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ABSTRACT

The problems of computer system modeling and of error detection in a 

computer 'system are investigated in this research. Probabilistic sequential 

machine modeling of a computer system is proposed by considering input/out- 

put flexibilities on the probabilistic sequential machine theory. With the 

model, a theoretical approach and a practical approach to error detection are 

presented.

In the theoretical approach, a two-state isolated machine, which con­

tains the well-known completely isolated machine as a subset, is constructed, 

and a decomposition method of a probabilistic sequential machine into two- 

state probabilistic sequential machines is studied. Based on the isolated 

machine and the decomposition method, properties of the isolated machine 

(which consists of states more than two), such as input traceability, past 

subsystem activity distribution, and the initial state distribution inde-- 

pendence, etc., are discussed. Traceback properties of■the machine are used 

for error detection.

From distribution of input types to and output channel activities 

from a computer system, the probability of subsystem activities in a steady 

state is determined in the practical approach by an optimization of a non­

linear programming problem. The nonlinear programming problem is formu­

lated with two phases, a calibration and a monitoring of the computer 

system. Next, the most likely subsystem which contains an error is deter­

mined. A probabilistic sequential machine model of a computer system is 

built. The advantages of the practical approach are demonstrated on the 

model which is simulated in a normal computer operation.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

As the range of problems undertaken by digital computer systems 

increases, the task of ensuring that a computer system is operating 

correctly has steadily become more important. The rapid growth of computer 

technology has thrust into prominence: the remarkable advancement of hard­

ware computing capacity and the executive/supervisory software that we refer 

to as computer operating systems. These prominent advancements have re­

sulted in a massive and extremely complex organization of computer systems. 

Thus, with the present trends in computer systems, a heavy emphasis on sta- 

bi1ity/reliabi1ity, maintainability, and availability is prevailing rather 

than on computation capability, speed of computation, memory capacity, and 

speed of input/output processing.

The expanding size and complexity of the computer systems have made it 

increasingly difficult to ensure correct machine operation. Moreover, the 

cost and time for correcting an error in a computer system is multiplying 

exponentially with the system's size and complexity. Therefore, an efficient 

and economical error detection method for large .computer systems is urgently 

needed.

1.2 Description of Computer System

The term "computer system" means a combination of hardware and soft­

ware components that provides a definite service. A computer system provides 

representations for certain data types and information structures, and it 

implements a set of primitive operations on these data types and structures.
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Data and information in the computer system are simply all possible contents 

of the main memory. Selection of a desired component -of these information 

structures is accomplished through indexing or memory addressing by base 

registers. The interpretation of memory words as data types and informa­

tion is performed implicitly by a central processing unit. Data manipula­

tion on selected information (usually addition, subtraction, multiplication, 

division, logical operation of bits-AND, OR, etc., and shift bits) is 

executed within registers of the arithmetic unit. The services provided by 

the computer system are furnished through combinations of hardware and soft­

ware components.

Computer system hardware operates with information, numerical or 

otherwise, represented in digital form. From a viewpoint of the hardware 

structure, rhe computer system can be idea’s iy described as an aggregate of 

two-valued memory devices, functionally connected by logical networks. The 

states of these memory devices undergo discrete changes at certain instants 

of time. Their initial states are set up by software.

The operating system, known as software, is a sequence of instruc­

tions by which a given, specified function is performed in a sophisticated 

manner by the central processing unit. Thus, the computer system works as 

if it is a high-level organism. Conceivably, the internal organization of 

the computer system may be very complicated. The system actually consists 

of many-Individual elements (or subsystems), which are interconnected and 

must run simultaneously.

The structures of a computer system have continued to grow in com­

plexity, size, and diversity. The classical four-box picture of a computer
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system (arithmetic unit, memory, input/output unit, and control unit) is 

certainly an effective organization of components to process information. 

However, multiprogramming, multiprocessing, hierarchies of memories, virtual 

memory, and remote communication to computer systems force the classical four 

box representation of the organization into distinct levels of analysis of 

each component. Each level originates from the abstraction of the levels 

below it. Each higher level does a descriptive job in a simpler way, which 

the lower level could not because of the unnecessary detail that could force 

function looping. A system (at any level) is characterized by a set of com­

ponents (of which certain properties are posited) and a set of ways of com­

bining components to present systems. When the sets are formalized appro­

priately, the behavior of the systems can be determined by the behavior of 

its components and specific modes of the component combination used.

There is a recursive feature to most system descriptions. A system, 

composed of components structured, in a given-way, may be considered a com­

ponent in the construction of yet other systems. There are, of course, some 

primitive components whose properties can not be explained as the resultants 

of a system of the same type. For example, a resistor, which can not be 

•explained by a subcircuit, can be taken as a primitive in hardware, and 

certain instructions in software can not be replaced by other software 

instructions. However, sometimes there are no absolute primitives, and what 

basic element is taken is a matter of convention. For-example, we can 

build logical design systems from many different primitive sets of logical 

operations (AND and NOT, NAND, OR and NOT, etc., in hardware and Execute, 

Test, Set, Erase, Find, Move, Locate, insert. Read, Write and Print, etc., 

in software).
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Table 1.1 Hierachy of Levels of Computer Systems

Level Hardware Software

Major Component
Level

Structure Computer System 
Configuration

System Generation

Component Processors,Memories, 
I/O facilities

Processors,Memories, 
I/O facilities

Programming
Level

Structure Programs,Subprograms, Job Control Language

Component State(Memory Cell), 
Instruction,Operation, 
Control,Interpreter

File Assign,File Mani­
pulation ,Software 
Processor Execution, 
Test and Control

Logical Design’
Level

I

Structure

Component

Major Physical Unit

Module of Subfuncti­
onal Units

Major Task of Programs 
(Structured Programm­
ing)

■

Module of Subtask, 
Control of Subtask, 
Subroutine Groups

Prime Task
Design Level

Structure Switching Circuit, 
Combinational and Se­
quential Circuits

Problem Oriented Prog­
ramming Languages 
FORTRAN,COBOL,Assembly

Component Flip-flop,Reset-set, 
Toggle,Delay,AND,0R, 
NOT,NAND and NOR

Main Program,Subroutin

Primitive
Level

Structure Amplifier,Delay unit. 
Attenuation,Clock, 
Gate,Differentiator,

Flowchart of Instruc­
tion Execution

Component

I

Resistor,Capacitor, 
Inductor,Diode, 
Transistor

Machine Instruction, 
Logical Operation
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The computer system can be considered as a multilevel structure, 

where each level can be analyzed in the same manner. Table 1.1 shows 

several structure levels of the computer system. Each level is characterized 

by a distinct language for representing the system which is constituted 

of components, modes of combination, and laws of behavior. These distinct 

languages reflect special properties of the component types and of the 

way they combine.1

Each level in Table 1.1 actually has two languages or representa­

tions associated with it: an algebraic one and a graphical one. These 

are isomorphic to each other; the same entries, properties, and relations 

are given in both. The lowest level, the primitive level, of the hardware 

in Table 1.1 is a circuit level. The components are R's, L's, C's, voltage 

sources, and nonlinear devices. The behavior of the system is measured in 

terms of voltage, current, and magnetic.flux. These are continuously-vary­

ing quantities associated with various components; therefore, there is con­

tinuous behavior through time. The structure of the circuit level can be 

described symbolically by first writing the relationship which defines each 

of the components (i.e., Ohm's law, Faraday's law, etc.) and then by writ­

ing the equation which defines the interconnection of the components (i.e., 

Kirchhoff's law). We observe circuit behavior by applying an input and 

observing the output. Alternatively, if we solve the equations which 

specify the structure, we obtain expressions which describe the behavior 

explicitly. Actually, even at an abstract level, circuit theory is not 

quite adequate to describe computer system technology.

The next hardware level is the switching circuit. The behavior at 

this level is described by discrete variables. Discrete variables take on 
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only two values, called 0 and 1, + and true and false, or high and low. 

The components perform logical functions: AND, OR, NOT, NAND, etc. The 

laws of Boolean algebra are used to compute the behavior of a system from 

the behavior and properties of its components.

The outputs of combinational circuits are directly related to the input 

at any instant of time. If.the circuit has the ability to hold values over 

a period of time (store information), we have sequential circuits. In a 

symbolic representation of the structure, we can write an expression that 

reflects the structure of the combinational network; the product of a set 

of outputs at time t is a function of the number of inputs at the same 

time t . Boolean equations as an expression no longer reflect the actual 

structure of the combinational circuit but become a model to predict its be­

havior.

A representation of a sequential switching circuit is basically the 

same as that of a combinational circuit, although one needs to add memory 

components, such as a delay element which produces a delayed output at time 

t due to the input at time t-T where t>0

A lower level is concerned with explaining the behavior of a certain 

structure, v/hereas the next higher level takes this lower level as a given 

component. The higher level is concerned not about internal behavior but 

only how components (which are in lower level systems) are combined. To 

express behavior and structure, there are two basic representations of 

systems in the higher level. One is "Register Transfer (RT)" [7] and the 

other is "State System." The components of an RT representation are 

registers and functional transfers between registers. A register is a 
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device that holds a set of bits. The behavior of a system is given by 

the time course of values of these registers. The sys.tem undergoes dis­

crete operations, whereby the values of various registers are combined 

according to some rule and then are stored in another register (thus 

"transferred"). The law of combination may be almost anything, from the 

simple unmodified transfer (A-«-B) to the logical combination (A*-B.AND.C) 

or to the arithmetic (A-«-B+C). A specification of the system behavior is 

a set of expressions (often called productions) which give the conditions 

under which such transfers can be made. The Register-Transfer, expression 

has emerged from informal attempts to create a notation closer to the job 

to be performed. Recently, a formalized Register-Transfer expression 

system [33] has been proposed as a tool for system description.

The second representation is the State-System [82], which is the most 

general representation of a discrete system. In a State-System, the system 

is represented by n abstract states and the state transition rules among 

the abstract states. While the system is in an abstract state, which re­

presents the system performing a function (n is finite or enumerable), 

the next state of the system is determined (and the output associated with 

the state transfer) by a transfer function that takes as arguments the 

current state and the current input.

A digital computer system (hardware as well as software) can be re­

presented as a State-System, but the number of states required is far too 

large to make it useful to do so. However, the State-System becomes a 

useful representation in dealing with various subsystems of the total 
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system and with the abstracted higher level description of the computer 

system. Taking a sequential circuit that controls a line printer as an 

example, the number of states of the printer is small enough to be handled. 

Another example is a small module of a task taken as a subroutine of a 

large programming job could be described with a small number of states by 

the State-System so that the task to be performed becomes very clear.

The entire software column in Table 1.1 can be embedded in the frame 

of the programming level of the hardware column. The components of the pro 

gramming level in the hardware column are a set of memories and a set of 

operations. The operations take various data structures as inputs and 

produce new data structures, which again reside in memories. Thus, the 

behavior of the system is the time pattern of data structures held in its 

memories. The unique feature of this programming level is the representa­

tion it provides for combining components, that is, for specifying what 

operations are to be executed on what data structures. This is the pro­

gramming which consists of a sequence of instructions. Each instruction 

specifies that a given operation (or operations) be executed on a specified 

data structure. In addition to this, a sequence of instruction executions 

"is controlled by a given data structure. Normally, this is done in the 

order in which the instructions are stored in memories, with jumps out of 

the sequence by branch instructions directed by the given data structure. 

This kind of data manipulation has come to play a critical role in decision 

making of Management Science.

A technique to describe the programming description is the utiliza­

tion of the "Decision Table" [38] which is a tabular representation of:

1. Conditions: factors to consider in making a decision.
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2. Actions: Steps to be taken when a certain combination of

conditions exists,

3. ' Rules: Specific combinations of the conditions and the

actions to be taken under these conditions.

Normally, the decision table format is in two matrix forms: condi­

tions (in rows) versus rules (in columns) and actions (in rows) versus rules 

(in columns). When we assign appropriate independent variables as input for 

the conditions, appropriate dependent variables as output for the actions, 

and proper operations on these independent variables to produce dependent 

variables for the rules of the decision table, the description of the decision 

table becomes a set of logical equations (possibly multivalue logic). Most 

of the well known techniques of Boolean algebra may be applicable to these 

logical equations derived from the decision table. "Formal system" [15] is 

becoming important in the design, implementation, and study of programming 

language as well as programming itself. A formal system is an uninterpreted 

calculus or logistic system. It consists of an alphabet, a set of words 

called axioms, and a finite set of relations called rules (or productions) 

of inference. Examples of formal systems are: Peano arithmetic,^ proposi­

tional and predicate calculus, and Post systems.

The computer configuration system described in the highest level of 

Table 1.1 consists of central processors, core memories, tapes, disks,

•j*
Peano's axioms are concerned with the natural number. However, Bertrand 

A. Russell (Introduction to Mathematical Philosophys 1919, London-New York) 
completed Peano's work (Formulaire de Mathematiques 1895-1905) using Frege's 
logicism (Grundlagen der Arithemetik 1884) in the aspect of logicizing of 
mathematics.
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input/output processors, communication lines, printers, tape controllers, 

remote terminals, etc. The system is viewed as processing on three levels: 

medium, information, and organized data. Each component has its own opera­

ting characteristics. All details of the programming level are suppressed, 

although many softwares play key roles in data transactions and functional 

relations between these components. Nevertheless, this level is more 

abstract than the logical level and the programming level of the computer 

system. As the complexity of the computer system increases, the level of 

abstraction also increases. Another indication of the emergence of the 

major component level (system configuration level) lies in the model used 

in most operation research types and simulation techniques in computer 

system studies, such as capacities, total flow rates, bottlenecks, queuing 

problems, and buffer sizes of information flows [3]. We have been mainly 

describing the computer system in the hardware viewpoint which contains non­

hardware elements, or softwares, as the programming level. The level is 

very special, because it means that the importance of software is recognized 

in hardware operations. When the level is focused on and refined in a 

different viewpoint, we can see that another distinct hierachy among softwares 

exists as shown in.the software column Table 1.1. There is practically no 

consensus on the nature of this software system level; this is not surpris­

ing because of the state-of-the-art in programming. A main emphasis here 

is that there are a lot of analogies between the systems of hardware and 

software, and each level (mainly in the hardware column) corresponds to the 

technologies that are available for the analysis and synthesis of the com­

puter systems. The combinational and sequential logics are special highly 

polished technologies.
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1.3 Past and Present Efforts

Methods of error (or fault) detection in hardwa-re have been con­

sidered by Yau and Tang [81], Sellers et al., [641> Roth et al., [58], 

and Su and Cho [6?]. The first two methods are based on the Boolean 

difference for fault detection; the third one defines and applies the 

D-algorithm, which is an extension of Eldred's classical work E171> and 

the the fourth one is an error-locating method using the D-algorithm. All 

four methods are deterministic and require exhaustive searching, and hence, 

they are costly and time consuming when applied to large computer systems.

