into uniform regions

facilitates this task, as change can be analyzed based on higher level of granularity

instead of on the raw data. A uniform region of a city will be called urban patch

from now on. In this section, we present a set of experiments which use the method-

ology, which was introduced in Chapter 2, to extract urban patches from a building

dataset. As buildings are represented as polygons, we use Hausdorff distance[29] to

compute the distance between buildings in the experiments.

Table 5.1: Building Size Statistics
Min Max Mean Standard

Deviation

2008 9.89 10384.34 256.56 511.18
5%

Outliers
Removal

49.77 1148.75 201.01 167.19

Table 5.2: Building Size Signature with Cluster Data for the First 6 Clusters from
Clustering Result in Year 2008

Cluster
ID

Mean Standard
Deviation

µ−1∗σ µ−
0.25 ∗ σ

µ+
0.25 ∗ σ

µ+1∗σ µ+1∗σ No. of
Buildings

0 −0.17 0 0% 11% 88% 1% 0% 122

1 0.15 0.35 0% 14% 48% 31% 8% 65

2 2.70 0.73 0% 0% 0% 19% 81% 16

3 0.44 0.46 0% 8% 37% 47% 7% 59

4 −0.21 0.11 0% 54% 42% 4% 0% 128

5 −0.21 0.02 0% 34% 65% 1% 0% 74

In this context, metrics for evaluation the homogeneity of a group buildings are
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very important as they impact how a city is partitioned into urban patches charac-

terized by signatures. In this section, we report the results of a series of experiments

in which the CLEVER spatial clustering algorithm is used in conjunction with the

three uniformity metrics, introduced in Chapter 2, to obtain interesting, uniform

regions for the city of Strasbourg, France. In particular, we use a spatial building

dataset of the city of Strasbourg, France, describing the buildings in a neighborhood

of the city in 2008. In the frame of the GeOpenSim project, a temporal topographic

database of the city of Strasbourg has been created[30].

The goals of this experimental evaluation are as follows:

1. Demonstrate how the proposed methodology works for a set examples.

2. Shed light on the computational challenges associated with finding uniform regions

in spatial datasets.

3. Assess the benefits of the methodology for urban planners.

4. Assess what the spatial clustering algorithm CLEVER is capable to accomplish

and what its limitations are-such an analysis is novel as the past two paper on

CLEVER just introduced its pseudo code of CLEVER[22], and introduced parallel

versions of CLEVER using OpenMP and Cuda[23].

5.2 Experiments Results

5.2.1 Building Size Distribution Experiment

Table 5.1 gives a statistical summary with respect to building sizes for the 2008

building dataset, as well as the statistics after removing 2.5% of the largest buildings
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and 2.5% of the smallest buildings.

Table 5.2 summarizes a single building size distribution clustering result for the

2008 building dataset based on the signature definitions in Section 4.2. We only list

the signatures of the first six clusters instead of 34 in total due to space limitation.

These results were generated using CLEVER and low variance interestingness func-

tion for building size with θ = 2 and β = 1.001. The first column reports the average

building size using z-scores which were computed using µ = 256 and σ = 511, based

on the 2008 building size statistics. Columns 3-7 give the percentages of buildings

in different bins of a 5-bin building size z-score histogram, based on µ and σ. The

second column reports the cluster standard deviation in relationship to the dataset

standard deviation. Entries above 0.5 indicate that the cluster’s standard deviation

is the same or larger than the dataset’s standard deviation, whereas an entry of 0

indicates that the cluster’s standard deviation is 1/10 or less of the dataset standard

deviation. Each cluster represents an urban patch which ideally contains buildings

with similar building sizes, as the employed interestingness function rewards low

building size variance in a cluster.

In general, the data set is skewed with respect to building sizes as the minimum z-

score of the average building sizes in Table 5.2 column 2 is just −0.21, whereas cluster

2 has a z-score of 2.7. Although cluster 2 is uniform in that it contains 16 very large

buildings and no small buildings, its standard deviation is significantly above the

average standard deviation in the dataset. Another complication is that in some

parts of the city small buildings, particularly “small” garages, are collocated with

large commercial and apartment buildings; clusters 1 and 3 in Table 5.2 represent
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#0 122 (-0.17, 0, 0%, 11%, 88%, 1%)

#1 65 (0.15, 0.35, 0%, 14%, 48%, 31%)

#2 16 (2.7, 0.73, 0%, 0%, 0%, 19%)

