A Thesis
Presented to the Faculty of the Graduate School The University of Houston

In Partial Fulfillment
of the Requirements for the Degree Master of Science in Industrial Engineering

by
A. David Long

May, 1972

ACKNOWIEDGEMENTS

The author wishes to express sincere appreciation to Dr. George S. Dawkins, Dr. Ben T. Rhodes, and Dr. J. M. Lewallen. Dr. Dawkins, as thesis advisor, provided valuable guidance and assistance leading to the completion of this thesis. These individuals, both as committee members and outstanding teachers, provided encouragement and understanding during this student's graduate program and thesis development.

A special note of appreciation is also extended to Mr. Tom Murtagh, Wayne Stiefle, and Don Jezewski, who as fellow employees at the Manned Spacecraft Center offered appropriate suggestions and comments during the course of this work.

The author also wishes to express his gratitude to his wife, Betsy, for her understanding, patience, and typing support without which this thesis would not have been possible.

A REAL TIME SPACECRAFT GUIDANCE FORMULATION BASED UPON OPTIMIZATION..THEORY

An Abstract of a Thesis Presented to the Faculty of the Graduate School
The University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Industrial Engineering
by
A. David Long

May, 1972

Abstract

This thesis is concerned with the development of a spacecraft guidance which will solve the problem associated with the optimum transfer of a spacecraft between two states. The theoretical development of an existing guidance formulation is shown and this formulation is extended to include a more general mission capability. Specifically, the guidance formulation presented is extended to an operational capability for low-thrust maneuvers.

Numerical results are presented which compare the guidance solution and a near optimal solution to the same low-thrust transfer problem. These results indicate that the guidance procedure can be extended to an operational capability for low-thrust maneuvers with performance (propellant expenditure) comparable to an optimum transfer.

TABLE OF CONTENTS

Page
LIST OF SYMBOLS ix
Chapter

1. INTRODUCTION 1
2. NECESSARY CONDITIONS 15
3. OPTIMAL FORM OF CONTROL 18
4. CLOSED FORM SOLUTION FOR THE TWO-POINT BOUNDARY VALUE PROBLEM 23
5. NUNERICAL INVESTIGATION 41
6. EXTENSIONS 51
7. CONCLUSIONS AND RECOMMENDATIONS 62
Appendices
A. THE ADJOINT NETHOD 65
B. DERIVATION OF A LOSS FUNCTION 72
C. DERIVATION OF AN EFFECTIVE GRAVITY COMPUTATION 77
D. AN AIGORITHM FOR MULTI-ARC BOUNDARY CONDITIONS 81
E. DERIVATION OF AN OPTIMAL FORM OF CONTROL UNDER CONDITIONS OF CONSTANT GRAVITY AND CONSTANT THRUST ACCELERATION 86
F. CLOSED FORM INTEGRALS FOR THRUST ACCEIERATION 89
G. DERIVATION OF A RECURSIVE EQUATION FOR BURN TIME, t_{f} 92
Figures
1.1 Orbit Transfer for Inverse Squared Gravity 3
Figures Page
8. 2 Impulsive Orbit Change 5
1.3 Orbit Transfer for Time-varying Gravity 8
1.4 Orbit Transfer for Linear Gravity 10
3.1 Thrust Control Angle Coordinate System 19
4.1 Final State Components for Orbit Change 24
4.2 Piecing Procedure for Orbit Change 25
4.3 Thrust Control Angle Coordinate System 27
4.4 Thrust Control Angle Coordinate System 27
5.1 Two-Burn Orbit Transfer 41
5.2 Two-Burn Orbit Transfer Using Parameter Optimization 44
5.3 Control Angle History Using Parameter Optimization 45
5.4 Control Angle History Using Parameter Optimization 45
5.5 Velocity Loss Function Using Parameter Optimization 46
5.6 Velocity Loss Function Using Parameter Optimization 46
5.7 Two-Burn Orbit Transfer Using the Guidance Formulation 47
5.8 Control Angle History Using the Guidance Formulation 48
5.9 Control Angle History Using the Guidance Formulation 48
5.10 Velocity Loss Function Using the Guidance Formulation 48
5.11 Velocity Loss Function Using the Guidance Formulation 48
5.12 Control Angle History Using Velocity Control Only in the Guidance Formulation 49
5.13 Velocity Loss Function Using Velocity Control Only in the Guidance Formulation 50
6.1 Thrust Control Angle Coordinate System 51
6.2 Final State Components for Orbit Change 51
A. 1 Orbit Transfer for the Planar Case 65
B. 1 Loss Function Coordinate System 72
B. 2 Loss Function Coordinate System 73
B. 3 Loss Function 75
B. 4 Loss Function Form 76
C.l Effective Gravity Coordinate System 77
D. 1 Piecing Procedure 81
F.I Rocket System 89
BIBLIOGRAPHY 97

Symbol

$a, a(t)$	thrust acceleration magnitude
\bar{a}	instantaneous spacecraft thrust acceleration vector
c_{1}, c_{2}, c_{3}	components of a parameterized control vector

\bar{c}
$\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}$
\bar{d}
f

G
g
$\overline{8}$
g_{x}, g_{y}, g_{z}

H
h
I
$\dot{\mathrm{L}}$
m
$\dot{\mathrm{m}}$
\bar{P}
control vector
components of a parameterized control vector
control vector
subscript indicating final state or time
path dependent loss function for an orbital transfer maneuver
gravitational acceleration magnitude
instantaneous gravitational acceleration vector
components of the instantaneous gravity vector expressed in the guidance coordinate system

Hamiltonian
altitude
inteǵral of the loss function over time
instantaneous loss rate function
instantaneous spacecraft mass
instantaneous mass flow rate of the rocket engine
three component Lagrange multiplier vector associated with the velocity state equations

Symbol

$\stackrel{\stackrel{\rightharpoonup}{\mathrm{P}}}{ }{ }^{\text {- }}$	second time derivative of the Lagrange multiplier vector
R	return function for an orbital transfer maneuver
r	instantaneous radius vector magnitude
\bar{r}	instantaneous spacecraft position vector
$\dot{\bar{r}}$	time derivative of the spacecraft position vector
$\stackrel{\text { - }}{ }$	second time derivative of the spacecraft position vector
\bar{S}	state variable vector
$\stackrel{\dot{S}}{ }$	time derivative of the state variable vector
$T, T_{1}, T_{2}, \ldots, T_{n}$	components of t
t	independent variable for an orbital transfer maneuver, time
U, V, W	components of the instantaneous spacecraft velocity vector
$\dot{U}, \dot{V}, \dot{W}$	components of the instantaneous spacecraft acceleration vector
V, v	instantaneous velocity magnitude
V, \bar{v}	instantaneous spacecraft velocity vector
$V_{\text {ex }}$	exhaust velocity of the rocket engine
$V_{e x} L, J, P, S^{\prime} Q, U^{\prime}$	successive integrals of thrust - acceleration over time
X, Y, Z	components of the instantaneous spacecraft position vector
$\dot{X}, \dot{Y}, \dot{Z}$	components of the instantaneous spacecraft velocity vector

Symbol	
$\ddot{\mathrm{X}} \dot{\mathrm{Y}}$ - ${ }^{\text {- }}$	
X, X, Z	components of the instantaneous spacecraft acceleration vector
α	angle of attack measured between the thrust acceleration vector and the velocity vector
β	component of a parameterized control vector
γ	flight path angle
$\Delta \mathrm{V}$	change in velocity required for a transfer maneuver
η	component of a parameterized control vector
θ	control angle
$\theta_{\mathrm{p}}, \theta_{\mathrm{y}}$	control angles, pitch, and yaw
$\bar{\theta}_{p}, \bar{\theta}_{y}$	pitch and yaw control angles which achieve the desired velocity in a transfer maneuver
$\lambda_{1} \ldots \lambda_{6}$	components of the Lagrange multiplier vector
$\bar{\lambda}, \bar{\lambda}(t)$	the six component Lagrange multiplier vector
$\dot{\lambda}_{I} \ldots \dot{\lambda}_{6}$	time derivative of the Lagrange multiplier vector
μ	gravitational constant
ξ	component of a parameterized control vector
ρ	control vector
Φ	return function which is a function of the final state, S_{f}
ϕ	central angle traversed during a transfer maneuver

Symbol

$\dot{\phi}$
$\dot{\phi}_{r}$
$\ddot{\phi}$
ψ
time derivative of the central angle average angular rate during a transfer maneuver
second time derivative of the central angle
component of a parameterized control vector

Chapter 1

INTRODUCTION

The recent concept of an earth orbital space shuttle has given impetus to the development of new and more general guidance concepts and programs. Unlike previous manned vehicles, the shuttle has advanced features such as reusable stages, high maneuverability, multiple thrust levels, and throttlable engines. While the shuttle concept significantly enhances earth orbital mission capability, it also poses special guidance problems (i.e., low thrust maneuvers, constant acceleration maneuvers, etc.) The shuttle concept provides motivation for the guidance formulation developed in this thesis.

In past manned and unmanned space missions, real time spacecraft guidance and control have often been based upon principles of optimization theory. Although optimization can be directly applied to most guidance problems, the computation is usually lengthy and requires much computer storage. Thus the process is impractical for real time guidance and control systems.

The purpose of a spacecraft guidance and control system is to solve the two-point boundary value problem of orbital transfer. The approximate solution to the guidance problem is normally in closed form and is always executable
in real time (at a recurring frequency) during a guided maneuver.

Because of its special nature and importance, the guidance problem has received considerable attention in the recent literature and will continue to do so as more complex space hardware and missions are planned. This thesis is concerned with the development of a specific guidance formulation based upon principles of optimization theory. The problem considered is limited to the transfer of a spacecraft between two states with minimum propellant consumption when two external forces, thrust and gravity, are considered. The problem will be concerned with single rather than multiple burn arcs. A brief review of the guidance problem will be given at this point to familiarize the reader with past and current concepts.

The complete optimization problem can be stated as one of transferring from state $\left(\bar{r}_{0}, \bar{v}_{0}\right)$ to state $\left(\bar{r}_{f}, \bar{v}_{f}\right)$ while minimizing time of powered flight (this is equivalent to minimizing propellant usage).

Figure 1.1
Orbit Transfer For
Inverse Squared Gravity
The dynamical equations governing motion of the spacecraft (for burn arcs only) can be shown from figure 1.1. If $\bar{r}, \bar{g}(r), a(t)$, and $\bar{\rho}$ are, respectively, the radius vector, the gravitational acceleration vector, the engine thrust acceleration, and the thrust direction unit vector, then

$$
\begin{gather*}
\dot{\bar{r}}^{0}=-\frac{\mu}{\bar{r}} \overline{\mathrm{r}}^{\mathrm{r}}+a(\mathrm{t}) \bar{\rho} \tag{1-1}\\
\text { where } \quad \bar{r}(0)=\bar{r}_{0} \\
\dot{\bar{r}}(0)=\bar{v}_{0} .
\end{gather*}
$$

Application of the calculus of variations to this problem yields one of the necessary conditions for an extremum stated in the form of an auxiliary equation as follows:

$$
\begin{aligned}
& \dot{\bar{P}}=f(\bar{r}, \bar{P}, t)=\bar{P} \cdot \nabla \bar{g} \\
& \text { where } \bar{\rho}=\frac{\bar{P}}{|\bar{P}|}
\end{aligned}
$$

This result is stated by Lawden (1). \bar{P} is the classical Lagrange multiplier vector which adjoins the velocity equations in the Hamiltonian expression. To find a solution to this problem one must successively guess values for both $\bar{P}(0)$ and $\dot{\bar{P}}(0)$ and numerically integrate equations (1-1) and (1-2) until the boundary conditions ($\bar{r}_{\hat{f}}, \overline{\mathrm{v}}_{\mathrm{f}}$) are . satisfied. (this procedure is illustrated in appendix A). If the boundary conditions are satisfied, then a solution to the optimization problem has been found, and the solution is a local minimum or maximum.

The solution to the optimization problem can normally be simplified for the purpose of spacecraft guidance and control. This can be done by making assumptions such that, although the problem is simplified, its solution approximates the solution to the original problem. For instance, if the problem can be formulated as one of changing only the velocity vector and the acceleration of the spacecraft can be considered infinite, the solution to the problem can be computed readily from equation (1-3).
a
\bar{P} corresponds to the three component Lagranse multiplier vector $\left(\lambda_{4} \lambda_{5} \lambda_{6}\right)$. See appendix A.

Figure 1.2 Impulsive Orbit Change

The result from equation (1-3) is often referred to as an inpulsive solution and constitutes a lower bound cost to the transfer. If the spacecraft acceleration were infinite, a velocity increment, $\Delta \overline{\mathrm{v}}_{0}$, could be added instantaneously at \bar{r}_{0} to effect the transfer from the initial to the desired ellipse. The velocity increment magnitude is computed from

$$
\begin{equation*}
\Delta v_{0}^{2}=v_{0}^{2}+v_{f}^{2}-2 v_{0} v_{f} \cos \delta \gamma . \tag{1-3}
\end{equation*}
$$

It is assumed that the position vector, \bar{r}_{0}, does not chanse during the maneuver; if the acceleration were infinite, this would be the case. Guidance and control based upon this
impulsive solution have been used successfully for many small powered flight maneuvers. Compensations must be made in thrust direction because of the finite length of the maneuver.

The major limitation of this impulsive approximation
is that it does not explicitly control position and is therefore limited to short burn arcs. (Robbins (2) derives analytic results for multiple impulsive maneuvers.)

A more general approach (to guidance and control) that is applicable to longer burn arcs than the previous impulsive approach is discussed by McAllister, Grier, and Wagner (3). If the problem remains one of changing the velocity vector, it can be shown that the optimal thrust policy is given by $\bar{a} \times \bar{V}_{g}=c \bar{b} \times \bar{V}_{g}$
during the finite thrust maneuver. The terms \bar{a}, \bar{V}_{g}, and c are, respectively, the thrust acceleration vector, the velocity change vector, and a scalar constant. The \bar{b} vector can be computed as follows:

$$
\begin{align*}
& \bar{b}=\dot{\bar{V}}_{f}-\bar{s} \tag{1-5}\\
& \overline{\mathrm{~V}}_{\mathrm{g}}=\overline{\mathrm{V}}_{\mathrm{f}}-\overline{\mathrm{V}} . \tag{1-6}
\end{align*}
$$

a This equation represents what is often called cross product guidance.

If the scalar constant c is chosen to be 0 , then $\bar{a} \times \bar{V}_{g}=0$, which implies that the thrust vector should be directed parallel to \bar{V}_{g}. If, however, c is chosen to be 1 , then $\bar{a} \times \bar{V}_{g}=\bar{b} \times \bar{V}_{g}$, or $\bar{a} \times \bar{V}_{g}=\left(\dot{\bar{V}}_{f}-\bar{g}\right) \times \bar{V}_{g}$.

By substituting for $\dot{\bar{V}}_{f}$ the expression becomes
$\bar{a} \times \bar{V}_{g}=\left(\dot{\bar{V}}_{g}+\bar{a}\right) \times \bar{V}_{g}$. This reduces to $\dot{\bar{V}}_{g} \times \bar{V}_{g}=0$ and implies that the thrust should be directed to maintain $\dot{\bar{V}}_{g}$ parallel to \bar{V}_{g}. Use of equation (1-4) (as a guidance and control equation) with an appropriate value of c ($0 \leqq c \leqq 1$) will achieve the desired velocity, V_{f}, in minimurn time. The difficulty with this guidance procedure, is that position cannot be directly controlled and therefore the range of applicability is limited to small burn arcs. It is, however, an improvement over the previously discussed impulsive. approximation since it is applicable over larger burn arcs. In various forms it has produced excellent results for limited orbital transfer problems.

A still more general approach to the orbital transfer guidance and control problem is discussed by Smith (4) and Jezewski and Stoolz (5). This approach simplifies the solution to the original optimization problem to one that is solvable in closed form when gravity is assumed to be strictly a function of time (or constant).

Figure 1.3
Orbit Transfer For
Time-Varying Gravity
The original state and auxiliary equations
(1-1 and 1-2) then become

$$
\begin{align*}
& \dot{\bar{r}}^{\cdot}=-\bar{g}(t)+a(t) \bar{\rho} \tag{1-7}\\
& \text { where } \quad \bar{r}(0)=\bar{r}_{0} \\
& \dot{\bar{r}}(0)=\bar{v}_{0} \\
& \text { and } \quad \dot{\vec{P}}=f(\bar{r}, \bar{P}, t)=\bar{P} \cdot \nabla \overline{\mathrm{~g}} \\
& \text { where } \quad \bar{\rho}=\frac{\bar{P}}{|\bar{P}|} . \tag{1-8}
\end{align*}
$$

In this case, however, $\nabla \bar{g}$ is equal to zero, which insures that $\dot{\bar{P}}^{\bullet}=0$ and therefore that $\overline{\mathrm{P}}=\overline{\mathrm{c}}+\overline{\mathrm{d}} \mathrm{t}$. Substitution of this control vector into the dynamical equation yields the result

$$
\begin{equation*}
\dot{\bar{r}}=-\bar{s}(t)+a(t) \frac{(\bar{c}+\bar{d} t)}{|\bar{c}+\bar{d} t|} \tag{1-9}
\end{equation*}
$$

Integrations of this vector equation (1-9) yield six independent scalar equations for position and velocity. The six scalar equations are transcendental in teras of the control variables \bar{c}, \bar{d}, and t_{f} (of which only six are independent). A multivariable search method (gradient, Nevton-Raphson, etc.) can be used to vary these parameters and achieve the desired final state $\left(\bar{r}_{f}, \bar{v}_{f}\right)$. In lieu of using a search procedure, the formulation by Smith (4) makes added assumptions such that the control parameters can be evaluated explicitly.

