
A KNOWLEDGE BASED APPROACH
TO PLANNING IN CARD GAMES

A Thesis
Presented to

The Faculty of the Department of Computer Science
University of Houston - University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Pai-Yen Lo

December, 1987

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor Dr.

Christoph Eick for his help, guidance and encouragement during the

research for this thesis. I especially appreciate his confidence in me

and critical review of this thesis.

I am also grateful to my thesis committee members, Drs. Marek

Rusinkiewicz and Fajtowicz Siemion for their criticisms and suggestions.

Finally, I thank to Mrs. Regina Townsend for her help to correct the

grammar errors on the documentation of my thesis.

ill

A KNOWLEDGE BASED APPROACH
TO PLANNING IN CARD GAMES

An Abstract of a Thesis
Presented, to

The Faculty of the Department of Computer Science
University of Houston - University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Pai-Yen Lo

December, 1987

iv

ABSTRACT

The purpose of this research is to explore computational approaches

to the planning in card games. Because of the complexity of the problem,

the study was restricted to the Declarer playing in a NT-contract in

Bridge. A program has been provided which simulates the planning process

of a human player. It uses a knowledge based approach which encodes

knowledge in form of rules and in form of plans. The program uses rules

to select playing techniques for each suit held in the player’s hand

during static analysis and to guide a small tree search which confirms a

particular technique is best. Once a technique is selected, the plans are

used to construct the playing sequence of cards for this technique. The

possibilities and limitations of the overall approach are discussed.

TABLE OF CONTENTS

PAGE
ACKOWLEDGEMENT ... m

ABSTRACT .. v

CHAPTER 1 - INTRODUCTION... i
1.1 Topic of the thesis ... 1
1.2 Planning problem in Bridge card games 2
1.3 The thought process of a human player in a Bridge card-game .. 5
1.4 Explanations on how to play Bridge 9
1.5 Constraints on the problem domain........................... 13
1.6 Organization of thesis 14

CHAPTER 2 - A COMPUTATIONAL APPROACH TO
PLANNING THE PLAY IN BRIDGE. 16

2.1 The planning phases ... 17
2.1.1 The suit-analysis phase 18
2.1.2 The best-technique phase 19
2.1.3 The card sequence construction phase 20

2.2 Replanning.. 22

CHAPTER 3 - THE OVERALL APPROACH OF
KNOWLEDGE REPRESENTATION. 24

3.1 Representation of facts ..25
3.2 Representation of knowledges 30

3.2.1 The scheme of expressing knowledges in rules 30
3.2.2 The scheme of expressing knowledegs in frames 32

CHAPTER 4 - THE EVALUATING SCHEME ... 1.................................... 45
4.1 Counting the contributions of a suit 45

4.1.1 Calculating the number of sure tricks 46
4.1.2 Calculating the number of extra tricks 46

4.2 Counting the threat of playing a card....................... 52
4.3 Evaluating the uselessness of a suit......................... 54

CHAPTER 5 - PLAN LANGUAGE..67
5.1 The syntax of the category 1 action statement 58

~ 5.2 The syntax of the category 2 action statement 59
5.3 An example.. 60

CHAPTER 6 - PROPOSING PLAYING TECHNIQUES 63
6.1 The suit-analysis phase...................................... 63
6.2 The best-technique selection phase 65

CHAPTER 7 - THE SCHEME OF CONSTRUCTING
CARD SEQUENCE FOR A TECHNIQUE.68

vi

CHAPTER 8 - THE CONTROL MECHANISMS OF
THE BRIDGE PLANNER 75

8.1 Top-level control mechanism 75
8.2 The control mechanism for defensive play..................... 76
8.3 The control mechanism for defensive play..................... 78
8.4 The control mechanism for defensive play

against opponent's move 79
8.5 The control mechanism used at the end stage of the game 80

CHAPTER 9 - COMPUTER IMPLEMENTATION 82

CHAPTER 10 - AN EXAMPLE .. 94

CHAPTER 11 - CONCLUSIONS .. 104

APPENDIX A. RULES FOR DECLARER SIDE PLAYING
IN DEFENSIVE POSITION no

REFERENCES ... 112

vii

CHAPTER 1

INTRODUCTION

1.1 Topic of the thesis :

One of the central concerns of artificial intelligence is expressing

knowledge and reasoning with it. Game playing has been the first popular

domain for Al study. There are many popular games such as Chess, Bridge,

Tic-tac-toe, Go, Checkers, and Backgammon. For a human player playing in

one of these games, the general process is to analyze an entire sequence

of steps in advance to discover where it will lead before the first step

is actually taken. We refer to this process as a planning process. The

planning process is very straightforward in such a game that the result

of a move is predictable.

However, in card game such as Bridge, the planning process is a

little bit complicated since we do not know exactly where all the cards

are located or what the opponents will do on their turns. This means that

it is impossible to plan an entire sequence of moves and be confident

that we know what the resxilting state will be. Therefore, in pl anting

-these kinds of games, what we would like to do is to investigate several

plans and choose a plan which can make the best of the current situation

and go on from there.

1

2

In playing Chess, a player plays alone against his opponent; but in

playing Bridge, a player needs to cooperate with his partner as a team.

Furthermore, he can be either a defender or an offender during the game.

There are some programs written to play Bridge card-games. Among

them, only three programs were found to be developed by taking Al tech

niques. One is the Bridge bidding program [1], The other one is the pro

gram which locates a missing card [2j. And another is a program named

BRIPP [10] which is a Bridge-playing program. Although the details about

about BRIPP [10] couldn't be found, Stanier in his paper [1] criticizes

it as being incapable to play a good game. However, he doesn’t mention

the problems with BRIPP [10]. For a computer program to play a good game,

a better approach for representing knowledge and a searching technique

guides a small tree search to find the best move must be exploited. The

search is small in the sense that the size of the search tree is of the

same order of magnitude as a human master’s search tree (ten and hundreds

of nodes). The intentions of this study are therefore to present an over

all approach to express knowledge and to exploit a searching technique to

find the best move. As a result of this study, a Bridge-playing program

was built.

1.2 Planning problem in Bridge card games :

The process of problem solving is a search through a state space in

which each point corresponds to a situation that might arise. Many

3

problems addressed by Al techniques involve search through a large space

of possible solutions. For the complicated problem domains such as game

playing, it becomes important to be able to work on small pieces of a

problem separately and then to combine the partial solutions at the end

into a complete problem solution. Planning is the action of decomposing

the original problem into appropriate subparts and recording and handling

interactions among the subparts as they are detected during the problem

solving process.

Planning is familiar to all of us. We need to get something done, so

we make a list of all the steps Involved and check them off as we ac

complish them. Say we want to vacation in Tahiti. You need to call a

travel agent, budget some money, buy a new swimsuit, and so on. Each step

in the plan involves a subplan. To buy a swimsuit, you need to get in

your car, drive down to a department store, find the sporting goods

section, pick a swimsuit, and pay for it at the cash register.

Planning is not just a matter of making a list of all the steps in

volved in order to get something done. A very important issue of pl arming

is to find the sequence of steps which is the best among those possible

sequences. A sequence of steps is the best if the job can be done cor

rectly and efficiently by taking it. Correctness and efficiency are very

important considerations for doing planning.

Humans make plans against their opponents in games. For example, in

playing Chess, a player decides what steps need to be taken for the par

4

ticular goal and decides on what to do in the event of various opponent

replies. The planning here is somehow different from the one discussed in

the previous paragraph.

In playing a Bridge card-game, what we would like to do is to plan

the entire hand before making the first play. But it is impossible to do

such planning with certainty, since the knowledge collected so far would

not enable us to describe the situation absolutely. The plans generated

in this particular world must more or less rely on probability. By in

vestigating these plans and by assigning probabilities of the various

outcomes, the plan which has the highest expected probability of leading

to a success has to be chosen.

Playing a game, the offense wants to have a reply ready for every

defensive alternative. A plan cannot therefore be a linear sequence of

goals or moves, but must contain conditional branches depending on the

opponent's actions. When the offense is on his move, a specific move or

goal provided by the plan. When the defense is on his move, a list of al

ternative sub-plans for the offense may be given. For example, your

partner leads a card, if your right-opponent has a card left in the suit

led, then he can play either a card whose rank is higher than the card

led or a card whose rank is lower than the card led. If the suit led is a

void suit in your right-hand opponent's hand, then he must discard a card

from one of side suits in his hand. To respond to the right-opponent's

play, the plan suggests the possible offensive move for the third-hand

5

player. In the later chapters, we will discuss this in more detail.

The discussions in the rest of this chapter and in the following

chapters will tackle with planning the play of a Bridge game under the

following motivations :

a. to develop a program which is capable of planning under un
certainty.

b. to provide knowledge representation framework for planning in
uncertainty that are suitable to make correct decision quickly.

1.3 The thought process of a human player
in a Bridge card game :

Suppose you are the declarer in a contract of 3NT. Vest, your left

hand opponent, leads the queen of diamonds and your partner puts his hand

down as dummy :

(dummy) Spade 7 5 2
Heart 8 3
Diamond K 9 2
Club A K 6 4 3

(West)
Opening lead - Diamond Q

(declarer)
Spade A K 4 3
Heart A Q 4
Diamond A 7 3
Club 8 5 2

Bow do you, as declarer, go about playing the hand to make the

contract? First, you must make a plan. In order to construct a plan for

6

this hand, you need to examine each suit to see what kind of contri

butions it can make for the contract.

A. The first step — setting up your goal
At very beginning, you need to set up your goal. In other

words, you need to make your guess at how many tricks you intend

to make.

In this example, your goal is to make at least 9 tricks, which

is calculated by adding 6 to the level of the contract.

B. The second step -- counting tricks
Next, you need to count how many sure tricks you have in your

hand and your partner’s hand.

The number of sure tricks on hand is :

Spades : 2 - the Ace and the King
Hearts : 1 - the Ace
Diamonds : 2 - the Ace and the King
Clubs : 2 - the Ace and the King

The total number of sure tricks is 7. Therefore, at least 2

extra tricks must be built.

C. The third step — suggesting the possible
techniques for each suit.

Spades : By playing the Ace and King and then giving the
opponents a trick, the fourth Spade will become

7

established as a trick if the opponents* Spades
are divided three and three.

Hearts : By leading from dummy and finessing the Queen
you may get an extra trick by trapping your
right-hand opponent’s King.

Diamonds : There is no way to build any extra tricks.

Clubs : By playing 3 runs of Clubs, 2 extra tricks will be
built if the outstanding Clubs are divided three
and two.

In books [3] and [4], there are several techniques presented for

No-Trump contract. Among them, the following four techniques are

the most common techniques used to build extra tricks.

Technique 1 - By promoting card
Technique 2 - By suit length
Technique 3 - By finesse (trapping a missing high card)
Technique 4 - By throw-in (forcing opponent to play first)

In his example. Both the Spade suit and Club suit can use the

Technique 2. The Heart suit can use Technique 3 or Technique 4.

D. The fourth step — making up an executable plan
To formulate an executable plan, the guidelines described in

book [3] are used. These guidelines are used very often in piaruving

the game for No-Trump contract.

Guidelines

a. Build extra tricks you need to make contract before taking
your sure tricks.

8

b. Find the suit which contributes more extra tricks and play
it first.

c. Watch your entries to be sure that you can get to the hand
from which you want to lead to the next trick.

For each suit, we have conveyed the possibility of building

extra tricks and the possible techniques are suggested. Among these

techniques, we then evaluate each technique. Eventually, we come up

with a feasible plan.

a. Two extra tricks must be built —

Both the Heart suit and the Spade suit can only provide
one extra trick. You would have to be successful in
building an extra trick in both cases in order to get
the two tricks needed. The Club suit seems to offer the
best possibility for providing both extra tricks.

b. Considerations about entry setup -

If you win the first Diamond trick with dummy’s King,
after you have built the 2 extra Club tricks, you will
have no way to get to dummy to lead them. Therefore, you
win the first trick with your Ace. You will then be able
to use dummy’s King as an ENTRY to the dummy to take
your two Club tricks.

In summary, the thought process of a human player in playing a

bridge game is as follows : First, he counts how many tricks needed

to make the contract. Second, he checks each suit in hand to find

the number of sure tricks, the number of extra tricks, and the

possible techniques for building these extra tricks. Then he ex

amines these techniques to select the best one. A technique is found

for each suit which is capable of building extra tricks. The tech

9

nique which can build most of the extra tricks is selected to be

played first. So he starts at this technique and tries to construct

a plan- If it turns out to be impossible to build a plan for this

technique, then he tries the next best technique if there is one

available. Eventually, a plan is constructed and executed. After he

has built a sufficient number of extra tricks, he then plays all the

sure tricks.

Our overall approach is an approach which simulates each step

described above. The detailed explanations of an overall approach is

given in the next chapter.

1.4 Explanations on how to play Bridge :

The text in this section explains how to play a Bridge card-game.

Some of the words or phrases are circled with a pair of double-quotes.

These words (or phrases) have their own meanings in the Bridge card-game

and will be mentioned somewhere in the later chapters. The explanation

here is very brief. There are many books available describing the terms

used by Bridge players. The following explanation is extracted from one

of the books [3]. This book also includes the glossary of terms used in

the Bridge card-game.

Bridge is a partnership game. The 4 players split themselves into 2

partnerships. The cards are dealt clockwise and face-down. After each

10

player has sorted his hand into suits, the dealer has the first chance

to bid or pass and then, clockwise, each player in turn.

The objective is to win as many tricks as possible. A "trick" con

sists of 4 cards, one contributed by each player. The cards are played

one at a time moving clockwise around the table. The play to each trick

follows some rules :

* One of the players "leads" to the trick by placing any card he
wishes face-up one the table.

* The other three players play a card, one at a time, in clockwise
rotation.

* Players "follow" suit to the card led by
same suit where possible.

playing a card in the

* If a player cannot follow suit, he plays any card from a "side*
suit. This is called "discarding".

* The trick is won by the highest card played in the suit that was
led. The player winning the trick leads to the next trick.

A Bridge hand can be played either in "No Trump" or with" a "trump"

suit. In No-Trump, the highest card played in the suit led wins the

trick. In a trump suit, one suit is trump. If a player can’t follow

suit, a trump can be played. The is called "trumping* or "ruffing" the

trick.

