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ABSTRACT

This thesis is concerned with the developnent of
a spacecraft guidance which will solve the problem associated
with the optimum transfer of ahspacecraft between two states.
The theoretical development~of an existing guidance
formulation is shown and this formulation is extended to
include a more general mission capability. Specifically,
the guidance formulation presented is extended to an
operational capability for low-thrust maneuvers.

Numerical results are presented which compare the
guldance solution and a near optimal solution to the same
low-thrust transfer problem. These results indicate that
the guidance procedure can be extended to an operational
capability for low=thrust maneuvers with performance

(propellant expenditure) comparable to an optimum transfer.
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Chapter 1
INTRODUCTION

The recent concept of an earth orbital space
shuttle has given impetus to the development of new and
more general guidance concepts and programs. Unlike previous
manned vehicles, the shuttle has advanced features such as
reusable stages, high maneuverability, multiple thrust levels,
and throttlable engines. While the shuttle concept
significantly enhances earth orbital mission capability, it
also poses special guidance problems (ie.e., low thrust
maneuvers, constant acceleration maneuvers, etc.) The
shuttle concept provides motivation for the guidance
formulation developed in this thesis.

In past manned and ﬁnmanned space missions,
real time spacecraft guidance and control ha&e often been
based upon principles of optimization theory. Although
optimization can be directly applied to most guidance problems,
the computation is usually lengthy and requires much computer
storage. Thus the process is impractical for real time
guidance and control systenms.

The purpose of a spacecraft guidance and control
system is to solve the two-point boundary value problem of
orbital transfer. The approximate solution to the guidance

problem is normally in closed form and is always executable

1



in real time (at a recurring frequency) during a guided
maneuver,

Because of its special naturg and importance, the
guidance problem has received considerable attention in the
recent literature and will continue to do so as more complex
space hardware and missions.are planned. This thesis is
concerned with the development of a specific guidance
formulation based upon principles of optimization theory.
The problem considered is limited to the transfer of a
spacecraft between two states with minimum propellant
consumption when two external forces, thrust and gravity,
are considered. The problem will be concerned with single
rather than multiple burn arcs. A brief review of the
guidance problem will be given at this point to familiarize
the reader with past and current concepts.

The complete optimization problem can be stated

as one of transferring from state (EO, Vb) to state (?f, Vf)

while minimizing time of powered flight (this is equivalent

to minimizing propellant usage).



Figure 1.1

Orbit Transfer For
Inverse Squared Gravity

The dynamical equations governing motion of the spacecraft
(for burn arcs only) can be shown from figure 1.1l. If

T, g(r), a(t), and » are, respectively, the radius vector,
the gravitational acceleration vector, the engine thrust

acceleration, and the thrust direction unit vector, then

= - 3}' roalt) s (1-1)

==

where T(0) =.?o

7(0)

Yo .
Application of the calculus of variations to this problem
yields one of the necessary conditions for an extremum stated

in the form of an auxilliary equation as follows:



P = £(%,B,t) = B v3 (1-2) a

This result is stated by Lawden (1). P is the classical
Lagrange multiplier vector which adjoins the velocity
equations in the Hamiltonian expression. To find a
solution to this problenm one must successively guess values
for both P(0) and ?(O) and numerically integrate equations

(1-1) and (1-2) until the boundary conditions (?f, Vf) are

satisfied.(this procedure is illustrated in appendix 4).

If the boundary conditions are satisfied, then a solution

to the optimization problem has been found, and the solution
is a local minimum or maximum.

The solution to the optimization problem can
normally be simplified for the purpose of spacecraft guidance
and control. This can be done by making assumptions such
that, although the problem is simplified, its solution
approximates the solution to the original problem. For
instance, if the problem can be formulated as one of changing
only the velocity vector and the acceleration of the
spacecraft can be considered infinite, the solution to the

problem can be computed readily from equation (1-3).

a
P corresponds to the three component Lagrange

multiplier vector (AQ g A6). See appendix A.



Figure 1.2

Impulsive Orbit Change

The result from equation (1-3) is often referred to as an
impulsive solution and constitutes a lower bound cost to
the transfer. If the spacecraft acceleration were infinite,

a velocity increment, AVb, could be added instantaneously

at ?O to effect the transfer from the initial to the desired

ellipse. The velocity increment magnitude is computed from

AVOE = vo2 + Yfa - 2vo vf COS 87 (1-3)

It is assumed that the position vector, ;O’ does not change

during the maneuver; if the acceleration were infinite, this

would be the case. CGulidance and control based upon this



impulsive solution have been used successfully for many

' small powered flight maneuvers. Compensations must be made
-in thrust direction because of the finite length of the .
maneuver.

The major limitation of this impulsive approximation
is that it does not explicitly control position and is
therefore limited to short burn arcs. (Robbins (2) derives
analytic results for multiple impulsive maneuvers.)

A more general approach (to guidance and control)
that is applicable to longer burn arcs than the previous
impulsive approach is discussed by McAllister, Grier, and
Jagner (3). If the problem remains one of changing the
velocity vector, it can be shown that the optimal thrust

policy is given by a ><"\7g =c bxV,_ (1-4) a
o

during the finite thrust maneuver. The terms a, Vg, and ¢
are, respectively, the thrust acceleration vector, the velocity

change vector, and a scalar constant. The b vector can be

computed as follows:

b = Vf - g (1“5)

Vo=V, -V (1-6)
S

a

This equation represents what is often called
cross product guidance.



If the scalar constant ¢ is chosen to be O, then

a x V_ = 0, which implies that the thrust vector should be

[=]
directed parallel to Vc. If, however, ¢ is chosen to be 1,
(=]

then a x V_ = b x Vg, or a x7V

o =(Vf—g)XVo

g &

By substituting for vf the expression becones

a xV,_ = (V_+3a) x V. This reduces to V_ x Vg =0 and
o &

o (=]

implies that the thrust should be directed to maintain ﬁg

parallel to Vg. Use of equation (1-4) (as a guidance and

control equation) with an appropriate value of ¢ (O=gc<l)

will achieve the desired velocity, Vf, in minimum time., The

difficulty with this guidance procedure, is that position
cannot be directly controlled and therefore the range of
applicability is limited to small burn arcs. It is, however,
an improvement over the previously discussed inmpulsive
approximation since it is applicable over larger burn arcs.
In various forms it has produced excellent results for
limited orbital transfer problems.

A still more general approach to the orbital transfer
guidance and control préblem is discussed by Smith (4) and
Jezewski and Stoolz (5). This approach simplifies the solution
to the original optimization problem to one that is solvable
in closed form when gravity is assumed to be strictly a

function of time (or constant).



Figure 1.3

Orbit Transfer For
Time~Varying CGravity

The original state and auxilliary equations

(1-1 and 1-2) then become

T o= <E(t) + alt) 7 (1-7)

where T(0) = ?O

T(0) = ¥,
and P = £(3,B,t) =D Vs (1-8)
where p = _P .
|3

In this case, however, vg is equal to zero, which insures
that P = O and therefore that B = ¢ + dt. Substitution
of this control vector into the dynamical equation ylelds
the result

T o= -3(t) + a(t) (S +3t) . (1-9)
|T + dt|



Integrations of this vector equation (1-9) yield six

independent scalar equations for position and velocity.

The six scalar equations are transcendgntal in terms of the control
variables c,d, and t, (of which only six are independent).

A nmultivariable search method (gradient, Newtoun-Raphson, etc.)

can be used to vary these parameters and achieve the desired

final state (r,, Vf). In lieu of using a search procedure,

the formulation by Smith (4) makes added assumptions such that
the control parameters can be evaluated explicitly.
This solution controls three components of velocity

(Xf, Yf, and Zf) and two components of position (Xf and Yf).
The Zf~ component measures positioan in the spacecraift flight,

plane and is not controlled.
A distinct advantage of this guidance formulation
is that both the position (two components) and velocity can

be controlled and that the control constants (c,d, and tf)

can be evaluated explicitly. A major limitation of this
approach is apparent, however. As the burn arc becomes
increasingly large the gravity assumption becomes increasingly
worse., For certain problems convergence cannot be attained
due to the size of the purn arc., Additionally, orbital
transfer problems which involve rendezvous maneuvers cannot

be solved unless all six components of position and velocity

are coatrolled as well as tinme, tf. Since only five

components of position and velocity can be controlled this

formulation will not work for rendezvous guldance problems.
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Another general approach to the orbital transfer-

guidance problem is considered by Jezewski (6). This
formulation reduces the original optim;zation problem to

one that is solvable in closed form. The assumption is made
that the gravity vector is a linear function of the position

vector (on burn arcs only).

Figure 1.4

Orbit Transfer For Linear Gravity
The original state and auxilliary equations then become

T = - o°7 + a(t) 7 (1-10)

where (0) = rg

r(0) = V5
and o — — -
P = f(r,Pyt) =P «vg
where , = P . (1-11)
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g
—

In this case equation (1-11) reduces to P = = wZ?, which
represents the motion of a harmonic oscillator without
damping and without a forcing function. Its solution is

given by
P=Tsin ot +dcos wt. (1-12)

The solution to the dynamical equation (1-10) follows:

T =psin ot +q cos ot (1-13)

V= o(pcos ot -qsin ot) (1=14)

5 sin wt + g cos ot =0 (1-15)

w(P cos ot =7 sin wt) = a(t) P (1-16)
|7

Since the values of p and @ can be evaluated as integral

functions of a(t) _P_ , the optimal burn arc for the orbit
7|

change can be solved in closed form.