This solution controls three components of velocity (\dot{X}_{f}, \dot{X}_{f}, and \dot{Z}_{f}) and two components of position (X_{f} and Y_{f}). The Z_{f} - component measures position in the spacecraft flight. plane and is not controlled.

A distinct advantage of this guidance formulation is that both the position (two components) and velocity can be controlled and that the control constants (\bar{c}, \bar{d}, and t_{f}) can be evaluated explicitly. A major limitation of this approach is apparent, however. As the burn arc becomes increasingly large the gravity assumption becomes increasingly worse. For certain problems convergence cannot be attained due to the size of the burn arc. Additionally, orbital transfer problems which involve rendezvous maneuvers cannot be solved unless all six components of position and velocity are controlled as well as time, t_{f}. Since only five components of position and velocity can be controlled this formulation will not work for rendezvous guidance problems.

Another general approach to the orbital transfer. guidance problem is considered by jezewski (6). This formulation reduces the original optimization problem to one that is solvable in closed form. The assumption is made that the gravity vector is a linear function of the position vector (on burn arcs only).

Figure 1.4
Orbit Transfer For Linear Gravity
The original state and auxiliary equations then become

$$
\begin{align*}
& \begin{array}{l}
\dot{\vec{r}}=-\omega \bar{r}+a(t) \bar{\rho} \\
\text { where } \quad \bar{r}(0)=\bar{r}_{0} \\
\\
\dot{\dot{r}}(0)=\bar{v}_{0} \\
\text { and } \quad \dot{\bar{P}}=f(\bar{r}, \bar{P}, t)=\bar{P} \cdot \nabla \overline{\bar{\sigma}} \\
\text { where } \quad \bar{\rho}=\frac{\bar{P}}{|\bar{P}|}
\end{array} . \tag{1-10}
\end{align*}
$$

In this case equation (1-11) reduces to $\overline{\bar{P}}^{0}=-\omega^{2} \overline{\bar{P}}$, which represents the motion of a harmonic oscillator without damping and without a forcing function. Its solution is given by

$$
\begin{equation*}
\bar{P}=\bar{c} \sin \omega t+\bar{d} \cos \omega t . \tag{1-12}
\end{equation*}
$$

The solution to the dynamical equation (1-10) follows:

$$
\begin{align*}
& \overline{\mathrm{r}}=\overline{\mathrm{p}} \sin \omega t+\overline{\mathrm{q}} \cos \omega t \tag{1-13}\\
& \overline{\mathrm{v}}=\omega(\overline{\mathrm{p}} \cos \omega t-\overline{\mathrm{q}} \sin \omega t) \tag{1-14}\\
& \dot{\overline{\mathrm{p}}} \sin \omega t+\dot{\bar{q}} \cos \omega t=0 \tag{1-15}\\
& \omega(\dot{\bar{p}} \cos \omega t-\dot{\bar{q}} \sin \omega t)=a(t) \frac{\overline{\mathrm{p}}}{|\overline{\mathrm{p}}|} \tag{1-16}
\end{align*}
$$

Since the values of \bar{p} and \bar{q} can be evaluated as integral functions of $a(t) \frac{\bar{P}}{|\bar{P}|}$, the optimal burn arc for the orbit change can be solved in closed form.

This procedure could also be used to consider multiple burn arcs. Since the state variables and the Lagrange multipliers can be propagated across coast arcs in closed form, this complete problem with multiple burn and coast arcs can also be solved in closed form. By implicitly solving a set of non-linear equations which are transcendental in the control variables (\bar{c}, \bar{d}, and t_{f}), a solution for the optimal burn arc is found. The addition of multiple burn arcs increases the dimensionality of the problem (t_{f}, then has
multiple components); however, the solution method remains the same.

This guidance procedure has a very general formulation and can explicitly control all position and velocity components.

The previous discussion has outlined the optimization problem and some past and more recent guidance formulations. The original optimization problen cannot be solved in closed form (it requires numerical intesration and iteration) and, therefore, has limited or no applicability as a guidance and control system. Varying derrees of complexity are also involved in the different suidance formulations depending upon the assumptions which are made. Relatively simple procedures, such as the impulsive and cross product procedure, are limited to short burn arcs and therefore will not solve a large number of orbital transfer problems. The time-varying gravity formulation ($\nabla \overline{\hat{O}}=0$) has a fairly general capability. However, it will not work for long burn arcs or lengthy low-thrust maneuvers. For low-thrust maneuvers the gravitational acceleration becomes a much more significant term and introduces convergence problems in the computation of the control parameters (\bar{c}, \bar{d}, and t_{f}). Also, since this formulation can only control two components of position, it is unsuitable for a rendezvous guidance.

The linear gravity formulation has none of the above problems; however, use of the more sophisticated approach
(multiple burn arcs) may introduce problems concerning its use in repetitive guidance solutions. Also, since this formulation requires iteration, its speed of execution would require investigation.

The guidance formulation considered in this thesis is limited to a time-varying gravity formulation and a single burn solution. Specifically, the formulation will be similar to Smith (6) in that the principal closed.-form computations will be retained. The formulation will be extended to an operational capability for long burn arcs and low-thrust maneuvers. Nunerical results will be presented for comparing the solution of a low-thrust problem with that of an extremized solution to the same problem. In addition, the formulation will include an extension such that all six components of position and velocity can be controlled, although implementation and numerical results are not within the scope of this thesis.

The remainder of the thesis will proceed with the development of the necessary conditions for an extremum, development of the control law where $\nabla \bar{g}=0$, and development of the guidance equations to be used for evaluation of the control parameters. Final chapters will be devoted to numerical results and the extension of the original formulation to control all final state variables. Development of a loss function (appendix B), effective gravity equations (appendix C), and intermediate boundary value equations (appendix D) are included in the appendix as guidance related improvements.

The loss function is considered as a switching function (to determine engine on-off time) and the intermediate boundary value equations are used to extend the. guidance formulation capability to large burn arcs. The effective gravity computation will be used with the guidance equations to approximate gravity over each burn arc. Appendix E considers the optimal control law under conditions of constant thrust acceleration and constant gravity. Appendix F develops the required guidance integrals and appendix G develops the time-to-go computation. These are both necessary inputs for the guidance formulation.

Chapter 2
NECESSARY CONDITIONS
Consider the problem of minimizing or maximizing some return function,

$$
\begin{equation*}
R=\Phi\left(\bar{S}_{f}\right)+\int_{t_{0}}^{t_{f}}{ }_{G}(t, \bar{S}, \bar{\rho}) d t \tag{2-1}
\end{equation*}
$$

The term $\Phi\left(\bar{S}_{\mathrm{f}}\right)$ corresponds to a penalty for not attaining the final state, while the integral function is a path-dependent value and depends upon the state history \bar{S} and the control function $\bar{\rho}$. This return function is subject to the state equations of form

$$
\begin{align*}
& \dot{\bar{S}}=f(t, \overline{\bar{S}}, \bar{\rho}) \tag{2-2}\\
& \text { where } \bar{S}\left(t_{0}\right)=\bar{S}_{O} .
\end{align*}
$$

The state equations are adjoined as an equality constraint similar to an ordinary non-time-varying minimization problem (where $\bar{\lambda}(t)$ is an unknown Lagrange multiplier).

$$
\text { Thereîore, } R=\Phi\left(\bar{S}_{f}\right)+\int_{t_{0}}^{t_{f}} G+\bar{\lambda}(t)^{T}(\overline{\bar{S}}-\dot{\bar{S}}) d t .
$$

The Hamiltonian is defined and substituted into the return function.

$$
\begin{align*}
& H(t, \bar{S}, \bar{\lambda}, \bar{\rho})=G(t, \bar{S}, \bar{\rho})+\bar{\lambda}^{T} \bar{f}(t, \bar{S}, \bar{\rho}) \tag{2-4}\\
& R=\Phi\left(\bar{S}_{f}\right)+\int_{t_{0}}^{t_{f}}\left(H-\bar{\lambda}^{T} \dot{\bar{S}}\right) d t \tag{2-5}
\end{align*}
$$

The return function, R, is expanded to first order in a Taylor series expansion about $\bar{\rho}^{*}$ (where $\bar{\rho}^{*}$ minimizes R).

$$
\begin{align*}
& R\left(\bar{\rho}^{*}+\Delta \bar{\rho}\right)=\Phi\left(\bar{S}_{f}\right)^{*}+\left.\frac{\partial \Phi}{\partial \bar{S}_{\mathrm{f}}}\right|^{*} \Delta \bar{S}_{\mathrm{f}} \\
& +\int_{t_{0}}^{t_{f}}\left(\mathrm{H}^{*}+H_{\bar{S}}^{*} \Delta \bar{S}+\mathrm{H}_{\bar{\lambda}}^{*} \Delta \bar{\lambda}+\mathrm{H}_{-}^{*} \bar{\rho}^{*} \Delta \bar{\rho}\right. \\
& -\bar{\lambda}^{\left.\mathrm{T} * \dot{\bar{S}}^{*}-\bar{\lambda}^{\mathrm{T}} \Delta \dot{\bar{S}}-\Delta \bar{\lambda}^{\mathrm{T}} \dot{\bar{S}}^{*}\right) d t} \tag{2-6}
\end{align*}
$$

The necessary conditions can then be established.

$$
\begin{aligned}
& R\left(\bar{\rho}^{*}+\Delta \bar{\rho}\right)=\Phi\left(\bar{S}_{f}\right)^{*}+\int_{t_{0}}^{t_{f}}\left(\mathrm{H}^{*}-\bar{\lambda}^{\mathrm{T}}{ }^{*} \dot{\bar{S}}^{*}\right) d t \\
& +\left.\frac{\partial \Phi}{\partial \bar{S}_{f}}\right|^{*} \Delta \bar{S}_{f}+\int_{t_{0}}^{t_{f}}\left(\mathrm{H}_{\mathrm{S}}^{*} \Delta \bar{S}+H_{\bar{\lambda}}^{*} \Delta \bar{\lambda}-\dot{\bar{S}}^{T^{*}} \Delta \bar{\lambda}+\mathrm{E}_{\rho}^{*} \quad \Delta \bar{\rho}\right) d t \\
& -\int_{t_{0}}^{t_{f}}\left(\bar{\lambda}^{\mathrm{T}^{*}} \Delta \dot{\bar{S}}\right) d t
\end{aligned}
$$

$$
\text { But } H_{\lambda}^{*} \Delta \bar{\lambda}-\dot{\bar{S}} \mathrm{~T}^{*} \Delta \bar{\lambda}=\left(\mathrm{F}_{\bar{\lambda}}^{*}-\dot{\bar{S}}^{\mathrm{T}^{*}}\right) \Delta \bar{\lambda}
$$

$$
\text { and } F_{\lambda}^{*}=\overline{\mathrm{f}}^{\mathrm{T}^{*}}=\dot{\mathrm{S}}^{T}
$$

$$
\begin{align*}
& R\left(\bar{\rho}^{*}+\Delta \bar{\rho}\right)=R\left(\bar{\rho}^{*}\right)+\left.\frac{\partial \Phi}{\partial \bar{S}_{f}}\right|^{*} \Delta \bar{S}_{\hat{f}}-\bar{\lambda}_{f}^{T} \Delta \bar{S}_{f} \\
& +\int_{t_{0}}^{t_{f}^{f}}\left(H_{\bar{S}^{*}}^{*} \Delta \bar{S}+\dot{\bar{\lambda}}^{T} \Delta \bar{S}+H_{\bar{\rho}}^{*} \Delta \bar{\rho}\right) d t \tag{2-8}
\end{align*}
$$

For $\bar{\rho}$ to be minimizing $R=R\left(\bar{\rho}^{*}+\Delta \bar{\rho}\right)-R(\bar{\rho})$ must be \leq 0 for all $\Delta \bar{\rho}$ and therefore the following necessary conditions follow for a minimizing control $\bar{\rho}^{*}$.

$$
\begin{align*}
& \dot{\bar{\lambda}}^{T}=-H_{\bar{S}} \tag{2-9}\\
& \bar{\lambda}^{-T}\left(t_{f}\right)=\frac{\partial \Phi}{\partial \bar{S}_{f}} \tag{2-10}\\
& H_{\rho}=0 \tag{2-11}
\end{align*}
$$

Necessary conditions (2-9) and (2-11) must be satisfied at every point along the trajectory, while (2-10) represents a necessary condition at the terminal boundary.
a

Chapter 3

OPTIMAL FORM OF CONTROL

To deduce an optimal control history for the orbital transfer problem, the Hamiltonian can be constructed and the necessary conditions applied. For the problem under consideration it is desired to minimize the time of powered flight (or to minimize propellant consumed). In this case the return function is of the form

$$
R=\Phi\left(X_{f} Y_{f} Z_{f} \dot{X}_{f} \dot{Y}_{f} \dot{Z}_{f}\right)+\int_{t_{0}}^{t_{f}} I d t
$$

This return function is subject to the state equations already introduced; subsequently, the Hamiltonian can be defined as

$$
\begin{aligned}
& H=I+\lambda_{1} U+\lambda_{2} V^{\prime}+\lambda_{3} W+\lambda_{4}\left(a \cos \theta_{y} \sin \theta_{p}-g_{X}\right) \\
&+\lambda_{5}\left(a \sin \theta_{y}-g_{y}\right)+\lambda_{6}\left(a \cos \theta_{y} \cos \theta_{p}-g_{z}\right) \\
&(3-1) a
\end{aligned}
$$

a The previously defined \bar{P} vector is a three vector composed of λ_{4}, λ_{5}, and λ_{6}.

Figure 3.1
Thrust Control Ansle
Coordinate System
where

$$
\begin{align*}
& \dot{\mathrm{U}}=a \cos \theta_{\mathrm{y}} \sin \theta_{\mathrm{p}}-g_{\mathrm{x}} \tag{3-2}\\
& \dot{\mathrm{~V}}^{\prime}=a \sin \theta_{\mathrm{y}}-g_{\mathrm{y}} \tag{3-3}\\
& \dot{\mathrm{w}}=a \cos \theta_{\mathrm{y}} \cos \theta_{\mathrm{p}}-g_{z} \tag{3-4}
\end{align*}
$$

$$
\begin{equation*}
\dot{X}=U \tag{3-5}
\end{equation*}
$$

$\dot{Y}=V^{\prime}$
$\dot{z}=W$
$\mathrm{F}=\dot{\mathrm{m}} \mathrm{V}_{\mathrm{ex}}$ (const)

$$
\begin{align*}
& \dot{\lambda}^{T}=-H_{\bar{S}} \tag{2-9}\\
& \lambda^{T}\left(t_{f}\right)=\frac{\partial \Phi_{\Phi}}{\partial \bar{S}_{f}} \tag{2-10}\\
& F_{p}=0 \tag{2-11}
\end{align*}
$$

The state variables, \bar{S}, in this problem are $U, V^{\prime}, W, X, Y, Z$, and the control, $\bar{\rho}$, corresponds to the two vector control variables θ_{p} and θ_{y}.

Applying the first necessary condition yields the followins results:

$$
\begin{align*}
& \dot{\lambda}_{1}=-H_{x}=\lambda_{4} \frac{\partial \varepsilon_{x}}{\partial_{\mathrm{x}}}+\lambda_{5} \frac{\partial g_{y}}{\partial \mathrm{\partial}}+\lambda_{6} \frac{\partial_{\mathrm{g}}}{\partial_{\mathrm{x}}} \text { (3-9) a } \\
& \dot{\lambda}_{2}=-\mathrm{H}_{y}=\lambda_{4} \frac{\partial \mathrm{gy}}{\partial y}+\lambda_{5} \frac{\partial \mathrm{gy}}{\partial \mathrm{y}}+\lambda_{6} \frac{\partial_{f z}}{\partial y} \quad(3-10) a \\
& \dot{\lambda}_{3}=-H_{z}=\lambda_{4} \frac{\partial \tilde{g} x}{\partial z}+\lambda_{5} \frac{\partial \tilde{m}_{y}}{\partial z}+\lambda_{6} \frac{\partial \tilde{g}_{z}}{\partial z} \\
& \dot{\lambda}_{4}=-H_{u}=-\lambda_{I} \tag{3-12}\\
& \dot{\lambda}_{5}=-H_{v^{\prime}}=-\lambda_{2} \tag{3-13}\\
& \dot{\lambda}_{6}=-H_{w}=-\lambda_{3} \tag{3-14}
\end{align*}
$$

a
equation (1-2), $\mathrm{P}=\mathrm{P} \cdot \nabla \mathrm{g}$.