Hardware failure in a computer system is referred to as a physical 

component failure, such as a transister failure due to its malfunction or 

its life's extinction. In other words, a hardware failure is a temporary 

or permanent change in the component's characteristics that alters its 

function.

Software does not fail. What is often referred to as "software 

failure" is a matter of correctness. Correctness of a software system 

means correctness of its program description with respect to the software 

system's objective as specified by the semantic sentence. Regardless of 

the approach taken to favor correctness of a software system, it is always 

the responsibility of the designer to convince himself of the correctness 

of the system's description.

Two approaches to the correctness of a system have been suggested: 

(1) structured programming [13] and (2) proof of correctness [41]. To 

correct an error, the following debugging techniques are available: post­

mortem dump, snapshot, trace, and traceback [5]- All the techniques 
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are basically operated in a trial and error mode before approaching the 

kernel of an error and, thus, are time-consuming.

Thbse deterministic error detection methods are well established 

techniques for small scale system testing. However, the quantity of the 

input/output to and from a computer system is usually large; thus, the 

total number of test sets which^are combinations of various inputs are 
*

exponentially large. Furthermore, each test sequence of the test sets, 

which is constructed to identify different logical paths in the system, 

is extremely long. Direct application of these deterministic error de­

tection techniques to a large system like a computer system is practically 

prohibitive, therefore, partitioning or segmenting the large system into 

a number of smaller subsystems purely from the structural viewpoint [5^] 

is necessary. Test sets and test sequences for each segmented subsystem 

become smaller and shorter, respectively; so that the error detection tech­

niques are practically applicable.- When applying the error detection to 

each segmented subsystem by performing independent, individual subsystem 

tests, a whole system viewpoint of testing may be lost.

It is desirable to have a method which makes a bridge from a whole 

system testing viewpoint to the individual subsystem tests. In other 

words, could we narrow the area of error in the system by knowing an error 

symptom? The next problem is how to choose a subsystem to be tested for 

an error. One solution is a table for looking up the correlation between 

error symptoms and possible subsystems concerned with the error. To con­

struct the table would require a large amount of error data and correlation 

analyses between errors and subsystems, which have been gathered in 
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a trial and error manner over a long time period. It should be pointed 

out that no such table exists for a brand new system.

It is well known that the past performance history of a system is 

useful for error detection [5J- The past performances of subsystems in 

a system may provide a bridge from the technique of system segmentation 

to the available tfeterministic -error detection methods. Therefore, an 

inexpensive but efficient method for evaluating past subsystem performances 

is desired. To achieve this goal, a statistical modeling and method to 

determine the error containing segment (subsystem) is proposed, instead of 

the trial and error procedure.

In this research, the meaning of the words "application to error 

detection" shall be limited to the past performance evaluation of subsystems 

in a system.

1.k Description of the Research

This research investigates the problem of error detection in large 

computer systems. When the past performance of a system can be determined 

by some method and made available to the system designers/maintenance 

engineers, such information is useful for detecting errors in the system. 

Thus, the past performance determination techniques presented here are directly 

applicable to error detection.

The research consists of the following three parts: (1) the model­

ing of large computer systems, (2) a theoretical approach to error detec­

tion in the model, and (3) a practical approach to error detection in the 

model.
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In modeling, a probabilistic sequential machine S for large com­

puter systems is used. By using this model, a theoretical approach may be 

applied tp a special class of systems whose past behaviors are traceable. 

This traceable property can be used for system diagnosis. In the practical 

approach, the error may be located in a subsystem s in an erroneous system 

S during its operation. The visiting probability distribution of activity 

on all subsystems is determined from the frequencies of the input load dis­

tribution and the activity of its output. The practical approach is more 

powerful than the theoretical one. These two approaches are applicable to 

both the hardv/are and the software of a computer system.

A brief description of the thesis by chapter is given below. Chapter 

II begins with the justification of modeling computer systems by probabilistic 

sequential machines (PSm). A generalized model of PSM is proposed of which 

the input to and the output from the machine are described by a stochastic 

vector and a matrix, rather than a single input symbol and a vector, respec­

tively. This generalized PSM is then used for modeling the structures and 

behaviors of large computer systems. The most basic PSM which has only two 

states is studied in Chapter III. The input traceable machine, a special 

class of the basic PSM whose past inputs are traceable, is defined. When 

using the input traceable property the error in an input-traceable machine 

may be determined by finding a subsystem of the whole system which has been 

most active in the past operations. Decomposability of a large PSM into 

basic PSM's is presented in Chapter IV. It is shown that a (large) PSM which 

is decomposable into basic PSM’s is shown to also be input-traceable if each 

decomposed basic PSM is input traceable. The error detection in an N-state 
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input-traceable PSM is discussed in Chapter V. Since the class of input- 

traceable PSM class is a subset of the set of PSM's, it can only model 

the subset of the set of computer systems. However, the class of input- 

traceable PSM's can be enlarged by approximating the infinite input 

sequence length by a finite one. This class of machines is called k-input- 

traceable PSM's, where k denotes the finite length used in the approxima­

tion. An even more practical technique of error detection based on a mathe­

matical optimization scheme is presented in Chapter VI. This technique can 

be applied to error detection of any generalized PSM, input-traceable or not, 

and hence of any computer system. Finally, concluding remarks and suggested 

future research are included in Chapter VII.
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CHAPTER II

COMPUTER SYSTEM MODELING

2.1 Justification for Modeling Computer Systems by Probabilistic Sequen­

tial Machines

A computer system is an example of a large system composed of many in­

teracting subsystems or modules. Due to the size of the computer system, it 

is essential that module's rules are specified in such a way that module de­

scriptions are independent of the pattern in which they are interconnected to 

form the whole system; each module's behavior must be clear and correctly un­

derstood regardless of the situations in which the module is used. All inter­

actions between modules must be through explicit points of information flow 

and control of task execution by the designer of each module.

If two modules or subsystems of a system are independently designed, 

then the timing of events within one subsystem can only be constrained with 

respect to events in the other subsystem as a result of interaction between 

the two subsystems. So long as no interact ion'takes place, events in two 

subsystems may be processed concurrently and no definite time relationship 

will exist between them. A time relationship between independent actions of 

separate parts of a system makes comprehension of the system's behavior more 

difficult. Concurrent and asynchronous operations in multiprocessing and 

multiprogramming systems with interruption mechanisms are fundamental aspects 

of a computer system.

When we consider the situation of multiprogramming and multiprocessing 

of a computer, the possibility of asynchronous interruption and hardware in­

terlock make execution of hardware nondeterministic; that is, there may be 

many successor states possible for a given state of the system. The hardware 
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facilities for process switching and interrupt processing are usually control­

led by software for interprocess communications, which are implemented by the 

scheduling modules of the operating system. The environment for software exe­

cution consists of the central processing unit on which the software runs, to­

gether with any hardware components other than subsystems which are required 

by the software. The software and hardware must interact as a system in order 

to realize some desired function; certain hardware of the computer system is 

called the host system of the software. The host system may be the central 

processing unit and main/auxi1iary memory hardware.

An operating system is a software system having many software modules 

and appropriate mass storage devices. The software system consists of an editor, 

an interpreter, a command processor, facility inventory controller, scheduler, 

core allocation, job dispatcher, and input/output co-operative controller.

The designers of software and hardware wish to achieve certain goals. 

The goals are expressed in terms of five properties desired of the completed 

software and hardware systems: function, performance, correctness, reliability/ 

stability; and maintainability. Some available techniques to achieve these 

goals are described in Section 1.2, Description of Computer System. For a 

large system, it is very important to provide the last three goals: correct­

ness, reliabi1ity/stabi1ity, and maintainability. Some suggestions for 

achieving these goals have been proposed and have been implemented in large 

systems. Examples are structural hierarchies, mechanisms for protection from 

alien activity, modularity of subsystems/components, portability of system/ 

subsysterns/components which are concerned with changes in the operational en­

vironment, adaptability of system/subsystems/components which is also concern­

ed with changes in the logical structure of the system, and testinq/diagnosis. 

Although the designers are working on these considerations and very careful 
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design processes, attaining the goals is almost impossible. The reasons for 

failure are the large size and complexity of a computer system. For example, 

problems are created by poor communication between designers and engineers, 

logical errors in interfacing subsystems, logical loopholes in parallel multi­

activities of system performance and undefined boundaries of system definitions, 

etc.

Subsystem testing, system integration testing, diagnosing of system 

functions, and system monitoring are currently evoking a great deal of interest 

in the digital computer field, and a number of significant advances have been 

made. Noteworthy advances are the D-algorithm [58] in hardware and the work 

of Vienna's group who were able to demonstrate an error in an IBM PL/1 Com­

piler by formal methods [30] in software.

When engineers and programmers commence testing, diagnosing, and mon­

itoring of the system, they should be reminded that these actions can never 

show the absence of errors but only the presence of errors. Testing is demon­

strating the presence of an error, diagnosing is identifying what kind of error 

it is and where it occurred, and monitoring is collecting errors during the 

system's normal operation. We shall subject ourselves to the monitoring and 

diagnosing of the system.

The system's normal operation is a steady-state behavior in daily op­

erations. Northouse and Fu [48] indicate that dynamic scheduling of large 

computer systems leads to a steady state of the system. The performance of a 

system in a steady state is some reasonable function of the input (more pre­

cisely the past input as well as the present input), thus the change in the 

system's performance due to the present input is predictable. For example, 

if the input changes from jobs of one type to jobs of a slightly different 

type, then there may be a little unpredictable behavior until the system 
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settles down to another steady state which is a function of the new job.

A set of inputs belonging to a job type always requires an expected 

variety and degree of computer services, but a set of inputs in another job 

type also asks the other expected variety and degree of services. These vari­

eties and degrees of required services for each job type can be described by 

probabilities of the system's function executions since we seldom, if ever, 

know the exact sequence of jobs or requested services, which are submitted to 

a computer system. Furthermore, we do not know the exact characteristics of 

the jobs or the requested services. Ordinarily, the most we know (or can esti­

mate) is the probability distribution of such quantities as classifications of 

the job type and its resource demands on the system.

The system is in a steady state while processing inputs of one job 

type. This operation of the system can be regarded as a stochastic process, 

which is a family of random variables in time. A stochastic process can also 

be considered as a time series of the mixed variables {x^} consisting of job 

type inputs, asynchronous interruptions and interlocks of hardware resources 

caused by input/output processing, which changes the execution course of.func­

tion sequences. Since {x^} is a sequence of discrete random variables, there 

must be a probability distribution assigned to the sequence. If an appropriate 

sampling time to measure the system's executing-functions is chosen, the 

probability that the system shall perform a function b at the next sampling 

time, depends only on the executing function a at the present sampling time, 

or

Ptxt-H = b|xt = a- xt-l * al- Xt-2 ■ V---’ = P{xt+1 ■ b|xt * a}

where a^a^,*** are the other system functions.
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It may be said that the evolution of the system, given the present time 

(that is xt = a) is independent of the previous states assumed. This stochastic 

process is a Markov chain. The other steady state caused by inputs from the 

other job type can be described with another Markov chain. A set of Markov 

chains, which can be distinguished by each job type (or input symbols in the 

terms of probabilistic sequential machines), is a probabilistic sequential ma­

chine. Because this stochastic property is basic to an operating system, we 

should expect that it will also show up with some acceptable precision in a 

logical model using a probabilistic sequential machine.

Next, suppose that input types are mixed. When the mixing ratio is 

known, system functions performed for the given inputs can be predicted 

probabilistically by combining the probabilities of Markov chains associated 

with each job type in the inputs. Reversely, when the mixing ratio of input 

types is unknown, the unknown ratio could be identified by comparing collected 

statistics of performed system outputs with the probabi1ities of Markov chains. 

In these aspects, system monitoring is necessary.

In order to monitor a computer system, we need to know the system's 

structure and organization; most systems are sufficiently complex that any 

useful model aids in the understanding of the system in some precise aspects 

but not in detail. A complete, detailed description of the system is gen­

erally not useful, since it contains a large amount of unnecessary information 

and does not explicitly exhibit the relationships between basic system func­

tions. A desirable model is an abstraction containing only the significant 

functions and relations to satisfy a particular purpose. Graphical represen­

tation of a computer system may provide a useful tool for abstracting the 

system.
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2.2 Graphical Representation of a Computer System

One of the simplest representations of a computer system is a direct­

ed graph, which basically shows function sequence and information flow. Gen- 

erally, some of the sequence and flow details have been suppressed, and some 

additional information which may help to understand the system has been added. 

A directed graph is a set of nodes and directed arcs (sometimes called edges). 

Each arc in the gYaph originates at a node and terminates at a node (possibly, 

the same node). More than one arc may originate or terminate at a single node.

In modeling with a directed graph, the arcs represent the paths of 

possible function sequence performed by the system (or by the subsystem). The 

nodes represent individual functions of the system; input to a node (or a 

function) and output from the node (or generated from the function) are attach­

ed along with the node or a path associated with the function sequence. Branch 

points are represented by nodes with more than one arc originating at the node. 

Additional information may be associated with the node and arcs. For example, 

the probabi1ity that function sequence exists from a branch point along a 

given arc is often associated with the arc of a directed graph.

Ramamoorthy [53] developed an algorithm based on the connectivity ma­

trix derived from a direct graph. By his generating functions of the direct 

graph, he pointed out a direct analog between software and discrete electrical 

circuits, which are characterized by entry and exit points in software and 

sources and sinks in hardware. The connectivity matrix can be explained by 

the following example. Figure 2.1 shows a directed graph (which is omitted 

information flow).