Before the play can start, a "contract" must be decided through a

process called "bidding". Bridge bidding is like an auction. The first

player to open the bidding during this process is called the "opening

11

bidder" or "opener". A player makes a "bid" by naming a "level" and a

"denomination*. For example, level of the bid "one Spade" is 1 and the

denomination of the bid is "Spades". The bidding usually starts at the

one-level. The first 6 tricks are taken for granted. These 6 tricks are

called the "book". The one-level, then, is 6+1=7 tricks. If a player bids

S No Trump (or NT) and this is followed by Pass, Pass, Pass. The contract

is 3NT, a commitment to take 6+3=9 tricks, with no suit as the trump

suit. The first step in bidding is to value the hand. There are two

factors which determine the trick-taking potential of a hand:

* High cards (Aces, Kings, Queens, Jacks)

* Long suits (A suit consisting of the Ace, King, Queen, seven.
Six, and Three, for example, will often take 5 or 6
tricks)

Hand valuation points are given for both high cards and for long

suits.

High Card Points : Ace - 4 points. King - 3 points.
Queen - 2 points. Jack - 1 point

Length points : 5-card suit - 1 point
6- card suit - 2 points
7- card suit - 3 points
8- card suit - 4 points

The high card points are added to the length points to determine

the total value or point count of the hand. For example :

12

10

High card point

Spade A 7 3 4
Heart K 4 3
Diamond J 9 8 6 3 1
Club Q 7 3 2

Length points

0
0
1
0

1 = 11 points.

After the bidding is complete, the final contract has been de

termined. There will be two teams. The "offense* will be the side that

make the highest bid. They will make their contract if they win at least

the number of tricks contracted for. The offensive player who first

mentioned the denomination of the final contract becomes the "declarer*,

the other member of the offensive team is the "dummy*. The player on the

Declarer’s left makes an "opening lead", and the dummy puts his hand face

up on the table. Declarer plays both hands for the offense and tries to

make enough tricks to make his contract. The "defense" works together to

try and take enough tricks to defeat the contract.

* "building tricks* or "extra tricks" which can be developed by
adopting one of the following techniques :

We have given the basic ideas about playing a Bridge card-game. From

that, we know the objective during the play is to take tricks. There are

two types of tricks :

* "sure tricks" which you can take without giving up the lead to
your opponents.

13

- prompting cards
- establishing long suits
- finessing ... trapping opponents' high cards
- throw-in ... forcing opponent play before you

The detailed description of these techniques is in the book [3].

Details of how to apply these techniques will not be discussed here.

However, in later chapters it will be discussed by giving the examples.

Before ve leave this section, there is one important term we need to

explain. That is "entries’*. When you, as a declarer, have a choice of

winning a trick in dummy or in your own hand, there is sometimes an ad

vantage to win the trick in a particular hand. You may want to lead a

suit starting from the dummy or you may want to have the lead in your own

hand. Used in this way, sure tricks can represent "entries’* from one hand

to the other. The value of "entries" will be seen in a later example.

1.5 Constraints on the Problem Domain :

As we have mentioned before, playing a bridge game is a complicate

domain. It may take years to develop a complete computer system to play

Bridge. This kind of system can handle bidding, drawing deductions on

cards played by opponents, and making plans for the defenders and offend

ers. In our study, we intend to build a Bridge planner which is not com

plete, but has all the basic components. We wish that this prototype can

be a building block for making a perfect Bridge planner in the future. To

reach this goal, we will limit our study to the problem of pianning in

14

No-Trxnnp contract. The techniques currently used for making this planner

are the Finesse technique, the Promote technique, the Throw-in technique,

and the Win-tricks-by-long-suit technique. There are two teams in a game,

but the planner built is only used for making offensive play. For the

defensive play, no p)annlng is performed. To make our study more dedi

cated to the planning itself, the planner built does not have to have the

ability to produce answers for the questions about cards held by op

ponents. For each card played by the opponents, no deduction is drawn by

the planner.

1.6 Organization of Thesis :

In Chapter 2, we give an overview of our computational approach to

the pianning problem of playing a Bridge game. The approach divides the

human planning process into three phases. One phase is the phase of doing

suit analysis. The other phase is the phase of selecting the best playing

technique. Another phase is the phase of constructing a card sequence for

a playing technique.

In Chapter 3, ve present an overall approach of knowledge represen

tation. The schemes used for different data structures such as rules and

frames are explained.

In Chapter 4, the trick counting technique used in the suit-analysis

phase and the best-technique phase is introduced. The technique for

evaluating threats coming from opponents on a card led and the technique

15

for discarding a card are also explained.

In Chapter 5, the Plan Language is defined and an example is given

to show how the statements defined in Plan Language are used.

Chapter 6 and 7 have detailed explanations of the overall approach

described in Chapter 2. In Chapter 6, we show how to do suit analysis

and how a technique is proposed. The selecting scheme of a best technique

is also presented in this chapter. In Chapter 7, we try to show how the

Plan language is used in constructing plans which are used to generate a

card sequence for a selected playing technique.

In Chapter 8, the control mechanisms of the Bridge planner are dis

cussed.

In Chapter 9, we explain how a program is constructed to implement

the planning.

In Chapter 10, we give an example to demonstrate how the pl a rm ing

works.

Finally, in Chapter 11, the conclusions are drawn. The possibilities

and limitations of our overall approach are discussed.

CHAPTER 2

A COMPUTATIONAL APPROACH TO

PLANNING THE PLAY IN BRIDGE

In Chapter 1, we discussed the thought process of a good player in

playing a No-Trump contract. In this chapter, we are about to discuss a

computational approach to simulate this thought process.

The computer program playing games is implemented by dividing the

whole period into two stages :

Stage 1 - The Declarer side is in the defensive position and he
and his partner play against the opponent’s opening
lead. This stage is ended when the Declarer side gains
the lead.

Stage 2 - The Declarer side plays the game by rotating the play
ing side in either the offensive or defensive position
until the game is over. Three situations exist during
this stage :

* Declarer side is in offensive position

— planning is performed to decide the offensive
moves.

* Declarer side is in defensive position

— a set of rules is used to decide the second
— hand player’s moves.

— another set of rules is used to decide the
fourth hand player’s moves.

* Opponent side is in either the defensive or
offensive position

— Every opponents’ move is entered from the
screen terminal.

16

17

2.1 The planning phases :

In our approach, the planning process is divided into three phases

The first phase is the suit analysis phase. The second phase is the best

technique selection phase. The last phase is the card sequence construe

tion phase. The process can be pictured as follows :

Spade suit Heart suit Diamond suit Club suit
< Declarer hand and Dummy hand >

Propose Propose Propose Propose
techniques techniques techniques techniques
for for for for
Spade suit Heart suit

_l_________
Diamond suit Club suit

Best-technique
selection

Best technique Best technique Best technique Best technique
for Spade suit for Heart for Diamond for Club

suit suit suit
< Tech-01 > < Tech-02 > < Tech-03 > < Tech-04 >

Sorted these techTViqnf>c
in terms of their ability
to build extra tricks

< Tech-02 Tech-01 Tech-04 Tech-03 >

18

I
Card sequence is constructed
for Tech-02
If it is successful then

play this sequence
else

try next technique Tech-01

I
< no extra tricks by the above techniques >

ITry vin-tricks-by-long-suit technique
if it is possible

< no extra tricks can be built by this technique >
I

take play-all-sure-tricks-left plan
and
play-and-watch plan

alternatively.

2.1.1 The suit analysis phase :

The task of the suit analysis phase is to propose playing

techniques for each suit in the Declarer-Dummy's hands. At the end

of this phase, a technique-list is generated for each suit if it is

possible to build extra tricks in this suit. If a suit doesn't have

any extra tricks to build, then there is no technique-list found for

this suit. For example, the following technique-lists are generated

if extra tricks can be built in all four suits.

Technique-11 st-1 for Spade suit
Technique-list-2 for Heart suit
Technique-list-3 for Diamond suit
Technique-list-4 for Club suit

19

Each technique-list contains the general information and the

the specific information. The general information includes a card

pattern describing the cards in the Declarer-Dummy’s hands, the ex

pected number of tricks that a suit can make and a list of possible

techniques. The specific information is the detailed information of

of each technique in the list. As we have mentioned in the Chapter

1, a technique can be one of the following techniques :

* Finesse technique
* Promotion technique
* Throw-in technique

In our approach, the win-tricks-by-long-suit technique is used

when the above techniques are no longer feasible and if extra tricks

can be built by this technique.

2.1^ The best-technique selection phase :

The task of this phase is to select the best technique for

each suit and then sort them in terms of their ability to build

extra tricks. In the previous example, a technique is selected for

each suit from the technique-list generated at the first phase,

every technique in the list has its own precondition, limitations

such as entry limitation and the limitation of leading toward a par

ticular opponent, and risks such as losing a trick to an unexpected

opponent, etc. The examination starts at the first technique in the

technique-list for a suit. It stops as long as the precondition of

20

a technique satisfies with the current situation. The technique

found so far is considered as the best technique for the suit being

examined. The last technique in the list is respected as a default

technique for the suit being examined. After examining the four

techniques found in the previous phase, the result is generated as

follows :

In Spade suit, tech-01 is the best among those techniques in
technique-list-1.

In Heart suit, tech-02 is the best among those techniques in
technlque-list-2.

In Diamond suit, tech-03 is the best among those techniques in
technique-list-3.

In Club suit, tech-04 is the best among those techniques in
technique-list-4.

If there is no techniques-list found in a suit, then no exam

ination is performed for this suit during this phase.

2.1.3 The card sequence construction phase :

The task of this phase is to select cards and formulate them

into a playing sequence for each technique in the sorted list gener

ated by the best-technique selection phase. The construction is a

process of traversing a plan tree. The offensive play made by the

Declarer side represents the root of this tree, and each techn-iqne

represents a subtree of this root. Each node in this tree is a plan.

21

In the previous example, the offensive plan consists of four sub

plans. Each of these subplans corresponds to each technique in the

list. The first technique in the sorted list is applied first. A

card sequence is built by traversing the subtree of this technique.

It is possible that a card sequence is unable to be built for some

reasons. If this happens, we say that this technique is unfeasible.

Thus, the next technique in the list is tried.

If there is no technique left in the list, the suits are ex

amined to see if it is possible to build extra tricks by taking the

the Win-tricks-by-long-suit technique. If a suit is found to have

this possibility, then a card sequence is constructed for this tech

nique. If no extra tricks can be built, two plans are used alterna

tively to play the cards left in the players' hands. They are the

Play-all-sure-tricks-left plan and the Play-and-watch plan. Here,

Here, the term "technique" refers to a playing technique used in

Bridge and the term "plan" refers to the steps of applying a tech

nique. A technique is applied by executing a plan.

The Play-all-sure-tricks-left plan is executed first. This plan

tries to play all sure tricks left in the Deelarer-Thmmy'r hands. If

there are no sure tricks left, the Play-and-watch plan is then exe

cuted. The intention of this plan is to turn the Declarer side from

the offensive position into the defensive position and wish that the

Declarer side can establish sure tricks by chance during the de-

22

fensive play.

In order to simulate a human playing in a game and demonstrate how

planning is performed, the games played by computer will be proceeded by

rotating between the following two modes :

Simulation mode — In this mode, the game pauses. A card sequence
is built for a technique or a plan. If the
sequence can be built, then the simulation
stops and the game is set to "game” mode.
If it fails to build the sequence, then the
next technique is tried and the simulation
proceeds.

Game mode — In this mode, the game proceeds. In each run,
every player plays a card. If the Declarer is
in the offensive position, the card played is
retrieved from the sequence generated in the
simulation mode. Otherwise, the card played is
selected by scanning rules. If the opponents
are in the offensive position, the card is
entered from the terminal screen.

2.2 Replanning :

When a technique becomes unfeasible, the replanning process will be

taken for the related suit. However, the replanning process will not be

performed immediately unless there is no other technique left in the

sorted techniques-list or all the techniques left in this list are also

unfeasible.

When a replanning process needs to be performed, the same steps used

in the planning process are taken. Actually from an implementation point

23

of view, there is no difference between planning and replanning.

CHAPTER 3

THE OVERALL APPROACH OF

KNOWLEDGE REPRESENTATION

In order to play Bridge, we know we need the knowledge to suggest

the techniques for suits, the knowledge to construct a card sequence for

a technique, the knowledge for the declarer playing a defensive position,

the knowledge for bidding, and the knowledge for making an open lead. We

are only concerned with the first three kinds. . In order to store these

knowledges into a knowledge base, we need to arrange them in the way that

the retrieving, adding, and updating of these knowledges is efficient.

Knowledge Storing structure Used by

Facts Simple associated list All phases of the

Analysis
information

Technique
information

Rules

Complex associated list

planning process

Suit-analysis
phase

Best-technique
selection phase

Technique
- applying

information Complex associated list

and
The card sequence
construction
phase

The card sequence
construction
phase

In the later explanations, we will use the term "frame" to refer to

the complex associated list. The details and implementation of frame re

presentation can be found in the paper [7].

24

25

3.1 Representation of facts :

Hand information

The structure of storing a hand is the associated list. The

header of the list is the name of a player. Under it there are

attributes - Spades, Hearts, Diamonds, and Clubs. The value of

each attribute is a list of cards. The following example shows the

hand held by West.

(west (spade
(heart
(diamond
(club

(Q 10 6 3))
(Q 10 7))
(6 5 2))
(K 10 6)))

Bidding information

The structure of storing the bids is a simple list. Each

element in the list represents a bid. The first item of an element

is the name of the bidder. The second item consists of the bid

level and the bid-suit. The value of the bid-level is in the range

of (0, 7). The value of bid-suit can be Spades, Hearts, Diamonds,

Clubs, NT, Pass, Double, or ReDouble. The following list is an ex

ample.

((west (0 pass)) (north (1 diamond))
(east (0 pass)) (south (2 nt))

(west (0 pass)) (north (3 nt))
(east (0 pass)) (south (0 pass))

(west (0 pass)))

26

The declarer and the contract are not specified explicitly.

Their values can be derived from the above list. After scanning

the entire list, the value of a bid-suit is NT, and the bid-level

is three. The declarer is SOUTH.

