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Abstract

OpenMP, a directive-based API supports multithreading programming on shared

memory systems. Since OpenMP pragmas, directives, function calls, and environ-

ment variables are platform-independent, the API is highly portable. OpenMP pro-

vides necessary hints to the compiler in order to parallelize the given code, instead

of focusing on the low-level details of the hardware.

Performance prediction methodologies enable estimation of performance factors

(execution time, cache misses, effect of a compiler’s optimizations) prior to the ac-

tual execution process. Existing approaches involve mathematical modeling of these

performance factors. In order to achieve the best performance using OpenMP, it is

critical to analyze cases such as the efficient cache utilization, optimal distribution

of the workload among the CPUs.

We attempt to solve the problem of efficient per-thread workload distribution by

predicting an optimal combination of an OpenMP scheduling policy and a chunk

size (we call this combination a “class”). We employed PAPI hardware counters, R

statistical package, machine learning software WEKA, TAU toolkit, and the OpenMP

collector API. A set of heuristics were applied to analyze the data to find out the

similarities between snippets of code pertaining to the same class. We developed a

framework for taking measurements to gather the training data for the predictive

model being constructed.

We evaluate our approach using several case studies from application domains

such as Dense Linear Algebra, Structured, and Unstructured Grids. The results

demonstrate that there is a set of parameters that influences the choice of the ”class”

for performance prediction.
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Chapter 1

Introduction

An application’s performance and parallelization are tightly interwoven. OpenMP

API allows improvement of a program’s execution efficiency. Rapidly evolving hard-

ware makes performance analysis even more challenging. If an application showed

considerable speedup when a certain OpenMP scheduling policy is used, this does

not guarantee the same behavior on a different architecture. Moreover the speedup

varies when the computation patterns vary. So it is essential to incorporate certain

performance prediction techniques that relies heavily upon scheduling schemes.

Performance prediction can facilitate the process of software design space ex-

ploration process. More importantly, our approach not only allows choosing an

appropriate scheduling policy but the chunk size used by an OpenMP runtime envi-

ronment when assigning data to threads based on the scheduling applied. Not only is

performance prediction able to make the process of developing an application faster,

it can help to facilitate the process of making an application adaptable to the new
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architecture it might be tried on.

1.1 Problem Statement

Computer architectures currently available present a significantly diverse space

of variations. Programming applications also evolve in their number and complex-

ity. The range of problems which are solved using parallel programming paradigms

widens from year to year. All the factors mentioned present a considerable amount

of research which needs to be done before actually putting programming languages

and OpenMP directives into use. This process can be extremely time-consuming.

Therefore, it is of paramount importance to be able to model the effect of OpenMP

directives usage beforehand. Specifically, OpenMP provides means of scheduling it-

erations of a loop for threads participating in the process. Execution time achieved

highly depends on the combination of scheduling policy and the chunk size chosen.

The combination which should be used to achieve desirable performance is affected

by several factors - number of iterations (problem size), number of threads used, and

compiler used to produce an executable, platform on which the application is going

to be executed and execution time when no OpenMP scheduling was applied. We

propose a method which would unite all those characteristics in a predictive model.

The latter should take all the input information (the factors mentioned previously)

and output a combination scheduling policy and chunk size, which would lead to the

desired performance gain.
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1.2 Research Objectives

The foremost intention of this research is to find a relationship between the fac-

tors mentioned in 1.1 and a combination of scheduling policy and a chunk size. We

developed a predictive model which takes several parameters on the input and out-

puts a suggestion on which policy and a chunk size to use. Nowadays the spectrum of

programming applications is immensely broad. This fact leads to different patterns

of memory access, cache utilization and variation in computational complexity levels

overall. Taking this into consideration, we made a decision to model performance in

the scope of groups of applications called ”Dwarfs” from Berkeley [1]. In particular,

we worked with three of those patterns - Dense Linear Algebra, Structure Grids, and

Unstructured Grids.

Our second goal was to classify the applications we tested so far into classes, each

of which corresponds to a combination of scheduling policy and a chunk size. This

classification allows us to locate a new application into one of the categories, thus

providing a prediction on which policy we should use.

In our research, the following concepts present the factors mentioned in 1.1:

1. Hardware counters, to present hardware platform participating in the execution

process;

2. Several compilers, to reflect the difference between the way in which compilers

produce executable files and its influence on performance;

3. Problem size, to analyze how the number of iterations affects performance and
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OpenMP directives choice;

4. Number of threads, to indicate an influence of system capabilities on the choice

of OpenMP directives.

1.3 Research Method

In this section, we will give a big picture of our approach. The main goal of our

method is building performance prediction model. This model must take an input

and analyze it in such a way that the case being explored is located in one of the

classes.

The input is presented by an application’s signature, namely performance coun-

ters. The other part of the model’s incoming data is characteristics of a specific case

for which we want to get a prediction - the compiler used to build an executable file,

number of threads which is going to be used, problem size, and execution time of a

program when no scheduling policy was applied.

Having all this information in our model, it must produce an output - a clas-

sification of a given particular case in one of the classes. Each class presents the

combination of scheduling policy and a chunk size.

To build a model we gather training data set - a number of various cases. For

each of the cases we extract predictors values, the factors mentioned earlier. Also,

we gather data when applying different combinations of policies and chunk sizes.

After all the information is gathered for each case, we extract the best combination
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of scheduling policy and a chunk size. We do it by taking a combination which

showed the shortest execution time. Next, a particular case is categorized into the

class related to the combination.

After a training data set is ready, we train and validate our model using k-fold

cross-validation method.

1.4 Thesis Organization

The rest of this document is organized as follows. In Chapter 2, we are dis-

cussing currently existing approaches to performance prediction and modeling. In

Chapter 3, we introduce important background information related to OpenMP, ma-

chine learning predictive models, hardware counters, compilers, profiling tools, and

an overview of programming patterns, “Dwarfs”. Chapter 4 is dedicated to imple-

mentation details and an overview of techniques and methodologies used. In Chapter

5, we evaluate the resulting model by testing it using a k-fold cross validation strat-

egy; we also present our measurements and explanation of our findings. Finally,

Chapter 6 concludes the thesis and proposes ways to improve our approach.
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Chapter 2

Existing Approaches to

Performance Modeling

In this chapter, we are going to give a brief overview and summary of work

from other researchers which is devoted to predicting the performance of parallel

applications.

We will present an overall methodology existing at the moment, give a summary

of works which we found the most relevant; and propose factors which made us go

another way.

2.1 Importance of Performance Prediction

Several factors account for significance of performance modeling:
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1. According to Moore’s law, computer architectures develop at a very hectic pace

providing software developers with new problems of proper utilization of the

resources;

2. According to Wirth’s law, software development is much slower than that of

hardware. This leads to a mismatch between machinery resources and appli-

cations created. The mismatch, in turn, results in a complex software design

space exploration process;

3. As new programing paradigms arrive, novel compiler software emerges proving

a wide range of setting options for a program optimization.

All the reasons stated above make it very complicated to come up with an ap-

plication which brings a desirable performance on the first try. A long process of

application and platform system analysis together with an unavoidable process of

trial-and error wastes a great amount of time and energy. In this sense, an ability

to model or predict program’s performance before actually running it comes as a

remedy.

Existing approaches aim at an opportunity to find similarities between applica-

tions, platforms and runtime factors in order to classify a new program in one of the

classes. Generally speaking, each class is a set of changes or settings which lets the

application pertaining to a class perform at the best level.

Among the methodologies explored, the most popular are:
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1. Platform - oriented. When a new architecture arrives, it is of utmost impor-

tance to be able to tune an application in such a way that it shows desirable

performance. In this case, a prediction model is built for each application which

is going to be run on this platform;

2. Compiler - oriented. To figure out the best combination of compilation and

optimization flags of a given compiler for a given application, a prediction

model is constructed;

3. Derivative predictions. This class of methodologies calculates execution time

for a program with given features (both application features and platform char-

acteristics); and after that, performance factors are extrapolated.

The next section presents an overview of research work which uses methodologies

described earlier.

2.2 State of the Art

This work describes an approach to performance prediction in an architecture

- independent manner [2]. The set of program characteristics is divided into two

groups - application specific features and architectural characteristics. Static and

dynamic types of analysis are used to predict an application’s execution time. Static

analysis gathers information on a Control Flow Graph (CFG) for every routine in a

program, identifies loop nests, and schedule dependencies between instructions (both

register and memory). Dynamic analysis is performed on an application’s binary
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during runtime. Frequency histograms (depicts how often a particulate CFG edge

is traversed), and memory access behavior monitoring information (measurements

of memory reuse distances) are collected to describe the program from an execution

standpoint. To construct a model of a program’s behavior, data from multiple runs

with different input parameters is collected. After dynamic data for an application

is gathered, a CFG is constructed using information gathered at the stage of static

examination. CFG is then used to determine paths in the graph and compute their

frequencies. Execution cost in terms of instructions to be executed is computed for

each of those patches. For each specific target architecture, an instruction execution

time is calculated. Thus, by having the number of instructions and the execution

time of each of them, the research team is able to predict the execution time of the

program.

The final goal of the work presented in a paper is to model performance of a

hybrid application, which is to be executed on both shared memory system and

systems supporting MPI paradigm [3]. More importantly, they try to determine the

most efficient combination of threads (OpenMP) and processes (MPI). The research

team utilize both hardware profile (capabilities and resources of a given platform,

network features) and the application signature (a set of operations performed by

the program). The program in their approach is presented through its memory

access pattern and carried mathematical operations. To predict an application’s

performance without actually running it, they first estimate communication time of

a hybrid program, and then communication time of a pure MPI program is estimated.

Message-passing efficiency is measured based on the ratio of the two communication
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times, the ratio is highly dependent on the number of OpenMP threads and MPI

processes used. In the same manner, efficiency for an OpenMP program is used - a

ratio of estimated execution time of serial and parallel versions is taken.

The work is devoted to a problem of hybrid MPI-OpenMP programs performance

prediction based on memory bandwidth contention time and communication model,

[4]. Their approach is focused on using memory bandwidth contention time on

systems with a small number of cores in order to predict the performance on a larger

architecture. First, they model performance of OpenMP applications. The modeling

process makes the following assumptions:

• Memory bandwidth is considered to be the primary source of performance

difference between a single core and a multi-core system;

• The parallel application’s computation time can be divided into two types -

time spent on computing using shared resources and time stalled on non-shared

resources;

• When an application loads all the cores equally, time spent by a single core to

compute results (Tc) does not change, time spent on memory bandwidth (Tm)

increases when memory bandwidth per core is getting inefficient.

The first step the research team takes is to calculate execution times when one and

two cores are used. When computing the latter a bandwidth ratio between baseline

(one core) and two cores is used. The calculation includes both time characteristics

described in the second assumption above. After that, Tc and Tm are found. Thus
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execution time of any number of cores can be calculated using Tc, Tm (which are

found using execution times on one and two cores) and the memory bandwidth ratio

between baseline (one core) and the target number of cores.

For modeling MPI program’s performance, different combinations of number of

OpenMP threads and MPI processes must be considered. The research team first

defines an overlapping factor, which considers total execution time, time spent on

computation only and communication time.

When both models for MPI and OpenMP are constructed, a performance of a

hybrid system is computed as a sum of predicted OpenMP and MPI execution times

multiplied by the overlapping factor.

Although the described approach requires few measurements, special care needs

to be taken when configuring a hybrid system - one MPI process with OpenMP

threads is run on each node.

The paper is devoted to a problem of computer architecture and optimizing com-

piler co-design [5]. The main goal is to predict the performance an optimizing com-

piler can achieve on any micro-architectural configuration. As a result, using the

model, a new architecture can be tested for an optimizing compiler in order to pick

hardware which will provide desirable timing. The research team choose a compiler

(GNU one). They also pick 200 micro architectural configurations and 1000 com-

piler optimizations via random sampling. The runtime factors they are interested

in - execution time, energy and the energy delay (ED) product. A model is created

for each program for which the performance should be predicted. First, they run an
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application compiled on -O1 optimization level on randomly chosen architectures.

After that, values for performance counters are gathered. With the use of a machine

learning algorithm known as Support Vector Machines (SVM), they try to find sim-

ilarities between different architectural configurations in terms of the performance

an optimizing compiler can achieve on them. Thus, to predict performance which

can be achieved by a given application compiled with given optimization flags on a

given architecture, the program’s features needed to be located in one of the groups

of similar architectural configurations.

As we see, this approach uses performance counters; however, the model has to

be built for each application tested.

The work develops a technique which allows one to predict performance of a

program on a given architecture when certain transformations are applied to the

application [6]. The transformations that are considered in the paper are various

compiler optimizations - loop unrolling, loop normalization, common subexpression

elimination, etc. For a given set of programs which are to compose the training

set of the model not all the possible transformations are considered. Only those

optimization flags which discriminate speedups of the programs to a considerable

degree are taken. The training data set of the model consists of speedups gained

after randomly selected (from the pool of transformations which discriminate the

programs the most), transformations are applied. First, for a given program a set of

transformations is chosen in such a way that they characterize the program more ac-

curately. The transformations are picked based on the following logic: by monitoring

speedups which are gained after transformations are applied the research team tried
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to find out how similar this application is to the programs which are in the training

set of the model. The ANN (Artificial Neural Network) machine learning algorithm

is used.

The paper proposes an approach to determining good optimizations for a pro-

gram based on values of hardware counters [7]. The final goal of the work is to build

a predictive model, which, when receiving an input in a form of a set of hardware

counters, outputs optimizations which will appear to be the most effective. A train-

ing set of the model is constructed as follows: hardware counters are collected for

programs in a training data set; five hundred optimization flags sequences are ran-

domly sampled and applied to each of the programs which are to train the model;

speedups for the programs are collected; the ratio between the speedup of a current

sequence and -Ofast optimization is computed, if the ratio is smaller than one the

sequence of transformations is removed from the training set. As the result, they

have a space of optimization flags sequences divided by a hyper plane in a multi-

dimensional counters space. To predict which optimization flags are suitable for a

given program, a logistic regression method is used. It matches hardware counters

of a program being tested to counters of programs in a training data set. In other

words, the model tries to locate counters of the application into one of the classes

divided by a hyper plane. When this matching is found, the flags which appeared to

give the best speedup for the program in a training set are said to be the best option

for the current program.

Nevertheless, these methods discussed do miss some points.

According to the works we explored, a model should be built every time a new

13



application/compiler/architecture arrives. This factor leads to a lack of flexibility

and generality.

As a rule, the models featured in the related works try to predict performance

for the whole program. This fact also makes the model not capture the peculiarities

of computations and resource management employed by the program. If there is a

need to predict performance for a part of a program certain amount work needs to

be done in order to present the snippet being tested as a separate program.

Finally, the models proposed used few features to locate a program in one of the

classes. A scarce number of characteristics of an application leads to possible low

accuracy rate in case when there are classes which are similar to each other in terms

of the attributes values pointing to that class.

In our approach we suggest the following points which employ best practices of

performance modeling as well as proposing a novel strategy:

1. We would want to use hardware counters as we need a program’s signature

from the hardware level;

2. Machine learning models are showing accurate results with high accuracy rates;

in this respect, we are going to utilize it for the classification challenge;

3. Our approach suggests using a greater number of program’s features to be able

to discriminate programs in a training more accurately;

4. The fact that we are building a model for every computation pattern in a set

of chosen ones (3.5) allows us to state that the prediction will be more robust;

14



5. We also try to correlate our prediction to a compiler, which is used to build an

application. This is important, as different compilers distribute resources and

manage thread workload in different way. Including this factor in our model we

will be able to capture influence a compiler has on distribution the workload

among the threads iterations.