This procedure could also be used to consider
multiple burn arcs. Since the state variables and the
Lagrange multipliers can be propagated across coast arcs in
closed form, this conmplete problem with multiple burn and
coast arcs can also be solved in closed form, By implicitly
solving a set of non-~linear equations which are transcendental
in the control variables (¢,d, and tf), a solution for the
optimal burn arc is found. The addition of multiple burn arcs

increases the dimensionality of the problen (tf_then has
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multiple components); however, the solution method remains

the same.

This guidance procedure has a very general
fornulation and can explicitly control all position and
velocity components.

The previous discussion has outlined the
optimization problem and some past and more recent guidance
formulations. The original optimization problem cannot
be solved in closed form (it requires numerical integration
and iteration) and, therefore, has limited or no
applicability as a guidance and control system. Varying
degrees of complexity are also involved in the different
suidance formulations depending upon the assumptions which
are rade., Relatively simple procedures, such as the impulsive
and cross product procedure, are limited to short burn arcs
and therefore will not solve a large number of orbital
transfer problems. The time~varying gravity formulation
( vz = 0) has a fairly general capability. However, it will
not work for long burn arcs or lengthy low-thrust maneuvers.
For low-thrust maneuvers the gravitational acceleration
becomes a nuch more significant term and introduces convergence
problems in the computation of the control parameters
(c,d, and tp). Also, since this formulation can only control
two components of position, it is unsuitable for a rendezvous
guidance,

The linear gravity formulation has none of the above

problems; however, use of the more sophisticated approach
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(multiple burn arcs) may introduce problems concerning its
use in repetitive guidance solutions. Also, since this
formulation requires iteration, its speed of execution
would require investigation.

The guidance formulation considered in this thesis
is limited to a time-~varying gravity formulation and a
single burn solution. Specifically, the formulation will
be similar to Smith (6) in that the principal closed--form
computations will be retained. The formulation will be
extended to an operational capability for long burn arcs
and low=thrust maneuvers. Numerical results will be presented
for comparing the solution of a low=-thrust problem with that
of an extremized solution to the same problem. In addition,
the formulation will include an extension such that all six
coumponents of position and velocity can be controlled,
although implementation and numerical results are not within
the scope of this thesis.

The remainder of the thesis will proceed with the
development of the necessary conditions for an extremun,
developmnent of the control law where vg = O, and development
of the guidance equations to be used for evaluation of the
control parameters. Final chapters will be devoted to
numerical results and the extension of the original formulation
to control all final state variables. Development of a loss
function (appendix B), effective gravity equations (appendix C),
and intermediate boundary value equations (appendix D) are

included in the appendix as guidance related improvements.
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The loss function is considered as a switching function (to
determine engine on-off time) and the intermediate boundary
value equations are used to extend the“guidaﬁce fornulation
capability to large burn arcs. The effective gravity
computation will be used with the guidance equations to
approximate gravity over each burn arc. Appendix E considers
the optimal control law under conditions of constant thrust
acceleration and coastant gravity. Appendix F develops the
required guidance integrals and appendix G develops the
time~to-go computation. These are both necessary inputs for

the guidance formulation.



Chapter 2
NZCESSARY CONDITIONS
Consider the problem of minimizing or maxi-

mizing some return function,

.t .
R = #(5,) i/f fe(t,3,7) at . (2-1)
%o

The tern ¢(§f) corresponds to a penalty for not attaining

the final state, while the integral function is a
path-dependent value and depends upon the state history
S and the control function p . This return function is

subject to the state equations of form

—

S = £(t,5,7) (2-2)
where S (to) = 8g -
The state equations are adjoined as an equality constraint
similar to an ordinary non-time-varying minimization
problem (where A (t) is an unknown Lagrange multiplier).
- tf - T =
Therefore, R = ¢(Sf) i][ G+ x(t)” (£-8) dt . -
Yo (2-3)

The Hamiltonian is defined and substituted into the return

function.

15
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T (t,5,7) (2-4)

t .
R = #(3,) +/ fm-3T%) at (2-5)
t .

o)

The return function, R, is expanded to first order in a

. . -— 3% — . . .
Taylor series expansion about p  (where »* minimizes R).

* — — * * —
R (p +4p) = <I>('Sf) + 09 A,Sf
5=
Se
tf _*® * AT * — T* —
+/ H + HTS- S+H-:\- AX *+ = Ap
%o
- R EY LT - a7t 's') dt (2-6)
The necessary conditions can then be established.
. _ x t . T 2
R (5" +a7) = o(5p) +/ fat-3TEY) at
%o
* _ tf _ _
* o Asf+/ (Hg AT 4+ Be oan - STYAT ¢ B= ap) dt
a'g t A P
il 0
t _m .
- [T GETTaE) at
%o
But H—:A'X-TS'T*AA =(HA ST* ) A
o T
and B =T =%
t t
f . f £ 2py =
/ 'XT*A-S' dt = AT*AS t/t Yo' ad dt
%o o 7o




1
—_ = —w L 2e IFm —T* = ?
R (p +Ap) .‘:R(p ) + 9@ Asf—)\f AS

(S

b
f
t

+,/-f(H§ A§-+7T*.3§+-H§ ap) dt

%o | (2-8)

For p to be minimizing R = R(p "+ .a5) = R(7 ) must be =<

O for all a, and therefore the following necessary conditions

follow for a minimizing control ™ .

=T

A o= -Hg (2-9) a

- :

A (t;) = 20 (2-10) a
asf

H- = O (2=11) a

P

Necessary conditions (2-9) and (2-~11) nmust be satisfied at
every point along the trajectory, while (2-10) represents a

necessary condition at the terminal boundary.

These results are derived by Powers (7).



Chapter 3
OPTIMAL FORM OF CONTROL

To deduce an optimal control history for the
orbital transfer problen, the Hémiltonian can be constructed
and the necessary conditioné applied. For the problem under
consideration it is desired to minimize the time of powered
flight (or to minimize propellant consumed). In this case

the return function is of the form
t

* * - f
R = o(XpY 2, X ¥ Z.) + ft 1dt .
0
This return function is subject to the state equations
already introduced; subsequently, the Hamiltonian can be

defined as

1
=1 +A +A A, W o+ i -
H=1+)M U +r, V 3 W b (a cos 0y sin Bp OX)

+ A5(a sin oy = gy) + A¢ (a cos 6y cos 0P-gz)

(3-1) =

a
The previously defined P vector is a three vector
composed of Ah’ A5 and A6.
3

18



are

rigure 3.1

Thrust Control Angle

where
U= a
V‘= a
& = a
X =1
Y=YV
Z =W
F:I:ﬁ

Coordinate System

sin g_ - g

cos Hy D %

5 -
in 6y &y

cos 9y cos 0p -8,

VeX (const)

19

(3-2)

(3-3)

(3-4)

(3-5)
(3~6)
(3-7)
(3-8) a

As previously introduced, the necessary conditions

F/m

may also be constant.

See appendix E.



I
(@)

(2-9)

(2-10)

(2-11)

The state variables, S , in this problem are U, V: v, 4, ¥, 2,

and the control, » , corresponds to the two vector control

variables 6_ and 6__ .
& D y

Applying the first necessary condition yields the

following results:

)\1' = -HX = ,\]+ 0 £x
9%
Az E =l =

- A4 o, ¥ ;5 3£¥z+ Aé 0,

Oy

Oy

Sy

g

= - = foy o :

0z
l4 = -H == Ay
15 = ~H,= - A,
A = ~H, = - g

This system of egquations corresponds to

equation (1-2), P = P .vg.

27z

%z

(3-9)
(3~10)
(3-11)

(3-12)
(3-13)

(3=14)

o



21

If the approximation is made that the gravitational

acceleration, g , is independent of position ( vz = O), then

the Lagrange multipliers can be determined,

Al =0
Ay = 0
;3=O
14 ==
Ag = =
hg = -

A

Ay or

53 OF

i

A
6

d; (3-15)
dé (3-16)
d (3-17)
=cy = dyt (3-18).
= ¢, = dyt (3-19)
= ¢3 = dst (3~-20)

Applying the third necessary condition (differentiating

the Hamiltonian with respect to the control variables

9p and Hy) yields the following result:

H =
op

Ay, (a cos 0y cos 0p) - g (a cos 9y sin 9p) =0

= A i
Aq cos Hp 6 sin ¢

tan ¢

tan ¢

b

(3-21)
s}
A
6
c, - 4.t

1 (3=-22)
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Hyy = A5 (a cos 5y) = rg (a sin 9y) =0 (3-23) a
AS cos 9y = A6 sin 9y .
tan ay = *5
A6 |
tan ¢, = cé - 4yt (3-24)
03 - d3t
a

This is true only when 5p = 0 since 9p and ey

are coupled angles.



Chapter 4
CLOSED FORM SOLUTION FOR THE
TWO~-POINT BOUNDARY VALUZ PROBLEM

The previous analysié has shown that, under
certain assumptions (vg = O.and constant thrust) the optimal
form of control for an orbital transfer maneuver is of a
bi-linear tangent form (equations 3-22 and 3-24).

tan = Y+ Bt (L=1)

$+"lt

Guidance formulations based upon this approximation have been
used successfully for limited transfer problems. Smith (4)

presents such a formulation, in which the variables 9p and

9y czn bs datermined explicitly from & system of algebraic

equations.,.

A major limitation of this formulation results
from the assumption that vg = O. As the powered flight
burn arc increases in length, the gravily assumption becomes
worse and convergence cannot be obtained. The size of the
burn arc for which convergence can be insured is also a
function of the thrust acceleration of the maneuvering
spacecraft. As this acceleration level decreases, the
maximum size of the burn arc (for which convergence can be

obtained) also decreases.