#3 59 (0.44, 0.46, 0%, 8%, 37%, 47%)

#4 128 (-0.21, 0.11, 0%, 54%, 42%, 4%)

#5 74 (-0.21, 0.02, 0%, 34%, 65%, 1%)

Figure 5.2: Visualization of Building Size Clusters of Year 2008 in Table 5.2.

such mixed building size clusters as their histogram contains building sizes belonging

to four different bins. Finally, clusters 0, 4, and 5 in Table 5.2 are quite homogeneous

with respect to their building size, exhibiting a very low standard deviation. In

general, 30 of the obtained 34 clusters exhibit a building size standard deviation

that is lower than the dataset standard deviation. Figure 5.2 visualizes the scope of

the 34 building clusters of year 2008 with first 6 cluster signatures reported; it can

be seen that our clustering algorithm successfully identifies the urban patches with

similar building sizes. In the display, the first entry represents the cluster number,

followed by the number of objects in the urban patch, followed by its building size

distribution signature.
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5.2.2 Building Type Purity Experiment

There are six different building types in the dataset: single house, garage, commer-

cial building, light building, collective house, and school. In year 2008, 78% of the

buildings were single houses; commercial buildings were 7%; collective houses were

8%; 4% of the buildings were garages, and 3% of the buildings were light building;

finally, 1% of the buildings were schools. Building type signatures describe the char-

acteristics of each urban patch which can help domain experts to better understand

the composition of a city.

Figure 5.1 visualizes and lists the building type signatures of 12 clusters for the

year 2008; they were generated by CLEVER using the purity interestingness function

with th = 0.5, η = 2 and β = 1.2, as discussed in Chapter 4.2. Cluster 0 contains

92% commercial buildings; therefore, cluster 0 is labeled as a business urban patch.

Cluster 10 is a residential area because 97% of the buildings in cluster 10 are single

houses. There are 76% of collective houses in cluster 5, which indicates a living area

with a lot of apartment complexes. Both garages and schools constitute very small

percentages in the whole dataset, but garages and schools are more frequent in the

collective housing areas in clusters 4 and 5. Surprisingly they are not present in

cluster 2. Figure 5.1 verifies that our approach is able to identify contiguous urban

patches dominated by buildings of a single type.

5.2.3 Popular Building-type Signature Experiment

Popular building-type signatures describe compositions of urban patches which fre-

quently occur in different parts of a city. To obtain a set of popular signatures, we
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first randomly created 1000 small spatial clusters and extracted their building-type

signature. Next, we apply a distance-based outlier detection technique to remove

10% of the building type signatures as outliers — signatures were sorted by their

3-nearest neighbor distance to the other signatures in the set. Signatures with the

largest 3-nearest neighbor distance were removed from the signature set. Next, we

clustered the remaining signature set using K-means with different k values ranging

between 6 and 10 several times, and identified the clustering with the lowest squared

average distance of the objects in the dataset to the cluster centroid they belong to.

Finally, we extracted the centroids from the best clustering as popular signatures.

Table 5 lists nine popular building-type signatures that were obtained as the result

of this process. The building type distributions of the entire dataset are also given

for comparison. For example, signature S4 could be used to label a residence patch

since 99% of the buildings are single houses, whereas signature S7 is a mixed hous-

ing signature, describing an area where buildings of many building-types are mixed

together with a much higher density of garages and schools.

Table 5.3: Popular Building Type Signatures in 2008
Signature

ID
Single
House Garage

Commercial
Building

Light
Building

Collective
House School

S1 77% 3% 2% 2% 17% 0%
S2 87% 4% 1% 3% 4% 1%
S3 2% 6% 0% 0% 92% 0%
S4 99% 0% 0% 0% 0% 0%
S5 48% 1% 46% 3% 2% 0%
S6 4% 0% 96% 0% 0% 0%
S7 37% 22% 4% 1% 32% 4%
S8 62% 6% 13% 12% 4% 1%
S9 85% 1% 14% 0% 0% 0%

Dataset 78% 4% 7% 3% 8% 1%
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Table 5.3 summarizes a popular signature clustering result which was created

using CLEVER and the popular signature interestingness function with parameters

D = 0.13, θ = 2, and β = 1.005. We use 0.1 as the threshold for the Euclidian

distance of the cluster signature to its closest popular signature to indicate a good

match. 14 out of the 16 urban patches shown in Table 5.4 have good matches with

their popular signatures. Cluster 3 is quite unusual as it is dominated by light

buildings and is not close to any popular signature in Table 5.3 at all, which is

indicated by its very high Euclidian distance of 0.49 to its closest popular signature.