The connectivity matrix of the graph is shown in Figure 2.2. In par­

ticular, the arc from node i to node j describes the following functional re­

lation. After performing the function i and with certain output generated by



22

Figure 2.1 A Directed Graph

the function i, sequential control of the system function leaves node i and en­

ters node j as the next function to execute. The input information to node j 

is the output from node i. Each row of the matrix in Figure 2.2 represents a 

possible transfer of function. For example, the third row shows that.node 3 

is directly connected to nodes 4, 6, and 7 by displaying the I's in the third 

row. The 0's in the row show no direct connection from node 3 to the others. 

When a node is a branch point, indicating the directed connection to others 

(more than one node), which functional branch is selected next is, in the most 

cases, dependent on the input to. the system and on the past history of the 

function's sequence. This property is known as reproducible system behavior;
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1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 0 1 0 1 0 0 0 0

' 3 0 0 0 1 0 1 1 0

4 0 0 0 0 1 0 0 0

5 0 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0 1

7 0 * 0 .0 . 0 0 0 0 1

8 0 0 0 0 . 0 0 0 0

Figure 2.2 The 1Connectivity Matrix of a 1)i rec ted Graph

it is called a determinacy property. Dennis [12] presented an important result: 

if interactions between subsystems obey certain natural conditions, then deter- 

minacy of the subsystem guarantees determinacy of the whole system using Petri 

net [32], which is another directed graph. However, when a set of inputs is ap­

plied to the system end t!;s order of the individual input in the set is unknown, 

the behavior of function sequence at a branch point at a particular moment cannot 

be predicted deterministically but can be predicted probabilistically, if differ­

ent job type categories and the mixing ratio of them in the set are known. These 

probabilities of function sequence transfers at branch points can be found and 

be inserted in the entries of the connectivity matrix of a directed graph. Thus, 

the connectivity matrix becomes a probabilistic transfer table of the system's 

functional sequence. It is pointed out that asynchronous interruption in a 

computer system causes the execution of system components in a nondeterministic 

order during a short time period, but in an integrated long time period the 

system behavior is in a steady state. From the determinacy property of the sys­

tem and the probability due to the unknown order of original inputs, we have a 

better understanding of the relationship between the nondeterministic behavior 

and the steady-state behavior of the system.
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A set of inputs belonging to a job type category always provides same 

probabilistic transfer of function sequence at branch points, but a set of inputs 

in anotherjob type category also provides the other probabilitic transfer table. 

In this situation, a computer system could be considered as a probabilistic se­

quential machine. As mentioned previously, outputs are produced from the nodes 

in the system-directed graph; therefore, most outputs of systems are functions 

of the states (represented by the nodes) of the probabilistic sequential machine. 

Specifically, the probabilistic sequential machine is a Moore type. Before 

building a model of the probabilistic sequential machine and drawing a graphical 

representation of a computer system, a real system analysis is necessary to focus 

attention on a particular system problem. In the analysis, test sets of input, 

which cover a wide range of a system's behavior, are essential for the model 

and the graphical representation.

In order to determine an economical and efficient test data set for diag­

nosis, a method is needed that will succinctly expose the complex interrelations 

between the flow of program control and the flow of data during that program's 

execution. Desirable test data is short and examines many diagnostic items 

simultaneously. Of special importance is the isolation of program segments in 

order to reach any one segment or data definition from any other segment or 

data definition. It is within such segments that we hope to identify the input 

to and the output from the computer system. A convenient method needs a simple 

but effective means of understanding, visualizing, and analyzing the test pro­

blem associated with the system diagnostics. The graphic representation can 

simplify the understanding of a large logical system's operation and can assist 

system analysts in handling unforeseen and unexpected problems.

Nodes in the graph represent functional elements. Directed arcs con­

necting two nodes represent lines of data transfer (or signal propagation) 
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and/or lines of function transition. In particular, the arc from node i to 

node j describes the functional relationship as the arc from node i enters 

node j like a passing of a baton. As is pointed out previously in Section 1.2 

the computer system can be considered a multilevel structure, where each level 

can be analyzed in the same manner. Since the graphic representation is valid 

whether the node represents a single element,.a logical building block or a 

complex functional module, analysis and techniques used in computer diagnosis 

are heavily dependent upon the level with which we are working. Therefore, 

to develop an efficient and economical diagnostic test set depends on the 

analyses and manipulations of a graphical level which describes the system's 

organization and performance. A higher level graphical representation could 

simplify the understanding of the operation of a large logical system.

A generalized approach to provide a structural graphic representation 

and diagnostic test sets, is proposed by C. V. kamamoorthy [5^j as follows:

(a) Structural representation of the system at appropriate level.

(b) Partitioning or segmenting the system into a number of smaller 

subsystems purely from the structural description.

(c) Strategic location of test point for purposes of subsystem seg­

mentation, isolation, injection and/or monitoring of data during 

diagnostic tests.

(d) Sequences in which test must be performed for error (fault) de­

tection and/or location.

(e) Determination of functional hard-core of the system.

The choice of a complex system level to consider depends primarily on 

the characteristics that we wish to study. Proper representation must mask 

out those details which are not pertinent to studying the problem at hand.



26

For diagnosis, we must look at the computer system from two distinct viewpoints 

the structural viewpoint and the behavioral viewpoint (or function control and 

information flow viewpoint and the stimulus response viewpoint, respectively). 

The behavioral aspects like input/output relationships can be modeled by a 

sequential machine. When a system has a large number of responsive stimuli as 

input and has many variant responses as output, we become lost in a maze when 

considering the whole system in detail. For this reason, it is better to study 

the structure of the interconnections and the flow of information first and 

then derive valuable information before we use the behavioral description for 

devising the diagnostic test. If only the primary (externally controllable) 

inputs and observable (externally available) outputsare used for diagnosis of 

the computer system, the total number of test sequence will be very large and 

resolution of the error locating (fault) becomes low. Thus, it is desirable 

to break up a large system into small subsystems which reduce the length of 

test sequence as well as the average test time and which will also improve 

the resolution.

A procedure for diagnostic system treatment based on graphical repre­

sentation is as follows:

(a) A structure graph which represents a system, by flows of function 

control and information in the system, is needed.

(b) Identification of externally controllable inputs and externally 

observable outputs of the system must be determined.

(c) The interrelationship between the input and the output must be 

established as the behavioral viewpoint of the system.

(d) When the numbers of the inputs and the outputs are very large, 

the large system must be broken into small subsystems.

(e) Then, the input and output to/from a subsystem must be identified,
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and the interrelationships between these subsystems should be 

clearly determined.

Since the computer system is represented in a multilevel structure re­

cursively, Steps (d) and (e) may be repeated as many, times as needed for test 

diagnosis.

2.3 Sequential Machine From a System Viewpoint

From a broad engineering viewpoint a sequential machine (and automata 

theory) can be considered as a branch of system theory that is concerned with 

the dynamic behavior of discrete parameter information systems. As such, it 

differs from switching theory in that its main objective is to model the macro­

scopic behavior of a system rather than to describe the microscopic details 

of the system's construction from such basic logic elements as AND gates, OR 

gates, and flip-flops.

System theory is based on the assumption that the external behavior of 

any physical device can be described by a suitable mathematical model, which 

identifies all of the critical features that influence the device's operation. 

The resulting mathematical model is called a system. Because many seemingly 

unrelated devices can be represented by essentially the same model, system 

theory provides a unified treatment of the mathematical techniques that can 

be used to investigate the dynamic behavior of these models.

The behavior of any system can be represented in terms of mathematical 

relations between three sets of variables, which describe the input, the out­

put, and the state of the system. The input set represents those external 

quantities that can be applied to the system to produce a change in the sys­

tem's behavior; the output set represents the possible, observable behavior 

of the system in response to these inputs. One of the basic characteristics 
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of any system is that its current output is a function not only of the present 

input but also of the past inputs and outputs. Because of this, we can think 

of a system as possessing a "memory", which stores information about the past 

behavior of the system. The state set, the third set of variables, is used to 

represent the amount of information stored by the system.

The response of a system to a given input can be represented by a set 

of equations that describe the functional relationships between a set of inde­

pendent and a set of dependent variables. In many systems, these functions are 

described in terms of integral-differential equations, and of the variables 

taking on continuous values.

In a sequential machine (and automata theory), however, we are interest 

ed in a different class of systems. The systems are characterized by the fact 

that all of the variables can assume only discrete values. For example, one 

variable might be allowed to take only the value 0 or 1; whereas, another 

variable might take the value a,b, or c. Systems of this type are referred
/

to as discrete-parameter systems.

As would be expected, the functions that describe the behavior of dis­

crete parameter systems can no longer be represented by integral-differential 

equations. Fortunately, there is a branch of mathematics, referred to as ab­

stract algebra, that provides a source of mathematical techniques that can be 

used to describe the functional relationships that characterize the operation 

of discrete-parameter systems.

The basic system model that we shall use can be thought of as a black 

box with a set of input and output terminals that can receive and discharge 

information, respectively. The black box is assumed to be constructed from 

storage elements and combinational logic elements. The actual details of 

internal structure are not available, and the only interest we have is in the 

resultant dynamic properties of the system that affect the way in which it 
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processes information.

Because of the storage elements, the present output depends on the 

history of the system. The following general representation is used to describe 

systems of this type. The input to the system is represented as a sequence of 

symbols ,...,x^,..., where is the first symbol, is the second symbol, 

and x^ is the kth symbol. The value of a given symbol can be specified by 

identifying it as*a particular value from a set X of all possible input sym­

bols. For example, in a given system, X might consist of the set {0,1,2}. 

Thus, one possible input sequence might be 0,1,1,0,1,2,0,..., where x^ = 0, 

x^l,..., etc.

Inside the black box, there are storage elements that can remember past 

history of the input and response of the system. The contents of these storage 

elements at a given observation determine the state of the system. Because 

the systeiu's input and output can take on only discrete values, the parameter 

representing the memory of the system can also be represented by a variable 

that can take on only discrete values. The state of the system at the ith 

observation is represented by the variable s., and it is assumed that s. can 

take on any one of the values that belong to the set S of alj possible states 

of the system. Because the state of the system represents the memory of the 

events that have previously occurred, it is possible to develop an expression 

that relates the value that the state variable will have at the next observa­

tion to the present value of the state variable and the value of the present 

input symbol. When an output is generated, its value will depend on the sys­

tem's present input and state (or on only the present state of the system 

which will be explained later).

One representative class of discrete-parameter systems are digital 

networks, which are constructed from standard logic elements such as AND, OR, 
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NOT, or Exclusive OR circuits and storage elements such as flip-flops and de­

lays.

Another example of discrete-parameter systems is an information trans­

mission system, which consists of a sequence of information processing blocks; 

such as an information source generator, an encoder which accepts a sequence 

of input symbols and which generates an output, sequence to transmit through 

a particular channel in which usually unavoidable noise is superposed and a 

decoder which reconstructs the original input sequence from the received out­

put sequence, of the transmission channel. Note: the decoder can make use of 

both present and past received symbols. Another example of discrete parameter 

systems is the neural network. McCulloch-Pitts "cells" or "neurons" are 

models for certain aspects of brain function. The models are interconnecting 

cells, which are a very simple, two-state, sequential machine. Once we un­

derstand perfectly each simple part and how it interacts with the others, we 

have a chance of understanding the network as a whole or as a system.

A final example of a discrete-parameter system is a digital computer, 

which provides other rich sources of sequential machine problems (and auto­

mata theory). For instance, the problems of determining the theoretical 

capabilities of a computer, the programming language translation, man-machine 

communication, etc. exist.

A deterministic sequential machine and a probabilistic sequential ma­

chine are described in detail in the following two sections.

2.k Deterministic Sequential Machine

We are familiar the black box representation1 of the dynamic behavior 

of discrete systems and normally have no detailed description of the system's 

internal structures with which to work. The internal behavior is expressed 
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in terms of a set of possible states that the system might enter, while the 

number of elements in this state set provide a measure of the amount of infor­

mation storage presented in the system.

The possible inputs to the system are assumed to be sequences of 

symbols in a finite set of input symbols, and the resulting output are sequences 

of symbols selected from a set of output symbols. Any black box that produces 

an output symbol whenever an input symbol is applied and that satisfies the 

above mentioned properties is called a deterministic sequential machine (DSM).

When we are studying DSM characteristics, the input set X, the output 

set Y, the state set S, and the relationships between these sets are of fun­

damental importance. Sets X and Y are external to the DSM and can be defined 

by direct observation. However, the internal structure of the machine is 

generally not available for direct observation. Thus, the set S is not easily 

found. The selection of a set of states for a given machine is not a unique 

process; it is not a serious limitation to describe the general input-output 

behavior of the machine rather than its actual construction. Methods to com­

pare different state sets for a given DSM have been discussed by many re­

searchers. A state set which has the minimum number of states is useful to 

describe the DSM for practical, as well as theoretical reasons. Such a de­

scription can be found in books by Hu [3^1> Booth [ 8] and Ginsburg [22].

Definition 2.1

A DSM is a five-tuple M = (S,X,Y,6,X) where

5 is a nonempty set of states.

X is a finite set of input symbols.

Y is a finite set of output symbols.

6 is a mapping from S*X to S called the next state function.
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X is a mapping from S*X to Y called the output function.

A DSM in which the state set S contains only a finite number of element 

states is<cal led a deterministic finite state machine. The machine thus de­

fined is a Mealy machine. A modification of this definition, mapping X from 

S to Y, is called a Moore machine.

Three techniques that have come into common usage to present the 

analytical properties of a DSM are the transition table, the transition direct­

ed graph, and the transition matrices. A DSM is defined when each technique 

properly formats the input, output, and state of the DSM.

The transition table representation of a DSM displays the properties 

of the next state and output mapping in tabular form. The columns of the 

table correspond to input symbols, and the rows correspond to states of the 

machine. The entry found at the intersection of the kth row and the jth column 

is 6(x^,s^/X(x^,Sj). . For a Moore machine, the output function in any row in 

the transition table is independent of the column, since X(Sj) has only one 

argument s. See Figure 2.3 for illustrations of transition tables.