If the approximation is made that the gravitational acceleration, g, is independent of position ($\nabla \overline{5}=0$), then the Lagrange multipliers can be determined.

$$
\begin{align*}
& \dot{\lambda}_{1}=0 \quad \lambda_{1}=d_{1} \tag{3-15}\\
& \dot{i}_{2}=0 \quad \lambda_{2}=d_{2} \tag{3-16}\\
& \dot{\lambda}_{3}=0 \quad \lambda_{3}=d_{3} \tag{3-17}\\
& \dot{\lambda}_{4}=-\lambda_{1}, \text { or } \lambda_{4}=c_{1}-d_{1} t \tag{3-18}\\
& \dot{\lambda}_{5}=-\lambda_{2}, \text { or } \lambda_{5}=c_{2}-d_{2} t \tag{3-19}\\
& \dot{i}_{6}=-\lambda_{3}, \text { or } \lambda_{6}=c_{3}-d_{3} t \tag{3-20}
\end{align*}
$$

Applying the third necessary condition (differentiating the Hamiltonian with respect to the control variables θ_{p} and θ_{y}) yields the following result:

$$
\left.\begin{array}{rl}
H_{\theta_{\mathrm{p}}}= & \lambda_{4}\left(a \cos \theta_{\mathrm{y}} \cos \theta_{\mathrm{p}}\right)-\lambda_{6}\left(a \cos \theta_{\mathrm{y}} \sin \theta_{\mathrm{p}}\right)=0 \\
(3-21)
\end{array}\right)
$$

$$
\begin{align*}
H_{\theta_{y}}= & \lambda_{5}\left(a \cos \theta_{y}\right)-\lambda_{6}\left(a \sin \theta_{y}\right)=0(3-23) a \\
& \lambda_{5} \cos \theta_{y}=\lambda_{6} \sin \theta_{y} \\
& \tan \theta_{y}=\frac{\lambda_{5}}{\lambda_{6}} \\
& \tan \theta_{y}=\frac{c_{2}-d_{2} t}{c_{3}-d_{3} t} \tag{3-24}
\end{align*}
$$

a
This is true only when $\theta_{p}=0$ since θ_{p} and θ_{y} are coupled angles.

Chapter 4
CLOSED FORA SOLUTION FOR THE
THO-POINT BOURDARY VALUE PROBLEM

The previous analysis has shown that, under certain assumptions ($\nabla \bar{g}=0$ and constant thrust) the optimal form of control for an orbital transfer maneuver is of a bi-linear tangent form (equations 3-22 and 3-24).
$\tan =\frac{\psi+\beta_{t}}{\xi+\eta_{t}}$
Guidance formulations based upon this approximation have been used successfully for limited transfer problems. Smith (4) presents such a formulation, in which the variables θ_{p} and ${ }^{\theta} y$ can be dstarmined explicitly from a system of algebraic equations.

A major limitation of this formulation results from the assumption that $\nabla \bar{\delta}=0$. As the powered flight burn arc increases in length, the gravity assumption becomes worse and convergence cannot be obtained. The size of the burn arc for which convergence can be insured is also a function of the thrust acceleration of the maneuvering spacecraft. As this acceleration level decreases, the maximum size of the burn arc (for which convergence can be obtained) also decreases.

The following analysis will be concerned with application of this bi-linear tangent control law (in an abbreviated form) to include the more extreme problems of long burn arcs and low-thrust maneuvers. The following guidance formulation will be limited to single burn arcs and minimization of powered flight burn time considering gravitational and thrust acceleration forces only.

Figure 4.1
Final State Components For Orbit Change

Temporarily the solution will be limited to the control of five components of position and velocity $\left(X_{f}, Y_{f}, \dot{X}_{f}, \dot{Y}_{f}\right.$, and $\left.\dot{Z}_{f}\right)$. The basic assumption, $\nabla \bar{g}=0$, will be made such that the form of control can be expressed as $\tan =\frac{\psi+\beta t}{\xi+\eta t}$.

However, a piecing procedure will be used to form large burn arcs from smaller burn arcs. As illustrated in figure 4.2 , the large burn arcs may be subdivided into
smaller burn arcs and the approximations made need only be valid for the much smaller burn arcs.

Figure 4.2
Piecing Procedure For Orbit Change

With such a piecing procedure, a guidance formulation can be extended to very large burn arcs and low-thrust maneuvers. However, an additional problem is introduced concerning intermediate boundary values for each of these smaller arcs. While each individual burn arc may be near-optimal, the sum of these burn arcs cannot be near-optimal unless the boundary values \bar{r} and $\overline{\mathrm{v}}$ are properly selected. A procedure for selectin亏 near-optimal boundary values is contained in appendix D. This procedure assumes that the Lagrançe multiplier vector, \bar{P}, is piecewise linear and continuous. Experience has shown this to be a good approximation for a variety of orbital missions.

The solution across any individual burn arc can now be developed and coupled with this piecing procedure. The solution will be generalized to multiple performance periods (to account for change of thrust level, constant acceleration periods, mixture ratio changes, etc.), although only one may be required during a particular small burn arc. The particular solution to the optimal thrust direction has been shown to be (equations 3-22 and 3-24).

$$
\begin{align*}
& \tan \theta_{\mathrm{p}}=\frac{\lambda_{4}}{\lambda_{6}}=\frac{c_{7}-\lambda_{2 t}}{c_{3}-\lambda_{3} t} \tag{4-2}\\
& \tan \theta_{y}=\frac{\lambda_{5}}{\lambda_{6}}=\frac{c_{7}-\lambda_{2 t}}{c_{3}-\lambda_{3} t} \tag{4-3}
\end{align*}
$$

From the necessary condition, $\lambda^{T}\left(t_{f}\right)=\frac{\partial \Phi}{\partial \bar{S}_{\hat{i}}}$, it is shown
that $\lambda_{3}\left(t_{f}\right)=\lambda_{3}=\frac{\partial \Phi}{\partial Z_{f}}=0$ if the Z_{f} - component of position is not controlled (see figure 4-3).

Figure 4.3
Thrust Control Angle Coordinate System (Inertially Fixed)

Figure 4.4
Thrust Control Angle Coordinate System

Additionally,

$$
\begin{align*}
& \lambda_{1}\left(t_{f}\right)=\lambda_{1}=\frac{\partial \Phi}{\partial X_{f}} \tag{4-4}\\
& \lambda_{2}\left(t_{f}\right)=\lambda_{2}=\frac{\partial \Phi}{\partial Y_{f}} \tag{4-5}\\
& \lambda_{4}\left(t_{f}\right)=\frac{\partial \Phi}{\partial \dot{X}_{f}} \tag{4-6}\\
& \lambda_{5}\left(t_{f}\right)=\frac{\partial \Phi \Phi}{\partial \dot{Y}_{f}} \tag{4-7}\\
& \lambda_{6}\left(t_{f}\right)=\frac{\partial \Phi}{\partial \dot{Z}_{f}} \tag{4-8}
\end{align*}
$$

which reduce the control functions to the following form:

$$
\begin{align*}
& \tan \theta_{p}=\frac{\partial \Phi}{\partial \dot{X}_{f}} / \frac{\partial \Phi}{\partial \dot{Z}_{f}}-\frac{\partial \Phi}{\partial X_{f}} / \frac{\partial \Phi}{\partial \dot{Z}_{f}} \text { (t) } \tag{4-9}\\
& \tan \theta_{y}=\frac{\partial \Phi}{\partial \dot{V}} / \frac{\partial \Phi}{\partial \dot{q}}-\frac{\partial \Phi}{\partial v} / \frac{\partial \Phi}{\partial \dot{q}} \text { (t) } \tag{4-10}
\end{align*}
$$

Explicit evaluation of these constant partial derivatives is possible if the following approximations are made.

$$
\begin{align*}
& \tan \theta_{p} \approx \theta_{p} \approx\left(\bar{\theta}_{p}-k_{1}\right)+k_{2} t \tag{4-11}\\
& \tan \theta_{y} \approx \theta_{y} \approx\left(\bar{\theta}_{y}-k_{3}\right)+k_{4} t \tag{4-12}\\
& \sin \left(-k_{1}+k_{2} t\right) \approx-k_{1}+k_{2} t \tag{4-13}\\
& \cos \left(-k_{1}+k_{2} t\right) \approx 1.0 \tag{4-14}\\
& \sin \left(-k_{3}+k_{4} t\right) \approx-k_{3}+k_{4} t \tag{4-15}\\
& \cos \left(-k_{3}+k_{4} t\right) \approx 1.0 \tag{4-16}
\end{align*}
$$

At first these approximations appear to be restrictive, but this is not the case. As the burn arc is se minented into more pieces, these become very good approximations. The $\bar{\theta}_{p}, \bar{\theta}_{y}$ terms are constant control anfle terms which will solve the velocity required part of the transfer; however, since the control is linear, compensating terms k_{1} and k_{3} are added to achieve the velocity. Tho terms k_{2} and k_{4} directly correspond to the position partial derivative terms. The solution to this problem is now found by determinin ${ }^{5}$ values for k_{1}, k_{2}, k_{3}, and k_{4} which satisfy the boundary conditions $\left(\Phi\left(S_{f}\right)=0\right)$.

This solution can be implemented by introducing the appropriate dynamical equations (the Z equation is not needed since Z_{f} is free) and taking their first and second integrations.

$$
\begin{align*}
& \ddot{X}=a \cos \theta_{y} \sin \theta_{p}-E_{x} \tag{4-17}\\
& \ddot{Y}=a \sin \theta_{y}-\dot{E}_{y} \tag{4-18}\\
& \dot{X}_{f}=\dot{X}+\int_{t_{0}}^{t_{f}} a \cos \theta_{y} \sin \theta_{p} d t-\int_{t_{0}}^{t_{f}} s_{x} d t(4-19) a \\
& \dot{Y}_{f}=\dot{Y}+\int_{t_{0}}^{t_{f}} a \sin \theta_{y} d t-\int_{t_{0}}^{t_{f}} \delta_{y} d t \tag{4-20}
\end{align*}
$$

The following trigonometric substitutions may be made to introduce the control constants $\bar{\theta}_{p}, \bar{\theta}_{y}, k_{1}, k_{2}, k_{3}$, and k_{4}.

$$
\begin{align*}
& \sin \theta_{\underline{p}} \approx \sin \bar{\theta}_{p}+\cos \bar{\theta}_{p}\left(-k_{1}+k_{2} t\right) \tag{4-2I}\\
& \sin \theta_{y} \approx \sin \bar{\theta}_{y}+\cos \bar{\theta}_{y}\left(-k_{3}+k_{4} t\right) \tag{4-22}\\
& \cos \theta_{p} \approx \cos \bar{\theta}_{p} \tag{4-23}\\
& \dot{X}_{f}=\dot{X}+\int_{t_{0}}^{t_{\hat{f}}} a \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}+\cos \bar{\theta}_{p}\left(-k_{1}+k_{2} t\right)\right) d t \\
& -\int_{t_{0}}^{t_{f}} S_{x} d t \tag{4-24}
\end{align*}
$$

a
The value of $t_{\hat{i}}$ comes from solution of an explicit equation in appendix G.

$$
\begin{align*}
\dot{Y}_{f}= & \dot{Y}+\int_{t_{0}}^{t_{f}} a\left(\sin \bar{\theta}_{y}+\cos \bar{\theta}_{y}\left(-k_{3}+k_{4} t\right)\right) d t \\
& -\int_{t_{0}}^{t_{f}} \bar{o}_{y} d t \\
\dot{X}_{f}= & \dot{X}+\int_{t_{0}}^{t_{f}} a \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{I} \cos \bar{\theta}_{p}\right) d t \\
& +\int_{t_{0}}^{t_{f}} a k_{2} t \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t \\
& -\int_{t_{0}}^{t_{f}} \delta_{x} d t \tag{4-26}\\
\dot{Y}_{f}= & \dot{Y}^{\prime}+\int_{t_{0}}^{t_{f}} a\left(\sin \bar{\theta}_{y}-k_{z} \cos \bar{\theta}_{y}\right) d t \\
& +\int_{t_{0}}^{t_{f}} a k_{L_{4}} t \cos \bar{\theta}_{y} d t-\int_{t_{0}}^{t_{f}} g_{y} d t \tag{4-27}
\end{align*}
$$

Generalization of this integration to several components of t_{f} will yield a general form.

$$
\begin{aligned}
\dot{X}_{\hat{f}}= & \dot{X}+\int_{0}^{T} 1 a_{1} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{I} \cos \bar{\theta}_{p}\right) d t \\
& +\int_{0}^{T_{1}} a_{1} k_{2} t \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t \\
& +\int_{0}^{T_{2}} a_{2} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{I} \cos \bar{\theta}_{p}\right) d t
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{T} 2 a_{2} k_{2} t \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t \\
& +\int_{0}^{T_{2}} a_{2} k_{2}\left(T_{I}+T_{c}\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t \\
& -\int_{0}^{T_{1}+T_{c}+T_{2}} \delta_{X} d t \tag{4-28}\\
& \dot{X}_{f}=\dot{Y}+\int_{0}^{T_{I}} a_{I}\left(\sin \bar{\theta}_{y}-k_{z} \cos \bar{\theta}_{y}\right) d t \\
& +\int_{0}^{T_{I}} a_{1} k_{4} t \cos \bar{\theta}_{y} d t \\
& +\int_{0}^{T_{2}} a_{2}\left(\sin \bar{\theta}_{y}-k_{3} \cos \bar{\theta}_{y}\right) d t \\
& +\int_{0}^{T_{2}} a_{2} x_{4} t \cos \bar{\theta}_{y} d t \\
& +\int_{0}^{T_{2}} a_{2} x_{4}\left(T_{I}+T_{c}\right) \cos \bar{\theta}_{y} d t \\
& -\int_{0}^{T_{1}+T_{c}+T_{2}} \tilde{o}_{y} d t
\end{align*}
$$

Integral values derived in appendix F are now substituted into the expressions.

$$
\begin{aligned}
\dot{X}_{f}= & \dot{X}+V_{e x_{1}} L_{I} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{I} \cos \bar{\theta}_{p}\right) \\
& +k_{2} \bar{c}_{1} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p}
\end{aligned}
$$

$$
\begin{align*}
& +V_{e x_{2}} I_{2} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{I} \cos \bar{\theta}_{\mathrm{p}}\right) \\
& +k_{2} J_{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} \\
& +k_{2} V_{e x_{2}} I_{2}\left(T_{I}+T_{c}\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} \\
& -\sigma_{X}\left(T_{I}+T_{c}+\dot{T}_{2}\right) \\
\dot{Y}_{f}= & \dot{Y}+V_{e x_{I}} I_{I}\left(\sin \bar{\theta}_{y}-k_{3} \cos \bar{\theta}_{y}\right) \\
& +k_{4} \bar{u}_{I} \cos \bar{\theta}_{y}+V_{e x_{2}} I_{2}\left(\sin \bar{\theta}_{y}-\bar{K}_{3} \cos \bar{\theta}_{y}\right) \\
& +\xi_{4} J_{2} \cos \bar{\theta}_{y}+k_{4}\left(T_{I}+T_{c}\right) V_{e x_{2}} L_{2} \cos \bar{\theta}_{y} \\
& -\delta_{y}\left(T_{I}+T_{c}+T_{2}\right) \tag{4-31}
\end{align*}
$$

 usins $\bar{\theta}_{\mathrm{p}}$ and $\bar{\theta}_{\mathrm{y}}$. Integration using these constant control angles insures that the required velocity is obtained during the transfer.

$$
\begin{align*}
\dot{\bar{X}}_{\underline{I}}= & \dot{x} \div \int_{\dot{t}_{0}}^{t_{f}} a \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t \\
& -\int_{t_{0}}^{t_{f}} \delta_{X} d t \tag{4-32}
\end{align*}
$$

$$
\begin{align*}
& \dot{\bar{Y}}_{\hat{i}}=\dot{Y}+\int_{t_{0}}^{t_{f}} a \sin \bar{\theta}_{y} d t-\int_{t_{0}}^{t_{\hat{I}}} \int_{y} d t \\
& \frac{\lambda_{X}}{f}=\dot{X} \div \int_{0}^{T_{1}} a_{I} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t \\
& +\int_{0}^{T_{2}} a_{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t \\
& -\int_{0}^{T_{I}+T^{+}+T_{2}} \delta_{X} d t \\
& \dot{\bar{Y}}_{f}=\dot{Y}+\int_{0}^{T_{1}} a_{1} \sin \bar{\theta}_{y} d t+\int_{0}^{T_{2}} a_{2} \sin \bar{\theta}_{y} d t \\
& -\int_{0}^{T_{1}+T_{1}+T_{2}} E_{\mathrm{y}} d t \\
& \dot{X}_{f}=\dot{X}+V_{e x_{I}} L_{I} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} \\
& +V_{e x_{2}} I_{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} \\
& -\mathscr{S}_{x}\left(T_{1}+T_{c}+T_{2}\right) \tag{4-3,6}
\end{align*}
$$

$$
\begin{align*}
& -G_{y}\left(T_{1}+T_{c}+T_{2}\right) \tag{4-37}
\end{align*}
$$

If the conditions $\dot{\bar{X}}_{\hat{I}}-\dot{\mathrm{X}}_{\underline{f}}=0$ and $\dot{\bar{Y}}_{f}-\dot{\mathrm{Y}}_{f}=0$ are enforced, integration with the linear control law will enforce the velocity condition.

$$
\dot{\bar{Y}}_{\mathrm{f}}-\dot{\mathrm{Y}}_{\mathrm{f}}=0=-\mathrm{k}_{3} \mathrm{~V}_{\mathrm{ex}_{\mathrm{I}}} \mathrm{I}_{I} \cos \bar{\theta}_{\mathrm{y}}+k_{4} J_{I} \cos \bar{\theta}_{\mathrm{y}}
$$

$$
-k_{3} \mathrm{~V}_{\mathrm{ex}_{2}} \mathrm{I}_{2} \cos \bar{\theta}_{\mathrm{y}}
$$

$$
+\mathrm{kz}_{4} \mathrm{~V}_{\mathrm{ex}_{2}} \mathrm{~L}_{2}\left(T_{1}+\mathbb{T}_{c}\right) \cos \bar{\theta}_{y}
$$

$$
\begin{equation*}
+\mathrm{k}_{4} \mathrm{~J}_{2} \cos \bar{\theta}_{\mathrm{y}} \tag{4-39}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\bar{X}}_{\mathrm{P}}-\dot{X}_{\mathrm{X}}=0=-A_{\mathrm{p}} k_{I}+B_{p} k_{2} \tag{4-40}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\bar{Y}}_{\tilde{i}}-\dot{\mathrm{Y}}_{\dot{f}}=0=-\mathrm{A}_{\mathrm{y}} \mathrm{k}_{3}+\mathrm{B}_{\mathrm{y}} \mathrm{k}_{4} \tag{4-41}
\end{equation*}
$$