The lists we discussed above are external representations of

facts. This representation.is easy to understand, but it is not

easy for implementation. For example, the Spade suit has cards

(Q 10 6 3) and there is a set of rules whose premises describe the

various card-patterns (shapes). If we write a statement to check

whether the Queen exists or not, it is obvious that the statement

must invoke a function to implement this checking. Thus, many

functions are needed for the various checkings. Another problem

with this representation is repeatly implementing the same check

ing on each scanning of rules. If one of rules checks whether the

Queen and the Jack exist, and another rule checks whether the

Queen and the 10 exist, then the checking on the Queen is imple

mented twice. Therefore, poor performance of the rule scanning

process is expected by using this representation. To get better

performance, we must convert this representation into a form which

is easy to implement. In order to perform this conversion, two

sets of statements are defined. One is for describing a hand. The

other one is for describing bidding.

27

Group 1 statements

(spade is the major suit)
(heart is the major suit)
(diamond is the minor suit)
(club is the minor suit)
(?suit has no more than 4 cards)
(?suit has at least 5 cards)
(7suit has Tcards cards)
(Vsuit has 1 card)
(?suit is in complete sequence)
(?suit is in partially complete sequence)
(?suit is not in sequence)
(Vsuit sequence is headed by card 7card)
(7suit has 7card)
(7suit has a missing 7high-card)
(7suit has no high cards)
(?suit is the longest suit)
(7suit is the strongest suit)
(7suit is the shortest suit)
(there are entries in suits other than 7suit)
(?suit has 7entries entries)
(7suit has 1 entry)
(?suit has at least 7entries entries)
(7suit does not have an entry)
(7suitl has the same length as 7suit2)
(Tsuitl is better than 7suit2)
(7suitl has more cards than 7suit2)
(7suitl has the same texture as 7suit2)

Group 2 statements

(the contract is notrump contract)
(the contract is trump contract)
(?suit is the trump suit)
(7player is the declarer)
(?player bid 7suit for the 7bid-time time)
(?player has bid 7suit once)
(?player never bid 7suit)
(?player has bid ?suit at the 7bid-level level)
(7player never bid any suit at all)
(?player single raise bid ?suit suit)
(7player jump raise bid ?suit suit)
(7player bid double against ?suit)

28

In order to make a statement match as many facts as possible,

the variables are used in the statement. The word prefixed with

is recognized as a variable. Each variable has an assigned

range of valid values. When a statement is accessed, the binding

process is executed to substitute the variables in this statement

with the correct values. .The paper [8] discusses how the binding

process is executed. The following table shows the variables and

their possible values.

?player : west, north, east, south
?suit : spade, heart, diamond, club (for hand)

nt, double, redouble, pass (only for bidding)
?suitl.
*?suit2 : spade, heart, diamond, club
Tcard : ace, king, queen, jack, 10, 9, 8, 7 , 6 , 5, 4

3, 2
?high-card : ace, king, queen, jack
Ventries : number of entries (sure tricks)
Vcards : number of cards
?bid-level : first, second, third, forth, game
?bid-time : first, second, third, forth, fifth, sixth.

seventh
?1 : the highest-ranking card in the suit
?2 : the second highest-ranking card in the suit
?3 ?14 : the rank of a card in the suit

Now, let’s see an example. The Spade suit in the following

hand :

(west (spade (Q 10 6 3))
)))

can be converted into a list of statements

29

((SPADE IS THE MAJOR SUIT) (SPADE HAS NO MORE THAN 4 CARDS)
(SPADE HAS 4 CARDS) (SPADE IS NOT IN SEQUENCE)
(SPADE HAS A MISSING ACE) (SPADE HAS A MISSING KING)
(SPADE HAS QUEEN) (SPADE HAS A MISSING JACK) (SPADE HAS 10)
(SPADE HAS 6) (SPADE HAS 3) (SPADE DOES NOT HAVE AN ENTRY)
(SPADE IS THE STRONGEST SUIT) (SPADE IS THE LONGEST SUIT)
(SPADE HAS MORE CARDS THAN DIAMOND)
(SPADE HAS MORE CARDS THAN CLUB)

)

and the bidding

((WEST (0 PASS)) (NORTH (1 DIAMOND))
(EAST (0 PASS)) (SOUTH (2 NT))

(WEST (0 PASS)) (NORTH (3 NT))
(EAST (0 PASS)) (SOUTH (0 PASS))

(WEST (0 PASS)))

can be converted into

((THE CONTRACT IS NOTRUMP CONTRACT) (SOUTH IS THE DECLARER)
(WEST BID PASS FOR THE FIRST TIME)
(NORTH BID DIAMOND FOR THE FIRST TIME)
(NORTH BID DIAMOND AT THE FIRST LEVEL FOR THE FIRST TIME)
(EAST BID PASS FOR THE FIRST TIME)
(SOUTH BID NT FOR THE FIRST TIME)
(SOUTH BID NT AT THE SECOND LEVEL FOR THE FIRST TIME)
(WEST NEVER BID ANY SUIT AT ALL) (NORTH NEVER BID SPADE)
(NORTH NEVER BID HEART) (NORTH HAS BID DIAMOND ONCE)
(NORTH HAS BID DIAMOND AT THE FIRST LEVEL)
(NORTH NEVER BID CLUB)
(NORTH HAS BID NT ONCE) (NORTH HAS BID NT AT THE GAME LEVEL)

(SOUTH NEVER BID DOUBLE))

(NORTH NEVER BID DOUBLE) (EAST NEVER BID ANY SUIT AT ALL)
(SOUTH NEVER BID SPADE) (SOUTH NEVER BID HEART)
(SOUTH NEVER BID DIAMOND)
(SOUTH NEVER BID CLUB) (SOUTH HAS BID NT ONCE)
(SOUTH HAS BID NT AT THE SECOND LEVEL)

30

3.2 Representation of knowledge :

The knowledge in Bridge can be classified into several categories :

(a) knowledge for interpreting opponents' moves
(b) knowledge for the Declarer side playing the defensive position
(c) knowledge for analyzing a hand
(d) knowledge about playing techniques
(e) knowledge about using a playing technique

The (a) category of knowledge is not included in our study, so we do

not discuss it. The (b)(c) categories of knowledge are stored in rules.

The other two categories of knowledge are stored in frames.

3.2.1 The scheme of expressing
knowledges in rules :

The structure of an individual rule has the following form :

(Rulename
(Premises ((statement-1)

(statement-2)

(statement-n)))
(Actions ((action-1)

(action-2)

(action-m))))

Premises

The statements in the premises part of a rule are the

statements defined in the previous section. The logical re

lation of statements is an AND relation. However, the logical

operator NOT can be used in a statement. For example :

31

(premises ((?suit has ?1)
(not (?suit has ?2))))

(actions ((....))))

The negative statement (not (?suit has ?2)) is the same

as the statement (?suit has a missing ?2). (Null conditions)

is a special statement which is similar to the ELSE statement

used in other programming languages. It guarantees that the

forward reasoning on a set of rules has a terminated point.

Actions

An action in ’’actions’* list is a LISP macro-function. An

action can be a NOP. In this case, the function DO-NOTHING is

invoked.

Example

(Analysis-rule-001
(premises ((?suit has ?1)

(not (?suit has ?2))))
(actions ((Propose Technique-001))))

In this example, ?suit, ?1, and ?2 are binding variables

and Propose is a macro-function which proposes the tech

nique •’Technique-001’*.

32

3.2.2 The scheme of expressing
Knowledges in frames :

The knowledge about playing techniques such as Finesse, Pro

motion and Throw-in are stored in a frame structure. The knowledge

about constructing a card sequence for each of the playing tech

niques is also stored in a frame structure. The contents of these

two frames are different.

3.2.2.1 Storing technique information in frames :
The structure of storing technique information is a complex

associated list which we refer as the ••frame". Each frame has

seven primary attributes. They are

(a) Player-relations
(b) Max-card-index
(c) Holdings
(d) Sure-tricks
(e) Sure-tricks-list
(f) Extra-tricks-list
(g) Techniques

The attribute (g) has six attributes under it. They are

(gl) Depend-on
(g2) Objective
(g3) Avoid
(g4) Risk
(g5) Lead
(g6) Technique-name

33

The general format of this category of knowledge is :

(Tech-info-id
(player-relation value-1)
(max-card-index value-2)
(holdings value-3)
(sure-tricks value-4)
(sure-tricks-list value-5)
(extra-tricks-list value-6)
(more-extra-tricks value-7)
(techniques techniques-list))

The format of a technique in techniques-list is :

(technique-sequence-no

(lead statement-5)
(technique-name statement-6))

(depend-on statement-1)
(objective statement-2)
(avoid statement-3)
(risk statement-4)

Now, we explain the meaning of each attribute used in the

following example.

(Tricks-won-by-length 0.36)
(Techniques

(Tech-info-4-3-002
(Player-relations
(Max-card-index
(Boldings
(Sure-tricks
(Sure-tricks-list
(Extra-tricks-list

((?pl ?p2) (?right-op ?pl) (?left-op ?pl))
3)
(((71 73 7x1 7x2) (7x3 7x4 7x5 ?y))))
1)
((?pl (71))))
((Technique-01 1) (Technique-02 1))))

(Technique-01
(Depend-on
(Objective
(Avoid
(Risk
(Lead

((7right-op has the ?suit 72)))
((73 wins 1 trick)))
nil)
((71eft-op may gain the lead)))
((7p2))

(Technique-name ((Finesse ?3 7pl))))
(Technique-02

(Depend-on nil)

34

(Objective ((?3 wins 1 trick)))
(Avoid ((?left-op gains the lead)))
(Risk ((?right-op may gain the lead)))
(Lead ((?p2 ?pl))
(Technique-name ((Throw-in ?right-op))))))

Attribute (a) — player relation

This attribute is used to build the binding information for

the player relation. The example shows that the ?left-op is the

left-hand opponent of ?pl. If ?pl is West, then the value of

?left-op is North.

Attribute (b) — Max-card-index

In order to perform pattern matching on card holding in a

suit, the card held in a suit must be converted into a pattern

where only the significant cards are recognized.

The value of the Max-card-index indicates the most signif

icant card. For example: if the value is 2, only the first two

highest ranking cards are significant. The pattern appeared in

attribute "holdings" has the elements ?1 and ?2. These are the

binding variables. The number indicates its ranking.

Attribute (c) — Holdings

The value of this attribute is a matching card-pattern. It

decides whether or not a technique-information list can be used

35

for a suit. If the Declarer side holds the cards in a suit whose

pattern is the same as the one described in this attribute, all

information stored in this list is related to the playing of

this suit. The variables used here have their own meanings.

?1 ?2?n : represents the rank of a card.
?1 represents the highest card
currently left in the suit being
examined.

?xl ?x2... : represents any other cards which
are not significant for the pattern
matching. The "x" in ?xl indicates
a card in the suit being examined.

?y : represents a card in the side suit.
The use of "Vy" is mainly for the
convenience of implementation. If the
cards in a suit are divided into 3
and 2, then the pattern will be built
as follows :

((?xl 7x2 7x3) (7x4 7x5 ?y))

Now, two sub-lists have same number of
elements.

Attribute (d) — sure-tricks

It tells how many sure tricks are in the suit being
examined.

Attribute (e) — sure-tricks-list

It contains a list of sure tricks held by both
Declarer and Dummy.

36

Attribute (f) — extra-tricks-list

It contains the information about how many extra tricks

can be built and what kind of technique to use.

Attribute (g) — Tricks-won-by-length

It tells how many extra tricks can possibly be made by tak

ing advantage of the suit length. The attribute (f) tells how

many tricks can be built by a technique other than the Win-

tricks-by-long-suit technique. To store the information of

extra tricks exactly built by the Win-tricks-by-long-suit tech

nique and the other techniques separately won’t miscalculate

the real contribution made by a technique other than the Win-

tricks-by-long-suit technique. The information stored in this

attribute can tell whether a suit can provide more extra tricks

if there are no techniques other than the Win-tricks-by-long-

suit technique found to be feasible.

Attribute (ha) — depend-on

The content of this attribute is a list of conditional

statements. If the conclusion of statements is true, then this

technique is said to be applicable. The statements used always

return answers with some degree of certainty. As we mentioned

before, checking on the preconditions stored in this attribute

37

may expect an answer from the scheme which was designed to pro

vide this answer. For example, if the declarer is missing King

in Spade, he can apply the "Finesse" technique by leading a

small card from his partner toward the right-hand opponent. In

order to finesse the Spade Q successfully, the technique ex

pects that the right-hand opponent must have the Spade King.

When deciding if the "Finesse" technique should be applied, the

declarer needs an answer for the question "which opponent is

likely to have the King of the Spade?". The answer is a state

ment which states :

(It is likely that West has the Spade King)

The word "likely" is one of certainty phrases defined in

this study. The underlined text is part of your question. From

the table of certainty phrases, we can find a range of values

corresponding to each phrase. In this example, the value of the

phrase "likely* is between 0.6 and 0.7.

Certainty phrases table

Certainty phrases Certainty values

Evident 0.8 - 0.9
Definite 0.9 - 1.0

Dndoubtedly 0.7 - 0.8
Likely 0.6 - 0.7
Probably 0.5 - 0.6
Dubious 0.4 - 0.5
Unlikely 0.3 - 0.4
Merely 0.2 - 0.3

38

Improbably 0.1 - 0.2
Definitely-not 0.0 - 0.1

An article related to this area of study can be found in

the premier issue of the Al EXPERT [6]. This article introduces

the Inexact Reasoning model, which permits customizable inexact

reasoning.

So in the example we used here, the "finesse" is unlikely

to be successful because West is the opponent who is more likely

to be holding the Spade King.

Attribute (hb) — objective

It tells which card will be the vital card when the tech

nique is used. The technique becomes inapplicable whenever

these cards no longer exist.

Attribute (he) — avoid

It tells what must be avoided so that a technique can be

applied successfully.

Attribute (hd) — risk

It posts what kind of threat might be generated if the tech

nique fails to apply.

39

Attribute (he) — lead

It tells who is going to lead the card. Sometimes it does

not matter who is going to lead the card. However, for some

techniques to be applied successfully, the lead must be re

stricted to a particular entry.

Attribute (hf) — technique-name

It contains the technique name and its parameters. In our

study, the value of this attribute can be

* Finesse
* Promotion
* Throw-in

Example

In the following hand. South is the Declarer, and the

contract is 3NT.