23
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The following analysis will be concerned with
application of this bi-linear tangent control law (in an
abbreviated form) to include the more extreme problems of
long burn arcs and low-~thrust maneuvers. The following
suildance formulation will be limited to single burn arcs
and minimization of powered flight burn time considering

gravitational and thrust acceleration forces only.

Figure 4.1

Final State Components
For Orbit Change

Temporarily the solution will be limited to the control of

five components of position and velocity (Xf,Yf,Xf,Yf, and Zf).

The basic assumption, vg = O, will be made such that the

form of control can be ‘expressed as tan = Y + Bt .
vy

However, a plecing procedure will be used to form large
burn arcs from smaller burn arcs. As illustrated in

figure L.2, the large burn arcs may be subdivided into
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smaller burn arcs and the approximations made need only be

valid for the nuch smaller burn arcs.

Figure 4.2

Piecing Procedure For Orbit Change .

With such a piecing procedure, a guidance
formulation can be extended to very large burn arcs and
low=thrust maneuvers. However, an additional problem is
introduced concerning intermediate boundary values for each of
these smaller arcs. While each individual burn arc may be
near~optimal, the sum of these burn arcs cannot be near-optimal
unless the boundary values r and v are properly selected.

A procedure for selecting near-optimal boundary values is
contained in appendix Q. This procedure assumes that the
Lagrange multiplier vector, P, is piecewise linear and
continuous. ZIZxperience has shown this to be a good approx-

imation for a variety of orbital missions.
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The solution across any individual burn arc can
now be develoved and coupled with this piecing procedure..
The solution will be generalized to multiple verformance
periods (to account for change of thrust level, constant
acceleration periods, mixture ratio changes, etc.), although
only one may be required during a particular small burn arc.
The particular solution to the optimal thrust direction has

been shown to be (equations 3-22 and 3=24).

tan 6 =Xu = o ~Aot (4-2)
A
6 ¢33t
tan 6, = Ag = cp =Mt (4=3)
*6 A
03 - 31}
From the necessary condition, xr(tf) = 08 . it is shown
FY
Sy
that KB(tf) = Ay = 29 =0 if the Zy = component of position
8:Zf

is not controlled (see figure L4=3).



Y
Figure 4.3 Figure 4.4
Thrust Control Angle Thrust Control Angle
Cooréinate Systen : Coordinate Systen
(Inertially Fixed)
Additionally,
A = = -
() =2 = 20 (4-1)
0%,
f
A = = Lo
o(tg) =4y = :cb (4-5)
Te
— 4] -
Aq(tf)- : (4=6)
Xg
A = 0®
s{ty) =22 (4=7)
oy
f
A = -
27
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which reduce the control functions to the following form:

tan b - /a‘ :j /:' (t) (4=9)
./If Zf L. Z:f
= 0% o0d - (X3 fe k) -
tan 9y a‘ /a" /a; (t) (Ll- lO)
Ye 92,  0Y, 9%

Explicit evaluation of these constant partial derivatives is

possible if the following approximations are made.

tan gp ~ 0y, ~ (Zp - kl) * kot (4=11)
tan 6. ~ 5, ~ (;y - k3) * Ikt (4=12)
sin (—kl + kzt) == -kl+k2t (4=-13)
cos (—kl + kat) = 1.0 | (4=14)
sin (-1;3 + kqt) ~ -k.3+k4t (4-15)
cos (-—l{3 + kqt) ~ 1,0 (4=15)

At first these approximations appear to be restrictive, but
this is not the case. As the burn arc is segmented into nore

pieces, these become very good approximations. The ?p’ Ey
terns are constant control angle terms which will solve the
velocity required part of the transfer; however, since the
control is linear, compensating terms k, and k3 are added to

achieve the velocity. The terus ka and k4 directly correspond

to the position partial derivative terms. The solution to this

problem is now found by determining values for kl,k ’kB’ and

Iy

which satisfy the boundary conditions ( ¢(Sf) = 0).
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This solution can be implemented by introducing the

appropriate dynamical equations (the 2 equation is not

needed since Zf is free) and taking their first and second

integrations.
.o _ 0 . . _
X a cos 6y 51n.9p_ &y (4=17)
gr. = i 6 - o. -1
asin by Qy (4-18)
. . tf tf
Xf =X ﬁj[ a cos 6_ sin ¢_ dt J[ 8y dt (4-19) a
o %
t t
(4-20)

<le
+
]
= o
+
H
H
o
0
-
=]
S~
o]
[oN
ct
L]
(.N
H
03
L]
for
d

The following trigonometric substitutions may be made to

introduce the control constants ;p’ Ey’ kl’kZ’kB’ and kg.
sin Bp ~ sin op + cos 9p (=k -l+“2u) (4=21)
i ~ sin g. + -k t -2
sin ey sin 9y cos g ( 3 ) (L )
o = cos § =23
cos Bp ap (4=-23)
L ] L ] tf — —
Xp =1 +J[ g cos ey (sin 0p + cos 9 (-.Ll 2x.)) dt
t
Lo
..f ' g, dt (4=214)
o

a
The value of tf comes from solution of an

explicit equation in appendix G.
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. . t
- f .o = -
Y. =7+ f a (sin G, + cos g, (-l £)) dt
%
tf '
-f 5, 4t (4=25)
o
.. pte . _ _
Xf =3 fj[ a co§ 9y (sin 9p - kl cos gp)dt
%
tf _
+ a kyt cos g cos 6y dt
%o
e
- g, dt (4=26)
to .
. . b _ _
Yf =Y +J/~ a (sin Hy - kg cos ay) at
%
te _ te
+ ! 1t - & -
f a ‘%t cos ey dt / &y dt (h=27)
to %o

Generalization of this integration to several components of

tf will yield a general foru.
. . Tl _ _ _
Xf = X +/ a) cos ay (sin % kl cos gp) at
0 .

T

+ * a

. - -
1“2’“ cos gy cos gp dt

T
2 - i = =y e
+ ay ©os g (sin by = l{l cos 9p) at



+ [ 2 a k.t cos 9. cos 5
272 y Ip

at
J-Z — —
ﬁ/f a5k, (T1+LC) cos g, cos oy dt
0

-1 2 g dt (4=28)

m
L ) * L
— 1 . - — .
Yf = 3 i/g ay (sin 6y = k3 cos gy) at
alk4t cos 9y dt

+ a5 (sin Gy - k3 cos 9y) dat

f}f 2 aakqt cos Ey dt

0

S 2 Vo m - o

:)f aZLA (T{+T,) cos by dt
0

SN
- / 5, dt (4-29)
0

Intesral values derived in appendix I are now substituted

into the expressions,

Xf = X + Vexl L1 cos 9y (sin 9p - kl cos gp)

+ kz dl cos gy cos gp

31



+ V L, cos Ey (sin 3. -

» = K cos gp)

v, T { - -
+k, Vex2 L, (Ty*+T.) cos 6, €OS g,

- 5, (2T 1) (4-30)

L4

£ + Xeyl 1 (sin oy = X3 cos 0y )

<t o
i
<

+k Jyocos g+ Vo, L, (sin G - X3 cos )

1 J x5
+ %k, J PR ; )
&, J, cos by k4 (TlTTC) VeXZ L, cos by
- T . +T + -
Sy (ll lc TZ) (4 31)
Sguations (4=17) and (L-13) nust now be intesrated similaely

using g¢_ and gy. Integration using these constaat control

angles insures that the required velocity is obtained during

the transfer.

. . t . _ _
Xf = X +J/'* a cos oy sin 0p dt
%
te
- f gy 4t (4-32)
t .

0

32



o T te
Yf =Y +/ a sin by at -f gy dt (L4=33)
to to
% 1 > sin 7 dt
£ /O S by 65

AV}

T
a, cos g sin 3 dt
jg 2 N p

l+T +T
/ Lot (4=34)
O
- . 1 o TZ _
Yf=Y+ al sin ay dt +/ > sin (;y at
0 0
+T +‘1‘ .
f Lo 2 at (4-35)
o)
Xf = X + vexl Ll cos g sin g
+ ’exa L, cos ¢ sin ¢
- w Ul T m b 2
g, (T +T +T,) (4-36)
Yf =Y + Vex Ll sin gy + Vex L2 sin ¢
1 2
- g, (T¥7+T) (4-37)
If the conditions '}_.{f - X, = 0 and Y - Y. = 0 are enforced,

intezration with the linear coatrol law will eanforce the

velocity condition.

33
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if - :f =0 = -k Vexl L, cos 9. COS Ep
+ k, Jy cos 9. cos g
- kl VeXZ L, cos Zy cos ZP
+ ké véXa L, (T,+T,) cos Zy cos Ep
+ k, J, cos Ey cos Ep (4=38)

£ £ k3 Vexl Ll cos 6 + X Jl cos oy

L

- Xz, VeXZ L2 cos 9y

+ kL+ VeX2 L, (T1+TC) coS g
+ k, J 9
iy C2 °°% by (4=39) -
g = Kp = 0 = =A )t + Bk (14=40)

T =Y. =0==ALk k (4=41)

., + B
f £ ¥y 3 y oL

A second integration of equations (4-17) and (4-18) will now
satisfy the position regquirerent in X and Y,

T,+T +T, .
X, = X T/f 172yt
0

; 11 a, cos g. (sin k e
v 1 v el 1
0 Yo

@ |
1
5!
o
(0]
0
> {
g
A
o
o



v Ly (T2+TC) cos g

T 35

1
+/1/l aq kat cos ay cos 9p at
0 0 -

T

1 - .- - .
+ (T2+Tc) / a; cos 3y (sin 9p - kl cos gP) dt
0

T
(3 1 T - -
+ (T2+Tc) '/(; 6_11 x5t cos 0y cos bp dt

T T ’
2 2 - S == _ - 2
+f / a, cos 0y (sin gp - kl cos gp) dt
0 0 .
T T2 _ _ >
+ 5 /O aa;{at cos oy cos 9p dat

T T
2 2 m - - 2
+/ / as 1«:2 (11+TC) cos g COS g, dt
O 0
T, +T +T :
_f 1 7c "2 g, at (4=L2)
O .