A second integration of equations ($4-17$) and ($4-18$) will now satisfy the position requirement in X and Y .

$$
\begin{aligned}
x_{\mathrm{I}}= & \mathrm{X}+\int_{0}^{T_{1}+\mathrm{T}_{c}+T_{2}} \dot{\mathrm{x}} d t \\
& +\int_{0}^{T_{1}} \int_{0}^{T_{1}} a_{1} \cos \bar{\theta}_{\mathrm{y}}\left(\sin \bar{\theta}_{\mathrm{p}}-\mathrm{k}_{1} \cos \bar{\theta}_{\underline{p}}\right) d t^{2}
\end{aligned}
$$

$$
\begin{align*}
& \dot{\bar{X}}_{\mathrm{f}}-\dot{\mathrm{x}}_{\mathrm{f}}=0=-\mathrm{k}_{\mathrm{I}} \mathrm{~V}_{\mathrm{ex}_{\mathrm{I}}} \mathrm{I}_{\mathrm{I}} \cos \bar{\theta}_{\mathrm{y}} \cos \bar{\theta}_{\mathrm{p}} \\
& +k_{2} \bar{J}_{\mathrm{I}} \cos \bar{\theta}_{\mathrm{y}} \cos \bar{\theta}_{\mathrm{p}} \\
& -\mathrm{k}_{1} \mathrm{~V}_{\mathrm{ex}}^{2} \boldsymbol{I _ { 2 }} \cos \bar{\theta}_{\mathrm{y}} \cos \bar{\theta}_{\underline{D}} \\
& +k_{z} V_{\mathrm{ex}_{2}} \mathrm{I}_{2}\left(\mathrm{~T}_{\mathrm{I}}+\mathrm{I}_{\mathrm{c}}\right) \cos \bar{\theta}_{\mathrm{y}} \cos \bar{\theta}_{\mathrm{p}} \\
& +k_{2} J_{2} \cos \bar{\theta}_{\mathrm{y}} \cos \bar{\theta}_{\mathrm{p}} \tag{4-38}
\end{align*}
$$

$$
\begin{align*}
& +\int_{0}^{\mathrm{T}_{1}} \int_{0}^{\mathrm{T} I} a_{1} \mathrm{k}_{2} t \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t \\
& +\left(T_{2}+T_{c}\right) \int_{0}^{T_{1}} a_{1} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{1} \cos \bar{\theta}_{p}\right) d t \\
& +\left(T_{2}+T_{c}\right) \int_{0}^{T} I a_{1} k_{2} t \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t \\
& +\int_{0}^{\mathrm{T}} \int_{0}^{\mathrm{T}_{2}} \mathrm{a}_{2} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-\mathrm{k}_{1} \cos \bar{\theta}_{p}\right) d t^{2} \\
& +\int_{0}^{T_{2}} \int_{0}^{T_{2}} a_{2} k_{2} t \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t^{2} \\
& +\int_{0}^{T_{2}} \int_{0}^{T_{2}} a_{2} k_{2}\left(T_{1}+T_{c}\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t^{2} \\
& -\int_{0}^{T_{1}+T_{c}+T_{2}} g_{x} d t^{2} \tag{4-42}\\
& X_{f}=X+\dot{X}\left(T_{1}+T_{c}+T_{2}\right)-S \dot{1} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{1} \cos \bar{\theta}_{p}\right) \\
& -Q_{1} k_{2} \cos \bar{\theta}_{p} \cos \bar{\theta}_{y} \\
& +V_{\in \mathrm{X}_{1}} L_{I}\left(T_{2}+T_{c}\right) \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{I} \cos \bar{\theta}_{p}\right) \\
& +\bar{u}_{I}\left(\underline{T}_{2}+T_{c}\right) k_{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} \\
& -S_{2} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{1} \cos \bar{\theta}_{p}\right) \\
& -Q_{2} k_{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p}-s_{2} k_{2}\left(T_{1}+T_{c}\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{p}
\end{align*}
$$

$$
\begin{align*}
& -\delta_{x}\left(T_{I}+T_{c}+T_{2}\right)^{2} / 2 \\
Y_{i}= & Y+\int_{0}^{T_{I}+T_{c}+T_{2}} \dot{Y} d t \\
& +\int_{0}^{T_{I}} \int_{0}^{T_{I}} a_{I}\left(\sin \bar{\theta}_{y}-k_{3} \cos \bar{\theta}_{y}\right) d t^{2} \\
& +\int_{0}^{T_{I}} \int_{0}^{T_{I}} a_{I} k_{4} t \cos \bar{\theta}_{y} d t^{2} \\
& +\left(T_{2}+T_{c}\right) \int_{0}^{T_{I}} a_{I}\left(\sin \bar{\theta}_{y}-k_{3} \cos \bar{\theta}_{y}\right) d t \\
& +\left(T_{2}+T_{c}\right) \int_{0}^{T_{I}} a_{I} k_{4} t \cos \bar{\theta}_{y} d t \\
& +\int_{0}^{T_{2}} \int_{0}^{T_{2}} a_{2}\left(\sin \bar{\theta}_{y}-k_{3} \cos \bar{\theta}_{y}\right) d t^{2} \\
& +\int_{0}^{T_{2}} \int_{0}^{T_{2}} a_{2} k_{4}\left(T_{I}+T_{c}\right) \cos \bar{\theta}_{y} d t^{2} \\
& -\int_{0}^{T_{I}+T_{c}+T_{2}} \int_{0} d t^{2} \tag{4-44}
\end{align*}
$$

$$
\begin{aligned}
Y_{\hat{I}}= & Y+\dot{Y}\left(T_{1}+T_{c}+T_{2}\right)-s_{1}^{\prime}\left(\sin \bar{\theta}_{y}-k_{3} \cos \bar{\theta}_{y}\right) \\
& -Q_{1} k_{4} \cos \bar{\theta}_{y} \\
& +\left(T_{2}+T_{c}\right)\left(V_{e x_{1}} L_{1}\right)\left(\sin \bar{\theta}_{y}-k_{3} \cos \bar{\theta}_{y}\right) \\
& +\left(T_{2}+T_{c}\right) J_{I} k_{4} \cos \bar{\theta}_{y}-S_{2}^{\prime}\left(\sin \bar{\theta}_{y}-k_{3} \cos \bar{\theta}_{y}\right)
\end{aligned}
$$

$$
\begin{align*}
& -S_{2}^{1} k_{4}\left(T_{I}+T_{c}\right) \cos \bar{\theta}_{y}-Q_{2} k_{4} \cos \bar{\theta}_{y} \\
& -\delta_{y}\left(T_{I}+T_{c}+T_{2}\right)^{2} / 2 \tag{4-45}
\end{align*}
$$

Equations (4-44) and (4-45) are each a function of known integrals and the constants k_{1}, k_{2}, k_{3}, and k_{4}.

$$
\begin{align*}
& 0=C_{p} k_{I}-D_{p} k_{2}+E_{p} \tag{4-46}\\
& 0=C_{y} k_{3}-D_{y} k_{4}+E_{y} \tag{4-47}
\end{align*}
$$

The control constants k_{1}, k_{2}, k_{3}, and k_{4} may now be evaluated by solving equations (4-40) (4-41), (4-46), and (4-47) simultaneously. The control angles ($\theta_{\mathrm{p}} \theta_{\mathrm{y}}$) can be determined as follows:

$$
\begin{align*}
& \theta_{p}=\bar{\theta}_{p}-k_{I}+k_{2} t_{f} \tag{4-48}\\
& \theta_{y}=\bar{\theta}_{y}-k_{3}+k_{4} t_{f} \tag{4-49}\\
& \Delta \dot{X}=\dot{X}_{f}-\dot{X}-\delta_{x} t_{f} \tag{4-50}\\
& \dot{Y}=\dot{Y}_{f}-\dot{Y}-\bar{\delta}_{y} t_{f} \tag{4-51}\\
& \Delta \dot{Z}=\dot{Z}_{f}-\dot{Z}-s_{z} t_{f} \tag{4-52}\\
& \bar{\theta}_{p}=\tan ^{-1}\left(\frac{\Delta \dot{Y}}{\Delta \dot{Z}}\right) \tag{4-53}\\
& \bar{\theta}_{y}=\tan ^{-1}\left(\frac{\Delta \dot{Y}}{\sqrt{\dot{Y}^{2}+\dot{Y}^{2}}}\right) \tag{4-54}
\end{align*}
$$

A generalization of the above equations to multiple components of $t_{f}(n$ components) is possible by inspection. The general equations which can be used for the solution of $\bar{\theta}_{p}, \bar{\theta}_{y}, k_{1}, k_{2}, k_{3}$, and k_{4} are shown as follows:

$$
\begin{align*}
& \Delta \dot{X}=\dot{X}_{f}-\dot{X}-E_{x} \cdot \sum_{i=1}^{2} T_{i} \tag{4-55}\\
& \Delta \dot{Y}=\dot{Y}_{\dot{I}}-\dot{Y}-\varepsilon_{y} \sum_{i=1}^{n} T_{i} \tag{4-56}\\
& \Delta \dot{Z}=\dot{Z}_{f}-\dot{Z}-S_{z} \sum_{i=1}^{n} T_{i} \tag{4-57}\\
& \bar{\theta}_{p}=\tan ^{-1}\left(\frac{\Delta \dot{Y}}{\Delta Z}\right) \tag{4-58}\\
& \bar{\theta}_{\mathrm{y}}=\tan ^{-1}\left(\frac{\Delta \dot{I}}{\sqrt{\Delta \dot{\underline{y}}^{2}+\Delta \dot{z}^{2}}}\right) \tag{4-59}\\
& A_{y}=\sum_{i=1}^{n} V_{e x_{i}} L_{i} \tag{4-60}\\
& B_{y}=\sum_{i=1}^{n} J_{i}+\sum_{i=1}^{n-1} V_{e x_{i+1}} L_{i+1} \sum_{j=1}^{i} T_{j} \tag{4-61}\\
& c_{y}^{\prime}=\sum_{i=1} S_{i}-\sum_{i=1}^{n-i} T_{i+1} \sum_{j=1}^{i} V_{e x_{j}} L_{j} \tag{4-62}\\
& c_{y}=c_{y}^{\prime} \cos \bar{\theta}_{y} \tag{4-63}\\
& D_{y}^{\prime}=\sum_{i=1}^{n} Q_{i}+\sum_{i=1}^{n-1} S_{i+1}^{\prime} \sum_{j=1}^{i} T_{j} \quad-
\end{align*}
$$

$$
\begin{align*}
& \sum_{i=1}^{n-1}\left(\left(T_{i+1}\right) \quad \sum_{j=1}^{i} J_{j}\right)- \\
& \sum_{i=1+1}^{1-1}\left(\sum_{i}^{n-1}\left(T_{i+1}\right) V_{e x_{i}} I_{i} \sum_{j=1}^{j-1} T_{j}\right)(4-64) \\
& D_{y}=D_{y}^{\prime} \cos \bar{\theta}_{y} \\
& (4-65) \\
& E_{y}=\underline{Y}-Y_{f}+\dot{Y} \sum_{i=1}^{n} T_{i}+\frac{1}{2} E_{y}\left(\sum_{i=1}^{n} T_{i}\right)^{2}- \\
& C_{y}^{\prime} \sin \bar{\theta}_{y} \tag{4-66}\\
& k_{3}=\frac{E_{T Y} E_{y r}}{A_{y} D_{y}-B_{y} C y} \tag{4-67}\\
& k_{4}=\frac{k_{3} A_{y}}{B_{y}} \tag{4-68}\\
& \bar{\theta}_{\underline{p}}=\tan ^{-1}\left(\frac{\Delta \dot{Y}}{\Delta Z}\right) \tag{4-69}\\
& A_{\underline{p}}=A_{y} \cos \bar{\theta}_{y} \tag{4-70}\\
& B_{\underline{p}}=B_{y} \cos \bar{\theta}_{y} \tag{4-71}\\
& C_{p}=C_{y}^{\prime} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} \tag{4-72}\\
& E_{p}=X-X_{i}+\dot{X} \sum_{i=1}^{n} T_{i}+\frac{1}{2} \delta_{X}\left(\sum_{i=1}^{n} T_{i}\right)^{2}- \\
& C_{y}^{\prime} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} \tag{4-73}
\end{align*}
$$

$$
40
$$

$$
\begin{aligned}
& D_{p}=D_{y}^{\prime} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} \\
& s_{I}=\frac{B_{p} E_{p}}{A_{p} D_{p}-B_{p} C_{p}} \\
& x_{2}=\frac{k_{1} A_{p}}{B_{p}}
\end{aligned}
$$

$$
(4-74)
$$

$$
(4-75)
$$

$$
(4-76)
$$

Chapter 5
WJSERICAI ITVESTIGATIOM
To illustrate the woriability of the closed form solution which has boen developed, an example proble:l has been selected and solved. Additionally, the same problom is also solved by an opizimization procedure and the characteristic velocities ${ }^{\text {a }}$ compared as a measure 0. performance. The problem selected consists of a transfer from a 50 by 100 - nautical mile ellipse to a coplanar $400-$ nautical mile circular orbit with winimum propellant usase. This is a typical shuttle transfer from low earth orbit to a space station orbit.

Figure 5.1
Tyo-Eurn Orbit Transîer
a
Charactoristic velocity is the integral of thrust acceleration,

$$
\int_{t_{0}}^{t_{f}} a(t) d t .
$$

This transfer is accomplished for a zelatively lo: thrusi-tomeight ratio (. $05 \mathrm{~s}^{\prime} \mathrm{s}$) and thus provides the type of problem which is most scnsitive to the guicance formulation. The following analysis will be concerned with both solutions to this problem and a comparison of the results.

To achieve the numerical results for this comparison, two digital procran simulations were required. These two simulations are a simulation for an optimal orbit transfer and a simulation for the guidance formulation previously show. These two simulations will be b=iefly discussed to familiarize the reader with each solution procedure.

The simulation result for an optimal orbit transfer was achieved by using an existing gradient search parameter optimization program. a The progranconstructs a return function $R=t_{f}+\Phi\left(\bar{S}_{f}\right)$ where $\Phi\left(\bar{S}_{f}\right)$ is a penalty for not attaining the desired final state and t_{f} is the total time of powered flicint. It is desined to minirize R. The solution proceduce then recuires that the initial control variables ($\bar{\rho}$) be individually perturbed and a trajectory numerically intesrated '(using a fourth-crder Runge-Kutta scheme) to find the value of the gradient vector $\frac{\partial R}{\partial \bar{p}}$.

After finding this vector, a one dinensional search scheme is used to find a stez size value alons the gradient direction
which rinimizes Ω. This multi-step process is then repeated until the gradient magnitude becomes less than some small value (convercence is attained.) The eradient procedure uses a double precision state (\bar{r} and $\overline{\mathrm{V}}$) and, therefore, achieves the final state with a cood deal of accuracy. Good initial values for the control vector are necescary for this procedure to attain conversance. Once these good initial values are provided, however, the solution procedure provides a near optimal orbit transfer trajectory.

The simulation result for the guidance formulation is achieved by implementing the set of closed form equations in chapter 4 (equation 4-55 throu-h 4-76) into a dieital siaulation prooran. Additional cquations used to evaluate Sravity, the piecins procedure, the thrust acceleration intesrals, and burn time are taken from appendices C, D, F, and G, respectively. Fron these equations the control constants $\theta_{\underline{y}}=\bar{\theta}_{p}-\bar{x}_{1}+k_{2} t_{i}$ and $\theta_{y}=\bar{\theta}_{y}-i_{3}+k_{k_{4}} t_{f}$ are then evaluated explicitly at every two second interval in the powored flisht trajectory simulation. The resulting control history (θ_{p} and θ_{y}) is then used and the dymamical couations (3-2 through 3-8) numerically integrated using a fourth order Runga-Kutta integration scheme. This guidance procedure uses a single precision state (\bar{r} and $\overline{\mathrm{v}}$) in the intecration process. The extremized solution to this problem, which is obtained from the gradient search parameter optimization procedure, will now be considared. The solution is
formulated as a burn-coast-burn in which the parameters ($\bar{\rho}$) appear as engine on-ồf tito and constants in some assumed control lam. This assumed control law tai:es the form ${ }_{p}^{\theta}=\psi^{*}+\xi^{*} t+\eta^{*} t^{2}$ during each burn. The total parameters for this problem are therefore t_{0}, t_{f}, t_{0}, t_{f}, $\psi^{*}, \xi^{*}, \quad \eta^{*}, \psi^{* *}, \xi^{* *} ; \eta^{* *}(f i$ sure 5.2). The parameters are varied to achieve the final orbital conditions while minimizing total time of powered flight.