(NORTH - dummy)
Spade 852
Heart A 5 4
Diamond A K Q J
Club 7 5 2

openlead
Spade 3

(SOUTH - declarer)
Spade K J 7
Heart K J 6
Diamond 984
Club A Q 8 3

40

The analysis on this hand will find at least one technique

information list for each suit. We can retrieve these lists from

the knowledge base. In the Club case, there is only one list being

retrieved. It looks like :

(Tricks-won-by-length 0.36)
(Techniques

(Tech-info-4-3-002
(Player-relations
(Max-card-index
(Holdings
(Sure-tricks
(Sure-tricks-list
(Extra-tricks-list

((?pl ?p2) (?right-op ?pl) (71eft-op 7pl))
3).'
(((71 73 7x1 7x2) (7x3 7x4 7x5 ?y))))
1)
((?pl (71))))
((Technique-01 1) (Technique-02 1))))

(Technique-01
(Depend-on
(Objective
(Avoid
(Risk
(Lead
(Technique-name

(Technique-02
(Depend-on
(Objective
(Avoid
(Risk
(Lead
(Technique-name

((?right-op has the ?suit 72)))
((73 wins 1 trick)))
nil)
((71eft-op may gain the lead)))
((?p2))
((Finesse 73 ?pl))))

nil)
((73 wins 1 trick)))
((71eft-op gains the lead)))
((?right-op may gain the lead)))
((7p2 7pl))
((Throw-in ?right-op))))))

This list provides the following information for the Club

suit.

a. The binding process generates the following list for the
Club suit.

((?1 A) (?2 K) (?3 Q) (?xl 8) (?x2 3) (7x3 7)
(7x4 5) (7x5 2) (7suit Club) (?pl South) (7p2 North)
(?left-op East) (?right-op West))

41

As we have mentioned earlier in this chapter, the variable
?y is used for the convenience of implementation, it does
not have any significant meaning for using the rest info
mation in the list. Therefore, it is ignored by the bind
ing process.

b. The Club suit has one sure trick.

c. Two techniques can be used by the Club suit. They are

Technique-02 and Technique-01

Both techniques can build one extra tricks. According to an

earlier explanation, the technique-01 is the first technique

in the "techniques* list. This means that it possess higher

chance to win one extra trick. But whether we use technique-

01 or not, we depend on the truthness of the "depend-on" at

tribute of this technique. Now, we examine these two tech

niques closely.

Technique-01

It can be used when the condition in the "depend-on* is

true. It posts its objective. There is no restriction for

playing with this technique. But a possible threat might be

generated. The threat is "the left-hand opponent might gain

the lead if the technique fails to apply*. The attribute

"lead* tells a card must be led from player ?p2 so that the

3rd-hand player can finesse his 4th-rank?ng card.

42

Technique-02

It is a default technique (null condition). Its objective

is the same as technique-01, but it uses the Throw-in tech

nique. In order to make it work, the player must avoid the

?right-op to gain the lead before playing Spade suit. The

threat of this play-' is that ?left-op may gain the lead if

the Throw-in technique fails to apply. The attribute "lead*

tells that it prefers ?pl to lead the card when this tech

nique is applied. If there is no way to build entry at ?pl,

the lead from ?p2 can be considered.

3.2.2.2 Storing cards construction
knowledge in frames -

In Chapter 2, we have mentioned that the construction of

a card sequence is a process of traversing a plan tree. Each

node in the tree represents a plan. A higher-level plan has at

least one sub-plan. The sub-plans represent the steps to imple

ment their patrent plan. The plan in a leave node of this tree

is the plan which plays a card. The information of a plan is

stored in a frame.

The general format of this category of knowledge is :

(plan-name
(arguments value-1)
(plan-level value-2)
(player-relation value-3)

43

(suits
(cards
(premises
(actions
(alternatives

value-4)
value-5)
statements)
actions-list-l)
actions-list-2))

Attribute (a) — arguments

It stores a list of variables for the instantiation of the
plan.

Attribute (b) — plan-level

There are three levels defined in this system. They are
root-level, suit-level and card-level. A plan whose level is
suit-level only deals with the suits. A plan whose level is
card-level deals with the cards in the selected suit. Our con
trol mechanism has two control loops. The outer loop is used
for suits, the inner loop is used for cards. Therefore, the
suit-level plan never runs the inner loop.

Attribute (c) — player-relations

It stores the binding information for the variables used in
the plan.

Attributes (d) — suits

It contains the names of suits needed to be examined.

Attributes (e) -- cards

It contains the names of cards in the selected suit needed
to be examined.

44

Attribute (f) — premises

It contains the conditions to drive out an unwanted element
in the selected suits/cards.

Attribute (g) — actions

It contains the names of subplans, the basic move, or the
predicates for checking 'status.

Attribute (h) — alternatives

It contains the names of subplans, the basic move, or the
predicates for checking status. They were used when the premis
es makes the false conclusion.

Example

The example here is a plan for discarding a card.

(discard-a-card
(arguments
(plan-level
(player-relat1
(suits

(?suitl ?player))
suit-level)

on nil)
(?suit in (the-most-useless-side-suit

?suitl ?player)))
(cards
(premises
(actions
(alternatives

nil)
nil)
((do drop-a-card ?suit ?player)))
nil))

CHAPTER 4

THE EVALUATION SCHEME

In this chapter, we are going to survey the kind of evaluation

scheme which can be used to evaluate a hand, to evaluate a threat, and to

evaluate the uselessness of a suit. The evaluation of a hand simply tells

how many sure tricks can be made and how many extra tricks can be made by

a technique. The evaluation of the threat tells which opponent would

cause more damages if he gains the lead. The evaluation of the useless

ness gives each suit in hand a value to indicate its uselessness.

4.1 Counting the contributions of a suit:

In the Chapter 3, we have discussed the structure for storing tech

nique information. Here, we are going to use the same example to do our

discussion. The example is simplified so that only the values of those

attributes which are related to the discussion of this topic are listed.

(Tech-info-4-3-002
(Player-relations)
(Max-card-index)
(Holdings)
(Sure-tricks 1)
(Sure-tricks-list)

“ (Extra-tricks-list ((technique-01 1) (technique-02 1))))
(Tricks-won-by-length 0.36)
(Techniques)

The contribution is represented by a value which is calculated by

adding the number of extra tricks built by the technique and the number

45

46

of tricks gained by taking advantage of the length of the suit together.

In this example, we are interested in how the values of Sure-tricks,

Extra-tricks-list, and Tricks-won-by-length are calculated.

Sure-tricks : It stores the number of sure tricks made
by the suit being examined.

Extra-tricks-list : It stores a list of techniques and the
number of tricks they can make.

Tricks-won-by-length : It stores the number of extra tricks built
by taking advantage of the length of the
suit being examined.

4.1.1 Calculating the number of
sure tricks :
Sure tricks are those tricks which you can take without

giving up the lead to your opponents. They are ready-made tricks

such as Aces and can usually be taken at any time. The example

we use below shows there is only one sure trick, the Ace (the

symbol ?1 in "holdings" represents the most highest card). In

another example :

Dummy : K 6 3
Declarer : A Q 7

The Ace, King, and Queen are the sure tricks.

4.1.2 Calculating the number of
extra tricks :

In the Notrump contract, the extra tricks can be built by

47

using one of the following techniques :

* Extra tricks built by taking finesse
* Extra tricks built by promotion
* Extra tricks built by taking advantage of the length of suit.
* Extra tricks built by forcing the opponent to play suit first.

4.1.2.1 Extra tricks built by promoting card :

One way to build extra tricks is through the "promotion*

of cards. The basic idea is that a card is turned into a sure

trick when all the higher-ranking cards in that suit have been

played. Here are some examples :

a. Dummy : 4 3 2
Declarer : K Q J

—> lead the King to force the opponents to play their Ace.
if Ace was played, you are able to build two extra
tricks by promoting the Queen and the Jack. They are
now the highest-ranking cards remaining in that suit.

b. Dummy : 6 5 4
Declarer : Q J 10

—> In this example, you are missing both the Ace and the
King. You can still promote a trick with a little work.
Lead your Queen to drive out the opponent’s Ace or
King. Next time you have an opportunity, lead the Jack
to drive out the opponents’ remaining high card. Now,
because you have the 10, you have built a trick in the
suit.

c. Dummy : 5 4 3 2
Declarer : J 10 9 8

—> This time you’ll have to be very patient. The opponents
have the Ace, King, and Queen. Use your Jack to drive

48

out one of their cards, your 10 to drive out smother
and your 9 to drive out the remaining high card. Even
tually, you will have established your 8 as the highest
card remaining in the suit.

4.1.2.2 Extra tricks built by finesse :

Another way to build tricks is by trapping the op

ponents* high cards. For this to work, you need the proper

technique and some luck. There is only one extra trick which

can be built when this technique is applied. Let’s take a look

at an example :

Dummy : K 5
Declarer : 4 2
(you)

—> You can lead a small card from your hand toward the
King and give yourself a 501 chance of winning a trick.
When you lead the 2 from your hand first, the opponent
on your left must play before you have to choose a card
from the dummy. If your left-hand opponent has the Ace
and plays it, you can play your 5 from dummy and save
the King to take a trick latter. If your left-hand op
ponent has the Ace but doesn’t play it, you can play
dummy’s King on this trick to win the trick. Since it
is also possible that the right-hand opponent holds the
Ace, there is only a 501 chance of winning a trick with
your King.

To make the play of this technique successfully, the lo

cation of a card we want to trap must be known precisely.

4.1.2.3 Extra tricks built by throw-in :

Another way to build extra tricks is to force the op

ponent to play a suit first. The example shown below helps to

49

explain why.

Dummy 732
Declarer A Q 6

—> Suppose you are the declarer. It is un-wise for you to
play this suit first because if you play this suit, you
only can take 1 trick by using your Ace. But, if you
let your left-hand opponent plays this suit first, then
the Queen in your hand may have a chance to win one
trick.

4.1.2.3 Extra tricks built by suit length :

Another way to build tricks is to use your long suits to

establish extra tricks. Let's look at some examples of how

this is done.

Dummy : 6 5 4 3
Declarer : A K 7 2
(you)

—> In this example, you have eight cards in a suit which
means that the opponents have only five between them.
In most cases, the five outstanding cards will be
divided between the opponents, three in one hand and
two in the other. How does this help you ?

After you play the suit two runs, there will only be
one high card left in the opponents' hands. If you lead
the suit again playing little cards from both hands,
you will lose the trick to the opponents. However, when
next regain the lead, you will be able to take a trick
with your remaining card because the opponents will
have no cards left in the suit.

The trick contributions of using this technique at the

beginning of game is evaluated by taking the most cases which

50

the adverse cards will be divided into consideration. The values

in the column of "‘L of the time" shown on the following table

which is taken from the book of Goren’s Bridge Complete [4] are

used as the default values. These values can be adjusted accord

ing to the bidding and the deductions drawn during the game.

Your side’s hold the adverse cards
will be divided

Io of the time

6 cards of a suit 4-3 62
5-2 31
6-1 7
7-0 < 0.5

7 cards of a suit 4-2 48
3-3 36
5-1 15
6-0 1

8 cards of a suit 3-2 68
4-1 28
5-0 4

9 cards of a suit 3-1 50
2-2 40
4-0 10

10 cards of a suit 2-1 78
3-0 22

11 cards of a suit 1-1 52
2-0 48

At the beginning of this section, an example of a technique

is shown. The value stored in the attribute TRICKS-WON-BY-LENGTH

of this list is 0.36. Now, let’s see how it was calculated.

51

In this example, there are six adverse cards and the cards

in your side are divided into four and three. We can use the

following formula to calculate the value of the TRICKS-WON-BY-

LENGTH.

number of extra tricks = [(chance #1 of adverse cards divided)
* (the number of cards over the cards

held by opponents)] +

[(chance #n of adverse cards divided)
* (the number of cards over the cards

held by opponents)]

The following table shows how this formula is used to com

pute the value of 0.36 in our example. The values in the first

nnlumn show all possible distributions of adverse cards. The

values in the second column are the number of extra tricks made

by these distributions. The values in the third column show the

chances of these distributions. The values in the fourth cnTumn

are the results computed by taking the formula described above.

So, by adding the values appearing in the fourth cmumn, the

value of 0.36 is generated.

The value of TRICKS-WON-BY-LENGTH = 0.36

adverse cards
divided

absolute number
of extra tricks

5> of time tricks
calculated

4-2 0 48 0
3-3 1 36 0.36
5-1 0 15 0
6-0 0 1 0

52

4.2 Counting the threat of playing a card :

Sometimes, you may enter into a situation when there is no sure

trick you can play with. In this case, you have to play a card which is

expected to lose to one of the opponents. Suppose it is your turn to lead

a card, you must decide which suit is the best suit to lead. The crite

ria for judging which suit is the best is :

"what degree of loss can be generated by playing a card from that
suit.*

To lead a card toward either one of opponents, you need to decide

"who is the most favor opponent". In other words, which opponent will

cause less damage on your side whenever he gains the lead. A term

"threat* is used to describe the threat from either one of the opponents

on the card you intend to play.

To calculate the degree of the *threat*, the following rules are

used :

* If your opponent doesn’t have any cards left in the suit you will
lead a card from, then the degree of threat is 0.

* If your opponent has at least one sure trick left in the suit you
will lead a card from, then the degree of threat is calculated as
follows :

the degree of threat #1 = (-1.0) * (probability for an opponent
holding sure trick #1)

the degree of threat #n = (-1.0) * (probability for an opponent
holding sure trick #n)

53

The total threat = (the degree of threat #1) +
(the degree of threat #n)

The idea here is : if an opponent holds a sure trick in the suit you
will lead a card from, then he can use it to gain
the lead and play all the sure tricks in his
hand. Or he can gain the better position to lead
a card toward his partner to cause you more loses.
The latter happens when you are holding a suit
which has a missing high card and you are afraid
your right-hand opponent may lead a card in that
suit toward his partner.

This result may need further refinement. That means, an entry factor

might be added into the calculation. The entry factor is defined as "the

ability of an opponent leading a card toward his partner". Suppose, one

opponent holds the six of Spades and Ace of Hearts, the other opponent

holds the King of Spades and others, and you, holding Spades (A Q x x .),

are the right-hand player of the opponent holding the Spade K. In a case

like this if you lead a small Heart, the opponent wins it with the Ace

of Hearts, then he leads the six of Spades toward his partner’s King of

Spades. By using a suitable technique, you probably can win two tricks in

the Spade suit. But now, you can only win one trick with the Ace of

Spades. The calculation of entry factor is a little bit complicated. So

far we are not concerned about it. Later, we may need to use it to adjust

the "threat" calculated so that it can tell us precisely which card

should be played toward which opponent with the least damage.