As it turns out there is a single, very small region in the city with a high density

of light buildings. As this signature occurs only in a single small area, it does not

belong to the popular signature set. This observation will be confirmed later in the

last experiment, discussed in Section 5.2.4.

Table 5.4: Popular Building Type Clustering Results for 2008
Cluster

ID
Single
House Garage

Commercial
Building

Light
Building

Collective
House School

No. of
Buildings

Closest
Signature

Distance

0 89% 4% 2% 0% 5% 0% 56 S2 0.04
1 75% 7% 4% 0% 13% 0% 69 S1 0.07
2 73% 8% 6% 2% 12% 0% 52 S1 0.09
3 29% 2% 9% 45% 15% 0% 55 S8 0.49
4 72% 6% 11% 1% 10% 0% 157 S1 0.13
5 88% 4% 2% 3% 5% 0% 199 S2 0.02
6 100% 0% 0% 0% 0% 0% 112 S4 0.01
7 44% 1% 46% 5% 4% 0% 100 S5 0.05
8 87% 4% 1% 3% 3% 1% 335 S2 0.01
9 85% 1% 13% 1% 1% 0% 320 S9 0.01
10 77% 5% 8% 0% 10% 0% 39 S1 0.09
11 77% 3% 1% 1% 17% 2% 198 S1 0.03
12 36% 20% 3% 4% 34% 4% 142 S7 0.05
13 99% 1% 0% 0% 0% 0% 121 S4 0.01
14 98% 2% 0% 0% 0% 0% 57 S4 0.02
15 89% 0% 0% 0% 11% 0% 27 S2 0.09

Figure 5.3 visualizes the spatial clusters summarized in Table 6 with their asso-

ciated popular signatures added. Different colors in the display are used to indicate
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S1

S2

S3

S4

S5

S6

S7

S8

S9

Figure 5.3: Visualization of 14 Clusters Summarized in Table 5.4 Annotated with
Their Popular Signature.

different signatures. Moreover, clusters whose signatures are not close to any pop-

ular signature, namely clusters 3 and 4 in Table 6, are not labeled with popular

signatures. Therefore, the display contains buildings shown in grey color which do

not belong to any cluster. We claim that such displays are very helpful for domain

experts as they facilitate identifying urban patches in different parts of city which

exhibit the same popular signature. Our approach uses a spatial clustering algorithm

— and not predetermined regions — to identify the scope of a popular signature and

annotating only those regions which match a popular signature well. We claim that

the urban patches identified by our approach, exhibit a much better match with the

popular signature set.
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Table 5.5: Query Signatures Used in the Experiment
Signature

ID
Color Single

House
Garage Commercial

Building
Light

Building
Collective

House
School

Q1 Red 29% 2% 9% 45% 15% 0%
Q2 Green 70% 0% 0% 0% 0% 30%
Q3 Blue 2% 6% 0% 0% 92% 0%

5.2.4 Querying Spatial Dataset with Signatures

Although the presented popular signature mining algorithm was originally developed

to determine the scope of a set of popular signatures, it can be used with any signa-

ture set P. This enables us to use the same algorithm for querying spatial datasets for

the presence of particular “query signatures”. For example, in the experiment sum-

marized in Table 6 we came across cluster 3, which was dominated by light buildings,

and we might be interesting to see if its signature (named Q1 in Table 5.5) occurs

in other areas of the city. Along the same line we might want to see, if there are

regions with a high density of schools in a residential area (e.g. we could us Q2

in Table 5.5). Finally, if the popular signature S3 occurs anywhere in the dataset

(Q3 = (2%, 6%, 0%, 0%, 92%, 0%)), as it did not match any cluster signature, as

reported in Table 5.3.