In this chapter, we presented several research works aimed at developing per-

formance modeling strategies. Further, we would like to leverage certain points

discussed as well as propose our approach to performance prediction problem chal-

lenge.
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Chapter 3

Background to our Methodology

In this chapter we provide a reader with background information on the concepts

and software tools we used in our research. We present an overview of an OpenMP

programming interface. Further we discuss various predictive models offered by

machine learning scientific field as well as the software tools used for machine learning

approach. Next we talk about types of modeling different situations. We introduce

compilers that we are using during our experiments, present programming patterns

called ”Dwarfs”. Finally, we wrap up by discussion of the importance of performance

modeling and profiling tools we employ.

3.1 OpenMP Programming Model

OpenMP API employs a fork-join execution model and provides a broad range of

techniques to perform user-driven parallelization. This interface is available for C,

16



C++ and Fortran programming languages.

The API is often referred to as a user-driven parallelization methodology because

a programmer with the use of special compiler directives inserted in source code

is able to execute an application on a multi-core system. More specifically, a pro-

grammer does not assign work to threads. The user, however, has various options

as to how threads should execute a structured block of code. In the following few

paragraphs we would like to present basic features of OpenMP as a programming

paradigm and an interface.

As indicated earlier, OpenMP presents a fork-join programming model ([8]):

Figure 3.1: OpenMP fork-join programming model

Any program starts with a single thread named a master thread (3.1). Whenever

a thread encounters parallel key word, a team of threads is created. After completing

all the work inside a designated structured block of code, these threads are joined

back into a single master thread.

OpenMP API employs a relaxed-consistency, shared-memory model. Each OpenMP

thread has access to memory space shared among all threads in a current team, as
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well as its own private memory. At each point of execution a thread has a tempo-

rary view of variables which are visible to all other processors. However, its private

memory space is not available to other participants.

Next we would like to give a brief overview of the most valuable OpenMP direc-

tives. The directives are being enabled by the pragma preprocessing key word. The

structure of a directive is shown below:

Figure 3.2: OpenMPdirectives format

The most fundamental directives (3.2) in OpenMP API are parallel and for .

As mentioned earlier, these directives enable forking a current process on a team of

threads. In this work we mainly emphasize the importance of the latter directive

mentioned. The for directive manages assigning iterations of a loop to threads for

execution of the loop’s body utilizing a multi-core system.

There are several clauses available forfor construct in the API:

1. Private(list of variables). Each thread has its own copy of variables from the

list and variables of other threads are not visible to a current one;

2. Shared(list of variables). Describes variables which are shared among all threads

participating in the execution of a given block of code;

3. Lastprivate(list of variables), firstprivate(list of variables). These clauses indi-

cate which variables are defined earlier in the code or by a master thread and

that appropriate values should be copied to a thread’s private memory; or if a
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variable will be used after the joining took place and a value of a variable from

private memory of a thread which executed the last iteration will be copied

into that of master’s thread;

4. Ordered. All iterations will be executed in a sequential order;

5. Schedule (kind [,chunk size]). Specifies the way in which a loop’s iterations are

divided among the threads.

In our work the last clause mentioned plays an exceptional role. Kind value spec-

ifies the way in which all iterations will be divided among threads; an optional chunk

size value indicates the number of iterations that will be assigned to a participant, by

default this is equal to 1. There are several scheduling kinds or policies in OpenMP:

1. Static. All iterations are divided into groups of chunk size and statically as-

signed to threads in round-robin fashion in the order of the thread number;

2. Dynamic. The chunk size is the number of iterations that are assigned to a

thread whenever a thread is ready to request a new portion of work;

3. Guided. The same as dynamic scheduling with one exception - for a chunk size

equal to 1 the size of a group of iterations assigned to a thread is proportional

to the number of unassigned threads; for a chunk size greater than 1 the rule

of forming groups of iterations is the same with one restriction - a group of

iterations cannot contain fewer than chunk size iterations (except the last group

of iterations which can contain fewer iterations);
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4. Runtime. Is not a not a scheduling scheme per se. The scheduling policy and

a chunk size are defined using special runtime variables.

The concept of scheduling iterations among the threads is of utmost importance

since it leads to consideration of several aspects of parallel programming. Overhead

of assigning work of chunk size iterations to a thread. Each kind of scheduling policies

mentioned earlier has a separate mechanism of doing, moreover, different compilers

and different platforms implement the very process of assigning differently. An end

user might not be aware of all the peculiarities of a system one works on. Thus,

picking a right policy and a corresponding chunk size have a direct relation to the

speed of an application development process and an executable performance.

Furthermore, the number of iterations which are to be distributed and the number

of threads that the application is going to be executed with are also points to be

taken care of.

When solved improperly, a loop iterations scheduling problem ([9]) may lead to

a considerable load imbalance, which is the main cause of resources wastage.

Our research is devoted to finding a way of optimizing a programmer’s work. So

far, the majority of OpenMP users have had to analyze all the factors on their own.

The solution - a combination of a scheduling policy and a chunk size - may be far

from an optimal one.

20



3.2 Machine Learning Models

In this section we want to present basic techniques of the Machine Learning

approach which we found useful in the framework of our research.

3.2.1 Predictive Models

As stated in the Research Objective section (1.2) our foremost goal is to classify

any particular case when applying a scheduling policy with a chunk size into a group

of cases with similar features to find out the best combination of policy and chunk

size. The problem of classification ([10]) presents a number of ways to recognize a

particular case and place it into a group of similar ones. Any classification mold

must trained , i. e. a sufficient amount of data should be gathered so that the model

”learns” what are the classes presented and what is the distribution of provided data

among the classes. After a model is trained, a new example which is not involved in

a learning process is picked to be classified in one of the groups.

When dealing with classification problem we must explore two main directions -

supervised and unsupervised learning methods. Supervised models allow one to take

control of knowledge of a field of problems. Those models provide an advantage

of tuning the model more accurately according to our knowledge of the classes,

computation pattern involved, and the data we work with. Unsupervised learning

models - cases or samples are grouped in classes based on similarities between among

the samples. This type of modeling comes into practice when some input values are

missing.
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Further, we would like give a brief overview of machine learning algorithmic

approaches.

Decision Tree-based methods. The ultimate goal of the approach is to divide the

training data into groups of homogeneous members. This division is based on the

most discriminative dividing criteria. The latter means either variance of a numeric

output or the entropy of a group. The process of training the model stops when

there is no significant gain in homogeneity. Finally, samples being a part of a group

are the leaves of the tree. Those examples will vote for the prediction - the majority

forms a class. A strong side of tree based methods is their flexibility. However, in

terms of performance those methods are not among the best ones;

Linear regression-based methods. The main purpose of such an approach is to

present an output (usually a numeric value) in the form of a linear equation where

all the input variables have weights. Thus, the whole purpose of training such a

model boils down to finding those coefficients. When input and output variables

contain categorical values special care needs to be taken for presenting those factors

in a numeric form. What is good about linear models is their high speed of learning,

but on the other hand some input values require making an assumption which leads

to inaccurate reductions;

Neural networks. A neural network can be considered a multiple layer of per-

ception. Each layer is a logistic regression unit with multiple binary inputs and one

binary output. Those models are able to learn non-linear relationships between an

input and an output. As the output is presented in a binary form, categorical output

variables need to be transformed into binary ones;
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Bayesian network. This kind of algorithm is basically a dependency graph where

each node represents a binary variable and each edge represents the dependency

relationship. The learning process boils down to finding all joint probabilities of all

incoming edges. Those models are highly scalable; however they require the data to

be presented in a binary form;

Support vector machine. The input for those models are numeric values, the

output is presented in a binary form. At the heart of those algorithms is finding a

linear plane with maximum margin to separate output classes. On a good side, those

models are capable of dealing more than two classes;

Nearest neighbor. The idea of this method is to find a number of similar data

points from the training set and the output is interpolated. As a rule, interpolation

gives the majority values for categorical outputs and an average for numeric ones.

As no model needs to be trained, those algorithms are considered to be simple in

use. Yet, the data needs to be presented in a form of a distance-aware tree. An-

other weakness of this approach is the fact that it cannot handle large numbers of

dimensions of the output.

3.2.2 WEKA Machine Learning Software

WEKA is a machine learning workbench which provides an environment for solv-

ing classification and regression problems. The most commonly used part of this

software is an Explorer tool.

Explorer ( 3.3 ) is an interface which allows loading data and performing different
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Figure 3.3: WEKA Explorer tool screen-shot

kinds of analysis on it:

1. Visualize the data with respect to different attributes;

2. Solve classification problems - build a model base on a loaded data set and

classify a new test set of data points. The output shows classification and errors

of predictions. That can enable the user to find the most effective models for

a particular problem;

3. When performing classification or regression various methods (comprising the

ones discussed in 3.2.1) are available;
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4. We can also test the model using cross-validation option;

5. Clustering algorithms for dividing an input dataset on clusters is available as

well;

6. One of the most important features of the WEKA Explorer interface is selecting

attributes. This techniques evaluates all the attributes and indicates which ones

are the most important when predicting an output value.

In our research we use WEKA Explorer’s interface to evaluate different machine

learning models in order to pick one with the lowest error rate, and to evaluate our

model on test cases when trying to locate them into one of the output classes.

3.3 Approaches to Predictive Performance Mod-

eling

As mentioned earlier in this work, at the heart of our approach there is building a

predictive model. It must take an input of several factors and output a combination

of scheduling policy and chunk size. The model should output the prediction so

that design space exploration process speeds up because there is no need to run an

application trying out different combinations of policies and chunk sizes.

Further we would like to give a short summary of two fundamental approaches

to modeling ([6]).

1. Static Program Feature - based modeling. This method assumes that one can
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identify a set of static program features which can characterize a program’s

behavior. A good side of this approach is that to predict an application’s

behavior we don’t have to execute it. However, it is very hard to extract right

features which would statically reflect how an application would behave;

2. Reaction - based modeling. This kind of algorithm involves an empirical anal-

ysis of a program. One has to test or ”probe” an application to observe its

reaction and after that look at similarities between this reaction and reactions

of previously executed programs. This approach allows us to perform a more

objective analysis - we don’t have to extract the features. We made a decision

to use this method in our research.

3.4 Compilers

It is a well-known fact that OpenMP based parallel applications heavily depend

on how efficiently the object code code is generated; how well the work is distributed

among the threads. All this is managed by a compiler. In our work we use three

compilers - OpenUH, PGI compiler and GNU compiler. Further, a brief overview of

each of the compilers follows.

1. OpenUH Scientific Compiler, [11]. OpenUH is an open source portable OpenMP

compiler suitable for C/C++/Fortran98 languages. OpenUH compiler is based

on Open64 compiler. The compiler uses a different approach to translate from

Open MP directives code into multi-threaded code with runtime library codes.
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What is different in OpenUH is the fact that the code inside the parallel region

is transformed into a micro task and then is encapsulated into the original par-

allel region. The advantage of this method is that the variables used inside the

parallel region are still visible to all threads, thus making them shared. An-

other strong side of the compiler is it is an optimizing compiler. What’s more,

OpenUH attempts to optimize both original code inside the parallel region and

the micro task generated;

2. GNU Compiler, [12]. Is a part of GNU Compiler Collection (GCC). It has

been ported to various architectures. Also it is adopted as the standard com-

piler for most Unix-like computer operating systems. It covers front ends for

the following languages: C (gcc), C++ (g++), Objective-C, Objective-C++,

Fortran (gfortran), Java (gcj), Ada (GNAT), and Go (gccgo). OpenMP imple-

mentation is one of the most significant parts of the compiler. This compiler

cannot be omitted because it is the standard accepted by various vendors thus

making it possible to port a model which included measurements from GNU

compilers on a wide variety of programs;

3. PGI Compiler, [13]. Incorporate global optimization, software pipelining, and

vectorization and shared-memory parallelization facilities. Supports OpenMP

and MPI APIs. Has been accepted as a compiler producing fast code for high-

performance applications by scientific and engineering communities;
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3.5 Berkeley Dwarf Mining Programming Patterns

Patterns of computation are of crucial importance when dealing with performance

modeling. The way in which a computation goes shapes memory access, certain

resources usage. Thus, applications pertaining to different patterns have differences

in their application signature, mostly in the level of hardware counters. A set of

counters revealing for one pattern may not be significant of others at all. At this

point we would like to introduce the ”Dwarf” ([1]). The dwarfs refer to thirteen

classes of computation and communication patterns. Members of each group are

similar in computation and data movement. Considering the list of the patterns, we

decided in favor of the following ones:

1. Dense Linear Algebra (DLA). Classic vector and matrix operations comprise

the class. Usually, data is laid out in a form of arrays, operations are done on

rows and columns. If one tries to map the applications pertaining to the class

onto a multi-core system, data distribution issues come as the first priority in

achieving performance gain. The figure 3.4 outlines a common set of operations

which can be considered a Dense Linear Algebra pattern:

Figure 3.4: Dense Linear Algebra Common Expression
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2. Structured Grids (SG). Data is arranged in regular grids (3.5). The sequence

of grid update steps comprises the computation. At each step all points are

updated using information from neighboring points. When mapping onto a

multi-core system a contiguous sub grid can be assigned to a processor. In this

case each thread has to extract only neighboring nodes on the grid.

Figure 3.5: Structured grids example

3. Unstructured Grids (UG). The computation is performed on irregular grids

(3.6). The dataset is usually presented as a mesh covering surfaces of objects.

The mesh can be transformed to a graph whose edges represent the geomet-

ric nearest-neighbor relationship between mesh points. When mapped onto a

multi-core system the irregular grid can be divided into sub-meshes. The only

communication on the sub-groups level is that of neighboring nodes. With the

use of graph partitioner each processor is assigned a portion of a mesh in such

a way that as few edges are crossed between processors as possible.

Figure 3.6: Unstructured grids example

The factors which caused us to pick the patterns indicated earlier are:

• We look for the patterns which are most commonly used by programmers in

various domains of problems;
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• Easily distinguishable patterns in code;

• All three patterns selected have a significant degree of parallelization.

3.6 Performance Application Programming Inter-

face (PAPI)

The PAPI interface provides developers with a tool for getting use of performance

counters ([14]). The counters reside in a small set of registers named Events. Each

event represents a special signal related to a processor’s function. Taking values of

those counters into account allows developers to see how the source code is mapped

onto a target architecture. There are two types of the events: native and predefined.

Native events are the signals which are measured by the CPU, those events can be

accessed only through the low-level interface. Predefined or preset events are about

one hundred events which are derived from the native ones. This correlation facil-

itates the process of performance analysis including performance tuning, compiler

optimization, debugging, monitoring and performance modeling.

PAPI consists of two interfaces for monitoring the counters: low level and higher

level interfaces.

The high-level interface allows to start, stop and read a specific event at a given

time for a single-threaded application. It enables taking measurements of present

events only which limits its use when derived events need to be investigated.
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The low-level interface allows a programmer to handle the counters in groups

called EventSet. The low-level interface also allows to take all necessary measure-

ments for each thread in a multi-threaded application. In addition,the low-level

interface is far more programmable than the higher one, that allows making mea-

surements finer grained. Finally, the overhead incurred is considerably low.

Having considered the factors above, we opted for the low level interface.

Several steps need to be taken to make use of the low-level interface:

1. Initialization of the low-level interface - sets up PAPI library;

2. Create EventSets - create an integer handler for the set of events;

3. Add events to the created EventSet;

4. Start, Read, Stop Events in a set : start - starts counting the values of events in

a specified EventSet; read - copies the values of events in a specified EventSet

into an array; stop - stops the process of counting the values of events in a

specified EventSet and returns the measured values.

3.7 Performance Modeling and Analysis

Performance is a major factor to consider when assessing the result of a working

application. Performance modeling in turn provides a way to tune an application

on an early design stage so that the outcome is closer to the desirable one. When

approaching performance modeling one has to identify the application scenario. If a

31



model is being created for a class of programs - the similarities between members of

the class should be captured. This is the point when hardware counters may come

into use - logically, each class of programs must have a set of counters responsible

for reflecting a pattern of computation.