N : m - " 3 ) - n
X + X (T1+1C+T2) 8 cos 6y (sin 9p cos §_)

Q; k%, cos ZP cos 'g_y

(sin 6p = k) cOs ¢ )

Xy y P

T, (T+T ) k ] 59
dq (J.2+'1C) k, COS gy co gp

3 " s )
8} cos 9}* (sin ep ky cos g )

iy PO - B m - -
Qy k&, cos 6 cos g, = 53 , (J_l-l—TC) cos g cos g

-
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m 2
- &, (Tl+lc~T2) /2 (4=L43)
T, +T +7, .
y+f 1 7¢ 2y gy
0
T, T
+/1 lal(sv_n-g'y—k,cosg)dt2
0 0
T T )
+ 1 1 ay 1«:41: cos ¢ dt2
0 0
Tl _ _
m s .
+ (12+TC)/ ay (sin 6 =z cOS oy) dt
O

T, T
2 2 L - - 2
+ '//(; a, (sin oy -1{3 cos gy) dt

T T -
b} m
+ / a5 ‘{4(Tl+lc) cos 0y dt
0 0

/ 1 5, at? (Lmbely)
0]

- i + - [ . - -l - -
Y+ Y (‘1‘1+‘I'C TZ) sy (sin 6y =Kz €OS g )

+
Pan Y
o+
)
p
N
<3
SN’
~
0]
e
{n]
S

3
Q
@]
]
S
~



- 83 kg (T1+TC) cos gy -Q k4 cos g

- Sy (T +TC+T2)

N c/2 (4=45)

Bquations (4-44) and (4=45) zre each a function of known

integrals and the constants kl, ‘2, k3’ and k4.
- 1 - 1 I -1 5
0 = Cp lkq DP by + Ey , (4=46)
O0=C_k,~-D_k, +E -
y <3 y oL %y (4=47)

The coatrol constants kl, kZ’ k3’ and k[+ may nowr

be evaluated by solving eguations (4-40) (4=-41), (L=45),

and (4-47) simultaneously. The control angles (0p ﬁy) can

be determined as follows:

Op = gp -k + k5t (4=48)
68 =73 = 1 + Ll
y =0y T K3t Rt (4-L9)
AL = Xp = X = gty (4~50)
AY = Yf - Y - gytf (4-51)
8% = 2, = 2 = 3 t, (4=52)
= = tan~l /. av (4-53)
by = tar X
< AT ) .
- -1 .
gy = tan ( AY (4=54)
V A§2+522>

37
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A generalization of the above equations to

nmultiple components of tf ( n components) is possible by

inspection. The general equations which can be used for

the solution of Zp, ;y’ ky, Xy, X3, and X, are shown as
follows:
.« . . 1
AX = Xf - X - g:{ ’ 1 -'l-i (4"55)
A =Y, -7 - g 28 Ty (4=56)
. . . n )
AZ = Zf - % = SZ -)Z:-__-]_ Tl (4“97)
7. = tan'l< Ay ) (4-58)
P —
A7
s B .
6, = tan ( AT ) (L=59)
Vi
Ay = él Vexi L, (4-60)
‘ = 3 (4-61)
B = J. + ' T, 161
VA W v N FS, BE L i = R
o n=-1 i
~ — ~ - _f 'Y
Yy T %il i 0 g;l Ti+1 %;1 Vex. T3 (4-62)
C. =C! cos -63
uy 6}/’ (4=63)



L4

(4=5L)

(4-65)

(4=-€0)

(L-67)

(4-63)



—

(4=74)

(L=75)

(L4=76)
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Chanter 5
HIMERICAL INTVESTIGATION

-4

To 1ilustrate the woriability of the closed fora

L)

solution which has been develoved, an example nroblen has

bteen selected and solved. Additionslly, the same prodblem
J ko

is also solved by an optinization procedure and the
. . . o a
characteristic velocities compared as a measure O.

periormance., Tne problem selected consists of a transfer
from a 50 by 100 - nautical mile ellipse to a coplanar LOO -
nautical nile circular orbit with zinimun vropellsat usage.
This is a typical shuttle transfer from low earth orbit

to a space station orbit.

burn

coast

burn

Trro=Burn Orbit Transier

a
o
L

istic velocity is the integral o

i
’ tf
. a(®) dt.
v

L1

thrust accelerat



This transfer is accomplished for a rclatively
low thrust-to-weizht ratio (.05 gl's) and thus provides th
type of problem which is most scansitive to the guidance
fornulation. The following analysis will be concerned with
both solutions to this problem and a comrarison of the
results,

To achieve the numerical results for this
comparison, two digital progran simulations were required.
These two simulations are a simulation for an optimal corbit
transfer and a sinmulation for the guidonce formulation
previously shown. These two simulations will be briefly
discussed to familiarize the reader with each solution
procedure.

The simulation result for an optimal orbit transfer
was achieved by using an existing gradient search paraneter
optinization progran. 2 The Prog coastructs a return

ti = whe o(5.) i T .
function o _ . (3 there (b¢) is a penalty for

not attaining the desired final state and tf is the total

tire of powrered flight. It is desired to minirize R. The
solution procedure then recuires that the initial control
veriables (?) be individually perturbed and a trajectory
nunerically integrated (using a fourth-crder Runga-Zutta
scheme) to find the value of the gradient vector 2R .

2%
After finding this vector, a one dirmezsional sesrch schenme is

uszd to find a ste: size value along the gradient direction

a
This prozram was develorcd by the CGuidance
and Dynamics Branch at the Xaonned Spacecraft Center.
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which minimizes R, This multi-step rrocess is then repeated

re

until the gradient ragaitude becomes less than soue small
value (convergencs is attained.) The gzradient procedure
uces a double precision state ( r and V) and, therefore,
achieves the final state with a zood deal of accuracy. Good
initial values for the coantrol vector are neceszsory for

this procedure to attain convergoace. Once these good
initial values are provided, however, the solution procedure
nrovides a near optimal orbit transfer trajectory.

The simulation result for the guidance formulation
is achieved by imvplementing the set of closed forn equations
in chapter L (equation 4=55 throuzsh 4=75) into a digital
cimulation progran. Additional cquations used to evaluate
sravity, the piecingz procedure, the thrust acceleration
integrals, and burn tine are taken from appendices C,D,¥F, and
G, respectively. From these equaticns the control constants

6 = 50 ~kx.+x, t. and 6. =g =itk t zre then evaluated

2 172 y T 0y T
¥plicitly at every two second interval in the powered
flizht trajectory simulation. The resulting control history

(0p and ev) is then used and the dynamnical ecuations

[OTH

(3=2 throursh 3=8) numerically integrated using a fourth order
Runga-Xutta integration scheme, This guidance procedure uses
a single precision state (T and v) in the intersration process.
The extremized solution to this problenm, which is
obtained from the gradient search varaneter optimizaticn |

procedure, will row be considzred. The solution is
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formulated as a bhurn-coast=-burn in vhich the parancters

(r) appear as enzine on-off timc and constants in sone

assuzed control law. This assuncd coantrol law talzes the
*.:.2

- L2
forn 0 -y £t + 7t durinz each bura. The total

* * * *# * % * ¥ .
v, &, =n, ¥, £, n (fizgure 5.2). The paraneters

are varied to achieve the final orbital conditions while

minimizing total time of powered flizht.

v £ +'nt2

v+ £t + nt2

Tizure 5.2

Two=3ura Orbit Transfer
Usingzg Paraneter Optimization
The solution to this problen is a 319 secoen

burn and a 367 second bura sevazrated by a 2440 second coast.

j$o)

The first burn is initiated at a true aaonaly of -18 dezrees

and the second burn at a true anozaly of 173 degrees. The
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loss function and control history for this transfer are

shown in figures 5.3 through 5.6,

b5

70} 70,
"
— 804 (perigee) 8Cs {(avozee)
. burn 1 burn 2
w904 T 9Cs
o
< . -
100 —T004
O
2
P 1 3 [ 2 1 3 e A 1 Y 4§ "
5 100 200 300 T T00 200 350
| @)
Time (t)
Figure 5.3 Figure 5.4
Control Angle History Control .Sngle History
Using Parameter Using Parameter
Optimization Optimization
a

This loss function is derived in appendix B.
Its integral value represents the difference between the
characteristic velocity and the relative velocity change
during a powered flight maneuver. Its integral value is
therefore a measure of the efficiency of the maneuver.
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Loss Function

L6

.31. °2 i
(perigee) (2pogee)
24 burn 1 : o1 4 burn 2
o1l 04
0
T —Ol--
-.1 ¥ * * X ? , -2 % 4 : 3 : :
100 200 300 100 200 300
Time (%)
Fizure 5.5 Fizure 5.6
Velocity Locz Function Velocity Losz Ffunction
Using Paranicter Uzinzs Parameter
Optimization Optizization

The control sagle during both burias is necarly
linzar with time snd the slons is minizal. The loss
functiox is avpprozimately symmetric around the midpoint
of the burn arc for both buras.

