A Thesis
 Presented to

 the faculty of the Department of rechanical Engineering University of houstonIn fartial fulfillment of the Requirerents for the Dogree Master of Science in Yechanical Engineering

by
A. Y. llanumanth Pao

Junc, 1968

450509

PREFACE

This rescarch presents the design, construction, and evaluation of a nembrane apparatus for the torsion analysis of prismatic bars. Torsional stresses and deflections in a non-circular sectional bar are difficult to deternine analytically. The experimental results in this thesis were obtained from an experiment performed on the membranc analozy apparatus. Thin polyethlenc sheet material and rubber were used instead of soap film in the experiment. The results were gratifying.

The researcher wishes to cxpress his appreciation for the valuable advice and assistance given by mombers of the thesis committce, especially Prof. L. J. Castellanos of the Hechanical Engineering Department, who gave him all possible assistance and guidance in completing this rescarch.
A. V. H. R.

An Abstract of a Thesis Prosented to the Faculty of the Department of Mochanical Encinecring University of llouston

In Partial Fulfillmont of the Roquirements for the Degrec Master of Scicnce in Acchanical Engincering

by

$$
\begin{aligned}
& \text { A. V. Ilanumanth חao } \\
& \text { June, } 1968
\end{aligned}
$$

This research presents the design, construction, aru eviauation of a membranc analony apparatus for the torsion analysis of non-circular sections (prismatic bars). The purpose of this project was to construct and demonstrate the use of the apparatus. The degree of error obtained by the apparatus was determined by porforming exporiments with the following threc sections:

1. Square (3' $x 3^{\prime \prime}$)
2. Equilateral Triangle (4" side)
3. Rectangle (2" $\quad 3^{\prime \prime}$)

Tho order of error was 1 to 5 percent.
Thin Plastic (Polyethylene) material (0.0015" thickness) and a rubber membranc (0.009" thickness) were used to carry out the membrane amalogy experiment. Contours and grapis are presented for each section mentioned above.

The apparatus is easy to construct and is inexpensive. Experiments can be performed with the aparatus without much difficulty. The percentage error due to the apparatus can be reduced to a great extent by a few alterations in the design. A large amount of crror in results is due to the membane material which is not an ideal membrane.

TABLE OF CONTENTS

CHAPTER PAGE
I INTRODUCTION 1
II MEMBRANE ANALOGY APPARATUS DESIGN 6
III EXPERIMENTAL PROCEDURE 11
IV EVALUATION, RESULTS, AND DISCUSSION 25
V CONCLUSION. 43
BIBLIOGRAPHY 45
APPENDICES. 48
A. ADDITIONAL EXPERIMENTAL RESULTS 50
B. TORQUE RATIO AND STRESS RATIO CALCULATIONS 78

LIST OF TABL:S

TABLE

I. Data to Detormine Volunes of Square and Circular Sections (Rubbor Monbranc) Eor $\mathrm{p}=.60 \mathrm{p} . \mathrm{s} . \mathrm{i} . \mathrm{g}$. 19
II. Data to Determine the Volumes of Rectangle and Circhlar Sections (Polyethylene Matorial) for $p=.75$ p.s.i.s. 24
III. Data to Determine the Volumes of Equilateral

Triangle and Circular Sections (Rubber Yembrane) for $p=.8$ p.s.i.g. 28
IV. Experinental Error in Determining Torque Ratio by Mans of Pubber lambrane 34
V. Experimontal Error in Deternining Torque Ratio by Means of Polyethylone Material . . 35
VI. Experimental Error in Determining Stress Patio by lleans of Rubber lembrane 30
VII. Fxperimental Error in Determining Stress by leans of Polycthylene laturial 37
VIII. A Comparative Study of Experimental Irror in betermining stress antio by :!eans of Rubber Mombranc and Polycthylenc Naterial. $\quad 3$
IX. A Comparative Stucy of Exicrimental firror in Determining Torque Ratio by loans of Rubber lembrane and polyethylenc laterial. . 3 ?
X. Data to Determino Volumes of Scuare and Circular Sections (Rubber vemioranc) for $p=$. 85 p.s.i.g. 53
XI. Data to getermine Volumes of Square and Circular Sections (Polyethylcne Material) for $p=1.0$ p.s.i.g. 56
XII. Data to Determine Volumes of Square and Circular Sections (Polycthylene Material) for $p=1.1$ p.s.i.g. 59
XIII. Data to Determine the Volumes of Fquilateral Triangle and Circular Sections (Rubber Ifombrane) for $p=.8$ p.s.i.g. 52
XIV. Data to Determine the Volumes of Pquilateral Triangle and Circular Sections (golyetinylene Material) for $p=0.9$ p.s.i.g. 65
XV. Data to Determinc the Volumes of Equilateral Triangle and Circular Sections (Polyethylene Materialffor $p=.95$ p.s.i.g. 68
XVI. Data to Detefmine the Volunes of Rectangle and Circular Sections (Rubbcr Merbrane)
for $p=.7$ p.s.i.g. 71

TABLE page
Xl'II. Data to Determine the Volumes of Fectangle and. Circular Sections (Polyethylone llaterial) for $\mathrm{p}=.95$ p.s.i.g. 74

LIST OF FIGURES

FIGURE
PAGE

1. :lembranc Analogy Apparatus 7
2. Sectional Drawing of the Apparatus 8
3. Yerbrane contour lincs of the Square and Circular Sections Obtained from Rubber Hembrane for $p=.6$ p.s.i.g. 17
4. Volune Graphs for the Square and the Circlofor $p=. G$ p.s.i.g. 18
5. Graph to determine the maximum slope for the two sections 20
6. Nembrane contour lines of the Rectangle and Circular Sections Obtained from Polyethylone Materialfor $p=.75$ p.s.i.g. . . 22
7. Volune Graphs for the Rectangle and the Circle for $\mathrm{p}=.75 \mathrm{p} . \mathrm{s} . \mathrm{i} \cdot \mathrm{g}$. 23
8. Nembrane contour lines of the Equilateral Triangle and Circular Sections Obtained from Rubber Membrane for $p=.75 \mathrm{p} . \mathrm{s.i} . \mathrm{S}_{\mathrm{S}}$. 26
9. Volume Graphs for the Equilateral Triangle and the Circle for $p=.75$ p.s.i.g. 27
10. Membrane contour lines of the Square and Circular Sections Obtained from Rubber Membrane for $p=.85$ p.s.i.g. 51

FIGURE
pace
11. Volume Graph for the Square and the Circle for $p=. S 5$ p.s.i.g. 52
12. Membrane contour lines of the Square and Circular Sections Obtained from Pulyethylenc Material for $p=1.0$ p.s.i.g. . . . 54
13. Volume Graphs for the Square and the Circle for $p=1.0$ p.s.i.g. 55
14. Membrane contour lines of the Square and Circular Sections Obtained from Polyethylcne Material for $p=1.1$ p.s.i.g. . . . 57
15. Volumo Graphs for the Square and the Circle for $p=1.1$ p.s.i.g. 5 s
16. Meribrane contour lines of the Equilateral Triangle and Circular Scctions Obtaincd from Rubber Hembrane for $p=.8$ p.s.i.g. . 60
17. Volume Graphs for the Equilateral Triangle anci the Circle for $p=.8$ p.s.i.g. 61
18. Sembrane contour lines of the Equilateral Triangle and Circular Sections obtained fromPolyethylene Material for $p=.9$ p.s.i. 63
19. Volume Graphs for the Equilateral Triangle and the Circle for $p=.9$ p.s.i.g. 64
20. Membrane contour lines of the Equilateral