Performance modeling is of utmost importance because it is one of the major

stages of software design space exploration. A great amount of time, human and

financial resources are saved when future performance can be estimated. Here we

would like to present certain benefits provided by performance modeling:

• Eliminate trial-and-error approach to tuning application’s performance;

• Design process is more purposeful when performance considerations are made

in the early stages of design;

• Performance modeling enables developers and scientists to estimate shortcom-

ing of the code in order to avoid backtracking in future;

In our research we investigate a new way of performance modeling in order to get

an insight into what factors play a role in picking a scheduling policy.

3.8 Gprof Profiling Tool

Since we are interested in a particular snippet of code, we have to profile the

application in order to identify the loop that we are interested in. The details of

loop identification problem are discussed in the next chapter.
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Gprof is a profiling tool providing various forms of application analysis:

• Flat profile. This type of profiling outputs execution time spent on each func-

tion;

• Call graph. For each function it’s callers and callee are displayed;

• Annotated source. Outputs the copy of source code; each line is annotated with

the number of times it is executed;

• Line-by-line profile. All lines of the source code are sorted by the percentage

of the total execution time spent on this line;

In our work we are going to use the last option since we would want to analyze

the code from within.

3.9 OpenMP Collector API

On the final stage of our research we explored a few applications from different

dwarfs using OpenMP Collector API. Since our work is tightly related to an OpenMP

parallel programming paradigm, profiling of OpenMP code can provide a number of

valuable insights.

The Collector API ([15]) implements communication with the OpenMP runtime

and gather information about a program’s execution details. In a nutshell, it reg-

isters events by using omp collector api routine routine and allowing backtracking

each event. Every time a program encounters an event (a particular state during
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the execution process), The OpenMP runtime library verifies whether the event is

registered by the collector tool. The collector being used in our work is implemented

the OpenUH compiler ([11]).

To visualize and analyze the information gained by the collector tool we use TAU

profiling toolkit.

TAU (Tuning and Analysis Utilities) ([16]) enables researches to investigate per-

formance information through code instrumentation. Those instrumentation can be

inserted manually or automatically via Program Database Toolkit (PDT). OpenUH

runtime has the collector API incorporated in in the compiler that is why when

configured properly the TAU toolkit uses UH collector API instead of the default

PDT.

The information that the collector provides includes implicit barriers for each

parallel region; exclusive/inclusive execution time for each thread participating in a

parallel region.

TAU toolkit also provides performance information analysis and visualization.

Considering picture 3.7 we can observe the mean of execution time spent on various

functions; we can monitor the proportion of time each thread spent on execution

of a particular function. After compiling the program with TAU compilation script

tau cc.sh and execution of the generated program a number of application profiles

are created. Those profiles are analyzed with paraprof profiler which encapsulates

TAU methodology:

Using the collector API we are able to see all implicit barriers in all parallel
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Figure 3.7: TAU paraprof profiler

regions of the program. That helps us to understand the behavior of the application

better.
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Chapter 4

Performance Modeling

In this chapter we are going to introduce and give a detailed explanation of our

approach - taking measurements, analyzing received data, and building the predictive

model.

4.1 Overview of the Approach

The purpose of the following section is to provide a reader with a brief intro-

duction to the approach and to present all the steps we take to come up with the

result.

Since OpenMP scheduling is applicable to f̈or̈loops, the very first thing that we

would want to do is to identify the loop which pertains to a certain dwarf (4.2). Our

final goal is to build a predictive model. The model should find out how similar
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different loops belonging to chosen dwarf are to each other. By similarity we mean

how close their performance measurements are. Applications with similar features

form a separate class - the same combination of scheduling policy and chunk size

show suboptimal performance for those loops. To find similarities between the loops

we have to characterize them by taking an application’s signature (1.3). For that

purpose we measure hardware performance counters available on the machine using a

PAPI interface (3.6); we also measure execution time for the loop when no scheduling

policy is applied. The latter characterizes the application’s default behavior on the

platform when no scheduling is going on.

Since each class stands for a particular combination of OpenMP scheduling policy

and a chunk size we have to determine which combination appears to be suboptimal

for a particular case of execution configuration. By execution configuration we mean

the following factors:

• A compiler, which is used to produce an executable file;

• The number of threads used;

• Problem size.

Thus, we have to consider each of the configurations and find out which combi-

nation of scheduling policy and a chunk size produce desired performance. In order

to do so we have to take measurements of execution time of the selected loop when

various combinations of scheduling policy and a chunk size (including no scheduling

case) are applied.
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After the timings are gathered, for each of the cases we define the best combina-

tion of scheduling policy and chunk size, the one which leads to minimum execution

time. This combination forms a class - if for an particular configuration this com-

bination appears to be the most beneficial, it belongs to a corresponding class, we

l̈abel̈this configuration.

Machine learning predictive models require a data set which is used for training

process - from this training data set an algorithm learns which values of the features

point to which classes. In order to form the training set we gather information on

hardware counters. Using this data set our model learns what are the classes (com-

binations of scheduling policies and chunk sizes) and what are their characteristics

(execution time when no scheduling is applied, execution configuration and hardware

counters). In other words, for each dwarf, our model divides the space of provided

cases into classes and tries to match each case’s characteristics with the class. More

importantly, our model tries to find out similarities between cases when the same

combination of scheduling policy and chunk size appear to be the most beneficial.

Our model is supposed to work as follows:

1. Take an input data: compiler, number of threads, problem size, execution time

with no scheduling applied, and values of hardware counters. These features are

supposed to characterize a particular execution configuration. OpenMP API

is highly implementation-dependent, each compiler has its own heuristics to

implement the API’s details including scheduling policies. Number of threads

affects the workload distribution because each thread gets a portion of work
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to perform, thus the number of participating threads and their features (which

thread is faster/slower) is important. Execution time with no scheduling ap-

plied characterizes default application’s behavior. Hardware counters provide

an insight into low-level details of execution of a particular loop when various

scheduling techniques are applied;

2. Determine, to which class in a training data set the current input is closer;

3. Output the result - the class to which an application pertains.

A big picture of our approach can be represented by the diagram in Figure 4.1.

First of all, we explore various computation patterns considered three of the dwarfs

for our research (3.5). We consider applications pertaining to a certain dwarf in order

to identify computationally intensive loop which employs a particular pattern. We

instrument our code with the framework we developed in order to gather informa-

tion (take performance measurements) which is going to be used by our model as a

training data set. After the last step is completed a predictive model is built and

evaluated for each of the selected dwarfs. Finally, a set of techniques are applied to

improve the model’s accuracy.

Further, a detailed explanation of implementation techniques and methodology

follows.
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Figure 4.1: Diagram of our approach
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4.2 Implementation Details

The section presented below will go through all the implementation details and

steps that we take.

Our plan is as follows:

1. Select a loop for which we would want to gather information to build/test our

model;

2. Wrap the loop with developed framework in order to gather performance mea-

surements;

3. Gather performance information;

4. Complete the data set which is going to be used by the model to learn;

5. Build and evaluate the model;

6. Explore various preprocess techniques to improve a model’s accuracy, 5.5.

4.2.1 Target Loop Selection

As we mention earlier in this work (3.5) we picked three computation patterns

for performance prediction:

• Structured Grid;

• Unstructured Grid;
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• Dense Linear Algebra.

In a given application we analyze all the loops using gprof profiler (3.8)to find

the most computationally intensive loops. We use line-by-line profiling mode in or-

der to find which lines of the code consume a considerable percentage of the total

running.We are interested in computationally expensive loops because in this case

choosing a beneficial combination of scheduling policy and a chunk size affects the

performance of the whole application. After identifying those parts we analyze the

loops which include those lines: we are picking the loops where computations meets

the requirements of a particular dwarf. Code snippets pertaining to a particular

computation pattern employ similar memory access pattern and resource manage-

ment.

In this subsection we would like to give examples of loops in the applications we

use and explain why the computation inside the loop can be rated as an example of

a dwarf.

1. Structured Grids.

The computations which belong to this pattern are applied to a regular mul-

tidimensional grid with a well-defined structure. The operations inside the

computation represent a number of grid update steps. During each of the

steps the values of a current point is updated using the values of its close

neighbors. Usually, the applications working on images are put into the Struc-

tured Grid category. The reason for this is that images are regular grids on

practice. Applications which traverse and use different parts of an image are
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also categorized as Structured Grids.

To exemplify our way of reasoning we would like to present a reader a snippet of

code which we found to be the most computationally intensive and the closest

to the pattern in comparison with other loops presented in the code. The

application that we are using to give an example is SRAD, one of the programs

from the Rodinia benchmark suite ([17]).

After profiling is done, a line-by-line analysis detects the most computationally

intensive parts of the code.

time (%) name

9 .75 main . omp fn . 0 ( srad . cpp :153 @ 401 cb f )

8 .43 main . omp fn . 0 ( srad . cpp :143 @ 401ad5 )

Our next step is to investigate the loops which have those lines in order to

check whether it exhibits SG pattern. The body of the loop that contains grid

computation looks as follows:

. . .

for ( int i = 0 ; i < rows ; i++)

{

for ( int j = 0 ; j < c o l s ; j++)

{

. . .

dN[ k ] = J [ iN [ i ] ∗ c o l s + j ] − Jc ;

dS [ k ] = J [ iS [ i ] ∗ c o l s + j ] − Jc ;
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dW[ k ] = J [ i ∗ c o l s + jW[ j ] ] − Jc ;

dE [ k ] = J [ i ∗ c o l s + jE [ j ] ] − Jc ;

G2 = (dN[ k ]∗dN[ k ] + dS [ k ]∗ dS [ k ] \

+ dW[ k ]∗dW[ k ] + dE [ k ]∗dE [ k ] ) / ( Jc∗Jc ) ; \\ l i n e # 143

. . .

c [ k ] = 1 .0 / (1.0+ den ) ; \\ l i n e # 153

. . .

}

}

. . .

In this code J variable represents an image, rows, cols represent problem size.

As we can see, the image which is a grid is heavily used, its parts are accessed

in a pattern which depends on the values of several values.

As the image’s parts are visited, we would want to look at how the cache is

utilized as such data structures are large in size and cannot be fit into cache

memory. The applications pertaining to the dwarf should have similarities

in the way they optimized cache usage, and how the number of cache hits

and misses fluctuates. The large size of an image leads to an importance of

scheduling the iterations among the threads. In terms of the chunk size to use,

it has to be small enough to exploit parallelism and large enough to utilize the

resources of each processing unit;

2. Unstructured Grids. This pattern usually deals with situations when there
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is no direct mapping between where things are in memory and how they are

represented in the physical space. The computations are performed on an

irregular mesh or grid. An ideal example of the pattern would be a computation

which tries to update mesh elements using information from its neighbors.

For the explanatory purposes we would like to present the following snippet

of code taken from CFD solver application from the Rodinia benchmark suite

([17]). The application is an unstructured grid finite volume solver for the 3D

Euler equations.

Line-by-line analysis output is:

time (%) name

22 .43 s q r t ( cmath :429 @ 40205 c )

9 .02 s q r t ( cmath :429 @ 401 f 8 e )

5 .53 compute speed sqd ( eu l e r3d cpu . cpp :148 @ 402029)

4 .41 compute ve loc i ty ( eu l e r3d cpu . cpp :143 @ 40200d)

3 .98 compute f lux ( eu l e r3d cpu . cpp :245 @ 401 f ca )

Lines number 429, 148, 143 are not in the loop bodies, next computationally

intensive line is number 245 is found in a UG loop:

for ( int i = 0 ; i < n e l r ; i++)

{

. . .

momentum i . x = v a r i a b l e s [NVAR∗ i + (VARMOMENTUM+0) ] ;

momentum i . y = v a r i a b l e s [NVAR∗ i + (VARMOMENTUM+1) ] ;
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momentum i . z = v a r i a b l e s [NVAR∗ i + (VARMOMENTUM+2) ] ;

f loat d e n s i t y e n e r g y i = v a r i a b l e s [NVAR∗ i + \

VAR DENSITY ENERGY ] ;

. . .

momentum nb . x = v a r i a b l e s [ nb∗NVAR +\

(VARMOMENTUM+0) ] ; \\ l i n e # 245

. . .

}

The object variable represents an irregular mesh which is processed in different

stages of the computation. As we can see, the unstructured grid presented by

variable is heavily visited. The mesh is irregular, thus the index of a point

which needs to be accessed is carefully calculated using momentums for each

of the dimensions of the grid. With respect to OpenMP scheduling, the mesh

partitions should be distributed among threads in such a way that the next

partition to be processed is close in memory to a previously accessed one. Such

application may have similarities in cache utilization;

3. Dense Linear Algebra. This computational pattern represents classical vector

and matrix operations. The data is usually processed in a form of rows, columns

or matrix blocks.

To exemplify our way of thinking when choosing a loop we would like to present

a piece of code taken from LUD application from Rodinia benchmark suite

([17]). The program calculates a set of linear equations.
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The most computationally intensive lines of the code are:

time (%) name

58 .75 lud omp ( lud omp . c : 30 @ 400 f 4 f )

34 .56 lud omp ( lud omp . c : 38 @ 400 fb7 )

After the lines are identified we investigate the loops which contained them.

. . .

for ( j=i ; j <s i z e ; j++)

{

sum=a [ i ∗ s i z e+j ] ;

for ( k=0; k<i ; k++)

{

sum −= a [ i ∗ s i z e+k ]∗ a [ k∗ s i z e+j ] ; // l i n e # 30

}

a [ i ∗ s i z e+j ]=sum ;

}

. . .

In this snippet of code a variable a is a matrix which is processed for both

reading and writing purposes. Applications in this dwarf have similar memory

hierarchy issues - distribution of data among the L1 - L3 caches in such a way

that the most commonly used parts of vectors/matrices are in cache; since the

computation overlaps such applications prevent them from having a good level
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of scalability. The latter factor leads to the fact that with the increase of the

number of threads we use the performance gain is not very significant after

some point.

Since line number 30 is in the DLA loop already, we do not explore line number

38.

To summarize, we try to pick the loops which include as many features of a

corresponding dwarf as possible, another factor which influence our choice - problem

size, working with a particular dwarf we picked loops which have the same upper

bound.

4.2.2 Measurements Framework Introduction

To build a predictive model we need to gather a lot of parameters of the program.

In order to do that we develop a framework which gathers information about all

necessary parameters; later they are used to form a training data set for the model.

The framework allows taking measurements of hardware counters and execution time.

The measurements are taken separately so there are no conflicts on a low hardware

level between the parts which are involved in measurements.

Our framework consists of three parts:

1. Initialization - all the variables are set up in this section. The code involved in

this part is placed right before the loop being tested. PAPI library is initialized

in this part as well;
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2. Start - the measurements are started up here. The part is placed right before

the loop being tested and right after the Initialization part;

3. Finalization - all the measurements are finalized and are printed in a CSV

(Comma Separated Values) format.

We developed a framework consisting of three parts because of several factors:

• All necessary variables and PAPI library have to be initialized once in a pro-

gram. That is why this part is placed before the parallelized loop (outside the

parallel region);

• Since we take hardware counters measurement on a per-thread basis the start

part is placed inside the parallel region - to capture measurements from all

participating threads;

• To finalize (stop counting the events) the measurement for each thread we put

the en part right before the exit from a parallel region.

The three parts are implemented in a form of header files which are included in

the code being tested using an #include directive. In other words, the frameworks

”wraps” the loop that we want to get performance information about.

We implement our framework in a form of header files because it allows us to

instrument the parallel region itself. In a sense, the framework wrapper is a part of

the program, this fact reduces the overhead as compared to calling external functions.

