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ABSTRACT

The effects of bandlimiting on the performance of various
digital transmission systems corrupted by additive white
Gaussian noise are analyzed using two methods;_the averaging
method and the series egpansion method; The results from both
methods agree,

The performance of an ideal bandlimited NRZ (Non-Return-
to-Zero) baseband transmission system is examined using cor-
relation detection and sampling) The explicit expression
for the degradation of the signal and the intersymbol inter-
ference as a function of system parameters is derived. The
average, lower bounds and upper bounds of the probabilities
of bit-~error are computed for both detectors. It is shown
that the correlation detector performs better than the sample
detector for BT»0.6 and worse for BT=0.5.

A Split-Phase baseband system is also analyzed following
the same steps used for analyzing the NRZ system; It is
shown that a Split-Phase baseband system requires less
than twice as much bandwidth as the NRZ system to have the
same probability of bit-error for the same value of signal-
to-noise ratio using the correlation detector:

An NRZ baseband system using Gaussian filters is also
analyzed employing correlation detection. It is found that

the system introduces more intersymbol interference and performs

- v



poorly compared to the ideal bandlimited NRZ system.

The effects of bandlimiting on the performance of modulation
the Phase-Shift~Keying (PSK) System, the Amplitude-Shift-Keying
(ASK) System, and the Frequency-Shift-Keying (FSK) System are
analyzed assuming a correlation receiver and using ideal filters
as well as correlation detection. The explicit expression for
the degradation of the signal and the intersymbol interference
as a function of bandwidths of the filters, signal-to-noise
ratio and carrier frequencies is giveﬁ. It is found that the
aliasing effect can be neglected if thé carrier freqguency is
more than three times the bit rate. It is also found that PSK
requires 3 db less on an average power basis than ASK. If the
spacing between the two carrier tones in FSK is less than
three times the bit rate, FSK shows a better performance than
that of ASK. The optimum setting of the tone spacing'of FSK
is shown to be equal to the bit rate. However, PSK always
gives the best performance. Thus for a coherent system, PSK
should always be used.

Finally, a tapped-delay-line (TDL) filter is introduced
at the receiver of the NRZ baseband system in conjunction with
the correlation détector as an intersymbol eliminator. On an
‘average probability of bit-error basis, and using only three
taps, it is demonstrated that the performance of this system

is near optimum.

vi
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CHAPTER I
INTRODUCTION

Today the advances in the fields of digital computers
and electronic circuits have resulted in an enhanced interest
in communication systems which transfer binary data from one
location to another.

The data communication systems can generally be considered
as consisting of three basic blocks, the transmitter, the
channel and the receiver. The transmitter has the task of
assigning an electrical waveform to each possible sequence
of digits received from the information source. The electri-
cal waveform is then passed through the channel, which may
typically be a wire link, a satellite 1link, a microwave sys-
tem, or a radio link. In passage through the channel the
transmitted waveform is invariably corrupted by unwanted,
random signals known as noise. Because of these random sig-
nals, the received waveform does not correspond exactly to
any of the possible transmitted waveforms. Nevertheless,
the receiver must make a decision as to which of the sequence
6f digits is most likely to have given rise to the particular
received waveform.

For binary communication systems, the most popularly
used today, the possible electrical waveforms consist of two,

one is used for a binary "one" and the other is used for a



binary "zero." Throughout this dissertation only the
binary systems will be considered. In passing through the
channel, these signals are corrupted by additive white
Gaussian noise.

The measure of the performance of a digital communica-
tion system is the bit error probability at the output of
the receiver bit detector. The bit detector which achieves
the lowest possible error probability for a given signal-to-
noise ratioAis generally considered optimum. For ideal
(infinite system bandwidth) binary communicatiéns over an
additive Gaussian noise channel, the optimum bit detector
is a correlation detector which turns out to be a matched
filter.

In practice, the restriction of the system bandwidth is
inevitable. Transmitter filtering, bandlimited channel, or
receiver filtering are the usual sources. Bandwidth limiting
will not only cause the energy loss of the desired signal,
but more importantly will introduce inferference. This
interference consists of intersymbol interference (signal
waveforms smearing in time) and intermodulation interference
(aiiasing effect). The performance of the optimum linear
bit detector then will be degraded.

The primary concern of this dissertation will be to
systematically analyze the effects of bandlimiting on the

performance of various baseband transmission systems as



well as modulation systems.

In Chapter II the optimum receiver structure in the
case of infinite bandwidth and Gaussian noise for a minimum
probability of error performance criterion will be derived.

In Chapter III the performance of an ideal bandlimited
NRZ (Non-Return-to-Zero) baseband transmission system will
be examined very closely. First, the explicit expressions
for the degradation of the signal and intersymbol interfer-
ence will be derived as a function of system pafametefs.
Second, the average probability of bit error will be computed
by using the averaging method. This method makes an assump-
tion that the intersymbol interferénce is limited to a finite
number of symbols preceding and following the symbol under
detection. The conditional error probabilities are computed
for each of the truncated pulse sequences and then averaged
with respect to the probability of occurrence of those
sequences. Third, an aﬁalytical expression for the proba-
bility of error based on the series'expansion of the charac-
- teristic functions of the intersymbol interference and
Gaussian noise will be introduced. This expression can be

divided into two terms, one term corresponds to detecting
the degraded signal itself, and the other corresponds to
the influence of the intersymbol interference. The methods
discussed in this chabter then will be generalized to any

data transmission system.
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In -Chapter IV the results of Chapter III will be applied
to three practical baseband systems:. (1) Split-Phase using
a correlation detector, (2) NRZ using a filter and sample
detector, (3) NRZ (Gaussian filtering) using.a correlation
detector. In each case the explicit expressions for the de-
graded signal and intersymbol interference will be presented.
The probability of bit error is also determined and calculated.

In Chapter V the results of Chapter III will be applied
to three practical modulation systems, Phase Shift Ke?ing
(PSK), Amplitude Shift Keying (ASK) and Fréquency Shift
Keyiné (FSK). The explicit expressions for the intermodﬁla-
tion interference will be derived.. The probability of error
will be coméuted for each case.

In Chapter VI a modified Tapped—Delay—Liﬂe (TDL) filter
will be proposed to alleviate the intersymbol interference
for the bandlimited NRZ baseband system. The results then
will be generalized for any system.

In Chapter VII some conclusions are drawn. Some recom-

mendations for future research studies are also put forth.



CHAPTER IIL

OPTIMUM DETECTION OF BINARY SIGNALS

IN THE PRESENCE OF WHITE GAUSSIAN NOISE

2,1 Formulation of the Optimum Solution

The binary message is assumed to be carried by either
of two signals sl(t) (corresponding to information "1") and
-so(t) (corresponding to information "0") of arbitrary and
different shape over an ideal channel (infinite bandwidth)
with additive white Gaussian noise n(t) With zero mean and

spectral density N0/2 (two sided) as shown in Figure 2.1,

| } 11 1Il
8; (t)

RECEIVER
1=1,0

) lloll

n(t)

Figure 2.1 A Binary Transmission System

The basic problem of detection then is to find a receiver
to distinguish between either of these two wave shapes sl(t)
and so(t); each defined over the bit interval T sec in length
in an optimum way to minimize the probability of error,

This can be formulated as a statistical hypothesis testing
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problem, i.e., test the hypothesis Hl that sl(t) was transmit-
ted versus the hypothesis H, that sg () was transmitted; Since
tﬁe‘performance criterion is taken to be the minimum average
probability of error;,Bayes‘ solution with equal cost yields
the optimum decision rule [8]. This solution leads to the
likelihood ratio teSt;
| Given a sequence of random variables xl,xz,...kn the
likelihood ratio test is formed by finding the ratio of the
conditional joint probability density function oflxl,xz{;.;xn ,
given hypothesis H, or Hj.. This ratio is compared to a

threshold 4 and the decision H, rendered if the likelihood

1
ratio is greater than d and Hy otherwise., The likelihood
ratio can be expressed as

fx,,x ....x | H.)
1727 n 1 a (2.1)

mAV T

f(xl’XZ’oo.xn l HO) ) 0

The optimum value of 4 under the equal cost assumption can be

given by the ratio of the a priori probability L and Py

of occurrence of Hl and Hy, respectively, Thus we have

f(k (X e oX | B,) H, .P_ '
17727 n 1 gl _0 (2.2)
£(x) 1%y p0eex) | H,) o Py

It is readily seen that any monotonic function will yield the

decision and hence the test is usually implementéd in the form



of logarithm of the likelihood ratio and the threshold

f (xl’XZ, L) oxn- | Hl)

H . ..
1n gl in 2 (2.3)
£y rxyreeaxy | Hy) By 51

2.2 Determination of the Likelihood Ratio

The input to the receiver under either hypothesis can be

written as

s, (£) + nlt) 0<t<T , . H (2.4)

z (t) =

5o (t) + n(t) _ 0<t<T , T H (2‘.5)

Since both signals sl(t) and so(t) are defined over the same
interval 0<t<T, we can expand each into an orthonormal series

which has the form:

s; () = .Z S 9 (t) i=1,0 (2.6)
k=1 .
with the coefficients given by
T
Sy = jo s; (£) g (t) & i =1,0 (2.7)

and the orthonormality condition implies:

fT 1 i=7j o

g (t) g.(t) dt = §,. = (2.8)
o Yoo oig
The coefficients can be referred as the generalized Fourier

coefficients,
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The noise n(t) can also be expanded into the orthonormal

series:
n(e) =} om g 8) | . (2.9)
with
T
n, = [ n(t) q (t) dt (2.10)
(o]

Since n(t) is Gaussian distributed; the Pourier coefficients

n, are also Gaussian distributed. By proper choice of the
orthonormal functions the coefficients can be made uncorrelated
and hence statistically independent. The condition for
statiéticélly independent coefficients in the case of Gaussian

noise is given by the solution of the integral equation [9], [24]

T : :
J” R(t-s) q (t) at = o q (s) (2.11)
o .

Here R(T) is the autocorrelation function of the noise n(t),
i is the ensemble average of ni or the variance of ny .
Under the assumption that n(t) 1is white Gaussian noise

and ©

with two sided spectral density N0/2,iwe have
R(1) = (Ny/2)6 (1) (2.12)
Thus from Equation (2,11), we have

O = Ny/2 , (2.13)



The probability density function of ny then is given by
2.

(2.14)

Therefore, instead of dealing with the continuous time functions
sl(t), so(t) and n(t) defined over 0<t<T; we can now represent

each by its Fourier coefficients so that the Bayest! likelihood ratio
‘test (Equation (2;3)) can be applied;

Recall that

z(t) = s;(t) + n(t) i=1,0, 0<t<T

we can also expand z(t) into a generalized Fourier series

©o

z(t) = z,, q, (t)
kzl k “k
= kzl Sy T (B) + kzl n, g (t) (2.15)

Comparing the coefficients of qk(t), we obtain
= Spy + oy i=1,0 (2.16)

Since the noise coefficients n, are Gaussian distributed
independent random variables with zero mean, the coefficients

z, are also Gaussian distributed and independent with mean at
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Syi* Therefore the density function of z) can then be given

€ —e—e

f(z

k-) = ——— - i=10 (2,17}

Now we can apply Bayes' likelihood ratio test, The receiver

measures z(t) over the interval 0<t<T and from this measurement

~generates the generalized Fourier coefficients z,. It then
performs the test
£(z7] B H CRg
ln — g In — (2.18)
f(z | Hy) 0 P,
where
z [zl,zz,z3...]
: 2
= (z)=s, )
But o Xkl
- ® © 0..
£(z | B =7 £z | H)) =71 —r0 (2.19)
k=1 k=1
VNO‘H
and
2
" (ZmSyo)
> oy ' * .. Ny
f(z | H,) =71 f£(z,. | H) = 7 ——— (2.20)
0 k o ~. "
k=1 k=1 N
0
Substituting into Equation (2,18), we have
[ - . H ) P .
. ~ 2 2 1 0
I (g5, 0 = - F (z~s, 0% ' ny 1n 2 (2.21)
k=1 Kk kO x=1 Kk "kl ﬁo 0 P
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Recall that

©o

Si(t) = 2 ski qk(t)

k=1
and
Tz (t) = z, q, (t) ’
kzl k 7k
then
z(t) - sy (t) = ) (2 = 5p3) q (B) (2.22).

k=1

Squaring and averaging in time

T 5 T
oW -s;genfae= [ (]

(z, = s..) g, (t)
° o k k ki k

1

=2

~21(zm = Spi) 9, (t)) 4t
m=

(2.23)

Using the orthonormal property (Equation (2.8)), Equation (2.23)
can be simplified as

IT<é(t) - s.(t))2 dt = f (2, s )2 (2.24)
o i k=1 k “ki

Substituting into Equation (2,21), the desired likelihood

ratio test becomes

L 2 T 2 .. - Fo
[ (2(t) = s5(£))7 at = [ (z() = sy (£))° at 2~ N 1n —
o o B, Py

(2.25)



12

For equal a priori probabilities, we then decide sl(t) was
transmitted with smallestprobability of being in error;_if
the difference between z(t) and the known wave éhape ;l(t)
is smaller than the corresponding difference between 2z (t)

and so(t) in the mean-square sense and decide so(t) otherwise.

2,3 Structure of the Optimum Receiver

The mathematical structure of the optimum receiver is
éompletely specified by Equation (2l25); In this section,
" this equation will be used to yield a model for the optimum
receiver, |

Under the assumption of equal cost and equal a priori
probabilities of occurrence of the signalling states, Equation
(2.25) can be reduced to

T ‘ H

] oz(e) s (1) - sy(8)] at >t 1/2 (B] - E

o i

0

o) (2.26)

where E; = f: slz(t) dt and E; = IT soz(t) dt, represent the
energy in the signals sl(t) and so?t) respectively.

The optimum receiver structure now can be realized by a
multiplier cascaded with an integrator (memoryless correlation
detector) in series with a threshold device as shown in
Figure 2.2. The message will be decided to be a "1", if the
signal plus noise at the output of the integrator samples at

t=T is larger than the threshold d = (By -~ E4)/2, and a "O"
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otherwise.

r , 1
Correlation Detector

'
|
!
|
f
1

n(t)

)

|

I ————

1} - - 1 )

T X K >d.-—El EO lll"
Jae | 4 e 0 2
0

' o ! . . E.~E
! 1 Operating <d= I 70 | wan
, ! Every T2 "0
' T
l : sec Threshold
| ; * Device
| 13

H

Figure 2,2 Optimum Receiver Structure

The dotted block can also be viewed as a matched filter
with an impulse response h(t) = sl(T—t) - sO(T—t) 131, A
ﬁatched filter of this sort is called an integrate-~and-dump
circuit [32], [42]. It is well known that the matched
filter will give maximum signal-to-noise ratio at the output.
Thus for white Gaussian noise, both maximization of the signal-~
to-noise ratio and minimization of the probabilit& of error

lead to the same optimum receiver structure.

2,4 Probability of Error

The optimum procedure for distinguishing between two
known signals sl(t) and so(t) has been.discussed. Now the

probability that an error will be made in such a decision
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process will be derived.
The output of the integrator at t=T due to both signal

and noise is given by

T -
y = [ z()(sy(t) = sy(t)) dt |
° | (2.27)
=Wy tm,
where
T
w, = [ s;(t)(sy(t) = sy(t))at i=1,0 (2.28)
o .
and
T .
n; = jo n(t) (s (t) - s5(t)) dt (2.29)

Clearly, ny is still Gaussian distributed with mean zero and

. 2
variance 04" , where

T - T
(1) (53 (1)=sy (1)) At [ n(t) (s)(t)-s,(t))dt)

2
n
o o

O3

1

E(nlz) = E(f

T T
=] J E@@n(t)) (s)(1)=s,(t)) (sq (£) s, (£))dT dt (2.30)
o O :

But for white Gaussian noise as assumed here,

E(n(tin(t)) = Ny/2 §(r-t) (2.31)
Thus Equation (2.30) becomes
-T

0,2 = ny/2 fo (sl(t)-so(t)?z at (2.32)
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Now the output of the integratof can be describgd by two
Gaussian distributions with mean wvalues at Wy and LA and
variance 012 ; where one dsitributign.is for a "1" decision é&szzz
and the other for a "0O" decision: The probability that an

error will be made can be written as

P, = P(y>d|H;) Py + P(y<d[H)) P, (2.33)
With Py = P, = 1/2 we have
2 2
. , : oo = (x-w_,) d - (x-w.)
Pe = % ("‘l f e 20 dx + 1 e % dx)
{fﬁcl d 204 /2m 6, -~ 204
(2.34)
Changing variables and simplifying, we obtain
Pe = 1/2 (1/2 (l—erf(zo)) + 1/2 (1—erf(zl))) (2.35)
— X -u2 _
where erf(x) = — f e du, the error function
/YT o '
and
2 0q 2 oy
Using Equation (2,28), Equation (2,30} and the fact that
d =(E,-E,)/2, we have
1 -0 P
EqtEy=2 [O 5 (£ s (8) at ]
zy = 29 = . —— (2,.36)

4N0
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Finally, with E=(E1 + EO)/Z, the average energy per bit, the

probability of error is .- -

’ = =) )
P, = 1/2 (l-erf(|N, | (2.37)

where

T
. fosi(t) sq () dt

«=1/2 - (2.38)

El + E0

Thus with the correlation detection or matched filtering
incorporated in the decision process; it is the signal energy,
rather than the signal wave shape, that determines the probability
of error. However, the exact knowledge of sl(t) and so(t) are
required at the receiver end.

It is very important in this connection to note that a
large portion of the theoretical analysis in communications,
such as the analysis in this chapter and those following,
is based upon the assumption of perfect bit synchronization
(perfect knowledge of the time of arrival of the individual
symbol waveform). Techniques for achieving and maintaining
synchronization are an important par£ of the communication
science [10], [45]. However, it appears to be a practical
truism that synchronization per se can be maintained well
under the conditions where the_channel'is already useless as
a communication link because of high error rate, " Hence,

except where particularly specified otherwise, we assume
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perfect synchronization in the receiving process.

When sl(t) = -so(t),vthe signals are called antipodal
signals. For this case, = is equal to one and the probability

of error is minimum and is given by
= E '
P, = 1/2 (l-erf ( f 7)) - (2.39)

The NRZ (None Return-to-~Zero), Split-Phase and PSK (Phase-Shift-

Keying) signals are some examples of such sighal sets,

A, NRZ

sl(t) = -so(t) = A 0<t<T
_ _ A2
E = El = E0 = A"T
d=20
B, Split-Phase
sl(t) = -sO(t) = A 0<t T/2
sl(t) = -so(t) = A T/25ﬁ<T
e =B = A2p |
E=E, = Ej =A"T
d =0
C, PSK

sp(8) = =54 (£) = A cos (2nf t)  0<t<T

o o a2,
E = Ej = E; = A“T/2

d =20
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" Case 2. Orthogonal signals )
, T ” o ‘
When [ 55 (t) sy (t) dt = 0, the signals are called
o

orthogonal signals. For this case « = 1/2 and the probability

of erxrror is given by

E ) ) (2.40)

ZNO

P, = 1/2(1—erf(

The On-Off binary signals, ASK (Amplitude Shift Keying) and
FSK (Frequency Shift Keying) signals are some examples of
such signal sets.