Triangle and Circular Sections Obtained fromPolyethylene ilaterial for $p=.95$ p.s.i. 0

FIGURE
21. Volume Graphs for the Equilateral Triangle and the Circle for $p=.95 \mathrm{p} . \mathrm{s} . \mathrm{i} \cdot \mathrm{g}$. . . . 67
22. Mombrane contour lines of the Rectangle and Circular Sections Obtained from Rubber Membrane for $p=.7$ p.s.i.g. 69
23. Volune Graphs for the Roctangle and the Circle fow $\mathrm{p}=.7$ p.s.i.g. 70
24. Nembrane contour lines of the Pectangle and Circular Sections Obtained from Polyethylene Material for $p=.95 \mathrm{p} . \mathrm{s} . \mathrm{i} . \mathrm{s}$. . . 72
25. Volunc Grapis for the Rectangle and the Circle for $\mathrm{D}=.95 \mathrm{p} . \mathrm{s} . \mathrm{i} .8$. 73
26. A Comparative Study of Deflection Curves (By using Rubber Membrane) 75
27. A Comparative Study of Deflection Curves (By using polycthylene Material).

```
    = Modulus of clasticity of material
    =Modulus of rigicity of naterial
    =Twist of bar in radians per unit length
    =Shear stress in lbs./sq. inch
    =Torque applicd to bar
    =Pressure difference causing displacement (air prossure)
    =Elevation of the membranc
    =Surface tension of soap film
    =Area of cross section of bar
    =Length of perimeter of cross section
    =Maximumangle at the edge of film covering the circu-
        lar hole
    =Radius of the circle
    =Angle at the edge of the film covering the openizag
        representing the section
    =Maximum angle at the edge of film covoring the test
        hole
            ={aximum shearing stress in the circular hole
            =aaximum shearing stress in any section undcr study
            =Thickness of the membrane
```

> cunvor"
> I:manouctan:
mac object of the project was to ciesion, construct, and evaluate a mombanc amalogy apmaratus for tide marpose of deronstrating its use in experimental vowsưononts. This apparatus is useful minly for dotominian, tho strosses and torguc in a twisted bar or shaft ci any non-circular cross section, which are diaficult to got analytically.

The Stombrane Analocy was first proposed by ?ranciti(l)* in loo3. It was not until lol7 that A. A. Grifeith ama G. I. Taylor (2) formulated a pactical exporipoatal aproach with the use of a soap filp for the clastic mombrane as proposed by prandtl. They used Autocolidrotcr and spheroreter to obtain their experirontal yesults. In the lutocollirator, a collimated bumale of light rays from a small source are dirccted on the surface of the film. The collination axis is rotated about a horizontal axis until the reflectod ray coincides with the incident ray. The angle between the colliration axis and the vertical measures the slope of the film. The
*:o. refer to references in bibliogranky
apparatus is carried on a pair of right-angle guides to locate the point at which the slope is neasurec. The chiof error arrived from the fact that the film has a tendency to spread over the plate at the boundary. mo error obtained is about 2 to 4 per cent. Spherometer consisted of a thin plate which contains a cut out of: the desired cross scetion to be analyzed and a cixcuiar hole to be used as a standard. The plate is placed in a pressure applying fixture and soap film is stretcied across the openings. Contours of the film surface are plotted by moving the micrometer on the glass plato, which is placed over the extended film. The volume of the film is computed with a contour map. Their error varied from 2 to 4 per cent, which was not quite as sood as previous investigations, however, their experimental procedure had been greatly improved. Their mothod was lengthy and since soap film is subject to evaporation, time proved to be an important factor. Other invostigators (3) in the $1950^{\prime} s$ introduced their own tochniques (lhotogrammetric method, Vuest Collimator, etc.) in determining the slopes on soap film, but their techniques were complicated and consequently less accurate. In 1934 E. Kopf and E. Veber (4) used a
thin rubber mombrane instcad of the soan film. .ine rubber mombrane was stretched over holes in an alurinum plate which was the top of a jar containing a rixture of paraffin. Their experimental procedure differed from previous investigators in that they used water to load the rubber membrane and made permanent wax impressions of the distended remurane. Neasurements of slope and volume were obtaincd by slicing the wax impression and photographs were taken of the resulting section at every cut. Their techniques were time consuming wit': little or no improvenent on accuracy.

The apparatus used for the present project was basec on the Taylor-Criffith's Spherometcr principle. In thei: apparatus the soap film was cnclosed in a box and the micrometer was moved all around on the glass plate to obtain the contours of the cxtended soap film.

Rubber membrane and plastic matorial were used instead of the soap film to perform the experiment on the designed apparatus. The depth gauge was moved over the extended membrane and the contours were obtained. The membrane was not enclosed in any box because there was no evaporation problem like the soap film.

The designed apparatus was evaluated on the basis

Of the results outained fron it for simple non-circular cross sections by using rubber membrane and polyethylene plastic material. These results were comared with the known theoretical values of the sections. Non-circular cross sections like triangular, rectangular, and square with thoir respective standard circular sections were used for experimontation because their accurate torque ratio and shear stress ratio are known. The contours of the extended membrane over the noncircular section considered and the standard circular section are obtained on a drawing sheet with the help of the depth gauge. The volunc under the extended membrane over the scction and the circle is determincu by graphical method. The ratio of the volumes give the tcrque ratio of the section considered and the circular section. This ratio is compared with the known theoretical ratio and the error in tie apparatus in determining the torque ratio is obtained. The experimental error in results obtained by the designed apparatus is about 2 per cent. The maximum gradient of the extended membrane on the mon-circular scetion and the circular section is obtained from the contour map by taking the ratio of the vertical spacing and the horizontal spacing
of two contours at the edge. The maximamgracient ratio will give the maximum shearing stress matio between tho two sections. And this ratio is compared to the known theoretical ratio and the error of the apparatus in cetermining the maximum stress ratio is obtained. mhe experimontal error in rosults outained by the dosignod apparatus is about 4 per cont. Experiments wore performed on the designed apparatus without difficulty. Tho apparatus is simple in construction and can bo usca for many different membrane materials. (oxcopt fluid merioranes)

NPDARATUS DESIGN GRITRRIA AND DESCRIPTIOA

In the design and the construction of the aiparatus tine following requirements were taken jnto account: 1. Suitabíity for using non-fluid rembranes.
2. Means for finding the contours of the extended membrara. Becausc of this, the apparatus consisted of a depth gaugo with its designed accessories and a rocording board for contour measurements. The required results for torque ratio and shear stress ratio are obtained with tine help of the contour mapping by graphical methous. The morbrane used, being a non-fluid type, was not enclosed in any box like a soay film.

The photograph (rig. 1) shows the designed apparatus. The layout assembly drawing of the designod apparatus with pertinent dimensions is shown infig. 2 .