The latter would not allow us to operate inside the parallel region before the loop is

being parallelized.
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Further we would like to give a detailed description of each of the framework’s

parts.

4.2.3 Framework Implementation Details

We would want to start the detailed description of the framework with the ini-

tialization part.

As mentioned earlier in this work, we are interested in both execution time mea-

surements and hardware counters measurements. These gatherings are performed

separately: PAPI hardware counters measurements would incur a certain degree of

overhead. We would not want to include this overhead in execution time measure-

ments since it can affect the choice of a suboptimal combination of scheduling policy

and a chunk size - the hardware counters are captured inside the parallel region, thus

the time spent of evoking PAPI functions will be included in the loop’s execution

time. Another reason for separate measurements is that we measure counters in

groups (discussed in the next couple of paragraphs), hence we run the application

each time we want to gather information on a particular group; event sets can include

different number of counters, thus the overhead incurred by capturing a particular

group of counters is not constant from one even set to another.

We take measurements of two different aspects of a program - execution time and

hardware counters. Each of those aspects requires separate operations taken to set

up the measurements.

• Execution time. This part of the measurements tracks execution time when
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various combinations of OpenMP scheduling policies and chunk sizes are used.

Thus, in an Initialization part we have to set up the chunk sizes that are going

to be used. Various chunk sizes are passed through a text file which looks as

follows:

2 0

5 0

10 0

5 0

10 0

Each of the file’s lines stand for the percentage of the problem size which is

going to be used as a chunk size, and the mode 0 signifies that we are measuring

execution time. The percentage of the problem size is chosen as a chunk size

because it allows to adjust the number of iterations each thread gets, if a chunk

size is a fixed number than for big problem sizes the loop parallelization is very

fine grained. The percentage of the problem size as a chunk size enables us to

reflect the magnitude of the problem size.

The input in a form of a text file is chosen because we have to run the appli-

cation for different scheduling policies and chunk sizes. Since both scheduling

policy and a chunk size are a part of OpenMP API, they have to be hardcoded,

i.e. we can’t pass them via a command line. To make the measurement pro-

cess more efficient and reduce the number of executable files we have to run,

we hardcode the policy and a chunk size is changed from one run to another -

a file line number is passed to an application via command line interface.
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In the Initialization part for execution time measurement we indicate which file

contains chunk sizes percentages and we read it line by line into two variables

- percentage of a problem size which is going to be used as a chunk size; mea-

surements mode. The line of the file which stands for a particular percentage

of problem size that we want to try is passed to the application being tested

trough a command line;

• Hardware counters. This part of measuring process is responsible for monitor-

ing the values of all the hardware counters available on the platform. Initially

we have no knowledge about which CPU signals counts (events) are important

in terms of OpenMP scheduling policy selection; we don’t have the information

on which hardware counters reflect the way the workload is distributed among

threads. That leads us to measuring all the counters available on the platform.

To make this process meaningful and efficient we measure counters in groups.

The groups completion process is very important because hardware counters

are measured on a very low level, thus, we have to make sure that each part of

the CPU is measured separately. This condition will eliminate an overlapping

between measurements, making them more accurate and trustworthy.

First of all, we find out which counters can be measured together.

We take a list of all the counters available on the platform using papi avail

PAPI utility . The command outputs all the counters available and indicates

whether a particular counter is native (events native for a certain platform) or

derived (calculated using native counters) (A):

52



(...)

PAPI L1 DCM - not derived, Level 1 data cache misses

PAPI L1 ICM - not derived, Level 1 instruction cache misses

PAPI L2 DCM - not derived, Level 2 data cache misses

PAPI L2 ICM - not derived, Level 2 instruction cache misses

PAPI FP OPS - not derived, Floating point operations; optimized to count

scaled single precision vector operations

PAPI FAD INS - not derived, Floating point add instructions (Also includes

subtract instructions)

(...)

After having all the counters available in the list we combine them in groups

in the following manner: take the first counter in the group, put in a list, add

the second counter to the group, use papi event choser . This command checks

whether the supplied counters can be measured together. For example:

pap i even t choo s e r PAPI L1 DCM PAPI FP OPS PAPI FAD INS PAPI L1 TCH

will produce

Event PAPI L1 TCH can’t be counted with others

Counters PAPI L1 DCM PAPI FP OPS PAPI FAD INS are not derived coun-

ters, PAPI L1 TCH is derived. To find out which native counter is used to

calculate PAPI L1 TCH we ran

p a p i a v a i l −e PAPI L1 TCH

The output:
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. . .

Native Code [ 2 ] : 0x40000011 |DATA CACHE MISSES |

Number o f Reg i s t e r Values : 2

Reg i s t e r [ 0 ] : 0 x0000000f | Event S e l e c t o r |

Reg i s t e r [ 1 ] : 0x00000041 | Event Code |

Native Event Desc r ip t i on : |Data Cache Misses |

. . .

As we can see DATA CACHE MISSES (DCM) event is used. Since PAPI L1 TCH

and PAPI L1 DCM are related to L1 cache, they can’t be gather together be-

cause the value of PAPI L1 DCM is used to calculate PAPI L1 TCH. As the

values of the events counts are saved in special registers (counters) the same

register is going to be used to be both written (to record PAPI L1 DCM) and

read (to calculate PAPI L1 TCH) at the same time, that leads to incompati-

bility of some derived and native counters.

We keep adding counters from the initial list until a newly added counter can’t

be measured together with the counters which are already in the list. After

that a newly picked counter becomes the first in our algorithm and a new group

is formed. We form 16 groups. We understand that various permutations of

the counters would end up in fewer groups, however, the number of groups

does not affect the measurement accuracy - measurements for each group are

performed in separate runs. The number of counter in the group also does not

affect the accuracy of measurement - since counters for a group are compatible

with each other, they do not interfere while application’s execution.
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Since each group must be measured in a separate application run we have to

execute the program for each of the group. The number of the group is passed

in a way similar to the chunk size - through a text file.

We are able to form 16 groups of counters. To indicate which group should be

used at the moment we use a text file consisting of the following information:

0 1

1 1

2 1

. . .

15 1

The first number in each line represents the group number which has to be taken

care of; another number shows the measurements mode - hardware counters.

We have to have two values for the mode to be able to use the framework for

both execution time and hardware counters. Only the line number is passed

to the benchmark program.

Each line of the file is read into two variables - group id and measurement

mode.

The following snippets of code exemplifies the way the groups are formed in

the initialization part.

First we hardcode the number of counters in each group:

In the header file which is responsible for the Initialization part we first specify

the number of counters per group:
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( . . . )

switch ( g r i d )

{

case 0 :

NUM EVENTS=3;

break ;

case 1 :

NUM EVENTS=2;

break ;

case 2 :

NUM EVENTS=3;

break ;

( . . . )

}

( . . . )

The next step we should take is forming the groups of the counters based the

group id passed to an application:

( . . . )

switch ( g r i d )
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{

case 0 :

group1 [0 ]=PAPI L1 DCM ;

group1 [1 ]=PAPI L1 ICM ;

group1 [2 ]=PAPI L2 DCM ;

NUM EVENTS=3;

break ;

case 1 :

group1 [0 ]=PAPI L2 ICM ;

group1 [1 ]=PAPI L1 TCM ;

NUM EVENTS=2;

break ;

case 2 :

group1 [0 ]=PAPI L2 TCM ;

group1 [1 ]=PAPI FPU IDL ;

group1 [2 ]=PAPI TLB DM;

NUM EVENTS=3;

break ;

( . . . )

As we are dealing with PAPI hardware counters interface (3.6) we have to set

up a PAPI library to be able to use the interface. The library initialization is
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performed using the following function:

( . . . )

P A P I l i b r a r y i n i t ( PAPI VER CURRENT )

( . . . )

Since we are working on a multi-threaded applications, we have to initialize

the library support for each thread:

( . . )

PAPI thread in i t ( ( unsigned long ( ∗ ) ( void ) ) omp get thread num ) )

( . . . )

The latter setup allow each thread to call all the PAPI functions separately,

thus we can take measure nets for each thread and after the data is gathered

we can find an average of a particular value to get a general view across all

the threads. We would want to take hardware counters on a per-thread basis

in order to generalize the measurements across the threads. If we capture

counters outside the parallel region, only one thread (a master thread ([8])

performs events counts and information from other threads is missing, it can

lead to an improper characterization of the loop.

After all the necessary variables are initialized and set up we can start the mea-

surement process. The Start part of the framework focuses on two aspects: execution

time measurements and hardware counters measurements.

• Execution time measurements. Based on the mode we use ( 0 for execution

time measurements) we initialize loop execution time counting:
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( . . . )

s t a r t u s e c = PAPI get r ea l u sec ( ) ;

( . . . )

Function PAPI get real usec() ( [14]) returns total real time elapsed since some

starting point, the time is measured in microseconds. Only a master thread

takes this measurement as we need an overall execution time for the loop - a

metric used to evaluate the performance of a snippet of code.

• Hardware counters measurements. For the measurement mode equal to 1 we

perform hardware counters measurements. For that purpose we use the follow-

ing sequence of steps inside the parallel region:

1. PAPI create eventset( &private event set) - create an EventSet handler,

we need it to be able to reach the group of the counters;

2. PAPI add events( private event set, ( int * ) group1,NUM EVENTS) ) -

add events which are specified by a current group (whose number is passed

to an application) to the created event set;

3. PAPI start( private event set ) ) != PAPI OK ) - starts counting the

values of the hardware counters which comprise the specified group or

event set.

Those three steps described above are taken inside the parallel region. The reason

for this is that we want to collect the hardware counters’ measurements performed by

each thread. If those operations are done outside the parallel region, all the counters
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will be measured by master thread only, thus not including measurements inside the

parallel region we lose information from other threads.

The purpose of the Start part of the framework is to launch the measurements.

After the measurements are initiated, the loop is being executed as it normally

would. After all the computations inside the loop are done we have to stop measure-

ments of execution time and hardware counters. Since we perform execution time

and counters measurements separately, we would want to describe the end part of

the framework for each mode:

• Execution time. We take another time stamp outside the parallel region after

the loop is executed using:

end usec = PAPI get r ea l u sec ( ) ;

and subtract it from the initial time stamp we got in the Start part.

• Hardware counters. First of all, we stop all the counters measurements made

by each thread using:

PAPI stop ( p r i v a t e e v e n t s e t , va lue s ) ;

All the counters measured by a thread are copied into values array for further

processing. After each thread values array having measured counters we find

an average of each of the counters across all the threads. The average values

of hardware counters enable us to get a generalized view of low-level loop’s

behavior.
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The source code of all the parts of the framework can be found in B.

In this section we presented our methodology and technique to take performance

measurements on the code. Further we are going to discuss our experiment and

findings.
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Chapter 5

Experiments and Findings

In Chapter 5 we are going to introduce the experimental part of our work. We

will present execution time and hardware counters measurements, machine learning

models we use along with the explanation of our findings. Also, the steps we take to

investigate to built models are described.

5.1 Testbed

The following section presents the test bed on which we run our experiments.

The executable files are run on Shark cluster, nodes shark25 through shark29

([18]).

Each of the nodes mentioned is based on SUN X2200 Server.

The CPU that are used for our experiments have two 2.2 GHz quad core AMD
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Opteron cores, 8 cores total per node. The capacity of main memory is 8 Gb.

The network involved includes a 96 port 4xInfiniBand SDR switch and 48 port

Linksys GE switch.

5.2 Benchmarks Considered

This section presents the list of benchmarks we use for our experiments to gather

training data for a predictive model. Only the OpenMP version of the applications

indicated are used. Each application being tested pertains to one of three dwarfs

mentioned earlier in 3.5.

1. Rodinia Benhcmark suite, [17].

• Streamcluster . The application pertains to a Dense Linear Algebra Dwarf.

The application is a modification of the streamcluster benchmark in the

Parsec suite developed by Princeton University. For an input matrix it

finds a predefined number of medians in such a way that each point is

assigned to a closest center. The sum of distances to the power of 2

defines the quality of clustering;

• LU Decomposition . The application pertains to a Dense Linear Algebra

dwarf. The algorithm used in this application calculates solution for a set

of linear equations. It decomposes the input matrix into a product of a

lower triangular matrix and an upper triangular matrix;

• Back Propagation . The application is related to an Unstructured Grid
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dwarf. It implements a machine learning algorithm which calculates weights

for nodes in a layered neural network. There are two phases in the appli-

cation: the Forward Phase, which propagates activations from an input

layer to an output one; and Backward Phase in which an the observed

error and the requested value on the output layer if propagated back to

an input layer to adjust weights;

• CFD Solver . The application is categorized as Unstructured Grid. It

solves the three-dimensional Euler equations for compressible flow;

• Myocyte . The application pertains to a Structured Grid dwarf. It simu-

lates cardiac heart muscle cell;

• Particle Filter . The benchmark is related to a Structured Grid dwarf.

The algorithm implemented within the framework of the application esti-

mates the location of a target provided with noisy measurements of that

location and an a path in a Bayesian framework;

• SRAD . The application pertains to a Structured Grid dwarf. Based on

partial differential equations (PDEs) it presents a diffusion method for

ultrasonic and radar imaging applications. The most frequent use of this

algorithm is removing locally correlated noisy without affecting important

features of the image;

• Hotspot . The application is categorized as a Structured Grid. It is a tool

used for estimation of temperate of a processor based on architecture and

power measurements. The algorithm employed in the benchmarks solves

a series of differential equations for block;
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• Kmeans . The benchmark is related to a Dense Linear Algebra dwarf.

Implements a clustering algorithm widely used in data-mining methodol-

ogy;

2. Parboil Benchmark suite, [19].

• Stencil . The application is related to a Structured Grid dwarf. It presents

an iterative Jacobi stencil operation on a regular grid;

3. Traditional matrix-matrix multiplication . The application pertains to a Dense

Linear Algebra dwarf. This benchmark performs a dense matrix multiplication

operation.

5.3 Machine Learning Models Employed

This section is aimed at giving a detailed description of machine learning models

we try in our experiments. Earlier in this work (3.2) we gave a brief introduction to

types of the models.

5.3.1 Supervised Machine Learning Task Type

Since we categorize all the runtime configurations into classes (each class repre-

sents a combination of an OpenMP scheduling policy and a chunk size) the most

suitable type of machine learning task would be a supervised one. This type of a

model infers a classification function from a labeled training data set. The training
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data set consists of training examples. Each of these examples is represented by

of a set of input values and an output value - the class the example is related to.

A supervised learning algorithm analyzes training set and produces a classifier - a

classification function having a set of values on the input outputs a predicted class.

We take the following steps to solve a supervised machine learning problem:

1. Categorize all the examples, which form a training data set. In our case, we

classify a runtime configuration into such a class (a combination of an OpenMP

scheduling policy and a chunk size) where the execution time achieved is the

smallest - we estimate execution time for each of the combinations.

Example: static OpenMP scheduling scheme along with chunk size equal to 5%

of a problem size enabled to minimize execution time (compared to the execu-

tion time we get from other combinations) for a particular runtime configura-

tion (a compiler we use, number of threads, problem size, hardware counters

values); thus, the configuration is labeled as ”s 5”;

2. Gather training data set. In order to do so, we take measurements of execution

time for various combinations of an OpenMP scheduling policy and a chunk

size; hardware counters are measured for all runtime configurations when no

scheduling is applied. We need to gather values of the counters only for the

default scheduling since the default program’s behavior for characterization

purposes. Default scheduling implies static scheme and a chunk size equal

to the number of iterations divided over the number of threads. The latter

approach allows getting a generic picture on an application’s behavior;
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3. Determine input features which are to represent the learned function. Initially,

we have all 40 measured hardware counters, a compiler used to produce an

executable file, the number of threads, and execution time when no policy is

applied as those features. Later we select attributes based on how well they

separate the training data set into classes. We use the WEKA software tool

for that purpose ([20]);

4. Run the learning algorithm on a training data set to train a model;

5. Evaluate the model by supplying a test example which is not included in a

training data set. The model has to predict the class for which the example

should be related.