A Mealy machine is equivalent in machine behavior to a Moore machine

where

S = {s,s2,s^},X={0,l}

Y = {a,b,c}

(b) A Moore Machine 

where

S = {s1,s2,s },X={O,1}

Y = {a,b}
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= 6(0,Sj) ,s2 = 6(1 .s^

S] = 6(0,s2)= 6(1,s2) 

s'^ = 6(0,s^) ,s1 = 6(1 ,s^)

a = X(0,S|),■ b = X(1,Sj)

b = X(0,s^), c = X(1,s2)

c = X(0,s^), a = X(1 ,s^)

Figure 2.3 Illustrations

5^ = 6(0,5^ ,5^ = 6(1,5^ 

s^ = 6(0,s2),s1 = 6(1,s2) 

s2 = 6(0,s^),s1 = 6(1,5^)

a = X(s])

b = X(s2)

a = Xts^)

of Transition Tables

A transition directed graph provides a graphical representation of the 

operation of a DSM. Each diagram consists of a set of vertices labeled to 

correspond to the states of the machine. For each ordered pair of states s. 

an<j s. (not necessarily distinct), a directed edge connects vertex s. to s , 

if and only if there exists an input symbol x^cX such that 6(x^,s.) = s.. 

When a directed edge connects s. to s. applying the input x, to the machine, 
1 J k

the edge is labeled as x^/X(x^,s.). Thus, the vertices of the transition 

graph correspond to the present state of the machine; the label on the edge 

indicates the present input and the present output. The arrowhead on each 

edge indicates the next state of the machine. Figure 2.4 is the transition 

directed graph that corresponds to the transition table in Figure 2.3(a).
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If the machine is a Moore machine, the output mapping depends only up­

on the present state of the machine, and this property is used to simplify the 

transition directed graph. The output is usually indicated by including it in 

the labeling of the vertex. A transition directed graph provides easy under­

standing of the operation of a given DSM. In particular, abstract concepts 

associated with the'DSM theory may become simple, visual interpretations of 

the DSM. However., as the number of states increases, it becomes difficult to 

present the transition directed graph of a machine in a compact manner. It 

is also difficult to use the information contained in one of these graphs to 

carry out computations on a digital computer. To overcome some of these pro­

blems, a transition matrix is useful.

A transition matrix, which has p rows and p columns, is an array of 

symbols, denoted input/present output. The rows correspond to the present 

state, and the columns correspond to the ne^t state u"f the machine. The entry 

E.. at the intersection of the ith row and the jth column indicates which 
। J

input symbol will take the machine from state s. to state s^ as well as which 

output symbol produced by the machine will correspond to this transition.

Figure 2.5 is the transition matrix corresponding to the transition table in 

Figure 2.3(a).

S1 s2 s3

s1 / — l/b 0/a\

M = sJ 0/b — 1/c I (2.1)

s^ ^1/a ----- O/c/

Figure 2.5 Typical Transition Matrix

Another class of machines exists in which the characteristics of the next stat 

mapping and output mapping can be described only in a probabilistic rather
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than a deterministic manner. Examples of each machines are those constructed 

from unreliable components or those in which internal,noise sources are pre­

sent. Machines of this type, which are called "probabilistic sequential ma­

chines", are described in the following section.

2.5 Probabilistic (Stochastic) Sequential Machine

We have been dealing with deterministic systems. Each sequence is well 

defined, and the behavior of any system is described exactly by the properties 

of its state transition directed graph. However, there are many systems in 

which these processes cannot be defined in a deterministic manner, and it is 

necessary to use statistical concepts to describe the system's behaviors. 

Techniques for analyzing the behaviors of continuous systems excited by random 

processes are well known. But when one attempts to analyze the behavior of 

the discrete parameter systems, such as found in a. probahi1istic sequential 

machine (PSM), it is-conceivable that many of the standard techniques develop­

ed for the analysis of continuous systems are not directly applicable to dis­

crete systems. Therefore, it is necessary to study some of the basic proper­

ties of the discrete random processes.

When we discussed the properties of a deterministic sequential machine, 

•we assumed interest only in the response of the machine to determine sequences. 

Also, we assumed that the mappings 6(XxS) and X(XxS) uniquely defined the 

next state and present output of the machine. These assumptions are relaxed 

in that input sequences are either wholly or partially probabilistic and in 

that the mappings 6 and X are defined in a probabilistic manner due to a ran­

dom property of the input sequences.

We start with an example of Markov chains in order to describe a PSM. 

Consider a physical system in motion. Let the various positions (states) cf
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the system be denoted by 0,1,2,3,..., and let p.j be the probability of the 

system's transition from the state i at time m to the state j at time m+r 

(for any m); this is called an r-step transition probability. The matrix 

p = (Pjj^) is called a stochastic matrix of the system. A sequence of various 

states of the system, {s^,} for k = 0,1,2  is called a Markov, chain if, 

for every finite collection of integers Sl^<Sl^<.; .<£r<£, where £ is the length 

of the sequence. In other words, after £ moments of a unit of time, we have

Pr{s£.ls£-r,s£-r+r •* ‘,s£-l} Pr{s£ls£-1}* (2.2)

Let s0 and s„ . be the ith and the jth 
£ £-1

P (s Js. . } = P. . (£) 
r £1 £-1 । J

If P.j(£) !s independent of £ for i,j,

For a homogeneous Markov chain, let us

MV-ilVi ‘ n ■ pij

and quite generally,

P {se. = jls = 1} = p.^
r £+r J1 £ rij

states, respectively, then

for i,j= 0,1,2,... (2.3)

we say that the chain is homogeneous.

denote

(2.4)

for r = 1,2,... (2.5)

The probabilities (2.5) can be expressed in terms of (2.4), as follows:

p'j’ = J PrisJl+l " hl’l " 1}Pri5l« * 6 'l}

• •••F'r{\+r " Ji’t+r-l " 'n-l* 

= 1 P; j P: i = pi j
"1 '1'2 n-lJ

(2.6)

for the sum on i. , i i ,12 n-1
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we have, from properties of probability,

Pjo anc* y P!r> - i 
IJ

for r = 1,2,... (2.7)

Suppose the initial state of the system is the ith state, the probability

of the system being in the jth state is after one unit of time where

j = 0,1,2 i,..., in a matrix form,

the ith
/ p00 P01 P02 p03 ***

(0,0,...,1,0,...)
' p10 p11 P12 p13

( p20 P21 P22 p23

\ • e a • • a a a a a

= (PIO-Pii......... pii-->-

(2.8)

When the number of states is finite, the system becomes a finite Markov chain. 

Feller [151 applied his tlieory of recurrent events to Markov chains and de­

veloped a simple and more elegant theory, which made no distinction between 

finite and infinite chains. We shall 1imit'ourselves to a finite state system. 

Relaxing the DSM assumptions mentioned previously (namely the introduction of 

random inputs to discrete parameter systems), the next input symbol is un­

certain. Thus, the appearance of a specific symbol x.cX is described with a 

probability p., where X is a finite set of input symbols. Using the example 

in Figure 2.5, let p^ and p^ be a set a of the appearance probabilities of 

input symbols 0 and 1, respectively. The state transition becomes

(
o Pj p0 \ /0 0 1 \ / 01 ° \
pQ 0 Pj j = p0 I 1 0 0 j + pj I 0 0 1 j (2.9)

P^O Pg / \ 0 0 1 / \ 1 0 0 /

I I
If v/e introduce the other set denoted by a (J of probabilities and Pp the
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transition matrix is

(
0 pj

P0 °

p] 0

The probabilities of the output symbols are

/° 0 pQ\ /0 p1

M(a/a) = 0 0 0 I, M(b/a) = I p0 0

\p1 o oy \0 0

/° ° P0\ /° P1

M(a/g) = 0 0 0 , M(b/g) = Pq 0
\ p. 0 0 / ^00

Example:

Consider a DSN (S,X,Y,6,X) where

S «’ {5^82}, X = {0,l,2,3),Y = {a,b}

M and A in matrix form augmented by the input symbol are

H(0) = (J °), M(1) - (° '0), M(2) - (] °j and M(3) = (° j),

A(o) - (“ °), X(l) - (° b, X(2) - (J ?) and X(3) -(„?).
0 a • a 0 b 0 Ob

Two sets of probabilities of random input are introduced

z1 1 - lx , I 1 - 1 1 \Pa " (2- V °’ T’ and Pb = (6- °- 2‘ 31 •

The constructed PSM = (S,X,Y,{M(x)},A), where xeX is as follows:



39

S = {sj.s^,

X =

X = {a,b},

H(a) -l(^) J) +0(] =) +{(J ]) ,

KU) -I'i?’ +°(rJ).4(! 0> 4(0 1> •

then

/ 1 1\ 
A(a/a) =| 2 4 

\1 
\4 2/

A Mealy type probabilistic sequential machine is a quadruple PSM = 

(S,X,Y,{M(y/x)}) where

S is a nonempty set of states.

X is a finite set of input symbols.

Y is a finite set of output symbols.

finite set containing |X|x|Y| square matrices of order

A(b/a) =

We shall define a probabilistic sequential machine formally as follows.

Definition 2.2 * S

{M(y|x)} is a

|s| such that (y|x)>0 for al 1 and j, and
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Is!'

S is a nonempty set of states.

X is a finite set of input symbols.

2 1 m..(y|x) = 1
yeY j=l IJ 

where M(y|x) = [m.j(y|x)],

where the symbol |s| denotes "the number of elements" in the set S.

Definition 2.3

A Moore type probabilistic sequential machine is a five-tuple PSM = 

(S,X,Y,{M(x)},A) where

S is a nonempty set of states.

X is a finite set of input symbols.

Y is a finite set of output symbols.

{M(x)} is a finite set containing |x| square stochastic matrices of 

order |S|.

A is a deterministic function from S into Y_.

From the preceding discussion, we can say that the DSM is a special case of the 

PSM. In other words, the PSM is a generalized machine of the DSM, in the sense 

of machine behavior.

The PSM can be generalized by imposing random inputs and by introducing 

a transfer matrix, state versus item of output. This generalized machine is 

described in the next section.

2.6 Definition of a Generalized Probabilistic Sequential Machine 

Definition 2.4

A generalized probabilistic sequential machine (GPSM) is a six-tuple 

GPSM = (S,X,Y,{M(x)},<j>,T), where S
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Y is a finite set of output symbols.

{M(x)} is a finite set containing jx| square stochastic matrices of 

order |s|.

<t> is a distribution of input symbols.

T is a transfer matrix of states versus output symbols.

A PSM imposed with random inputs is just another PSH. Without loss of 

generality, the two symbol-two state PSM expounds this property as follows:

(
1 1

P11 P21

P21 P22

where V pk. = 1, pk.>0 for all i and k.
j U ij-

Suppose a specified random of inputs are given by it = (77^,11^) where TrQ+Tr| 1

and 7Tq, it^>0. Thus

(
0 0 x / ' 1 1P11 P12 \ / P11 P12

0 0 + ’1 1 1
P21 P22 / \ P21 P22

v v k kwhere £ ), = an^ ir. p. .>0 for k = 0,1 and i,j=1,2.
k j k IJ k 'J

However, when the imposed randomness or a distribution of input probability is 

unknown in machine operation and when we need to know the distribution by some 

approximation, a model using this generalized machine is helpful. A ISrge 

logical system described in Chapters V and VI is modeled by GPSM.

2.7 A Model Used Generalized Probabilistic Sequential Machine

We now focus our attention on the central problem of system modeling.

A system model expresses in some form the relationships which exist between 
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the basic functions of the system. The system model may be very simple, or 

it may be quite complex, depending on which level of the system we are in- 

terestedxin and how the model will be used.

It has been pointed out that a Moore machine of a PSM can represent a 

computer system. The stochastic nature of the PSM really reflects a basic 

property of computer system performance (Section 2.1). Although the exact 

sequence and characteristics of jobs are seldom known, the probability distri­

bution of the job type and its resource demands can be predicted. This sto­

chastic property is basic to the operation of a computer system. Before re­

presenting a computer system model, a description of a general contemporary 

computer system is needed. A computer system is managed by its operating sys­

tem. Generally, an operating system has three main parts: job management or 

setting up the environment for the.user's job execution, task handling or sys­

tem resource management and data or input/output management. Operating systems 

can be divided into any number of parts associated with computer system levels 

as mentioned previously.

Job management or the total environment of a computer system is handled 

by the executive function. The executive arranges for the operator and for 

the user-programmer to communicate with the system either through operator 

commands or job control cards presented to run the program. The operator must 

be able to communicate with the operating system in order to tell the operat­

ing system what resources must be made available for his program.

Task management or allocation of system resources concerned with the 

program (once the program is executed) is directed by this portion of the op­

erating system. Typically these system resources include main storage, cen­

tral processing unit (CPU) time, input/output operations, and a system clock 

which arranges the programs in main storage in their proper place and takes 
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programs from secondary storage memory and brings them into an execution mode. 

Data or input/output (I/O) management is that portion-of the operating system 

which controls the utilization of space on mass storage for direct access, con­

trols the allocation of tape drive if it is a tape data set, or controls the 

reading in of cards and the output of printed ma’tter. In short, all I/O op­

erations must be scheduled and executed by the operating system, not the user's 

program. A typical computer system is illustrated in Figure 2.6. In the fig­

ure, the coarse scheduler, dispatcher, and facility inventory are performing 

the job management; the dynamic allocator is handling the task management;

the symbiont complex, C/SP(Commun, Symbiont Processor), I/O, and communication 

handler are directing the data management performance.

The following abbreviations are used in Figure 2.6:

PCT (Program Control Table), 

CQE (Core Request Queue Entry), 

SWL (Event Monitoring Switch List), 

SCHQ (Schedule Queue), 

READ$ (Card Images READ from Card Reader), and 

PRINT$/PUNCH$ (Card Images to PRINT/PUNCH to line printer/card punch).

We classify computer job types into categories such as scientific com­

putation, business computation, conversation mode, simulation, and data manage­

ment according to their characteristics. Each category may be considered as 

an input symbol to a (Moore-type) PSM used to model the system.