The apparatus consists of a square steel box, A, 12" x 12" x 2-7/8't. The box is made out of $1 / 8^{\prime \prime \prime}$ thick steel plate and is supported on four levoling screws. The circular test hole and the experimental hole are cut in two flat plates of any suitable metal (eg. stecl) oz thickness $1 / 8^{\prime \prime}$. The membrane material is placed betwean these two plates so that the membrane is held at the edges

Membrane Analogy Apparatus

Apparatus with Pertinent Dimensions
of the holes. The plates are held in horizontal position during the experiment by leveling screws. These counled nlates are bolted to the frarie of the square box. The joint is made air tight by mons of a gasket. One sicic of the box has a $1 / 4^{\prime \prime}$ Copper tube connected to it with a pressure gange ($0-30 \mathrm{p}$. $\mathrm{s} . \mathrm{i}$.$) and a stop valve in it.$ The neasuring device consists of a depth gauge, i, (with the attachments), which slides freely on the upper facc of the rectangular steel bar, c. The rectangular stecl bar is $18^{\prime \prime} x$ l $1 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$. The upper face of the bar ($3 / 8^{\prime \prime}$ wide) has a 16 microinch finishfor easy sliding of the depth gauge. The rectangular steel bar moves frecly back and forth on two round stecl bars,, $0 f 3 / 4$ diamotcr, which are at either end of the rectangular bar. Thuse bars, each $20^{\prime \prime}$ long, are $18^{\prime \prime}$ apart and are sunported by means of four brackets, D. The brackets are fixed to the L plates (Angle iron) for stability of the measuring device. The lower end of the depth gauge (an attachment) is a hard steel point, F, tapering about 1 in 8 at the end. Fixed on top of the depth sauge and in its center line (an attachment) is the steel rocording point, G. The record of the point of contact of the depth gauge on the membrane is made on a sheet of
graph paper fixed to the recording board, 1,14 " $x 101 / \varepsilon^{\prime \prime}$ x $1 / 2^{\prime \prime}$, which can swing about a horizontal axis. The board is fixed to a brass rod and supported by vertical bars which are fixed to the angle irons. The veitical bars are 11 1/2" $\mathrm{x} 5 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}$. To mark any position of depth gauge point, F , it is merely necessary to prick a point on the paper by bringing the board down on the recording point, G. (The point of contact of the cepth gauge point on the membrane is transferred to the graph paper). The depth gauge can be roved in $x-y$ directions to touch the extended membrane at any desired point.

CHAPTIR III

EXPERIMONTAL rROCRDURE
The object of the experiment on the apparatus is to determinc the contour lines of the extended rerbranc. The slopes of the tangent line at the edge of the sections and the volume enclosed between the extended membranc and the plane of the plate are obtained by graphical method. Yethod of usint Abuaratus

The membrane is stretched by hand and placed betwoen two clean steel plates so that it is held at the edges of the holes and has uniform tension in it. The two steel plates are bolted together. These coupled steel plates, in turn, are bolted to the frare of the test box. The joint between the coupled test plates and the box must be air tight. The membrane across the holes is now tested with the depth gauge; if it is not parallel to the plane of motion of the depth gauge, the test box is leveled by leveling screws. The extension of the membrane is done by allowing air into the test box at a very low pressure (about 1 p.s.i.g)through the copper tube. The pressure is kept with minimum variation by a stop valve. A graph sheet is fixed to the re-
cording boarlill, (Fig. 1). heasurements may now be made as desired.

The outline of the experimental hole and circular hole is marked on the graph paper by means of the recording point, G, of the depth gauge. The depth gauge is set and screwed down until the gauge point F touches the momorane and its height is noted. A magnifying glass is used to sco whether the gauge point, f, touches the menbrane or not and the recording board, il, is lowered to touch the recording point, G, to make a marking point. The dopth gauge is moved to a neighboring point on the same contour and again a mark is made on the paper attached to the recording board. This is continued until the contour is completely mapped. Sinilarly, salect anotier contour and note its height, and completely map it on the recording board. Select contours from very near the edge of the section to the top of the extuaded membrane with a contour interval from o. Ulo to 0.075. The above procedure is done for the test scetion and for the standard circular hole. The mapred contours of the test section and circular section on the graph sheet are sufficient to proceed for further calculations (Fig. 3).

Rosills Irom Yaasurenents

The volume is determinod by grapilical method after complete mapping of all the contours of the extendod membranc of the test section and circular section. mo area enclosed by each contour linc is measurod by a planimoter, and those aroas are ploted against the corresponding elovation. Jhe aroas arc plottod as ordinates and the hoights as abscissa i lig. 4). A smooth curve is drawn, enclosing an area that rojrescots the volume under the extended membranc. This area is determined b; a planimeter and this gives the volurie. The volumes enclosed by the membranes over the tost section and the standard circular section is determinod by the above method. The ratio of the volumes of the test section and the circle gives the ratio of torque of the two above sections, under the condition that thoy have the same angle of twist per unit longth and the same shearing modulus. This experimental ratio is compared with the existing theoretical ratio and the percentage crror is determined.

The slopes of the membrane are calculated fro: the contour spacings (i.e., both the vertical and horizontal spacings). The vertical spacing is obtained
fron the depth gauge readings. The horizontal spacing of the contour is measured by a scale from the contour maping on the graph shect (which was attached to the recording board (1). To determine the stress at any point (x, y) in the test section, the maximum slone at that point in the section is obtained and the maximun slope at the boundary in the standard circular section are taken into consideration. The ratio of these maximur slopes aives the shear stress ratio of the test section at the point (x, y) and the circular soction at the boundary. Since tinc stress in the circle at the boundary is known, the stress in the section at the point (x, y) is dotorminod. Tho maximum stress in a soction is usually the only measurement of practical importance. Visualization of the shape of the extended membranc covering the section and circular hole shows that the maximum slope occurs at the edge of the sections. For estimating the slope of the extended membrane the horizontal spacings of the contours are plotted on x-axis and the vertical spacings of the contours are plotted on y-axis. The points are fitted with a smooth curve and the slope at any point is obtained by the graphical method. For maximum slope at the edge of the extended
menbrane, a tangent is drawn to the smooth curve through the origin (Pig. S).

The naximum sloye at the edge of the test section and the circular section is determined by drawing an accurate tansent to the curves through the origin. The ratio of these maximum slopes gives the maximum stross ratio between the two sections. This ratio is conpared with the existing theoretical stress ratio and percentage error is determincd.

Porcontage error for the stress and torque ratios is calculated from the simple relation given below. $\left\{\frac{(\text { Exporimontal ratio })-(\text { Theoretical ratio })}{\text { Theoretical ratio }}\right\} \times 100$

WORK. T
The procedure to calcul, the stress and torque ratios for a square ($3^{\prime \prime} \times 3^{\prime}$; and a circle ($3^{\prime \prime}$ diameter) is givon below (refer to Fiz. 3 and 4). The radius of the circular hole is made approximately equal to the value of $2 A / P$ where A is the area and P is the peri-
 (reference 2), where Ψ is edge angle at any point.