In our work to complete steps 4 and 5 we use k-fold cross validation. The algo-

rithm of model evaluation works as follows:

1. Break the training data set into k groups;

2. Train the models using k-1 groups as a training data set;

3. Classify examples included in k-th group are classified using the built model.

All combinations of the groups are tried and the average result is considered.

We employ the WEKA software tool to perform k-fold cross validation.
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5.3.2 Supervised Machine Learning Algorithms

The section below gives a minute description of the machine learning algorithms

that we use to build and validate our predictive model. We attempt to test several

models. The choice of models is explained by the fact that they are widely used

algorithms in a scientific community and well-known to produce stable and accurate

predictions ([10]).

• Bayesian Network (BN). Also known as belief networks, BN are referred to

a family of probabilistic graphical models (GMs). Each node of the graph

represents a random value and edges represent probabilistic dependencies be-

tween corresponding random values. In BN, each variable is independent of

the nodes which are not its descendants provided that that the state of the

parents is known. The graph structure which is often used is a directed acyclic

graph (DAG). For example, a BN can represent e relationship between diseases

and symptoms. Given symptoms, the networks computes the probability of a

patient having a particular disease.

To provide a reader with a better used of how BN actually works we would like

to exemplify the algorithm as follows ([21]).

Suppose we have two events which can turn the alarm (A) on - coolant pipe

leakage (CP) and high temperature (HT). The DAG below shows the relation-

ship between those three variables:

The probabilities of various situations in this model are:

The joint probability function is:
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Figure 5.1: DAG, BN example

P(A,HT,CP) = P(A — HT,CP)P(HT — CP)P(CP)

Now we can infer probability of any situation we want, in this example the

probability of the situation when the temperature is high and the alarm is on

is:

• Naive Bayes. In simple words, the classifier assumes that there is no relation-

ship between presence or absence of one set of an object’s features and presence

or absence of another set of features. The probabilistic model of the algorithm

is a conditional model:

p(C —F1, ..., Fn)

C - represents a class, F1 through F n - features of objects to be classified,

those characteristics are used to separate the training set into classes. Using

Bayes’ theorem we can present the probability as:
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• Support Vector Machine (SVM) . The algorithm constructs a hyper plane or a

set of hyper planes in high-dimensional space. The larger the distance between

the hyper plane and a data point in a training data set the better the model is.

To be able to classify the sets of data points which are not linearly separable

the original space is mapped into a much higher-dimensional space;

• Artificial Neural Networks (ANN). The network consists of a group of artificial

neurons. A neural network is an adaptive system. It changes its structure

during the learning process. The neurons in the network are divided into groups

- layers. The very first layer has input nodes, inner layers that process input

information, and output layers that represent the classes. Learning an artificial

neural network boils down to evolving the neurons by continuous evaluation

of their output, calculating the weighted sum and comparing the result with

70



a threshold. The most frequently used algorithm for ANN training is back-

propagation of error. Initially, each input node is assigned an arbitrary weight.

After calculating, the error between actual and desired outputs is propagated

backwards to adjust the weight. The process continues until the error does not

exceed a threshold;

• Random Forest. The algorithm constructs decision trees and outputs a class

which is a mode of the classes output by individual trees. The term of a

decision tree is central in the algorithm being discussed. The goal is to create

a model to predict the value of a target variable having several input values.

An interior node of the tree represents an input value, leaves - a value of a

variable to be predicted. A tree can be trained by dividing the training set into

subsets in accordance with the attributes. The process is stopped when further

splitting does not give better predictions. Thus, Random Forest algorithm is

much more powerful than an individual decision tree. It can deal with a great

number of input variables; the model can classify unlabeled data. When all

the trees comprising the forest are built, all of the data is processed by the tree

proximities are calculated for each pair of cases. If two cases reside in the same

terminal node (a leaf) their proximity is increased. After that, the proximities

are normalized by dividing over the number of trees. Proximities are used for

replacing missing data and detecting outliers.
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The algorithms presented are a part of the WEKA machine learning software tool

([20]).

5.4 Code Instrumentation And Training Data Set

Completion

The following section presents a detailed explanation of our approach to building

a predictive model which takes a set of parameters on the input (1.2) and produces

a combination of OpenMP scheduling policy and a chunk size that allows for better

performance on a certain platform. We will discuss which steps we took to complete

the training set, machine learning models we tested, training data set preprocess

methods we employed, and collector API involvement.

5.4.1 Code Instrumentation

As we mentioned earlier in this work we have to gather performance data to

build a predictive model. In order to complete our training data sets (one set per

dwarf) we develop a framework for taking all necessary measurements (4.2.2). After

identifying the loop that consists of computations pertaining to a certain dwarf (4.2.1)

we wrap the loop with the three parts of our framework. To exemplify the loop

code instrumentation we would want to give a snippet of instrumented code from

streamcluster application, Dense Linear Algebra dwarf:
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• First of all, we read the file line from the command line:

. . .

int f i l e l i n e ;

f i l e l i n e=a t o i ( argv [ argc −1 ] ) ;

. . .

If the loop being tested is located in a function other than main(), we pass the

variable to a particular function.

• Depending on what kind of measurements we take - execution time or hardware

counters - we change the init.h file respectively:

. . .

stat ic const char f i l ename [ ] = ” t ime data . txt ” ;

. . .

or

. . .

stat ic const char f i l ename [ ] = ” counte r s data . txt ” ;

. . .

• We wrap the loop with our framework:

int s i z e ;

#include” i n i t . h”

s i z e=round ( k2∗ chunk s i z e ) ;

i f ( s i z e ==0) s i z e =1;
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#include ” s t a r t . h”

#pragma omp for schedu le ( guided , s i z e )

for ( int i = k1 ; i < k2 ; i++ )

{

bool c l o s e c e n t e r = \

g l l o w e r [ c e n t e r t a b l e [ po ints−>p [ i ] . a s s i gn ] ] > 0 ;

i f ( switch membership [ i ] | | c l o s e c e n t e r )

{

points−>p [ i ] . c o s t = points−>p [ i ] . weight ∗ d i s t ( po ints−>p [ i ] , \

points−>p [ x ] , po ints−>dim ) ;

po ints−>p [ i ] . a s s i gn = x ;

}

}

#include ”end . h”

• Variables, which a indicated as shared, private, firstprivate, etc. are moved

into start.h header file which includes #pragma omp parallel construct. We

take this step in order to take our hardware counter measurements for each

thread participating in a parallel region;

• Next we compile the application:

– For gathering data for hardware counters values we compile the applica-

tion with each of the compilers;
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– For gathering data for execution time we apply different scheduling poli-

cies (static, dynamic, guided) including the case when no policy is used

and compile each version of the application with all each of the compilers.

5.4.2 Training Data Set Completion

In this subsection we are going to present all the steps we took to form a training

data set for our model. Since the applications we explore pertain to three different

computation patterns ( 3.5) we are going to build a model for each of the dwarfs. The

training sets for each of the models are comprised of the performance measurements

taken for applications belonging to the dwarf. Since the steps on training data set

completion are the same for all dwarfs, we will describe the approach in general.

Nevertheless, a model produced is unique for each dwarf, that is why its description

will be given on a per-dwarf basis.

5.4.2.1 Execution Time and Hardware Counters Measurements Process-

ing

After producing all necessary executable files for each of the applications we test

we start taking measurements by running each executable file with the following

runtime parameters:

• Different number of threads: 2, 4, 8;

• Different problem size. For SG dwarf - 64,512,1024; for UG dwarf - 97000,
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193000, 200000; for DLA dwarf - 64, 512, 256204, 204800, 494020, 819000;

• Different compilers which are used to compile the code - GNY, PGI and UH

compilers.

In order to make the measurement process efficient and interpretable we imple-

ment a script which runs our applications with all the parameters and prints out

the results (execution time and hardware counters) in a Comma Separated Values

(CSV) format; the following snippets of code present such script for execution time

measurements:

#! / bin / sh

echo ” , , , , 2 , 2 , 2 , 5 , 5 , 5 , 10 , 10 , 10 ”

for compi le r in gcc pgcc opencc ; do

for prob l em s i z e in 97000 193000 200000; do

for num threads in 2 4 8 ; do

export OMP NUM THREADS=${num threads}

#echo ”PLAIN”

echo −n ”${ compi le r } , ”

echo −n ”${ prob l em s i z e } , ”

echo −n ”${num threads } , ”

#p l a i n

. / ${ compi le r } p la in backprop ${ prob l em s i z e } − l 0

echo −n ” , ”

for g r i d in 0 1 2 ; do
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#”STATIC”

. / ${ compi le r } s t a t i c b a c k p r o p ${ prob l em s i z e } − l $ g r i d

echo −n ” , ”

#echo ”DYNAMIC”

. / ${ compi le r } dynamic backprop ${ prob l em s i z e } − l $ g r i d

echo −n ” , ”

#echo ”GUIDED”

. / ${ compi le r } guided backprop ${ prob l em s i z e } − l $ g r i d

echo −n ” , ”

done

echo ””

done

done

done

and hardware counters measurements:

#! / bin / sh

for compi le r in gcc pgcc opencc ; do

for prob l em s i z e in 97000 193000 200000; do

for num threads in 2 4 8 ; do

echo −n ”${ compi le r } , ”

echo −n ”${ prob l em s i z e } , ”

echo −n ”${num threads } , ”

export OMP NUM THREADS=${num threads}
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for g r i d in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ; do

. / ${ compi le r } backprop ${ prob l em s i z e } − l $ g r i d

done

echo ””

done

done

done

Backpropagation benchmark (UG dwarf) listings are presented above. The mea-

surements are taken for 2, 4 and 8 threads. Measurements scripts for other bench-

marks differ only in the problem sizes specific to a certain dwarf (5.4.2.1) and the

way each program is run.

As stated earlier in this work, we compile several versions (one version per schedul-

ing policy) of the code. When taking measurements for execution time we run the

applications for 5 times. We do that in order to be able to identify outliers and use

averaged values.

The output of both scripts is CSV (Comma Separated Values) friendly.

Now we would like to discuss the data we gathered.

Execution time measurements. As mentioned earlier, we compile different versions

of the code - various compilers vs. different scheduling policies vs. several chunk sizes

applied to the loop being tested. As a result, we got the execution time of the loop

for all the cases discussed. An example of execution time gatherings is presented in

tables 5.2, 5.3, 5.4. The rest of the execution measurements for other benchmarks
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are taken in a similar way;

Hardware counters measurements. Initially, we have no knowledge on which hard-

ware counter could emphasize differences and similarities between the snippets of

code belonging to the same class. That is why we gathered performance measure-

ments for all hardware counters available on the platform (5.1).

In table 5.1 we present an example of hardware counters measurements. Several

counters are indicated, however, we measure all counters available on the platform.

Execution Time and Class columns are added to the hardware counters table to form

a training set (5.4.2). The rest of the counters measurements are taken in a similar

way.

As mentioned earlier in this section, execution time measurements are taken

for 5 times. Our next step is to identify execution time outliers for each runtime

configuration and each combination of scheduling policy and a chunk size we tried.

It is of utmost importance to identify the outliers - the values which are markedly

smaller or larger than other values. Since we categorize runtime configurations based

on execution time we have to make sure that the outliers do not affect the class a

particular configuration is referred to. For that purpose we take the following steps:

1. Our observations show that outliers are the values which are much greater

than the minimum execution time measured for a particular runtime configu-

ration and each combination of scheduling policy and a chunk size. Since we

are interested in investigating cases where the execution time is close to the

observed minimum, our first step is finding a minimum value for each runtime
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Table 5.1: Hardware counters measurements (execution time and class columns
added), kmeans, DLA dwarf
Compiler Problem

size
Number
of
threads

Execution
time

PAPI L1
DCM

PAPI L1
ICM

PAPI DP
OPS

Class

GNU 768 2 539.25 494 90 0 d 5
GNU 768 4 402.5 328 76 0 d 10
GNU 768 8 12247 192 92 0 d 10
GNU 1024 2 681.6 716 83 0 d 2
GNU 1024 4 512 350 78 0 g 2
GNU 1024 8 17683.5 197 89 0 d 10
GNU 1536 2 981.6 944 69 0 d 5
GNU 1536 4 658.75 496 63 0 d 5
GNU 1536 8 18173.5 271 80 0 g 10
PGI 768 2 579.4 540 92 384 d 5
PGI 768 4 299.8 389 99 192 d 2
PGI 768 8 178 190 97 96 d 5
PGI 1024 2 773.2 647 94 512 d 10
PGI 1024 4 375 506 107 256 d 2
PGI 1024 8 219.25 251 102 128 d 2
PGI 1536 2 1124.4 945 91 768 d 5
PGI 1536 4 557.6 690 112 384 p
PGI 1536 8 321.2 278 102 192 g 2
UH 768 2 499.3333 667 219 0 p
UH 768 4 446 562 239 0 s 5
UH 768 8 646.2 388 234 0 d 5
UH 1024 2 649.5 815 221 0 p
UH 1024 4 622 564 231 0 g 10
UH 1024 8 650 535 231 0 g 5
UH 1536 2 1001 1006 227 0 p
UH 1536 4 851.8 799 245 0 g 10
UH 1536 8 634.2 533 245 0 g 2
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configuration and each combination of scheduling policy and a chunk size;

2. After the last step is completed, we still have 5 data sets with measured execu-

tion timings and 1 data set with minimum values for each runtime configuration

and each combination of scheduling policy and a chunk size. Next, the heuris-

tics that we employed considers those 5 data sets and removing its values which

are less that 150% of the minimum value for a particular runtime configuration

and each combination of scheduling policy and a chunk size;

3. A previous step produces 5 data sets which did not include outliers. The next

operation performed is considering these 5 data sets and calculating average

values for each runtime configuration and each combination of scheduling policy

and a chunk size (5.2,5.3, 5.4);

The importance of finding and removing the outliers cannot be overestimated,

since we classify each runtime configuration based on the execution time observed.

An outlier can lead to a misclassification problem. The latter leads to wrong instance

labeling (locating an instance into a class), which, in turn, prevents the model from

reflecting a real relationship between the parameters on the input and the class

predicted.

5.4.2.2 Training Data Set Building and Runtime Configurations Catego-

rization

After outliers are removed from those 5 data sets for execution time measurements

we finally have 1 data set containing timings averaged across all the 5 runs we
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performed for each runtime configuration and a combination of scheduling and a

chunk size used. Now we would want to categorize each runtime configuration,

hereinafter referred to as an ”instance” into a class. The latter means that we would

want to find out, which combination of a scheduling policy and a chunk size allowed

getting the shortest execution time. Since we have 4 scheduling policies (no policy,

static, dynamic and guided) and 3 types of a chunk size (2, 5 or 10 percent of a

problem size used for the loop), we have 10 classes. Notations for the classes are as

follows:

• p - No scheduling policy is applied;

• s 2, s 5, s 10 - Static scheduling policy is applied with a chunk size equal to

2%, 5% and 10% of the problem size respectively;

• d 2, d 5, d 10 - Dynamic scheduling policy is applied with a chunk size equal

to 2%, 5% and 10% of the problem size respectively;

• g 2, g 5, g 10 - Guided scheduling policy is applied with a chunk size equal to

2%, 5% and 10% of the problem size respectively;

To categorize a particular instance we find a minimum execution time among

different combinations of scheduling policies and chunk sizes.

Notation conventions for execution time measurements:

• 2, 5, 10 - Percentage of the problem size which is used as a chunk size;

• plain/sts/gd - different scheduling policies applied: no policy, static, dynamic,

guided respectively;
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• cmplr - Compiler which is used to compile the executable files;

• n - Problem size which is used;

• thr - Number of threads used to parallelize a program;

• Each cell under a particular scheduling policy represents execution time in

microseconds;

An example of execution time measurements is presented in the tables 5.2,5.3,5.4.