Table 5.6: Clusters Matching Query Signatures
Cluster ID Matched

Signature
Single
House Garage

Commercial
Building

Light
Building

Collective
House

School Distance

5 Q1 29.63% 1.85% 9.26% 44.44% 14.81% 0% 0.009
11 Q3 2.78% 5.56% 0% 0% 91.67% 0% 0.010
13 Q2 66.67% 0% 0% 0% 0% 33.33% 0.047

Figure 5.4 and Table 5.6 gives the result running CLEVER with the popular sig-

nature interestingness function for signature set P = {Q1, Q2, Q3} with parameters

D = 0.2, η = 3, and β = 1.2. The spatial clusters in Figure 5.4 are annotated with
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corresponding signature colors if the distance of the cluster signature to its closest

query signature in P is 0.2 or less; otherwise they are marked as white. Table 5.6

lists the signatures for three clusters that are close to query signatures as well as

the number of objects, closest query signature and the distance to its closest query

signature. The experiment took 28 seconds wall clock time and the algorithm needed

44 iterations evaluating 2670 clusterings. As can be seen, the algorithm rediscovered

the same region with a majority of light buildings identified by the popular signature

clustering algorithm but no other regions which express this signature. Moreover, a

single region which almost perfectly matches the popular signature S3 was found.

Finally, we were able to find a single region with a mixture of schools and single

houses, but the match of the regions’ signature with Q2 is of medium quality, as the

Euclidian distance between the two signatures is about 0.04.

Q1

Q2

Q3

Figure 5.4: Visualization of Clusters Matching Query Signatures
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5.2.5 Validating and Sensitivity Analysis Based on Popular

Signature Clustering Experiment

CLEVER has been designed to find a “good” solution for what is, in general, an NP-

hard problem relying on randomized hill climbing. As all optimization procedure

which start with randomly created initial solutions, CLEVER — as K-means — is

sensitive to initialization, as different initializations may lead to different, alternative

solutions. In this section, we discuss the results of two experiments which analyze

CLEVER’s sensitivity to initialization, and how close CLEVER gets to the “optimal”

solution.

To analyze CLEVER’s sensitivity to initialization, we ran the building type purity

clustering procedure 20 times with parameters k′ = 20, β = 1.05, η = 3, and th = 0.5,

and collected the following run characteristics: q(X), number of the clusters in the

final clustering, number of iterations, and the number of clusterings generated during

the run. The sampling procedure used in this (and the next) experiment is as follows:

first sample 15 clusterings in the neighborhood of the current clustering, then — if

there is no improvement — 30 solutions, and finally 180 solutions; if none of the

225 sampled clusterings improves the current clustering, the search ends. According

to the results reported in Table 5.7, CLEVER terminated after at an average 32

iterations and searched at an average 1400 clusterings. Although CLEVER starts

from different initial clusterings, the quality of the clustering results are relatively

stable around 729 with a standard deviation of 24. However, the number of final

clusters obtained differs quite significantly between the twenty runs, ranging between

3 and 23. This fact indicates that the obtained 20 final clusterings — although having
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Table 5.7: Building Type Purity Sensitivity Results
Run
ID

q(X) No. of
Clusters

No. of
Iterations

Generated
Clusterings

1 776.81 7 38 1635
2 764.68 8 43 1920
3 756.20 10 25 645
4 747.56 11 39 1830
5 746.39 12 29 1245
6 744.51 9 30 1470
7 741.23 11 24 1170
8 738.21 3 31 1470
9 737.03 13 29 1245
10 736.27 16 45 1950
11 727.90 11 39 2010
12 726.31 8 48 2175
13 719.12 10 23 960
14 716.62 23 36 1395
15 715.18 14 20 525
16 710.86 16 26 1380
17 707.44 9 31 1140
18 693.47 18 37 1605
19 688.78 16 31 1665
20 685.85 16 24 1005

Mean
729.02 12.05 32.40 1422

SD 24.63 4.55 7.88 444.40
Max 776.81 23.00 48.00 2175.00
Min 685.85 3.00 20.00 525.00
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a similar quality with respect to q(X) — differ from each other.

Table 5.8: Building Type Signature Mining Sensitivity Results.
Run
ID

q(X) No. of
Clusters

No. of
Iterations

Generated
Clusterings

1 1.45 14 24 1365
2 1.44 19 20 1110
3 1.43 25 35 2115
4 1.41 20 27 1575
5 1.39 14 25 1185
6 1.39 25 19 915
7 1.37 19 13 420
8 1.35 25 31 1680
9 1.35 19 13 405
10 1.34 25 19 885
11 1.33 25 31 1665
12 1.32 19 25 825
13 1.31 26 26 1050
14 1.31 17 19 915
15 1.31 19 21 1290
16 1.30 24 30 1515
17 1.30 17 16 840
18 1.24 23 25 855
19 1.23 22 11 390
20 1.21 21 19 720