The area of each contour of the test section ard circular section is given in Table I. Corresponding heights are also given in the Table I. The volumes of the test section and circular section are obtained from Fig. 4.
$V_{1}=$ Volume of the test section $=1.495$ Cu. inches $V_{2}=V o l u m e$ of the circular section $=1.151 \mathrm{Cu}$. inches
$\frac{V_{1}}{V_{2}}=$ Volume ratio $=\frac{1.495}{1.151}=1.299$
Thooretical torque ratio of the two sections
(Refcrence 5) $=1.432$
$\%$ crror $V_{1} / V_{2}=\frac{1.209-1.432}{1.432} \times 100=-0.2$
The vertical spacings and horizontal spacings of the contours are plotted on Y-axis and X-axis (Fig. 5)

Putbor Membrame $0.0085^{-1}=1$
Sのばージャご

Stres－3 Distribuirn of Sapare And Circuiar Sesíions by Membrare Analozu．

Trus Strese Fatio $=1.350$

Error \％$\quad=-11.4 \%$

Mat Pubterninnine $0.0085^{\prime \prime}$ hick

TABLE I

(RUBLERE METBRANE)

1	2	3	4	5	6	7	8	9
AREA OF			AREA OF					
COMTOUR OF		VOLUME	CONTOUR OF		VOLURE			
The sectios	HEIGHT	V_{1}	Thie Circle	Hil 1 ¢7T	V_{2}		True	\% 1吅?
(Sq.inch)	(Inchos)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu.inch)	V_{1} / V_{2}	Valuis	V_{1} / V_{2}
9	.340		7.07	. 340				
7.25	. 400		5.73	. 400				
5.87	. 450		4.80	. 450				
4.56	. 500		3.76	. 500				
		1.495			1.151	1.300	1.432	- 9.2
3.37	. 550		2.74	. 550				
2.03	. 600		1.58	. 600				
1.35	. 625		. 95	. 625				
. 39	. 675		. 56	. 650				
0	. 685		. 13	. 675				
			0	. 685				
	-.			\rightarrow				

and the maximum slope of the des is determined by graphical mothod.

Maximum slope of test section $\frac{.06}{0.1003}=0.540$
Maximum slope of circuar section $\frac{0.06}{0.1347}=0.4454$
Ratio of slopes $=\frac{0.549}{0.4454}=1.232$
Thecretical Shear Stress ratio $=1.350$ *
\% error in determining stress
ratio $=\frac{1.232-1.350}{1.350} \times 100=-8.7$
Follow the procedure to determine the stress at any point in a section. Consider a point A in the rectangular scetion (refer to Fig. 6 and Table II).

Maximum Slope at A of test Section $=\frac{\delta z}{\delta x}=\frac{.065}{.1562}$
Maximum Slope at the boundary of the circular section
$=\frac{.05}{.109}$ Ratio of Slopes $=\frac{.109}{.05} \times \frac{.065}{.1562}=0.91$
Theoretical Shear Stress ratio $=0.942$ (Rererence 5)
$\%$ Error in determining Stress ratio $=\frac{.91-.942}{.942} \times 100$

$$
=-3.4 \%
$$

$$
\frac{\tau_{A}}{\tau^{\text {c max }}}=.91
$$

$$
\tau_{A}=.91 \tau^{\tau} \text { gax }
$$

where τ_{A} is the stress at A in the considered section

Strear Distritutiori. Of The Two Sections
Rectandie 2"×3"
Croie 2.40" Diameter:
Mafra:
Poluetryke Sheet, Thichnci: $=0.0015^{\prime \prime}$.
Maximun Angle_At The cdge of The Section-32.62
Maximum Ancle At The: ofge of The Circte ? 2.6°

$=1.326$
Etres LaBo
$=1.414$
Error
$=-6.2 \%$

Figure . ${ }^{6}$
Membrane Contour Lines of the Rectangle and Circular Sections Obtained from Polyethylene thatcrial

DATA TO DETERMINE THE VOLUMES OE RECTANGIE AND CIRCULAR SECTIONS

 (POLYETEYLENE MATERIAL)

CHAPTER IV
 Evaluarion, results and discussion

The results obtained fron the experiments performed on the apparatus are given in Table I to Table XVII.

The values set down in Table III(page 28) indicate results of an equilatcral triangular section (4" side). Fig. 8 is obtained directly from the experiment performed with rubber membranc on the apiaratus. The contour lines of the section reprosent the lines of shearing stress. The spacing of contour lines tends to widen as they proceed towards the center of the section. Consequently, the slope at the middle point of the edge of the triangular section is maximum sloje in the entire section. Since stress is proportional to slope, the maximum stress occurs at the middle point of the edge of the section. In order to eliminate the constant of proportionality a standard circular section of radius $=1.154 \mathrm{in}$. is taken into consideration. The ratio of maximum slopes obtained is 1.580. This gives the maximum stress ratio. The maximum stress for a circular section can be calculated so the maximum stress for the section is evaluated from the ratio of maximum stresses. The true maximum stress ratio is 1.500.* The maximum slope in the triangular section

-. Strees Digtribution Of The Two Sectione

Equilateral Triargle 4"Sicis

Cirsle
2.308"Diameter

Materie:
Rubber Membranc; Thoknes $=0.005 \%$
;-.. Mox:mum Angle At The edge $=34.44^{\circ}$ Strese Pat:o
Sinerved Ratio

$$
\begin{aligned}
& =1.500 \\
& =1.468
\end{aligned}
$$

Error

Note:
Ir the cornerpoints morke B the strese 18 zero;

- thepor marked A are those of nownmonstrese

Figure 8
1 Membrane Contour Lines of the Equilateral Triangle and Circular Sections Obtained from Rubber Nembranc

TABIE III
DNTA TO DETERSHNE THF VOLU:MES OF I:QUTHATEPAL TRIANGLF AND CIRCULAR SI:CTIOAS (RUBBER MFPGBRANE)

1	2	3	4	5	6	7	8	9
AREA OF			AREA OF					
CONTOUR Of		Volunde	Cowtour of		Voluris			
The SECTION	HEIGHT	V_{1}	THE CIRCle	HEIGIT	V_{2}		TRUE	\% RRROR
(Sq.inch)	(Inches)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu.inch)	V_{1} / V_{2}	Value	V_{1} / V_{2}
6.928	.280		4.17	$.280{ }^{7}$				
5.01	. 355		3.32	. 330				
4.02	. 405		2.48	. 380				
3.02	. 455		1.61	. 430				
2.14	. 505		1.14	. 455				
		1.086			0.500	2.172	1.985	9.5
1.30	. 555		0.78	. 480				
0.82	. 580		0.33	. 505				
0.41	. 605		0.16	. 520				
0.13	. 625		0	. 530				
0	$.630 \quad$.			+				

can be easily calculated from the contour mapping outained from the ayparatus. The oxperimental error in deternining the maximun stress ratio by using a rubber membrane for a triangular and circular section is +5.3 per cent. The volume enclosed by the triangular and circular sections is obtained form Table III (page 28) by graphical construction (Fig. 2). The Volume ratio of the two above sections give the torque ratio of the said sections. The experimental volume ratio is 2.172. The true torque ratio is $1.985 . *$ The experimental crior in determining the volume ratio by using rubber mendianc is + 9.5 per cent.