54

4.3 Evaluating the uselessness of a suit :

When the game is close to its end, it often happens that you need to

discard a card. You certainly don’t want to discard a useful card. But

among possible candidates, which card is the most useless card? To decide

which card should be discarded, the suits in your hand must be evaluated,

and the one which has assigned a highest value is selected as the most

useless suit. After a suit was selected, you then need to decide which

card should be played. If there is no special consideration, the lowest-

ranking card is the one you should play. Now in this study we evaluate

the suits to decide which one is the most useless suit, and we always

select the lowest-ranking card to play.

To decide the uselessness of a suit, we construct the following

equation.

degree-of-usefulness =
0.1 * ((the face value of lowest-ranking card in suit) -

(the length of the suit))
- [0.1]

—> the 0.1 circled with brackets is optional. If opponents have
bid this suit, then the weight of this effect must be counted.

A card can be considered as "most useless* is the card which
has the minimum degree-of-usefulness.

The idea here is : if the suit was bid by the opponent before, then
the suit tends to be "useless* . In a Notrump con
tract, the winning trick is determined by compar
ing with the face values of cards played. There
fore, a card with the lowest face value is the
most useless card.

55

If one suit has more cards than other suits, then
dropping a card from this suit will not cause
more damage than the one from other suits.

Here, we use an example to explain how it works. Suppose the cards

in a hand are :
Spades (A Q)
Hearts (10 6 5 4
Diamonds (A.' K 4 3)
Clubs (10 8 7)

Also suppose the opponent didn’t bid any suit. By using the formula

outlined above, the values are generated as follows :

Spades : ((the rank of the Queen) - (the length of the suit)) * 0.1
= (12 - 2) • 0.1 = 1.0

Hearts : ((the rank of the 4) - (the length of the suit)) * 0.1
- (4 - 4) * 0.1 = 0.0

Diamonds : ((the rank of the 3) - (the length of the suit)) * 0.1
= (3 - 4) * 0.1 = -0.1

Clubs : ((the rank of the 7) - (the length of the suit)) * 0.1
= (7 - 3) * 0.1 = 0.4

Among these values, the Diamond suit seems to have the minimum value.

Therefore, we can conclude that the diamond suit is the most useless

suit, and the lowest ranking card in this suit is selected to be discard

ed.

Suppose that one of the opponents has bid a Heart suit. The value

-0.1 is added to the resulting value of the Heart and new value -0.1 is

generated. Now both values for the Diamond suit and the Heart suit are

56

the same. In this case, the following rules are used :

* if one suit has more cards than the other, then this suit is
selected.

* if two suits have the same length, then selection is based on the
rank of the suit. The Club suit has the lowest rank, then the
Diamond suit, the Heart suit. The Spade suit has highest rank.

According to these rules, the Diamond suit is selected as the most

useless suit.

CHAPTER 5

PLAN LANGUAGE

In Chapter 2, we have briefly described how to construct the playing

sequence of cards for a technique. A tree is built during the construc

tion. Each of leave nodes represents the basic move of the Bridge game.

The top-level nodes represent the major steps to apply a technique. We

can say that the construction process is the execution of a plan for ap

plying a technique. The nodes in the next lower-level of a tree repre

sent the more detailed steps of their patrent node. In this chapter, we

will discuss a Plan Language used by these plans. At first, we will ex

plain the syntax of the statement defined by this language, and then use

the Throw-in technique as an example to show how the statements are used

in plans.

The Plan-Language expresses plans of action for the offensive side.

In general, the offense wants to have a reply ready for every defensive

alternative. A plan cannot be a linear sequence of goals or moves, but

must contain conditional branches depending on the opponent’s reply. When

the offense is on move, a specific play or move is provided by the plan.

When the defense is on move, a list of alternative sub-plans for the of

fense may be given. The actions in plans can be divided into two catego

ries. One category of actions make the specific play or move. Eventually,

they generate a linear sequence of moves. The other category contains

conditional branches depending on the opponent’s move.

57

58

5.1 The syntax of the category 1
action statement :

The statements in this category basically consist of an operation

qualifier and an operation and its parameters. They are used to specify

a move, a subplan, or a status checking. In order to use a plan in mul

tiple times, a nested control statement is used.

Syntax

action = (op-qualifier op [parameters] [nest-control-stat])

nest-control-stat = (WHILE predicate [parameters])

parameters = (token-1 token-2 token-m)

Explanations of symbols

op-qualifier : as we explained earlier in this chapter,
it tells the control mechanism how to
interpret the "operation".

Legal op-qualifiers are

DO
PERFORM
EXAMINE

op : the operation can be either a function
name, or a plan name in the next level.

If op-qualifier is

DO the "op" is the name of a
subplan.

PERFORM .. the "op" is the name of a
function which makes a move

EXAMINE .. the "op* is the name of a
predicate function.

59

parameters : It includes a list of parameters for
invoking "op".

nest-control-stat : It is used to control the usage of a
plan. It is optional. It is used only
when the operation-qualifier is DO.

SJ2, The syntax of the category 2
action statement:

The statements in this category are used to handle a PLAY-AND-WATCH

case. The statement consists of information about the card led, the

possible opponent’s moves, and the response taken by the 3rd-hand player

for each opponent’s move

Syntax

(make-lead (card suit player)
((when opponent-action-1)

(3rd-hand-action-l [parameters]))
((when opponent-action-2)

(3rd-hand-action-2 [parameters]))
((when opponent-action-3)

(3rd-hand-action-3 [parameters])))

* MAKE-LEAD : It is an action taken by the card leader.

* Opponent-action : It is the name of a function which handles
the second-hand player’s move.

Normally, this opponent’s move can be

a. following a small card (action-1)
b. covering the lead with a higher-rank-ing

card (action-2)
c. discarding a card (action-3)

60

* 3rd-hand-action : It is the name of a sub-plan which is the
reply of third-hand player to the opponent's
action.

The first element in the statement is the pattern expressing a card

led by a player (either declarer or dummy). The 2nd-hand player can only

have three possible moves. Therefore, each alternative begins with a

template which adequately describes defensive move. When the defense is

on move, the alternative whose template matches the move just made by the

defense is tried in the search.

5.3 An example :

In the next few paragraphs, we will use the Throw-in technique as an

example to explain how the Plan Language is used in plans. The plan used

in root level looks like this :

(Throw-in-plan
(Arguments
(Plan-level

nil)
root-level)

(Player-relation ((^opponent is (opponent-to-draw-in))

(Suits
(Cards
(Premises
(Actions

(Tentry is (expected-entry))))
nil)
nil)
nil)
((DO play-all-free-sure-tricks WHILE •

(Alternatives

having-a-free-sure-trick-in-hand)
(EXAMINE is-correct-entry ?entry)
(DO draw-in-a-card ?opponent)
(EXAMINE is-correct-opponent ^opponent)))

nil))

How this plan was constructed will be discussed in the Chapter 7.

For the time being, we will only concentrate on attributes "Premises",

61

"Actions", and "Alternatives". The construction process for the Throw-in

technique starts at this plan. There are four elements in "Actions". The

element "EXAMINE is-correct-entry ?entry" and the element "EXAMINE is-

correct-opponent ?opponent" are functions to check status. For example,

the function "is-correct-entry" examines if Gentry is a correct entry. If

it is false, then the next element "draw-in-a-card" which is a subplan

cannot be executed. Thus, the Throw-in-technique becomes inapplicable. In

In Chapter 8, we will explain how to deal with this case when it happens.

The other two elements represent subplans in the next lower level. The

subplans "play-all-free-sure-tricks" and "draw-in-a-card* are the names

of plans in the level next to the root level.

As you can see, the statements used here all belong to the category

1 statements. To see an example of category 2 statements, let’s take a

look at the subplan "draw-in-a-card". The text shown below is the

"Actions* part of the subplan "draw-in-a-card*.

((MAEE-LEAD (?card ?suit Tleadl)
((WHEN play-low)

(play-a-smaller-card ?suit ?3rd-hand))
((WHEN play-high)

(play-a-higher-card ?suit ?3rd-hand))
((WHEN discard-card)

(play-a-smaller-card ?suit ?3rd-hand)))))

This statement says for the lead card, if the opponent plays a lower

ranking card, then the 3rd-hand player should drop or discard a card. But

if the opponent covers the lead with a higher-ranking card, the 3rd-hand

player should cover his opponent’s play. If the opponent discards a card

62

in one of the suits other than the suit led, then the 3rd-hand player

plays a smaller card in the suit led if he has a card in that suit or

discards a card when he doesn’t have a card in the suit led.

CHAPTER 6

PROPOSING PLAYING TECHNIQUES

In Chapter 2, we mentioned that our computational approach of plan

ning a play consists of three phases. The first phase is the suit-analy

sis phase. The second phase is the best-technique selection phase. The

third phase is the phase is the card-sequence construction phase. In this

chapter, we want to explain the first two phases in more detail. The task

the suit-analysis phase is to propose playing techniques for each suit in

the Declarer-Dummy’s hands. The task of the best-technique selection

phase is to select the best technique for each suit and then sort them in

terms of their ability to build extra tricks.

6.1 The euit-analysis phase :

The suit-analysis phase is implemented in two stages. The first

stage is the pre-analysis stage and the second stage is the primary

analysis stage.

6.1.1 The pre-analysis stage :
This stage of the analysis is to find the technique information

which is related to the card holding of a suit in a combined hand.

The knowledge used to do analysis is stored in rules. The PREMISES of

an analysis rule consists of statements which describe a card pattern

63

64

(shape), and Its ACTION consists of a list of names which are the keys

to access a particular set of technique-information lists in the

imnwledge base. The rules stored in the knowledge base are organized

in terms of distribution of cards in both the Declarer hand and the

Dummy hand. For a particular distribution, a rule is found by forward

scanning the related rules. At this stage of the analysis only certain

cards are checked if they exist in the combined hand. At this moment,

we are not concerned about whether a card is in the Declarer’s hand or

in the Dummy’s hand. Let’s take a look at the following example :

Example

Suppose the card holding in Club suit is

Dummy : (752)
Declarer : (A Q 8 3)

By scanning rules which are related to the distribution of 4-3,

we find the following rule which describes the Club suit :

(Suit-analysis-rule-4-3-0008
(Premises (?combined-suit has ?1)

(?combined-suit has 73)))
(Actions ((Propose ((Tech-info-4-3-002)

(Tech-info-4-3-010))))

In this example, the rule tells that two technique-information

lists stored in the knowledge base are related to the holding held

by the Declarer and Dummy.

65

6.1.2 The primary-analysis stage :
This stage of the analysis is to check techniques suggested by

the pre-analysis and find the one which can exactly describe the cards

held in the Declarer's hand and the Dummy’s hand. In the previous

example, two technique-information lists are suggested. Now we need to

decide which one describe the cards between the Declarer hand and the

Dummy hand. Suppose the technique-information lists retrieved from the

knowledge base are :

(Tech-Info-4-3-002
(Player-relation)
(Max-card-index)
(Holding ((?1 ?3 ?xl ?x2) (?x3 ?x4 7x5 ?y)))
(.......

))

(Tech-Info-4-3-010
(Player-relation)
(Max-card-index)
(Holding ((?1 ?xl 7x2 7x3) (73 7x4 7x5 ?y)))
(....

))

By examining the values of HOLDING of these two lists, we find

the first technique-information list is the one we want.

6.2 The best-technique selection phase :

At the primary-analysis stage, the technique-information list with

the name "Tech-inf0-4-3-002" is selected for the Club suit. The complete

list is shown as follows :

66

(Tricks-won-by-length 0.36)
(Techniques

Tech-info-4-3-002
(Playei—relations
(Max-card-index
(Holdings
(Sure-tricks
(Sure-tricks-list
(Extra-tricks-list

((?pl ?p2) (?right-op ?pl) (71eft-op ?pl))
3)
(((71 73 7x1 7x2) (7x3 7x4 7x5 ?y))))
1)
((?pl (71))))
((Technique-01 1) (Technique-02 1))))

(Technique-name ((Finesse ?3 ?pl))))

(Technique-01
(Depend-on
(Objective
(Avoid
(Risk
(Lead

((?right-op has the ?suit 72)))
((73 wins 1 trick)))
nil)
((71eft-op may gain the lead)))
((7p2))

(Technique-name ((Throv-in ?right-op))))))

(Technique-02
(Depend-on
(Objective
(Avoid
(Risk
(Lead

nil)
((73 wins 1 trick)))
((71eft-op gains the lead)))
((?right-op may gain the lead)))
((7p2 ?pl))

There are "two 'techniques available in this list. To select the best

technique for the Club suit, we start from the first technique TECHNIQUE-

01. By checking the statement embedded in attribute DEPEND-ON of this

t-echnique, we can then decide if this technique is feasible. A certainty

is used in this checking. If the certainty value is greater than or equal

to 0.7, the technique being examined is thought as the best technique for

the suit being examined. In our case, the suit being examined is Club.

The techniques contained in attribute TECHNIQUES are ordered in terms of

the chance to win tricks. In our example, the technique TECHNIQUE-01 has

a better chance to win tricks than the technique TECHNIQUE-02. As long as

a technique is found to be feasible, the selection stops. If the tech

nique is found to be unfeasible, then the next technique in the list is

bl

examined. The last technique in the list is always used as the default.

CHAPTER 7

THE SCHEME OF CONSTRUCTING

CARD SEQUENCE FOR A TECHNIQUE

In this chapter we will discuss how a card sequence is constructed

for a technique in detail. We use-the throw-in technique as an example to

explain all of this. As we mentioned before, the construction for a play

ing sequence of cards is a process of executing a plan for applying a

playing technique. For example, to apply the Throw-in technique, the con

struction is a process to execute the following plan. During the con

struction, a tree is implicitly built. The root node of this tree is the

is the plan shown below.

(Throw-in-plan
(Arguments nil)
(Plan-level root-level)
(Player-relation ((?opponent is (opponent-to-draw-in))

(Ventry is (expected-entry))))
(Suits nil)
(Cards nil)
(Premises nil)
(Actions ((DO play-all-free-sure-tricks WHILE •

having-a-free-sure-trick-in-hand)
(EXAMINE is-correct-entry Ventry)
(DO draw-in-a-card Vopponent)
(EXAMINE is-correct-opponent Vopponent)))

(alternatives nil))

The construction process starts at this node. It checks the state

ments in PREMISES. If there are statements existed in PREMISES, then each

statement is checked to see if it is true. After all these statements

68

69

have been checked, a conclusion is drawn. If it is true, then all actions

in ACTIONS are pushed onto stack. The first action in the list is on top

after the push operation. The stack is used as a temporary storage during

the construction. A stack is allocated when a technique is applied. It is

deallocated when the stack becomes empty or the status checking during

construction indicates that replanning is necessary. The push operation

is slightly different from the traditional push operation.