The guidance solution to this problem is now
considered. The solution is posed as a burn-coast- burn;

1ovever, the procedure wrust handle each burn individually.
The first burn is targeted to achieve the desired apozee
radiuvs and the secoad burn to achieve the desired perigece
radius. Yeither of the two burns could ke made to couver:ze
as sinzle arcs and, therefore, a two~buri arc piecing

vrocedure is used.



burn

coast

burn

F[J

izure 5.7

Two=3urn Crbi
Using The Guidarnc

® t+
V3
Vi
RS
13
n

The solution to the problex is a 324 sccond burn
a 320 second Lurn senarated by anproximately a 2400
seccnd coast. The iznitial thrust maneuvver is initiated at

2 true encnely of -13 dezrees and the second at a true

m

anoualy of 173 cezreecs. The 1 ion and coatrol

Q
n
H,
=
3
(@]
<-+
H

S

Pt

1istory for this transfer are shown in figures 5.0 through

5011 .
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2 0% 40
© (perigee) (apogee)
~ 60+ burn 1 60 . burn 2
~
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,__i & P__"_..‘n—-—""“.“”
i 100 ¥ 100
]
2
= 120 . . . . , , . e , . . -
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Fizure 5.8 Fizure 5.9
control inzle History Control insle Histoery
Using The Gu1dunce Usinz The Guidance
”or ulation Formulation
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=
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o
o
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Q
S
=
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Q 4 ot - -2 4 : 4 ; i
= 100 200 300 100 200 300
Time (t)
Fizure 5,10 firure 5.11
Velocity Loss Tunction Velocity Loss “unction
Using The Guidance Ueimz The Zuidunce
Foraulation rorsulation
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It is cobserved that the control ungle histories show soxe
difference betwecn the extromized and guidance solution,
althouzh this diffcrence is not larze in terms of burn tine
or propcllant usazc. It is also observeld that the bura arc

pilecing procedure causes discontinuitics in the controel

zle (ep’ fisures 5-3 and 5-9) and, therefore, some loss

of perforzance., The discontinuities result from the inability
of the nulti-azrc algorithn 2 to predlct interiediate boundary
values perfectly.

Ls a zatter of interest, the first burn of this
transfer was sezmented into five burn pieccs during wihich

only a wvelocity control was used (9 =9 ) The control

history aad loss function in fizures 5.12 and 5.13 correspond

to this traasfer.

)

o,
| n
~ 9: .!.

(o)}
~

80

S
e
~

(o]
H

'ﬁ P 3 A

0 100 200 300
O

Time (1)
Fi ure 5.12

7 Uoln* Velocity Control

Control Anzle His
] ance rormulation

4
L
Only In The Gu

< 0
H 2}
D,
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Loss Function (L)

L

.
O
n

Velocity Loss runction Usinz Velocity Control
Only In The CGuidance Formulation

It is observed that the control ancle history does not have

ies a3 seen in figures 5-0 ard 5-9 and is

The significciace of the velocity control option
nat it may be useiul for leazsthy powercd maneuvers duriag

which position control {(r.,) is nct requl
-~

red. It 13,

therefore, an alternate procedure walch could be used in

-

rcoduct of lupulsive juldance procedures,

50



Chanter 6

ZXTEISIONS

The gulidance solution to the orbital transfer prodlem
has solved for only five compon ento of position and velocity

( Xf,Yf,Xf,Yf, and Zf ).

A
(R "ﬁ\\\\
¢ >
Figure 6.1 Figure 6.2
Control Anzle Final State Components
Coordinate Systenm For COrvit Changze

The general solution to this problem regquires control of all
six conmponents of state; however, explicit coatrol of all these
variables has not been implemented in the frameworz of a
varareterized control law., If the Z couponeant of position is

not free, then the optimé&l control (as established previously)

is of a bilinear tangent form, tan ¢ = ¥+ Bt . TUnder
£+ M4
appropriate conditions (relatively small control anzles) this

) \
form of control may be expressed as 9= "+ Bt and may be

fen

+ 7t

* *
expanded to 4= ¥+ &t + nta. Subsequent evaluation of the

51
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paraxneters in this quadratic control law will yield a solution

which controls 21l fizel comzponcats of state. The following
ormulation will be councerned with the exnlicit solution of
these control parameters (¢, ¢, and 7). (luzerical simulation

of this forzulation is not within tie scope of this paper but

nay be imnlemeanted in the future.)

tal

xplicit evaluation. of the coatrol parameters is

rsossible if the following approxinations are made.

- - 1. L2 Z
tan ~ ~ (g = k) + 1, t 6=2
an 6 0 (9y ‘3) s (6=2)
- 1. Y Je - ,;_2 v, 1 . 1, 2 f- *
S1in (—:xl + n.au + 15u ) ez e :.l + ziab + 5t (o 3)
cos (=k, + Z,t + Xk tZ) ~ 1.0 (6-4)
-.l &2 5 [}
sir -%, + =~ =k, + kT S
1 ( <z th) 3 i | (6-5)
cos (=%, + 1, t) = 1.0 (6-6)
2 &

The coatrol parameters can now be introduced into the
dynanical egquations and integzrated as bvefore. Since the
control for Gy has not changed, the y dyaanical equation

will not be reintroduced.

, X = a cos Hy sin 65 = 3 (&=7)
Z' = acos 6_cos 6_ =g (6~8)
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COs
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t. t
. b hil
X + 2 cos 6, sin 9 _ dt - 5. dt

£ J b £ bid

0 0 (6-9)
. tf J/xf
Z + a cos cos dt - g dt

/t ’y "» t, 2
0 0 (6-10)

trisonometric substitutions are made to

. o - 1 1 1 ~
control constants ¢ 9y’ k, kZ’ K3, 54, and

p!

I ~ 2
~ 5i; =1 ) k
0p sin 0p + cos gp ( kg + xat + Ast ) (6-11)
= i I ry -l 1 -
6, =sin g, + cos o (- + k,t) (6=12)
HP = CcOS 05 (6-13)
t.
. f _ _ _
X + & cos sin + CcOCs -k, +
ft a by ( 9 by (=4
0
2 °t
kzt + Xk _t )) at -~ J{. g. at (6-14)
9 t Py
0
t_o -
72 + J/; a cos 9y, ( cos op - sin g~ (-Al +
O
2 g
o5t + kgt )) dt - J[ g, dt (6-15)
5 £ p
0

This integration is now extended to nultiple performance

- < J
neriods,



. -1 _ _ _ 54
X. = X +f ay cos 9y (sin 6, = k, cos ‘9p) at

hi 0 X 1
+ ]O al-:at cos BJ cosS 9- dt
T
a.%.t% cos §. cos §. dt
o 15 y ¥
'I‘2 _ _ _
+ a 3 in - K
fo 5 €O Aey (si ep <y cos op) at
I Ty oo 7
+ R4 +
o aZ“Zt cos gy cos ap dt

os §. cos g dt
CSGy OP

2
1 m
+ fo ask, (T + T ) cos 6y COS 0, dt

Iz 2 _ _
RS + we
+ o kg (Tl + TC) cos g, ©OS Bp dt
T +T T,
g, dt
0 = (56-16)
. . 1 _ _ _
- ~ = 3 + =k 3 3
Zf =7 + o &q COs 9y (co gp k, sin 9p) at

o
-fo al;:at cos 9y sin 033 at -

Ty
r—/ a-k.t~ cos §_ sin ¢_ 4t
o T X



2
-j[ asit, (T1+Tc) cos g.. sin g dt -

2 > - -
J/. a2k5 (T1+TC)“ cos g.. sin g dt

0 Ng
T, _ _ _
+ a : iy 1
j(o 2 cos 9y (cos 2 + ky sin QP) dt
F1 T
- g dt
0 Z (6=17)

Integral values as derived in Appendix ' are now substituted

into these expressions.

vy - v _ . -
o =X + VeXl Ll cos gy (sin ¢ k, cos 9p)
.1 < cT 4w - -
I, Jl co3s §_ co 0p o Pl cos 9y cos 9p
+ V I, cos ¢ sin y_ = 4. cos g
Xy T2 by ( 9p 1 777 0y )

t iy Vex L2 (L1+TC) cos g.. Cos § +
e V L. (T.+T )% cos 9. cos p_ -
- ex, 2 717 Yy 0p
e (T, +T +T )2 /2 -
°x “T177e T2 (6-12)
7. = 2 7 G+ %, sing
, + V < Ll cos ¢_ (ces gp 1 sin ep)

J. cos g, sing. - k. P. cos 3.
1 I 9p 5 6

sin g
N Ip
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-, V o+ 9. sin g
> Vexg L, ( 1 TC) cos ¢, sin 0
—
~%. V L, (7,+T os g sin g
5 Tex, 2 (T c) €OS 6y, SR 04
+ L, cos g. (cos 3. + k. sin 3
ex, T2 by (cos 04 1 S ep)
\
- m T M -
5, (T + T, +75) (6-19)
> [ 4
If the co=zdition Kf - X, = 0 is eaforced, the quadratic
EN

L)

control lcur will achieve the desired velocity, 4. . The

velocity egquation for Kf has been shown previously

(equation 4=36) and does not chanzc.

2

I, =X +7 L, cos g, sing_ +
iy ; ex, "1 “V° by 04
l ~
T o3 - 35 7 - ~ {m_am 4m L2
VGXQ 2 cCOos3 Hy Sia 0p Sy N=q J.C'r_a) (C O)

",

Taforcing this velocity coadition yields the following

cquation in terms of the colirol rorausters kl, Kay and k5.