Mean
1.34 20.90 22.45 1086.00

SD 0.07 3.77 6.58 464.97
Max 1.45 26.00 35.00 2115.00
Min 1.21 14.00 11.00 390.00

For the second experiment, we first partitioned the spatial dataset into 20 con-

tiguous regions. Next, we computed the building type distribution for each of those

regions, and used the obtained 20 signatures as “popular” signatures. Finally, we

used the popular signature clustering procedure in conjunction with this signature

set to see how close our approach can get to the “optimal” solution which consists

of the 20 regions whose popular signature perfectly matches the region’s signature.
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Table 5.9: Ground Truth (q(X) = 2.58).
Cluster

ID
No. of
Objects

Single
House

Garage Commercial
Building

Light
Building

Collective
House School

S0 48 95.83% 0% 0% 0% 4.17% 0%

S1 100 88% 2.67% 4% 0% 5.33% 0%

S2 75 88% 2.67% 4% 0% 5.33% 0%

S3 56 62.50% 1.79% 21.43% 7.14% 7.14% 0%

S4 58 67.24% 10.34% 17.24% 1.72% 3.45% 0%

S0 48 95.83% 0% 0% 0% 4.17% 0%

S5 126 92.86% 5.56% 0% 0.79% 0.79% 0%

S6 146 91.78% 0% 0% 0% 8.22% 0%

S7 101 71.29% 3.96% 10.89% 1.98% 11.88% 0%

S8 147 36.73% 18.37% 2.72% 4.08% 34.01% 4.08%

S9 171 78.95% 4.68% 4.68% 1.75% 9.94% 0%

S10 114 63.16% 6.14% 0.88% 1.75% 22.81% 5.26%

S11 50 92% 0% 4% 2% 2% 0%

S12 130 97.69% 0% 0.77% 0% 1.54% 0%

S13 91 58.24% 2.20% 5.49% 26.37% 7.69% 0%

S14 77 40.26% 1.30% 57.14% 1.30% 0% 0%

S15 56 100% 0% 0% 0% 0% 0%

S16 139 93.52% 2.16% 0% 0% 4.32% 0%

S17 75 85.33% 6.67% 2.67% 1.33% 4% 0%

S18 137 78.10% 0.73% 20.44% 0.73% 0% 0%

S19 142 88.73% 2.11% 1.41% 5.63% 0.70% 1.41%

In this experiment, we ran CLEVER 20 times with parameter settings k′ =

20, β = 1.05, D = 0.1, η = 3. The results of this experiment are reported in Table 5.8

and the ground truth Table 5.9. The best two clustering results are visualized in

Figure 5.6 and Figure 5.7, using a different color for each popular signature; clusters

which do not match any popular signature are visualized in white.

In general, we draw the following conclusions from the second experiment:

1. The optimal solution which perfectly approximates the 20 signatures has a q(X)

value of 2.58 — and based of the popular signature clustering interestingness func-

tion introduced earlier — each of the 20 clusters has the maximum interestingness

of 0.13 = 0.001. For example, a cluster whose signature has a “small” distance of

0.03 to the closest popular signature, has a significantly lower interestingness of

65



Table 5.10: Best Clustering Result (q(X) = 1.45).
Cluster

ID
No. of
Objects

Closest
Signature

Distance

0 68 S1 0.013
1 129 S15 0.011
2 229 S0 0.003
3 206 S3 0.06
4 302 S18 0.012
5 176 S8 0.021
6 176 S10 0.074
7 207 S9 0.006
8 55 S5 0.020
9 187 S5 0.006
10 61 S9 0.034
11 162 S19 0.018
12 56 S13 0.254
13 25 S5 0.037

Table 5.11: Second Best Clustering Result (q(X) = 1.44).
Cluster

ID
No. of
Objects

Closest
Signature

Distance

0 300 S18 0.006
1 70 S15 0
2 45 S5 0.026
3 175 S9 0.005
4 84 S0 0.008
5 128 S6 0.005
6 59 S11 0.028
7 82 S13 0.050
8 30 S10 0.197
9 172 S8 0.017
10 78 S5 0.027
11 114 S16 0.028
12 92 S10 0.020
13 140 S1 0.026
14 10 S11 0.069
15 61 S5 0.024
16 212 S3 0.049
17 106 S19 0.034
18 81 S0 0.007

66



Figure 5.5: Ground Truth (q(X) = 2.58).

Figure 5.6: Best Result (q(X) = 1.45).
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Figure 5.7: Second Best Result (q(X) = 1.44).