Example

In the above Throw-in plan, after the actions in ACTIONS are pushed

onto stack, the stack looks like :

Top-of-Stack —> (DO play- WHILE....)
(EXAMINE is-correct-entry Tentry)
(DO draw-in-a-card ?opponent)
(EXAMINE is-correct-opponent ?opponent)

Now, the top item in the stack is accessed, the conditional ex

pression of WHILE is first checked. If it posts TRUE, then the name after

DO is used to retrieve a subplan which contains the detailed steps of

implementing this plan. There is only one action in this subplan and it

is pushed onto the stack. So, the stack becomes :

Top-of-Stack —> (DO play-free-sure-tricks-in-suit ?suit ..)
(DO play-.... WHILE ..)
(EXAMINE is-correct-entry ?entry)
(DO draw-in-a-card ?opponent)
(EXAMINE is-correct-opponent ?opponent)

70

The pop operation is standard. Each time it pops out the top element

in the stack.

In this example, the plan doesn’t have premises. Therefore, the ac

tions in ACTIONS are added into stack. If the plan does have statements

in PREMISES and the conclusion of these statements is false, then the

actions in ALTERNATIVES are pushed onto the stack. The use of PREMISES,

ACTIONS, and ALTERNATIVES is equivalent to the sentence "if premises then

actions else alternatives".

Each time the top element in the stack is accessed. In this example,

the top element is "DO play-all-free-sure-tricks WHILE having-a-free-

sure-trick-in-hand". The operation qualifier DO tells the "play-all-free-

sure- tricks" is a subplan. The token WHILE tells the "having-a-free-sure-

trick-in-hand" is a predicate. Therefore, this predicate is examined

first. If it indicates a true condition, then the subplan "play-all-free-

sure- tricks" is retrieved from the knowledge base. The steps ve just de

scribed will be applied on this new plan.

The new actions are added into stack. The steps are recursively ap

plied until a node which represents a basic move in Bridge is reached.

-The plan for an offensive move can be one of two things : a basic move or

a goal. The basic move is simply the name of a card and a player. Such a

plan simply invokes the function "play-this-card" to add the card played

into the sequence list. A goal is the name of a plan in the knowledge

base followed by a list of parameters. The following plan is a plan which

71

performs a basic move.

(Drop-a-card
(Arguments (Vsuit ?player))
(Plan-level card-level)
(Player-relation nil)
(Suits (Vsuit))
(Cards (?card in (cards-hold-by ?suit 7player)))
(Premises ((is-the-smallest-card ?card ?suit Tplayer)))
(Actions ((PERFORM play-this-card ?card ?suit Vplayer)))
(Alternatives nil))

Since it is the primitive plan, the function "play-this-card" is

performed. And then this plan which is the top element in stack at this

moment, is popped out from the stack. The next plan in the stack is then

accessed. If the element represents a subplan, then its predicate is

checked. If the predicate shows a FALSE, then the element is also removed

from the stack. In this example, the node "DO play-all-free-sure-tricks*

is removed from the stack as long as its predicate "having-a-free-sure-

trick-in-hand" indicates a FALSE condition. If this predicate indicates

that there are free sure tricks left in hand, then the plan "play-all-

free-sure-tricks* is executed again, and it will be executed repeatly

until there are no free sure tricks left in players' hands.

As we mentioned in the earlier chapter, the action can be a state-

.ment for performing particular checking. In this example, the statement

"EXAMINE is-correct-entry" is the statement which is used to check entry

and a particular opponent. If the checking shows the FALSE condition,

then a close examination is taken to see if it is possible to go on. For

example: if the statement "is-correct-entry" shows the current entry is

72

an incorrect entry after playing all the free sure tricks, then ve need

to check to see if the current entry is allowed to be an entry. In this

example, the attribute •’lead" indicates either dummy or declarer can be

an entry. So the next plan "draw-in-a-card* can be performed. If the at

tribute "lead* shows that a player must be the entry but he is not the

current entry, then the plan *setup-entry-at* is pushed onto the stack

for the next execution.

The construction process proceeds until there are no elements left

in the stack. At the end of construction, a card sequence is built. The

construction process stops, and the stack is deallocated. The resulting

card sequence consists of at least one element. The sequence has the

following form :

((cardl suitl playerl) (card2 suitl player2) (G00051))

V V V
element-1 element-2 element-3

The element-1 represents a card led and the element-2 represents a

a card played by the Srd-hand player (partner). The element-3 is a node

generated to store "actions" in the plan shown below. The token G00051

-is a symbol generated by a LISP function "gensym*. It does not have any

significant meaning in our discussion.

(Play-to-finesse
(Arguments)
(Plan-level)

73

(Player-relation)
(Suits)
(Cards)
(Premises)
(Actions ((make-lead ()

((when play-low)
(play-exact-card

((when play-high)
(play-a-higher-card ...

((when discard-card)
(play-without-lose ...

(alternatives))

?3rd-hand))

?3rd-hand))

?3rd-hand)))))

In the next chapter, we will discuss how to control the play when

this kind of node is encountered.

In the following example, suppose we want to apply the THROW-IN

technique to the CLUB suit.

(Dummy - North)

Spade 8 5 2
Heart A 5 4
Diamond A K Q J
Club 7 5 2

Declarer - South)

Spade K J 7
Heart K J 6
Diamond 9 8 4
Club A Q 8 3

If we start with this initial hand, then a playing sequence of cards

generated by the construction process is as follows :

74

(G00045))

(((South Diamond 4) (North Diamond A))
((North Diamond K) (South Diamond 8))
((North Diamond Q) (South Diamond 9))
((North Diamond J) (South Club 2))

The node (G00045) has the following value :

((Make-lead (2 Spade .-North)
((WHEN play-low) (play-a-smaller-card Spade South))
((WHEN play-high) (play-a-higher-card Spade South))
((WHEN discard-card) (play-a-smaller-card Spade South))))

We use the stack to implement

tage of this scheme is to make the

checking on each stage of planning.

the construction process. The advan-

control easier. Since we put the

so if there is anything wrong, we can

stop immediately and backtrack to the previous stage.

CHAPTER 8

THE CONTROL MECHANISMS OF

THE BRIDGE PLANNER

8.1 Top-level control mechanism :

It switches the play of the declarer’s side between the offensive

position and the defensive position. The algorithm of top-level control

mechanism is as follows :

loop
(set game in game-mode)
(declarer side plays in defensive position until

he gains the lead or game-is-over)
(if the game is over, then stop game, counting score)
(declarer side plays in the offensive position

until an opponent gains the lead
or game-is-over)

(if the game is over, then stop game, counting score)
(otherwise, go loop)

The game is played in either the game mode or the simulation mode.

When the game is in its game mode, the game proceeds. If the game is in

its simulation mode, the construction process is implemented, and the

■game is paused until the construction process is done and a card sequence

is generated. When the game starts, the game is set into game mode be

cause the declarer’s side is in the defensive position to play a card

against the opponent’s open lead. The game proceeds until the declarer’s

side gains the lead. Whenever the declarer’s side gains the lead, the

75

76

game is set into the simulation mode and the construction process starts.

We have already explained how this process works. So it is unnecessary to

repeat it again.

When the construction process is done, the game is set to the game

mode and re-start again. This time, the cards played by both the declarer

and dummy are retrieved from the sequence list. The game proceeds until

there are no cards left in the sequence list. At this point, three situ

ations exist :

a. The game is over
or b. The opponents gain the lead
or c. The declarer’s side still gains the lead, but need to

perform another run of planning for the next available
technique.

In case a, the game is over, and the scores are calculated. In case

b, it is the turn for the declarer’s side to play the defensive position.

In case c, if there is a technique left in the list, then a construction

process is performed to form a card sequence. If there are no techniques

left, the game enters into the end stage.

BJ2, The control mechanism for defensive play

In our study, we do not try to do plamring for the opponent’s side

to play in both the defensive and offensive positions. But ve do have two

sets of rules for the declarer’s side to play in the defensive position,

the control mechanism is very simple. If the declarer’s side is in the

T1

defensive position, then the rules are scanned to determine what card

should be played. These two sets of rules are listed in Appendix A.

loop
(human player leads a card)
(the second-hand player plays a card)
(human player plays a card)
(the fourth-hand player plays, a card)
(if the game is over, stop game, counting scores)
(determine who is the winner to lead for next run)
(if either the declarer is a winner,

or the dummy is a winner, then exit)
(go loop)

One important issue of playing the defensive position by the de

clarer is: techniques selected may become inapplicable because the vital

cards used by the techniques might be played during the defense. There

fore, during the defensive play, for each card played by the opponents,

the techniques in the list must be examined to see if the requirements of

the technique are changed. If they were changed, then the technique will

be withdrawn from the list. Later, the replanning on the related suit is

necessary to be perfonned.

Another case may be encountered during the defensive play. That is :

.the card led by one of the opponents is the one expected by the technique

applied on the suit led. Therefore when it happens, the number of extra

tricks to be built by that technique is re-calculated. If after this up

date, the number of extra tricks becomes zero, then the technique is re

moved from the list. If there is at least one extra trick left to be

78

built, then the replanning will be taken for this suit because the state

of suit has changed since the technique is decided.

8.3 The control mechanism for offensive play :

In the previous chapter, we mentioned how to construct a card play

ing sequence. The task of this mechanism is to implement the construction

process. It controls the expansion and shrinkage of the stack. It also

performs a special task when exceptional cases are encountered. For ex

ample : if the current lead is not the one expected by the action taken,

then a close examination is performed.

The control is divided into two levels, the level 1 control is used

to control the game to play in either game mode or simulation mode and to

perform as an interface to the top-level control mechanism. The level 2

control is used to retrieve plans and interpret these plans and eventual

ly generate a card sequence.

The algorithm of Level 1 control mechanism

(mailing up plans)
loop
(get a plan)
(starts at a suit)
loopl
(apply its technique)
(check status)
(if something went wrong, if there is a plan left

go loop
otherwise, perform replanning)

(if game proceeds, play all cards in sequence list)

79

(if opponents gain the lead, plays in defensive position
otherwise, try next technique in plan

if it is still applicable
otherwise, perform replanning)

(go loopl)

The algorithm of level 2 control mechanism

(get suits list)
loop
(if there is a suit in the suits list

check each suit in the suits list
(if plan level of the suit is suit-level
then go loopl
else
get cards for the selected suit)

loopl
(examine premises)
(if the conclusions of the premises is TRUE
then push subplans in "actions" onto stack
else

push subplans in "alternatives" onto stack)
(if plan level is suit level then go loop
else go loopl)

8.4 The control mechanism for defensive play
against opponent’s move :

This level of control mechanism is used to control the play which

may be intervened by the 2nd-hand opponent. For .the Throw-in technique,

the construction process generates a card sequence which looks like :

((card suit player) (....) (....) (G0035))

The element (G0035) in this list is a node which stores the lead and

the opponents’ possible actions.

80

The node of (G0035) has 4 attributes :

* lead
* opponent-play-low

* opponent-play-high

* opponent-discard

; It stores the card to be led
: It stores the action should be taken
by third-hand player when the second
hand player(opponent) drops a lower
ranking card.

: It stores the action should be taken
by third-hand player when the second
hand player(opponent) cover lead with
a higher ranking card

: It' stores the action should be taken
by third-hand player when the second
hand player discards a card in a side
suit.

Binding the offensive play, the card is retrieved from the card play

ing sequence generated by the construction process. If the element in the

list is an atom (we use list to store a card), then it is recognized as a

node like (G0035). The card stored in LEAD of this node is led. After the

2nd-hand opponent plays a card, we can then check which of the above

templates is matched. For example: if the 2nd-hand opponent plays a card

whose ranking is lower than the card led, then the template •’opponent

play-low*' is matched, and the Srd-hand’s action stored for this template

is taken.

8.5 The control mechanism used at
the end stage of the game :

Two plans are used in the end-game play. They are

* Play-sure-tricks-left plan
* Play-and-watch plan

First, the sure tricks left in hand will be played. Then a lower-

81

ranking card is selected to lead. In the earlier chapters, we explained

how to evaluate the threat of an opponent on the card you lead. The same

technique is applied here to decide which card should be played without

risks.

When there are no cards left in anyone's hand, the game is over. The

status "end-of-game* is returned to the top-level control mechanism.

The algorithm of end-game control mechanism

loop
(if game-is-over, return to top-level control)
(if there are sure tricks in hand
then plays all sure tricks)
loopl
(if game-is-over, return to top-level control)
otherwise

(the declarer plays a lower-ranking card)
(if opponent gains the lead
then the declarer side plays as defenders)
(if delcarer side gains the lead again
then go loop
otherwise go loopl)

CHAPTER 9

PROGRAM IMPLEMENTATION

In earlier chapters, we discussed how the evaluation technique is

used in the suit-analysis phase to find the contribution of each suit and

techniques the suit can use. We have also discussed how the best tech

nique is selected for a particular suit. We discussed how to use these

techniques found to build an offensive plan and thereafter construct the

card sequence for each of the techniques in this plan. The program de

veloped for implementing this planning process was written in IQLISP [9].

and the testing was performed on a IBM PC AT microcomputer. The program

we developed is part of a Bridge-playing program which consists of sever

al modules outlined below. For those modules which were developed in our

study, we use the solid-border boxes to circle them. The exceptions are :

our offensive-play module only performs planning for the offensive play

made by the declarer’s side. No planning is performed for the offensive

play made by the opponents. The boxes used in the following chart have

either the solid border or the dashed border. The use of dashed-border

boxes indicates that no programs are available at this moment. The rules,

*he technique information and the plans constitute our knowledge base.

82

83

!---------------- (
| Bidding module |
I________________ I

< hand information > < bidding information >

System utilities

screen display module

KNOWLEDGE BASE

rules

technique
information

plans

< sorted best-techniques list >

offensive-play
module “

defensive-play
module

Nov, ve discuss the functions performed by the modules which are

circled with the solid-border boxes.