The error in the experimental results is due to the membrane material and a few drawbacks of the apparatus. nombrane material contributes a greater percentage of error than the apparatus urawbacks. The membrane used in the apparatus is not an ideal menbrane. Rubber nombranc and Polyethylonc datorial* used in the experimont have a certain amount of rigidity, Assuming the nembrane to be a ilate and finding the maximum deflection by plate theory equation for large deflection for a cir-

[^0]cular plate with clamped edges an approximate amount of error involved in the experimental results due to shear is determined. Using the properties (E, P, μ) of the rubber membrane in the plate equation, the maximum deflection obtained is . 30 ". Experimental value for the maximum deflection or elevation $\left(Z_{\text {max }}\right)$ is $.333^{\prime \prime}(T a b l e x)$ and the maximum elevation by membrane theory (Spherical segment) with the same maximum angle at the edge as the experimental membrane is . 3349°. Similarly, using the properties of polyethlene material (.0015" thick) $z_{\text {max }}$ by plate theory equation is $.3985^{\prime \prime}$ and $Z_{\max }$ by experimental analysis. $405^{\prime \prime}(T a b l e X I)$ and $Z_{\text {max }}$ by membrane theory is . $4614^{\prime \prime}$ (see page 42). The above numerical values for $I_{\text {max }}$ (plare theory) clearly show that about -13.6 per cent error and -8.6 per cent error is involved using the polyethyiene sheet and rubber membrane as a plate and comparing with the membrane theory (Spherical Segrent) results. And comparing with experimental values the per cent error was -1.62 and - 8.1 . The experimental error in the results by using rubber membranc and polyethylenc shect, is -.56 per cent and 12.2 per cont in determining $Z_{\max }$ (when compared with menbranc theory results).

To determine the amount of error involved in slope
calculation due to shear in the material, a deflection curve is drawn by using the plate theory equation. The configuration of the experimental clevated membrane and the spherical segment (ideal membrane) is drawn along with the above plate deflection curve (Refer to Fig. 26 and 27). Maximum slope at the sanc point (x, y) on all three curves is taken and compared. The results are given below:
Polyethylene (.0015") Pubber Sem.

From plate theory curve
the maximum slope at $(x, y) \quad .3185 \quad .2302$

From experimental curve tho maximum slope at (x, y) .3151 .260

From membrane theory curve the maximum slope at (x, y)

> If rubber membrane behaved like a plate then the per
cent of error involved in slope measurement is

$$
\frac{.2362-.2637}{.2637} \times 100=-10.4 \%
$$

Experimental error $=.2600-.2367 \times 100=-1.4 \%$.2367

The above numerical analysis clearly indicates that a small error in results is mainly due to membrane material.

I small cror in the results may also be duc to the apparatus. The inaccuracy of the apparatus lics in the improper arrangemont of the recording board. The recording board does not ronain howizontal whon the dopth gathec readings at differont hoights are takon due to the fact that the pivot is fixed at one point permanently. The error in the linear moasurement involved due to the recording board not being horizontal is about l per cent. This produces an errormeous effect in the results of slope.

For an ideal performance of the experiment there should be uniform tension in the membranc covering the test section and the circular section. The membrane was stretched by hand resulting in non-uniform tension in the mombranc.

The values set down in Table $I V$ and Table V incicate the degree of accuracy obtainable with the Membrane Inalogy lpparatus in the determination of volume neasurements in sections by using rubber membrane and polyethylene material. The minimun error, using a rubber membrane, was .62 percent for square section, +2.98 percent for equilateral triangle section, and 12 percent for rectangle section. The minimum error, using a polyethylone material (.0015" thick) was .35 percent for square section, +3.5 percent for equilateral triangle, and -. 41 percent for rectandie
section. The values set down in Table VI and Table $\because 11$ indicate the degrec of accuracy obtainable with the Hembranc landogy pparatus in tho determination of zhe maximum stross ratio in soctions by using rubhor mombrano and Podycthylene matorial. Fhe latst coluna in Tanles VI and VIl show the cror percont due to taking the ratio of inclinations as giving stress ratio. Column 8 in Table Vland Table VII show the error percent due to taking the ratio of maximum slopes as giving the maximum stress ratio. The minimun inclination ratio error was 1.1 percent for square section, -2.13 percent for equilateral triangle section, and -6.7 percent for rectanale section in the case of polyethylene material. Taule VIII and Table $I X$ show the best results obtainad from the apparatus with the rubber membrane and Polyethylene material.

Table X to Table XVII are enclosed in the appendix, which are the experimental results obtained from the apparatus for square, rectangular, and triangular sections.

TABLI: V
EXPERIMENTAL ERROR IN DETERHINING TORQUE RATIO bY MEANS OF
POLYETHYLENE MATERIAL
polyethylene material

EXPERISENTAL ERROR I N DTRERUINING STRESS RATIO

BY MEANS OF ! IUMDHR :UEMBRANE

TABILE VII

EXPERIMFSTAL ERROH IN DETERSIXING STRESG

BY :IRANS OF PULYETIYLBHE MATEPIAL

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SECTION \& $$
\begin{gathered}
2 \\
\text { RADIUS } \\
\text { OF } \\
\text { CIRCLE } \\
\text { (INCH) }
\end{gathered}
$$ \& 3

α \& 4
3 \& 5

$\frac{\alpha}{\beta}$ \& \[
$$
\begin{gathered}
6 \\
\text { SLOPI: } \\
\text { RATIO } \\
\text { TAN } \alpha \\
\hline \text { TAX } B
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
7 \\
\text { TRUE } \\
\text { VALHE } \\
\frac{\tau}{\tau_{\text {Smax }}}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
8 \\
\% \text { ERNOR } \\
\text { IN } \\
\text { TAN } \alpha \\
\hline \text { TAN B }
\end{gathered}
$$
\] \&

\hline \multicolumn{9}{|l|}{SQUARE}

\hline $$
3^{\prime \prime} \times 3{ }^{\prime \prime}
$$ \& 1.5" \& 44.56 \& 34.22 \& 1. 302 \& 1.447 \& 1.350 \& + 7.1% \& - 3.5%

\hline \& 1.511 \& 50.20 \& 42.95 \& 1.168 \& 1.235 \& 1.350 \& -3.5% \& $-13.4{ }^{\circ}$

\hline \multirow[t]{3}{*}{EQUIDATERAL TRIANGLE 4" side} \& \& \& \& \& \& \& \&

\hline \& 1.154 \& 27.4 \& 24.5 \& 1.120 \& 1.139 \& 1.500 \& -24% \& $-25.3{ }^{\circ} \mathrm{j}$

\hline \& 1.154 \& 40.3 \& 27.4 \& 1.472 \& 1.636 \& 1.500 \& + 9% \& - $1.86{ }^{\circ}$

\hline \multicolumn{9}{|l|}{RECTANGLE}

\hline \multirow[t]{2}{*}{$2^{\prime \prime} \times 3$ '} \& 1.20 \& 33.78 \& 25.61 \& 1.319 \& 1.396 \& 1.414 \& -1. 2% \& $+6.7 \%$

\hline \& 1.20 \& 32.62 \& 24.60 \& 1.326 \& 1.396 \& 1.414 \& $+1.2 \%$ \& * 6.2

\hline
\end{tabular}

TABLE VIMI
A COMP'ATATIME STUDY SHOLING EXPERIDEXTAL ERROR IN DETEPMINTAG STRESS RATIO BY :MFANS OF RUBBER MBMBRAYE AND DOLYETHYLENE AATERTAL

A COMPNRATIVE STUDY SHOHING EXPERI:HENAL EQRO? IN DETEPMIAIVG TOROUES BY UEASS OF RUBDER UEMBFANE AND POLYETHYHANE YATERINL

Deterrination Of Error Due To Fact That Jenbrane Usce Was Vot A Theoretical 'fombrane (No Shear)