0.073 = 0.000343, due to the fact that we use a cubic interestingness function.

2. The clustering quality for the 20 clusterings is quite stable, ranging from 1.21 to

1.45, but they are not very close to 2.58, the quality of the optimal solution.

3. There is not a lot of agreement between the clustering results, neither between

the optimal result and the other results nor between the two clustering results.

4. There seem to be many alternative ways to partition the datasets based on popular

signatures; that is, many alternative partitioning exist which receive the same or

similar rewards. For example, often one popular signature can be expressed as

a linear combination of other popular signatures; consequently, we could have a

cluster which perfectly matches a popular signature and its partitioning into two

sub-clusters perfectly matches two other popular signatures.

5. We observed that there is much more agreement between final clusters in the

first experiment that used the purity interestingness function than in the second

experiment.
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6. The result suggest that it might be beneficiary to extract “good” clusters from

multiple runs and combine them into a final clustering, instead of trying to find

all clusters in a single run.

7. In the experiment we used a low maximum sampling rate of 225; it might be

interesting to see if parallel versions of CLEVER which allow for the use of much

higher sampling rates get closer to the optimal solution.

Table 5.12: Performance Characteristics of the Reported Clustering Results
No. of

Iterations
No. of

Clusterings
Generated

Time
Elapsed

Section 5.2.1 25 1215 32.36s
Section 5.2.2 30 1485 32.92s
Section 5.2.3 35 1590 33.65s
Section 5.2.4 44 2670 28.26s
Section 5.2.5 34 1950 36.15s

5.2.6 Performance Analysis for CLEVER

Table 5.12 gives some performance characteristics for the clustering results that were

reported in Sections 5.2.1 to 5.2.5 in terms of iterations needed, number of clusterings

generated, and wall clock time. CLEVER was run on a dataset containing 2039

objects on a computer with the processor running at 3 GHz and 8 GB main memory.
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Chapter 6

Conclusion

This thesis introduces a spatial clustering methodology which identifies contiguous

regions in the space of the spatial attributes which are uniform with respect to their

signatures, and which represent statistical summaries for the objects belonging to a

particular cluster. The second idea advocated in the thesis is to mine spatial data

for the presence of particular signatures. These two types of signature-based spa-

tial clustering have broad applications in urban computing, environmental sciences,

ecology, and geo-targeting.

The proposed methodology defines the task of finding uniform regions formally as

a maximization problem. Various objective functions and corresponding algorithms

are introduced. In particular, we introduce a prototype-based clustering algorithm

named CLEVER, which identifies uniform regions in a spatial dataset by maximizing

a plug-in measure of uniformity, relying on a randomized hill climbing approach. A

variant of CLEVER – DCLEVER – is also proposed to avoid computing distance on

the fly, and outperforms CLEVER in small datasets with large amount of iterations.
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Moreover, polygon models which capture the scope of a spatial cluster and histogram-

style distribution signatures are used to annotate the content of a spatial cluster;

both play a key role in summarizing the composition of a spatial dataset. We claim

that the presented approach is novel and unique as existing clustering algorithms are

not suitable for this task, because they minimize distance-based objective functions,

whereas assessing uniformity relies on non-distance-based uniformity measures.

The proposed methodology is evaluated by a challenging real-world case study

centering on analyzing the composition of the city of Strasbourg in France based

on building characteristics. First, we identify uniform regions using two different

interestingness functions based on the variance of building sizes and based on the

purity of building types in a cluster. Second, an approach is presented which deter-

mines popular distribution signatures, and then uses a spatial clustering approach to

identify urban patches with a good match with particular popular signatures. The

efficacy of the two approaches is demonstrated through the experimental evaluation.

Applying the methodology presented in this thesis faces several challenges, such

as sensitivity to initialization, finding more suitable algorithms to compute scope

of a set of spatial clusters, providing a better theoretical foundation for signature

mining, the capability to identify spatial clusters of arbitrary shape, and the need

to run spatial clustering algorithms multiple times. Finally, as the computational

complexity of signature mining is usually very high, there is a need for parallel

signature mining algorithms. Our current and future work centers on dealing with

these challenges.

In addition to the methodology proposed by this thesis and its main focus, it’s not
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trivial to mention some of other works that have been implemented to support this

thesis. A KML file parsing program with database connection has been developed

to import the original data into a geo-supported database. Moreover, the clustering

results generated by DCLEVER are visualized by a self-developed software that

produces the KML file.
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