A, On-Off binary signals-

sl(t) = A, so(t) =0, 0<t<T
E, = A’T , Ey=0,E = A7 /2
a _ A2T
2
B. ASK

sl(t) = A cos (2ﬂfct) ' so(t) =90, 0<t<T

E, = Ar/2 E, =0, E = ar/4
o 2%
Az
C. FSK

s,(t) = A cos (anclt), sg(t) = A cos (2T, t) 0<t<T

E=E, =E, =2%1/2

1
d = A2T/2 - _
It follows from Equations (2,39) and (2,40) that antipodal

0



signals require 3dB less than the orthogonal signal on an

average power basis to have the same ptobability of error.

[
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CHAPTER III

THE PERFORMANCE OF A BANDLIMITED BASEBAND TRANSMISSION

SYSTEM IN THE PRESENCE OF GAUSSIAN NOISE

3.1 Introduction

The performance of digital transmission systems in the
presence of white Gaussian noise is conveniently expressed by
the bit~efrror probability. In Chapter II, it was seen that
the optimum detector which achieves the lowest bit-error
probability for a given signal-to-noise ratio (SNR) can be
realized by a memoryless correlation detector if the system
bandwidth is infinite. .

In practice, the restriction of'the system bandwidth is
inevitable. Transmission.filtering, channel bandlimiting
or receiver filtering usually cause the restriction of band-
width. Bandwidth limiting will not only cause degradation
of the desired signal (energy loss), but more importantly
will introduce intersymbol interferenée (overlapping in time
of successive signals); The performance of the optimum
detector discussed in Chapter II then will be degraded. For
high signal-to-noise channel, the intersymbol interference
becomes the determining factor in the design of the higher
speed data transmission system, Intersymbol interference

can be minimized by careful shaping of the transmitted signal
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and equalization of the channel [4], [6 ], [13], [18], [26],

However, it may not be possible to eliminate the intersymbol
interference completely, and a measure of the'degradation would
be extremely useful:

The primary objective of this dissertation is to sys-
tematically analyze the intersymbol interference and its
effect on the performance of various bandlimited digital
transmission systems in terms of the bit-error probability;
In this chapter; the explicit expressions for the interéymbol
interference as a function of system bandwidth and bit position
for a bandlimited NRZ baseband system using a correlation
detector (an integrate-and-dump circﬁit) will be presented.
The detector performance in terms of_bit—error probabilities
caused by the degradation of the signal and intefsymbol
interference will be determined and calculated separately. The
‘basic approach developea for the analysis of this particular
system will be used to analyze various transmission systems

considered in the later chapters.

3.2 The Baseband Model

The bandlimited baseband transmission system can be

[+

modeled as shown in Figure 3,1. Here '} a_ (t) is the random

NRZ signal with amplitude A or -A, and bit duration equal to T,

n(t) is additive white Gaussian noise with zero mean and



[+
b
bt Low Pass ' Low Pass nE_wn(t) - so——=>
) an(t] Filter Filter N T 2
— 0 H(A H(£) = |, _4]4__,
Operate
Every <0 >
. T sec
Threshold
) Device
n (t)

Figure 3.1 A Bandlimited NRZ Baseband Transmission Model

(A4
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spectral density N0/2. The ideal lowpass filter H(f) has a
transfer function equal to one for ~B<f<B and zero elsewhere,
The receiver consists of an ideal lowpass filter in series
with a correlation detector: Since both lowpass filters are
the same, the first lowpass filter can be removed as far as

the signals are concerned, and the results will be the same,

3.3~~intersymbol-Interférende»forvNRZ-Signal

The nth bit of information can be represented by
‘ .
A NT<t< (N+1)T (3.1)
a_(t)= '
n elsewhere
where An = A or -A
The response of the lowpass filter due to the nth bit is
B o . .
b_(t) = f'(f a (X)e—]ZWfX dx) ejZﬂft af
n J. . n
-B e«
B (n+l)T o .
- (f A_e j2mEx dx) ejZﬂft af
-B nT
B 'éinwa‘ -jmEfT (1+2n)
= [ AT(——z) e af (3.2)
n TfT
-B
The integrator output C (T} sampled at t=T due to n™ pit

alone can be found to be '
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| . mom e
£T, ~3TET(1+2n) _j2nf
c (T) = [ b (t)dt ] f A T(EiEE__) JmET (1+ n) cJ2nft

o TET

.ll

T WET TET

2'sin2me e-jZnﬂfT

=f AT df  (3.3)
~B & (rfm)”
Changing variables and simplifying, Cn(T) becomes
Cn(T) = AT J (BT,n) ‘ (3.4)
where
: 2 TBT. éinzx ‘
J(BT,n) = = / ——5— cos2nx dx , (3.5)
o b'4
an even function of n.
Notice that
: BT _ . 2
J(BT,0) = % | =57 dx (3.6)
o b 4

can be simplified in terms of elementary functions and the
tabulated sine integral function, i.e.,

. 2TBT. sl

J(BT,0) = 2 (f sinx o §i2.ﬂ§£b (3.7)
T X TBT

Also J(BT,n) can be evaluated in terms of J(BT,0) as

n+1

J(BT,n) = J[(_n+1)BT 0] - nJ (nBT,0) + 2L 51 (n=1)BT, 0]

(3.8)

af dt

I A T(51nnfT) —ijT(l+2n) sinmfT JTET

af
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The output of the integrator sampled at T due to an infinite
bit train is

©

} C_(T)

W n

il

A T J(BT,0) + -nZl(An+A_n)T J (BT, n) (3.9)

The first term is the desired signal and the second term is
the intersymbol interference caused by bandlimiting the
signal. ©Notice that J(BT,n) is less than or equal to oﬁe
for any n and BT. Thus J(BT,0) represents the degradation
of the signal and J(BT,n) represents the effect of inter-
symbol interference on the bit under.detection. As B
J(sr,0)>1,J(BT,n)~>0, W+A0T as expected.

The influence of the adjacent bits can now be easily
calculated., Table 3.1 shows some values of J(BT,n) for
various bandwidths and bit positions.

The output of the integrator samples at t=T due to both

signal and noise can be given by

y =W+ n,

AT J (BT,O)+-n=2:l (A +A_ )TJ (BT,n)+n,

(3.10)

7 _
where n, = [ n;(t)dt and n,(t) is the output of the lowpass
° .



BT

005
0.6
0.7
0.8
0.9
1.0
1.2
1.5
2.5

Table 3.1

Some Values of J(BT,n)

J(BT,0) J(BT,1) J(BT,2)
0.7737 00,1291 =0,0222
0.8393 0.0673 0.0292
0.8776 00441 040204
0.8960 D,0433 0.0033
0.2021 00,0464 0.0007
00,9028 0.,0471 0.,0011
09066 0.0493 0.,0002
0.9311- 0.0353 -0,0113
069592 00206 -0,0003

26

J(BT,3)  J(BT,4)  J(BT,5)
040094  =0,0052 0.0033
=0,0271 000152  -0,0028
0,0030  -0.0107 00020
0.005L 0,0031  =0,0012
040001 040003 040005
040002 0.0001  0,0000
-0,0024  =0,0017 040003
040004  =040002 0.0001
0.0001  =0,0000 040000



filter due to the noise n(t) alone.
The probobility that an error will be made can be given
by

P
e

It

P (2,=R)P (y<0|Ay=R)+p (Aj=-R)P (y>Q|Aj=—A)  (3.,11)

The evaluation of P_ represents a long-standing challenge in
digital communicaﬁion problems. The main source of difficulty
is the fact that; with the exception of a few special cases;
the probability distribution of the intersymbol interference
is typically highly complex and irregular. Using the convolution
- method [271, [38] to obtain the'probability density function
of the intersyﬁbol interférence and noise is very difficult.
Approximation of this distribution by a simpler function may
lead to gross misinterpretation,

For all practical bandlimited transmission systems, one
can assume that intersymbol interference is limited to a
finite number of symbols preceding and following the symbol
under detection. The conditional error probabilities are
computed for each of the truncated pulse sequences and then
averaged with respect to the probability of occurrence of
these sequences [11, [17], [36]; [371, [391, [40].

Using the basic property of the characteristic function
as suggested in [5], a new method, called the series expansion

method, is developed to obtain the explicit expression for the
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bit-error probability Pe; P, is divided into two terms;,one
corresponds t> detecting the signal itself (in the absence
of intersymbol interference) and another corresponds to the
influence'of the intersymbol interference:

In the following two sections, the averaging method and

series expansion method will be examined and compared.

3.4 - Bit-Error- Probability--Averaging Method

Recall that the output of the integrator samples at t=T
is given by

y =W+ n,
T J(BT,O)+n£l(An+A_n)T J (BT,n)+n

A

0 2

Thus the output of the integrator can be described by a Gaussian

distributed function with mean at W and variance 022. 022
can be obtained as
2 2
0, = E[n2 ]
T T
= E[J nj(r)dt [ n;(t)dt]
o o
. T .
= [ [ E(@j(t)n(t))dr dat (3.12)
o o
Notice that E[nl(T) nl(t)] is the covariance of nl(t) and is
given by [25]
E[nl(,[.) nl(t)] ‘= NOB Sln[ZNB(T-t)] (3‘13)

21B(T~t)



29

The expression for 022 can then be simplified as

N.T ., -mBT _. 2 N,T . o
2 _ 70 2 - sin”x _ 0
0, = —— = fo 2 dx = —— J(sT,0) (3.14)

Let the effects of the intersymbol interference on the
bit under detection be confined to N preceding and N sub-

2N

sequent bits, There is a total of 2.2" different adjacent

bit patterns around the bit under detection, which can be
numbered in such a way that the first 22N patterns around a

B (A0 = A) and the second 22N patterns around a "0O" (A0=—A).
Denote P.; as the probability that the center bit is detected

in error given that the ith

pattern is transmitted. Since
each pattern will occur with the same probability the average
bit-error probability Pe can be given by

P = —50 ) P . (3.15)
2N+1 = el ‘

Since the noise n, is Gaussian, Equation (3.15) can be

rewritten in a more explicit form

2
. §2N - fo —(x—Wi)
P = : : e 2 ax
e 2,2%N 52 VIno, = 20,
2N+1 - G- ) 2
1 2 1 . © 5 .
o+ S Y —_— 20, ax (3.16)
2027 i=22N4] /5%02 o
th

where Wi is the value of W for the i

©o

pattern and is equal

to ATI(BT,0) + ] (A +A_)TJ(BT,n) for i$2?N and -aTJ(BT,0)+
© n=1

z (An+A_n)TJ(BT,n) for i§22N + 1. Since the probability that
n=1 '
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a "1" in the middle of a particular pattern is erroneously

detected is the same as that for a "O0" in the middle of
the complement of this pattern, the second term in Equation

(3.16) is equal to the first term, Thus we have

2y : . y
Po= =g = —— [ e dx (3.17)

Therefore it is sufficient to compute the bit-error probability
by only ekamining\the patterns around the "1" bit;

For the system considered here, it can be seen.that
[J(BT,n)|<<J(BT;O) when n>5 (see Table 3.1). Thus we can
confine the effects.of the intersymbql interference to the
five preceding and five following bits on the bit under

detection., From Equation (3.17), we_ have

. .0
Pei _ 1 e 202 ax
/2-'"(72 -0
where
- 5 (A +A_)
W, = AT[J(BT,0) + . ) 2n*Pon J(BT,n) ]
i n=1 A
LR -
Let u= , P . becomes
70, *
2
...i”'.w —u? o
Poj = = jz. e du (3,18)
- . J;
=2 [l-exf (z.1]]
2 i
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where _ 5 A +4A
n -nNn
o ~ AT[J(BT,0)+ E = — J(8T,n)]
S - . .. n=l
z; = = e
V20, Y2 [NGT
—— J(BT,0)
A/E——D 2 (1) (3.19)
= N i [4 .
0
2 :
E = A"T , the energy per bit
5 A_+A_ :
and [3(BT,0)+ ] () 3(BT,n) 12
Di2 (BT) = __n=l : (3.20)
J (BT, 0)

Thus Diz(BT), a function of
duct and bit patterns can be
signal-to-noise ratio. This
The probability of bit error
also be viewed as the shaded

Z, to » as shown in Figure 3

i
pattern giving minimum value
giving maximum value of Diz(
pattern such that the net ef

is zexo, i.e.

2
Di (BT)

It can be shown that

the bandwidth-bit duration pro-
considered as the degradation of
quantity is easily calculated.

for a particular patternzcan
Rl b §

area under the curve <
Yy

is bounded by Z,r the

from

.2, Zi

of Diz(BT), and Z the pattern

BI
BT). Z, corresponds to the

fect of intersymbol interference

=

J (BT, 0)



0 2w Zp %o i B

Figure 3.2 Probability of Bit-Error for the NRZ Baseband System

(A
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. ‘ . . . .
and all the values'of Zi s. are symmetric about ZO.,

There are 1024 different patterns, Thus the bit-error

probability P_ of a random NRZ signal for a particular band-

width is given by

.47 1024
Pe 1324 '2 Pel
i=1
q7 1024 |
= Iﬁiz“z 1/2[1-erf(z;)1] - (3.21)
i=1
or
P, = 1/2[1l-erf(z,)] ' (3.22)

where Zp is bounded between ZQ and_z0 (see Figure 3.2) and
. .=u
Pe is the area under the curve of'j_ from ZA to «, But
m

ZA cannot be determined analytically, because intersymbol

interference is not Gaussian distributed. We can only find

Pe by Equation (3.21) and then Z, can be found numerically.

A
Za will be different for different P, . As Brx, Zi+‘§— ’
. 0
Pe+l/2[l-erf( %—)], the optimum case presented in Chapter II,
0

The probability of bit-error, Pe) for a random NRZ signal

as a function of signal-to-noise ratio f%—) and bandwidth~bit
0
duration product BT with the intersymbol interference confined

to the nearest 10 bits. is shown in Figure 3,3.

The upper bound of P_, P can be obtained by finding

emax

the worst pattern which gives minimum value of Diz(BT). This
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can be accomplished by choosing An = A—n = -A0 if J(BT,n)>0,

and A =A_ =A if J(BT,n)<0, (See Table 3.1), The upper

0

bound thus can be expressed as

ITJ(BT,-O,)-!- lelesT}n) 117

= 1/2[1~er£ ([ E= =l 11 (3.23)

E Ny T (BT, 0)

emax

The lower bound of P P can be obtained by choosing An =

emin
-~ A, for all n, which gives Diz(BT) = J(BT,0). The lower

el

bound thus can be expressed as

P

— ' E A
omin = 1/2[l—erf(‘/1—\]—(-)- J(BT,0) )] (3.24)

. P and the correspondin lues
emin’ ~“emax P g vaiu

of ZO' Zw,

and P, as a function of signal-to-noise ratio E/N0
for BT equal to one. '
Martinides and Reijns [17] studied the same system using
the averaging method. The explicit expression for the inter-
symbol interference was not determined. The problem was
analyzed by using a 40 bit periodic sequence instead of random
sequences., Also they only considered the effects of four
nearest bits (N=2), which will introduce considerable truncation
error by ignoring the influence of intersymbol interference
beyond N = 2 especially when BTé}, That is why the results

presented in this section are significantly different from

Martinides"' for BT<1.



Table 3.2

Values of Pemin ’ Pemax ’ Pe vs %; for NRZ Baseband system with BT=1,0

%; Log(Pemin) Zg Log(F) Log(Pepax) Zy
(in 4B)

0.0 1,048 0.950 14043 00938 0,848

1,8 -2,001 1,646 ~1,963 -1,723 1.468

700 ~2,876 20125 -2:777 2,435 1,896
8.5 ~3.724 2,514 -3.542 -3.121 24243

9.5 -l 556 2.850 4,273 =3.793 24543
1065 -5.380° 3.151 4,981 . b,Lsg 20812
11.1 ~64197 3,426 ~50672 - -5.113 36057
11.8 ~74013 3.680 ~64351 | =5:767 Jo28L
12,3 -7.822 3.917 ~7020 —6ab15 3,496
12.8 -8.629 bak2 7,683 =706k 34700
13.2 -9.433 be354 -84340 ~74709 3.885
1346 ~10.236 44557 -8,993 ~8.352 i L. 066

14,0 -11,037 b,751 ~94642 . =8.993 L,239

9¢
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Although the averaging methOd'gives the approximation of

average bit-error probability, the maian disadvantage is that
the computational effort becomes prohibitive as N becomes

large.

In the past some efforts have been made to obtain the
upper bounds oﬁ the average bit-error probability. Hartman [7 ]
analyzed the bandlimited PSK system by finding the worst case
probability of error as Equation (3.23) indicated; To ﬁse
this method to predict the error probability is, in some
cases, exceedingly pessimistic and may lead to gross over
design of the system. On the other hand, ignoring the inter-
symbol interference to predict the error probability such
as Equation (3.24) indicated is sometimes too 0p£imistic
especially for high signal-to-noise channel (see Table 3.2).

Some improved bounds have been proposed recently.
Saltzburg [28] separated the intersymbol interference terms
into two sets, one set containing terms which are treated as
a degradation of the signal and the other set containing
terms which increase the effective noise power, The chief
attribute of this approach is mathematical utility: However;
as a theoretical tool it suffers from one drawback;<the
determination of the optimum set is an arduous task;

Lugannani [16] obtained an upper bound by using the Chernoff
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inequality. The expression for this bound is rather complica-
ted in appearence compared with that of Saltzburg's, But it
is relatively easy to eValuafe; The chief difficutly is that
evaluating the parameters of this bound is a problem equal

in magnitude to the problem of evaluating a large set of
sequences by using the averaging method, and the method does

not yield an analytic solution.