The next step of the modeling is to determine the structure level of 

the system which shall be used. Then the connectivity matrix of functional 

elements in the selected structure level should be built from a directed graph 

representing the structure of the system. The probabilities of function trans-



Figure 2-6 
A Computer System
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fer (state transfer matrices) for each input symbol (for each job category) at 

branch points of the directed graph should be evaluated. Generally, the out­

put items,, of the computer system are activities of output data channels, for 

example, swap file channel, program file channel, mass storage file channel, 

magnetic tape channel, line printer/card puncher channel, remote communication 

channel, etc.. Therefore, a transfer matrix from states (or the functional 

element) of the PSM to these output items is needed. This is a generalized 

probabilistic sequential machine (GPSM defined in Section 2.6), if we assume 

there is a input load distribution of the classified input category to the 

system.

For illustrating a computer system, a large logical system is

GPSM = (S,X,Y,{M(x)},^,T)

where

S = {Symbiont complex, I/O control, coarse schedular, dynamic allo­

cator, dispatcher, user/exec. activity),

X = {Scientific computation, business computation, conversation mode, 

simulation, data management),

Y = {Swap file channel, program file channel, mass storage file 

channel, magnetic tape channel, 1ineprint/cardpuncher channel, 

remote communication channel),

M(x), for xeX is the state transition probabilistic matrices asso­

ciated with each input symbol, 

is a load distribution of input category,

T is a transfer matrix of states versus output symbols (or output 

iterns).

There are two cases where the GPSM is useful:
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(1) When the input load distribution is known, the output items could be com­

puted by the model. Testing/debugging and benchmarking of the system 

belong in this case because the input jobs are canned or known.

(2) Input load distribution, which is unknown and which produces the system 

outputs could be computed with the model, when statistics of the computer 

system output performance (for example system failure)are avaitable. 

This case is useful to determine internal past activities of the system, 

which might be applicable for performance analysis and failure detection 

of subsystems as well as the system.

A number of problems always arise whenever we attempt to model a sys­

tem. ..The most significant problem is that of the validity of the model. A 

model of a system is an abstraction of the system in which many details of 

the system's structure have been omitted. The model is basically a simplified 

version of the system. In the process of deriving the model from the system, 

some significant relations may be dropped or some important constants may be 

estimated incorrectly. If this happens, the model is not valid, that is, 

the behavior of the model for a given input will not match the behavior of 

the real system within reasonable limits. An invalid model is relatively 

useless. The problem of model validity is probably the most difficult and 

certainly the most serious problem in modeling, especially for modeling of 

a large system.

The most difficult task in our modeling is the evaluation of the state 

transition probabilistic matrices and the transfer matrix of states versus 

output items. A rough evaluation of these matrices could be done by studying 

the internal logical structure of the operating system and estimated output 
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channel activities. A better way to evaluate these matrices is system monitor­

ing using benchmark programs with an item of a job type category. Several 

monitoring methods in hardyvare and in software [ 1], [70] are available.
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CHAPTER I I I

TWO-STATE INPUT-TRACEABLE 

' PROBABILISTIC SEQUENTIAL MACHINES

3- Introduction

This chapter provides the mathematical foundations of the theoretical 

approach to error detection in a computer system modeled by a generalized 

probabilistic sequential machine (PSM). The foundations include a closed form 

representation of the product of any infinite or finite number of two-state 

stochastic matrices and the input traceability property of a two-state isolated 

PSM.

A review of the class of two-state, two-symbol, completely isolated PSM 

[79] and the class of two-state, multisymbol, completely isolated PSM [68] is 

presented in Section 3.2. Following it, a broader class of isolated machines 

called the absolutely isolated machine, which includes the completely isolated 
I

machine as a subclass, is introduced. It is demonstrated that the condition 

for isolation given by Yasui and Yajima [79] and Tan [68] is unnecessarily. con­

servative. New conditions for determining the isolated property of a PSM are 

presented. It is shown that an isolated machine satisfying the new conditions 

may not satisfy the condition proposed by Yasui and Yajima and Tan. Section 3-5 

introduces approximate probabilities and errors of approximation. It is shov/n 

that any PSM isolated by some kth approximation accepts a (k+1) definite language. 

An algorithm is derived to synthesize an absolutely isolated probabilistic auto­

mata with any level of approximation.

The last section deals with the past input traceability property of an 

isolated machine, which can be applicable to error detection.
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3.1 Completely Isolated Machines

First consider a two-state/two-symbol PSM. Let and be the two 

symbols and let

C
l -a a \ /1 -c c \

I and M(x-) = I I
b 1-b/ \ d 1-d/

be the two-state transition (stochastic) matrices, where "0<a,b,c and d<^l . Let 

the fundamental matrix M.(X|) for i=l,2 be defined by

/b/(a+b) a/(a+b)\

= )
\b/(a+b) a/(a+b)/ ,

/a/(a+b) -a/(a+b)\
m2(xi) =/ I

Lb/(a+b) b/(2tb)y 

and

Mj(X]) = XjY1 and M^x^) =

where X. and Y. are the it*1 characteristic column vector and' the i1*1 character- 
i i

istic row vector of M(x^) and M^) , respectively.

Then

M(xj) = 1-Mj(x1)+XM2(x1)

where X =,l-a-b is the eigenvalue of M(x^). The other eigenvalue of the matrix

is 1. Similarly,

M(x2) = 1-Mj(x2)+pM2(x2)
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where

/d/(c+d) c/(c+d)\ / c/(c+d) -c/(c+d)
btj (x9) = I M9(x9) =

\d/(c+d) c/(c+d)/, \-d/(c+d) d/(c+d)

and p = 1-c-d.

A product of stochastic matrices M(xj) and M^) is

M(xj)M(x2) = (Mj (x1)+XM2(xj))(M1 (x2)+pM2(x2))

=■ (xJ)M1(x2)+pM1(x1)M2(x2)+XM2(x1)M1(x2)

+ XpM2(x1)M2(x2)

Using the multiplication table of the two stochastic matrices M(x

M(x2) given by Yasui and Yajima [791, we obtain

M(xj)M(x2) =M1(x2)+pH+XpM2(x])

where

For simplicity, let A = M(x^) and B = M(x2). The multiplication table of 

two stochastic matrices, A = ^]+^a^2 anc* ® = ®l+^b®2 *S 35 ^°^ows:

n:CM
CDCDCM
<

r- 
04 

CM
<

 
< 

OD 
CQ 

nz

A] 0- B] H H

0 A2 0 A2 0

A] -H B] 0 H

0 B2 0 B2 0

0 H 0 H 0

where A. and B. are the it*1 fundamental matrices, for i = l,2 and X and X 
ii a 

) and

the

are
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the X and p eigenvalues of A and B, respectively.

In general, M(x), xeX can be expanded as follows:

M(x) = M(o.)M(o.)M(o ) ... M(a ) 
12 3 m

+ ••• + Vm-I ••• XlH2(ol’ (3a)

where o. is x^ or and X. is X or p depending on x^ or x^ for i=l,2,...,m 

and x = a.o„a_.. .a .- 
12 3 rn

Definition of Isolated Machine by Yasui and Yajima:

The (1,2) element of (3.1) is called the approximation probability 

denoted as p^m^(x) after processing input x*. Yasui and Yajima defined a set 

of two stochastic matrices" as being completely isolated bv the m1-*1 approxima­

tion if and only if every pair of input strings of length m+1 (which is pro­

duced from the set of matrices) is isolated by the m1-^ approximation.

When the length m input string is truncated by the last k+1 symbols, the 

truncation error of the product (3.1) is bounded by a constant

=Ek) "FTM <ll»iill.l|M2(xi)||,5)} 
1 P 1 »J 1 J 1

where B = max(|X|,|p|),H.. = (x.(x^). The norm |[a||is defined by

the absolute value of the (5,2) element of the matrix A, where £=1,2. If 

||a||^) = |[A||^2^then ||a|| is interpreted as | [a[ [ .

The preceding properties of two-state/two-symbol PSM have been extend­

ed to the two-state multi symbol case by Tan.

The symbol X“ denotes the set of all possible input strings that can be formed 
by the elements of X.
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In this chapter, the properties of a two-state multisymbol PSM have 

been extended further. In particular, a much tighter‘upper bound than the pre­

vious equation for the two-state multisymbol PSM is presented. It is derived 

by considering the sign of the eigenvalue of each stochastic matrix rather than 

just the absolute value. It is shown that a PSM which is not isolated by Yasui 

and Yajima and by Tan's definitions may actually be isolated. Consider the 

following PSM

/ 0.2 0.8 \ /0.5 0.5 \
M(x.j = I and M(x„) =1 I

\o.i 0.9/ ■ yo.9 0.1 j

and evaluate Yasui and Yajima's criterion (h<_l) of the PSM (details of the 

evaluation are presented in the section 3-5). The value h of the PSM is 2.1>1 

so that it is not an isolated machine in their sense. However, the PSM is 

isolated in our sense. Our discussion begins in the next section.

3.2 The Product of 2x2 Stochastic Matrices

In the PSM (S,X,Y,. {M(xj)} ,A), the parameters are defined as follows:

S is a set of states, {SpS^}.

X is a set of input symbols, (xpX2,... ,xn).

Y is a set of output symbols, {yj,y2}-

(M(x.)} is a set of state transition stochastic matrices.

A is a deterministic function from S into Y.

The PSM is obviously characterized by the transition matrices M(x.) (i=l,2,...,n 

For simplicity, we shall denote M(x.) by M^*\ The behavior of the PSM due 

to an input string x = a,a0...o , can be determined by the matrix product 12m
M.M-...M , M.EfM^')} and a.cX for j = 1,2,...,m. A closed form of matrix

1 2 m j j
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expansion is presented by considering element by element multiplication. First 

we prove the following lemmas.

Lemma 3.1:

The eigenvalues of a 2x2 stochastic matrix

(
1-a. a. \i i \ •

" ■6i v»\)

are 1 and l-a.-g., where l>a.|3.>0 .
ii — i i—

Proof:

The eigenvalues of are obtained by solving for X from the equation

]XI-M^1| = 0, i.e.,

X-l+a. _a.I i

-B. X-l+B.

2
= X. -(2-a.-B.)x + (l-a.-g.) - 0

Thus,

2-a.-g.±(a.+B.)
X = ------ !---- ^2—!-----“ = 1 or ®

Denote the second eigenvalue X of by X. and consider a multipli­

cation of the two matrices:

where
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।
am-1 a +(1-a m -b )a . m m nr I a +X a . m m m~ I

b' .
m- I b +(l-a -b )b m mm m-1

= b +A b . m m m-1

The eigenvalue of the matrix product is

where

a* . = a +A a ,+XX ,a „ , 
m-2 m m m-1 m m-1 nr-2

b - = b +X b ,+X X ,b o . m-2 m m m-1 m m-1 m-2

•The eigenvalue of the product is

X - = (1~a o) ~ X X ,X - .m-2 m-2 m-2 m m-1 m-2

Lemma 3*2:

Let

i i~l
a . = a +X a ,+X X ,a  + ...+ II X .am-1 m m m-1 m m-1 m-2 j=q m~j m-i

b . = b +X b ,+X X ,b  + ... + 'n\\ . b
m-I m m m-I m m-I m-2 j=Q m-j m-I
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Then

1-a .-b . =U .X _...X . = X1 . 
m-i m-i m m-l m-2 m-i m-i

Proof:

By substituting a^_. and b^_. into (3.3).

1-a -b -X (a ,+b ,+X* , (a _+b 
m m m m-l m-l m-l m-2 m-2

+ X o(a -+b -+...+X . ,(a ,+b .)...) 
m-2 m-3 m~3 m-i+1 m-i m-r

= X (1-a ,-b ,-X .(a o+b „+X -(a -m m-l m-l m-l m-2 m-2 m-2 m-3

+ b -+...+X . ,(a .+b .)...)
m-3 m-i+1 m-i m-r

= X X ,(1~a _-b O+X „(a ,+b ,+...m m-1 m-2 m-2 m-2 m-3 m-3

+ X . ,(a .+b .)...) m-1+ 1 m-i m-i

=XX ,X _(l-a ,-b ,+...+X .^.(a .+b .)...)
m m-l m-2 m-3 m-3 m-i+1 m-| m-i

= X X ,X -X ...X ...(1-a ."b .)
m m-l m-2 m-3 m-i+1 m-i m-i

—- X X . X — X • • • X # , X .m m-l m-2 m-3 m-i+1 m-i

(3-3)

Theorem 3.1:

The product of 2x2 stochastic matrices m1m2m3
ed as follows:

Mm» can be represent-

where 

(1-a. a. \1 1 I
J for i=l,2,3,...,m 

b. 1-b. /
i i '
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and

1 
al:

m-2
= a +X a ,+X X .a _+...+ H X .a, (3.4)m m m-1 m m-1 m-2 j=o m-j 1

m-2
= b +X b ,+X X ,b _+...+ H X .b. (3.5)m m m-1 m m-1 m-2 j_Q m-j 1

Proof:

We shall prove this' theorem using the mathematical induction method.

Let k be the upperlimit of n in the above equations. For k=l, we have (3-2) 

which has been proven to be true.

For k = i-1, we have

i"la' .,. = a +X a . + ., 
m-i+l m m m-1 ..+ n x .a (3.6)

j-q m-j m-i+1

b . . = b +X b .+., m- i + l m m m-1 x ;bm !+1 • (3.7)
j=0 m-J m-|+1

which we assume to be true. Now we want to prove that k=i is also true.

For k=i,

The (1,2) element of the left-hand side of the equation is computed first,

(1-a .)a' . ,+a .(1-b' . n 
m- i m-i +1 m- i m~i +1)

I . I *--- V
= a .,,+a .(1-a -,,-b .,.) m-i+1 m-i m-i+1 m-i+1

। ।
= a .,.+X .,.a m-i+1 m-i+1 m-i

By substituting the equations (3.3), (3-6), and (3-7) into the above equation.

we obtain
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i i-1 i
a . = a +X a . + ...+ JI X .a .,,+ II X .a . . m-i m m m-l j=Q m~J m-i+l j-q m-j m-i

Similarly, we can compute b . which is m- i *

i i
b . = b +X b ,+...+ n X .a . m-1 m m m-l j=Q m-j. m-i

This completes the proof. . $3

Corollary 3-2:

The eigenvalues of the product of m 2x2 stochastic matrices,

are 1 and X X ....XOX,, where X. = l-a.-b. is an eigenvalue of the matrix M.m m-1 2 1 ’ i ii 3 i

in the product when i = l,2,...,m.