Consider a circular section of $3^{\prime \prime}$ diameter. Assuming the maximum incliantion at the boundary of the elevated ideal membrane be $\beta=25.18^{\circ}$ (same as in rubber membrane). The maximum elevation of the elevated membrane is given by $R \operatorname{Tan} \frac{\beta}{2}$

$$
\begin{aligned}
& Z_{\text {max }}=R \operatorname{Tan} \frac{3}{2} \\
&=1.5 \times .2233=.33495 \\
& Z_{\text {max }} \text { obtained by experiment is }(.685-.352)=.333
\end{aligned}
$$

$$
\text { Table } x \text {. The difference in the above two values of } z_{m a x}
$$ for the same $\beta=\frac{.333-.33495}{.33495} \times 100=-.56 \%$

From the plate theory with large deflections $Z_{\text {nax }}$ is obtained from the equation (reference 6)

$$
p=\frac{8}{3} \frac{E}{I-\mu} \cdot \frac{t}{R} \frac{\left({ }^{2} \max \right)^{3}}{R^{3}}+\frac{64 D}{R^{3}} \frac{\left({ }^{2} \max \right)}{R}
$$

where

$$
\begin{aligned}
& D=\frac{E t^{3}}{12\left(1-\mu^{2}\right)} \\
& P=.85 \text { p.s.i. } \\
& p=.5 \\
& E=20,0001 b . / s q \cdot \text { incb } \\
& R=1.511 \\
& t=.0085 \text { (Thickness of rubber membrane) }
\end{aligned}
$$

The value of $Z_{\max }$ obtained by plate theory equation is very low because t of the unstretched rubber membrane
was used in the equation. However, in the experiment the rubber membrane was stretched. The thickness of the stretched membrane should be used in the plate equation. Assuming t of the stretched mombrane $=1 / 2 t$ of the unstretched membrane. Nodulus of elasticity in the rubber membrane is not constant so take average $E=6666.6 \mathrm{lbs} . / \mathrm{sq}$. in. in the $Z_{\text {max }}$ calculations. Substituting the above values in plate equation, $Z_{\max }$ obtained is . 3060 .

$$
\begin{aligned}
& Z_{\max }= .33495 \text { (From ideal membrane theory) } \\
& Z_{\max }= .333 \text { (Experimental Value) } \\
& Z_{\max }=.3060 \text { (Fromplate Theory with large de- } \\
& \text { flections) }
\end{aligned}
$$

Experimental error in $Z_{\text {max }}$ (when compared to memorane theory results $=\frac{.333-.3349}{.3349} \times 100=-0.56 \%$

Using Polyethylene Material (.0015" Thick)
Consider a circular section of $3^{\prime \prime}$ diameter. The maximum elevation of an extended ideal membrane is given by $R \operatorname{Tan} \frac{3}{2}$. Assuming (34.22°) the same for the ideal membrane and for the polyethylene material.

$$
\begin{aligned}
Z_{\max } & =R \operatorname{Tan} \frac{3}{2} \\
& =1.5 \times \operatorname{Tan} 17.11=.4614
\end{aligned}
$$

$Z_{\text {max }}$ obtained from the experiment is $(.810-.405)=$. 405 (Table XI). The difference in the above two values of $Z_{\max }$ for the same $=\frac{.405-.4614}{.4614} \times 100=-12.1 \%$ From the plate theory with large deflections $Z_{\text {max }}$ is
obtained from the equation (reference 6)

$$
p=\frac{8}{3} \frac{E}{1-\mu} \cdot \frac{t}{R} \frac{\left(Z_{\max }\right)^{3}}{R^{3}}+\frac{64 \pi)}{13^{3}} \frac{\left(Z_{\max }\right)}{R}
$$

where

$$
D=\frac{E t^{3}}{12\left(1-\mu^{2}\right)}
$$

$$
p=1.00 \text { p.s.i. }
$$

$$
t=\frac{3}{5} \times .0015^{\prime \prime}=.0009 \begin{aligned}
& \text { (Thickness of the Stretched } \\
& \text { Polyethylene Sheet) }
\end{aligned}
$$

$$
R=1.5
$$

$$
E=20,000 \mathrm{lbs} . / \mathrm{sq} . \mathrm{in} .
$$

$$
\mu=.4
$$

$$
z_{\max }=.3985
$$

$Z_{\text {max }}=.4614 \quad$ (By ideal membrane theory)
$Z_{\max }=.405 \quad$ (Experimental Value)
$Z_{\text {max }}=.3985$. (Plate theory for large deflections)
Experimental error in $Z_{\max }=\frac{.405-.4614}{.4614} \times 100=-12.2 \%$
In order to determine the error in slope measurement due to a slight shear in the membrane three deflection curves were drawn. The three curves are drawn from the data obtained from the experiment (Table X and Table XI), plate theory equation, and the ideal membrane theory. They give a relationship between deflection and horizontal axes. An arbitrary point $A(x, y)$ was chosen on the three curves and maximum slope at that point was determined and the results were compared. The graph with results is given in Fig. 26 and Fig. 27.

The experimental apparatus is very simple and can be easily built. The results obtained from the aparatus have an error of about 4% avorage. And the ease or operation with it justifies its use in the membrane analogy.experiments.

The experimental results of this thesis indicato that there was a considerable degrec of error due to the membrane material. The error in the results was also added to by drawbacks in the apparatus. The apparatus can be made more accurate by following the reconmendations Which are based on practical difficulties encountered in performing the experinent and getting the results.

The recording board should be maintained horizontal whenever the readings are taken. A slot of considerable length (about in in. l should be made in tio vertical bars at the pivot, so that the recording board can be moved up and down; and can be fixed by means of a nut. By this arrangenent the board can be maintained horizontal whenover the roadings are takon. The horizontal position of the board is obtained by taking tho support of the depth gauge and with the help of the spirit level.

To develop an approximate magnitude of tension in the membrane see that a network of squares drawn on the unstressed rubber nembrane should deform when. stretched, into double the previous squares. Uniform tonsion may be produced to a small extent by placing the rubber membranc between two overlapping rings similar to wooden over rings employed for embroidery.

The purpose of this project was to construct and demonstrate the use of the apparatus. It was not until after the construction was finished that the shortcomings mentioned above were realized. The two materials uscd for merbranes were arbitrarily selected. It is recommencled that as part of any further development of this apparatus that an investigation be made to optonizc the selection of more appropiate membrane material.

1. Tinoshonho, Stephen P. listory of Strenith of Materials. New York: McGraw-Hill Book Co., Inc., 1953
2. Griffth, A.A. and Taylor, G.I. (a)'The Use of Soap Films in Solving Torsion Problems," Great Dritain Ren and Mem Aeronautical Research Comm (Loncion) Repoz=s and Memoranda v 3, n 333, pp. 920-70, 1917-18, (i, "The Determination of the Torsional Stiffness and Strength of Cylindrical Bars of Any Shape", Great Britain te; and Yem Neronautical Rescarch Comm v 3, n 334, 1917-1s (c) "The Use of Soap Film in solving Torsion Problems," Proceedings Inst of Mech Engrs (London) v 2, pp 755-S09 1917.
3. Quest, H., "Einc experimentelle lösung des Torsionsproblems," Ingenicur Archiv, v 4, 1933, pp 510-20
4. Kopf, F . and Weber, E., "Vorfahren zur Ermittlung des Torsionsbeanspruchung mittels Membranmodell," Verein Deutscher Ingenieure Zeitschrift, v 78, pt 2, 1934.
5. Trayer, G.W. and March, H. H . "The Torsion of Pembers llaving Sections Common in Aircraft Constructions," U.S. 15 th Annual Report National Advisory Committec For Acronautics Nashington: U.S. Govt. Printing Office, 1029
6. Den Martog, J.P. "Circular Plate with Clampod Edacs and Uniform Loading," Alvanced Strength of laterials. New York: NaGraw-hill Book Co., Inc., 1952.
7. Lee, George Hamor. "Deternination of Angle of Twist in Sections, An Introduction to Experimental Strass Analysis. New York: John Wiley and Sons, Inc., 1950.
8. Materials in Design Engincering, New York: Reininold Pubiishing Corp., v 64, no. 5, oct, 1966-67.