.
-

3.5 . Bit-Exrror Probability--Series Expansion Method

Recall that the output of the integrator sampled at t=T

due to both signal and noise is given by Equation (3.10)

0

y = A,T J(BT,0) +nz~mAnT J (BT,n) + n,

n#0

Divide both sides by AT, we obtain

©o

X = 2375 + z_m J 2, +N (3.25)
n#0
where
o . AnT _ - n.
X =55+ %y = 57 = 1, 9, =J(BT:n)randN=%
The variance ch of N is E[( ) ], which can be evaluated as
2 . - .' '..1'- ’ . .6.2'2: . . '. .
o} = E(n ) = (3.26)
N aZg2 2 %72 |

The probability that an error will be made is given by
Equation (3.11)

P, = P(a,=2) P(y<0|A,=A) + P (A)=-2) P(y'>0|A0=-A)
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or equivalently can be given by

P, = P{Zy=1)P (X<0|%,=1)+P (3=~1)P (X>0|Z;=-1) (3.27)

e
Let
(s} ..
S = ‘2 2, J, + N (3.28)
n:—oo
n#0
and
Xn = Zan | (3.29)

Since P(ZO=1)=P(A=A0)=1/2 and P(Z0=—l)=P(A=—A0)=l/2, from

Equations (3.25) and (3.27f we have

P

1/2 P(~J,>S) +1/2 P(S>J))

e
= 1/2 [1-P(~J,<523,)]
= 1/2 (1-Q.) ' (3.30)
and Qe = P(-J,<523,) : (3.31)

Xn is a random variable assuming values Jn and -Jn with equal

probability. Therefore the characteristic function @X (w) of
: n

0

f l1/26(xn—Jn)+1/26(xn+Jn)]ejWXn ax_

n - 00

o
~~
E 4
~
It

'cos(an) (3;32)
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The characteristic function of N can be obtained as [19]

o
o () = [ = 1 & 2% ed¥X ax (3.33)
-0 {ZﬂoN
w2
~=0
s 2N

Since X'ns and N are all independent random variables, the
characteristic function of S can be expressed as the product

of the characteristic functions of Xn‘S and N

[+

. (w) «m O, (w)
N Yy=w00 Xn

n#0

¢S(W)

(o]
@N(W) « T .
n==—=o

n#0

]

cos(an) . . (3.34)

It is well known that the probability for a random variable
r distributed between a and b can be evaluated in terms of

its characteristic function [20]

.0 e—jaw_e—jbw

P (a<r<b) = [ T o_(w) dy (3.35)

Thus Equation (3.31) can be evaluated as

Q, = P(~J<S2J,)

e
= ITW o3 Tow
J2Tw

- |

-0

3 (w) aw (3.36)
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Since cos(an) can be expanded into a power series of Wy .
. !

T COoS an can also be put into a powzr series of w

n==~
n#0

o

T cos an =1 + .2 -b2 w2n (3.37)
n=-~c n=1 “I
n#0

The expression for b2n will be derived in Appendix A, Thus
from Equation (3.33), Egquation (3.34), and Equation (3.37),

we have 2
- - o 2
N 2n, 2 N

(3.38)

Substituting Equation (3.38) into Equation (3.36), we obtain

Qe = Qel + Qe2 . (3.39)
where .
;Wz 2
o jIgw -jJogw 5 O
- e -e N
%1 =/ 32w e — (3.40)
and
hwz 2
. © onW o L\ © % 0 :
_ e - - .2n 2 N
Qp = Lo T (.nzl b, W) e dw (3,41)

It is readily recognized that Qe1 is the probability that
the Gaussian random variable N lies between -Jo and JO’ Thus

we can evaluate Qei as
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I - -
0 oy . ) .
Quy = [. = - e 20y dx (3.42)
-Jq y2m Ox
with u = , We obtain
O-N ......
Ty
e _ _ ’ I N
Q. = 2 / 7200 & gu = erf (—2) (3.43)
/TM;N o : }/70'N

Taking the summation sign

out of the integral sign, Qe2

becomes
- 0 —vwz o 2
ncl 2 N . y2n=1 =-3Jow 5 .
Qop = 1 20, (-D)7[55 [ e (=3) “TTeT IOV gy
n=1 —c0
v nl ” 2n-1 ~33
= I 2b, D757 [ (=3w) o (we 170V aywl  (3.44)
n=1 -0
The term inside the bracket is [21]
a2n=1
d (2, ()
2n-1
aJ,
Thus Q_, can be evaluated as F.JOZ
- Qgo = 2b, (=1) — & e )
€2 pmy  Am a 3,1 yzmoy

(3.45)



Let . -"56-2". |
. dhf“ .fﬁﬁl """ _ ZGNE :
Gn = n ( - e - ) r . (31
dJO VZHGN

a recurrence formula to evaluate'Gn can be found

g e -
S n-1
G, =~ 5 2 Ch-1 5 2 Che2 3.
N N
Now Qe2 can be written as
— v — n .
Qe2 = 1 2y (=17 Gy (3.

n=1

Combining Equations (3.39), (3.43), (3.48), and (3.30), th

probability of bit-error then can be given by

43

46)

47)

48)

e

Pe = 1/2 (l—Qe) = Pe1 + Pe2 (3.49)
where
Y
P = 1/2 [l-erf(: )] ’ (3.50)
el
o
N
and
o n+1
Py = 2 (-1) by Gonnl (3.51)
n=1
Si c 2 4'“ﬁéz a 2 2 §§£- J (see Equation 3_14)
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we have
N 2 A4
3 e .
0 L -
= 5 T:ZT- (3.52)

where E=A2T is the energy per bit for the infinite bandwidth.

Thus

P, = 1/2 [l-exf([E 3,7 (3.53)

0
Now we can recognize that Pel is the probability of bit-error
for the detection of a single bandlimited NRZ bit. Indeed,
. if we only consider the bit under detection itself, from

Equations (3.9) and (3.10) we have

W= AOTJ0 ' (3.54)

and

Y

AOTJO + n, ' (3.55)

Since A, is equal to A or —A with the equal probability and
n, is Gaussian noise with zero mean and variance, the output
of the integrator due to both signal and noise can now be

. described by two Gaussian distributions with mean values at

" tATJ,, and Variance‘oz2 ;, where one distribution is for a
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logical "zero" decision, the probability that a "zero" or a

"one" is erroneously detected can be given by

- (x-ATT)?
...... 2
e xe) 20
Py =1/2—=— [ e 2 dx
/?hoz —w
2
1 .. -(x+ATJ0)
+ 1/2 = ] e ————— ax (3.56)

2

¢2n02 o 202

Changing variable and simplifying, Pos becomes

ATJO

Pog = 1/2[1-erf ( )1  (3.57)
V 20-2.
but
N.T
)
2% 7Y%

thus immediately we can see that

E
Pog = l/2[l—erf(f’ﬁ3-J0)] p

which is identically equal to Pel; Therefore the degradation
of the signal itself caused by the restriction of bandwidth
in'te:ms of probability of bit-error can now be described by
Equation (3;53).

Obviously the effect of the intersymbol interference on
the bit under detection in terms of the probability of bit-

error can now be illustrated by Equation(3.51) . Notice that
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G in Equation (3.51) can also be expressed as a function

2n-1

of signal-to-noise ratio E/NO.

B - 2n=2

San-1 = "2 Con-2 * T35 Can-sl | (3.58)

b2n in Equation (3.53) can be expressed as the function of
intersymbol interference terms, Jn's and can be evaluated in

a recurrence form (see Appendix A)

n-1
-1

Pon = 35 dop-a +z£1 Pon-2¢ 42¢-1) (3.59)

where
22 ,,28 .o
- 277(277-1) 2%
d20-1 = 7218 Bap L n (3.60)
n#0 ‘

and Boy is the Bernoulli number. Generally speaking, Jn2<<J12

for n>5 (see Table 3.1), thus the coefficient b can be

2n
calculated with negligible error by using only the terms from

J_5 to J

interference can be confined to the five preceding and five

5. In other words, the influence of intersymbol

subsequent bits on the bit under detection without significant
error. The resulting probability of bit-error P_ can be

rewritten as

e . |
Pe = 1/2[1-erf ( ,NH Jg)1 + h21 (—1)“‘"b2nc;2n“_1 (3.61)
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which can be evaluated for a given value of signal-to-noise
ratio E/N0 and bandwidth-bit duration 3T if the series can be
truncated with negligible error. It will be shown in Appendix
B that the series can be truncated with negligible error

provided that

poa?
8 ;nfg;;;éf;__j <0.5 (3.62)
o v
N

For the system considered here; the series converges rapidly.
Pe can be evaluated accurately = using only iO terms in the
series.

By confining the intersymbol inferfefence to five bits
and using ten terms in the series, the resulting Pls exactly
agree with those obtained - using the averaging'method of
Section 3.4. Two completely different approaches yield the
same answers! The computer time, however, is much less
using the series expansion method. By extending intersymbol
interference to more than 10 bits, and using more than 10
terms in the series of Equation (3.61) the resulting P, does
not change significantly. This verifies our previously
assumptions.

Table 3.3 shows the values of P, P_, and Peé for various

bandwidths and signal-to-noise ratio with the intersymbol

interference confined to the 10 bits and-the'series truncated to
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Table 3.3

E .
Values of Pe’ Pel and Pe2 Vs N-a for the NR? Baseband System

with BT = 0.5, 9.8 and 1.5

. BT ‘= 0.5 v
E Log (P ) Log (P ,) Log (P_,)
No e el e2
(dB)

0 . . -0.933 ~0.972 -1.999
4.77 ' -1.558 ~1.807 - -1.918
6.99 -2.012 ' ~2.568 : -2.153
8.45 -2.392 . =3.302 -2.449
9.54 -2.,735 . -4.022 -2.758

. 10.00 .-2.898 : -4.378 -2.913
10.41 -3.057 . -4.733 -3.066
11.14 -3.366 . -5.438 -3.370

. 11.76 -3.667 -6.139 -3.668
12.30 -3.961 " -6.836 . -3.961
12.78 -4.248 -7.532 -4.248
13.22 -4.528 -8.225 -4.528
13.62 -4.804 --8.915 -4.805

13.98 -~5.085 . -9.604 -5.085



Table

‘Log (P)

-1.040
-1.957
-2.773
-3.541
-4.277
-4.635
-4.989
-5.685
-6.367
-7.039
-7.702
-8.360

' =9.012

353 (continued)

Log(Pel)

-1.044
-1.991
'~2.860
-3.702
~4.528
-4.938
-~5.346
-6.158
~6.965
~7.771
-8.571
~9.370
-10.167
-10.963

49

Log(Pez)

-3.514
~-4.050
-4.633
-4.935
-5.241
-5.863
-6.493
-7.128
-7.766
-8.404
-9.044
-9.683



E_
Ng
(aB)
0 ..
4.77
6.99
8.45
9.54
10.00
10.41
11.14
11.76
12.30
12.788
13.72
13.62
13.98

Table 3.3 (continued)

 Log(Pe)

-1.062
-2.021
-2.886
-3.709
-4.504
-4.894

'~5.280

-6.788
-7.526
-8.257
-8.981
-9.701
-10.417

-1.065
-2.043
~-2.943

-3.816 -

~4.673
-5.098
-5.522
-6.364
-7.003
~8.038
~8.869
~9.698
-10.576

-11.352
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Log(Pez)

-3.240
-3.330
-3.797
~4.372
~-4.996
-5.320
-5.649
-6.319
-6.999
~7.686
-8.379
-9.074
-9.771

-10.121
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10 terms, From Table 3;3; it can be seen that P_ is very
close to P when E/N0 is low and almost dominated by Peo
when E/N0 is high; This iS'ekpected; because the system is
essentially noise limited for low signal-to-noise ratio and
intersymbol interference limited for high signal-to-noise
ratio [15].

For the infinite bandwidth case; I is equal to one

‘and b2n is equal to zero. Then the probability of error

is given by

= .
P, = 1/2[1-erf( NE)] : (3.63)

The additional signal power needed to give the performance
as an optimum detector described by Equation (3.63) for the
detection of NRZ signals in the presence of white Gaussian
noise and in a bandlimited channel . using the correlation
detector is tabluated in Table 3.4. Here S is the additional
power in dB needed for the single pulse case in the absence
of intersymbol interference. This can be given by 10 log (JO)
(comparing Equation (3.63) and Equation (3.53) ). This table
can be used as a design guide for the tradeoff between signal-
to-noise ratio and system bandwidth;

For the system where Equation (3,62) cannot be maintained;
we can make B sufficiently smaller by starting the summation

from, for example m instead of 1. Once we choose m>1, the
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Table 3.4

Additional Power needed for the Detection of NRZ

Signals to glve the same Performance as an Optimum Detector

Bl=  BT=0,5 0.6 008 1.0 2.5
P (go)dB s 4 S A S A& 5 A 5 &
1072 4¢3 1.1 2,7 048 103 005 047 Oulk 047 0.2 0.2
1077 648 1.1 346 0.8 1.6 005 007 0ok 0s7 0.2 0.2
107" 8ot 141 4,0 0.8 1.8 065 0.7 Ol 067 042 0,3
1077 946 1.1 Bub 0.8 241 0.5 048 0.4 048 0,2 0.3
1076 105 1ol 4.8 0.8 204 005 069 0ol 0.9 0.2 0.3

1077 1143 1ol 501 048 266 065 1e0 Ol 140 042 0e3

S - Additional power needed for the single pulse case in 4B
in the abscent of intersymbol interference

A : Additional power needed for the average éase in dB, Second
~column is the signal-to-noise ratio required for the unlimited

bandwidth (optimum case)
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expression for the probability of bit-error, Equation (3.49),
will also be changed, This change is trivial and the new

expression can be immediately written as

. 22 (m=1) - Ty (1)
Pe = _——2_-(?(1:—]—.-) z -.1/2[1—erf,( )]
2 N Y20
i=1 N
T n+l
+.z (=1) bye Gop_q (1)) (3.64)
n=1 _
where J, (i) is one of the qombinations of + J-(m—lf oo B4
+Joiql ceo + Jm—l , and
b, * = 1. (@7 . + nfl b” as, ) (3.65)
2n ~  2n ‘2n-1 o217 2n=20 T20-1 .
2.8 28 .. 4 - 00
. 277(2%7=1) 2% 2%
dogq” = 57T B, ( Z g+ Z J.°%) (3.66)
n=m n=-m
CJa (1) <o :
.y _ Yo .y 2n=2 .
Cn-1(8) == 5= G2 @) = 5T) Con-3@® (3.67)
also
oo 2 -0 2 5 ' .
Bl 9"+ 1 7 )/d (3.68)
=g=m n n=-m 2 N

For small m, the computation of Equation (3,64) does not

require a long computer time. For all the practical systems,
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m=2 is sufficient to make g < 0.5,

3.6 Discussion of the Main Result

The averaging method and the series expansion method
have been used for computing the average probability of bit-
error, Both methods give the same results. However, for
the cases where the intersymbol interference is not confined
to a few symbols, the series expansion method is preferred.
The explicit expression Equation (3;49) for the
probability of error by using the series expansion method
is simple and the computation is easy to perform; Most
importantly, the influence of the intersymbol interference
on fhe detected signal in terms of the probability of bit-
error can be determined analytically. Also all of the constants
G

involved (JO, b 2n'é) can be obtained with only a

2n's'
knowledge of the system parameters. Equation (3.25) is the
generalized expression for any received signal [1 1, [161,
[18]. Thus Equation (3.49) can be applied to any linear

time invariant data transmission system perturbed by the
intersymbol interference and Gaussiaﬁ noise,

For most practical transmission systems; the intersymbol
interference can be confined to very few bits [l]; The
averaging method can also be applied equally well as far as
the average probability.of bit~error is.concerned: The upper

bound Pon and the lower pound P i (equal to P, in the

ax min



55
series expansion method) can also give useful information about
. the system pervformance.

In the next two chapteré; both the series ekpansion
method and averaging method will be used to analyze the
performances of various basebénd and modulation transmission

systemnms,



CHAPTER IV

ANALYSIS OF SOME PRACTICAL BASEBAND SYSTEMS

4,1 Introduction

The effect of bandlimiting on the performance of an NRZ
basepand transmission system using the correlation detector
has been studied in Chaptexr III:

In this chapter; some practical baseband systems will
be analyzed using the results of Chapter III;

(1) Bandlimited (ideal filtering) Split-Phase base-

band system using a correlation detector.

(2) Bandlimited (ideal filtering) NRZ baseband systems

using a sample detector,

(3) Bandlimited (Gaussian filtering) NRZ baseband

system using a correlation detector.
The effects of intersymbol interference on the performance
of the systems will be analyzed and the bit-error probability

will be computed.

4.2  Bandlimited Split-Phase Baseband System

The bandlimited Split-Phase baseband transmission system-

in the presence of additive white Gaussian noise can be
«©

modeled as in Figure 4,1, Here .Z an(t) is the random

n==—co

Split-Phase signal with amplitude +A or ~A, bit duration

equal to T and n(t) is an additive Gaussian noise with zero
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Figure 4.1 A Bandlimited

n(t)

Ideal Low
Pass Filter

H(£f)
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¥ b, (t) + nq ()

T=e= 0

cn(T)+n2(T)
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____>"lll
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mean and spectral density N0/2.' The ideal lowpass filter
has a transfer function H(f) which is one for -B<f<B, and

zero elsewhere,

The n™ bit of information can be represented by
p— ) RN T
A NT<Et<NT+
n - 2
B X
Al (t) —ﬁ Al NT+2<t_<__(n+1)T
0 elsewhere . (4.1)
where A =tA is the amplitude of the nth pulse,
The response of the lowpass filter due to the nth bit .
can be obtained as
B o .
b (t) = [ (f a_(t)e 32Tt gp) I27FE 4¢
n n :
-B =
AT " TET |
- g I s;gfé e—j2ﬂnf? o3 2 (1_e—jﬂfT)eJZﬂfT af
-B —
2
(4.2)

t

The integrator output sampled at t=T due to n h bit alone,

is -

2 T
c, (T =}fo b,(t)dat - [ b (t)dt



ax®  psin?IL
=7 | 5>
B 5
AhTz B 4_sin2.£.-§-—lIl
_ [ ket
4 B (ﬂgT)Z

e—JZnﬂfT af]

Changing variable and simplifying, Cn(T) becomes

Cn(T) = AnTF(BT,n)

where
* TBT

F (BT,n) =

. 4
§i§—§ cosdnx dx

Using Equation (3.5), F(BT,n) can then be

F (BT,n) =

2-Jk§2 ; 2n) ~J(B?;n)

cos2nx 4dx’

B.Asiniet ..
—Fr3— COS TET
B &7 2
(4.3)
(continued)
. (4.4)
dx
(4.5)
expressed as
(4.6)

which can be evaluated in terms of Jkgz., 0) and J(BT,0)

(see Equation 3.8)).