Proof;
By Theorem 3.1:

M,M„...M 1 2 m

From Lemma 3-1, the eigenvalues of the product matrix are

। ।
X = 1 and l-a^-bj .

Lemma 3-2 proved that

I I
1~a.—b. = X X .X _...X_X, 1 1 m m-l m-2 2 1

The proof is thus completed.

It should be pointed out that this closed form expansion of 2x2 matrix 

multiplication is similar to the fundamental matrix expansion given by Yasui
। 

and Yajima, but this formula is much simpler when the individual elements a^, 

bj,l-a', and 1-b of the above matrix are under consideration.
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3.3 Two-State Isolated PSM

Using the properties developed in the previous section, we present an 

isolated'machine, which includes the ones defined by Yasui, Yajima, and Tan. 

In this section, we treat the PSM for which max{|x.|}<l for i = 1,2,...,n, 
i

holds true. We can assume that one state of a PSM is the initial state and

the other state of the PSM is the last state (we assume s, is the initial state 
» ' * 1

and s^ is the last state). In general, the initial and last states are either 

Sj or s2. Thus, after an input string x is accepted by the PSM with the ini­

tial state distribution (1,0), the probability of the last state is the (1,2) 

element of the multiplied matrices ^]M2'‘'Mm’ w^ere t^ie ^en9th the input 

string is m.

Before we introduce the concept of an isolated machine, a few lemmas 

are needed.

Lemma 3•3*

Let S be the series,

k
S = ? +x .a +X ,X oa -+...+ II X a . , , 

m-1 m-1 m-2 m-1 m-2 m-3 £=1 m-£ m-k-1

where XjE{(l-a.-B.)} for i = l,2,...,n and j = m,m-l,m-2,..., and am_^E{a.)

for £ = 1,2,... . Let a = max{a.}, c = min{a.}, X = max{l-a.-B.} and 
i 1 ; । a ; • 1

X = min{l-a.-B.} for i = l,2,...,n. The maximum and the minimum of S denoted 
c i 11

by S and S . , respectively, are found as follows: ' max min •

Case 1: If X >X >0, then ----------- a— c—

max m’n

Case 2: If X >0>X and lx |>|X I, then 
----------- a------------------ c 1 ai—1 c1 ’
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S max
a__

1-Xa
and S .min = c+a

X c
1-Xa

- Case 3: If Xa>O>_Xc and |Xa|<_|X |, then

1+X X (1+X )
----- and S . = c+a —-------- ----- x—
1-X2 m,n 1-X2

c c

Case 4: If 0>X >X , then -----------  — a— c

and
X __ a 

1-x2 
a

e aS = ----- x- + cmax
c

X c 
1-X2 ' 

c

Proof:

Case 1: Since X >X >0 , -----------  a— c—

S < a(1+X +X-+X^+...) = t—•-—= S
— a a a 1-X maxa

S > c(1+X +X +X^+...) = y—-—= S .
— c c c 1~X minc

Case 2: Since Xa>0 and |Xa|>_|Xc| ,

S < a(1+X +X2+X^+...) = y—-—= S
— a a a 1-X maxa

To find Smjn is to find the largest negative value for the partial sum 

, k
a(x +X X ,+X X ,x -+...+ n x +...) m m m-1 m m-1 m-2 £_q m-£

k
= aX (1+X .+X <X „+...+ n X +...)m • m-1 m-1 m-2 m-£

To make this partial sum negative, from the condition 0>^Xc, X^ should be

The sum of the terms in the parentheses is maximum vzhen all X ,, X r m-1 m-2

are equal to Xa. Thus
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2 3 cS>c+aX (1+X +X +X +...) = c+a ■:—r—= S .
— c a a a l-X mina

Case 3-----To determine S , terms with an odd number of X's must contain a X -----------  max a

in order to be positive and terms with an even number of X's must be all X ; c

thus

S < a(1+X +X2+X X2+XZ*+X xV..)
— a c a c . c . a c 

o/i . *) h
= a{l+X +X +...+X (1+X +X +...)} 

c c a c c
1+X

= a ----- 1- =- S
max

"c

To find S . , we should make each term, except the first constant term, have min

the largest possible odd number of Xc's in order to make it have the largest 

possible negative value.

S > c+aX +aX X +aXJ+aX X +aX +...— c a c c a c c
Oh 0 h

= c+aX (1+X +X +...)+aX X (1+X +X +...) c c c a c c c

X (1+X )
, c a ,

Case 4: To determine S , terms containing an even number of X's should be—--------- max

all X '$ and terms containing an odd number of X's should be all X 's to make c 3 a

them the largest positive numbers and smallest negative numbers, respectively.

Hence

2 3 4 5S < a+cX +aX +cX +aX +cX +...— a c a c a

2 4 ,2 4x= a+aX +aX +...+cX (1+X +X +...) c c a a a

x2 i-x2 max
c a
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To find.the Smjn, odd A-terms, which will be negative, should be made as large 

as possible and even X-terms, which will be positive, should be made as small 

as possible. Thus

2 3 4 5S > c+aX +cX +aX +cX +aX +..., 
— c a c a c

^X^+X6*.. .)+a
a a a

X c----- -- >_ c+a
1-XZ

c

+‘a 
i-xz

a

3 5X +x +x +.. c c c
. X
—£-= S
|_^2 min

c

From the above lemma, we have

Lemma 3.4:

The four upper bounds, S x's of S in Lemma 3.3, are always positive, 

and the four lower bounds, S ^Js of S in the lemma, are positive or negative 

depending on tao quantities of a,c,Xa, and Xc. When Smjn is negative, the 

lower bound of S . is S . = c+aX 7—7------where X = max{11-a.-ft.!} for
min -mm c 1-X max 1 1 1 1max , 1

i = 1,2 n.

Proof:

For the S case, max it is obvious that S *s in max Cases 1 and 2 are posi­

tive.

In Case 3, since Xa>0>Xc and |Xa|<^|Xc

1+X 1+X
S =a ----- y>a -----

max l-i2 l-i2. l-i2

In Case 4, since 0>X >X and a>c, — a— c —

S = a v + c —Ar > + c
max , .2 2 - , .2 .

aX a
1 12 ~ 1-^1-X aa
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that they are positive.

the other cases; there-

the sec­

compared w it is

the same as Case i.

Case 2: S ince

c+a

Case 3: Since max c

c+a

c+a

Case h: S i nee and
c

c+a>c+a

Lemma 3.5:
1-a. a.

Defi ne The absolute maximum radius y of the
l-6,6i

s .min

S .mm

S . min

X max

X c
1-X max

X c
1-X max

c+aXc

= Xa»

X c
1-Xmax

When Smjn is negative,■the following cases hold.

S . is positive. How- min

ith the first one of S , . When S . is positive, min min

0>X >X— a— c

transferable range with respect to the (1,2) element a. of the right-most ma­

trix M(x.) of the £ matrix multiplication (£ = m,m-l,...) is bounded by

C 1-X2 
c

1+X 1-X
----- -- >^c+aX c
1-Xc

Since X <1 and a>0, all S 's are bounded by y—;— so■a1 max ' 1-Xa
For the S . case, since |X |<1 and c>0 in Case 1, then 

min 1 c1

ever, Xc is negative (or nonpositive) and a>c>0 in all

fore, may be negative or positive, depending on the magnitude of 

ond term

X c
1+Xc

X >0>X , |X I<1X I, and X 
a----c 1 a1—1 c1 i

X c
1+X c

X max

X 
c+a — 

1-X c

y< X. S = y —1 i1 max max
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Proof:

From Theorem 3.1, the (1,2) element of a product of infinite matrices,

...M -M. .M(x.), is m-2 m-1 i *

y. = a.+X.(a .+X .a _+X .A _a +...) I i i m-1 m-1 m-2 m-1 m-2 m~3 (3.8)

where

for k = 1,2,...,n and j = m-1,m-2,m-3,... .

From Lemma 3.3,

y.<a.+|A.|(a ,+A ,a „+A .A _a _+...) 
1i— i 1 i1 m-1 m-1 m-2 m-1 m-2 m~3

«x.+|a.Is — i 1 i1 max

From the definition of y,

y = y.-a.<lA.Is = y , ®
'i i~ i max max

Note that the product of stochastic matrices is also stochastic; thus the (1,2) 

element cannot exceed the bounds zero and one. Similarly, the lower bound of 

y also exists.

Lemma 3.6:

The absolute radius of the transferable range with respect to the (1,2) 

element of the right-most matrix M(x.) of the product of TnfLnlte matrices is 

bounded by

y> I A. I|S . J = y .
—1 i *1 min min

where S . is defined in Lemma 3.3. mln
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Proof:

Using (3.8) and Lemma 3.3,

y.>a.+X.S .I— i i min

Considering the sign of X., the radius, y = y.-a., therefore is

y>|X.||S.. I = y .' . * 
—1 i11 min1 min

Def inition 3-1:

Considering the sign of X. in Lemma 3.5, the directed transferable range

from a. is in [a., a.+X.S ] if X.>0 and is in [a.+X.S ,a.] if X.<0. Simi-i ill max i ii max’ i i

larly in Lemma 3.6, the directed transferable range from a. is in [a.,a.+X.Sm. ]

If X. and S . have the same sign and is in [a.+X.S . ,a.] if the signs of X.i min 3 i i min i 3 i

and S . are different. Hi I fi

The concept of the absolute radius introduced by Yasui and Yajima and '

Tan is too conservative. We therefore abandon the concept of the radius of the 

transferable range of a. and instead define the maximum transferable range R 

from a. as fol lows:i

Definition 3.2:

The transferable range;

R (a.) = min(l-a.,X.S } max r i’ i max

R (a.) = min{a.,X.S } max i i* i max

R . (a.) = min{X.S . ,0} min i i mm

mini i mi n

therefore

R(a.) = R (a.)-R . (a.) i max r min i

if X.>0 ,

if X.<0 ,

if X.>0 ,

if X.<0 , i ‘

if X.>0 ,
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and R(a.) = -R (a.)+R . (a.) if X.<0 i max r mini i

Let a. be the (1,2) element of the two-state stochastic matrix associated 

with the input symbol x. for i = 1,2,...,n. When a. is plotted on the line 

[0,1], the line [0,a.] represents the state transient from s^ to of M(x.). 

The complement line [a.,1], which is the length 1-a., represents the state 

transient from s^ to s^ of M(x.). Suppose a. and a. are a pair of adjacent 

(1,2) elements on the line [0,1] and a.>aj. Since ^i<Smax depends upon the 

sign of X., the transferable range R (a.) of the (1,2) element of a matrix K msx K

product for any combination of the matrices described by the order of the input 

symbols is only in one direction, to the right or to the left from the point 

a^, depending on the sign of X^. Similarly, the transferable range ^mjn(cti<) 

is to the opposite direction from the range of R  (a.). Note: When the max K

direction of the transferable range 's the same as the one of the

range R (a,), R . (a.) is zero from Definition 3-2. 3 max k ’ min k •

Let X. and Xj be the eigenvalues of the two-state stochastic matrices 

and respectively. The following four cases in involving the ad­

jacent points a. and a. on the line [0,1] are considered separately.

" Case 1: X.,X.>0------- i’ j-

R (a. max j
R . (a.) min j --- 1--  

a. 
J

R . (a.) R (a.) min r max i
■■ in ■■ ii|m 

a.I

Case 2: X.>0,X.<0 ----------- i- j-

a.
J

R (a.) R . (a.) max j min j R .min

i

R max
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Case 3: X.<0,X.>0 ----------- j_

Case A: X.,X.<0 ----------- i* j-

R (a.) * R . (a.) 
max j mm j 

-751—•-

R . (a.) R (a. 
mm j max j R (a.) R . (a.) 

max 1 mini
. ....... I -.....- •teee» 

a. I1

R (a.) R . (a.) max 1 min 1
| ■ Biw 

a. I1

Definition 3-3'-

The (1,2) elements a. and a. which are adjacent on the line [0,1] are 

isolated if there is no overlap of transferable ranges from a. and a..

The following theorem is concerned with the isolation of transferable 

ranges.

Theorem 3-3:

The (1,2) elements a. and Uj which are adjacent are isolated if the fol­

lowing condition is satisfied. Assuming aj>aj »

Case 1: If X.,X.>0 ,

a.~a.>R (a.)-R . (a.) , (3-9a)1 j— max j min 1 ’

Case 2: If X.>0,X.<0 ,----------- j_

Case 3: If X.<0,X .>0 , ----------- 1- j-

a.-(x.>R (a.)-R (a.) ,
1 j— max j max 1 (3.9c)
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Case 4: If X.,X.<0 , 
' J-

a.-a.>R . (a.)-R (a.) , (3.9d)i j— mm j max i

Proof:

It is evident from Lemmas 3.5 and 3-6 and Definitions 3-2 and 3.3. S

Before we introduce a new concept of the "absolutely" isolated machine, 

one additional lemma is needed.

Lemma 3.7*

Define A - max{|1-a.-g.|} for i = 1,2,...,n .
i __

The upper bound of the four S 's in Lemma 3.3 denoted by S is a/l-X max max max

Proof:

In Cases 1 and 2, it is obvious. In Case 3, since X >0>X , |Xa|£|x<_ 

and X = jx I, 
max 1 c‘

<.  a c  a  a
max . ..2 a . .2 1+X T-IX I

1-X 1-X c 1 c1c c

In Case A, since 0>X >X , and X = lx I , 
— a— c max 1 c1

X X<.  a a a c  a
max . ,2 c . ,2 - . .2 , .2 1+X

1-X 1-X 1-X 1-X cc a c c
a

To summarize

< S = ------max — max 1-X max
a (3.10)
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By substituting S into S of Definition 3.2, a new R (a.) can be defined 
7 max max max r

with Definition 3-2 in a similar manner and can be denoted as R (a.), 
max :

3An Absolutely Isolated Machine

The definition of an absolutely isolated machine is quite similar to the 

completely isolated machine introduced by Yasui, Yajima, and Tan. However, 

the class of absolutely isolated machines contains the class of completely 

isolated machines. In other words, the latter is a subset of the former.