APPENDIX

APPENDIX A

TABLE X
DATA TO DETERMINE TIIE VOLUMES OF SQUARE AND CIRCULAR SECTIIONS (RUBBER MEMBRANE)

1	2	3	4	5	6	7	8	9
ARFA OF			AREA OF					
CONTOUR OF		VOLUME	CONTOUR OF		VOLUME			
THE SECTION	HEIGHT	V_{1}	THE CIRCIE	HEICHT	V_{2}		TRUE	\% ERROR
(Sq.inch)	(Inches)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu.inch)	V_{1} / V_{2}	VALUE	$\mathrm{V}_{1} / \mathrm{V}_{2}$
9.00	.345		7.07	$.352 \rightarrow$				
7.59	. 410		6.11	. 402				
6.87	.435		5.36	. 427				
5.68	. 485		4.32	. 477				
4.39	. 535		3.14	.527				
3.24	. 585		2.15	. 577				
		1.689			1.172	1.441	1.432	$+0.628$
2.00	. 635		1.17	. 627				
1.40	. 660		. 73	. 652				
. 87	. 685		. 28	. 675				
. 53	. 700		0	. 685				
. 37	.715							
1.	.727							
\cdots	-	- -	$\therefore \quad \cdots$	**	-	-	--	-

data to ditermine the volumes of square and circular sections (POLyETHylerid material)

1	2	3	4	5	6	7	8	9
AREA OF			AREA OF					
CONTOUR Of:		VOLUME	CONTOUR OF		volume			
TIIE SECTION	HELGHT	V_{1}	THE CIRCLE	HEIGHT	V_{2}		True	\% ERROR
(Sq.inch)	(Inches)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu.inch)	V_{1} / v_{2}	value	V_{1} / V_{2}
9	.395		7.07	. 405				
7.26	. 495		5.79	. 505				
6.31	. 540		4.89	. 555				
4.93	. 620		3.96	. 605				
		2.230			1.551	1.437	1.432	+.35
3.55	. 695		2.55	. 680				
2.14	. 770		1.56	. 730				
1.21	. 820		. 63	. 780				
0.26	. 870		. 24	. 800				
0	. 880		0	. 810				

\qquad

Siress Disityitution Of The Twa Sestions
Squars $3^{\prime \prime} \times 3^{\prime \prime}$
Circle: $\overline{3}$ Diamster
Materin
Po yethylene Shect; Thaknes: $=0.0015$ "
Moxinnsm Angle. At H_{ra} edge ${ }^{\prime}=50 \cdot 20^{\circ}=\alpha$ Stro : Ratio $=1.350$ Dt $\because \because 2 \therefore$ Pctio $=1.168$ Error

$$
=-13 \cdot 4 \%
$$

Figure 14
Membranc Contour Lines of the Square and Circular Sections Obtained from folyethylene vatcrial

Volume Graphs for the wiguaric and the circle
data to determine the volumes of square aid circular sections (POLYETHYLENA MATERIAL)

1	2	3	4	5	6	7	8	9
AREA OF			AREA OF					
CONTOUR OF		Vol. unie	Contour of		Yolurie			
THE SECTION	IIE I GHT	v_{1}	The Circle	HEIGHT	$\because 2$		True	\% ERROR
(Sq.inch)	(Inches)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu.inch)	V_{1} / V_{2}	value	v_{1} / v_{2}
9	0.395		7.07	0.405				
7.07	0.545		5.55	0.555				
5.59	0.645		4.52	0.630				
4.12	0.745		3.12	0.730				
2.92	0.820		1.92	0.805				
		2.859			2.025	1.411	1.432	1.46
2.10	0.870		1.09	0.855				
1.34	0.920		0.53	0.890				
0.63	0.970		0.20	0.910				
0	$1.000+$		0	0.920				

Stress Distribution Of The Two Sections
Equilateral Triangle.. 4" Side
Crete $2.30 S^{\prime \prime D}$ Diameter
Māteriat:
Rubber Membrane; The Kites $=0.009$

\qquad

Figure 17
Volume Graphs for the Equilateral Triangle and the Circle

TABLE XIII
data to deteraine TiE voluils of equilateral triangle and circular sictions
(RUBBER :CLTBRANE)

1	2	3	4	5	6	7	8	9
AREA OF			Ali̇A OF					
CONTOUR Of		volurle	CONTOUR Of:		Voluile			
THE SECTIO:	HEI GUT	v_{1}	THE CIRCle	HeI InT	V_{2}		TRUE	\% ERROR
(Sq.inch)	(Inches)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu.inch)	V_{1} / V_{2}	VALut:	v_{1} / v_{2}
	\uparrow							
6.928	0.330		4.17	. 330				
4.80	0.450		3.55	. 390				
3.64	0.525		2.89	. 440				
2.65	0.600		2.18	. 490				
1.55	0.675		1.56	. 540				
		1.486			0.727	2.044	1.985	+ 2.98
0.81	0.727		0.93	. 590				
0.48	0.750	.	0.57	. 625				
0.15	0.775		0.15	. 650				
0	0.780		0	. 660				

Ctrems Distributier of The Tuo Sections

Equiloteral Triang'e $=4^{\prime \prime S}: d \mathrm{c}$
 Circle : 2.308"Dlameter

Prueinyene Mat.; Thickrom=0.0015
Win, rourn Angle At The Edat of The Strition 10.3

…... Figito | $\quad=1.472$ Eires Fajed
Error

Volume Graphs for the Equilateral Triangle and the Circle

DATA TO DETERSINE THE VOLUMES OF EOUMLATERAI, TTIANGLE NND CIRCULA! SECTIOAS

1	2	3	4	5	6	7	8	9
AREA OF			AREA OF					
Coviour ols		VOLURE	convour or		Volume			
THE SECTION	Mit gilt	V_{1}	THE (:IRChE	HEIGHT	V_{2}		TRU:	\% F!?
(Sq.inch)	(Inches)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu.inch)	V_{1} / V_{2}	VAhue	v_{1} / v_{2}
			- -					
6.928	. 355		4.17	. 375				
5.14	. 420		3.44	. 425				
4.22	. 450		2.86	. 450				
3.10	. 490		1.87	. 500				
2.22	. 520		1.37	. 525				
		. 879			. 470	1.870	1.985	- 5.7
1. 50	. 550		0.77	. 550				
0.81	. 575		0.39	. 565				
0.40	. 595		0.20	. 575				
0.11	. 605		0	. 582				
0	. 609							
	$-$			$+$				