The output of the integrator sampled at t =

T due to an
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and nl(t) is the output of the lowpass filter due to the noise

n(t) alone with covariance

CSin2mB (t=T)

P(t,T) = Eln, (£)n; (1)] = N,B e Les (4,10)
Let o
1 0<tsy B
h(t) = - (4.11)
-1 ZstsT
then the variance of nj can be expressed as

T .T .
E[] h(t)n,(t)dt [ h(1) ny (1) dt 1 -

0," = E[n221
o o

T .T . .
[ [ h)h(r) N.B dtdr (4.12)

o o 0 2TB (t-T1)

This expression can be evaluated easily to give
T TBT 4 N, T

—. .0
5 dx = ——

2 ~NoT 4 77 sinx
e} i ——I
m

5 5 F(BT,0) (4.13)

(o] X

4,2,1 Probability of Bit-=Error: Using the Averaging Method

The output of the integrator due to both signal and

noise is given by Equation (4.8)

Y W -+ n,

n

AT F(BT,0) + .Y AF(BT,n) + n (4.14)
nt (B 2

n==—w

n#0

0
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infinite bit train is
o0

) AnTF(BT;n)'

=m0

W

A T F(BT,0) +.} AT F(BI,n) (4.7)
Nn="=ca

ng#o

0

The first term is the desired signal and the second term is
the intersymbol interference caused by bandlimiting the
signal. Thus F(BT,0) represents the degradation of the
signal and F(BT,n) represents the effect of intersymbol
interference on the bit under detection. As B+w; F (BT,n)-0
and W+A0T as expected. The influence'of the adjacent bits
can now be easily calculated; Table 4.1 shows some values of
F(BT,n) for various bandwidths and bit positions.

The output of the integrator sampled at t = T due to

both signal and noise can be given by

Y =W+n,
= AOTF(BT,O) + nZ— AnTF(BT,n) + 1, (4.8)
n#0
where B
.z T : |
ny, = [ ny(tldt - fé-nl(t)dt (4.9)
o

2



BT

1.0
1o
242
256
340
3k
3.8
4.2

Table 4.1

Values of F(BT,n) for Various Bandwidths

F(BT,2)

62

F(BT,0) F(BT,1) F(BT,3) F(BT,4) F(BT,5)
0.6446  =0,0910 =0,0116 =0,0048 =050026 =050017
0.8225  =0,0032 =040133  0,0074 =0,0026 =0,0011
0.8560 -0,0223 -0.0000 =040000 =0,0000 0.0000
008639  -040294  0,0043 =-0,0024  0,0009 00002
008958  =0,0189 =0,0004 =0,0002 =0,000L =0,0000
009200  =0,0884 =0,0023 050013 =0.0005 =0,0002
0,9250  =0.0123 =0,0000 040000  0s0000  =0s0000
0.9250  =0,0122 =0,0000  0,0000 =0,0000 =040000
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The probability that a "1" in the middle of a particular pat-

tern is detected to be a "0" is given by Equation (3.18)

Py = 1/2 (L-erf(z;)) (4.15)
where o
s W,
1 Y2 c,
| o A A
AT[F (BT,0)+ } '(QH)_F.(BTJ’”
= ‘/2 n=l o (4.16)
NT
~£¥}— F (BT, 0)
and )
© +A
[F(BT,0)+ } ( '2 ) F (BT,n)]?
b2 gy < ni1 TR 41
i = .
F (BT, 0)

Diz(BT) can be considered as the degradation of signal-to-noise
ratio (E/No) for a particular pattern. From Table 4.1, it can
be seen that F(BT,0)>>|F(BT,n)| when n>5. Thus the effect of

intersymbol interference can be confined to the 10 bits nearest
to the bit under detection. There is a to£a1 of 1024 different

bit patterns. Then the probability of bit-error is given by

EUNRRY . E 2 h .
Po = To3r L 1/2(1ferf(/ﬁ0Di (BT) 1) (4.18)
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The upper bound and the lower bound of the average

probability of error can be given by Equation (3.23) and Equation

(3.24) respectively

[ @@ 052 Y, F e 2
= 1/2[l-exf ([ E 012 )]

Ny © F (BT,0)

P .
emax

(4.19)

P_s = 1/2(l-erf /ng(BT,O))] (4.20)

4,2.,2 Probability of Bit~Error Using the Series Expansion Method

Dividing both sides of Equation (4.8) by AT, we obtain

- .
g = zoJ0 + z—mfnzn + N (4.21)
n#0
where
X .AhT ..
x =Ymr r I = xr =ty 9y = FBL,n)
and ‘
e 2 P
2
N = —=7

The variance of N, GNZ' can be evaluated as

o2 4 o o
2 e .2 . 0 .. .- -...
og. = 5y = 3 (4.22)
N A2T 2 dz_

Equation (4.21) iscf the same form as Equation (3,25), The
probability of bit~error is then given by Equation (3.49)

P =P + P (4.23)

el e?
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where
P == I1 erf(/ ﬁb Jo)] ’ (4,24)
and
_ - n+l : ’ a
Peg = 1 1T PypGony (4.25)

b2n can be evaluated using Equation (3.59) and G2n—1

using Equation (3,58). From Table 4.1, the coefficient b2n
can be calculated with negligible error using only the

terms from J_. to J

5 5. For the system bopsidered in this
section, the series for Pe2 converges rapidly and Pe2 can be
evaluated closely using only 10 terms in the series., By
confining the intersymbol interference to the nearest 10 bits
and using 10 terms in the series, the resulting Pe's, which
are plotted as a function of signal-to-noise ratio and system
bandwidth are shown in Figure 4.2, The results agree with
those obtained using the averaging method. Table 4.2 shows
the values of Por Pq and Pe2 for various bandwidths and
signal~to-noise ratio; Table 4,3 shows the additional power
needed to give the séme performance as an optimum detector;
As predicted;_the probability of error is dominated by P
for high signal-to-noise ratio, and by Por for low signal-to-

noise ratio,

The results obtained by both methods compared with those
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Values of Pe’ P

Table 4,

0

System with BT = 1.0 and 1.2

Er
(aB)

Lo77
6499
8.45
9. 54
10.41
11914
11.76
12430
12,79
13.22
13462
13,98

BT = 1.0

Log (P )

-0¢872
10471
1,932
-26327
=2¢583
3,017
~34337
~3.647
~3.951
~4,250
o5t
4838
5,127

2

LOg(Pel)

-0,892
~15609
20255

| -25875

~3.482
~4,081
~L 673
~5¢261

~50846

~55428
-7.010
=7.588
-=84165
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E .
el and Pe2 VS for the Split-Phase Baseband

Log (P ,)

-2,208
-24036
-2:212
-24h71
~24758
-3.056
-3¢357
~3.658
-3¢956
=l 4253
-l 4 547
-4,838
-5,128



Table 4,2 (Continue)

- Log(P,)

=04¢966
~1:774
~2:486
~3s151
-3:784
-4:392
~4 4979
-54548
6,101
64642
=-7¢170
~74687
84195

BT = 1.2

Log(P )

el

=0,971
-1.804
-2+ 564
-34296
-43015
=L 72k
~-5¢428
-64127
=64822
-74518
-84208
~84897

-9%585

68

Log(P_,)

~3:000
~24950
-30272
~3.698
~Ls169
L3664
~5¢170
~5.681
~66193
~6.704
-76212
~737L5
~8¢213
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10~2

Table 4,3 69

Additional Power needed for the Detection of Split-

Signals to give the same Performance as an Optimum Detector

BT= 00 1,0 1.2 1.6 3,0

Be3 1.9 249 1.1 14 0.7 0.8 0.4 0.6
6.8 1.9 3.6 1.1 1.4 0.7 048 0.4 0.6
8Bslh 1.9 4,0 1.1 1ok 047 0e8 0ok 0.6
9¢6 1.9 4.3 1,1 1.5 047 0.9 0ol 047
1065 1.9 L7 1.1 1.6 0.7 1.0 0ok 047

)

1123 109 560 151 1.7 0.7 1.0 0ol 0.7

S t Additional power needed for the single pulse case

in the absence of'intersymbol interference.
A ¢ Additional power needed for the average case,
Second colomn is the signal-to=noise ratio required for

the infinite bandwidth (optimum case)

.
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obtained for the NRZ baseband system in Chapter III, demon=*
strate that the gpiit-Phase system recguires about less than
twice as much bandwidth as the NRZ baseband system to have
the same probability of bit-error for the same values of

signal-to-noise ratio.

4.3"Bandlimited-NRZ‘BasebandASystem~Using a -Sample Detector

The system shown in Figure 4;3 is the same one analyzed
in Chapter III except a sample detector is used instead of
an integrator. A sample detector gives the value of the
function at the sampling tiﬁe.

The Fourier Transform of the output of the lowpass

filter to the nth

bit is
°° j2nft '
B_(f) = ‘_[-ooan(t) e 4T at ~B<f<B
= 0 elsewhere (4.25)
and the time response is
B . .~ TBT .. -
b_(t) = [ B (f)eJZﬂftdf = A Ef SihX cosx(l-gz+2n)dx
n g P nn’ g T

(4.26)
Figure 4.4 shows the plot of bn(t). It can be seen that the
response extended from -« to « instead of being restricted
from nT to (n+l)T. The response of the lowpass filter due

to the infinite bit train can then be expressed as
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W(t) =} b_(t)
n=-=ow
B e 4
a2, ginx T2t
= AO F’Io = cosx(l-T—) dx
w -A. 'ITBT. ..-.l..-... q-"‘. - -
+ 2 An % f 51§x cosx(l—z%t+ 2n)dx
==
n#0
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(4.27)

The first term is the desired signal and is peaked at t=T/2

for BT<1l (see Figure 4.4) [29]. The second term is the

intersymbol interference due to bandlimiting the signal. Thus

sampled at t=T/2, the response can be simplified to give

' ©
W=A, S(8T,0) + § A S(BT,n)
n==c

n#0

where

sinx
cos2nx dx

S(BT,n) = % f

an even function of n, and

S (BT,0) = ;ZT- s; (7BT)

where

the sine integral.

(4.28)

(4.29)
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S (BT,n) can be evaluated in terms of S(BT,0)
S(BT,n) = 1/2 S[(2n+1)BT,0] -~ 1/2 S[(2n-1)BT,0] (4.30)

Table 4,4 lists some values of S(BT,n),
The output of the lowpass filter sampled at t=T/2 due

to both signal and noise can be given by

Y

W + nl

1 (4.31).

=e= 00

Aq s(BT,0) + § A S(BT;n) + n
n#0 '

where ny is the output of the sampler due to the noise n(t)

alone. The covariance of nl(t) is given by Equation (4;10)

and the variance of ny can be expressed as

2 _ 2, _
0" = E[nl ] = NOB (4.32)

4,3.1 -Probability-of-Bit-Error.Using.the,Averaging.Method

The probability of bit-error for a particular pattern

can be given by Equation (3.18)

P,; = 1/2(1-erf ()] (4.33)



BT

0¢5
0.6
0e7
0.8
0.9
1.0

Table

bok

Some Values of S(BT,n)
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s(pT,0) S(BT,1) S(BT,2) S(BT,3) S(BT,4) S(BT,S)
04873 0,0756 " =050167 050073 =050041 050026
0,987 -040317 040713  =0,0534 0450271 ~0,0028
1,074 -0,0833 050487 0:0166  =0,0292 040028
1.134 ~0,0847 =000075 040204 0.0163  ~0,0027
15168 ~040660 =050197 =0,0085 =030020 040024
15179 -050564 050130 =050057 =0,0032 =0,0020
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where : A ¥R
—— A(S(BT, 0),+.42 ) }’; I 5(BT,n))
” =. i T n=1. . '4 c e e
i .
) ay /7 ,/‘NOB
_ = 2 L
= J/ﬁb Di (BT) (4,.34)
and
o A _FA~
15(BT,0)+ ] 3= s (BT, n)]
2 gy = m L7 oo
2BT .

2(BT) is the degradation of signal-to-noise ratio for a
particular bit pattern. _

From Table 4.4 it is clear that |S(BT,n)|<< S(BT,0) for
n>5, thus the effects of the intersfﬁbol interference can be
confined to the 10 nearest bits on the bit under detection.
There are 1024 different patterns. Thus the average probability

of error can be evaluated as

o, 024 = -
P, = To37 121 1/2(1-—erf(/1-;]—0 (BT) )) (4.36)

The upper bound and lower bound of P_ can also be given

by Equation (3.23) and Equation (3.24) respectively

[s (BT,0)~2 Z S.(BT,n). 12

E - n=1 .
= 1/2 (l~erf ( N-o 55T — y (4.37)

el
]

emax

o
1

emin

o 2
= 1/2(1—erf(/ %0_% ) (4.38)
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Dividing both sides of Equation (4.24) by A, we obtain

o«

X = 2,3, + hz-; Iz, + N (4.39)
n#0
Ly .An ' . .
where X = 5 Zn =5 =t 1, Jn = S(BT,n) and
no
= 1
N = 5~

Equation (4.39) is of the same form as Equation (3.25).
Therefore the probability of bit-error can now be given by

Equation (3.49)

Ty .
1/2(1-erf (—— )1 + § D™ b e (4.40)
,/?._O'N n=1

The variance of N can be evaluated as

- (4,41)

Thus

Poy = 1/2M-erf ([ 5~ 20 110, (4.42)
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and

5 n+1 ‘ B . —
Pe2 = hél (-1) bonCon-1 ¢ (4,43)

b, can be evaluated using Equation (3.59). Gone1 1S

given by Equation (3.47)

6. .= w2
2n-1 = g 2n-2 c 2 2n-3
N N
_ _ (E 0 _ 2n-2
&) L& ®2n-2 = BT C2n-3] (4.44)

From Table 4.4, the coefficient b2n can be computed with

insignificant error using only the terms from J_5 to J5.
For the system considered here, the series for Pe2 converges
rapidly so that P, can be computed accurately using only
10 terms in the series.

By confining the intersymbol interference to the
nearest 10 bits the resulting Pe's are shown in Figure 4.5.
Table 4.5 gives the values of Por Pel and Pe2 for various
bandwidths and signal-to-noise ratios.

The resulting Pé's obtained by Equation (4;43) do agree
with those obtained by the averaging method;

The bandwidth of the lowpass filter is limited to be -
less than 1/T. Because for'B>1/T; the peak value of signal

will not occur at t=T/2 (see Figure 4.4), and more noise is

allowed through. [33]
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Table 4.5

- E -~
Values of Pos Pe1 and Pe2 vs = for the NRZ Baseband System

N
0
Using Filter and Sample Detector with BT=0.7 and 0.9

" BT = 0.7

E | :

N, Log (P ) : Log(P ) Log(P,,)
(aB)

0.00 ' -0,987 ~1,002 -24l452
77 -1.775 ' 1883 -23433
6499 -2,422 -24698 ~2$761
8sls -25992 -3:467 -34169
9,54 -345509 - -44231 =3+600
10,41 =3.987 -k, 987 -44033
11.14 ~Leli36 - =5,736 ~holis8
11,76 -4 861 -6,480 =k 872
12430 ~54267 ~7:223 - -54272
12479 ~5.658 ~7.962 ~5.661
13.22 -64036 ~8.698 -64037

13,98 -64761 -10,165 ~-64761



Table 4sS(continued)

BT = 0.9
Log(Pe)

~05957
~15747
~2,438
-3,080
-38690
L5276
~L58hl
~5.397
~55938
~6.471
~65996
~75515
-8,028

Log (P, )
«04962
~1,784
=2,531
-3.252
-3i958
L4656
~5.347
~6,035
~6.718
~7s402
8,081
~-84758
=93l

81

Log(PeZ)

-2.904
-2,842
-34152
-3.567
-45027
~L¢510
-54007
~50510
-64017
~6¢525
~74033
~74540
~8.045
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If a single pulse (in the'abseﬁce of the intersymbol
interference) is transmitted; Pe = Py is minimum when
BT=0.,7, which gives the maximum value of J02/2BT equal to
0.82. This agrees with the predicition by Schwartz [30]:
But from Table 4.5 and Figure 4:5,_it can be seen that the
probability of bit error is minimum when BT=0,9. Thus the
intersymbol interference has a considerable effect on the
detection of bandlimited signals using the filter and sample
detector. The optimum bandwidth of the filter should thus
be set to 0.9 of the bit rate of the transmitted NRZ signal
if the filter and sample detector is used. |

Comparing Figure 4.5 with Figure 3.2, it can be seen
that the correlation detector is superior to the filter and
sample detector for BT>0.6. But the performance of the
filter and sample detector is better than that of the correla-

tion detector for BT is equal to 0.5.

4,4 Bandlimited (Gaussian Filtering) NRZ Baseband System

Using the Correlation Detector

So far we have considered the ideal bandlimited channel
for various baseband transmission systems, In this section;
we intend to analyze the performance of the NRZ baseband system
for a bandlimited channel with a filter whose transfer function G(f)

is Gaussian as shown in Figure 4,6, The expression for
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Figure 4.6 Characteristics of the Gaussian Filter

e |

€8



84

G(f) is [31] —0.347(%—02 ’
G(f) = e (4.45)
where B is the 3dB bandwidth of the filter.

As we know from Chapter II, the optimum receiver for
the detection of binary signais corrputed by additive
white Gaussian noise can be obtained by using the matched
filter, For a single NRZ pulse'(ile: in the absence of
intersymbol interference) transmitted over this channel,
the optimum receiver (matched filter) can be determined from

the signal and channel characteristics [1 ]. The Fourier

transform of a pulse with amplitude A and duration T is

N . T . ’
F(£) = [ a e 3%Mtqp = ay SIDTIT ITET (4.46)

O

Thus the transfer function of the matched filter will be [12]
R(£) = K[F(£)G(£)eI 2 TETyx - (4.47)

where X is an arbitrary real number and * indicates the
conjugate. Substituting Equations (4.45) and (4.46) into
Equation (4.47), R(f) becomes

» L £ 2
. sinmET _JmET e_0'347(§)

= -327ET
R(f) = KAT TET e

Capq 5y 2 |
~0.3075% e L
(KA) (e B @EEE LTI (4.48)

I
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KA can be chosen to be 1; We recognize that TEZ%%%E e ITET
is the transfer function of the correlation detedtor; Therefore
the matched filter consists of the Gaussian filter cascaded
with a correlation detector.

The primary objective in this section is to examine the
effects of intersymbol interference on the performance of this
optimum receiver using the basic principles developed in
Chapter III. The total system can now be modeled as shown

oo

in Figure 4.7. Again J§ a, (t) is the random NRZ signals

n=-c
with amplitude A or -A and bit duration T. n(t) is the Gaussian
noise with spectral density N0/2 (two sided).