Definition 3.A:

A machine is absolutely isolated if all adjacent pairs a. and Oj are 

isolated.

From the preceding statement, we have the following theorem.

Theorem 3•h:

A PSM is absolutely isolated if all adjacent pairs (aj,a.) on 

[0,1] of the (1,2) element of the two-state stochastic matrices

the line

for

k = l,2,...,n satisfy the following conditions:

Case 1: If A.,X.>0 , ----------- ! > j_

a.-a.>R (a.)-R . (a.) ,i j— max j min r ’

Case 2: If A.>0,A.<0 , ----------- I- j-

a.-a.>R . (a.)-R . (a.) , 
i j— min j min i

Case 3: If A.<0,A.>0 , --------- - i- J-

a.-a.>R (a.)-R (a.) ,i j— max j max i

(3.11a)

(3.11b)

(3.11c)
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Case 4: If X. ,X. < 0, ----------  i’ j -

a.-a. R . (a.)-R (a.)i j— min j max i 

where a.>a. . 
। J

(3.12d)

Proof:

The proof again is evident from Lemmas 3-3 and 3-6, Theorem 3-3, Defi­

nitions 3-2 and 3-^ ar|d the fact that the transferable ranges of the pairs 

[0,c] and [a,1] with negative and positive X's respectively, are again [0,c] 

and [a,l]. This is correct because the (1,2) element of the stochastic matrix 

product never exceeds the extreme points zero and one. 0

Definition 3-5:

When we are interested only in the last k+1 symbols, which correspond 

to the last k+1 matrices from the rightmost of an infinite matrix product, the 

series S. , = a +X a ,+X X ,a -+X X' ,X _a _+... is truncated at the term inf m m m-1 m m-1 m-2 m m-1 m-2 m-3

X X ,...X , ... It is called the approximation of the infinite series m m-1 m-k+1 ----------------“-------------------------------------------------------------

S.nf. More precisely,

S. » a +X a ,+X X .a „...+X X ....X . ,.a . . k m m m-1 m m-1 m-2 m m-1 m-k+1 m-k

3.5 The k1"*1 Approximation of the Absolutely Isolated Machine

Consider the k1*1 approximation of the infinite series and we have 

the following lemma.

Lemma 3.3a:

The S and S . of the term S (in Lemma 3.3) of the S. are as follows: 
max min k

k-1where S = a .+X .a -+...+.11. X .a . ,m-1 m-1 m-2 £=1 m-x, m-k
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Case 1:

Case 2:

Case 3'

and

If X >X >0, thena— c—
l-X^ i-x^

, = a t—-— and S . = c ?—max 1~X mm l-Xa c
(3.12)

If X ^0>X and |x j>_|x |, 

l-xk

S = a and S . = max l-X mina

then

x (i-xk-1)
C 3 (3.14)

If X >0>X and X < X , then a------- c 1 a 1 c1
l-xk-'

Smax=a(,+Xa>74-+a^ ki3’ k = °dd 
1 -x c 

i-xk
S = a(l+X ) ----- k>2, k = evenmax a j_^2 —

c

S . = c+aX (1+X ) ----- ^5— k>3, k = odd
min c a —

c

1 r k-1
S . = c+aX (1+X ) ------- X—+ aX k>4, k = even .min c a 2 c —

(3.15a)

(3.15b)

Case 4: If 0>X >X . then

(l"Aa"')

k>3, k = odd (3.16a)S max

— a— c
l-xk+' 

c + cXa C
M 

O
1 cu

 

1

Q
j ro

S max
= a

1-Xk

c

cXa

l-xk
_ a 

i-x2 
a

k>2. k = even

S .mtn

1-Ak+'
a + aX

l-xk-'
c k>3, k = odd (3.16b)c

i-x2
a

o 

1

o

S . min

1-Xk

—V 
l-Xa

aXc

2Z 
O

1

k^. k = evenc
l-X2 

c
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Proof:

The proof of this lemma is similar to that of'Lemma 3.3 for the infinite 

series case; we may thus omit it. ®

In parallel to Lemmas 3-^ and 3-7 for and S respectively, we 

have the following lemma.

Lemma 3.8:

The upper bound, denoted as S , of the four S *s in Lemma 3.3a is rr ’ max max

a(l-X )/l—X , and when S . is negative, there exists the lower bound max max min
of S . , which is denoted as S . = c+aX (1-A^ )/l-A , where X = max

mm —min c max max max i
{|l-a.~3.|} for i = l,2,...,n and k indicates the first k (finite) terms in S.

Proof:

For S

Cases 1 and 2: X = X . ------------------------ max a

aS max

i-xk
max

1-Xmax

Thus

Case 3‘ There are two subcases to be considered.
. I k-1 xk"l r Since |X |<1, X* >xc for

,k = and from X >0>Xc and |Xa|£|Xc|,

(a) k is odd

1-Xk"3 . . 1-Xk"3 . .
a(l+X ) ----- + aX <a(l-X ) --------------^-+ aX

a 1-X C c. 1-X c
c c

(1’Ac) k-3 k-1
= 3 i in3+x d+x )} 

(1-X ) (1-rX ) C C Cc c

{1-Xk“1+Xk"1(1-|x I)} 
c c 1 c*
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i. i i-x
(l"Xc 1^1’ ’ a Hi------

max

(b) k is even

Similarly

i-xk"2 i-xk"2
a(l+A ) ----- <_ a y ■ ■ <_ a

a 1-X lAclc

i-xk
c a max

1-Xmax

Case A: From 0>X >X (I X I<I X I<1) and Xk"3>Xk"1
— a— c 1 a1 —1 c1 c c for k = 4,5,,

(a) k

cX +aa a

1cXa

ca

[l-X^'-X Jl-Xk~3)}

is odd,

1-?-'

c

l-xk-'
c

2
c

1-?-'
c

i-x2
c

i-xk-3
c

1-X2
a

cXa

I-?-3

T?-
a

i-xk"3
c

< a

= a

1 ri -.k-1 , /, ,k-lM ' Ac /, ,k-l\ 
—y {1-X -A (1-X )} = a  r(H ) 
1-X C c c 1-xz

c c

1-Xk"1 l-|x |k i-x 
c 1 c1 max

1-IX I - a 1 -lx I a 1-X
I cl I cl max

(b) k is even,

1-Xk"2 1-Xk~2 1-Xk"2 1-Xk"2

1-Xk"2 1-Xk"2 |‘X . 
< a ----- Sy- -CX ----- -----  < a -----y (1-Xk-2)
- 1-X2 c 1-X2 " 1-X2

c a c

max
1-Xmax

for Smjn may be negative in Cases 2, 3> and 4.
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Case 2: Since X -----------  max

S .-mm = c+aX c

= |x | and from (3.1^)
i-xk!1

max
l-Xmax

Case 3: Since X >0>X and X = lx I, and from (3-15b), 
--------- -  a------ c max 1 c1

(a) k i s odd

(b) k is even

aX

c

> c+aX (l-X ) 
— c c

c

A: (3.16b)Case

(a) k is odd

S

S .min

S . 
mm

X max

c+aX c

i-xk"2
c

max
l-X max

[x^] and from

1-?-'
max

l-Xmax

max
l-X max

A-l aX c

= c+aX c

= c+aXt.(l+Xa) c 
l-X2 

c

c 
l-X2 

c

1-Xk"2 
c

1-x2
c

Since 0>X >X and — a— c

= c+aX c

. >c+aX min— c

= c+aX c

= c+aX (1+X ) 
c a

c+aX c

= c+aX c

} = c+aX

c
1+X c

c
1+X c

1«k-'
c

1+X c

i-x11""1
—K-> c+aXc(l-Xc) 

c

i-xk~2+xk~2
c c

1+X c
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(b) k is even,

Considering an input string with k+1 symbols.

be drawn on the

Definition 3.6:

If there overlapped ranges between two transferable ranges ofare no

taking

re­
spectively.

Lemma 3.9:

By assuming aj<a;>

a.-a.
(3.17a)[k] = 2n{l- X .a 

J

1-Xk-'
max

1-Xmax

When S . >0 , mi n—

The matrix product of M .r m-k

S . >c+aX min— c

)}/£n X max . max

The next lemma describes the k^ isolated adjacent pair (a,.,a.).

3.2, we need to consider two cases or S . is nonnegative and S . is negative, min min

An adjacent pair (a^.a.) on the line [0,1] is the k1*1 isolated pair if 

k is determined by the following equation. From Theorem 3-3 and Definition

Case 1: X.,X.>0 ----------- i* j-

a. and a. after
• J

isolated pair where 1.
J

k+1 input symbols, the pair (aj,ct.) is called the k 

and et. are the (1,2) elements of and M

^m-l***m rePresents the behavior of a PSM due to the input. Suppose that the

last symbol is x.\ M = and the rest M . ,M , ...,M for' i m m-1 m-2 m-k

j = 1,2,...,n, then the transferable range of a. with the k+1 input length can

line [0,1] in a similar manner as Theorem 3.3.

1-Ak l-X1*"1
—f i c+aXc Th- = c+aXc 
1-X cc
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Case 2: A.>0,X.<0, ----------- i- j-

(3.17b)k is arbi trary

Case 3: X.<0,X.>0,
----------- i- J-

a.-a.
[k] = Anti- -r- ■ ■ ■ -iv-,' (1-X )}/£n X . (3.1?c)

'll । I j I' niax max.

Case 4: X.<0,X.<0, ----------- i- j-

a. -a.
[k] = Anti- (1-X )}/£n X . (3.17d)।a.।a max max

When S . <0, min

Case 1: X.,X.>0,
----------- i J-

a. -a ,"rcX.
[k-1] = £n{l- -4,-Jv vS' ('"^ )}An X (3.18a)

a(X.-X.X ) max max j i c

Case 2: X.>0,X.<0
----------- i- J-

a.~a. 1~X
[k-1] = -C) --■ ■ma.X-}/£n X (3.18b)

A* A# aA max
J I c

Case 3: X.<0,X.>0,----------- j_

a. -a.
[k] = £n{l- -rj—{-r (1-X )}/£n X . (3.18c)

a(Xj-X.) max max

Case 4: X.<0,X.<0,----------- i- j_

a.-a.-cX.
[k-1] = £ntl- -44—4v (’"^ ))/Hn X (3.18d)

a(X X.-X.) max maxc j I

where [k] is Gauss notation, and
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1 s the natural logarithm function which is only defined for

ment.

Proof:

R . (a.) min i are zero by Definition 3.2

Case 1:

Case 2:

Case 3:

Case 4: a.
J-1

negative by Definition 3-

Case 1:

- X.c .a

Case 2:

Case 3:

R .min

S max

S max

a.-a.>X.S 
i j— j max

a.-a.>0 
। J-

and R . (a.) min j

S max

S . <0; min

From Theorem 3-3 and Definition 3-2, and Lemma 3-8

-X.S . = X.a i—min j

a = max{a }, c = min{a },X = max{|l-a -B.l}
*'• SL ** rnsx x# **

Since lx plandl-X^ <1-X*<
1 max1 max— max

l-X^1
_ _ Z-. i i \ max.-a.>a(X.-X.X ) t-tt-----

1 J- J । c 1-Xmax

X. = l-a.-g. ,Xj = 1-cij~Bj and "£n

i-xk i-xk-1
y-r^-Xjc+aX 
1-X i c 1-Xmax max

a.-a.>X.
• J- J

“i ~aj —

a.-a.>X.S . -X.S . = (X.-X.)S .
1 J—j-mm i-min j r-mi

(a.) and R . (a.) are I min j

a.-a.>X.S -X.S = (X.-X.)S i j— j max i max j i max

a nonnegative argu-

we have S . >0: min—

(3.19a)

(3.19b)

(3.19c)

(3.19d)

(3.20a)

(3.20b)

(3.20c)
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Case 4: A.acJ

(3.20d)

where = c+aX c max

(3.19c), (3.19d)(3.19a)are found by solving the above equations

k-1
max

k-1
max

cX.
J

The k's

I-xk-1
max

1-X max

l-X^1
max

X max

1-Xk
max

1-X max

-. iikSince 1-X max

a.-a.>a(X X.-X.) t—
i J- c j r 1-

s .
-mi n-

a.-a.>X.S . -X.S = X i j— j-min i max

i-xk
7- max .S = a t—;----- andmax 1 -X ‘ max

(3.20a), (3.20b), (3.20c) and (3-20d) with an equals sign substituted for the

greater than or equal sign.

When comparisons between the a/l-X and a(l-Xk )/l-X and the 
r max max max

k-1c+aX /1-X and c+aX (1-X )/l-X are made, the differences between thesec max c max max

comparisons suggest that if the pair (ntj-oi.) is isolated by an infinite length 

of input, then the pair is also isolated by a finite length of input (or by the 

kt*1 input length, namely by the kt*1 approximation of the matrix product

M . M .M for k = 1,2,3,...). This is described in the following lemma, m-k m-1 m ’ * ‘

Lemma 3.10:

If an adjacent pair
j’

ferable ranges of a. and a. with an

on the line [0,1] is isolated in the trans-
eX» 

infinite length of input x , then the pair

(a.,a.)V r
put (by

is also isolated in the transferable ranges with the k+l

the kt*1 approximation).

length of n-

Proof:

It is evident from a(1-Xk )/l-X <a/l-X for S , and for S . , 
max max max max -min

c+aX (1-Xk *)/l-X >c+aX /1-X when S . <0, where 0<X <1. ®
c max max c max min max

We are now in a position to introduce the kt*1 (absolutely) isolated machine.
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Theorem 3.5:

A PSM is the k1*1 (absolutely) isolated machine* if all transferable

ranges of adjacent pairs of the (1,2) element of for i = l,2,...,n are 

fhat least the k isolated adjacent pair.

Proof:

From Lemmas 3.3a, 3.'9, "and 3.10 the k^ isolation for each adjacent 

pair of the (1,2) elements for £ = 0,l,2,...,n can be determined.