-

= % (VU T 1 .
0 = iy (V 2y Ly + Jexa LZ) CO3 §__ COS gp
4 - - _"" _‘\T L T +'—\ “ = s -—
+ s, ( Jl Js Jexa > ( 1 Lb)) cos ey co 9p

2 —_ -
T,+T 3 cos
L, (‘l+‘c> ) co 6y €02 7,

(6-21)
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Zcuations (€-7) and (E=C) zust now be intzsrated a cescond

tine to yleld two more scuati

T T,
I‘If=X+J[1C2th +
0 .

- :
1 _l - a1 - - I - 2
‘jf ‘/f a) €o3 gy (sin o5 = ky cos gp) dt
0 0

H
@]
13
()]
}J
3
<
(8]
,..l
<
(&
3
G4

< k and k-.
3 29 9

~1 - - - .
(TC+T2{/f T 8y cos3 gy (zin 6 =k cos 99) dt
O

7 - —

m _4m - o 1 = o A+ &
(L2+_C 3q '“2t cos 6y cos 913 dv

0

m

+ D
psn ) L a1t cos T cos =
(J.Z-LC) al -..5v COo5o 6:; cCC32 9'[) v
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COIICLUSICNS AXND RICCLIIIIIDATICHS

for & spacecraft zuidance azd coatrol systen basced uson

<t
2!

principles of optimization fheory. Chapter 5 illuctrates
sone nwierical results frox the imnlexmentation of this
theory and chapter 6 extends the zuidance equations to
control &ll final state variables. Some specific

coaclusions end recoxsendations moy now be reachzd con-

cerning the developrnent in thsze proceding chapters.

achieve a closed form solution, souse assumption must be
made concerninc gravity. The formulation introduced in

this thesis makes the assunntion that vz =0 and,
coasegquently, has converreace difficulties with lonz burn
ercs ( vo = O is certainly not trus for lons bura arcs).

Low thrust raneuvers introduce siwilar coavoerzsnce nrobleus

because the gravity acceleration becores lsrzz relative to

Qs

the thrust acceleration. The aevclonzent of the bura arc

s intended to circumnvent

(]

pilecing procedure in enncndix D

these convergence probleas.
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Cliazter 5 illustratss a numiricel cooparicon of

the cuidance solution and cn extreosiced solution to o low
hrust trensfer razeuver. It is rnoted that tlhe guidance

2 with a sia__e
burn arc; however, the bura arc piccing procedurc (Vith

tﬁo bura arc pieces) was uscd and the solution to tiae
problem obtained. The boundary conditions for the transfer
were metv accurately. A coxsparison of the bura tiues for

trhe two solutions shows that the

(¢}
4
'.)
(9N
O
o]
(@]
®
(&)
O
[_J
o
o
}-—h
9
18
}.J
0

relatively efficient. The only difficulty wvita the niecingz

procecure appears to be discontinuities that occur at

63

terninal noints of each burn arc piece., While sone efificiency

seeuns to be sacrificed as a result of these disconztinuities,
they do not constitute 2 xajor »nrovlen., Soxe additional
work on the plecing procedure may eliminate these

discontinuities.

o'

The burn arc vilecing »nrocedure was also used with
five burn arc pieces during which only & vzlocity control

( 53) was used., The velocily boundary coacitiocns wvere
$.

]

continuities were

v
'J

achieved precisely and in this case no di

observed. The bura tize is &lso very clcse fo that of the

extrenized solution. This velocity control nrocedure should

vrovide ..uch better results than thec cross product and
impulsive formulations since it hes a much wider rence ol

porlicability, (larzer dbura arcs).



Althouzh execution time khzs not besen an exdlici
part of the guidance evaluation, sone anzlysis can be
made., The guidance formulation is analytic and closed form
and, therefore, one would suspect very fast., IZxecution tiuze
on the Univac 1108 computer has been of the order .CL seconds
per guidance evaluation., It is obvious, therefore, that ithis
guidance fornmulation could be ec:ily impleamented by a
digital flight computer.

In conclusion, the guldance formulation in
conjunction with the piecing drocedure seems to work
reasonably well and the piecing procedure epnears to be an
adequate means of evaluating gravity over long buran arcs.
This procedure should also work for burn arcs much larger
than the example problem and should have apnlicability to
a large class of orbital transfer problems., The guidance
formulation presented in this thesis should, therefore, have
applicaebility to a wide rangc of orbital transfer probdlems.

As a result c¢f the analysis concluded in this

of the results in chapter 6 (Zxtensions) and extension
of the piecing procedure to out-of-planz maneuvers

( Gy concerns the out-of-nlane control) would seen

.

worthwhile,



The following derivation shows the complete solution
of the optimal orbital transfer-problem by the adjoint
method. Since the intent has been to solve this problen
explicitly the solution here is primarily tutorial in nature.

The dynamical equations are repeated here where

only the planar case is coansidered.

Fizure 4.1

Orbit Transfer For The Plznar Case

»
M

U = a sin 0p - 5oTp £ ' (A-1)
NV x2+27)2

W = a cos ﬁp - gOrOZZ (A=2)
( X2+2° )

X =10 . (A-3)

Z = (A-14)



The Hamiltonion and necessary conditions are also repeated

. i .2
H=1 +A1U + ABJ + A4 a sin 9p - 55T X

3
N 2%+2%)

h :Q 0 4 (A“S)

%(3/2) (x2+72) 225y \ * +

(}& +72)O/2
yosorel [ =2 (3/2) (P32 P (4-6)
(x2+72)6/2
M=oy goro2 —l— - N @oroa 3 X8
. L5
( +Z ) ( X2+7, )
- /\6 goro'2 3 Y7 (A-7)
A 12+22)
A, = op° =3 A, Y7 = 3 A 72 Ay (2=8)
1 = 2%0t0 / YA I Lo )
— 2 >
W x2472)” (V x%+2%)
1
N 2 oy L2, .2\1/2
AB = =- HZ = )“,+ Soro "/-( 3/2)(-'- +7 ) (2Z)

(x2+22)%/2
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2 [ (xBe33)3/2 _ 0572y (2422) 12 (23)

A o
T % &%o
(y2+z2y8/2 (4-9)
Y 2 e - e Ag
)\3 = goro -3 )\6 727 =3 /\l: L5+
5
N x%+29) (V 2e2)’ / (2-10)
;\ = et = - s -+ = -
L du Ay or Aty 0 (4=11)
:\ = =F = - ) = -
g = -H, =iz or A tay=0 (a-12)
Hep =0 = a A4 cos 9P - a A6 sin 9p (A=13)
or tan 6_ = an
- A
5

These equations may be coubined to form five differential

equations in five unknowns.®
}.C. = a sin §_ - AT 2y (4=14)
L p ,__;O-O e -« y
VZ 2
( )
e . 2
7 = a cos by = & (A-15)
tan §_ = ‘b (A-16)
o3
6
a
These five sescond order diflerential equations

are formed from the ten first order cl”fe*ential equations.
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.’ 2 - e - -2 A
A L = goro - 3)‘6 dad = ))\LL At My (i—;-l?)
5
V ¥°+2°) NV 72+72)
o 2 . ,.,2 . .
A 6 = 80ro - 3)\6 4 - 3/\1._ L2+ )\6 (.A.'-].O)
5 b
N x%+3) V F+2®)

The set of five equations ( ra1l throuzh A-18) can be solved
numerically to define a tine minimizinz trajectory and meet
the prescribed final conditions. It 1s observed that a set
of four initial conditions rnust ve found to solve this

problem. These initial conditions cre the initial values

0]

associated with the Lagrange nultiplier

4]

R6(to), and nmust be zxnown in ordcr to eset the prescribed
final conditions. The 1al conditioas for this trajectory
are completely specified by altitudc, velocity, flizht path
angle, and range (h, v, 7, ¢ ) and if all these quantities are
specified a unique set of values euxist for the initial
Lagrange multipliers values to solve the problen. If however,
fewer than these four final coanditions are specified ( such
as h, v, v ) then these initial values are not unique and a
further minimization problem can be done to select the optimum
range. An equation can be introduced whnich relates the
Lagrange multipliers and state wv.riables at the teraminal time

and this equation implicitly selects the cptinunm range. This

@®

equation is knowa as a transversality equation aand is

illustrated below for the ranze frce case (equation A-31).



It is noted that one transverszality cquation is introduced

for every free final coandition,

The transversality eguation ccm be derived fronm

the determinant of the following wairix of partial

derivatives.
to XO Zo UO ,WO 60 tf Xf Zf Uf Wf 0o
‘ T
tf 0 0 0 0 0 ] 0 1 0 0 0 0 0
Xo-e1 0 1 0 0 0 0 0 0 0 0 0 0
Zo-eZ 0 0 1 0 0 o o] . 0 0 0 0 0
Uo-e3 0 0 0 1 0 0 0 0 0 0 0 0
WO-eh 0 0 0 O 1 0 0 0 O 0 0 0
to—e5 1 0 0 0 C 0 0 0 0 0 0 0
2 2 2
Xo+Zo={r~+th){ O 0 o} 0 0 0 O ta2z 425,10 0 0 0
700 | il Bt
XC+7°- ololojololololofolaxlez.lo
f °f °f T f
Xfo+Zfo—‘/f 0 0 0 0 0 o} 0 Xf Zf Xf Zf 0
241 1{2 2{3 I{k 1{5 *f6 17 1&6 ’.9 ’ilo I&ll 1412
O eeee Initiel Tine
f eeees +inal Tinme
Where
- - Hi M -
Ml = HO = 1 + AlO U+ ABO W AAO a sin 9p
2. e . 2.
3 > 2
N x%+29) & +2%) (4-19)




Mg

1]
Q/ IO/
= b

Hy

[at]

(A-20)

(A=-21)

(A=22)

(A-23)

(A-2Y4)

(A-25)

(4-28)

(A-27)

(4~28)

(4=-29)
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12 b élfi_ = O (ﬁ.-BO)

36, /s

M

Worxing through the alzebra end sctting the determinant egual
to O yields the eguation (A=31).