Rewrite G(f) as

;a‘(Zﬂf)z .
G(f) = e 4 (4.49)
where
« =A0.377 (4.50)
7B

The impulse response of the two Gaussian filters cascaded

together can be obtained as

g(t) = [ G(£)? I2mEE g¢
...... 2
R T L
=A§%f I e 2 e:JWt dw (4,51)
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wﬁere
w = 27f
and [19]
2 2
o eyl )
1 -Jjwt
(-t) = e e dw
g .—fﬁllﬂm 2
g2
I 7
= . e 2« :
Y27e
Thus ...
| 3 22
glt) = —1: ¢ 2° (4.53)
2m«

The output of the Gaussian filter in the receiver due to

the nth bit can be obtained as the convolution of an(t) and
g(t)
— { -
bn(t) = iman(t x)g(x)dx
_.XZ
t-nT 1 2«2
t-(n+1)T Y21
which can be simplified as
' nT-t

[._(E';];)_'I:_E] - erfi
Y 2 Y2

)] (4.55)

AL
b (t) = 32 [exrf
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The response of the integrator sampled at t=T due to the nth
bit is
c () = [ b_(t)at
o
AT T, .
=7/ lers (XTIl ope (ML ) jq¢
o 2 « o« :
L (4.56)
With « = LQ%%£1~, changing variable and simplifying, c, (T)
becomes
Cn(T) =A T E(BTcn) (4.57)
where o
E(BT,n) = 221 E[ (n+1)BT, 0]
- nE (nBT,0)
S~
+ T E[ (n-l)BT,O]
and
..... 2
| T - (TBT)
E(BT,0) = erf(—TBT . y_ [0.347 A2 (y_, 230347

VIO 3ET T Tt

Thus the output of the integrator due to the infinite bit
train is

w= } c (T

n==—o

0

A T E(BT,0) + ) AT E(BT,n) (4,60)

I

— 00

n#0
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-The first term is the desired signal and the second term is
the intersymbol interference; As B+w;'E(BT,O)+1, E(BT;n1+0
and w+A0T as expected; Table 4.6 shOws some values of
E(BT,n).

The output of the integrator due to signal and noise

can be described by

(4.61)

= A,TE (BT,0) + hz— A TE(BT,n) + n,
n#0
where
T ) - .
n, ;'Io nl(t) dt (4.62)

and nl(t) is the output of the Gaussian filter due to the
noise n(t) alone.

The variance of n,, 022, can be shown to be (see Appendix ()

02" = "7~ [erf (— BT __y _ .0.347 ]gT (1-e 2°0-347 )3
Y2/0.347 Ton
N, T
= —— E(BT,0) , (4.63

4,4.1 Probability of Error Using the Averaging Method

From Table 4,6, it can be seen that E(BT,0)»»>|E(BT,n) |
when n»1l, thus the effect of intersymbol interference can just

be confined to the two adjacent bits. The average probability



0.5
0.6
067
0,8
0.9
150
1.2
1.5
250
2.5
3.0

Table 4,6

Some Values of E(BT,n)

E(BT,0)

047017
0.7508
057863
0.8130
048338
0:8504
0.8753
049003
059252
059402
0s9501

E(BT,1)

0.1487
0.1246
041069
050935
030831,

050748

050623
000499
050374
040299
040249

E(BT, 2

040000

0.0000
040000
0,0000

. 06,0000

0,0000
0+0000
0,.'0000
00000
0,0000
0.0000

90
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of bit-error now can be expressed as

P, = 1/2(l-erf(z))) + 1/2(l-erf (z,)

4 1/2(I-erf (25)) + 1/2(1-exf (z,) (4.64)
where '
M im0 aEenL)
YoV, VI [T
‘—7‘— E(BT,0)
ST ST R
_ (BT, 0 F2E (BT, 1))
"/jﬁa E(BT,0) (4-6$)
7 = W2 _ 'A'I-'-['E.:(BﬁT..,'.O‘.)I+j-(11'.;-111)iE.}('B'.I-’,'l')"]-' s
2 /2'02 vZ o [NT
—— E(BT,0)
=//§— E (BT, 0) | (4.66)
0
g =3 ATIE(BT,0)#(-1+1)E(BT,1)]
3 ,/702 ) N T
—— E(BT,0).

ij‘% E (BT, 0) (4.67)
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and o _
7 = W@- - _ AT(E(BT,0)+(=1-1)E(BT,1))
* '/702 7z /\/NO-T : Ty
5 E (BT, 0)
=jg3___ [E(BT,0) -2E (BT, 1) ]2 (4.68)
(N, E (BT,0) '

Figure 4.8 shows the plots of the probability of error as

a function of signal=-to-noise ratio for various band-widthg.

4,4,2 Probability of Bit-Error Using the Series Expansion

Method
Normalizing Equation (4.61l) by dividing both sides by

AT, we obtain

X = 2,3, + z J 2, + N (4.69)
n=-—o
‘ n#0
) T . n,
where X = A 7 An =‘A2T =+ 1, Jn = E(BT,n) and N = v

The variance of N can be given by

g -
c 2 -9 C
N pZp? 2(%-) 0
0

Again Equation (4.69) is of the same form as Equation (3,25),
Therefore the probability of error can be given by Equation (3,50)

P, =P, t Py (4,71)
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where
g
P = 1/2[1l-erf ( )1
el 5
N
= 1/2[1-exf (| T~ 3, )] . ' (4.72)
0.
and
_ v n+l . - '
Pep = L (-1 byn Con-1 ’ (4.73)

=1

b, can be evaluated using Equation (3,59) and Gyn-1 using
Equation (3.58). As B>, b, -»0, and Pe+Pelfl/2[l—erf( ﬁa)]
as expected for the infinite bandwidth case. b2n can be

evaluated accurately using only the terms from J_, to J,.

1 1

In other words,‘almost all the influence of intersymbol
interference comes from the immediate adjacent bits. The
series for P, can be truncated to 10 terms without introducing
any significant.errof. The resulting Pe's agree with those
found using the averagingmethod.

The performance of the system considered in this section
is much worse than the systems described in Section 4;3 and
Chapter III (comparing the curves in Figure 4,8 with those
in Figure 4,5 and Figure 3.3); The reason for this is that
the Gaussian bandlimited channel introduces more signal dis;

toxtion than the ideal bandlimited channel does (see Table

4,5, Table 4.3 and Table 3.1).



CHAPTER V

ANALYSIS OF SOME PRACTICAL MODULATION SYSTEMS

5.1 Introduction

The effects of bandlimiting on the performance of some
practical baseband systems have been analyzed in Chapter Iv;
Bandlimiting not only causes the loss of signal energy but
also introduces intersymbol interference; It is the inter-
symbol interference that dominates the total systém performance
for high signal-to-noise ratio.

For the modulation systems; the restriction of bandwidth
is usually caused by (1) premodulation filtering (2) post-
modulation filtering (3) bandlimited channel (4) receiver
bandpass filtering or IF filtering. .In the case of (1), the
performance of the system can be analyzed the same way as
the baseband system [17]. But for the cases of (2), (3) and
(4) additional signal distortion and interference will be
introduced by the aliasing effect if the carrier frequency is
not much greater than the bit rate [43].

In this chapter; the effects of the receiver IF filtering,
the most common cause of bandlimiting for a modulation system,
will be analyzed using the main results of Chapter III,

The performance of the three basic data modulation

systems, which are almost exclusively used in practice, will
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be investigated:

(1) Pha<e Shift Keying or PSK

(2) Amplitude Shift Keying or ASK

(3) Frequency Shift Keying or FSK
The explicit expressions for the degradation of signal;,
intersymbol interference; and aliasing effect as functions
of system bandwidth and carrier frequency will be determined
first; The probability of bit-error for each case will then

be computed,

5.2 Phase Shift Keving

The PSK coherent communication system can be modeled as
shown in Figure 5.1 [14], [34], [46]; The PSK signals (see
Chapter II) at the transmission end can be generated by
amplitude modulating a carrier cos(wc t) by a random NRZ
signal with bit duration T, amplitude A or -A. n(t) is white
Gaﬁssian noise with zero mean and power spectral density
N0/2 (two sided). The receiver IF filtering can be modeled
by using a rectangular bandpass filter centered at the carrier
frequency fc with bandwidth 2B, where B is defined as the
equivalent baseband system bandwidth, The transfer function

of the bandpass filter can be represented as

1 | fc—‘B;Tf;fcw
Hy (f) = 1 -fc-Bif:—fc+B (5.1)

0 elsewhere
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The modulated signal plus noise at the output of the IF filter
is demodulated by the coherent demodulator; which consists
of a multiplier followed by a lowpass filter with bandwidth B.
The demodulated baseband signal plus noise then is fed to
the baseband detector; This detedtor, which consists of a
correlation detector followed by a threshold deVice; is optimum
if the system bandwidth is infinite; Since PSK signals are
antipodal, the optimum threshold d is set to be zero (see
Chapter II),.

- For practical consideration, the carrier frequency is
assumed to be a multiple of the'bit rate [3], [10], [47].
The communicétion model shown iﬁ Figure 5;1 can be replaced

by an equivalent one (see Appendix D) as shown in Figure 5.2.

Here _
1l ., sinmfT -3jmfT SR
7 T W )T © £o-BIEZf *B
"1 o sinmfT -jmfT

H(£)= | 27 T T(EAL T © £ mBLfL-f 4B

0 elsewhere (5.2)
th , .
The n bit can be represented as
: A nT<t< (n+1) T
an(t) = '
0 elsewhere (5,3)
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coswct n(t)

Figure 5.2 A Simplified PSK Model .
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where
A for a "1" ‘
An = ' (5,4)
-A for a "oO"
Then the modulated carrier can be expressed as
bn(t) = an(t) cosy t nT<tg (n+1)T (5.5)
The Fourier transform of bn(t) is
(n+1)T _a
B_(f) = ,'{ A_cos2tf _te Jzﬂftdt
n n c
n
- . sinw (f-£ )T =jr(£-£ )T (1+2n)
= AT ' < e ¢
Z “n 'n'(f—fc)T
1 .sinm(f+fC)T =jm (£+£ )T (1+2n)
+ = AT e ¢ (5.6)
Z “n 1T(f+fc)T
Since ch is an integer, we have
-jm (£-£ )T (1+2n) .
sing (£f~f )T e c = sin7fT e JrET (1+2n)
¢ (5.7)
and
=37 (£+£ )T (1+2n) i
sinﬂ(f+fc)T e ¢ = sinyfT e JnfT (1+2n)
(5.8)
Thus ............ ° D ) .
_ 1  singfT - _~jrfT(Q+42n) 1, o singfT -jrET (1+2n)
Bn(f) =5 AT %Tf:f;TT e +2AnTﬁTf?f;TT‘e
= p_ ETsinmfT  ~jrfT(1+2n) :
n (5.9)

m (£ —fc)T
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The output I (t) of the filter H(f) in the time interyal

Ofﬁ§$ due to _he nth bit can be determined to be

I_(t) = im Bn(f)H(f)ejz"ft ar

£ 4B : U
_ IC A p ESinTET  _~3mET(1+2n) © 1, SinmET
fFp D (defZ)T * 2 w(E- c T
C m C .
e AMET I27EE g
-F 4B e D
e ° A Tr SinTET  _~3rfT(1+2n)’ 1T CSinmET
] nTt ==~ TEFET
—fc—B m(f -fc)T c
e~ ImfT .ejzﬂftdf‘
0<t<T (5.10)

Changing variables and simplifying, we obtain

T oBT . .. 2 )
In(t) = ﬁE— 3 f 5&353 cos2x(l+n—%) dx
“ o x
#BT .. 2 ... .. )
-2 ] sin X > cost(l+n—%)dx]
o (2nf m)°

For t=T, we have

AnT

In(T) = ———-[J(BT n)~C (BT, f T n)]

V<t<T

(5.11)

(5,12)
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where
. C 9 .nBT.si52£.} T ) | .
J(BT,u) = = f . cos2nx dx (see Equation (3,5))
T % x
and
L BT EIVL20T T . |
C(BT,fcﬁyn) = a f Sin X2 2’ cos2nx dx (5.13)
T o (2mf T) “-x

Both J(BT,n) and C(BT,ch,n) are even functions of n.

Also from Equation (3.7)

7 . his o ' - . P U _ -
J(BT,0) = 2 [ SMLX gy = 2 g (2qm7) - SELTBT) (5 14)
, m 2 T 1 7BT
O X
(5.15)
Similarly o,
. BT . .. ... .. . .
C(BT,£_T,0) = = | S X ax
T o (2m£ T) “-x

which can be evaluated as (see Appendix E)

LR 25E BT
R A , - —C.
. “2f - [In 2ﬂch"ﬂBT + Cl(l4ﬂch 27BT|) Cl(4WfCT+2ﬂBT)]
C
{ B # 2f, (5.16)
C(BT ' fCTO ) = ’ ----------
—_— i [0.5772+1n (87F T)~C. (87f T)] B = 2f
\4n%f T c 1 .7¢c . c
C

(5.17)
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where

Ci(y) =:—[ tCESX ax
y
is a cosine integral, also a tabulated value. C(BT,fCT,n) can

also be expressed in terms of the function C(w,y,0]}

C(BT,f_T,n) = P-;-l- CI (n+1)BT, (n+1) £,T,0]

= nC[nBT,nf T,0]

+ %L ¢l (n-1)BT, (a-1)£_T,0] (5.18)

The signal at the output of the integrator sampleg at t=T

due to an infinite bit train can then be given by
W= ) I_ (T)

AT
= —— [J(BT,0)-C (BT, £_T 0)]

+"é§ 2 ( Dy [J(BT,n) C(BT £_T,n)] (5.19)

The first term is the desired signal and the second term is

the interference on the signal under detection: Note that each
J(BT;n) and C(BT,ch,n) is less than or equal to one for any n,
BT, and £ T. Also as B+w(,J(BT;O)+l;_J(BT;n)+O (for nfO);A
C(BT,fCT,n)+0 and vw+A0T/2 as expected for an infinite band-
width; J(BT,n) represents the effect of intersymbol inter-

ference on the bit under detection and C(BT,ch,n) represents
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the effect of aliasing; Also note when f¢>>1/T,_C(BT;ch;n)+0
as expected and the effect of aliasing is insignificané. Table
5.1 gives some values of C(BT;ch;n).

The output of thé integrator due to both signal and

noise can now be given by

¥ = )} I (T) +ny = Ig(T) + . ] I (T) + ny
n#0
. AGT :
= —2— [J(BT,O)"‘C (BT,ch,O)]
. o (A _+A )
AT n - -n :
+ 5 nzl ~——— [J(BT,n)-C(BT, £ T,n)] + n, (5.20)

where n, is the response of the receiver to the channel noise
n(t).

The variance of the noise n; can be obtained as

o N,
2 _ S0 - 2
Gl = !m > H(f) af

f +B
e

iy gé - §E sin?reT as
- ) "2 22
fc~B (f—fc) T
~f 4B NS 2 U502 e
IR (R R SR -2 -3 R (5,21)
4 2 ' 52 2.2
. (£+£_) T
c .
Changing variables and simplifying,<612 becomes
. N, T
s 2o

1= . J(BT,0) : . (5.22)
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-Some Values of'-C(BT,ch,n)
ch =1

g g(BT,ch,O) C'(BT,ch,l) C(BT,£_T,2) AC(BT,ch,B) c(Br,£_T,4) C(BT,£_T,5)

5  0.0131 ~0.0066 0.0001 -0.0000 0.0000 ~0.0000
6 0.0184 ~0.0116 0.0042 ~0.0028 0.0013 ~0.0001
8 0.0258 -0.0144 0.0003 0.0010 0.0007 ~0.0002
3 0.0271 -0.0137 ~0.0003 ~0.0001 0.0001 0.0001
0 0.0273 ~0.0135 ~0.0001 ~0.0000 -0.0000  =0.0000
2 0.0292 ~0.0124 ~0.0007 ~0.0010 ~0.0008 - 0.0002
5 0.0511 -0.0267  0.0016 ~0.0006 0.0003 ~0.0002
5  0.0575 -0.0299 0.0016 ~0.0006 0.0003 ~0.0002
. | £T =2
5  0.0032 ~0.0016 0.0000 0.0000 0.0000 0.0000
6 0.0044  -0.0028 0.0009 ~0.0006 0.0003 ~0.0000
8 0.0061 -0.0034 0.0001 0.0002 0.0001 ~0.0000
9 0.0064 ~0.0033 ~0.0000 -0.0000  ~-0.0000 ~0.0000
0 0.0064 -0.0032 ~0.0000 ~0.0000 ~0.0000 ~0.0000
2 0.0068 ~0.0030 ~0.0001 ~0.0002 ~0.0001 0.0000
5  0.0100 ~0.0050 0.0000 ~0.0000 0.0000 ~0.0000
5  0.0187 -0.0094 0.0001 ~0.0000 0.0000 0.0000
£ = 3
5  0.0014 ~0.0007 0.0000  =0.0000 0.0000 ~0.0000
6 0.0019 -0.0012 ~  0.0004 ~0.0003 0.0001  =0.0000
0.0027 ~0.0015 0.0000 0.0001 0.0001 ~0.0000
0.0028 ~0.0014" 0.0000 -0.0000 0.0000 0.0000

0.0028 -0.0014 -0.0000 -0.0000 -0.0000 -0.0000
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Table 5.1 (continued)

c(eT,£.T,0) C(BT,f_T,1) C(BT,f T,2) C(BT,fT,3) C(BT,f_T,4) C(BT,£_T,5)

0.0029 -0.0013 -0.0000 -0.0001 -0.0001 0.0690
0.0043 .=-0.0022 0.0000 -0.0000 - 0.0000 -0.0000

0.0075 -0.0038 0.0000 -0.0000 0.0000 0.0000
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5.2.1 Probability of Bit-Error Using the Averaging Method

Recall that the output of the integrator due to both

signal and noise is given by Equation (5,20)

y =W + n,y

'AQT
= — [J(BT 0) - C(BT £ 7 0)]

. AT ”--(”“}A:ﬁ) . : -
+ 5= )) —5— [I(®T,n) - C(BT,£,T,n)]+ n,
n=1 ,
(5.23)
Using Equation (3.18) and Equation (3.19), the probability

" of bit error for a particular bit pattern is

e 5 |
1 -u 21 _
Pei = = _IZ e du = 5 [l-erf(z,;)] (5.24)
i
where
.Wi
L. =
bR '/—-O, .
An+
AT{J(BT 0)~C (BT, £ T,0)+ Z (== )[J(BT n) -C (BT, £ T,n)]1}
B IS AT e L g A
vZ SN T
—— J(BT,0)
e y | _
= "‘/NO Di” (BT, £.T) T (5.25)
and E =.A2T/2,_the energy per bit for the PSK signal (see

Chapter II), .
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and

{J(BT 0)- ~C (BT, £, T °)*~Z~(~ e ) [J (BT,n)~C (BT, f T,n}]1}
........................ l\\‘t’ ...\-...\\\\\\~\\\

D (BT, f T)—

J(BT,0)
Thus Di (BT,ch) as a function of system bandwidth; carrier
frequency and bit patterns can be considered as the degradation
of signal-to~-noise ratio and can be calculated easily;
From Table 3.1 and Table 5.1; it can be seen that |J(BT;n)
~C (BT, £_T,n) |<<[J(BT,0) - C(BT;ch;O)] when n>5. Thus the
effects of the interference can be confined to the nearest 10

bits. There is a total of 1024 different patterns. Thus the

of error is given by

....1 1%24
P = P .
e 1024 im ei
o q 1024 .i
i=1
The' upper bound P omax’ and lower bound Pemin can be obtained

in a fashion similar to those in Chapter III (Equations (3.23)

and (3.24)) e e e e

. fg(sT, 0) ~CBT, f T, O)F 2 .2 J(BT n)—C(BT £ T,n) ]
—. l _ E \\\\\\\\\\\\\\\\\\\\\ n: ....................
Pemax = Z1~erf (- T BT, 0)

e Jg - ITBT0)-C
Pomin = yll-erf ([ _ )] (5,29)
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5.2.2 Probability of Bit-Error Using the Series Expansion

" Method -

Dividing both sides of Equation (5,20) by AT/2, we

have
X = ZgJg t hé-w 2y t N (5.30)
n#0
where
. X
_Y _ApT _
X AT/2 ! An - AT rl,J,= J(BT'n)'C(BTrch/?)
and
' e
N-= 1
The variance of N is
'nAz.
(AT/2)
=- . .4. 0 2
aZp? 1
. . N,T o -
= g 5 . 2 J(BT,0) = _ELEELQ) (5.31)
AT z(ﬁﬁ)
. 0

Equation (5.30) is of the same form as Equation (3,25).