> Figure 5.2
> Two-Burn Orbit Transfer
> Using Parameter Optimization

The solution to this problem is a 319 second burn and a 367 second burn separated by a 2440 second coast. The first burn is initiated at a true anomaly of -18 decrees and the second burn at a true anomaly of 173 decrees. The
loss function ${ }^{\text {a }}$ and control history for this transfer are show in figures 5.3 trrough 5.6.

Figure 5.3
Control Angle History
Usins Parameter Optimization

Figure 504
Control Irgle History
Using Parameter Optimization
a
This loss function is derived in appendix B. Its integral value represents the difference between the characteristic velocity and the relative velocity change during a powered flight maneuver. Its integral value is therefore a measure of the efficiency of the maneuver.

Time ($七$
Fisure 5.5
Velocity Locs Puaction
Usins Qaremeter
Optimization

Fisure 5.6
Velocity Losa Function Usins Perareter Optimization

The control ancle during both burns is nearly linoar with time and tine slope is winimal. The loss functio: is approzinatoly symetric around the midooint of the burn arc for both burns.

The Guidance solution to this problem is nor considered. The solution is posed as a bum-coast- bum; however, the procedure hust handle each burn indivicually. The first burn is targeted to achieve the desired aposee radius and the second bum to achieve tre desired perisee radius. Neither of the two burns could be made to converse as single arcs and, therefore, a two-bura arc piecing procedure is used.

> Fisure 5.7
> Two-3urn Orbit Trunser
> Usin Mhe Guidarce For...ulation

The solution to the problen is a 324 second burn aid a jỏ0 second bum separated by approximately a 2400 second coast. Mine initial thrust manever is initiated at a true aromaly of -13 desreos and the second at a true anomaly of 173 ciejrecs. The loss function and control history for this transfer are shown in figures 5.8 through 5.11 •

Tine（ t ）

Figure 5.8
Control An ine History
Using The Guidance
Formulation

Figure 5.9
Control ingle History
Ising The Guidance
Formulation

Time（ t ）

Ii弓ure 5.10
Velocity ioss Eunction
Usins Tre Guidance
Formulation

Tigune 5.11
Velocity loss－unction
Vsまり Fhe Guiaunce
Fonalation

It is observed that the control ancle histories show scme cifference betweon the extromized and cuidence solution, although this difforence is not laree in torms of burn time or propcllant usaje. It is also observen that the ku:m arc piecins procedure causes discontinuitics in the control ancle (θ_{p}, fizures 5-3 and 5-9) and, therefore, some loss of performance. mhe discontinuities result from the inability of the multi-arc algorithn ${ }^{\text {a }}$ to predict intercediate boundary values perfectly.

As a watter of interest, the first burn of this transier mas sejmonted into five burn pieces durint mich only a velocity control was used $\left(\theta_{p}=\bar{\theta}_{p}\right)$. The control history and loss function in figures 5.12 and 5.13 correspond to this transfer.

Control Angle History Using Velocity Control Only In The Guidence Fomulation
a.

See appendix D.

Tine (t)
Ficure 5.13
Velocity Loss Function Using Velocity Control Only In The Guidance Formulation

It is observed that the control ancle history does not have discontinuities as seen in ficures 5-0 ard 5-9 and is ayporirately linear in time. Although only the velocity control is used ($\theta_{p}=\bar{\theta}_{p}$), tine position boundary conditions $\left(\bar{r}_{f}\right)$ are aimost achieved for the transion.

The significince of the velocity cortrol option
is that it may be useful for leatiny powered raneuvers durinc which position control $\left(\bar{r}_{\hat{r}}\right)$ is not required. It is, therefore, an alternate procedure wich could bc used in place of cross product of inpulsive cuidance procecures.

Chapter 6

EXTENSIONS

The guidance solution to the orbital transfer problem has solved for only five components of position and velocity $\left(X_{f}, Y_{f}, \dot{X}_{\hat{f}}, \dot{Y}_{\hat{I}}\right.$, and $\left.\dot{Z}_{\dot{f}}\right)$.

Figure 6.1
Control Angle
Coordinate System

Figure 6.2
Final State Components For Orbit Change

The general solution to this problem requires control of all six components of state; however, explicit control of all these variables has not been implemented in the framework of a parameterized control law. If the Z component of position is not free, then the optimél control (as established previously) is of a bilinear tangent form, $\tan \theta=\psi+\beta t$. Under

$$
\xi+\eta t
$$

appropriate conditions (relatively small control angles) this form of control may be expressed as $\theta=\underline{\psi+\beta 亡}$ and may be

$$
\xi+\eta t
$$

expanded to $\theta=\psi^{*}+\xi^{*} t+\eta^{*} t^{2}$. Subsequent evaluation of the
parameters in this quadratic control law will yield a solution which controls all final components of state. The following formulation will be concerned with the explicit solution of these control parameters (ψ, ξ, and η). (Irumerical simulation of this formulation is not within the scope of this paper but may be implemented in the future.)

Explicit evaluation of the control parameters is possible if the following approximations are made.

$$
\begin{align*}
& \tan \theta_{p} \approx \theta_{p} \approx\left(\bar{\theta}_{p}-k_{1}\right)+k_{2} t+k_{5} t^{2} \tag{S}\\
& \tan \theta_{y} \approx \theta_{y} \approx\left(\bar{\theta}_{y}-k_{3}\right)+k_{4} t \tag{6-2}\\
& \sin \left(-k_{1}+k_{2} t+k_{5} t^{2}\right) \approx-k_{1}+k_{2} t+k_{5} t^{2} \tag{6-3}\\
& \cos \left(-k_{1}+k_{2} t+k_{5} t^{2}\right) \approx 1.0 \tag{6-4}\\
& \sin \left(-k_{3}+k_{4} t\right) \approx-k_{3}+k_{4} t \tag{6-5}\\
& \cos \left(-k_{3}+k_{4} t\right) \approx 1.0 \tag{6-6}
\end{align*}
$$

The control parameters can no: be introduced into the dynamical equations and integrated as before. Since the control for θ_{y} has not, changed, the y dynamical equation will not be reintroduced.

$$
\begin{align*}
& \ddot{X}=a \cos \theta_{y} \sin \theta_{p}-\sigma_{X} \tag{6-7}\\
& \dot{Z}^{-}=a \cos \theta_{y} \cos \theta_{p}-\sigma_{Z} \tag{6-8}
\end{align*}
$$

$$
\begin{align*}
& \dot{X}_{f}=\dot{X}+\int_{t_{0}}^{t_{\hat{I}}} a \cos \theta_{y} \sin \theta_{p} d t-\int_{t_{0}}^{t_{f}} E_{X} d t \tag{6-9}\\
& \dot{Z}_{f}=\dot{Z}+\int_{t_{0}}^{t_{f}} a \cos \theta_{y} \cos \theta_{p} d t-\int_{t_{0}}^{t_{\hat{I}}} s_{z} d t \tag{6-10}
\end{align*}
$$

The following trigonometric substitutions ane made to introduce the control constants $\bar{\theta}_{p}, \bar{\theta}_{y}, k, k_{2}, k_{3}, k_{4}$, and z_{5}.

$$
\begin{align*}
& \sin \theta_{\mathrm{p}} \approx \sin \bar{\theta}_{\mathrm{p}}+\cos \bar{\theta}_{p}\left(-x_{1}+k_{2} t+k_{5} t^{2}\right) \tag{6-11}\\
& \sin \theta_{y} \approx \sin \bar{\theta}_{y}+\cos \bar{\theta}_{y}\left(-k_{1}+k_{2} t\right) \tag{6-12}\\
& \cos \theta_{p} \approx \cos \bar{\theta}_{\mathrm{p}} \tag{6-13}\\
& \dot{X}_{\hat{f}}=\dot{X}+\int_{t_{0}}^{t_{\hat{I}}} a \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}+\cos \bar{\theta}_{p}\left(-\bar{k}_{I}+\right.\right. \\
& \left.\left.x_{2} t+x_{5} t^{2}\right)\right) d t-\int_{t_{0}}^{t_{f}} \delta_{x} d t \tag{6-14}\\
& \dot{z}_{f}=\dot{z}+\int_{t_{0}}^{t_{f}} a \cos \bar{\theta}_{y}\left(\cos \bar{\theta}_{p}-\sin \bar{\theta}_{D}\left(-\dot{x}_{I}+\right.\right. \\
& \left.\left.k_{2} t+k_{5} t^{2}\right)\right) d t-\int_{t_{0}}^{t_{f}} s_{z} d t \tag{6-15}
\end{align*}
$$

This integration is now extended to multiple performance periods.

$$
\begin{align*}
& \dot{X}_{f}=\dot{X}+\int_{0}^{a_{1}} a_{1} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{\underline{p}}-k_{I} \cos \bar{\theta}_{p}\right) d t \\
& +\int_{0}^{\theta_{1}} a_{1}=2 t \cos \bar{\theta}_{y} \cos \bar{\theta}_{\underline{p}} d t+ \\
& \int_{0}^{\mathrm{T}_{I}}{a_{1} x_{5} t^{2}}^{\cos \bar{\theta}_{y} \cos \bar{\theta}_{y} d t} \\
& +\int_{0}^{T_{2}} a_{2} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-k_{I} \cos \bar{\theta}_{p}\right) d t \\
& \div \int_{0}^{T_{2}} a_{2} z_{2} t \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t+ \\
& \int_{0}^{T} 2 a_{2} x_{5} t^{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t \\
& +\int_{0}^{T_{2}} a_{2} k_{2}\left(T_{1}+T_{c}\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t \\
& +\int_{0}^{T_{2}} a_{2} k_{5}\left(T_{1}+T_{c}\right)^{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t- \\
& \int_{0}^{T_{1}+T_{c}+T_{2}} S_{X} d t \tag{6-16}\\
& \dot{z}_{f}=\dot{z}+\int_{0}^{m} \bar{\varepsilon}_{1} \cos \bar{\theta}_{y}\left(\cos \bar{\theta}_{\underline{p}}+{k_{1}}^{1} \sin \bar{\theta}_{\underline{p}}\right) d t \\
& -\int_{0}^{T_{1}} a_{1} z_{2} t \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t- \\
& -\int_{0}^{T_{1}} \bar{a}_{1} x_{5} t^{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t \\
& -\int_{0}^{r_{2}} a_{2} \operatorname{Lr}_{2} t \quad \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t- \\
& -\int_{0}^{\Gamma_{2}} a_{2} \frac{1-}{} j^{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t
\end{align*}
$$

$$
\begin{align*}
& -\int_{0}^{T_{2}} a_{2} I_{2}\left(T_{1}+T_{c}\right) \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t- \\
& \int_{0}^{T_{2}} a_{2} k_{y}\left(T_{1}+T_{c}\right)^{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{0} d t \\
& +\int_{0}^{T_{2}} a_{2} \cos \bar{\theta}_{y}\left(\cos \bar{\theta}_{p}+k_{I} \sin \bar{\theta}_{p}\right) d t \\
& -\int_{0}^{T_{1}+T_{c}+T_{2}} \delta_{z} d t \tag{6-17}
\end{align*}
$$

Integral values as derived in Appendix P are now substituted into these expressions.

$$
\begin{align*}
& \dot{X}_{\mathrm{I}}=\dot{\mathrm{X}}+\mathrm{V}_{e \mathrm{x}_{I}} \mathrm{I}_{I} \cos \bar{\theta}_{\mathrm{y}}\left(\sin \bar{\theta}_{\mathrm{p}}-\mathrm{k}_{I} \cos \bar{\theta}_{\mathrm{p}}\right) \\
& +\underline{r}_{2} J_{I} \cos \bar{\theta}_{y} \cos \bar{\theta}_{\underline{p}}+k_{5} P_{I} \cos \bar{\theta}_{y} \cos \bar{\theta}_{\underline{p}} \\
& +V_{e X_{2}} I_{2} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-\Sigma_{1} \cos \bar{\theta}_{p}\right) \\
& +k_{2} J_{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p}+k_{5} P_{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} \\
& +k_{2} V_{e x_{2}} I_{2}\left(T_{I}+T_{c}\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{p}+ \\
& \mathrm{V}_{5} \mathrm{~V}_{\mathrm{ex}}^{2} \mathrm{~L} L_{2}\left(\mathrm{~T}_{1}+\mathrm{T}_{\mathrm{c}}\right)^{2} \cos \bar{\theta}_{\mathrm{y}} \cos \bar{\theta}_{\mathrm{p}}- \\
& S_{X}\left(T_{1}+T_{c}+T_{2}\right)^{2} / 2 \tag{6-10}\\
& \dot{Z}_{\hat{I}}=\dot{Z}+V_{\mathrm{ex}_{I}} \mathrm{I}_{I} \cos \bar{\theta}_{V}\left(\cos \bar{\theta}_{\underline{p}}+k_{I} \sin \bar{\theta}_{\underline{p}}\right) \\
& -k_{2} \tilde{u}_{I} \cos \bar{\theta}_{y} \sin \bar{\theta}_{\underline{p}}-k_{5} p_{I} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p}
\end{align*}
$$

$$
\begin{align*}
& -x_{2} J_{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{y}-k_{5} p_{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} \\
& -\mathrm{S}_{2} \mathrm{~V}_{\mathrm{ex}}^{2} \mid I_{2}\left(\mathrm{~m}_{\mathrm{I}}+\mathrm{T}_{\mathrm{c}}\right) \cos \bar{\theta}_{\mathrm{y}} \sin \bar{\theta}_{\mathrm{p}} \\
& -K_{5} V_{C x_{2}} L_{2}\left(T_{I}+T_{c}\right)^{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} \\
& +V_{e x} L_{2} \cos \bar{\theta}_{y}\left(\cos \bar{\theta}_{2}+k_{I} \sin \bar{\theta}_{\underline{p}}\right) \\
& -G_{z}\left(T_{1}+T_{c}+T_{2}\right) \tag{6-19}
\end{align*}
$$

If the condition $\dot{\bar{X}}_{\hat{f}}-\dot{X}_{\hat{i}}=0$ is enforced, the quadratic control lair will achieve the desired velocity, \dot{X}_{f}. The velocity equation for $\dot{\bar{X}}_{\mathrm{f}}$ has been show previously (squation 4-36) and does not change.

$$
\begin{align*}
& \dot{\bar{X}}_{\bar{I}}=\dot{X}+V_{\mathrm{CX}_{I}} I_{I} \cos \bar{\theta}_{y} \sin \bar{\theta}_{\underline{Y}}+ \\
& V_{e y_{2}} I_{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p}-\hat{e}_{x}\left(\bar{m}_{I}+I_{c}+\underline{m}_{2}\right) \tag{6-20}
\end{align*}
$$

Enforcing this velocity condition yields the following equation in terms of the control parameters k_{1}, k_{2}, and r_{5} 。

$$
\begin{align*}
0= & x_{I}\left(V_{e x_{I}} I_{I}+V_{e x_{2}} I_{2}\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{\mathrm{p}} \\
& +v_{2}\left(-J_{I}-J_{2}-V_{e x_{2}} I_{2}\left(\mathbb{R}_{I}+T_{u}\right)\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{\mathrm{p}} \\
& +x_{5}\left(-P_{I}-P_{2}-V_{e x_{2}} I_{2}\left(T_{I}+T_{c}\right)^{2}\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{\mathrm{P}} \tag{6-21}
\end{align*}
$$

$$
\begin{equation*}
0=-A_{\underline{p}} k_{1}+B_{\underline{p}} k_{2}+F_{\underline{p}}^{k_{5}} \tag{6-22}
\end{equation*}
$$

Ecuations ($6-7$) anc ($6-0$) wust now be intajrated a second tine to yield two more ecuations irvolvirs k_{1}, k_{2}, and k_{j}.