. = 0 (A-31)

A

o+ A

-

A A A6

Once the transversalitly equafions save been determined (if any),
then the two point boundary value »roble:s can be solved by
iterating the initial values for the Lagranze multipliers

until the boundary conditions and transversality equations

are satisfied.



Lvpendix B

ERIVATION OF 4 LCSS FUNCTION

For any powered flizat maacuvecr the difference
between the earth relative velocity zained, V, and the
characteristic velocity, AV, spcat reprcsents a measurable
quantity which can be used to evaluate differeat trajectories.
The relative velocity change caanot be achieved by an equal
expenditure of characteristic velocity since retardiag
accelerations are present. It is of interest, therefore,
to analyze the difference between these two velocities
and to identify the source of the velocity loss.

Consider a rotating systca with cne axis
instantaneously along the earth relative velocity vector,

V, and another normal to this direction and in the plane

of motion. -
]

Figure B.1l

Loss Function Coocrdinate Systen

The rotating system (for plazar wotion) moves at the rate
L

9 minus v and the accelcration of a particle referenced to

72



this rotating system can be shown.

V = Vi

V = Vi + Vi
V=Vi-V (6=-7)%
where

-i_ = (9—7)—5 x-jt

(E-1)

(E-2)
(3-3)

The summation of accelerations iz this system can then be

equated to the kinematic acceleration to yield the equation

of motion.

v

£

/\

Ir/.——(‘rf -

e, S "Jr

Y

- D
local horizontal

Pirsur

~

¢ B.2

Loss Function Coordirncte

D = drag acceleration vector

= I R

1ift acceleration wvector

CoOsa= g sin? - 2

N
<
0]
ct
[©)
E)

sravitational acceleration vector

thrust acceleration vector

=
L

-1)
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O=~Fsin + g5 cosy= L+ V (8=-7) (B-5)

m

[

am =

The first scalar equation ropresents the chanze in velocity
along the V direction while the chonss norzal to this
direction is V (5-;). 5—; represcats the turning rate of the
coordinate system and is vcuzlly very swall for all powered

maneuvers. This V equation can be used to determine velocity

losses when V (4-7) is small.

Loss = characteristic velocity -~ relative velocity

(B-6)
T T
L =jf F dt -j’ (F cose~- g sinv - D)dt
i ) m
© © (3-7)
T
L i/f P (l-cosa) + g sinv + DY 4t
0 n n (B"B)
and L =F (l-cosa) + g siay + D (2-9)
i A

This loss function can be used as & switching function (to
determine engine on and off timc) since it is a fuzction of
not only control during the mazncuver, but of tine to initiate

the maneuver (i.e., L = g (7, 7. r)).

The components of the locs function ideally take

.

3
]
H
e
aQ
@
[
(9
o
L
*

the following form aroua



e
+g fe T sinv =

3 2

o Bl ""'%". ' a(l-cosa) 8
: |

'*('; 0 | I

g bt \

= - v 11 “ t

T R {

LR SR !

@ 2

3 (r<0)! (r>0)

= pericenter

Figure 2.3

Loss Fuaction

It is observed that a reduction of the loss function
occurs when g sin v (v) beccies nezative. Since this
function becomes negative wizn v ic nezative, a uaneuver
should be biased to the -7 side of z=uricentcr. The soue
is true for a maneuver centered arouvad crocenter excent
in this case the slope of g sin v 1is negativc. Thus one
should not center a maneuver carouad pcriccatcr or
apocenter geometrically but bias thesze nmancuvers to the
negative y side of the line of ajzsiuecs,., Since tiae gravity
loss function (g sin v ) is ideally lincor, it scrves
to displace the loss, a (l=-cos a ), while retaining the
original form. Therefore, trhe totzl loss fuaction
during a transfer maneuver will tend to have the fora,
l-cos 8§ , and an approxizate mcthod Icr “1“14¢01AQ thls
a

D/m is not prescnt for cxzo-atmospheric
maneuvers.

0
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function is to make it synreiric around the midpoint of

burn arc.
i i ridpoint of
i / ///} turn arc
0 T
ES
[%
Figure B.L
Loss Punction Fora
The loss function can be used as a switching function

(for single burn arcs) by innlementins such a procedure

for minimizing the form, l-cos § . The suidance procedure

discussed previously can solve in closcd form for values
of this loss function aad can therefore anininmize

function by insuring that Ly = L..

hif
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Aprendix
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BT L)

DERIVATION OF

g

Vs

The previous

dependence upon the gravity conzutati

CRAVIZY

suldance equations

COL2UTATION

heve a stron

Sa.

arcs the magnitude and direction of the zrevity vector do

a

not change substantially, however,

increased both the magnitude and dire

s

substantially. If however, a

the bura arc is

+909n ~
cition nmay chanze

sravity conmputation can be

introduced to yield "effective' gravity values the perfornance

of the guidance equations can be

iwpr

cved.

The following equatioans ccxdute values which estinrate

o

the effect of gravity over bura crcs.

¢ reprecsents the

average gravity magnitude, 3" is the cffective zravity direction,
and ¢ is the central aazle (or rease cazle).
pid -
- > Z -y
e )
_____ .
s o
¢ Pl ¥
z Z
Figure C.1
Effective Gravity Coordina.z Systen
Assume that ¢ (t) can be approxi.ated by ¢= $.L ot (t=-T).
* z
. . ~ *
The first integrals for ;_ and 3. follow.
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" T . T
&y = 1 f cos ¢ 4t £, = ;L__-/‘ siné dt (C-1)
T 0 T 0
For small J
sin¢ ~sing t+1 ¢° (t=7) cos ¢t (C-2)
pod
COS ¢ =~ coOs ¢mt - ;.s;t (t-., 3in %mt (C=3)
2
* T . - & *
8,= X / sin¢dt = 1f~- 1 cos ¢ t a1l ¢T (t sin ¢t
T 70 T\ $. 2 b,
A4 * o 2 3
+ ;Z cos ¢ _t) + 1 ¢<(§_ - 2) sin¢ t +
. o * °§ -t
$m 2 P o
. T ‘
2t cos ¢qt> (C-L)
¢ 0
=-1 { (1=-2 L 7) cos ¢.T + ¢ sin ¢ T -
. O = ) =
¢7T 2 ¢ i ¢y
(L+1 ¢T (C=3)
2 ¢y

Substituting the

>

¢t

cos
n

sin

Hy

ollowinz results

(Cc=-8)

(c-7)



g;= 1 y/r singdt = { (L - ¢7 ) sin ¢.T -
T Y0 2%, e
¢ cos ¢, T\sin ( ¢.T/2) + ¢ (C=2)
«2 = — Tz
$n = (¢2/2) b

In a similar manner the other intc-rzl may Lo obitained.

T .
g*z 1 j[ cos ¢ dt = ( ] cos ¢ T +
X = z% —
T 0 \ " P
¢ sin ¢ T sin ¢ T/2)
z > —
g ($.,7/2) (¢-9)

. ~ * * ~ .
The second integrals for g ead follow in cn analogous
O o S

oo’ Z
manner.
g* - // Sl'l(i)dt =2 1+ .(;’)"I‘ -
Z% E .
¢, = 2 b
sin (;NT/E ( (1~ jig),coa érT +
($,2/2) ’ 2
3% sin (4, T)) (6-10)
32 —5—

XX =5 7— -
¢ Al
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sin ($,%/2) <(1 - ¢7) (sin $.7) -

(¢mT/2)

cos

)\

=)

(C-11)

First and second gravity integrals ray now be expressed aad

used as follows.

T
jf By at
0

\
o
Ca
»
[o¥
ot

J/. g, At

(o]

These equations pruvide 2

gravity as a constant value both in na

T (

T (

v l»a
M

rvle
v

(C=12)°

(C-13)

(C~14)

(C-15)

.
coing

and direction

and may be used with the guidance cgultions introduced in

chapter 4.



BOUNDARY CCIIDITIONS

As previously indicated, the cerived suidance
formulation will not worlk fof larze burn arcs or relatively
low=-thrust maneuvers. The foraulation, however, doecs show
very good results for small bura arcs and can be nads to
procedure is used. This is a procedure by which a problen
can be segmented into a series of suall bura arcs. If such
a procedure is used, however, one connct oe assured that
the entire burn is near optizcl. The followingzg a

1
is formulated to select secis of interneliate boundary values

such that a piecing procedurc can be ncar cntincl.

3 e ™
Fizure D.1

Piecing Procedure

-

The general procecure envioyed will be to assunc
o J

v

that the Lagranze . _ti.liers (2) cre Tileccwise lincar and

2
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continuous. For instance, if the above nareuver is divided
into two separate burn arcs cud the coantrol function is
desired to be continuocus, then tlh. followingzg equation is

true ( for the planar case only).

(1) (2)
)\L*f = /\40
(1) (2)
"6 16,
The term A6(t) is constant ( KSO = Ag = Ag ), equal to 0@

£ 2z,
I

and is therefore proportional to the velocity required,

(1)

AZ = Zf -7 - gZT. Therefore, A6 can be zade equal to
T
(2) .(1) .(2)
A6 if Az = AZ R hese two conditions then insure that
0

the control function and multipliers are continuous. 4n

algorithm to successfully inplement this procedure follows.