Thus the probability of bit-error is given by Equation (3.49)

P, =,Pgl t Pos (5,32)
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where
.. g
21 R | A
Pel = [l=exrf ( = )]
N
T 5 A
I 1E - (3(BT,0)-C(BT,f~T,0))
and
_ ¥ _qyntl

n=1

b2n can be evaluated using Equation (3.59). G2n—l can be

given by Equation (3.47)

. Ja ey
G = 0 G _ 2n=2 G
2n-1 o 2 2n-2 o 2 2n-3
N N
S E Ly J.(BT,0) ~C.(BT, £_T,0)
= 25 —=mmo Gon-2
o |
= 318T,0) ®2n-3) (5.35)

From Table 3.1 and Table 5.1, the coefficient b2n can be

calculated accurately —° using only the terms from J_. to J

5 5
(i.e. from J(BT,-5) - C(BT,£_T,~5) to J(BT,5) - C(BT,£_T,5)).
In other words, the effects of interference can be confined
to the 10 nearest bits without significant error; The series
for P also converges rapidly so that it can be evaluated

accurately ~ using only 10 terms in the series. Aag B, b2n+0’

J(BT,0)~+1, C(BT,ch,0)+0 and P, = 1, Pel = 1/2(l-exf( ﬁa )) as
expected for the infinite bandwidth case (see Chapter II).
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The resulting probability of error; Por for a random PSK
signal as a function of signal-to-nois=s ratio E/N0 and band-
width-bit duration ﬁroduct BT for various carrier frequencies
is shown in Figures 5.3; 5.4; 5.5;_5:6 and 5;7L The results
agree with those found using the averaginé method;
el; and P_, as a function of signal-

to-noise ratio E/N0 for some values of BT and ch. It can be

Table 5.2 lists Pe' P

seen from Table 5,2 that; as predicted; P, is close to P4
when E/N0 is small and close to P2 when E/N0 is 1arge;A Also
as the bandwidth of IF filter becomes wider, the interference
becomes. less.

From Figures 5;3, 5.4; 5.5, 5:6; 5;7 and Table 5.1, it
can be seen that for fc>3/T, the effgct of aliasing can be
neglected, and the results are the same as obtained in
Chapter III for the baseband NRZ system. In other words,
the modulation has no influence on the detection of PSK signals
for carrier frequencies greater than three times the bit rate.
This is significant result, because it can serve as a guideline
for the design of an aliasing free frequency division multi-
plexing (FDM) transmission system;

For BT=2:5; ch>3; the additional power needed to give
the performance same as an optimum case (infinite bandwidth)
is only 0,3 dB(see Table 3:1). This suggests that an IF
bandwidth of five times fhe bit rate is wide enough to achieve

the optimum results for the PSK system,.
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Table 5.2 : 117

B . ) ~
Values of Pe’ Pel and Pe2 Vs [ for the PSK System with BT=1.0

and fof = 1-0, 3}9T = 1,0 lT = 1.0
(o

E
(d§3 Log(P,) | Log (P ) Log(P,5)

0600 -1,008 -1,016 -2 744

Lo?77 ~1,862 -1.921 =20757

6.99 -2,600 -2,748 «34137

8.45 -3.280 -3.548 ~3.617

954 ~3.925 -4.334 ~4e139
10,41 =L, 54l . =5,111 - =4.682
11,14 -5.147 -50882 ~5¢285
11.76 -54737  =6.648 -5079k
12.30 -66319 -7.113 ~6.356
12,79 -60895 . -8.173 =66919
13.22 ~7.167 -8.931 - ~7.482
13.62 -84035 -9.687 - -8.,045

© 13098 ~-8,601 10,441 -8.607
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Table
(Continuéd)
£,T = 360 BT = 140

Log(P,) Log(P_, ) Log (P, )
-1,039 ~1,045 -2.945
~1.952 -1.993 ~ =3.002
=26759 -24863 - ~3el32
~3e515 =3.705 -34965
-45238 44533 b 5Lk
4,937 ~50352 50147
~5.618 ~64:165 . =5.76k
~-6,288 -6.973 ~64388
-6,948 =7e779 ~7e017
-7.601 -8,581 ~7.649
8,248 ~-9,381 ~8,282
~-80892 -10.]_.?9 ~8,915
~94533 -10.,976 -90 549
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5 3 Amplltude Shift Keylng

The ASK system is the same as a PSK system shown in
Figure 5.1 except that A, is equal to A or zero instead of A
or -A (see Chapter II). The threshold setting is AT/4 as
will be shown later,

Equation (5.18) can be rewritten as

A " AT

Y = (4 + 79 [3(BT,0)-C(BT,£_T,0)]
.f ® (A fA 'y
+ > 21 [ -2 "2 4+ al[J(sr, h)—C(BT £.T,n))1 + ny
(5.36)

where

Al = Aor -A
Thus

- AgT
Y = —— [J(BT,0)-C(BT,£_T,0)]
C

. © aA' +a_ "'

+ 3= nzl 2" [J(BT,n)-C(BT,£_T,n))] (5.37)

+ %ll'- '} ar,n)

n=-<°
- %E ‘.Z-w C(BT,ch,n_)
. (5,38)
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[+2}

But 2 J(BT,n) = l,_.z C(BT,iéT,n) = 0 (See Appendix E),

we have
]
.AOT. ' _
Y = —— (3 ®T,0)-C(BT,£_T,0)]
VL
ar oo ARG
+ T n——zl ——-—A—-———-— [J(BT,n)"C (BT,ch,n)]
+ %-T- + ny (5.39)

Thus the optimum threshold should be set at AT/4 (if the gain
of the integrator is A; d will be AZT/4, which agrees with
the result of Chapter II). The decision error will occur
whenever Y-AT/4 plus noise is.greater than zero if a "O"
is being sent and less than zero if a "1" is being sent. Let
Y' = ¥Y-AT/4, Equation (5.39) becomes‘

AT

0
y' = —— [J(BT,0)-C(BT,f_T,0)]

Al A "'
AT 22 [3(BT,n)-C(BT,£,T,n) ]+ n

+
T iy

llet18

1

1 :
(5.40)

n

Therefore we can treat the ASK system the same way as we
treated the PSK system,
Dividing both sides of Equation (5.40) by AT/4, Equation
(5.40) becomes
o 0 .
X =323+ } 23 +N (5.41)

=00

n#0
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where J_ = J(BT,n) - C(BT,f_T,n), z = £1, and N = n,/{aT/4).
Equation (5.41) is of the same form as Equation (5.30) except
that the variance of N is

G 2 _.glnl.l A

N S am 2
AT
7

- J(BT,0) (5.42)
2 (55-)
N
0
where E = AZT/4 is the average energy per bit for the ASK
signals (see Chapter II).

By comparing Equation (5.42) with Equation (5.31),
immediately it is clear that the ASK.system requires twice as
much energy to achieve the same performancé as the PSK system.,

This can also be verified using the averaging method.
Using Equations (3.20) and (5.40), the probability of error

for a particular bit pattern is

P ='% (l-exf (z,))

where

'A2T

_ . § ASHAY
T (J (BT,O)"C (BT,ch,O)'f‘h:l '——A———

i T 2N, J (BT,0)

J(BT,n)~c(BT}fCT,n))2

. (5.43)
. ’ AZT C. .
Since —z—-is the average energy per bit, we haye

_IE 2 -
Z; ia/iﬁg Dy (BT, £_T) . (5.44)
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Compared-with Equation (5.25), the ASK system indeed requires
twice as much energy to achieve the same performance as the
PSK system, Thus regardless of the’res£riction of the
bandwidth, the ASK system always requires 3dB more power
than the PSK system. The probabilities of bit-error plotted
in Figures 5.3, 5.4, 5.5, 5.6 and 5,7 can all be used for
the ASK system except that all the curves must be moved to

the right by 3dB.

The bandlimited FSK cdherent communication system can be
modeled as in Figure 5;8. un(t) is the random NRZ signal
with bit period T, and amplitude +1 or -1l. Bandpass filter
Bl(f) is centered at one carrier frequency f0 + Af with
bandwidth 2B, and bandpasé filter Bo(f) is centered at the other

carrier frequency f,~Af with bandwidth 2B.

0
As in Section 5.2 the model can be replaced by an equi-

valent one as shown in Figure 5.9, where
(L5 ©osinmfT -e—jnfT

£ tAE-B<E< £ +AL+B
1,0 singfT ~_ _~jmfT
Hy(8)=| 3 T TEFE +a00T ©

~f(=AE~BSE<-F(-AT+B

0 eisewhere (5,45)
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(1l o singfT - ~jnfT
2 n(f—fO+Af)T

Eo-Af-B<f<f ~AT+B

CsinmET -jmET
ﬂ(f+f0—Af)T

_- 1 Y e _ .-' .. ‘
Hy (£)={5 T £, +AL~BSE<E +AE+B

, (5.46)
. elsewhere

o

The frequencies f0+Af and fO-Af for the two carrier tones are
assumed to be the multiples of the bit rate (i.e. the signals

th

are orthogonal) [34]. The n"" bit can be represented as

bn(t) = Acos(w0t+UnAmt) nTjti(n+l)T

where

Un =1 or -1

The Fourier transform of bn(t) can be written as

(n+1)T s
B_(f) = f Acos (u,t+U_Awt)e j2nft dt
n 0 n
nT
o oem sinmfT =~ =jwET (1+2n)
= AET — 7= © (5.47)
wlf -(f0+U A£)T1T
n
The output Cnl(t) of the upper integrator due to the nth
bit can be determined to be
.0 s FE -
SC () = [ B () Hy(£)e?TT af (5,48)
th

The output Cno(t) of the lower integrator due to the n bit

can also be determined to be

Coot) = J_, Bn(f)Ho(f)ej21rft af (5.49)
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h

Thus the input to the decision device due to nt bit sampled
at t=T is
Dn(T) = Cnl(T)—CnO(T)
® j2TET B
= [ B (£)[H; (£)-H, (£1]e’ T arf (5.50)

Changing variables and simplifying, we have
" AT ' ' ' o
D (T) = - Un{J(BT,n)—C[BT,(f0+UnAf)T,n]+C(BT,fOT,n)

+ C(BT,AfT,n)} (5.51).
The signal presented at the input of décision device due

to the infinite bit train can then be expressed as

W

) D (TY = D,(T) + ) D_(T)
n 0

n=- n=-

2; Ub{J(BT,O)—C[BT,(f0+U0Af)T,0]+C(BT,f T,0)

0
+C (BT, AfT,0)}

oo
" AT X

t > Un{J(BT,n)—C[BT,(f0+UnAf)T,n]+C(BT,fOT,n)

n=-

n#0

+ C(BT,AfT,n)} ~ (5.52)

Compared with Equation (5,19), it is apparent that in addition
to the effects of aliasing on the bit under detection there
exists signal crosstalk caused by the IF filtering which can

be represented by C(BT,fOT,n) + C(BT,AfT,n).
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The noise present at the decision device can be written as

n' = nl(T)-nO(T)

/. 00C oo

| n@n (r-2)az f;i n(z)hy (T-2)dz (5,53)

=00

where hl(t), hd(t) are the impulse responses of Hl(f) and
Ho(t) respectively.
nl(T) and nO(T) are both Gaussian processes with zero mean

and variance 012 and 002, where

2 'm. NO 2 . . NoT N
01" = | o lm®)|° ar = o 3(eT,0) (5.54)
and :
© N - N, T
0yt = | > lnge)|? ag = - 3e7,0) (5.55)

Thus n' the difference of two Gaussian noise processes is

still Gaussian process with zero mean and variance

o2 = 012 + 002 - 2E[n, (T)ny (T)] (5.56)

But E[nl(T)no(T)] can be written as [41]

-
Elng (TIng (T)] = [ > Hy(£)H}(£)Af (5.57)



For B>Af, we have

Eln; (T)ng (M1

R NO e e e e
= 5

-fO—Af+B.

1 T"'SlnﬂfT"
2 n(f-fo—Af)T

f0+Af—B

+ o5 7 T 515+

~-f +Af-B TALIT
0

0

Simplifying, we obtain

CN,T
E[nl(T)nO(T)] = —— C[ (B=Af)T,
For B< £, we have '
* -
H, (£) HE (£) —‘0
and
| E[nl(T)no(T)] =0
Now we can express o? as
N.OT . _N.OT
02 =
N, T
-7—-J(BT,0)

128

Cwsinm £T ¢ _TED
7 T TE-E,tAE1T © af
—ET L SinTET *_3TET
e 2 T TEFE,-RE)T © daf
(5.58)
éél , 0] (5.59)
(5.60)
CAFT OAET 01 Bs Af
A > A
(5.61)
Bi AE
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The input to the threshold device due to both signal
and noise can now be given by
y = W + n!

= 2% y (3 (BT,0)~CIBT, (£,+U,A£)T,01+C (BT, £,T,0]+C (BT, A£T, 0)]

" AT

+ 22 Z U_ 3 (BT,n)~CIBT, (£,+U Af)T,n]+C (BT, £,T,n) 4C (BT, AT, n]
n#0
+n' - * (5.62)

For carrier frequencies much greater than the bit rate, which
is a practical assumption for the FSK systems [34], C(BT,(fOiAf)T,n)
and C(BT,fOT,n) will approach zero. Then Equation (5.62)

becomes

y ='%E U, [T (BT,0) + C(BT,AfT,0)]

+ ) (U +U_ )[J(BT,n) + C(BT,A£T,n)] +n'
n=1 '
(5.63)
In the following, the probability of bit-error will be
determined using the averaging method and the series expan-

sion method based on Equation (5.63).

5.4. 1 Probabllltyrof‘thﬁFrror U51ng the Averaging Method

Using Equation (3.18) and Equation (5.63), the probability

of bit-error for a particular bit pattern can be given by

Py = 5 (L-erf(z)) (5.64)
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where

................

_ . «E' . 2 o . .
Z, _.Akﬁr- D; (BT,AET) (5.65)

E = A2T/2, the energy per bit for the FSK signals, and

DE(BT,AfT) =‘....:..'.‘..\~_~‘.-'«.-5-.'n__l T e e

J(BT,0) -Cl(B-Af)T, '%-T- , 0]
(5.66)
The upper and lower bounds of the probabilities of bit-

error can also be expressed as

- 13(BT,0)4C (BT, ALT, 00+ J (U, +U_ ) [J(BT,n)+C (BT, ALT,n)]

2

"
Fll-erf (o

. ) L |9(BT,n)+C (BT, AT,
emax .
- J(Br,0) - cl(s-an)T, XL, 07
_ (5.67)
' 2 .
_1 - B [JI(BT,0)+C (BT, AfT,0)] o
Pemin - 7[1 erf ( 2N - - : ALT )] (5.68)

0 J(BT,O)—C[(B—Af)T,——i,O]

From From Table 3.1 and Table 5.1, it can be seen that |J(BT,n)
+ C(BT,a£fT,n) |<<J (BT,0)+C(BT,A£fT,0) for n>5. Thus the effects
of interference can be confined to the.nearest 10 bits. The
average probability of error now can be given by

T 1024

. 1 N
Po =T03T i£1 > (l—erf(Zi)) (5,69)
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nsion

'Method~

Dividing both sides of Equation (5.63) by AT/2, we
obtain

o0

X = 2,3, + . 2 2 J + N

L Zq7n (5.70)
n#0
where
zZ, =0, =+1, J = J(BT,n) + C(BT,AfT,n),
and
-. .n' A. .
N = =%
(~-)

The variance of N is

el = 5@ _ (5.71)
22 : ,
ATTT, . :
(—I——)
Substituting Equation (5.61) into Equation (5.71), ch becomes
.N.T
5 0 - {3(8T,0). - cl(B~Af)T,. AgT 011 .
o‘ =
N ‘ 22
4
3 (8T,0)~CI (B-4f )T, (e S D |
= - — (5,72)
2 ()
0

Equation (5.72) is of the same form as Equation (3.27), Thus

the probability of the bit-error is giyen by Equation (3,51}

(5.73)
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where
J
=1 miere2 )1
Pel =3 [l-exf ()/'2'0‘ )]
N
T R e LR
= o [l=exrf( )]
2 «/;go 3 (BT, 0)~C (B~ ~A£) T, éfi 0]
(5.74)
and
_ o n+l ’ : ’
Pe2 = nZl (-1) b2nG2n—_1 (5-75f

b, can bg evaluated using Equation (3.59). G,,.1 can be

given by Equation (3.47)

G _ _ 0 G. _ 2n-2
2n-1 5 2 2n-2 2 2n-
N

_'E_' J(BT'6T+C(BT AfT'O) """
No * g(BT,0) AfT

2n-2

G
CNFT 2n-3]

(5.76)
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From Table 5.1 and 5.2, it can be seen that [J(BT,n)

+C (BT, AfT,n)]1%<<[J (BT, 1)+C (BT, AfT,1)1% for n>5. Thus b, can

2n

be evaluated accurately using only the terms from J_. to

5

J5. Therefore as for the averaging method the effects of
the interference can be confined to the 10 nearest bits., Also

the series for P_, can'be truncated to 10 terms with insignifi-
"cant error, As B+m; J(BT;0)+1; C(BT,AfT;0)+O; J(BT,n)-»0,

J(BT,AfT,n)+0, and C((BT-AfT), A£fT/2, 0)-+0, thus b, -»0 and

2n

P, = P = 1/2(1~erf ( .5%6-)), the well known result as
predicted in Chapter II for the infinite bandwidth FSK system.

Tableb3 lists Pe' Pel’ and Pe2 for some values of AfT
and BT. Figures 5,10, 5.11, and 5.12 show the plots of the
probability of bit-error for Af equal to 0.5/T; l;S/T, and
3.0/T respectively. Figure 5.13 sho&s the plots of the probability
of bit—efror as a function of 4fT for E/N0 equal to 10dB
and 15 dB. The results obtained here agree with those obtained
by the averaginé method.