$$
\begin{aligned}
& X_{f}=X+\int_{0}^{r_{1}+{ }_{-m}+m_{2}} \dot{X} d t+ \\
& \int_{0}^{\mathrm{m}_{1}} \int_{0}^{\mathrm{I}_{1}} \mathrm{a}_{1} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-\mathrm{k}_{1} \cos \bar{\theta}_{\underline{p}}\right) d t^{2} \\
& \int_{0}^{\mathrm{T}_{1}} \int_{0}^{\mathrm{T}_{1}} a_{1} k_{2} t \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t^{2}+ \\
& \int_{0}^{T_{1}} \int_{0}^{\mathrm{T}_{1}} a_{1} k_{5} t^{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d i^{2}+ \\
& \int_{0}^{T_{2}} \int_{0}^{\bar{I}_{2}} a_{2} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-\bar{k}_{1} \cos \bar{\theta}_{p}\right) a^{2} t^{2}+
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\mathbb{T}_{2}} \int_{0}^{\mathrm{T}_{2}} \varepsilon_{2} \tan _{5} t^{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} \dot{a}^{2} \div \\
& \left(a_{c}+T_{2}\right) \int_{0}^{\Gamma_{1}} a_{1} \cos \bar{\theta}_{y}\left(\sin \bar{\theta}_{p}-\operatorname{ran}_{1} \cos \bar{\theta}_{p}\right) d t \text {. } \\
& \left(\underline{I}_{2}+T_{c}\right) \int_{0}^{I_{1}} s_{I} \bar{I}_{2} t \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} d t+ \\
& \left(T_{2}+T_{c}\right) \int_{0}^{T_{1}} a_{1}:_{-} t^{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{\underline{p}} d t
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{T_{2}} \int_{0}^{T_{2}} a_{2} \bar{r}_{2}\left(\bar{m}_{1}+m_{c}\right) \cos \bar{\theta}_{y} \cos \bar{\theta}_{2} \bar{\alpha} t^{2}+ \\
& \int_{0}^{m_{2}} \int_{0}^{T_{2}} a_{2} z_{5}\left(M_{1}+a_{c}\right)^{2} c \cdot \bar{\theta}_{y} \cos \bar{\theta}_{p} \bar{a}^{2}- \\
& \iint_{0}^{T_{1}+T_{c}+T_{2}} \bar{o}_{x} d t^{2} \\
& Z_{f}=Z \div \int_{0}^{T_{I}+T_{c}+T_{2}} \dot{Z} \dot{d} t+ \\
& \int_{0}^{\mathrm{T}} \int_{0}^{\mathrm{T}_{I}} \alpha_{I} \cos \bar{\theta}_{y}\left(\cos \bar{\theta}_{\underline{D}}+{x_{I}} \sin \bar{\theta}_{p}\right) d t^{2}-
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi_{I}} \int_{0}^{\lambda_{1}} a_{I} \bar{n}_{5} t^{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{D} d t+ \\
& \int_{0}^{m_{2}} \int_{0}^{\mathrm{T}_{2}} a_{2} \cos \bar{\theta}_{y}\left(\cos \bar{\theta}_{p}+\operatorname{con}_{1} \sin \bar{\theta}_{p}\right) d_{i}^{2}- \\
& \int_{0}^{T_{2}} \int_{0}^{T_{2}} a_{2} \dot{a}_{2} t \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t^{2}- \\
& \int_{0}^{m_{2}} \int_{0}^{T_{2}} a_{2} \operatorname{rin}_{5}^{t^{2}} \cos \bar{\theta}_{y} \sin \bar{\theta}_{0} d t^{2}+ \\
& \left(T_{c}+I_{2}\right) \int_{0}^{T_{I}} a_{1} \cos \bar{\theta}_{y}\left(\cos \bar{\theta}_{p}+\operatorname{ran}_{I} \sin \bar{\theta}_{y}\right) d t-
\end{aligned}
$$

$$
\begin{aligned}
& \left(a_{2}+T_{c}\right) \int_{0}^{\square_{1}} a_{1} k_{2} t \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t- \\
& \left(a_{2} a_{c}\right) \int_{0}^{T_{1}} a_{1} \varepsilon_{j} t^{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{y} d t- \\
& \int_{0}^{T_{2}} \int_{0}^{T_{2}} \bar{a}_{2} z_{2}\left(T_{1}+T_{c}\right) \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t^{2}- \\
& \int_{0}^{T_{2}} \int_{0}^{I_{2}} \theta_{2} \operatorname{s}_{5}\left(T_{1}+T_{c}\right)^{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p} d t^{2} \\
& \int_{0}^{T_{1}+T} \int_{0}^{+T_{2}} e_{3} d t^{2} \\
& (5-24) \\
& X_{f}=X+\dot{X}\left(T_{1}+T_{c}+P_{2}\right)-s_{1} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p}+ \\
& S_{I} \bar{k}_{I} \cos \bar{\theta}_{Y} \cos \bar{\theta}_{Y}-\varepsilon_{I I} k_{Z} \cos \bar{\theta}_{Y} \cos \bar{\theta}_{p}- \\
& U_{1} k_{5} \cos \bar{\theta}_{Y} \cos \bar{\theta}_{2}-S_{2}^{0} \cos \bar{\theta}_{y} \sin \bar{\theta}_{D}+ \\
& \hat{\sigma}_{2}^{p} z_{1} \cos \bar{\theta}_{Y} \cos \bar{\theta}_{p}-\sigma_{2} z_{z} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p}- \\
& U_{2}^{\prime} \bar{Z}_{5} \cos \bar{\theta}_{y} \cos \bar{\theta}_{2}+\left(T_{C}+T_{2}\right) V_{e x_{I}} I_{I} \cos \bar{\theta}_{y} \sin \bar{\theta}_{D} \\
& -\left(I_{C}+I_{2}\right) V_{e x} I_{I} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p}+ \\
& \left(T_{c}+I_{2}\right) J_{1} I_{2} \cos \bar{\theta}_{y} \cos \bar{\theta}_{2}- \\
& \left(T_{c}+T_{2}\right) P_{I} k_{5} \cos \bar{\theta}_{y} \cos \bar{\theta}_{\underline{Q}}-
\end{aligned}
$$

$$
\begin{align*}
& \left(M_{1}+T_{c}\right) s_{2}^{1} x_{2} \cos \bar{\theta}_{y} \cos \vec{\theta}_{2}- \\
& \left(T_{I}+T_{c}\right)^{2} S_{i} \operatorname{I}_{j} \cos \bar{\theta}_{y} \cos \bar{\theta}_{p} \\
& s_{x}\left(I_{1}+m_{c}+n_{2}\right)^{2 / 2} \tag{6-25}\\
& Z_{f}=Z+\dot{\overline{3}}\left(T_{1}+T_{c} \cdot \dot{T}_{2}\right)-S_{1}^{1} \cos \bar{\theta}_{y} \cos \bar{\theta}_{\underline{2}}- \\
& S_{1} k_{I} \cos \bar{\theta}_{y} \sin \bar{\theta}_{y}+\hat{k}_{y} k_{z} \cos \bar{\theta}_{y} \sin \bar{\theta}_{y}+ \\
& U_{i}^{\prime} \underline{r}_{5} \cos \bar{\theta}_{y} \sin \bar{\theta}_{\underline{p}}-S_{2}^{i} \cos \bar{\theta}_{y} \cos \bar{\theta}_{\mathrm{p}}-
\end{align*}
$$

$$
\begin{aligned}
& \ddot{\because}_{2} \ddot{z}_{5} \cos \bar{\theta}_{y} \sin \bar{\theta}_{P}+ \\
& \left(I_{c}+\mathrm{T}_{2}\right) V_{\mathrm{CH}_{1}} I_{I} \cos \bar{\theta}_{\mathrm{y}} \cos \bar{\theta}_{\mathrm{y}}+ \\
& \left(T_{c}+T_{2}\right) V_{C I_{1}} I_{1} \operatorname{In}_{1} \cos \bar{\theta}_{y} \sin \bar{\theta}_{p}- \\
& \left(T_{c}+m_{2}\right) \bar{u}_{1} \bar{z}_{2} \cos \bar{\theta}_{y} \sin \bar{\theta}_{2} \div \\
& \left(m_{c}+T_{2}\right) P_{I} \bar{i}_{j} \cos \bar{\theta}_{y} \sin \bar{\theta}_{\mathrm{p}} \div \\
& \left(T_{1}+T_{c}\right) S_{:}!k_{2} \cos \bar{\theta}_{V} \sin \bar{\theta}_{D}+ \\
& \left(I_{2}+T_{C}\right)^{2} \sin _{2}{\underset{F}{5}} \cos \bar{\theta}_{y} \sin \bar{\theta}_{0}- \\
& \bar{z}_{z}\left(I_{1}+T_{c}+m_{2}\right)^{2} / 2
\end{aligned}
$$

$$
(6-27)
$$

It is observed at this point that equations ($6-27$) and ($6-20$) ane not independent sun cannot, thenofore, be solved
 ray be possible, however, if the effect of k_{5} upon equation (6-27) is ascuacd sal. This assumption appears to be justified for small desired chances in Ie the result of of titis assumption is equation (E-29).

$$
x_{i}=O_{0} x_{1}-D_{1} x_{2}+Z_{D}^{0} \quad(0-29)
$$

Equations $(4-47),(4-17),(5-22),(6-26)$, and ($6-20$) way no: be solved simultaneously $20=k_{1}, \operatorname{ran}_{2}, \ln _{4}$, and : $_{5}$

$$
\begin{align*}
& X_{f}=C_{p} A_{2}-D_{D} A_{2}-G_{p} \therefore_{5}+D_{D} \\
& Z_{1}=-C_{n} \operatorname{lon}_{1} \tan \bar{\theta}_{p}+D_{p} i_{2} \tan \bar{\theta}_{p}+ \\
& G_{D} \operatorname{in}_{5} \tan \bar{\theta}_{D}+\therefore \therefore_{2} \tag{E-23}
\end{align*}
$$

$$
\begin{aligned}
& \text { Chaptor } 7
\end{aligned}
$$

Chapters 1 throu*i- 4 nave Gevoloped the theory for a spacecnaft guidance and control systen basod uan principlos of optimization theory. Chapter 5 illustrates some numerical results frow the implementation of this theory and chapter 6 extends the guidance equations to control all final state variables. Sone specific conclusions and reconaendations may now be reached concerning the devologent in theae precodine chapters.

As illustrated ̇n chaŋtur l, most guidance formulations which exist in clos 2 forn experience problens with lons burn asce. Those problc:os result since, to achieve a closed fon solution, sone assumption must be made concerninc oravity. The fommatation introduced in this thanis mares the assurntion that $\nabla \overline{0}=0$ and, consequantly, has corvercence difficulties with lons bum $\operatorname{arcs}(\nabla \bar{E}=0$ is certainly not twue for lons burin arcs). Low thrust maneuvers introduce similar convorsence problens because the sravity acceleration becores lerje relative to the thrust acceleration. The developrent oi the burn arc piecing procedure in appcaciz D is intended to circumvent these convergence problens.

Clazter 5 illustrates a suazrical coupanison on the ouidance solution and an extronized solution to a low thrust transerer raneuver. It is roted that the guidance formulation could not be rede to corvon ee with a sinjie blian arc; rowever, the burn arc piccira proceduro (iith tio burn arc pieces) was usod and the solution to the problem obtained. The boundary conditions for the transfer Were met accurately. A conparison of the burn times for the two solutions shows that the guidance solution is relatively efficient. The only difficulty with the piecing procedure appears to be discontinuities that occur at terminal points of each burn anc riece. While some eficiciency seems to be sacrificed as a result of these discontinuities, they do not constitute a major problem. Sone additional work on the piocing procedure may eliminate these discontinuities.

The burn arc piecine procedure was also used with five burn anc pieces durinf which only a velocity control ($\bar{\theta}_{\underline{p}}$) was used. The velocity boundary conditions were achieved precisely and in this case no discontinuities were observed. Whe burn time is also very close to that of the extrenized solution. This velocity control procedure should provide $: .$. uch better results than tho cross product and impulsive fomulations since it hes a much widen rance of applicabiliť (larser bura arcs).

Althoush execution time hes not been an explicit
part of the guidance evaluation, some analysis can be made. The guidance formulation is analytic and closed form and, therefore, one would suspect very fast. Erecution time on the Univac 1108 computer has been of the order . 01 seconds per guidance evaluation. It is obvious, thererore, that this guidance formulation could be eaully impleanted by a digital flight computer.

In conclusion, the guidance formulation in conjunction with the piecing procedure seems to work reasonably well and the piecing procedure appears to be an adequate means of evaluating eravity over lons burn arcs. This procedure should also wonk for burn arcs much larcor than the example problem and should have applicability to a large class of orbital transier proble:ns. The guidence formulation presented in this thesis should, therefore, have applicability to a wide rance of orbital transier problens. As a result of the analysis concluded in this thesis, further study can be recommended. Implementation of the results in chapter 6 (Extensions) and extension of the piecing procedure to out-of-plane maneuvers (θ y concerns the out-of-plane control) would seem worthwhile.

Appendix A

THE ADJOINT METHOD

The following derivation shows the complete solution of the optimal orbital transfer problem by the adjoint method. Since the intent has been to solve this problem explicitly the solution here is primarily tutorial in nature.

The dynamical equations are repeated here where only the planar case is considered.

Figure A. 1
Orbit Transfer For The Planar Case

$$
\begin{equation*}
\dot{\mathrm{U}}=\mathrm{a} \sin \theta_{\mathrm{p}}-\frac{\delta_{0} r_{0}^{2} \mathrm{Y}_{2}}{\left(\sqrt{\left.\mathrm{X}^{2}+2^{2}\right)^{3}}\right.} \tag{A-I}
\end{equation*}
$$

$$
\begin{equation*}
\dot{W}=a \cos \theta_{p}-g_{0} r_{0}^{2} \tag{A-2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\sqrt{x^{2}+z^{2}}\right)^{3} \tag{A-3}
\end{equation*}
$$

$\dot{X}=U$
$\dot{\mathrm{z}}=:$

The Hamiltonion and necessary conditions are also repeated.

$$
\begin{align*}
& H=1+\lambda_{1} U+\lambda_{3} W+\lambda_{4}\left(a \sin \theta_{D}-\frac{o_{0} r_{0}^{2} X}{\left(\sqrt{x^{2}+2^{2}}\right)^{3}}\right) \\
& +\lambda_{6}\left(\begin{array}{r}
\left.a \cos \theta_{p}-\frac{-0^{2} 0^{2}}{\left(\sqrt[4]{x^{2}+z^{2}}\right)^{3}}\right) \\
\end{array}\right) \tag{A-5}\\
& i_{I}=-H_{X}=\lambda_{4} g_{0} r_{0}^{2}\left(\frac{\left(\mathrm{Y}^{2}+I^{2}\right) 3 / 2}{\left(X^{2}+z^{2}\right)^{6 / 2}}-\right. \\
& \left.\frac{x(3 / 2)\left(x^{2}+7^{2}\right)^{1 / 2}(2 x)}{\left(x^{2}+z^{2}\right)^{6 / 2}}\right)+ \\
& \lambda_{6} g_{0} r_{0}^{2}\left(\frac{-z(3 / 2)\left(x^{2}+z^{2}\right)^{1 / 2}(2 x)}{\left(x^{2}+z^{2}\right)^{6 / 2}}\right) \tag{A-6}\\
& \dot{\lambda}_{1}=\lambda_{4} 5_{0} r_{0}^{2}\left(\frac{1}{\left(\sqrt{x^{2}+z^{2}}\right)^{3}}\right)^{-\lambda_{4} \operatorname{E}_{0} r_{0}^{2}\left(\frac{3 x^{2}}{\left(\sqrt{x^{2}+z^{2}}\right)^{5}}\right)} \\
& -\lambda_{6} g_{0} r_{0}^{2}\left(\frac{3 y z}{\left(\sqrt{x^{2}+z^{2}}\right)^{5}}\right) \tag{A-7}\\
& i_{I}=5_{0} r_{0}^{2}\left(\frac{-3 \lambda_{5} x Z-3 \lambda_{4} x^{2}}{\left(\sqrt{x^{2}+z^{2}}\right)^{5}}+\frac{\lambda_{1_{1}}}{\left(\sqrt[8]{x^{2}+z^{2}}\right)^{3}}\right)(A-8) \\
& \dot{\lambda}_{3}=-H_{z}=\lambda_{4} \operatorname{Con}_{0} r_{0}^{2}\left(\frac{-Y(3 / 2)\left(Y^{2}+T_{1}^{2}\right)^{1 / 2}(2 Z)}{\left(X^{2}+3^{2}\right)^{6 / 2}}\right)
\end{align*}
$$

$$
\begin{aligned}
& +\lambda_{6} g_{0} r_{0}^{2}\left(\frac{\left(x^{2}+z^{2}\right)^{3 / 2}-z(3 / 2)\left(x^{2}+z^{2}\right)^{1 / 2}(23)}{\left(x^{2}+2^{2}\right)^{6 / 2}}\right) \\
& \dot{i}_{3}=g_{0} r_{0}^{2}\left(\frac{-3-9)}{\left.\frac{3 \lambda_{6} z^{2}-3 \lambda_{1}, x}{\left(\sqrt{x^{2}+z^{2}}\right)^{5}}+\frac{\lambda_{6}}{\left(\sqrt{x^{2}+z^{2}}\right)^{3}}\right)}(A-10)\right.
\end{aligned}
$$

$$
\begin{equation*}
\dot{i}_{4}=-H_{u}=-\lambda_{I} \quad \text { or } \quad \dot{\lambda}_{4}+\lambda_{I}=0 \tag{A-11}
\end{equation*}
$$

$$
\begin{equation*}
\dot{i}_{6}=-H_{w}=-\lambda_{3} \quad \text { or } \quad i_{6}+\lambda_{3}=0 \tag{A-12}
\end{equation*}
$$

$$
\begin{equation*}
H_{\theta_{\mathrm{p}}}=0=a \lambda_{4} \cos \theta_{\mathrm{p}}-a \lambda_{6} \sin \theta_{\mathrm{p}} \tag{A-13}
\end{equation*}
$$

or $\tan \theta_{p}=\frac{\lambda_{4}}{\lambda_{6}}$

These equations may be combined to fora five differential equations in five untnoms. ${ }^{a}$

$$
\begin{align*}
& \ddot{\mathrm{X}}=a \sin \theta_{\mathrm{p}}-\frac{\varepsilon_{0} r_{0}^{2} y}{\left(\sqrt{x^{2}+z^{2}}\right)^{3}} \tag{A-14}\\
& \ddot{z}=a \cos \theta_{p}-\frac{s_{0} r_{0}^{2}}{\left(\sqrt{x^{2}+z^{2}}\right)^{3}}
\end{align*}
$$

$\tan \theta_{p}=\frac{\lambda_{\mu}}{\lambda_{6}}$
a
These five second order differential equations are formed from the ten first order differential equations.

$$
\begin{align*}
& \ddot{i}_{4}=5_{0} r_{0}^{2}\left(\frac{-3 \lambda_{c} x-3 \lambda_{1} x^{2}}{\left(\sqrt{\left.x^{2}+z^{2}\right)^{5}}\right.}+\frac{\lambda_{4}}{\left(\sqrt[4]{x^{2}+z^{2}}\right)^{3}}\right) \tag{A-17}\\
& \ddot{i}_{6}=g_{0} r_{0}^{2}\left(\frac{-3 \lambda_{6} z^{2}-3 \lambda_{1} x z}{\left(\sqrt{y^{2}+z^{2}}\right)^{5}}+\frac{\lambda_{6}}{\left(\sqrt{x^{2}+z^{2}}\right)^{3}}\right) \tag{A-18}
\end{align*}
$$

The set of five equations (\therefore-I4 trrough A-IE) can be solved numerically to define a time minimizing trajectory and meet the prescribed final conditions. It is observed that a set of four initial conditions rust be found to solve this problem. These initial conditions are the initial values associated with the Lasrance multipliers, $\lambda_{4}\left(t_{0}\right), i_{4}\left(t_{0}\right), \lambda_{6}\left(t_{0}\right)$, $\dot{i}_{6}\left(t_{0}\right)$, and must be inown in ordom to \cdots eet the prescribed final conditions. The final coiditions for tris trajectory are corpletely specified by altitucic, velocity, flicht path angle, and range (h, v, γ, ϕ) and if all these quantities are specified a unique set of values ewist for the jnitial Lagrange multipliers values to solve the proble... If however, fewer than these four final conditions are specified (such as h, v, γ) then these initial values are not unique and a further minimization problem can be done to select the optinum range. An equation can be introduced which relates the Lagrange multipliers and state viriables at the torminal time and this equation implicitly selectis tiee optimun range. This equation is known as a transversality equation and is illustrated below for the range free case (equation A-31).