B

coapute a rirse
suess rTor intop-
meciate toundary
values

| P M
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equation in Appendix G.

and T

(2)




m= 1,2 -

o(m) J(m) .J(m) (n)

A = Xp =X =-g,7
_ (m) -1 . (1)

8 = tan AY

P N ED)

AZ
(m) /n (m) n-1 (m) . (m) i r_‘(r;) _(m)
5 “(;_/—Zl gy F §1(V9Y1+1- Lisg ?,:—_1 =] )> ©os by
(m) n, (m (m) _(m)
Ap = %il VeXi Li cos 9p
(m) n (mn) n=1 m(m) 2 ‘(m) _(m) (m)
Cp = (g_-l S; - j_zzl (‘i+l & Jexj Ly ) cos g
D(m) %: Q(m) %Sl (S(m) %: (mg
= .+ . T -
P (izl 1§y Tilgh T
n=-1 (m) i () (=)
g_- <(Ti+l) 321 J s )) cos g

(m) (m) (ﬁ) .(m) n m(z:) R r1(m) 29 (12)
Ep = X - Xf + X 2 £ o 20 T3 )/2 - CP
(m) (m) T:‘(m) (m) (2)  (m) (a)
k.l = (Bp .up ) Ap Dp - .DP CP

(m)  (m) (m) (m)
ka = AP kl BP

W__@ @

9p = gp 51

(2) (2) (2)

§ =9 -5

P )Y

|

<:> Fizure D.2 continucd




A

cr

71

c

Fizure D.2

continued



DERIVATION OF AN COPTIMAL FCR¥ CF COHTROL
UNDER CONDITIONS OF CCHSTART GRAVITY

AND CONSTANT ”IRUST ACCZLEZRATION

A derivation of the control eguation for a coastant
gravity, constant mass flow rate guidance problem has been
previously introduced. The assuxptions made in this

derivation were as follows.

l. No atmospheric forcis are present

2. Gravity is constant or a fixed function
of time

3. Vehicle mass flow rate is constant or a

fixed function of tire.

A variation of this problem is introduced if cne considers
the effect of a constant thrust acceleration constraint
upon the transfer problem. Coansider the effect upon the

control of a trajectory which consists of

3

uncoastrained
acceleration phase followed by a constant acceleration
phase (which is implemented by throttling the spacecraft

engines). During the first trajectory phase both the vehicle

flow rate and thrust are constants and

ot

he acceleration nray

be determined as follows.



a(t) = F / (mo-rlt) (E-1)

The time at which the enzine throtzlce

Sy

u
3
<«
)

'__J
th
o

e
v

n leveo to we maintained.

N
O
by

expressed where a, 1s the accelerall
= - 1/ NP
to mo/m 7/ n a, (Z=2)

After this time (tm) the vehicle enzines are throttled to
maintain the acceleration, &, and the nass flow rate is

some function of engine thrust.

F(t) = am m(t) (E"B)
m(t) = E {7 (t) ) (E=4)
m(t) = X (m (t) ) (E-5)

The mass of the vehicle after t. is therefore described by

afirst order differential equation with initizl condition

P

to be

o)
[&N

m (tT) =F / a . Since X and 97 can be assun

Om

4

continuous with respect toz aad t tlen a uanicue solution
* . . . .
m (t) to equation E~-5 exists. The vekhicle mass is then a

fixed function of time described s follovs.

m (t) = My = mt t < tT (E-5)
m (t) =n" (t) t > tT (E-7)



Since F (t) is also a fixed fuucii.a o ti.z the transfer
problem containing constaat accelcration phases belonzs to.
the class of problem for which the bilinccor tanzent coatrol

t

law is optimal.

o

(en]



Appendin 7

ST e
I7T-GR 18 °Ch

CLOSED FORM

THRUST ACCILERATICT

The thrust acceleration intcsrals

are developed for use in the zui..zce

a spacecraft propelled by its rocket thruis

——— -
v Vex
D H ——
® 3
m,t 2 AT me1 AL
Figure F.1
Rocket Systen
Where
4} = mass of the rocket at
*
mAtL = 1&ss iacreanica. e

velocity of

m-=m At = mass of the rociict

V+ aV = wvelocity oi tre rock

Y = exnaust velocity o¢.
ex

a = thrust acceleratica

The acceleration eguation results froxa o7

conservation of momentun prisciple.

89

toz

R I
e Tine
<

the »colict ot tine ©

tize t + At
t at tine t + At



mV = (m - m A

nV = nV +

m AV =Vex
At

as At —= 0

Yex m

m

(F-L4)

The rocket mass may be exvressed as a linear ruanction of tine

(mo - mt) for a constant mass flow rate (n). This i

for non-throttled rocket engines which opecrate in

or a = -

-Mm ma/ =t

O t Lo/l (¥
=71 a=V__
T =%

a = Vex m

m
letting My
m

Successive evaluatioan of the intezrals can now be
T T
= - 3 A
f a dt —f Ve, dt =V __ In ¢
0 0 r7-% 7 =1
T T
4L — T. - 1 L
/ at dt _/ Vo tdt=rL-V, _T=J
0 0 T=T
T T
2 22 L 1
./f at™ dt i/r Vo, ©7 ¢80 == 7 Vey T
0 0 T =% 2

0]

true

a

vacuuii.

(F=5)



T T T
J/;/. a at® = J/" V.. et = v, J/~ <la - ln(T-T))dt
0 0 T_: 0
= =+ TL = =3 (7-10)
T 7
/f at at? ='/f vt at® =
0 -
T
- Vex.}[ <rln (r) = 71n (7=%) -t) it =
0
1S - V. T =- g (F-11)
ex ‘ B
2

T 7 .
// at® at° =/] v, t% et
0 S
T .
vexf <72 1n (r) = 2 1n (r =t) -Tt-_t__>dt =
0 2

-1Q -V 7o = =7 (r-12)




DERIVATION OF A RICURISIVI Z2UaTI0N

FOR BURW TI¥Z, T.

The value of t_. is necceszary to solve the clesed
1 ) v

form equations presented in thc zuicdonce formulation, Inctead

[

ct

of evaluating t, directly, however, it is more convenilen

f
to develop a recursive releationshiy rclating the current .
to the previous tf. A first guzes for t. is then sufficient
to yield a starting solution cnd then uzdating o this value

can follow from the recursive equction. Assume thet the

1)
value of t. can be exvressed as the sun of an cstinate, t.
i bl ’ 72
and a small perturbation.
tp =t + 8¢ (G-1)

The velocity to be gairncd over the intervel, T

determined as follows.

§ ? 13
| ] ° 'Y -
(av)2 = (a2 )% + (a7 )%+ (12) (c-2)

t
AX = X=X =35, te (G=3)

L]

°

L]
-

L
(aN]
i
N e
]
(SN
?
%3]
ct

Fly
N
(2
i
A
—

Introducing equation (G=1) into (C=2) yields the folloviaz

results.



L]
+ (A2 - g t
(az 528

LTy

The velocity change, AV, resulting frca the cagine thrust

follows.
AV = VeXl In 7, 4 vex2 in 5 (G=7)
H
175 Tom (T +3Ty)
AV = Vex In 1 +
1
]
a 0o
veXZ In 7, /(75 =1T,) (G-3)
| t
(Tom (T + T,)) / (o= T,
AV = Vexl 1n 71 +
-5
VeX2 In 7, - 1o ( 1- 87, ) (G=9)
H §
- Io o= Tp
S s
But In (L+X) =% =32 +¥2 =2 ... (G=10)
R
or 1n (1 + X) = X (G=-11)
AV = Vexl in Tl +
T _ o= ‘3



The velocity change achieved by the cagine (G=12) zust be

equivalent to the required velocity chanze (G=6).

AV2 = (V In 7, )2 +
ex A
1
1m0
2V V. In In 7 +
exl ex, 1 2
1]
1T M1 o to
2V V. 1n - 5T (V. 12 7, )
exl ex, 1 -2 ex, - 2
] t
1m T T T - I
2 - 2
+ 2VeX In 7, 85T, (Vex 8T, )
2 2
. al s oot .
2= tp 2m i )
[ 2 .a 2 0' 9
= (42X )%+ (aY ) + (12 )°
G' Oﬂ .'
-28T(AX8X+Ang+AZ gz)
2 2 2., .2 o
+ 3T2 (SX + oy R QZ) (C 13)

This equation further reduces if it is ecsumed that the
velocity gained by the thrust wcceleratioca for §T is ecual

to the gravity loss over the same intervil,



95

\ e:cl eXZ (-21‘22 o
1 . t
7'2— T2 Tl_ Tl 72- .L2
o' 2 o' 2 o' 2 > 2
= (AX )T+ (aY )T+ (a2 )5 =-v,, (In 7y )
1
- h
2 2
-2V V¥ in 7 n = - Ve . .
ex, "ex, 1 2 ey ( In 2 )
t | ]
=T Tm T o= Ts
(G=15)
.' 2 o 9 ou 9
5T, = 75 = T, (AX )"+ (AaY )™ + (azZ )7
2V _. . 1T + V 1a T
ex, eAl 1 ey 2
| §
1m 4 2m T
-V 1n T -V . 1 T
exl 1 eAa 2
%
m T wa 1
e 13 2= -2 (G=16)

It can easily be seen that a generalization of this intesra

is as follows.



\
[$)N

(C=17)
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