For the very first case (GNU, 512, 2), the minimum execution time observed is

15429333.4; therefore, the class into which we put the instance is ”g 10” (guided

scheduling and chunk size equal to 10% problem size applied appeared to be the best

option in terms of performance). We measured execution time of a serial version as

well (5.5). We categorize all the instances for all the application we tested.

After each instance has been assigned a labeled class we can form a training set.

The latter consists of input parameters for the model (4.1 ) and a class assigned to a

particular instance. To build the training set for a particular application benchmark

we insert a column named ”plain” into a table with hardware counters measured for

that application. Finally, we insert the column with class labels for each instance as

the last column into the table with hardware counters (5.1).

We use execution time measured for the case when no scheduling policy is applied

because this parameter describes an application’s default behavior.

After training data sets are completed for each application in a dwarf, we merge

those into one training data set for a particular computation pattern. Since we have
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Table 5.2: Execution time measurements, chunk size equal to 2% of a problem size,
myocyte, SG dwarf

2 2 2
cmpr n thr plain (mcs) static (mcs) dynamic (mcs) guided (mcs)
GNU 512 2 1.6E+07 15946604.6 15963762.4 15446702.6
GNU 512 4 8246914 8393010.4 8307207.4 8359042
GNU 512 8 4160176 4534380.2 4465514.6 4368096.8
GNU 768 2 2.4E+07 23864715.8 23309737.8 23366075.2
GNU 768 4 1.2E+07 12687833.8 12610999.4 12556642.2
GNU 768 8 6270507 6761903 6688692 6542805.2
GNU 1024 2 3.1E+07 31684850 31628977.2 31578117
GNU 1024 4 1.7E+07 16821098.2 16637834.2 16784462
GNU 1024 8 8301728 9271484.4 8963261.8 8773207
PGI 512 2 8858761 8965057.2 9104544.8 8785212.8
PGI 512 4 4843233 4847074 4929200.6 4800408.6
PGI 512 8 2691225 3272253.8 2980341.6 3084428.6
PGI 768 2 1.3E+07 13654660.6 13459269 13793344.4
PGI 768 4 7265812 7343777.6 7297896.6 7163391.8
PGI 768 8 4726506 4566504.25 4493513.25 4649898.5
PGI 1024 2 1.8E+07 17524532.6 18107586 17892690.2
PGI 1024 4 9520331 9808406.6 9714214.2 9732489
PGI 1024 8 6586447 6301184.8 5732790 5621263.8
UH 512 2 3E+07 30631190.2 30486354.4 30549600.2
UH 512 4 1.5E+07 15419131.4 15378307 15617422.6
UH 512 8 7502484 8163866.2 8160497.6 8063773.6
UH 768 2 4.5E+07 45883543.6 45714469.2 45743333.4
UH 768 4 2.3E+07 23094713.6 23087931.6 23441929.8
UH 768 8 1.1E+07 12235956.2 12227699.6 12249419.4
UH 1024 2 6E+07 61211531.2 60839244.6 61050670.4
UH 1024 4 3E+07 30951697.8 30798788.4 31274933.8
UH 1024 8 1.5E+07 16326667.8 16322200.6 16318787.8
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Table 5.3: Execution time measurements, chunk size equal to 5% of a problem size,
myocyte, SG dwarf

5 5 5
cmpr n thr plain (mcs) static (mcs) dynamic (mcs) guided (mcs)
GNU 512 2 1.6E+07 15824277.8 15585004.8 15846547.4
GNU 512 4 8246914 8429731.6 8414151.4 8367647.4
GNU 512 8 4160176 5091372.8 5009307 4770194.4
GNU 768 2 2.4E+07 23505657.6 23159367 23490609.4
GNU 768 4 1.2E+07 12772716.2 12299544.4 12644464.2
GNU 768 8 6270507 7298329 7621563.8 7183134.6
GNU 1024 2 3.1E+07 31030417.8 31261857.2 31195414.4
GNU 1024 4 1.7E+07 16636997.8 16364144 16774311.4
GNU 1024 8 8301728 9919296.4 10029178.6 9537315.4
PGI 512 2 8858761 9025852 8876549.8 8944225.8
PGI 512 4 4843233 4930955.4 4829016 4903566.2
PGI 512 8 2691225 3145514.6 3098981.4 3002401.6
PGI 768 2 1.3E+07 13563380.4 13193141.6 13366439.4
PGI 768 4 7265812 7400219.6 7305039.4 7442591
PGI 768 8 4726506 4546107 4593212.2 4800426.75
PGI 1024 2 1.8E+07 17632352.8 17857791.2 17548393.4
PGI 1024 4 9520331 9597289 9712034.4 9680579
PGI 1024 8 6586447 6341709.4 6254563.8 6838215.8
UH 512 2 3E+07 30616044 30440657.2 30512420
UH 512 4 1.5E+07 15389248 15358002.4 15778427.2
UH 512 8 7502484 9063456.6 9056427.6 9040050.4
UH 768 2 4.5E+07 45722123 45435803.6 45502107.6
UH 768 4 2.3E+07 23300230 23097012.4 23811113.6
UH 768 8 1.1E+07 13246330 13233975 13256033.4
UH 1024 2 6E+07 60405837.4 60313075.2 60979818.4
UH 1024 4 3E+07 30613305.6 30255291.6 31592275.8
UH 1024 8 1.5E+07 17755022.2 17773459.4 17743447.8
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Table 5.4: Execution time measurements, chunk size equal to 10% of a problem size,
myocyte, SG dwarf

10 10 10
cmpr n thr plain (mcs) static (mcs) dynamic (mcs) guided (mcs)
GNU 512 2 1.6E+07 15548351 15518860.2 15429333.4
GNU 512 4 8246914 9831200.8 9757491.8 9258118.8
GNU 512 8 4160176 6579725.8 6458427.4 6447418
GNU 768 2 2.4E+07 23439063.8 23432914.8 23612824
GNU 768 4 1.2E+07 14607336 14532873 13888211.8
GNU 768 8 6270507 10078117.4 9756309 9687849.2
GNU 1024 2 3.1E+07 31546803 31168364.8 31350769.6
GNU 1024 4 1.7E+07 19584326.2 19324861.8 18809610.4
GNU 1024 8 8301728 13066823.8 12868583.2 12786461.8
PGI 512 2 8858761 8969885.6 8763200 9106322.4
PGI 512 4 4843233 5688297 5553449 5389589.2
PGI 512 8 2691225 4297769.2 3935663.2 3694662.25
PGI 768 2 1.3E+07 13784260 13451074.2 13233047.8
PGI 768 4 7265812 8412534.6 8372293.4 8270512.8
PGI 768 8 4726506 6312023.2 5751190 5628811
PGI 1024 2 1.8E+07 18142212 17803955.4 18198845.2
PGI 1024 4 9520331 11371373.2 11081768 10904352.6
PGI 1024 8 6586447 8593125.5 7582240.8 7494236.8
UH 512 2 3E+07 30255935.4 30188385.4 31756624.2
UH 512 4 1.5E+07 18089759.6 17983703 17870938
UH 512 8 7502484 11718224 11679389.4 11680380.2
UH 768 2 4.5E+07 45206081.4 45154727 47703016.4
UH 768 4 2.3E+07 27147844 26941096 27018845.4
UH 768 8 1.1E+07 17627988.8 17644428.8 17576329.4
UH 1024 2 6E+07 60666037.2 60285461.6 63373135.8
UH 1024 4 3E+07 36001826.6 36024133.8 36016270.2
UH 1024 8 1.5E+07 23380448.8 23337766.2 23384271.6
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Table 5.5: Execution time measurements for a serial version, myocyte, SG dwarf
cmpr n Serail execution time
GNU 512 30745333.2

768 45971930.2
1024 61266439

PGI 512 17133698.8
768 25728623.2
1024 34633382

UH 512 58836835.4
768 87977450.2
1024 117389900.6

3 dwarfs being tested, we get 3 training data sets which are going to be used to build

a predictive model.

To further use the training set we have to present it using an ”.arff” file format.

Each instance is presented by a set of values of the attributes and an assigned class:

@re la t i on SG

@attr ibute compi le r {GNU, PGI ,UH}

@attr ibute p r o b s i z e numeric

@attr ibute num thr numeric

@attr ibute time numeric

@attr ibute PAPI L1 DCM numeric

@attr ibute PAPI L1 ICM numeric

@attr ibute PAPI L2 DCM numeric

. . .

@att r ibute c l a s s { s 2 , d 2 , g 2 , s 5 , d 5 , g 5 , s 10 , d 10 , g 10 , p}
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@data

GNU, 6 4 , 2 , 3 4 9 , 2 9 3 5 , 9 9 , 5 1 0 , . . , d 2

. . .

5.5 Training Data Set Preprocessing and Experi-

ment Analysis

In order to familiarize a reader with concepts, we use for the training data set

preprocessing, we would want to give a brief overview of each of the techniques

employed. We may want to use some of the preprocessing methodologies in order

to improve our model accuracy. By ”accuracy” we mean a percentage of instances

which are classified correctly by the classifier (a machine learning algorithm).

1. Attribute selection. A process of identifying a subset of relevant model features.

The need for this approach is justified by the fact that, for a certain model,

some attributes can be redundant - they do not reflect differences between

instances. The list of attribute selection advantages:

• Model interpretability is better - features can be tailored to a predicted

class, the relationship between instances of different classes can be inferred

from the model’s output;

• The process of learning the model takes less time;

• Possibility of a model to be over-fitted is reduced;
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Attribute number selection is performed using Evolutionary Search. This al-

gorithm performs a search process in order to find a good subset of attributes

through evolving a population of individual attributes using generations;

2. Numerical values normalization. Normalizes numerical values in a training data

set in such a way that all the values lie in the range 0 - 1.0. This methodology

allows generalization across the data set;

3. Numerical values standardization. Standardize numerical values in such a way

that the values have zero mean and unit variance. This approach might be

useful because when k-fold cross validation is applied, we get two data sets - a

training one and a test one. Standardization allows the same statistics to be

applied to both data sets;

4. Normalization of hardware counters values by the number of the total cycles

of execution, [7]. The technique is used to create event rates for each of the

hardware counters;

5. Gather data for more values of a problem size;

6. Add new applications to the dwarfs. This approach, as well as the previous one,

allows enlarging training data set, which, in turn, provides more information

for the model;

7. Reduce the number of classes. Our observations showed that there are classes

which are very close to each other. By ”being close” we mean the fact that the

set of attributes values pointing to the classes are pretty much the same. We

89



noticed that the difference between execution time (regardless of scheduling

policy applied) for chunk size is equal to 5% of a problem size and that of

chunk sizes 2% is pretty small (5-7% difference); a similar trend is observed

for the difference between execution time taken for 5% and 10% chunk sizes.

That led us to a conclusion that classes 5 are redundant. For example, for a

model an instance of class s 2 and s 5 can be very similar in terms of values

of the attributes and it may well put both instances into the same class. This

fact may well lead to a misclassification, since we labeled all instances;

8. Resample and Datafly filters applied to the training sets. Resample filter pro-

duces a random subsample of the data set with replacement. The Datafly

algorithm is based on k-anonymity approach ([20]). It anonymizes so-called

”quasi-identifiers” - a number of attributes which can be used in a combina-

tion to create an almost unique key. A combination matches k classes, in our

work k is equal to 1 since we want to distinguish each class individually. The

Datafly algorithm uses domain generalization hierarchy function. This function

presents the actual value of a numerical attribute in a less specific form of a

range. Thus, an instance is classified based on a combination of attributes each

of which is presented as a range. After attribute selection we have a number

of features which present relevant information. However, this information may

not be relevant to each of the classes; the selected attributes are relevant to

all classes on average. The generalization that is provided by the Datafly al-

gorithm leads to the fact that only the attributes relevant to a particular class

are considered. This is the reason why generalized form of attributes (ranges)
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does not harm precision of the model.

Now we would like to give a detailed description of the model exploration process

for each of the dwarfs.

Each model is evaluated based on the accuracy achieved. Accuracy provides

quantitative estimation of the model. Another metric for which we are going to use

is false positive rate - the proportion of instances which are classified as class ”x”

(but pertaining to a different class) among all instances which are of class not ”x”.

In order to provide a reader with a better understanding of FP (later referred to as

FP) we would want to give the following example. Consider the following confusion

matrix:

Predicted class

class x class y Actual class

7 2 class x

3 4 class y

The matrix is interpreted as follows: 7 instances are predicted as class x and

actually are of class x; 4 instances are predicted as class y and actually are of class

y; 2 instances are predicted as class y but actually are of class x; 3 instances are

predicted as class x but actually are of class y. According to the definition of FP, FP

for class x is [(7+3)-7]/(3+4)=0.45. So for class x 45% of instances which are not of

class x are predicted as of class x.

Thus it can exhibit values in a range from 0 (excellent model) and 1 (pure clas-

sification capabilities of the model). The higher the accuracy, the greater number of
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instances are classified correctly. However, we cannot rely on accuracy only, since it

cannot inform us on the model’s quality. The lower the FP is, the more reliable the

model is. The FP is computed for each class individually; however for interpretabil-

ity’s sake we are going to present an averaged value provided by WEKA. We use

average value in order to present the overall model’s FP.

5.5.1 Structured Grids Training Set

In the following subsection we are going to give a detailed explanation of our ob-

servations when various predictive models are tested on different versions of training

data sets. Each of the items below stand for the cases when we modify the number

of instances in a training data set or remove several classes. Every item discusses

the highest accuracy observed and the particular training data set preprocessing

methodology used (normalization, standardization, attributes selection, etc.). We

start exploration of the models with an initial training data set, which is formed

using data gathered from the following applications: myocyte, particle filter, srad,

hotspot . We try models listed in 5.3.2 for each of the version of the training set

(5.5).

• Original training data set (later referred to as OTS). The maximum accuracy -

22% and FP is equal to 0.11 - are achieved for a version of the training data set,

when numerical values are normalized using WEKA attribute normalization

filter, all attributes saved, Random Forest Classifier is used. Generally, for the

original data set reduction of the number of attributes does not pay off. Since
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the data set is not preprocessed at all, it has the lowest number of instances.

In that case the model may not have all the knowledge about the relationships

inside the data set. That is why each attribute can be valuable. However, FP

is considerably low, which indicates that the predictions made are reflecting

the relationship among the instances in a certain class;

• Original training data set with classes s 5, d 5, g 5 (5.4.2.2) removed (later

referred to as OTS 2-10). The maximum accuracy observed is equal to 28%, FP

is equal to 0.152for normalized training data set with all attributes presented,

Random Forest Classifier. As we can see, the accuracy is improved - the number

of correctly classified instances are increased. As we mention in 5.5 removing

classes 5 enables the model to separate the instances better. However, a lower

value for FP requires us to improve the model further on. One important

point needs to be mentioned - if after removing the number of classes we move

to another model improvement technique, the number of classes is recovered.

Next we are trying to run the application with more problem sizes, the number

of classes is the original one - 10 classes (classes s 5, d 5, g 5 are recovered

back). We perform the process to experiment with various versions of data

sets to find out which data set changes are leading to a model’s improvement.