A. The system utilities module :

The module contains the general purpose utilities, the infer

84

ence engine, and the program for performing the variable bind

ings. The control mechanism used in our inference engine is a

forward chainer.

B. The screen display module :

The module is used to .display the current state of the game

on the screen.

C. The data-derived module :

The module is used to derive the hand information and the

bidding information into the system-defined statements described

in Chapter 3.

D. The pre-analysis module :

The module is used to perform the pre-analysis on the suits

held by the declarer's side.

E. The primary-analysis module :

The module is used to perform the detailed analysis on the

result generated by the pre-analysis module.

. T. The offensive-play module :

This is the main module of the bridge planner we built. It

85

controls the process of the game. When the game is in the game

mode, it plays as the declarer's side. When the game is in the

simulation mode, it performs the card-sequence construction for

a technique being applied. It switches the declarer's play in

between the offensive position and the defensive position.

G. The defensive-play module :

This is the module to perform the defensive play for both

sides.

Right now, our Bridge planner can handle the following techniques :

the Finesse technique, the Throw-in technique, the Promotion technique,

and the Win-tricks-by-suit-length technique. In addition to these four

techniques, both Play-all-sure-tricks-left plan and Play-and-watch plan

are the plans used at the end-stage of a game.

Our Bridge planner allows the expansion in the future. The new tech

niques can be added at any time by following our technique-setup proce-

dure. Before we discuss this setup procedure and the testing steps after

adding the new technique, we would like to describe the control flow of

our bridge planner. It gives you more clear idea about the system imple

mentation and helps you to install the new techniques into the system.

86

BRIDGE-PLAYING CONTROL FLOW

(Declarer - Dummy)

Spade suit Heart suit Diamond suit Club suit

pre-analysis

primary-analysis

< the ordered list of the best techniques >

Is the list empty ?

(Yes)

Win-tricks-by-suit-length

(No)

END-GAME

Get first technique
in the list

Is it still applicable?

(Success)

87

CONTROL FLOW OF THE THROW-IN TECHNIQUE

Play all free sure tricks

(opponent made (card was
a wrong move) drawn into

V
re-try this
technique if
it is still
applicable

the wrong
opponent)

the declarer's
side gains the
lead

the declarer's side
gains the lead

(Success)

needs replanning

88

CONTROL FLOW OF THE FINESSE TECHNIQUE

return to try lead a small card
next technique

< End-hand player y>»
play-low play-exact discard

1 +’' < 3rd-hand player > y
cover it cover it

with the
highest-
ranking
card in hand

Is the finesse successful?

gain the lead side gains the
lead
(The opponents
didn’t drop
that card)

T
defensive-play

re-try of it is
still applicable

replanning

89

CONTROL FLOW OF THE PROMOTION TECHNIQUE

lead a Email card

< 2nd-hand player >< 2nd-hand player

< Srd-hand player >< Srd-hand player

drop a carda carddrop

Did

(No)
return
(success)

does the current lead hold
the highest-ranking card in

return
(success)

cover it with
the card used
for doing
promotion

re-try if it
is still applicable

defensive
play.

t
return
(success)

V
defensive
play

play-exact play-low

defensive
play

discard play any play-exact
1 card in
\ suit

the 4th-hand
player win

(No)

discard

?

(Yes)

90

CONTROL FLOW OF
THE "WIN-TRICKS-BY-SUIT-LENGTH’* TECHNIQUE

Is any card left

lead a small card

Does the declarer
still gain the lead?

retry return

can extra tricks defensive-
be built by this play
suit ?

(success)

91

CONTROL FLOW OF THE END-GAME

The Play-all-sure-tricks-left plan is used to play all the sure

tricks left in the declarer’s side. And the Play-and-watch plan is used

to switch the declarer’s play into the defensive position. As the de

fenders, the declarer’s side can watch the plays made by the opponents to

see if there is still a chance to establish sure tricks.

The following text describes the setup procedure and the testing

steps for a new playing technique :

Step 1 - Assigns a name to this new technique. The name is an id.
of this new technique.

Step 2 - Constructing the root-level plan for this new technique.
Starting at this plan, you then build the lower-level
plans. You can use those existing plans stored in the
knowledge base.

92

Since different technique needs different control, the
function used for status checking may be different. The
top-level control mechanism of the planner must be mod
ified so that it can handle the exception properly.

Step 3 - Testing new technique

a. Prepare an example which needs to use this technique.
Such an example must include the information of four
hands and the bidding information.

b. Run data-derived module to derive the information of
four hands and the bidding information into a form
described in Chapter 5. The result is stored in a
temporary file.

c. Run pre-analysis module. The input to this module is
the data generated by the data-derived module. To
make the pre-analysis work, for each suit in the de
clarer's side, there must be a suit-analysis rule
whose premises describe the card-pattern held in that
suit. The names stored in action part of this rule
are checked to see if they exist. If a name doesn't
exist, you need to build a technique source for this
name. The result generated by this module is stored
a temporary file.

d. Run offensive-play module. This module first invokes
the primary-analysis module, and then invoke the de
fensive-play module. The input to this module is the
data generated by the pre-analysis module. The result
is a list of best techniques and their relevant in
formation. During the execution of the primary-analy
sis module, few questions are needed to give the ans
wers. During the defensive play, you need to watch
each play played by either the declarer's side or the
opponents to see if the play is as you expect. If it
is not, the rules used for the defensive play are ex
amined and corrected.

e. You can trace the card-sequence construction process
by turning the trace on. When trace is on, certain
information are displayed on the screen. By viewing
these information, you can see if the planning works
as you expect. If it is not, then you need to check
plans you build or check to see if anything is miss
ing in the control mechanism.

93

For the attributes "suits", "cards" and "player-rela
tion" in a plan you build, you must make sure that
the values provided by the function used are correct.
For the attributes "actions" and "alternatives", each
element appearing in the list must be checked to see
if it exists or if it performs the correct checking.

The last thing you need to check is : each variable
used in a plan must be defined in the binding pro
gram.

The current version of the Bridge planner was developed on an IBM PC

AT microcomputer by using IQLISP interpreter. The program for generating

the derived predicates to describe facts takes about 730 lines. The pro

gram for performing suit-analysis takes about 1175 lines. The program

for selecting a best technique and constructing a card sequence takes

about 2055 lines. And the knowledge base contains 177 analysis rules, 8

rules for the second-hand player playing in the defensive position and 6

rules for the fourth-hand player playing in defensive position, and about

20 lists storing technique-information, and 30 plans for constructing a

card sequence. The number of analysis rules will be increased if all the

possible distributions of cards are taken into consideration. The number

of plans and the number of technique-information lists will be increased

if a new playing technique is added. The program size will be increased

tremendously if the planning is also applied to the defensive play.

CHAPTER 10

AN EXAMPLE

Suppose the declarer is in the contract of 1NT. West, the left-hand

opponent of the declarer, leads with the 7 of the Spade. Before the

analysis step takes place, a conversion is performed on the following

hand using the data-derived module. This conversion transfers the in

itial information of a hand and the bidding into the form described in

Chapter 3.

(North (Spade
(Heart
(Diamond
(Club

(6 5 2))
(A 3 2))
(9 7 4))
(K 6 4 3)))

West openleads
the Spade 7

(South (Spade (A K 4))
(Heart (8 6 4))
(Diamond (A Q 3))
(Club (A 8 5 2)))

The bidding is recorded as follows :

((west (0 pass)) (north (0 pass))
(east (0 pass)) (south (1 nt))
(west (0 pass)) (north (0 pass))
(east (0 pass)))

After the conversion is done, the analysis process starts. It first

finds the names of knowledges about techniques for each suit by search

ing through the analysis rules. In this example, the analysis rules found

94

95

will be

(suit-analysis-3-3-002
(premises ((?combined-suit has ?1)

(Tcombined-suit has ?2)))
(actions ((plans-to-be-examined ((plan-3-3-002)

(plan-3-3-003))))))

(suit-analysis-3-3-004
(premises ((?combined-suit has 71)))
(actions ((plans-to-be-examined ((plan-3-3-005))))))

(suit-analysis-3-3-003
(premises ((?combined-suit has 71)

(?combined-suit has 73)))
(actions ((plans-to-be-examined ((plan-3-3-004))))))

(suit-analysis-4-4-005
(premises ((?combined-suit has 71)

(?combined-suit has 72)))
(actions ((plans-to-be-examined ((plan-4-4-001))))))

The state of the Spade suit satisfies the descriptions of premises

of the rule •'suit-analysis-3-3-002". This rule suggests two plans stored

in the knowledge base are related to the card-holding in the Spade suit.

Let’s look at these two plans.

(Tech-info-3-3-002
(Player-relations ((7pl 7p2) (71eft-op 7p2) (?right-op 7p2)))
(Max-card-index 2)
(Holdings (((71 7x1 7x2) (72 7x3 7x4))))
(Sure-tricks 2)
(Sure-tricks-list ((?pl (?1)) (7p2 (72))))
(Extra-tricks-list nil)
(Tricks-won-by-length 0)
(Techniques nil))

96

(Tricks-won-by-length 0)

(Tech-info-3-3-003
(Player-relations
(Max-card-index
(Holdings
(Sure-tricks
(Sure-tricks-list
(Extra-tricks-list

((?pl ?p2) (?left-op ?p2) (?right-op ?p2)))
2)
(((71 72 7x1) (7x2 7x3 7x4))))
2)
((?pl (71 72))))
nil)

(Techniques nil))

By examining the •’holdings* in each plan, the card holdings in the

Spade suit match the holdings described in Tech-Info-3-3-003 list. There-

fore, the Tech-Info-3-3-002 list is discarded. At this point, four tech-

nique-information lists are found to relate to four suits in hand.

The Spade suit :
The Heart suit :
The Diamond suit :
The Club suit :

Tech-Info-3-3-003
Tech-InfO-3-3-005
Tech-Info-3-3-004
Tech-Info-4-4-004

The last job to be done by the suit analysis module is storing of the

information listed above into a temporary file. The content of this file

in this example looks like :

(Spade suit)

Bindings : ((71 A) (?2 K) (?X1 4) (?X2 6) (?X3 5) (?X4 2)
(TSUIT SPADE) (?P1 SOUTH)
(?P2 NORTH) (7LEFT-OP EAST) (7RIGHT-0P WEST))

Extra tricks built by length : 0

- Number of sure tricks : 2

Sure tricks hold : ((7P1 (71 72)))

Techniques for
building extra tricks : NIL

Techniques list : (NIL)

97

(Heart suit)

Bindings : ((?! A) (?X1 3) (7X2 2) (7X3 8) (7X4 6) (7X5 4)
(7SUIT HEART) (7P1 NORTH) (7P2 SOUTH) (7LEFT-OP WEST)
(7RIGHT-0P EAST))

Number of sure tricks : 1

Sure tricks hold : ((7P1 (71)))

Techniques for
building extra tricks : -'NIL

Extra tricks built by length : 0

Techniques list : (NIL)

(Diamond suit)

Bindings : ((71 A) (72 K) (73 Q) (7X1 3) (7X2 9) (7X3 7) (7X4 4)
(7SUIT DIAMOND) (7P1 SOUTH) (7P2 NORTH) (7LEFT-0P WEST)
(7RIGHT-0P EAST))

Number of sure tricks : 1

Sure tricks hold : ((7P1 (71)))

Techniques for
building extra tricks : ((TECHNIQUE-01 1) (TECHNIQUE-02 1))

Extra tricks built by length : 0

Techniques list •

((TECHNIQUE-01 (DEPEND-ON ((7RIGHT-0P HAS THE 7SUIT 72)))
(OBJECTIVE (73 WINS TRICK))
(AVOID NIL)
(RISK ((7LEFT-OP GAINS THE LEAD)))
(LEAD (7P1))
(TECHNIQUE-NAME ((FINESSE 73 7P1))))

(TECHNIQUE-02 (DEPEND-ON NIL)
(OBJECTIVE (73 WINS TRICK))
(AVOID ((7RIGHT-0P GAINS THE LEAD)))
(RISK ((7LEFT-0P GAINS THE LEAD)))
(LEAD (7P2 7P1))
(TECHNIQUE-NAME ((THROW-IN 7LEFT-0P)))))

98

(Club suit)

Bindings: ((?! A) (?2 K) (?X1 8) (?X2 5) (?X3 2) (?X4 6) (?X5 4)
(7X6 3) (7SUIT CLUB) (7P1 SOUTH) (7P2 NORTH)
(7LEFT-OP EAST) (7RIGHT-0P WEST))

Number of sure tricks : 2

Sure tricks hold : ((7P1 (71)) (7P2 (72)))

Technique for
building extra tricks *■ NIL

Extra tricks built by length : 0.68

Techniques list : (NIL)

The "bindings* is a list of variables cross-reference. For example,

for the Club suit, the variable 7pl appeared in "sure-tricks-hold" can

find the corresponding value SOUTH in "bindings*.

From the information listed above, we know only the Diamond suit can

build one extra trick by applying either the Finesse technique or the

Throw-in technique. It is possible to build 0.68 tricks in the Club suit.

In the Chapter 3, we have given the reason why we separate the extra

tricks built by length from tricks built by other techniques.

There are no extra tricks that can be built in both the Spade suit

and Heart suit. For the Diamond suit, we need to decide which technique

is the most suitable technique for the current situation. The first tech

nique in the techniques list is checked. After the binding, the statement

in attribute "depend-on* becomes

99

((EAST HAS THE DIAMOND K)))

You can see that the variable ?right-op is replaced with EAST; the

variable ?suit is replaced with DIAMOND; and the variable ?2 is replaced

with K. The best technique selection module then generates a question ac

cording to this statement. The question is :

"What do you believe that EAST is likely to have the Diamond King?"

The module expects the card-locating scheme to return an answer for

this question. In this case, the expected answer is a certainty value

between 0.0 and 1.0. If the answer is less than 0.5, then the Finesse

technique is not suitable to play with. Since the Throw-in technique is

the default technique, it will be selected as the best technique for

playing Diamonds.

Now suppose the answer indicates the Finesse technique has a greater

chance to win 1 extra trick. Thus, the Finesse technique is selected as

the best. Since Diamond is the only suit to build the extra trick(as long

as the best technique is selected for the Diamond suit, the plan is con

structed. In this example, the plan only has one teohn-ique needed to be

applied.