Figure 20
Sembrane Contour Lines of the Equilateral Triangle and Circular:Sections Obtained from Polyethylene Material

TABLE XV
data to meteraiae tie volumes of rucilateral triangle and circular siections
(pOLYETHYLE

1	2	3	4	5	6	7	8	9
AREA OF			AREA OF					
contour of		volueme	contour of		Volume			
The section	iielght	V_{1}	This cincle	Hitigut	V_{2}		True	\% brroli
(Sq.inch)	(Inches)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu.inch)	V_{1} / N_{2}	VALU:	V_{1} / V_{2}
6.928	.355		4.17	.3757				
5.46	. 430		3.08	. 450				
4.29	. 480		2.36	. 500				
3.27	. 530		1.44	. 550				
		1.155			0.562	2.055	1.985	$+3.5$
2.21	. 580		1.00	. 575				
1.29	. 630		0.61	. 600				
0.83	. 655		0.32	. 615				
0.35	. 680		0	. 633				
0.17	. 690							
0	.700			\checkmark			$\stackrel{ }{ }$	

Figure 22
Membrane Contour Lines of the Rectangle and Circular Sections Obtained from lubber membrane

TABLE XVI
data to meteraine the volures of rectangle and circudar sections (RUBBER MEMBRANE)

$\stackrel{1}{\text { AREA OF }}$	2	3	4 AREA OF	5	6	7	8	9
CONTOUR OF		Volume	COSTOUR OF		Volume			
THE SECTION	HEIGHT	V_{1}	THE CIRCLE	HEIGHT	v_{2}		true	\% ERROR
(Sq.inch)	(Inches)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu.inch)	V_{1} / V_{2}	value	V_{1} / V_{2}
	\cdots			\cdots				
6.0	. 390		4.52	. 390				
4.38	. 470		3.92	. 420				
3.27	. 520		2. 52	. 470				
2.11	. 570		1.90	. 510				
		0.834			0.470	1.773	1.443	+ 22.8
1.55	. 595		1.37	. 535				
1.00	. 620		0.81	. 560				
0.45	. 645		0.24	. 585				
0.20	. 655		0	. 595				
0	.662			.				

dATA TO DETERMINE THE VOLUPIES OF RECTANGJE AND CIRCULAR SECTIONS (rolyethylene material)

1	2	3	4	5	6	7	8	9
AREA OF			AREA OF					
CONTOUR OF		Volume	CONTOUR		VOLUME			
THE SECTION	HEIGIIT	V_{1}	THE CIRCLE	HEIGHT	V_{2}		true	\% ERROR
(Sq.inch)	(Inches)	(Cu.inch)	(Sq.inch)	(Inches)	(Cu . inch)	v_{1} / v_{2}	value	$\mathrm{V}_{1} / \mathrm{V}_{2}$
6	. 330		4.52	. 320				
4.88	. 390		3.63	. 380				
3.74	. 440		2.72	. 430				
2.62	. 490		1.76	. 480				
		0.844			0.587	1.4378	1.443	-. 41
1.45	. 540		1.19	. 505				
0.85	. 565		0.66	. 530				
0.22	. 590		0.15	. 555				
0	. 600		0	. 560				

-

A Comparative Study of Defloction Curves (By using Pubber ileminane)
(1) Deflection Curve From Membrane Theory (Spherical Segment With a $Z_{\text {max }}=R \operatorname{Tan} \frac{\beta}{2}$)
(2) Deflection Curve From The Membrane Analogy Apparatus (Table X)
(3) Deflection Curve From Plate Theory (Assuming Rubber Membrane Acts as a. Plate)

A Comparative study ot Uofluetion Curvos (by using Polyethyleno ! torial)

Torauc ?atio Ind Stress Ratio Calculations

Inalytical data for the stress and torque ratios of the threc simple cross sections used in the experimont with their corresponding circles are obtained from the rolarions given in (5). The procedurc to calculate analytically the stress and torque ratio for a triangular section ($4^{\prime \prime}$ sido) and a circle (2.308) is given below.

The maximun stress and torque in a circle is obtainca from the relation

$$
\begin{aligned}
& \frac{\tau_{c}}{R}=\frac{T_{c}}{J}=G \theta \\
& \tau_{c}=\frac{T_{c} \cdot R}{J} \\
& T_{c}=G . \Theta . J
\end{aligned}
$$

where θ is the angle of twist per unit length.
The maximum torsional stress and torque in the triangular section is obtained from the cmpirical relation (5).

$$
\begin{aligned}
\left.T_{s}\right)_{\max } & =\frac{20 T_{5}}{(\text { Side })^{3}} \\
T_{5} & =\frac{\text { G. } \theta \cdot(\text { side })^{4}}{46 \cdot 2}
\end{aligned}
$$

Since the p / S value is the same for both sections because the sane membrane is used, the corrosponding $2 G \theta$, is also same for the both sections.

Torque ratio is given by
$\frac{T_{s}}{T_{c}}=\frac{\text { G. } \theta \cdot(\text { Side })^{4}}{46.2 G . \theta \cdot \mathrm{J}}=\frac{(\text { Side })^{4}}{46.2 \mathrm{~J}}=\frac{4^{4} \times 32}{46.2 \times \pi \times(2.30 .6)^{2}}=1.985$

Maximum stress ratio is given by
$\frac{\left.Y_{5}\right)_{\max }}{\left.Y_{c}\right)_{\max }}=\frac{2 O T}{(\text { Side })^{3} \cdot G \cdot \theta \cdot R}=\frac{20 \cdot(\text { side })^{4} \cdot G \cdot \theta}{46 \cdot 2(\text { side })^{3} \cdot G \cdot \theta \cdot R}$

$$
\begin{aligned}
& =\frac{20 . \text { Side }}{46.2 R}=\frac{20 \times 4}{46.2 \times 1.154} \\
& =1.500
\end{aligned}
$$

Given the torque applied to a triangular section, the angle of twist per unit lengti, θ, can be determinod from the relation given below.

$$
\theta=\frac{1}{2 G A} \int \Upsilon_{s z} \cdot d z=\frac{C}{2 G \cdot A} \int \frac{\delta z}{\delta n} \cdot d s
$$

(7) where $\frac{\delta z}{\delta n}$ is normal slope of the membranc around the boundary. The constant,, is obtaincd from the relation given below.
$\frac{\text { Volume under the extended membrane of the section }}{\text { Maximum slope at the boundary of the section }}=\sigma x$

$$
\text { where } K=\frac{\text { Torque anplied }}{\text { Maximum stress at the boundary of tie section }}
$$

The propertics of the two matcrials are given bolow(s): Rolyethylone Iaterial

Thickness $=0.0015^{\prime \prime}$ (ileasured by micrometer)
Specific gravity $=0.010$
Modulus of Plasticity in tension $=20,000$ to 25,000 p.s.i.
Tensile stress $=1,400$ to 2,000 p.s.i.
Elongation, $\%=125-675$
Shear stress, 1,400 to 1,700 p.s.i.
Poisson ratio $=.4$
Rubber Yembrane
Thickness $=.0085$
Specific gravity $=.23$
Tensile stress $=2,500-3,500$ p.s.i.
Modulus of Elasticity in tension $=20,000$ p.s.i.
Elongation $\%=750-850$
Poisson ratio $=.5$

[^0]: *Sce appendix (page 78)