To provide a reader with a better understanding of the reasons why we remove

s 5, d 5, g 5 classes and why that step pays off in terms of accuracy we are

going to give the following example. Let’s consider the following measurements

for execution time (in microseconds) for SRAD application (5.2):

Measurements for static, dynamic and guided scheduling schemes and a chunk
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size equal to 2% of a problem size:

Static = 239.6, dynamic = 213.2, guided = 223.8;

Measurements for static, dynamic and guided scheduling schemes and a chunk

size equal to 5% of a problem size:

Static = 222.6, dynamic = 205, guided = 196.2;

Measurements for static, dynamic and guided scheduling schemes and a chunk

size equal to 10% of a problem size:

Static = 214.8, dynamic = 193.6666667, guided =188.25;

As we can see, the difference between execution time for static policy when

chunk sizes are 5% and 10% is only 7.8 microseconds; for dynamic schedul-

ing policy and chunk sizes 2% and 5% the difference is 8.2 microseconds; for

guided scheduling policy and chunk sizes 5% and 10% the difference is 7.95

microseconds. When we classify a runtime configuration we find a minimum of

execution time achieved when various combination of scheduling policies and

chunk sizes are used, thus when chunk size of 5% is considered the catego-

rization is dependent on just a few microseconds. It means that classes which

involve chunk size of 5% are very similar to classes involving either chunk size

2% or 10%. It leads to a conclusion that when a machine learning algorithm

tries to classify an instance involving chunk size 5% minor fluctuation in values

of the attributes are taken into consideration, this situation is called ”over-

fitting”. In other words, a model cannot distinguish well between the classes.

Thus, removing classes involving chunk size 5% eliminates this problem - classes

involving chunk sizes 2% and 10% are more distinguishable and the model can
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separate the instances more distinctly. Later in this work class removal enables

accuracy improvement because of the reasons mentioned in this section;

• Training data set built with new problem sizes included (later referred to as

NewPS). To enlarge our training set we run applications pertaining to the

dwarf with new problem sizes. The best accuracy monitored is 24% , FP

equal to 0.114 , training data set normalized by the total number of execution

cycles, all attributes presented, Random Forest Classifier. Accuracy rate and

FP lie in the same range as previously observed. That means that adding new

information does not improve the model significantly, as well as it does not

lower the accuracy. A greater number of observations included in a training

data set provides more information on underlying relationships between the

attributes and a corresponding class, thus a model learns more precisely. That

leads us to a conclusion that we have to consider the new data and try to

improve the model’s characteristics further on;

• Training data set built with new problem sizes included and classes s 5, d 5,

g 5 removed (later referred to as NewPS 2-10). The highest value of accuracy

observed is 34% , FP equal to 0.127 initial training data set, all attributes

presented, Random Forest Classifier. As we can see, enlarging our training

data set and removing certain classes pays off in terms of accuracy. Now one-

third of all instances is recognized correctly. FP is slightly increased, meaning

that the number of classes does affect a model’s quality slightly, however the

increase is about 0.09%, thus we can state that class removal generally has no

significant effect on model’s quality. Hence, taking a higher accuracy rate into
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account, we can state that class number reduction does pay off ;

• Training data set built with a new application added to a dwarf being explored

(later referred to as NewApp) . We included Stencil benchmark (5.2) perfor-

mance to our training data set. The accuracy dropped to the value of 21%

, FP is equal to 0.102 , training data set normalized by the total number of

execution cycles, all attributes are saved, Random Forest Classifier. The de-

crease in the number of instances classified correctly can be explained by the

fact that the new application, namely the computations inside the loop that is

investigated is not that similar to that of computation from other application.

In that case the predictive model cannot firmly infer which attributes values

stand for which class. A lower value of FP confirms the stated point. However,

we would want to make our model robust, in order to do so we stress in further

on;

• Training data set built with a new application added to a dwarf being explored

and classes s 5, d 5, g 5 removed (later referred to as NewApp 2-10). The

accuracy increased up to 31%, FP is equal to 0.123 . This result is observed for

both normalized and standardized versions of a training data set, all attributes

preserved, Random Forest Classifier. Removing several classes improved the

model slightly, however, the accuracy is lower than previous results showed,

and still, all attributes are involved. A higher value for FP increase slightly

(by 17 %), thus the quality of the model is not affected significantly;
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• NewApp 2-10 with resample filter applied (later referred to as NewApp 2-10-

resample) . Since the latest training data set we explored includes the greatest

number of instances, we would want to improve the model for this data set.

We are interested in classifying as many instances as possible to produce a

robust prediction. The best accuracy achieved is equal to 73% , FP is equal

to 0.049 , normalized data set with several attributes selected (compiler, exe-

cution time, PAPI L1 DCM, PAPI L1 TCM, PAPI FPU IDL, PAPI TLB IM,

PAPI L1 DCH, PAPI L1 ICH, PAPI L1 ICA). The resampling creates a ran-

dom subsample of the original training set. It randomly takes an instance

from the original data set and uses it to form a new subsample. In or work

we created a subsample which includes the same number of instances that the

original one does. We used resampling with replacement, in this case an in-

stance can from the original data set can appear more than one time in a new

training data set. This leads to a situation when instances of larger classes are

reproduced more frequently and the resulting training set is biased by larger

classes. This explains the fact that more instances are classified correctly and

false positive metric is lower. Our experiments show that resampling with no

replacement does not have a significant impact on accuracy due to the fact

that it produces the same training data set. The resampling technique is able

to improve a model’s accuracy significantly, FP also decreased, meaning that

resampling does improve the model’s quality. However, since this approach

resamples instances based on classes to which they pertain, a resulting model

is biased by classes, which include a greater number of instances. Later in this
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work the results achieved using resampling are reasoned in the same manner

as in this section;

• NewApp 2-10 with datafly filter applied (later referred to as NewApp 2-10-

datafly) . To improve our model further, we employed this filter. The model’s

accuracy increased up to 96 % , FP is equal to 0.007 , training data set nor-

malized by the number of total execution cycles, reduced number of attributes

(compiler, problem size, PAPI L1 DCM, PAPI L1 ICM, PAPI L2 ICM,

PAPI TLB TL, PAPI STL ICY, PAPI TOT INS, PAPI BR INS,

PAPI VEC INS, PAPI L1 DCH, PAPI L2 DCH, PAPI L2 DCA,

PAPI L1 ICH, PAPI L2 ICR, PAPI FML INS, PAPI FP OPS,

PAPI DP OPS). As we can see, attribute selection does pay off. It can be ex-

plained by the fact that not all of the attributes represent relevant information.

These irrelevant attributes do not provide enough information to separate the

instances into classes. Often, redundant attributes are those whose values do

not change much for instances pertaining to different classes. Thus, when irrel-

evant attributes are removed their minor fluctuations are not considered. We

performed attribute selection via evolutionary search. This algorithm explores

all possible combinations of attributes using genetic approach. Generations

of attributes are created (through mutation and crossover operations) and the

best generation is chosen. The best means the attributes selected separate

the space of the instances more distinguishably than others. Hence, relevant

attributes enable better separation of the instances which leads to a higher

accuracy rate. FP rate also benefits from attribute selection because those
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minor fluctuations of irrelevant attributes do not mislead the model anymore.

As we can see from the value of FP, Datafly algorithm improved the model’s

quality to a considerable degree, making it both accurate and reliable. Other

machine learning algorithms showed accuracy results near 80-85%, even though

the result is satisfactory, in our experiments random forest algorithm showed a

better degree of robustness due to its ability to overcome class the over-fitting

problem and outlier identification. Later in this work the results achieved using

attribute selection and the Datafly algorithm are reasoned in the same manner

as in this section;

For the SG dwarf, we can state the most important thing that allowed us to

improve the model is presenting attributes with ranges. The advantage of using

ranges instead of exact numerical values is that the model becomes less sensitive

to the attributes values. This leads to the fact that outliers in a training model

does not skew the model. The fewer attributes are used to separate the training

set because since we use ranges, the possibility of overitting reduces (exact

values of the attribute do not point to a particular class).

The following plot presents the way a model’s accuracy changes with respect to

various preprocessing techniques used (5.2).

To summarize (5.2), for a Structured Grid dwarf a Random Forest machine learn-

ing algorithm appears to be the one which produces the most accurate predictions as

opposed to other algorithms. It shows a certain degree of robustness. Normalization

of a training data set can be a good technique to use because it allows unifying in-

stances making it easier to distinguish between samples pertaining to the same class.
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Figure 5.2: Structured Grid dwarf, a model’s accuracy vs. preprocessing techniques
employed

Reduction in the number of attributes also pays off - less attributes in conjunction

with k-anonymity approach facilitates separation of the instances.

5.5.2 Unstructured Grids Training Set

The application which are used to complete the training data set: CFD, back-

propagation (5.3.2). The flow of our analysis of the training set follows the same

pattern as in 5.5.1.

• OTS. The highest value for accuracy is equal to 47%, FP is equal to 0.104
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standardized training data set, all attributes in present, Random Forest Clas-

sifier. For an unprocessed data set the result observed seems to be good. This

is due to the fact that only two applications are used to complete training data

set, hence the possibility that computations inside the loops being tested are

drastically different is lower. FP rate is considerably low, thus a majority of

instances classified as a particular class are truly of this class;

• OTS 2-10. After several class labels are removed, the accuracy goes up to

48% , FP is equal to 0.154 , unchanged training data set, all attributes in

present, Random Forest Classifier. In this case, class removal produces a slight

improvement. Since we have fewer instances, even with classes removed, the

relationships between samples stay the same. There is a probability that in

the initial data set, there are few samples with 5 classes. As for FP rate,

the class number reduction increases the rate indicating that more instances

classified as a particular class are possibly pertaining to a different one. Since

the training data set is not unified in an way, the model could possibly be

skewed by outliers;

• NewPS. Adding new problem sizes, and thus enlarging the training data set,

produces a lower accuracy of 34% . FP is equal to 0.118, training data set

normalized by the total number of execution cycles, Random Forest Classifier.

The decrease in an accuracy rate is due to a greater number of instances in

a training data set - now the differences in computation patterns involved are

more influential;
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• NewPS 2-10. The best accuracy observed is 46% , FP is equal to 0.165 , and the

training data set is normalized by the total number of execution cycles, Random

Forest classifier. The result is returned to the value observed in the original data

set. The reason for this is that the class number reduction enables reduction of

an impact of differences between the computations inside the loops. Increased

FP rate indicates that the accuracy achieve should be carefully interpreted as

more instances are misclassified;

• NewPS 2-10 with resampling applied. After random resampling took place,

the accuracy of the model increased up to 78% , with FP is equal to 0.054,

and training data set normalized by the total number of execution cycles. All

attributes are preserved, Random Forest Classifier. As mentioned earlier, re-

sampling makes the training data set more random; however, the accuracy of

this result cannot be robust enough, since the model is biased by the classes

which have a greater number of instances. FP rate is the lowest observed so

far; thus, resample does improve model’s quality to a certain extent. This

improvement is limited by the possibility of bias incurred by classes having

greater number of instances;

• NewPS 2-10 with Datafly applied. The accuracy received 99% , FP is equal

to 0.004 . This result is observed for a couple of machine learning algorithms:

Bayes’ Network, Neural Network, Random Forest classifier. However, only

the Random Forest algorithm proved to be the most robust one. The ver-

sion of the training data set that showed the result is a normalized data set

with reduced number of attributes (prob size, PAPI L1 DCM, PAPI L2 TCM,
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PAPI FPU IDL, PAPI BR MSP, PAPI FP INS, PAPI L1 DCA, PAPI L2 TCH,

PAPI L2 TCH, PAPI SP OPS, PAPI DP OPS). The low value of FP indicates

that the accuracy achieved reflects the actual relationship among the instances

of the training data set.

The following plot presents the way a model’s accuracy changes with respect

to various preprocessing techniques used:

Figure 5.3: Unstructured Grid dwarf, a model’s accuracy vs. pre-processing tech-
niques employed

For the current dwarf a Datafly preprocessing filter proves to be a technique,

which improves the model’s accuracy considerably, as well as instances unification

via normalization. The result for this dwarf is higher than for a Structured Grid
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dwarf because in UG dwarf, we explore two applications; hence, the model may

over-fit the values to a certain degree.

5.5.3 Dense Linear Algebra Training Set

Initially, we test the following application to gather performance data: kmeans

clustering, streamcluster, LUD solver. The flow of our analysis of the training set

follows the same pattern as in 5.5.1.

• OTS. The prediction accuracy achieved is 29% , FP rate is equal to 0.174 ,

standardized training data set, all attributes present, Random Forest Classifier.

The DLA training data set is noticeably larger than previously explored data

sets. It leads to the differences in computations in the loops to stand out even

more.However, the accuracy of the model is not robust enough since FP rate

is considerably high;

• OTS 2-10. After removing classes responsible for chunk size equal to 5, the

accuracy increases up to 41%, FP rate is equal to 0.227 , normalized training

data set, all attributes present, Random Forest Classifier. We achieve improve-

ment in accuracy; however, FP rate is lower due the fact that some instances

which used to belong to removed classes are considerably close to each other (in

terms of attributes values); thus, a model tries to fit the instances too precisely;

• NewPS. New problem sizes used for taking measurements produced 28% accu-

racy, FP rate is equal to 0.114 , a training data set normalized by the number
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of total execution cycles, all attributes saved, Random Forest Classifier. As we

can see, the value of correctly classified samples is lower than previously ob-

served. As mentioned earlier, new measurements add instances to the training

set, hence the relationship between attributes and classes is closer to the real

one. In reality, to exhibit high accuracy rates on an unchanged training data

set, the computations inside the loops being tested should be nearly the same.

A lower FP rate indicates that adding new problem sizes does decrease the true

accuracy of the model since the classification function becomes more complex;

• NewPS 2-10. The highest accuracy value is equal to 36% , FP rate is equal to

0.144 , unchanged data set, all attributes present, Random Forest Classifier.

As observed earlier, class number reduction does pay off, however, a larger data

set still shows that the instances are not of a unified type and behavior. The

last point is also confirmed by the FP rate value;

• NewApp. We added Matrix Multiplication (MM) application performance mea-

surements to our training data set. The accuracy achieved is 27% , FP rate is

equal to 0.123 , normalized training data set, all attributes are saved, Random

Forest Classifier. As previously, adding new instances to the training data set

lowers accuracy. However, the fact that the result is near (both accuracy and

FP rate) to the one for NewPS signifies that the model is stable to a certain

extent;

• NewApp 2-10. Removing 5 classes increases the percentage of correctly clas-

sified instances o 34% , FP rate is equal to 0.168 , normalized training data
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set, all attributes present, Random Forest Classifier. From the previous point

we can infer that the model behaves as we expected. The accuracy and FP

rate are almost equal to that of NewPS 2-10. It allows us to confirm that the

model is stable to a certain degree;

• NewApp 2-10-resample. The accuracy rate produced is 73%, FP rate is equal

to 0.077 , normalized training data set, several attributes selected: execu-

tion time, PAPI L1 DCM, PAPI FPU IDL, PAPI STL ICY, PAPI BR TKN,

PAPI BR MSP, PAPI FP INS, PAPI VEC INS, PAPI TOT CYC, PAPI L2 DCH,

PAPI L1 DCA, PAPI L2 ICH, PAPI L1 TCH, PAPI FP OPS, Random Forest

Classifier. Resample technique shows improvement in prediction ability and the

quality of the classifier (low value for FP rate) for the model. However, for the

reasons indicated earlier in this chapter we would to improve the model further

on;

• NewApp 2-10-datafly. The highest value for accuracy rate is equal to 94 % , FP

rate is equal to 0.016 , training data set normalized by the number of execution

cycles, several attributes selected (prob size, execution time, PAPI L1 DCM,

PAPI L2 ICM, PAPI L1 TCM, PAPI L2 TCM, PAPI FP INS, PAPI BR INS,

PAPI L2 DCA, PAPI L2 ICH, PAPI L2 ICA, PAPI L2 TCH, PAPI L1 TCA,

PAPI FAD INS, PAPI FSQ INS, PAPI DP OPS) Random Forest Classifier.

As observed earlier, k-anonymity approach does improve prediction rates (both

accuracy and FP rate) significantly.