Comparing the results obtained byAeither method with
those for thé PSK system (Figure 5;7); it can be seen that
for A£>3/4, the performance of the FSK system is the same as
that of the ASK system and is 3dB poorer than the PSK system
on an average power basis, However; forAfi3/T; the performance

of the FSK is better than that of the ASK, The reason for this

is that the signal crosstalk C(BT,AfT,n) tends to reduce the
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Table 5.3

Values of Por Py and Pos vslgg for the FSK System with BT=1,0

and AfT=0.5, 3.0 ,
AfT = 065 BT = 1,0
E
N, Log(P,) Log(P ;) Log (P ,)

(dB)

0400 ~04792 ~00792 ~hqo272
be77 ~1,362 ~1.363 =3,981
6499 -1.867 -1.870 -4,073
8,45 ~20348 =20353 -4,278
9. 54 ~20815 ~2,823 -l 538
10,41 -3.723 ~3.285 1,831
11,14 -34725 =3.742 -50146
11,76 ~4,272 ~4,19k 5,475
12,30 -4,616 =l 6hL ~54817
12479 ~54056 -5:091 =64167
13.22 ~5.493 ~56535 =60 524
13.62 -50,928 ~5.978 ~6.886
13.98 =64360 ~60420 -70254



Table 53
(Continued)
AfT = 3,0 BT = 1,0
Log (P ) Log(Pel)
-04767 -0.769
-142%6 ~1.306
~le756 ~1,782
-2:185 -2.234
=2, 596 --2&673
~20993 .=3+105
-34380 - -3¢531
-30758 =3.953
. =4,128 -l 372
~L4olho2 =4,788
-l 851 -55202
=50206 -5¢615
=54556 -6,026

139

Log(P_,)

=30253

| -2.932

-2,991
-3.161
-3.384
-3.638
-30912
-4.199
=4o495
~4.799
-50107
-5.420
~5.736
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influence of the intersymbol interference J (BT n); while
c(sT, fT, 0) tends to aid the 31gnal strength J (BT, 0), Also
the noise nl(T) and n, (T) are correlated, thus the varlance
of n! ;,62, is reduced (ﬁg— (J(BT 0)—C((B Af)T,ééz,NU

The optimum Af is found to be equal to the half of the
bit rate, In other words, to obtain the greatest discrimina-
tion, the optimum spacing between the two carrier tones is
equal to the bit rate. Notice that for the case of infinite
bandwidth the two carrier tones spacing does not affect the

performance, Thus the IF fllterlng indeed has a great effect

on the performance of the FSK system.



CHAPTER VI

EQUALIZATION OF INTERSYMBOL INTERFERENCE

In previous chapters; the performance of various band-
limited baseband and modulation systems has been analyzed in
terms of the probability of'bit—error; It has been shown
that the intersymbol interference severely degrades the
performance of these communication systems operating in a
high signal-to-noise channel.

Currently, the demand of the high data transmission
rate utilizing the high signal-to-noise channel such as
telephone line as the communication link has resulted_in
an enhanced interest in alleviating the influence of the
intersymbol interference. The well known optimum equalizer
is a tapped-delay-line (TDL) filter {1l ]. The purpose of
any TDL filter is to eliminate the intersymbol interference.
For an unknown channel characteristics, some adaptive
alogorithms using steepest-decent techniques for automatically
adjusting the tap gains of TDL filter have been proposed
[13], [18];,[23]. Different performance  indices were used
in these works; Lucky [13] minimized the sum of the
absolute values of intersymbol interxference by adjusting tap

~gains, while others [18], [23], adjusted the tap gains to



142
minimize the mean-square error (MSE) due to the combination
of intersymbol interference and additive noise,

On the other hand; for a known channel characteristic
the tap gains can be obtained by minimizing the probability
of bit-error and solving a set of nonlinear equations Ii 1.
However, in most cases, the nonlinear equations are not
particularly tractable: The optimum gains are usually
obtained by trial and error;

In this chapter, first; the receiver in the bandlimited
NRZ baseband model shown in Figure 3.1 of the Chapter III
will be proven to be the optimum detector for detecting a
single NRZ pulse in the absence of intersymbol interference
and then a new modified tap-delay-line filter in tandem with
the receiver will be proposed for equalizing the-intersymbol
interference. The overall performance iﬁprovement will be
determined in terms of bit-error probability. The principle
developed for this particular system then will be generalized

for any data transmission system using the linear detector.

6.2 Optimum Detection of a Single Bandlimited NRZ Signal

The bandlimited NRZ baseband communication system shown
in Figure 3.1 is repeated in Figure 6.l. From Chapter 1II,
it is known that the optimum receiver foxr the detections of

binary signals corrupted by additive white Gaussian noise can
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be implemented using the matched filter; For a single NRZ
pulse (i.e. in the absence of intersymbol interference) the
optimum receiver can be determined from the signal and channel
characteristics;
Now consider a single NRZ pulse with amplitude +A or ~A and

duration T. The Fourier transform of this pulse is given by

. e s .
F(£) = [ Ae 2™t gt = ar —-T-—Sl;’"gf e~IMET | (6.1)
O , L]

Thus the transfer function of the matched filter will be

(see Equation(4.48))

~j2mET

R(f) K[F(f)H(f)e 1%

(KA)H (£) - (TERTET o~ITET) (6.2)

Choosing KA to be 1, the optimum receivef is readily recog-
nized to be a lowpass filter followed by a correlation detector
as shown in Figure 6.1. This model is the same as the one
used in Chapter III.

The probability of erroxr for detécting the single pulse
is then given by Equation (3;53) or Equation (3,.24)

P, =5 (Q-erf( [f— a@®T,0)) (6.,3)
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Figure 6.2 shows the plots of Peg for various bandwidths.,
No other receiver can give better performaﬁce than the
one shown in Figure 6.1 for detecting a single bandlimited
NRZ pulse; However; from Chapter III;Ithe performance of
this receiver is severely degraded by the intersymbol inter-
ference especially for the high signal-to-noise channel?
In the following, a modified TDL filter equalizer will be
proposed to eliminate the intersymbol interference to achieve
the minimum probability of error as given by Equation (6.3).

6.3 A Modified TDL Filter Equalizer

A modified TDL filter in tandem with the receiver (see
Figure 6.1) is shown in Figure 6.2. The output of the
integrator is sampled and normalized before being sent to

the TDL filter. There are (2n+l) taps (C_, to CN) in the

N
TDL filter. Thus the delay line spans (2n+l1l)T seconds, and
in it there are stored the most recent (2n+l) samples. The
operations performed on these (2n+l) samples are as follows
(see Figure 6.3).

The sample stored at each tap (except the central one)
is fea to a sign detector; If the sign 1s positive at the
decision time (t=T);_the corresponding gain element will

subtract an amount J(BT,n) from the bit under detection

(central element) and vice versa. The central bit then will
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be decided to be a "1" or "O" depending upon the resulting
'signal plus noise at tﬁe output of the summer greater than
zero or not, After this decision is being made; the content
of the samples stored at different taps is shlfted to the
right and detection is performed as before.

_The output of central element can be expressed as
X =243, + ) zZ,9, + N - (6.4)

n=-co

n#0

where

g =+1, J = J(BT,n)

The variance of the noise N is given by Equation (3.52)

L3y

W E

2 (=)
Ny

In the following sections, the performance of this

o 2
N

(6.5)

modified TDL filter will be analyzed by considering only
three taps, namely C—l’ C0 and C+l using the averaging method

and series expansion method.

6.4 Performance Analvs1€ - Ayeraging Method

There'are only four possibilities associated with the

signs of taps C -1 and C +1°

A. Both signs of C_; and C are correct,

+1
B. Sign of C_., is correct and C_; is incorrect,
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C. 8Sign of 4 is incorrect and C +1 is correct

D. Both signs of C_, and C, are 1ncorrect

+1
The probability P that the sign is incorrect for the taps
C_4 and C,q can be thought as the probability of bit-error
for the receiver without using the TDL filter and is given
by Equation (3:21) or Equat;on (3:61) in Chapter III: Thus
the probability of Case A; P (Case A) can be written as (1--P)2
Similarly the probabilities of Case B; Case C and Case D

can be expressed as

P (Case B) P(1-P)

P(Case C) = P(1-P)

P(Case D) = P2
N The probability of bit-~error for a particular pat£ern can

be obtained as follows.

- Case A-

The output of the summer is

I + nzz (z +2_)) I + N (6.6)

The probability of error for this particular pattern can be

~given by Equation (3 18) @

Pei = ._[1 erf ( j— )] (6.7)
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" Case B

The output of the summer is

X = Ayd, + ) (A +2_) I+ (29;) 2

_ 1+t N (6.8)
n=2
and the probability of erxror B :
- (2 +Z~~)J~+(2Jl)z .......
1 [l-erf( / ..... 2
P. == -
elp 2 /ja .
(6.9)
Casé.C
The output of the summer is
X = Z53q + z (B, +42_, )3, + (237) 2_; + N (6.10)

and the probability of error is

) . . qofi zg.(z +Z n)?nfﬂ?qi??il
P . = % [1-erf ( /E =2 - )1
€l 0 - /3’

0
(6.11)

" Case D

The output of the summer is

X = 253, + n£2 (Z,+2_ )T + 2(2;42_4)J; + N (6,12)
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and the probability of error is -

«©

1 vﬁ” -.qbfmi.T‘?anFn)qhﬁ?}?l#??l)?i.f"
. . . : ‘1’1—-«2 ! ¥ D : : : h D
Pei = ~2~ [l"erf( N— ] N )J
D 0 JJO o
(6.13)

The average probability of bit-error for this particular

bit pattern using only three taps can then be evaluated as

o
il

P (Case A) Pe‘

ei in + P (Case B)Pei

B

-+

P (Case C) Pe'

i + P (Case D)Pe

o 1p

+ P(1-P)P ., + P(1-P)P .,
A eiy eis

2
(1-P)" Py

+ P2P . ) (6.14)
elD

The average probability of bit-error for the intersymbol
interference confined to the 10 nearest bits then can be

computed as

P_ = timr 1 P (6.15)

6.5 Performance Analysis--Series Expansion Method

The probability of bit-error can be obtained using the
series expansion method by analyzing the same four cases of
Section 6;3.

The probability of error for the Case A can be given by

Equation (3.61)
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. ) | n+1
P, = Hll- erf(f N INT + Eﬂ -1)"""b, Gy (6.16)

except that d,,_, which is used to evaluate bon

(3.60)) is modified as

(see Equation

22’ ...... -2 . . o

RS PNy 3 A
= 27 (2%7-1)
d29-1 7 T, Batl 37 ol 3y

Similarly, for the Case B, the probability of error is

ntl y g | (6.18)

2n 2n-1

2 2[1 erf ( Ny 9001 + I (1)

B =
n=1

and d22_1 is changed to

21 22 N -~
(277-1) 2 2% L
a = [Z J 4+ ) I %7+ (29.)°7
22-1 221 P2 neew D L Z5 " n 1
(6.19)
For the Case C, the probability of error is
Po [1-erf( [2— 3,01 + E (-1)"*1p. ¢ (6.20)
7 Ny L 2n°2n-1 .
n=1
and d22_1 now becomes
ZZA_22. N 2
27 ) 2% 22
dye-1 207 Byl E SRR Sas lcE R
(6,21)
Flnally, for the Case D, the probability of error is
_ E n+l
Py = —[1 ~erf ( ﬁE-J 0}1 + nz (-1) 2nGZn_l (6,22)
and d21-l is changed to
22 22 P
B (2°7-1) . 22 28 28
dyg_q = ST Bog 2 g T+ Z IS+ (23_) T+ (23,)
n=-—® n=2 :
(6.23)

22]
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For the system considered in this chapter; I is equal to
J—n‘ Thus PB is equal to PC: The average probability of
error for the detection of the central bit can now be computed
as

- 2 ' -
P = (1-p) PA+2P(l—p)PB + P PD | (6.24)

By confining the intersymbol interference to the 10 nearest
bits as for the averaging method, the resulting P is in agree-
ment with that obtained using the averaging method and is
shown in Figure 6.4 for various bandwiﬂths (dashed lines).

Table 6.1 lists P__, P_, P, (1-p)°P,, 2P(1-p)P, and P’P  for

s D

BT=0,6 and BT=0.8.

Comparing the results obtained using either method with
those for the single pulse case (Figure 6.2), the effect of
fhe intersymbol interference has almost been cancelled out.
Table 6.1 gives the reason. Since P is much smaller than 1,

P_ in Equation (6.24) tends to approach P

e , which corresponds

A
to the case of the cancellation of J(BT,1). From Table 3.1,
it can be seen that the most effect of the intersymbol inter-
ference comes from the immediate adjacent bits: Thus using
only three taps, the performance of the modified receiver

is almost near optimum and can be predicted using Equation

(6.3},
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Table 6.1

. 2 2
Values of P__ , Pe o P, (1=-P) P, , 2P(1-P)PB and PP,

vs E for the modified NRZ Baseband Receiver with BT=0,6 and 0.8

Yo BT=0.6

E @) Les(R,)  les(R)  ILos(r)  Los((1-P)°P,)  Log(2P(1-P)Pp) los(F'Rc)

o}

0,00 ~1l,011 ~1,003 -0.995 ~1,098 ~1,736 ~2¢957
L,77 -1,906 -1.866 ~1.796 -1,833 -3.399 -5¢215
6499 -2.725 ~2.,628 ~2,455 -24.632 C=4,611 ~7.004
8415 34517 -3.337  -3.036 © =3.339 5,772 ~8,556
9. 5k ~L,20h -1,010 ~3.565 ~4,010 -£.830 -9.960
10.41 ~5,062 -l o654 ~4,057 ~4 o650 ~7,812 ~11.262
11.1% ~5.824 - ~5.274 ~4,519 - ~5.27h -8.737 ~12,487
11.76 6,582 ~5.871 4,953 —5,87h 94616 -13.652
12630 ~70338 ~6ol57 -5.380 ~64457 -10.458 -14.796
12.79 ~85090 ~74024 ~54786 ~74024 -11.270 -15.846
13022 -8.839 ~7579 ;60179 ~74579 -12,057 ~160239
13.98 ~106333 -8:65k ~6,934 ~13.566 -18,891

"8 [ 654

SST



(aB)

=
o Zlt

0,00
477
6499 |
845
94 54
10,41
17,14
11.76
12.30
12,79
13622
13.62
13,98

Log (P, )

-1ls0l43
-1,989
~20857
~3.695
~-43E19
=5¢332
-63138
-64938
~7737
-84529
=9¢319
=10,106
-104890

Table 61 (continued)

BT = 0&8

Log (P)

1,040 =1,127
~-1.957 =24000
=2:773 - =24858
=3s541 =35696
=4e277  =44519
~4e989  =54332
~5:658 =6,138
-6.367 =6.938
~7.039  =78737
76702 =8.529
~84360 =94319
-9:012 =104106
-94661  =104890

' Log((1-P)°p,)

Log (2P(1-P)Py)

~1.820
-34618
=5.246
64781
~84252
-0:677
-11,068
12,432
~134776
-15.,104
~160419
-175723
-194020

Los(Png)

-3:106
-5,784
~8.112
-10.273

"'12 o330 '

-145316
~166,252

. =18.,152

-20,026
~21 4879
-23.715
-250539
=-270352

9ST
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6.6 ~Discussion

The performance of the modified TDL filter equalizeyr
has now been verified by both methods: The analysis procedure
laid out in Sections 6;4 and 6:5 can be used to analyze the
performance of the modified TDL filter with more than 3 taps.
By using 5 taps; it is found that the performance does not
improve significantly. in other words; the correction con-~
tributed by C_, and C,, has little effect on the detection of
the central bit. Because |J(BT,2) is much smaller than
J(BT,0). Thus for all practical purposes, there is little
point in using the C2 and C_2 taps for tﬁe bandlimited NRZ
transmission system.

The biggest advantage of this modified equalizer is that
the gains can be obtained analytically and the performance is
almost near the optimum case (single pulse correlation
detection). As pointed out before, the detector output for
any data transmission system with known channel characteristics
can be given by Equation (3.25). Therefore the modified TDL
filter developed in this chapter can be applied to any data
system to the influence of intersymbol interference “"_"7
and thus speed up the data transmission rate:

In practiée;,the delay lines can be replaced by digital
shift registers énd all the gain element and summer can also

be realized by the logic gates and flip-flops. Thus the operation
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of the modified TDL filter can be performed digitally with

high speed.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 " Conclusions

The effect of bandlimiting on the'performancé'of various
transmission systems corrupted by additive white Gaussian

noise have been analyzed using two methods. , the averaging

’
method and the series method; The results from both methods
agree,

First, the performance of an ideal bandlimited NRZ
(Non~Return-to-Zero) baseband ﬁransmission system was examined
using correlation detection and sampling. The ekplicit expres-
sion for the degradation of the signal and the intersymbol
interference was derived as a function of system paraﬁeters,
such as the bandwidth of the filter and signal-to~noise ratio.
The average probabilities of bit-error were computed. It was
shown that the correlation detector performs better than the
sampler detector for BTi.G and worse for BT=.5.

Second, a split-phase baseband system was analyzed
following the same steps used for analyzing the NRZ system:

It was shown that a split-phase baseband system requires'

about less than twice as much bandwidth as the NRZ system

to have the same probability of bit~error for the same value

of signal-to-noise ratio using the correlation detector.
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Third, an NRZ baseband system using Gaussian filters
was analyzed ~-mploying correlation detection: It was found
that this system introduces more intersymbol interference
and performs poorly.compared to ideal bandlimited NRZ system.,
Fourth; the effect of bandlimiting the modulated system;
the Phasé—Shift-Keying (PSK), the Amplitude-Shift-Keying (ASK);
and the Frequency—Shift—Keying (FSK) have been analyzed assuming
coherent receiyer and using ideal filters as well as cor-
relétion detection; The explicit expression for the degradation
of the signal and the intersymbol interferen&e as a function
of bandwidth of the filter; signal-to-noise ratio and carrier
frequencies were giﬁen. It was found that the aliasing ef-
fected can be neglected if the carrier frequency is three
times more than the bit rate. The PSK system requires 3 dB
legss on the average power basis than the ASK system regardless
of the restriction of the bandwidth. If the spacing between
two carrier tones in the FSK system is less than three times
of the bit rate, the FSK system shows a bétter performance
than that of the ASK system. The optimum setting of the tone
spacing is shown to be equal to the bit rate. However, PSK
system still gives the best performance., Thus for a coherent
modulation transmission system;,the PSK should always be favored;
Finally; a tapped-delay-line (TDL) filter has been

introduced at the receiver of the NRZ baseband system in
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conjunction with the correlation detector as an intersymbol
eliminator; On -an average~p;obability of bit-error basis,
and using only three taps;_it was demonstrated that the

performance of this system is near optimum.