It is noted that one transvorsality equation is introduced for every free final condition.

The transversality equation con be derived from the determinant of the following :matrix of partial derivatives.

\author{

- Initial Time
 £ Final Time
}

$$
\begin{align*}
& \text { Where } \\
& M_{I}=H_{0}=I+\lambda_{I O} U+\lambda_{30} \%+\lambda_{40}\left(a \sin \theta_{p}-\right. \\
& \left.\frac{\operatorname{s}_{0} r_{0}^{2} X^{2}}{\left(\sqrt[4]{x^{2}+z^{2}}\right)^{3}}\right)^{+\lambda_{60}}\binom{a \cos \theta_{p}-\varepsilon_{0} r_{0}^{2}}{\left(\sqrt{x^{2}+2^{2}}\right)^{3}}
\end{align*}
$$

$$
\begin{align*}
& \left.M_{2}=\frac{\partial H}{\partial \dot{X}}\right)_{0}=\lambda_{10} \\
& \text { (A-20) } \\
& \left.M_{3}=\frac{\partial \dot{H}}{\partial \dot{Z}}\right)_{0}=\lambda_{30} \\
& \left.M_{4}=\frac{\partial H}{\partial \dot{U}}\right)_{0}=\lambda_{40} \\
& \left.M_{5}=\frac{\partial H}{\partial \dot{W}}\right)_{0}=\lambda_{60} \\
& \left.M_{\sigma}=\frac{\partial H_{H}}{\partial \dot{\theta}_{p}}\right)_{0}=0 \\
& M_{7}=H_{f}=1+\lambda_{1 f} \Psi+\lambda_{j f} W+\lambda_{4 f} \quad\left(a \sin \theta_{\underline{p}}-\right. \\
& \left.\frac{5_{0} r_{0}^{2}}{\left(\sqrt{x^{2}+z^{2}}\right)^{3}}\right)^{\lambda_{5 i}}\left(\begin{array}{r}
a \cos \theta_{p}-\frac{\ddot{0}_{0} r_{0}^{2}}{\left(\sqrt{x_{0}^{2}+z^{2}}\right)^{3}}
\end{array}\right)(A-25) \\
& \left.M_{8}=\frac{\partial H}{\partial \dot{X}}\right)_{f}=\lambda_{I f} \tag{A-26}\\
& \left.M_{9}=\frac{\partial H}{\partial \dot{Z}}\right)_{f}=\lambda_{3 \hat{I}} \tag{A-27}\\
& \left.M_{10}=\frac{\partial H}{\partial \dot{U}}\right)_{\hat{I}}=\lambda_{4 \hat{I}} \tag{A-28}\\
& \left.M_{I I}=\frac{\partial H}{\partial \dot{W}}\right)_{f}=\lambda_{\sigma f} \tag{A-29}
\end{align*}
$$

$$
\left.M_{12}=\frac{\partial H}{\partial \theta_{p}}\right)_{f}=0
$$

Working through the aljebra and sottins the deterainant equal to 0 yields the equation ($A-31$).

$$
\begin{equation*}
\lambda_{4 f} \dot{z}_{\hat{i}}-\lambda_{6 \dot{I}} \dot{X}_{\hat{i}}+\lambda_{I \hat{E}} z_{\underline{i}}-\lambda_{\bar{j} \hat{I}} X_{\hat{i}}=0 \tag{A-31}
\end{equation*}
$$

Once the transversality equations ave been determined (if any), then the two point boundary value problom can be solved by iterating the initial values for the Lasrange multipliers until the boundary conditions and twansversality equations are satisfied.

$$
\begin{gathered}
\text { ADpendix B } \\
\text { DERIVATION OE A LOSS EUNOMIOR }
\end{gathered}
$$

For any powered flisht mancuvcr the difference between the earth relative velocity cained, V, and the characteristic velocity, $\lrcorner V$, srニit repacsents a measurable quantity which can be used to evaluate different trajectories. The relative velocity change cannot be achieved by an equal expenditure of characteristic velocity since retardins accelerations are present. It is of interest, therefore, to analyze the difference between these two velocities and to identify the source of the velocity loss.

Consider a rotating systca with one axis
instantaneously along the earth relativo velocity vector, \bar{V}, and another normal to this direction and in the plane of motion.

Figure B.I

Loss Function Coordinate System

The rotating system (for planar notion) moves at the rate $\dot{\theta}$ minus $\dot{\gamma}$ and the acceloration of a paッticle referenced to
this rotating system can be shown.

$$
\begin{align*}
& \bar{V}=V \bar{i} \tag{D-I}\\
& \dot{\bar{V}}=\dot{V} \bar{i}+\frac{\dot{\bar{i}}}{} \tag{B-2}\\
& \dot{\bar{V}}=\dot{\mathrm{V}} \bar{i}-\mathrm{V}(\dot{\theta}-\dot{y}) \bar{z} \tag{3-3}
\end{align*}
$$

where

$$
\dot{\bar{i}}=(\dot{\theta}-\dot{y}) \bar{j} \times \bar{i}
$$

The summation of accelerations in this system can then be equated to the kinematic acceleration to yield the equations of motion.

Figure E. 2
Loss Function Coordinate System
where
$\bar{D}=$ aras acceleration vector
$\bar{L}=$ lift acceleration vector
$\overline{\mathrm{E}}=$ gravitational acceleration vector
$\frac{\bar{F}}{n}=$ thrust acceleration vector
$\dot{\mathrm{V}}=\frac{\mathrm{F}}{\mathrm{m}} \cos \alpha-3 \sin \gamma-\frac{2}{\mathrm{n}}$

$$
\begin{equation*}
0=-\frac{F}{m} \sin +\tilde{E} \cos \gamma-\underset{I}{I}+V(\dot{\theta}-\dot{\gamma}) \tag{B-5}
\end{equation*}
$$

The first scalar equation represents the chon ce in velocity along the \bar{V} direction while the chan ja normal to this direction is $\mathrm{V}(\dot{\theta}-\dot{\gamma})$. $\dot{\theta}-\dot{y}$ represents the turning rate of the coordinate system and is wally vary seal for all powered maneuvers. This \dot{V} equation can be used to determine velocity losses when $V(\dot{\theta}-\dot{\gamma})$ is small.

Loss $=$ characteristic velocity - relative velocity
$\mathrm{L}=\int_{0}^{T} \frac{F}{\mathrm{~m}} d t-\int_{0}^{T}\left(\frac{\mathrm{E}}{\mathrm{I}} \cos \alpha-5 \sin y-\frac{D}{m}\right) d t$
$L \quad=\int_{0}^{T}\left(\frac{D}{\bar{Z}}(I-\cos \alpha)+E \sin y+\frac{D}{M}\right) d t$
and $\dot{L}=\frac{F}{M}(1-\cos \alpha)+5 \sin y-\frac{D}{M}$

This loss function can be used as a switching function (to determine engine on and off time) since it is a function of not only control during the maneuver, but of time to initiate the maneuver (ie., $L=\hat{o}\left(\gamma_{0} \gamma_{\hat{f}} \rho\right)$).

The components of the loss function ideally take the following form around periceater.

Figu:e 3.3

Loss Function

It is observed that a reduction of the loss function occurs when g sin $\gamma(v)$ beco: $:$ es nejative. Since this function becomes negative when y is nojative, a maneuver should be biased to the - y side of zariccntizo. The saine is true for a maneuver ceztered aroma apocenter except in this case the slope of $g \sin y$ is racaivivo. Thus one should not center a naneuver a aound pariccaic: on apocenter geometrically but bias these mancuvers to the negative γ side of the line of ajoinas. Since tine gravity loss function (6 sin γ) is idcally lincax, it serves to displace the loss, a (l-cos α), while ratainine the original form. Therefore, tie totill loss function during a transfer maneuver will tond to have the form, l-cos δ, and an approwimate $\mathfrak{y c t h o d}$ fow - winiaizine this
a

$$
\mathrm{D} / \mathrm{m} \text { is not prosent for cxo-atmospheric }
$$

function is to maxe it symatric around the midpoint of the burn arc.

Figure B.4
Loss Punction Porn

The loss function can be used as a switchins function (for single burn arcs) by inplementins such a procedure for minimizing the form, I-cos δ. Tho guidance piocedure discussed previously can solve in closed fown for values of this loss function and can thenefore minimize this function by insuring that $\dot{I}_{0}=\dot{I}_{\dot{I}}$.

$$
\begin{aligned}
& \text { Appendir C }
\end{aligned}
$$

The previous guidance equations have a strons dependence upon the gravity computation. For small burn arcs the magnitude and direction of the grevity vector do not change substantially, however, as the burn arc is increased both the magnitude and direction may change substantially. If however, a gravity computation can be introduced to yield "effective" gravity values the performance of the guidance equations can be impacved.

The following equations conjute values which estinate the effect of sravity over bung arcs. Ereprosents the average gravity mamitude, \hat{i}^{*}. is the cffective gravity direction, and ϕ is the central angle (or ranceancle).

Fisure C.l

Effective Gravity Coordinaie System

Assume that $\phi(t)$ can be approxinated by $\phi=\dot{\phi}_{\mathrm{m}} t+\frac{\dot{\phi} t}{2}(t-T)$. The first integrals for \dot{E}_{x}^{*} and $\dot{5}_{Z}^{*}$ follow.

$$
\begin{equation*}
g_{x}^{*}=\frac{1}{T} \int_{0}^{T} \cos \phi d t \quad E_{z}^{*}=\frac{1}{T} \int_{0}^{T} \sin \phi d t \tag{0-1}
\end{equation*}
$$

For small $\ddot{\phi}$

$$
\begin{align*}
& \sin \phi \simeq \sin \dot{\phi}_{m} t+\frac{I}{2} \ddot{\phi}^{t}(t-T) \cos \dot{\phi}_{D} t \tag{c-2}\\
& \cos \phi \simeq \cos \dot{\phi}_{\mathrm{m}} t-\frac{1}{2} \ddot{\dot{\phi}} 亡\left(t-\ldots, \sin \dot{\phi}_{\mathrm{m}} t\right. \\
& E_{z}^{*}=\frac{I}{T} \int_{0}^{T} \sin \phi d t=\frac{I}{T}\left(-\frac{I}{\dot{\phi}_{m}} \cos \dot{\phi}_{\mathrm{m}} t a \frac{I}{2} \dddot{\phi} T\left(\frac{t}{\dot{\phi}_{\mathrm{H}}} \sin \dot{\phi}_{\mathrm{m}} t\right.\right. \\
& \left.+\frac{1}{\dot{\phi}_{m}^{2}} \cos \dot{\phi}_{m} t\right)+\frac{1}{2} \dddot{\phi}^{(}\left(\frac{t^{2}}{\dot{\phi}_{\mathrm{m}}} \cdot \frac{2}{\dot{\phi}_{\mathrm{m}}^{3}}\right) \sin \dot{\phi}_{m} t+ \\
& \left.\left.\frac{2 t}{\dot{\phi}_{m}^{2}} \cos \dot{\phi}_{m} t\right)\right)_{0}^{T} \tag{c-4}\\
& =-\frac{I}{\dot{\phi} T}\left(\left(I-\frac{1}{2} \frac{\ddot{\phi} \cong)}{\phi_{\mathrm{Y}}} \cos \dot{\phi}_{\mathrm{m}} T+\frac{\ddot{\phi}}{\dot{\phi}_{\mathrm{m}}^{2}} \sin \dot{\phi}_{2} T-\right.\right. \\
& \left(1+\frac{1}{2} \frac{\ddot{\phi}_{T}}{\dot{\phi}_{m}^{\prime}}\right) \tag{c-5}
\end{align*}
$$

Substituting the icastities yiclec the following results

$$
\begin{align*}
& \cos \dot{\phi}_{m} t=1-2 \sin ^{2} \frac{\left(\dot{\phi}_{m} t\right)}{2} \tag{c-6}\\
& \sin \dot{\phi}_{m} t=2 \sin \frac{\dot{\phi}_{n} t}{2} \cos \frac{\dot{\phi}_{2} t}{2} \tag{c-7}
\end{align*}
$$

In a similar manner the other intocral may bo obtained.

$$
\begin{align*}
& S_{X}^{*}=\frac{I}{T} \int_{0}^{T} \cos \phi d t=\left(\left(I-\frac{J}{2} \frac{\ddot{\phi} T)}{\dot{\phi}_{i n}} \cos \frac{\dot{\phi} a^{T}}{2}+\right.\right. \\
& \left.\frac{\ddot{\phi}}{\dot{\phi}_{m}^{2}} \sin \frac{\dot{\phi}_{m}}{2}\right) \frac{\left.\sin \dot{\phi}_{m}^{m} 2\right)}{\left(\dot{\phi}_{m}^{m} / 2\right)} \tag{c-9}
\end{align*}
$$

The second integrals for $G_{X X}^{*}$ and $G_{z Z}^{*}$ follow in an analogous manner.

$$
\begin{align*}
& S_{z Z}^{*}=\frac{2}{\mathbb{T}^{2}} \iint_{0}^{T} \sin \phi d t=\frac{2}{\dot{\phi}_{2},}\left(1+\frac{\ddot{\phi}_{T}}{2 \dot{\phi}_{m}}-\right. \\
& \frac{\sin \left(\dot{\phi}_{\mathrm{m}}^{\mathrm{T}} 2\right.}{\left(\dot{\phi}_{2} \mathrm{~T} / 2\right)}\left(I-\frac{\left.\ddot{\phi}_{\mathrm{I}}\right)}{\dot{\phi}_{2}} \cos \frac{\dot{\phi}_{\mathrm{I}} \mathrm{~T}}{2} \div\right. \\
& \left.\frac{3 \ddot{\phi}}{\dot{\phi}_{\text {员 }}^{2}} \sin \left(\frac{\dot{\phi} T)}{2}\right)\right) \tag{0-10}
\end{align*}
$$

$$
\begin{align*}
& \frac{\sin \left(\dot{\phi}_{m} \Gamma / 2\right)}{\left(\dot{\phi}_{m} T / 2\right)}\left(I-\frac{\ddot{\phi} m)}{\dot{\phi}_{m}}\left(\sin \frac{\left.\dot{\phi}_{2} T\right)}{2}-\right.\right. \\
& \left.\left.\frac{3 \ddot{\phi}}{\dot{\phi}_{m}^{2}} \cos \frac{\dot{\phi}_{m} T}{2}\right)\right) \tag{C-11}
\end{align*}
$$

First and second gravity integrals ray no: be expressed and used as follows.

$$
\begin{align*}
& \int_{0}^{T} g_{X} d t=T\left(S \cdot S_{X}^{*}\right) \tag{C-12}\\
& \int_{0}^{T} E_{z} d t=T\left(\delta \cdot E_{z}^{*}\right) \tag{C-13}\\
& \iint_{0}^{T} g_{x} d t=\frac{m^{2}}{2}\left(\tilde{\delta} \cdot \tilde{S}_{X X}^{*}\right) \tag{C-14}\\
& \iint_{0}^{T} g_{z} d t=\frac{T^{2}}{2}\left(\tilde{S} \cdot \tilde{S}_{z Z}^{*}\right) \tag{c-15}
\end{align*}
$$

These equations provide a mans rovexprocsing gravity as a constant value both in macrituce and direction and may be used with the guidance carnations introduced in chapter 4.

Aphendix D
 AN ALGORIME EOP NURT－ARJ
 BOUNDERY COIDIMIOMS

As previously indicated，the cierived guidance
formulation will not work for la：ne burn arcs or relatively low－thrust maneuvers．The formiation，however，doos show very good results for small burn arcs and can be made to work under both large and small aics if̂ burn arc piecinf procedure is used．This is a proceduac by rinich a problem can be segmented into a series of sacil bung arcs．If such a procedure is used，however，one cannot de assured that the entire burn is near optims．Fine following alcorithm is formulated to select sets of interaeえiate boundany values such that a piecing procedure can be near optinal．

Figune D．I
Piecing Procedure

The general proceaure єarioyec ：：ill be to assune that the Lagrange … ここう＿Iiers（J）aine ziecomiso Iincan and
continuous. For instance, if the above mareuver is divided into two separate burn ares and the control function is desired to be continuous, then tho following equation is true (for the planar case only).