The following picture summarizes all the steps we took while improving pre-

diction produced by the model:
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Figure 5.4: Dense Linear Algebra dwarf, a model’s accuracy vs. preprocessing tech-
niques employed

To summarize (5.4), for DLA dwarf Datafly, a preprocessing filter allows us to

improve the model significantly.

5.6 OpenMP CollectorAPI, TAU Profiling Toolkit

On the final stage of our work we explore several applications from different

dwarfs using Collector API and TAU profiling tool (3.9).

To enable Collector API instrumentation of the code we compile the application

using TAU’s tau cc.sh compiler script. As a result, a number of profiles are created.
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Each of those files lists various performance information on a per-thread basis (paral-

lel regions a thread encountered, implicit barriers seen, and exclusive/inclusive time

spent in a function/parallel region).

Our analysis is summarized in table 5.6. In particular, we investigate the per-

centage of a thread’s total time spent in a parallel region related to the loop being

tested (the problem size is indicated in brackets).

Table 5.6: Per-thread exclusive execution time in a parallel region, %
Thread 0 Thread 1

DLA
MM-(64) 6 98
MM-(128) 44.9 99.8
MM-(256) 71.6 99.9
LUD-(64 ) 0.8 14.3
LUD-(128) 5.6 29.3
LUD-256 11.9 41.3

SG
Hotspot-(64) 1.2 56.9
Hotspot-(128) 3.30 76.2
Hotspot-256 5.3 78.2

Particle filter-(64) 10.5 57.3
Particle filter-(128) 20.1 59.2
Particle filter-(256) 25.6 58.4

As we can tell from the table 5.6, for the DLA dwarf increasing the problem size

leads to a better per-thread workload balancing. For the SG dwarf we can state

that the time spent by Thread 1 does not change significantly, as opposed to the

execution time spent by Thread 0.

The behavior described is common to applications pertaining to the same dwarf.

That leads us to a conclusion that the loops we investigate in different applications
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do have similarities which allowed us to build a model with a considerably high

accuracy of prediction.

In this chapter, we have analyzed our experiments and presented findings. We

discussed techniques used to gather training data for further model construction and

validation.

The following chapter summarizes the analysis we performed.
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Chapter 6

Conclusion and Future Work

The following chapter concludes the work we have done and proposes ways to

investigate the subject further on.

6.1 Conclusion

We have examined applications from three different dwarfs - Structured Grid,

Unstructured Grid, and Dense Linear Algebra. Our work is aimed at construction

of a model in order to predict a combination of scheduling policy and a chunk size,

which provides a developer with the best performance on a certain platform for a

particular runtime configuration.

Our observations show that unprocessed training data sets tend not show high

values of prediction accuracy. The reason for this is the fact that even though
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the computation in the loops explored pertain to the same computation pattern,

the calculations differ from each other in the number of operations, memory access

pattern, etc. Benchmarks’ vendor claimed the applications we use pertain to a certain

dwarf; however, the computations do deal with a particular type of data structures,

but the very computation pattern is not the same in all the loops.

The following concepts enable us to improve the models’ prediction accuracy

significantly:

• Attributes selection. This technique enables the model’s feature selection and

leaves only the attributes which separate the space of samples more obviously.

This can be explained by the fact that the exact values of the attributes are

used. It leads to a considerable number of cases when a model needs to be fitted

too precisely. Finally, attribute selection eliminates redundant information

which often leads to separation of instances into different classes even though

they should pertain to the same class;

• Enlarging a training data set. By making a training set larger, we are able

to observe the relationship between instances of different classes with a higher

proximity to real life cases. The quality of the prediction is also affected in a

good way; since, with more training instances a classification function can be

learned more efficiently;

• Random resampling of the instances. Resampling a training data set random-

izes the data set; thus, making instances less sensitive to their neighbors. This

technique improves the prediction accuracy rate significantly, however, due to
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the fact that there is a possibility of prediction bias in favor of classes which

have a greater number of instances, we do not consider this approach as our

final solution;

• K-anonymity data preprocessing. This technique enables the model to learn

on the training data set based on the ranges of the numerical attributes; for

each class a set of relevant attributes is defined. This enables the model to

classify instances pertaining to the same class based not on exact values of the

attributes, but based on the ranges, providing a more general training data

set exploration with a less degree of overfitting. Also, irrelevant attributes

are recognized on a per-class basis. The quality of the model has also been

significantly improved.

Finally, we find out that for each of the dwarfs explored a k-anonymity approach

enables the model to improve its characteristics and benefit from various steps taken

(data set extension, number of classes reduction, attribute unification). Random

Forest Algorithm shows the highest accuracy and FP rates due to its ability to work

with complex classification problems.

6.2 Future Work

To improve our models prediction accuracy rates and increase the degree of the

model’s robustness, we would want to take the following steps:

• Investigation of different architectures;
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• Explore new applications which can be related to the dwarfs discussed;

• Integration of a model into a compiler’s infrastructure.
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Appendix A

Hardware Counters Available on

Shark Platform

In this part of our work we present a list of hardware countres available on the

platform explored.

PAPI L1 DCM - Level 1 data cache misses

PAPI L1 ICM - Level 1 instruction cache misses

PAPI L2 DCM - Level 2 data cache misses

PAPI L2 ICM - Level 2 instruction cache misses

PAPI L1 TCM - Level 1 cache misses

PAPI L2 TCM - Level 2 cache misses

PAPI FPU IDL - Cycles floating point units are idle

PAPI TLB DM - Data translation lookaside buffer misses

PAPI TLB IM - Instruction translation lookaside buffer misses
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PAPI TLB TL - Total translation lookaside buffer misses

PAPI STL ICY - Cycles with no instruction issue

PAPI HW INT - Hardware interrupts

PAPI BR TKN - Conditional branch instructions taken

PAPI BR MSP - Conditional branch instructions mispredicted

PAPI TOT INS - Instructions completed

PAPI FP INS - Floating point instructions

PAPI BR INS - Branch instructions

PAPI VEC INS - Vector/SIMD instructions (could include integer)

PAPI RES STL - Cycles stalled on any resource

PAPI TOT CYC - Total cycles

PAPI L1 DCH - Level 1 data cache hits

PAPI L2 DCH - Level 2 data cache hits

PAPI L1 DCA - Level 1 data cache accesses

PAPI L2 DCA - Level 2 data cache accesses

PAPI L1 ICH - Level 1 instruction cache hits

PAPI L2 ICH - Level 2 instruction cache hits

PAPI L1 ICA - Level 1 instruction cache accesses

PAPI L2 ICA - Level 2 instruction cache accesses

PAPI L1 ICR - Level 1 instruction cache reads

PAPI L1 TCH - Level 1 total cache hits

PAPI L2 TCH - Level 2 total cache hits

PAPI L1 TCA - Level 1 total cache accesses
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PAPI L2 TCA - Level 2 total cache accesses

PAPI FML INS - Floating point multiply instructions

PAPI FAD INS - Floating point add instructions

PAPI FDV INS - Floating point divide instructions

PAPI FSQ INS - Floating point square root instructions

PAPI FP OPS - Floating point operations (Counts speculative adds and multiplies.

Variable and higher than theoretical.)

PAPI SP OPS - Floating point operations; optimized to count scaled single precision

vector operations

PAPI DP OPS - Floating point operations; optimized to count scaled double preci-

sion vector operations
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Appendix B

Framework for Taking

Measurements

In this part of our work we are going to present three parts of framework developed

for taking measurements.

Content of init.h

int r e t v a l ;

long long va lue s [ 3 ] , s t a r t u s e c , end usec ;

int ∗group1 ;

int EventSet = PAPI NULL ;

int p r i v a t e e v e n t s e t=PAPI NULL ;

int l oop counte r ;

int nthreads =0;
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char ∗ cva lue = NULL;

int gr id ,NUM EVENTS, prob lem s ize , mode ;

f loat chunk s i z e ;

int ∗ f i n a l v a l u e s ;

stat ic const char f i l ename [ ] = ” counte r s data . txt ” ; // t ime data . t x t

FILE ∗ f i l e = fopen ( f i l ename , ” r ” ) ;

char l i n e [ 2 5 6 ] ;

int l inenum =0;

while ( f g e t s ( l i n e , 256 , f i l e ) != NULL)

{

char gr [ 2 5 6 ] , m[ 2 5 6 ] ;

i f ( linenum==f i l e l i n e )

{

i f ( s s c a n f ( l i n e , ”%s %s ” , gr , m) != 2)

{

f p r i n t f ( s tde r r , ”Syntax er ro r , l i n e %d\n” , linenum ) ;

continue ;

}

g r i d=a t o i ( gr ) ;

mode=a t o i (m) ;

chunk s i z e =( f loat ) g r i d /100 ;
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} l inenum++;

}

i f ( ( r e t v a l = P A P I l i b r a r y i n i t ( PAPI VER CURRENT ) ) != \

PAPI VER CURRENT )

f p r i n t f ( s tde r r , ”PAPI l i b r a r y ve r s i on mismatch !\n” ) ;

switch ( g r i d )

{

case 0 :

NUM EVENTS=3;

break ;

case 1 :

NUM EVENTS=2;

break ;

case 2 :

NUM EVENTS=3;

break ;
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case 3 :

NUM EVENTS=2;

break ;

case 4 :

NUM EVENTS=3;

break ;

case 5 :

NUM EVENTS=3;

break ;

case 6 :

NUM EVENTS=3;

break ;

case 7 :

NUM EVENTS=1;
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break ;

case 8 :

NUM EVENTS=3;

break ;

case 9 :

NUM EVENTS=1;

break ;

case 10 :

NUM EVENTS=3;

break ;

case 11 :

NUM EVENTS=2;

break ;

case 12 :
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NUM EVENTS=3;

break ;

case 13 :

NUM EVENTS=3;

break ;

case 14 :

NUM EVENTS=2;

break ;

case 15 :

NUM EVENTS=3;

break ;

}

group1 = ( int ∗ ) mal loc (NUM EVENTS ∗ s izeof ( int ) ) ;

f i n a l v a l u e s = ( int ∗ ) mal loc ( NUM EVENTS∗ s izeof ( int ) ) ;

int mm;

125



for (mm=0;mm<3;mm++)

f i n a l v a l u e s [mm]=0;

switch ( g r i d )

{

case 0 :

group1 [0 ]=PAPI L1 DCM ;

group1 [1 ]=PAPI L1 ICM ;

group1 [2 ]=PAPI L2 DCM ;

NUM EVENTS=3;

break ;

case 1 :

group1 [0 ]=PAPI L2 ICM ;

group1 [1 ]=PAPI L1 TCM ;

NUM EVENTS=2;

break ;

case 2 :

group1 [0 ]=PAPI L2 TCM ;

group1 [1 ]=PAPI FPU IDL ;

group1 [2 ]=PAPI TLB DM;

NUM EVENTS=3;

break ;

126



case 3 :

group1 [0 ]=PAPI TLB IM ;

group1 [1 ]=PAPI TLB TL ;

NUM EVENTS=2;

break ;

case 4 :

group1 [0 ]=PAPI STL ICY ;

group1 [1 ]=PAPI HW INT ;

group1 [2 ]=PAPI BR TKN;

NUM EVENTS=3;

break ;

case 5 :

group1 [0 ]=PAPI BR MSP ;

group1 [1 ]=PAPI TOT INS ;

group1 [2 ]= PAPI FP INS ;

NUM EVENTS=3;

break ;

case 6 :

group1 [0 ]=PAPI BR INS ;
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group1 [1 ]=PAPI VEC INS ;

group1 [2 ]=PAPI RES STL ;

NUM EVENTS=3;

break ;

case 7 :

group1 [0 ]=PAPI TOT CYC;

NUM EVENTS=1;

break ;

case 8 :

group1 [0 ]=PAPI L1 DCH ;

group1 [1 ]=PAPI L2 DCH ;

group1 [2 ]=PAPI L1 DCA ;

NUM EVENTS=3;

break ;

case 9 :

group1 [0 ]=PAPI L2 DCA ;

NUM EVENTS=1;

break ;

case 10 :
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group1 [0 ]= PAPI L1 ICH ;

group1 [1 ]= PAPI L2 ICH ;

group1 [2 ]= PAPI L1 ICA ;

NUM EVENTS=3;

break ;

case 11 :

group1 [0 ]= PAPI L2 ICA ;

group1 [1 ]= PAPI L1 ICR ;

NUM EVENTS=2;

break ;

case 12 :

group1 [0 ]=PAPI L1 TCH ;

group1 [1 ]=PAPI L2 TCH ;

group1 [2 ]=PAPI L1 TCA ;

NUM EVENTS=3;

break ;

case 13 :

group1 [0 ]=PAPI L2 TCA ;

group1 [1 ]=PAPI FML INS ;

group1 [2 ]=PAPI FAD INS ;
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NUM EVENTS=3;

break ;

case 14 :

group1 [0 ]=PAPI FDV INS ;

group1 [1 ]= PAPI FSQ INS ;

NUM EVENTS=2;

break ;

case 15 :

group1 [0 ]=PAPI FP OPS ;

group1 [1 ]=PAPI SP OPS ;

group1 [2 ]=PAPI DP OPS ;

NUM EVENTS=3;

break ;

}

i f ( ( r e t v a l = PAPI thread in i t ( ( unsigned long ( ∗ )\

( void ) ) omp get thread num ) ) != PAPI OK )

f p r i n t f ( s tde r r , ”PAPI thread i n i t i a l i z a t i o n e r r o r \n” ) ;
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Content of start.h .

i f (mode==0)

{

s t a r t u s e c = PAPI get r ea l u sec ( ) ;

}

# pragma omp p a r a l l e l shared ( f i n a l v a l u e s , s i z e , i , a )\

p r i v a t e ( nthreads , r e tva l , va lues , l oop counter , j , k , sum) \

f i r s t p r i v a t e ( group1 , p r i v a t e e v e n t s e t ,NUM EVENTS) \

{

nthreads=omp get thread num ( ) ;

i f (mode ==1)

{

i f ( ( r e t v a l = PAPI create eventse t ( &p r i v a t e e v e n t s e t ) ) \

!= PAPI OK )

f p r i n t f ( s tde r r , ’ t i d %d PAPI create eventse t !\n ’ , nthreads ) ;

i f ( ( r e t v a l = PAPI add events ( p r i v a t e e v e n t s e t , \

( int ∗ ) group1 ,NUM EVENTS) ) < PAPI OK )

f p r i n t f ( s tde r r , ” t i d %d PAPI add events !\n” , nthreads ) ;
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i f ( ( r e t v a l = PAPI start ( p r i v a t e e v e n t s e t ) ) != PAPI OK )

f p r i n t f ( s tde r r , ” t i d %d PAPI start !\n” , nthreads ) ;

}
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Content of end.h .

i f (mode==1)

{

i f ( ( r e t v a l = PAPI stop ( p r i v a t e e v e n t s e t , va lue s ) ) != PAPI OK )

f p r i n t f ( s tde r r , ”PAPI stop !\n” ) ;

for ( l oop counte r =0; loop counter<NUM EVENTS; l oop counte r++)

{

#pragma omp atomic

f i n a l v a l u e s [ l oop counte r ]+=va lues [ l oop counte r ] ;

}

}

}// o f omp p a r a l l e l

i f (mode==0)

{

end usec = PAPI get r ea l u sec ( ) ;

p r i n t f ( ”%l l d ” , end usec−s t a r t u s e c ) ;

}

//}

i f (mode==1)

for ( l oop counte r =0; loop counter<NUM EVENTS; l oop counte r++)

{

133



f i n a l v a l u e s [ l oop counte r ]= f i n a l v a l u e s [ l oop counte r ] / omp get max threads ( ) ;

p r i n t f ( ”%d , ” , f i n a l v a l u e s [ l oop counte r ] ) ;

}

e x i t (EXIT FAILURE ) ;
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