In this dissertation, the channel is modeled by a linear
filter by an additive white Gaussian noise source: The
first topic for future study suggested by this dissertation
is an investigation of the effects of bandwidth restriction
on the performance of a modulation system over a nature (not
man-made) mutipath fading communication channel; Because of
the random changeability which often accompanies this natural
channel, mutipath is inevitable and is crucially dependent
on the signal bandwidth. Mutipath not only introduces a
Rayleigh fading envelop but also a uniformly distributed
r-f (carrier) phase. The analysis of the performance of
digital transmission system over a slow and nonselective
Rayleigh fading channel in the absence intersymbol inter-
ference has been reported [35]. It will be very interesting
to extend the analysis to the case of intersymbol interference,
However, it is believed that the analysis will be highly
complicated;

The coherent detection for the modulated signals was
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assumed in this dissertation. In the absence of the inter-
symbol interference, the analysis of the performance of the
binary communication system witﬁ'partially coherent reception
has been obtained by Viterbi [44]. The second topic for the
future study suggested by this dissertation ié to look into
the effect of intersymbol interference on the performance
of this partially coherent system.

The receivers analyzed in this dissertation are the
linear detectors which are optimum for the infinite system
bandwidth. However; the performance of these detectors is
degraded if the system bandwidth is rest¥icted. Therefore,
it is worﬁhwhile to compare the performance of linear
detector with that of nonlinear detector such as envelop
detector for ASK and FM discriminator for FSK under the
bandlimiting hypothesis. The third topic suggested by
this dissertation for the future study is then the investi-
gation of the influence of the bandlimiting on the performance

of the envelop detector and FM discriminator.
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APPENDIX A

(o]

THE SERIES EXPANSION OF 1 COS(JnW)

n=-o
n70
Let F(w) = = cos(an)
nN=-ocw
n#0
then
J:isin(J_lw) Jlsin(le).
F'(w) = ..... cos(J_lw) F(w) cos(le) F(wWw)...o.
= =F(w) Jntan(an)« “(A.1)

n=-w

n#0

Using power series, we have
_ ‘ 1 3 2 5
Jntan(an) = Jn[an + §(an) o+ Tg(an) + ieeen

20 ,.2% '
22 -1) g gl ]
n

+ 241 29,

where B2£ is the Bernoulli number.

Combining all terms, we obtain

o

s _ 20 -1
Z J tan(J w) = 7} dogq ¥
n#0
where
a - 224 (2%* - 1) B § g A
29-1 22! 29 ntee D

[4

(A.2)

(A.3)

(A.4)
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Since cos(x) can only be expanded into a series of even

power of x, we can let

o«

Fw) =1+ } b, w" (A.5)
n=1

Thus

F'(w) = ]} 2nb
n=1

2n-1
on ¥ (A.6)

Using Equation (A.l), Equation (A.3) and Equation (A.6), we

have
v 2n-1 S . on % 20-1"
) 2nb, w ==-(1L+ )} b, w) Y 4, . w (A.7)
n=1 2n ne1 2n e=1 28~1
Comparing the coefficient for w2n—l , we obtain
: n-1

2n by = =ldypg ¥ zzl Pon-2¢ 424-1) (A.8)

Thus b2n can be evaluated in a recurrsive formula,
1 n-1
Pon =~ 7m Wop-1 ? 221 Pon-2092¢-1) (A-9)

Therefore b2n is only the function of intersymbol inter-~

[e2]

ference ) an .

n=-—

n#0
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APPENDIX B

ANALYSIS OF THE CONVERGENCE OF THE SERIES

s n+l
z (-1) b, Gy 1

n=1 )

L3

Analysis of the convergence of the series

n+1l
ngl (-1) b2n G2n—l (B.1)

The error E introduced by using only K terms can be expressed

by
s +1
E = -n"" b, 6 (B.2)
n=%+l ) 2n " 2n-1
Thus
E| < b G (B.3)
Bl < ] [Ponl 165
From Equation (3.46), we know
© _‘ﬁc 2 :
1Gyq ] = lf% [ e 2 (--jw)zn—l e~ JJov aw | (B.4)
Using Schwarze inequality, we have
. W2
1 2 °N .y 2n=1 =-JIoW
l6y gl < 155 e | (=3w) P77 [eTIV0" [aw|
- w2
2 "N -
- [ e ] w2l aw (B.5)
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_W_zc 2
But e N [wzn—l| is an even function, we have
. Wz g 2 _
165,11 < i [ e 2 N 2n-17gn (B.6)
kil o .
iwz 2 2
Let t = - =~ Oy , then dt Woy dw
Thus
n-1 -
. <_ 1 oo( 22) -t tn"l dt
1Son-1l =752 [ '
N (o] N
n-1 e
= ;T];g-——ZTl- (n-1) ! (B.7)
N
Note
J et lat=rm = @11, (B.8)
o

where T (n) is the gamma function.

Next the desired bound for b will be derived. Let us

2n
consider finite terms for T cos(an) , namely from n = -m
n=-00
_ n#0
to m; then we can write ' )
~m - n ejJ wA+ e—jan
T cos(an) = 7 5
= -m . n=-m
n#0 n#0
1 22m Jo,w
= —m z e . (B.9)
2 L=1
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where o, is one of the combinations

+ + + *
N S ST M SR S (B.10)
jazw -
Now e can be expanded into a power series of w
n .
jo,w ®  (jorw)
e L7 _ z i (B.11)
n=0
Thus
. 2m
B L F 0T Gep (
m cos J W = —— : ja —_— B.12)
n=-m Dt p2m 2 =y 0 0 Tl L
n#0
4 m
We can also expand T COS an into a power series of w
n=-m
directly n#0
m T 2n
T Ccos an =1 + 2 b2n w (B.13)
n=-m n=1
n#0

Comparing Equation (B.12) with Egquation (B.13), we obtain

22m
) (jal)n =0 for n = odd integer (B.14)
=1 :
and
22m
_ 1 2n 1
Pon = Tm L, G%)7 o (B.15)
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'Thus

22m
1 2n 1
b, | = == ] « 5 (B.16)
2n 2 m =1 2 2n!
But
2K 2K .
2§m 2 _ 3 ,2m e (3_.) m....(Jm) m
a = 2 2n}! - (B.17)
=1 L (21\_mY! ....... (2Km) 1

where )} indicates all the combination of integers

K—m ’ K-m+l geooese .hl.....Km under the constraint that
K, + K 41 ¥eeeet K =1

2K_m 2Km
(J_m) .....(Jm)
Ib,0l = ) mroT (2K (B.18)
It is very easy to see
2K 2K : K K
-m m 2,7 -m 2
5 (J_m) ....(Jm) .1 ; (J__7) ....(Jm )
TR_ ). (2R 7 PN S K.~
(B.19)
But
K K
; (J_mz) 'm....(sz) n : ? 5\ D
+ n! = J (B.20)
R teeeeeeeaa (KDL ( neem D )
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Thus

 om n
1 1 2
b, | S 5 (2 9 ) (B.21)
) n=-m
n#0
Let m -+« , we obtain the desired bound for b2n
o n
1 1 2
lb2nl Y HT(IX In ) (B.22)
2 n=«00

Substituting Equation (B.22) and Equation (B.7) into

Equation (B.1), we have

© n-1 o n
1 2 (n-1)1 2
e =< _2_ T 2n n ( Z In )
n=K=1 ON 2 n! n=-—
n#0
© ‘N
] a2
n
-] n=—m
- z i1 n#0
n=K+1 27 n °N2
o n
J g 2
‘ n
« n:—oo
1 n#0
€ — = Z -z (B.23)
= 2w (K+1) _&._, 2 ! : :
n=K+1 ON
but
o n ‘o K+1 o0
2 2 2
I g, I 3, I 3,
- n=-< == n=-
n#0 _ | n#0 _ n#0
n£K+l o 2 -\ o 2 . ! o 2
N N N

(B.24)
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" Thus . 5 \ K1
} g
n
n:—ca
n#0
o 2
1 N .
IEI = 27 (K+1) poy 5 . (B.25)
! g |
n
n:-—co
n#0
1 0 5 )
N
A
n
n:—oo
Let g = RO 5 ,
°N

then for B8 < 0.5 , by suitable choice of K , P can;be

e2
evaluated accurately. For the system considered in this
work, K = 10 is sufficiently enough to be used to calculate

P, very closely. It is believed that there still exists a

tighter bound than the one given by Equation (B.25).



176

APPENDIX C

EVALUATION OF THE VARIANCE OF THE OUTPUT OF GAUSSIAN
—~ CORRELATION DETECTOR WITH THE

GAUSSIAN NOISE INPUT

~ The transfer function of the Gaussian filter is given

by Equation (4.34)

£ 2
G(f) = e—0.347 (§) (c.1)
_ 40.347 '
Let 6_-A2 — , We have
2 2
2.2.2 - B w_
G(f) = em21r B f or G(w) = e 2 (c.2)

Since the power spectrum of n(t) is No/z , the power

spectrum of the output nl(t) of the Gaussian filter can be

" given by
No 2
S (W) = 5= | G(w)]
.nlnl 2
NO -82W2
= 5 e (C.3)

The autocorrelation of nl(t) can be obtained as the inverse

of S (w)
n,ny
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JwT

R ) = f%.f S (W) e aw

w 222 Lo
_ o1 -8 w jwt
=55/ e e”” d

- 00

=4

w

o L [emBw
= NO 5 £ e cos wrdw (C.4)
Changing variables, we obtain
= _cx? ‘
R. . (7) = N [ e cos 2 rxdx (C.5)
171 .
wheré
c = 41r282 y ¥ =07
Equation (C.5) can be evaluated as [2] <
2
: I
1l i c
R 7Ty =N_ 5 = e
n,n, o] 2 c
2
= a e T (C.6)
with
a—._-_I.q._o_- b=._l_
’
4T 8 432



The transfer function of the integrator is given by

Hi(f) = T sin #fT e—]ﬂfT

TE£T
orxr
sin ¥I _j WI
_ 2 2
Hi(w) = T W e
2

Then the power spectrum of n, is given by

(w) [H (w) |2

S (w) = S

The inverse of Hi(w)2 is

2w
h, @ = 5= [ |5, [% Y aw

2 o sin wT
T 2 jwW
=5 — T,
o wr
2

which is a triangle [22]

h, (7 T(l—JIT-J-) -T<TsxsT

= 0 elsewhere
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(C.7)

(C.8)

(C.9)

(C.10)
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The autocorrelation Rn (7) is the inverse of S (w) ,

which can be

h, (7)

212 nHn,

obtained as the convolution of R (7T) and
Dy

n

) = [ R, , (T- =) h. (=) de« (C.11)

) - Ty

6, =R (0) =] R (-=)h, («)d« (C.12)
2 nyn, . I T i _
Substituting Equations (C.6) and (C.lO) into Equation (C.11),
9, becomes
T 2
o, =] rQ - LTL) ae % ga
-T
b T 2 ~bod® T
= T a (2 - ~a e
=21l 5 (& é e ax) - 7 =g |0 1
=77 5= erf (JbT) - & (1- e—sz)) (C.13)
= L)1 Tb A )
With a = ———EEL- b =-%. ana g = 2347 we obtain
T 44T B! 482 A2 w8 ! :
the desired result
A _oq?
N T Q0 2
2 _"o T, _ 28 _ 48
0,7 = —7—-[erf (28) ifﬁ-(l e )]



=

o)
2

=z
H

2

O

3

wBT
erf[ﬂJi-o?A?

E(BT, 0)

~ 1

y . [2-0347
w

mBT

(1-e

180

_(xB7) 2
250347
Y

(C.14)



181

APPENDIX D

SIMPLIFICATION OF BANDLIMITED COHERENT PSK

COMMUNICATION MODEL

The model of Figure 5.1 is shown in Figure A.l. Suppose
the input to the dotted block is r(t), and the corresponding
Fourier transform function is R(f), then the response of the

lowpass filter & (t) due to r(t) can be expressed as

e ]

B . . '
e(t) = J (] rt)cos2nf_t e 32T tqr) eI 2 tys © (D.1)
_B - CO . -
Simplifying, we obtain
By janft '
2(t) = [ 5 [R(£-£) + R(f + £ )]e as (D.2)
B C C

The output of the integrator sampled at t = T due to r(t)

can now be obtained as

T .
y (T) =f0 L (t)dt (D.3)

Substituting Equation (D.2) into Equation (D.3), we have

T B .
= 1 - 27 ft
y(T) = é _é 3 [R(£ - £,) + R(£ + £)]e df dt
B T ) .
= [ | % IRGE=-£) +R(E+ £)1eI2" e ar
-B 0 C C



A G den e Mmme S e G Swm ma e G e G e A SeE e e o G Svn e —a—

Y a, (t)

> 0 '————3'"1"
BPF

H, (£)

~.fdt——-o\o-‘——->

<0 s

Figure A.1 'Model of Figure 5.1

8T
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B . .
_ 1 _ . sinwfT JnfT
= {B 5 [R(E -~ £,) + R(£ + £)] - T =5 e af
B-f sinn(f + £ )T Juf T .
cl : c c infT
= = R(f) T e e af
lB-f 2 m(f + fc)T
B+f Tsinw(f - £ )T -juaf T .
+ © LR(E) « —— e—e PLEENT: (D. 4)
-B+£ c
c
Since ch = integer, we have
—jwch
sin(n (f - fc)T)e = ginwfT , . (D.5)
jnfCT .
sin(w (f + fc)T)e = sinnfT . (D.6)
Thus the expression of y(T) can be written as
y(m) = [ R(E)H' (£)eI? s (D.7)
Where
1l TsinnfT -jafT . _
5 FTT:?;TT e B fcsfsB,fc (D.8)
H'(f) =
1 TsinnfT -jn £T _
5. FT?:f;TT e B+fcsfsB+fc

Thus the dotted block can be replaced by a block whose



184

transfer function is H'(f). Since the transfer function of
the bandpass filter HB(f) is equal to one for —B—fcﬁfSB—fc
and B+fcsfsB+fc, and equal to zero elsewhere, we can combine
these two blocks into a single one with the transfer function

H(f), where H(f) can be expressed as

1 sintfT -junfT _ '

5 T "(f—fc T © B+fc§f_<_B+fc (D.10)
H(f) =

1 sinnfT -jnfT o _ _

7T wErE )T Brf=tsb=f, (D-11)

The system model now can be reduced as shown in Figure A.2.



L a,(t) | > > "

n=-z o s H(£) ~T%

<0 IION‘

coswct n(t) -

Figure A,2 The Simplified PSK Model

68T
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APPENDIX E

EVALUATIONS OF J J(BT,n) AND 7} ,C(BT,£_T,n)

n=—o S0

K \
We can write ) J(BT,n) as
n=-K
K X
} J(BT,n) = J(BT,0) + 2 J J(BT,n)
n=-K - n=1
\ n+l n-1
Since J(BT,n) = —5—-J[(nfl)BT,O]-nJ(nBT,0)+—§—J[(n—l)BT,O]

we obtain
K .. ,
[ 3J(BT,n) = J(BT,0)+2{J(2BT,0)-J(BT,0)
n=-K

+3 J(3BT,0)-27 (2BT,0) + % J(BT,0)

J (2BT,0)

NN

+5 J(4BT,0)-3J(3BT,0) +

+= J(5BT,0)-4J (4BT,0) + J (3BT, 0)

Nofw

+ LR N

+§J(KBT,0)-(K—1)J[(K—l)BT,O]+E%ZJ[(K—2)BT,0]

+5§1J[(K+1)BT,0]-KJ(KBT,O)+5%EJ[(K—l)BT,O]}

= 2{§J[(K+1)BT,0]-52J(KBT,0)+%J[(K+1)BT,0)]}

(E.1)

(E.2)

(E.3)
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Now let K+=, we have

[+3

y J(BT,n) = lim J[(K+1)B1,0] =1 (E.4)

n=-—c K>

K
Similarly, we can write ) C(BT,ch;n) as

n=-K
K ' K .
y c(BT,f T,n) = C(BT,f T,0)+2 } C(BT,f T,n) (E.5)
. C C C
n=-K - n=1
also
C(BT,£_T,n) = E%i C[ (n+1) BT, (n+1) £_T,0]-nC (nBT,nf_T,0)
n-1 .
+—= C[(n=1)BT, (n-1) £ _T,0] (E.6)
Thus
X K K
Y c(BT,£_T,n) = 2{3C[(K+1)BT, (K+1)£_T,0]-5 C(KBT,Kf_T,0)
n=-K c c 2 c
+ 2 CL(K+1)BT, (K+1)£_T,0]} (E.7)

Let K+», we have
0

! C(BT,£T,n) = lim C[(K+1)BT, (K+1)£_T,0]

=00 Ko

=0 (E.8)
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APPENDIX F

EVALUATION OF C(BT,ch,O)

i

- 2 wBT .. sin2x
C(BT,£ T,0) = & é,

> dx
(Zﬂch) -X

2

. 2 . 2
1 [ sin X + sin"x ]
df T “27f T-x 2nf T+x
c C c

BT

' % dx (F.1)

[l |

Changing variables and simplifying, we have

2nch 2 2nf _T+7BT

. . .2
C(BT,£_T,0) = —i— [ Sin7y g4y 4 f© sin%y auq
2n°£ T 2mf T-nBT Y 2nf T Y

2nf T+nBT
1 C

. . 2 ’
Spe— BDY gy (F.2)
27 ch ancT—nBT

.2
Since §£§—1 is an odd function, we have

2w £ _T+nBT 5
C(BT,£_T,0) = ——71—— i I8 ¥ gy
2n°f T |2nf T-vBT| ¥

27 f T+ BT
1 ¢ 1-cos?2
- S LTCOSLY dy (F.3)

4x’f T |20f T-nBT| Y
C C

For B # 2fc , C(BT,ch,O) can be evaluated as



1

C(BT,f T,0) = ——n=
¢ 4n2ch

+

27f T+uBT
[1

2nf T+uBT

where
— % cosx
Ci (Y) - f X d [4
Y
a cosine integral.
For B = 2fc , we have
_ 1
C(BT,ch,O) = —
47f T
ol
Changing variables, we obtain
: 8xf T
C(BT,£_T,0) = ——51—— [ ¢
44"£ T O
c
_ -1 . 8nch
= —
4q ch 0

But [ 2]

n 27f T-uBT
c

4nf T+2wB
C

S S Y o
2Tf T-TRT
4+ ch c

4nch

0

l-cosx

X

cosx~-1

Ci(l4nch—2nBTl)—Ci(4nch+2ﬂBT)]

dx
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COSX

|4n £ T-2nBT| X

B#2f,

l—coszz a
y Y

dx]

(F.4)

(F.5)

(F.6)

(F.7)
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grf T _
cosx-1 - - -
]0 SoFT= ax = €, (8n£ _T)-1n(87f _T)-0.5772
Thus
C(BT,£ T,0) = ——s2— [0.5772 + In(87£,T) - C. (87f T)] B = 2f
¢ 4n2f T 1 c .
C

(F.8)