The term $\lambda_{6}(t)$ is constant $\left(\lambda_{\sigma_{C}}=\lambda_{\sigma}=\lambda_{\sigma_{\hat{F}}}\right.$), equal to $\frac{\partial \Phi}{\partial_{Z_{\tilde{f}}}}$
and is therefore proportional to the velocity required, $\Delta \dot{Z}=\dot{Z}_{f}-\dot{Z}-g_{Z}$ T. Therefore, $\dot{\lambda}_{\sigma_{\hat{I}}}$ can be zade equal to
(2) $\quad(1) \quad(2)$
$\lambda_{\sigma_{0}}$ if $\Delta \dot{Z}=\Delta \dot{Z}$. These two conditions then insure that
the control function and multipliers are continuous. An algorithm to successfully implenent this procedure follows.

a.

Ficure D. 2
Multi-Arc Alcorithm
a $T^{(1)}$ and $T^{(2)}$ are solved using the recursive equation in Appendix G.

Figure D. 2
continued

$$
\begin{gathered}
\text { Appendix } 2 \\
\text { DERIVATION OF AN OPTIMAL EORM OT COMTROL } \\
\text { UNDER CONDITIONS OF COTBTARC GRAVITY } \\
\text { AND CONSTANT TARUST ACCEIERATION }
\end{gathered}
$$

A derivation of the control equation for a constant gravity, constant mass flow rate guidance problem has been previously introduced. The assumptions made in this derivation were as follows.

1. No atmospheric forces are present
2. Gravity is constant or a fixed function of time
3. Vehicle mass flow rate is constant or a fixed function oit tire.

A variation of this problen is introduced if cne considers the effect of a constant thrust acceleration constraint upon the transfer problem. Consider the effect upon the control of a trajectory which consists of an unconstrained acceleration phase followed by a constant acceleration phase (which is implemented by throtiling the spacecraft engines). During the first trajectory phase both the vehicle flow rate and thrust are constants and the acceleration may be determined as follows.

$$
\begin{equation*}
a(t)=F /\left(m_{0}-\dot{r} t\right) \tag{E-1}
\end{equation*}
$$

The time at which the en sine throttles ray also be expressed where a_{r} is the acceleration Icvo- to bo maintained.

$$
\begin{equation*}
t_{T}=m_{0} \dot{m}-F / \dot{r_{a}} a_{n} \tag{J-2}
\end{equation*}
$$

After this time ($t_{T T}$) the vehicle engines are throttled to maintain the acceleration, $a_{n n}$, and the mas flow rate is some function of engine thrust.

$$
\begin{align*}
& F_{(t)}=a_{m} r(t) \tag{E-3}\\
& \dot{m}(t)=E(I(t)) \tag{3-4}\\
& \dot{m}(t)=X(m(t)) \tag{E-5}
\end{align*}
$$

The mass of the vehicle after t_{T} is therefore described by afirst order differential equation with initial condition $m\left(t_{T}\right)=F / a_{m}$. Since X and $\frac{\partial Y}{\partial m}$ can be assumed to be
continuous with respect to m and t then a unique solution $m^{*}(t)$ to equation $\mathbb{B}-5$ exists. The vehicle mass is then a fixed function of time described as follo::s.

$$
\begin{array}{ll}
m(t)=m_{0}-\dot{m} t & t \leq t_{m} \\
m(t)=m^{*}(t) & t>t_{\mathrm{I}} \tag{E-7}
\end{array}
$$

Since $F(t)$ is also a fixed füvtinn 0 tine the tinansfer problem containing constant accoloration pinses belonss to the class of problem for which the bilinemin tancent control law is optimal.

Appendix
 CLOSED FORM IMTER.IS FOP

THRUST ACCDIERETEA:

The thrust acceleration into orals for a spacecraft are developed for use in the guin ace formulation. Consider a spacecraft propelled by its rochet thrust in a vacuum.

Figure F.I
Rocket Systc:

Where

The acceleration equation results from application of the conservation of momenta principle.

$$
\begin{align*}
& m V=(m-\dot{m} \Delta t)(V+\dot{V})+\dot{y} \tag{F-I}\\
& m V=m V+m \Delta V-\dot{m} \Delta t V_{e x} \tag{F-2}\\
& m \frac{\Delta V}{\Delta t}=V_{e x} \dot{m}
\end{align*}
$$

as $\Delta t \rightarrow 0$

$$
\begin{equation*}
\mathrm{a}=\mathrm{v}_{\mathrm{ex}} \frac{\dot{m_{n}}}{\frac{m_{n}}{}} \tag{F-4}
\end{equation*}
$$

The rocket mass may be expressed as a linear inunction of time ($m_{0}-\dot{m} t$) for a constant mass flow rate ($\dot{\mathrm{i}}$). This is true for non-throttled rocket engines which operate in a vacuum.

$$
\begin{align*}
& \therefore a=V_{e x} \frac{\dot{m}}{m_{0}-\dot{m} t} \quad \text { or } \quad a=\frac{e x}{m_{0} / \dot{m}-t} \tag{F-5}\\
& \text { letting } \frac{m_{0}}{\frac{m}{m}}=\tau \quad a=\frac{V_{0}}{\tau-t} \tag{F-5}
\end{align*}
$$

Successive evaluation of the integrals can now be mace.

$$
\begin{align*}
& \int_{0}^{T} a d t=\int_{0}^{T} \frac{V_{e X}}{\tau-t} d t=V_{\epsilon X} I n\left(\frac{\tau}{\tau-T}\right)=V_{E X} I \\
& \int_{0}^{T} \text { at } d t=\int_{0}^{T} \frac{V_{e x}}{T-i} d t=r I-V_{\epsilon X} I=J \tag{F-3}\\
& \int_{0}^{T} a t^{2} d t=\int_{0}^{T} \frac{V_{e x:} t^{2}}{\tau-t} d t=-\frac{I}{2} V_{\in X} T^{2}+\tau J=P \tag{-9}
\end{align*}
$$

$$
\begin{align*}
& \iint_{0}^{T} a d t^{2}=\int_{0}^{T} \frac{V_{E X}}{T-t} a t^{2}=V_{e x:} \int_{0}^{T}(1 a-2 a(T-Q)) d t \\
& =-5+T I=-3 \tag{F-10}\\
& \iint_{0}^{T} a t d t^{2}=\iint_{0}^{T} \frac{V_{e x} t}{T-t} d t^{2}= \\
& -V_{\operatorname{ex}} \int_{0}^{\mathbb{T}}(\tau \ln (\tau)-\tau \ln (\tau-t)-t) d t= \\
& -\tau S-\frac{V_{e x}}{2} T^{2}=-a \tag{F-11}\\
& \iint_{0}^{T} a t^{2} d t^{2}=\iint_{0}^{T} \frac{V_{e X Z} t^{2}}{T-t} c t^{2}= \\
& \mathrm{V}_{\operatorname{ex}} \int_{0}^{T}\left(\tau^{2} \ln (\tau)-\tau^{2} \ln (\tau-t)-\tau t-\frac{t^{2}}{2}\right) d t= \\
& -\tau Q-\frac{V_{e x} T^{3}}{6}=-\mathrm{J} \tag{-12}
\end{align*}
$$

$$
\begin{aligned}
& \text { Appendix } G
\end{aligned}
$$

$$
\begin{aligned}
& \text { FOR BURY ITo, } 亡,
\end{aligned}
$$

The value of t_{f} is necessary to solve tho closed form equations presented in thc su̇ãaco formulation. Instead of evaluating t_{f} directly, however, it is more convenient to develop a recursive relationship relating the current $t_{\text {i }}$ to the previous $t_{\hat{I}}$. A first guess for $t_{\hat{i}}$ is than sufficient to yield a starting solution and then updating of this value can follow from the recursive equation, Assume that the value of t_{f} can be expressed as the sum of an csizimate, t_{f}^{\prime}, and a small perturbation.

$$
\begin{equation*}
t_{f}=t_{\hat{f}}^{\prime}+\delta t \tag{G-1}
\end{equation*}
$$

The velocity to be gained over tho intcinvi, t_{i}, can bo determined as follows.

$$
\begin{align*}
& \left(\Delta V^{\prime}\right)^{2}=\left(\Delta \dot{X}^{\prime}\right)^{2}+\left(\Delta \dot{Y}^{\prime}\right)^{2}+\left(\Delta \dot{Z}^{\prime}\right)^{2} \tag{c-2}\\
& \Delta \dot{X}^{\prime}=\dot{X}_{f}-\dot{X}-\tilde{\Xi}_{X I} t_{\underline{I}}^{\prime} \tag{G-j}\\
& \Delta \dot{Y}^{\prime}=\dot{Y}_{f}-\dot{Y}-\tilde{S}_{Y} \dot{t}_{\underline{I}}^{\prime} \tag{1}
\end{align*}
$$

$$
\Delta \dot{Z}=\dot{Z}_{f}-\dot{\vec{Z}}-\bar{U}_{Z} \dot{t}_{f}^{\prime}
$$

Introducing equation (G-I) into (G-2) jíolcs tho Following. results.

$$
\begin{align*}
\Delta V^{2}= & \left(\Delta \dot{X}^{\prime}-S_{z} \delta t\right)^{2}+\left(\Delta \dot{Y}^{\prime}-\xi_{y} \delta t\right)^{2} \\
& +\left(\Delta \dot{Z}^{\prime}-\tilde{E}_{z} \delta t\right)^{2} \tag{G-6}
\end{align*}
$$

The velocity change, $\perp \mathrm{V}$, resulting fica the cacine thrust follows.

$$
\begin{align*}
& \Delta V=V_{e x_{I}} \frac{\ln \frac{{ }^{\top} I}{{ }_{I} I^{\prime}-T_{I}}+}{}+ \\
& V_{\operatorname{ex}_{2}}\left(\ln \frac{\tau_{2} /\left(\tau_{2}-T_{2}^{3}\right)}{\left(\tau_{2}-\left(T_{2}^{\prime}+T_{2}\right)\right) /\left(\tau_{2}-T_{2}^{0}\right)}\right) \tag{E-8}\\
& \Delta V=V_{e x_{1}} \ln \frac{{ }^{\tau} I}{\tau_{1}-I_{1}}+ \\
& V_{\operatorname{ex}}^{2}\left(\ln \frac{\tau_{2}}{\tau 2^{-} T_{2}^{1}}-\ln \left(\frac{\left.1-\delta T_{2}\right)}{\tau_{2}-T_{2}^{1}}\right)\right. \tag{G-9}\\
& \text { But } \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{5}-\frac{x^{4}}{4} \cdots \cdot \tag{G-10}\\
& \text { or } \quad \ln (1+X) \cong X \tag{G-1I}\\
& \therefore \quad \Delta V \cong V_{e x_{I}} \ln \frac{\tau_{I}}{\tau_{I}-I_{I}}+
\end{align*}
$$

The velocity change achieved by the cincire ($-(-2$) must be equivalent to the required velocity chance ($G-6$).

$$
\begin{align*}
& 2 V_{e e_{1}} V_{e x_{2}} \ln \frac{\tau_{1}}{\tau_{1}-T_{1}} \frac{\delta T_{2}}{\tau_{2}-T_{2}^{8}}+\left(V_{e x_{2}} I n \frac{\left.\tau_{2}\right)^{2}}{\tau_{2}-T_{2}^{1}}\right. \\
& +2 V_{e x_{2}}^{2} \ln \frac{\tau_{2}}{\tau_{2}-T_{2}^{\prime}} \frac{\delta T_{2}}{\tau_{2}-T_{2}^{\prime}} \div\left(V_{e x_{2}} \frac{\delta T_{2}}{\tau_{2}-T_{2}^{\prime}}\right)^{2} \\
& =\left(\Delta \dot{X}^{\prime}\right)^{2}+\left(\Delta \dot{Y}^{\prime}\right)^{2}+\left(\Delta \dot{Z}^{\prime}\right)^{2} \\
& -2 \delta T\left(\Delta \dot{X}^{\prime} \delta_{x}+\Delta \dot{Y}^{\prime} \delta_{y}+\Delta \dot{Z}^{\prime} \mathscr{S}_{z}\right) \\
& +\delta T_{2}{ }^{2}\left(g_{x}^{2}+g_{y}{ }^{2}+g_{z}{ }^{2}\right) \tag{G-13}
\end{align*}
$$

This equation further reduces if it is assumed that the velocity gained by the thrust acceleration fo δT is equal to the gravity loss over the same interval.

$$
\therefore \frac{\delta T_{2}}{\tau_{2}-T_{2}^{\prime}}\left(2 V_{e x_{1}} V_{e x_{2}}^{\ln } \frac{\tau_{1}}{\tau_{1}-T_{1}}+2 V_{e x_{2}}^{2} \frac{I_{2}}{\tau_{2}-I_{2}^{\prime}}\right.
$$

$$
=\left(\Delta \dot{X}^{\prime}\right)^{2}+\left(\Delta \dot{Y}^{\prime}\right)^{2}+\left(\Delta \dot{Z}^{\prime}\right)^{2}-V_{0 x_{1}}^{2}\left(\ln I_{1}\right)^{2}
$$

$$
\tau_{1}-T_{1}
$$

$$
-2 V_{e x_{1}} V_{e x_{2}}^{\ln } \frac{\tau_{1}}{\tau_{1}-T_{1}} \frac{\ln }{\tau_{2}}-V_{e_{2}-T_{2}}^{2}\left(\ln \frac{\tau_{2}}{\tau_{2}-T_{2}^{\prime}}\right)^{2}
$$

$$
(G-15)
$$

$$
\delta T_{2}=\frac{\tau_{2}-T_{2}^{\prime}}{2 V_{0 W}}\left(\frac{\left(\Delta \dot{X}^{\prime}\right)^{2}+\left(\Delta \dot{Y}^{\prime}\right)^{2}+\left(\Delta \dot{Z}^{\prime}\right)^{2}}{V_{\text {an }}}\right.
$$

$$
2 \mathrm{~V}_{\mathrm{ex}_{2}} \quad \mathrm{~V}_{\mathrm{ex}} 1 \mathrm{II} \frac{\tau_{1}}{\tau_{I}-\mathrm{T}_{1}}+\mathrm{V}_{\mathrm{ex}_{2}} \operatorname{In} \frac{\tau_{2}}{\tau_{2}-\mathrm{I}_{2}^{\prime}}
$$

$$
\begin{equation*}
\left.-V_{e x_{1}} \ln \frac{\tau_{1}}{\tau_{1}-T_{1}}-V_{e x_{2}} \frac{\tau_{2}}{\tau_{2}-M_{2}^{i}}\right) \tag{0-16}
\end{equation*}
$$

It can easily be seen that a generalization of this intecan is as follows.

$$
\begin{aligned}
& +\delta \tilde{2}^{2}\left(s_{x}^{2}+s_{y}^{2}+{c_{z}}^{2}\right)(G-14)
\end{aligned}
$$

$$
\begin{aligned}
& \delta T_{n}=G\left(\frac{\tau_{2}-T_{n}^{\prime}}{V_{e x_{n}}}\right) \\
& G=\frac{1}{2}\left(\frac{\left(\Delta \dot{X}^{\prime}\right)^{2}+\left(\Delta \dot{I}^{\prime}\right)^{2}+\left(\Delta \dot{Z}^{8}\right)^{2}}{\sum_{i=1}^{n}}-\sum_{i=I_{i}}^{n} I_{i} V_{E I_{i}} I_{i}\right)
\end{aligned}
$$

1. Lawden, D. F., Optimal mesectorios For spece Navisation, Butteriorihs (Eondon), ISoj.
2. Robbins, H. H., "An Analytical Study of the Imoulsive Approximation," AIAA jevmal, Vol. 4 , Mo. 3 , August 1966.
3. McAllister, D. F., Grier, D. R., and Wacner, J. T., "Optimum Steering For Dowered Flicht Piases of the Apollo Mission," Morth Anerican Space and Infomation Systems Division, No. 63-1033, June 1963.
4. Smith, I. E., "General Formulation of the Iterativo Guidance Mode, "MSPC Mechncal Menorandua $\pi=53414$, March 1966.
5. Jezewsini, D. J., and Stoolz, J. K., "A Closed Form Solution For Minimum-Fuel, Constant-Thrust Trajectories," ATAA Journal, Vol. 8 , So. 7, July 1970.
6. Jezewski, D. J., "Optimal Analyiic Multiburn Trajectories," AAS TO. 71-306, AAS/AIAA Asirodynanic Specialist Conference 1971, Port Lauderdale, Florida, Ausust 17-19, 1971.
7. Powers, W. F., "Optimal Guidance," Wotes Presented to the Summer Institute In Orbital liechanics, U. Fe, Austin, Texas, May 1971.
8. Funk, J., and Nesdoo, S. W., "Switchins Logic and Steerins Equations for Multiplembum Earth Escape Maneuvers," Institute of Mavigation, 1969 , National Space Neetins.
9. . Horn, E. J., Chendier, D. C., and Sucriow, V. I., "Iterative Guidance Applied To Cererelizod viseion," Aीs no. 67-620, AIAA Guidance; Control, and Flicht Dynamics Conference 1967, Euntsville, Alanama, Ausust $4-16$, 1967.
10. Long, A. D., and Stiefle, J. Uo, "Optimaijty of the Lincan Tangent Steerine Lav Under Conditions OE Sonstant Acceleration," Ne Vemorandum, September 1970.