After the best technique is selected, the declarer needs to play in

the defensive position against the open lead. If the opponent makes a

very stupid move during this play (for example, playing the King of the

Diamond, there is no need to use the finesse technique. Since the Finesse

100

technique is the only one technique in plan, thus the game is brought

into the end-game stage.

To apply the Finesse technique, the root-level plan for the finesse

technique is retrieved from the knowledge base. Using this plan as the

root, a game tree is eventually built. This root-level plan may come up

by either one of the subplans listed below.

Plan 1 — (North is the current lead)
North leads a small card in Diamond suit
if East plays the King of the Diamond then

South covers it with the Ace of the Diamond
else
if East plays one of the other Diamonds then

South covers it with the Queen if the Diamond
else (* EAST has void Diamond suit *)

South covers it with the Ace of the Diamond

Plan 2 — (South is the current lead)
Set up an entry at North
if entry is setup successfully then

perform plan 1.

If it is plan 1, the construction process will generate a card

sequence as follows :

((G00045))

In Chapter 8, we explained this kind of representation. This is the

node generated by using a LISP function •’gensym*. The number shown here

does not show any importance to our job. It only expresses that it is not

the regular card presentation. The node stores the value of the ACTIONS

101

in the following plan :

(Play-to-finesse
(Arguments
(Plan-level
(Player-relation
(Suits
(Cards
(Premises
(Actions

(?card-led ?suit Vleadl ?card))
card-level)
((?3rd-hand is (third-hand-player Tleadl))))
(?suit))
(?card-led))
nil)
((make-lead (?card-led ?suit Vleadl)
((when play-low)

(play-exact-card ?card ?suit ?3rd-hand))
((when play-high)

(play-a-higher-card ?suit ?3rd-hand))
((when discard-card)

(play-without-lose ?suit ?3rd-hand)))))
(Alternatives nil))

The value stored in "lead* of this node is retrieved and led. De

pending on what card is played by the right-hand opponent, the value

stored in the corresponding attribute of the node is retrieved. The value

retrieved represents the action taken by the 3rd-hand player.

If plan 2 is taken, the card sequence generated looks like:

((cardl) (card2) (G00045))

The cardl is a lower-ranking card in one of the suits other than the

Diamond played by the South. The card2 is a sure trick in the suit led

played by the North. The cardl and card2 are generated by the plan

setup-entry-at if the plan is executed successfully.

After the sequence is played, if the King of the Diamond is trapped.

102

since there is no technique left in the plan, the suits are examined to

see if the Win-tricks-by-long-suit technique can be applied. In our ex

ample, the Club suit can built extra tricks by using this technique. So,

the Win-tricks-by-long-suit technique is applied. The technique is used

repeatly until the expected number of extra tricks is won, then the game

is brought into the end-game stage. In this stage, the Play-all-sure-

tricks-left plan is executed. The card sequence generated by this plan

is as follows :

((cardl) (card2) (cards) (card4) (cardn))

These cards are played. If the game is not over yet, the Play-and-

watch plan is executed and again the card sequence generated only has

one element.

((G00067))

The Play-and-watch plan invokes the subplan "lead-an-useless-card"

shown below.

(Lead-an-useless-card
(Arguments nil)
(Plan-level card-level)
(Player-relation ((?curr-lead is (current-lead))

(?3rd-hand is
(third-hand-player ?curr-lead))))

— (Suits (Vsuit in
(a-suit-played-without-big-lose 7curr-lead)))

(Cards (Vcard in
(the-smallest-card-in-suit ?suit 7curr-lead)))

(Premises nil)
(Actions ((make-lead (7card 7suit 7curr-lead)

((when play-low)
(play-a-smaller-card ?suit 73rd-hand))

((when play-high)

103

(play-a-higher-card ?suit ?3rd-hand))
((when discard-card)

(play-a-smaller-card ?suit ?3rd-hand)))))
(Alternatives nil))

For this lead, if the opponents are wise, one of them shall win this

trick. In this case, the declarer’s side needs to play in the defensive

position. The defensive module therefore is invoked.

The case we just described is when everything is under control. Sup

pose the Finesse technique is not successful. If the Finesse technique

fails to be executed, there are two possible situations to consider.

Situation 1 - the king is not trapped but the declarer still
gains the lead.

Situation 2 - the King is not trapped. Instead, It was played
by the West to cover the Queen played by the South.

In situation 1, the Finesse technique is only one technique used,

so the repl arming process is performed.

In situation 2, since the opponents gain the lead, the declarer must

play as defender. When the declarer re-gains the lead, the replanning

process is performed.

CHAPTER 11

CONCLUSIONS

Our study on planning in card games has made several contributions.

First, we provide a knowledge presentation framework for plans and rules.

Second, we devise a scheme to find an applicable playing technique and a

scheme to determine the best applicable playing technique. Third, we

devise a stack scheme to implement the construction of a card sequence

for a selected playing technique and the algorithm to control the hier

archical planning. The approach has been validated by testing several

examples.

In the analysis stage, our approach uses the number of extra tricks

as the decision factor for selecting a technique to apply. An evaluation

technique is provided in order to calculate the number of extra tricks

which can be built by a playing technique. The use of this quantity as a

decision factor has two advantages. One of the advantages is to simplify

the selection of a technique. The other advantage is that this approach

approximates the reasoning process of a Bridge expert.

Another feature of our approach is the use of a certainty factor. By

using this factor in the selection of a technique for a suit, we can sim

ulate a human player guessing on the location of a missing high card,

thus choosing a technique which can lead to a success. By combining this

104

105

factor and the number of extra tricks, we can resolve conflict between

two techniques. For example, the Spade suit can make one extra trick by

using the finesse technique and the Heart suit can make one extra trick

by using the promotion technique. To decide which suit should be played

first, we must ask "Which technique provides a higher chance to win one

extra trick?". In this case, we would like to apply the promotion first

because this technique is usually safer than the finesse technique.

In the card-playing sequence construction stage, our approach uses

the plans to construct a card-playing sequence for a selected technique.

In order to build these plans, we defined a Plan Language. The plans are

grouped in terms of techniques. The control mechanism was defined inde

pendently from the plans it uses. This feature makes the future expansion

to be possible and easier.

There are several problems with our approach. The first problem is

the use of the derived hand information and bidding information. In order

to make the scanning of the rules efficient, we need to derive the hand

information and the bidding information into the form that the rules can

use. Currently our program can perform this job. But it is very ineffi

cient because the way we use is very straightforward. To resolve this

problem, we need to define several primitive statements. Based on these

statements, more complex statements are built. For example, we can define

three statements to describe the Spades (A J 10). They are (The Spade has

the card Ace), (The Spade has the card Jack) and (The Spade has the card

106

10). By using these statements, we can build the following statement :

(The Spade has cards Ace Jack 10)

The second problem is the way we propose techniques for a suit.

There are many combination of the thirteen cards. In our approach, for

each combination, there must be a technique found in the knowledge base.

You can imagine that the size of the knowledge base is very huge if we

prepare techniques for all the combinations. When the size of the knowl

edge base grows, the execution of the system will get slow unless we have

a good knowledge base management system. The resolution is : instead of

building a knowledge base in terms of card combination, we need to or

ganize the knowledges in terms of techniques. For each technique there is

a proposer which suggests an appropriate way to apply the technique if it

finds that the technique can be applied.

The third problem is the lack of card locating scheme and the bid

ding module. The card locating scheme draws deductions on each card play

ed by the opponents and the bids made by the opponents. It also provides

the answer of a card location to our program. Without this scheme we can

not really test our approach.

The fourth problem with our approach is the hierarchical planning.

The hierarchical planning only allows that the switching from one tech

nique to another is performed at root-level nodes of a plan tree. For the

complicate hand, the planning will become inefficient by using this ap

proach.

107

The fifth problem with our approach is the lack of ability to make

decision of whether or not to stop current technique and try another.

Example

Suppose the Diamond suit can build several tricks by using Pro
motion technique and the Club suit can build less tricks by using
the Win-tricks-by-long-suit technique. If you first play the KING of
the Diamond to drive out the -opponent’s Ace and unfortunately the
Ace wasn’t played. What are you going to do next ?

Keep trying the Promotion technique?
or

Switching to the Club suit?

Currently, our bridge planner only performs planning on the de

clarer’s side playing in the offensive position. Future works may include

the pl anning on the defensive side. Also by making some changes, our ap

proach can be used for a trump contract.

In planning a No trump contract, it is advisable to first count your

winners. The same is true in a suit contract, but now it is equally im

portant to count losers too. Let’s look at the following example :

Spade K 9 7
Heart K Q 7 2
Diamond 8532
Club A 4

West led
Diamond Queen

Spade Q J 10 8 6
Heart A 4
Diamond A 7 4
Club 10 8 6

108

South is the declarer at a contract of 4S, and West leads with the

Queen of Diamonds. The declarer observes that he has nine winners in the

shape of four trump tricks, three Hearts, and two Aces. A club can be

ruffed in dummy to round out ten tricks. A Club must be conceded before

one can be ruffed, and this must be done before trumps are played. Other

wise, the defenders may draw dummy’s trumps and leave South a trick

short.

Thus, the declarer’s count of winners is eminently satisfying, but

before proceeding he should also count his losers. If he wins with the

Diamond opening and plays the Ace and another Club, the defenders will

cash two Diamond tricks and he will wind up with four losers. To prevent

this, the declarer’s side first move is to cash the A K Q of Hearts, di

vesting himself of a losing Diamond.

We can build a planner for a trump contract based on our planner

built for a No trump contract. This time the evaluation technique needs

to put losers into the consideration. The analysis steps and the steps

of constructing a card-playing sequence remain the same. There are many

techniques which can be used by a trump contract. The knowledge of these

playing techniques needs to be added into the existing knowledge base.

The plans for constructing a czird-playing sequence for each of these

techniques must be added into the knowledge base.

The control mechanism used here basically can be used by a plaTiner

dealing with a trump contract. As we mentioned before, our control mecha

109

nism is designed independently for the plans it uses. It is possible to

build a common control mechanism for all techniques. The program using

this control mechanism will be the final version of the bridge-playing

program. For the first version of the program, we still need to modify it

to accommodate the requirements of the new techniques. Different tech

niques have different controls. These controls are based on the result

returned from the function which performs the status checking. Therefore,

for the new technique we need to add the new status flags into the con

trol mechanism so that the flow of the control can be performed correct

ly.

In Chapter 9, we explained how to add a new technique into the sys

tem and how to test it. These steps can be used when a planner for a

trump contract is built.

We still have a long way to go to build a complete bridge-playing

program. As we mentioned in Chapter 1, the intention of our work is to

build a prototjqje of the bridge planner. Although there are several pro

blems with our approach, we have suggested the possible solutions for

these problems. The program given here is well organized whereas the re

placement of a particular module is possible as long as the new module

doesn't violate our input/output design. We hope this work can be a good

start for those who are interested in this field of study.

APPENDIX A

RULES FOR DECLARER SIDE PLAYING

IN DEFENSIVE POSITION

A.l Rules for second-hand player :

(second-hand-rule-001
(premises ((no-card-to-cover second-hand)))
(actions ((defensive-play second-hand low))))

(second-hand-rule-002
(premises ((plan-taken-is throw-in)

(leader-is-the-target-for throw-in)))
(actions ((defensive-play second-hand low))))

(second-hand-rule-003
(premises ((plan-taken-is drive-out)

(has-card-for driving-out)))
(actions ((defensive-play second-hand card-for-drive-out))))

(second-hand-rule-004
(premises ((plan-taken-is finesse)

(has-card-for finessing)
(leader-is-not-the-target-for finesse)))

(actions ((defensive-play second-hand card-for-doing-finesse))))

(second-hand-rule-005
(premises ((has-a-sure-trick fourth-hand)

(has-a-sure-trick second-hand)
(expected-entry-is second-hand)))

(actions ((defensive-play second-hand a-sure-trick))))

(second-hand-rule-006
(premises ((has-a-sure-trick fourth-hand)

(has-a-sure-trick second-hand)))
(actions ((defensive-play second-hand low))))

(second-hand-rule-007
(premises ((has-a-sure-trick second-hand)))
(actions ((defensive-play second-hand a-sure-trick))))

110

Ill

(second-band-rule-008
(premises ((nothing)))
(actions ((defensive-play second-hand low))))

A.2 Rules for fourth-hand player :

(fourth-hand-rule-001
(premises ((no-card-to-cover fourth-hand)))
(actions ((defensive-play fourth-hand low))))

(fourth-hand-rule-002
(premises ((current-winner-is second-hand)

(expected-entry-is fourth-hand)))
(actions ((defensive-play fourth-hand card-to-win))))

(fourth-hand-rule-003
(premises ((current-winner-is second-hand)))
(actions ((defensive-play fourth-hand low))))

(fourth-hand-rule-004
(premises ((has-at-least-2-sure-tricks fourth-hand)))
(actions ((defensive-play fourth-hand a-sure-trick))))

(fourth-hand-rule-005
(premises ((has-card-to-win fourth-hand)))
(actions ((defensive-play fourth-hand card-to-win))))

(fourth-hand-rule-006
(premises ((nothing)))
(actions ((defensive-play fourth-hand low))))

REFERENCES

1. Stanier, A. BRIBIP: A Bridge bidding program. In Proc. 4th
IJCAI, Tbilisi, USSR, 1975.

2. J. R. Quinlan, "A knowledge-based system for locating missing
high cards in bridge".
In Proc. 6th IJCAI, Tokyo, Japan, 1979.

3. Audrey Grant and Eric Rodwell, "The Joy Of Bridge"
Arco Publishing, Inc. New York

4. Charles H. Goren, "Goren’s Bridge Complete"
The Goren Editorial Board

5. Lawrence, M. How to read your opponent’s cards:The Bridge Experts’
Way to Locate Missing High Cards.
Prentice-Hall, Inc., N. J, 1973

6. Koenraad Lecot and D. Stoott Parker,
"Control over Inexact Reasoning"
P 32-43, Premier Issue Of Al EXPERT, 1986

7. Tim Finin, "Understanding Frame Language, Part II*
p 51-57, Al EXPERT, Dec 1986

8. Raul E. Valdes-Perez, "Inside an Expert System Shell*
p 30-45, Al EXPERT, Oct 1986

9. IQLISP Reference Manual, version 1.7,
Integral Quality, 1986

10. Stanier. BRIPP - A Bridge-Playing Program
Essex University, 1974.

112