Take k such as the minimum {k^} for £ = l,2,...,n, so that all adjacent 

pairs are absolutely isolated at least by the k^"^1 approximation. £

Example 3.1:

Consider the following example, which is an isolated machine in both 

Yasui. and Yajima's sense (completely isolated machine) and the sense of Theorem 

3.4 (absolutely isolated machine).

PSM = (S,X,Y,{M(x)},A(s)) 

where S = {s^sp, X = {Xj,x2}, Y = {a,b},

/0.8 0.2 \ /0.6 0.4\
M(x ) = I and M(x„) =

\0.7 0.3/ \0.5 0.5/

arid

A(sj) = a and A(s2) = b .

(a) Completely Isolated Machine:

The criterion for the completely isolated machine, using Yasui and Yajima’s 

result,
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llHll
2Xmax maxt।lH11'।lM2(X|)I I -1lM2’ 

h = PA-----------------------------
max

The norm and the matrices H, and M^Cx^) are defined in Section 3.1. If

hX^5X^ then a PSM is isolated by the approximation (or the k+1 input length) 

where X = max{l-a.-g. }, X = min{l-ct.~g. } and X = max{ I l-a.-fl. I } for i = l,2.
a lie ii max 1 i i 1 ’

The preceding PSM has the following quantities:

Xa = Xc = 0.1, ||H|| = 0.18/0.81, | |M2(x)) 11 = 2/9, ||M2(x2) || = V9,

and h = 2x0.1x0.81x4/0.9x0.18x9 = 4/9<l, 

k kthen (4/9)0.1 <0.1 for k = 0,1,2,...; it is an completely isolated machine.

(b) Absolutely Isolated Machine:

Since Xg = = 0.1>0, the PSM belongs in Case 1 of Lemma 3-3 or of

LcnTna .^a and S . is pos11 >ve• min By Definition 3-2, Theorem 3.3 and from

(3.9a) or (3.19a), we have

= X.
J

a.-a .>X.Si j j max
a

1-X max

i-xk
z , max
(or = y tt—

■* max

where a. = 0.4, a.=0.2, X.=0.1
1 J J

a=0.4 and X =0.1 . max

Therefore, the following equation is held true.

o.4-o.2>o.ixo.4 -

0.2> (1-0.lk)
v.27 for k = 1,2,3,...

For the other pairs (the edge pairs),

a. = 0.2, a. = 0., X = 0.1 and X = 0.1 i j a max
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0.2-0.>0.1x0.4 XtPJ. . for k = 0,1,2,...

a. = 1.0, a. = 0.4, X = 0.1 and X = 0.1i j a max

1-0 1 k
1.0-0.4>0.1x0.4 ■ O-Ug for k = 0,1,2,...

so it is an absolutely isolated machine by the kt^1 approximation for k = 1,2,3,...

Example 3-2:

Consider another example of a PSM which is not a completely isolated ma­

chine but which is indeed an absolutely isolated machine. We assume the same 

sets of states, input, output, and output functions from the previous example 

but different state transition matrices: z

/0.2 0.8\ (0.5 0.5\
M(x,) - I and M(x_) =': |

\0.1 0.9/ \0.9 0.1/

(a) Completely Isolated Machine:

The criterion for the completely isolated machine,

a = 0.8, c = 0.5, X = 0.1, X = -0.4 and X = 0.4, ’ ’a ’ c max *

I Im 11 - 0-Tx0-5-0.8x0.9 _ o,68
•1 •1 “ 0.9x1.4 1.26 ’

11M2 (Xj ) | | = -, | | M2 (x2) 11 = yjj- ,

. 2x0.4 8 1.26 
Then ''"tt « n?=2'hL

Therefore it is not a completely isolated machine.
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(b) Absolutely Isolated Machine:

Since A = 0.1>0 and X =~0.A<0 and lx I<|X I,• the PSM is in Case 3 of 
a c |+al 1 c1

Lemma 3.3 or Lemma 3.3a, but S . (= c+aX ----- = 0.5~0.8x0.4 4—= 0.5-0.381)
' min 1 I— u • I o

c
is positive. By Theorem 3-3 or Lemma 3.9, a. = 0.8,a.. = 0.5, X. = 0.1 and 

Xj = -0.4; the pair (0.5,0.8) is in Case 2 in the theorem or the lemma. From 

Definition 3.2, R . (a.) = R . (a.) = 0; thus, a.-a. = 0.8-0.5>0 in (3.9b) or
’ min r . min J i j >

(3.19b) is true.

The transferable ranges of the other pairs [0,0.5] and [0.8,1.0] are 

the same ranges [0,0.5] and [0.8,1.0], respectively. Because the stochastic 

matrix product is again the stochastic matrix, the (1,2) element of the pro­

duct never exceeds the extreme points zero and one.

This is the absolutely isolated machine.

Truncation Error (v/i til the K—l approximat ion)

The truncation by the last k symbols in an input string denoted as y.

(k) 
and expressed by (3-8) over xeX* for i = 1,2,..., n, induces an error c * de­

fined as fol lows.

Definition 3.?:

The infinite series y. of (3.8) can be divided into two parts, the first 

k terms (corresponding to the last k input symbols of a matrix product) and 

the remainder such as

y. = yjk) + c(k) (3.21)

• (k) where y. = a.+X.(a ,+X ,a _+X ,X „a +...'1 1 1 m-1 m-1 m-2 m-1 m-2 m-3
k-2

+ n X .a |A1) (3.22)
j=] m-j m-k+1 •
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and

k-1
X. II X . (a . +X , a . . i j_] m-j m-k m-k m-k-1

\n-k^m-k-lam-k-2+^m-k^m-k-1^m-k-2am-k-3

...)

for i = lx2,...,n . - .

e<k> =

X 
+

+ (3.23)

Theorem 3.6:

By cutting the first k terms of Yp the truncation error |e^^| is 

bounded on both sides; the upper and lower bounds are

^-1
/ = |X. ] H |X JlS . I and

1 । j_j 1 m-j11 min1 . . (3.21|)

(3.25)

therefore

r(k) s |E(k)|<7(k) (3.26)

where

a = max{a.}, c = min{a.}, and S . and S are defined in Lemmas 3-3 i i j i min max

and 3.7, respectively, for i = 1,2,...,n.

Proof:

From Lemmas 3.3, 3.4, 3.5, 3.6, and 3-7 and Theorem 3.3,

|E<k) Hlx.^n1 [X .|a(l+X .+X ,X . ,+...)
1 1 1 j=l m~J m~k m-k m-k-1

k-1 
<|x.| n |x .Is <!x.| n lx .Is
—1 1 j=l m~J max—1 i j=] m-j1 max
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and similarly

I I > I X. 1 kH1 ] X .l|c(l+A ,+X ,X . , +
1 1 i1:-]1 m-j'1 m-k m-k m-k-1 1

>|x.|kn1|x .| |s . | .
—1 i1j_|1 m-j1 'min'

Since 1+X . +X ,X . ,+... where m-k m-k m-k-1

^m-£ e^-<xj”^p f°r ■ = l»2,...,n and £ = k,k+l,...,

thus the bounded sum is described in Lemma 3«3-

and Sm| , therefore, the upperbound error exists in only one direction.

The error bounds of (3-23) are directed by the signs of (X.
1 J

Corallary 3.7‘

When is nonnegative,

if sign
k-1 

(x. n
1 j=l

x .)>o, m-j (3.27a)

-VCk><e<k><-x<k>^p if sign
■ k-1 

(x. n
1 j=l

X .)<0, m-j (3.27b)

when Smjn is negative,

^Wk)^) if sign
k-1

(x. n 
' j=i

X .)>0, m-j' (3.27c)

-<k), (k)<0<Y(k) if sign
, k-l
(x. n

' J=1
X .)<0 m-j

(3.27d)

Proof:

From Definition 3-7 and Theorem 3-c, it is obvious.

For future reference,. al 1 (3-27) equations can be denoted as
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|6(k)|<(x(k,,7(k))

3.6 Two-State Input-Traceable Machine

Wlien a two-state PSM is absolutely isolated, all past input symbols can 

be determined precisely; therefore, the past history of the behavior of the 

PSM may be traceable from the known initial state distribution (1,0) and the 

present state distribution^

From the property of the absolutely isolated machine, we have the fol­

lowing corallary.

Corallary 3.8:

Given an absolutely isolated PSM and if the value of the (1,2) element 

of the matrix product is known after an input string has been accepted, then we can 

determine all symbols supplied in the input string.

Proof:

Let V be the value of the (1,2) element of the matrix product,

V = a +X (a ,+X .(a O+X o(a _+...)...)) in m m-1 m-1 m-2 m-2 m-3 

where a^. e{a.} and e{l-a.-g.} for

i = l,2,...,n and j = m,m-l,... .

Since the machine is absolutely isolated, V must belong to an isolated trans­

ferable range of a.. Suppose V belong in the range of so that the last sym­

bol read is a„.

Then compute

V-a"T^= am 1+Am l(am 9+Xm 9 7+ •••)•••)
m-I m-I m-Z m-2 m~3
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Again V~a^/A^ must belong to a transferable range of a. due to the property of 

absolute'isolation. Therefore, the other a is found by computing (V-a /A.)
St- 1 X, A,

where A„ = 1-a .£ H 8.

~a£_]/A^_j ar>d so on.

An equivalent corallary of Corallary 3.8 is given below."

Corallary 3-9:

If a PSM is the isolated machine, the last k+1 symbols of an input 

string to the PSM are uniquely determined from the (1,2) element of the matrix 

product, M .........M ,M .r m-k m-1 m

Proof:

The proof is similar to that of Corallary 3.8 and may thus be omitted. ® 

The theorem given by Yasui, Yqjima and Tan which describes (k+1) definite 

events (or languages) is stated here in the sense of the absolutely isolated 

probabilistic automaton (PA) similar to theirs. A PA is defined as follows.

Definition 3.8:

A probabilistic automaton (PA) is a system composed of four elements,. 

PA = (S,M,ir.,F), over the alphabets x, where S = {Sj ,s^,... ,sn) is a finite 

nonempty set of states, M is a mapping of xeX into the set of nxn stochastic 

matrices, it. is the initial state distribution, and F is a nonempty subset 

of S (the subset is the set of designated final states).

An event (language) accepted by a PA is defined as follows.

Definition 3.9."

Let n be a real number, 0<n£l , and e>0 be an arbitrary small number.

Then a set of input strings for a PA is defined by
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L(PA,n»?) = {x|xeX*,|n.M(x)nf-n!£(£,7)} (3.28)

where is an n-dimens ional column vector whose j*-*1 component equals 1 if s^eF 

and 0 otherwise. The event (language) denoted by L(PA,n,E) is the one accept­

ed by a PA with cut point n and error ? = (e.e). £ and e were defined in

Corallary 3.7 with the approximation.

By defining

S = {s1fs }, X = {x.,x ,...,x }, M = {M(x.)} 
iz I 2 n j

for j = 1,2,...,n, F = <s2>, n. = (1,0), Hf = (0,1)

and A = {n.M(x)H^} for xeX* in a PA, the properties of a two-state PSM de­

rived in the previous sections may be applicable to a two-state PA.

Theorem 3.10:

If a PA has a set of stochastic matrices which is absolutely isolated by 

the kt*1 approximation, then

L(PA,n,t) = z U {X*x} (3.29)

where Z is a finite set of input strings of lengths less than k+1, x is any in­

put string of length k+1 for k<£, X* in X*x is any pre-fixed input string, 

n = and e = (x^\y^^). Thus, the PA accepts (k+1) definite events: 

(languages) for k=0,1,2,, where n and e are found with the k^ approximation.

Proof:

The proof is obvious from Definition 3.7, Theorem 3.6 and Corallary 3.7 

since the truncation error for any input string e{X*x} is bounded and the state 

after processingtany input stringleZ is isolated.

The absolutely isolated PA has finer resolution of error bound than the
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completely isolated PA does.

Independence of the Initial State Distribution

We should point out another important property of the absolutely iso­

lated machine. The initial state distribution has always been assumed as (1,0), 

or S] = 1 and s^ = 0. When this assumption is relaxed, s^ = 1-s and S£ = s 

where 0<s£l, the .absolutely isolated machine still has the same property with 

the initial state distribution (1,0), if the machine is processing an infinite 

length of input string.

Theorem 3.11:

If a two state PSM is absolutely isolated with the starting initial state 

distribution of (1,0), then the behavior of a PSM with a starting initial state 

distribution of (l-s,s) where'0<s£l. is the same as the machine behavior with 

the initial distribution (1,0), when the PSM is processing an input string 

with an infinite length.

Proof:

After processing m input symbols, the product of the stochastic matrices 

of state transition associated with individual input symbols in the m length 

becomes the following matrix from Theorem 3-1:

(
. • • \'"tl a'.
bl '-bl /

where a^ and bj are expressed in (3.^) and (3.5), respectively.

Compute the present state distribution from a given initial state dis­

tribution (l-s,s)

/1-a. a. \ । ( t
(l-s,s) I , != (l-a^-sXj.aj+sXj) (3-30)

\ bi •
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I I I
where = 1-a^-b^ .

I 
From Lemma 3.2 A, = X X ,X -...X-X., 1 m m-1 m-2 2 1

I
X] becomes zero as m-x», since

|x.j<l for i = 1,2,3,... .

Therefore, the present state distribution becomes (1-apaj), which is the same 

as the starting state distribution of (1,0).

From Theorem 3.11, we have the following corallary.

Corallary 3.12:

An absolutely isolated two-state PSM becomes an initial state indepen­

dent machine as a processing length of input symbols approaches infinity.

Proof:

It is evident from the proof of Theorem 3.11;

When we are interested in the approximation of the finite series S 

with the initial state distribution (l-s,s) where 0<s<T instead of (1,0), Lemma 

3.3 should be modified by adding the new term, sX X .,... ,X . at the end 

of the series as seen in (3.30). We have the following lemma.

Lemma 3.11:
k k

Given S. = a +X a ,+X X .a _+...+„H X „a , ,+s„iI X . , k+1 I m m m-1 m m-1 m-2 £=o m-k-1 £=q m-£

I
Sm=v term S of S. .. are the following:max k+1

If X >X >0, then 

•S = a t——-• + max i-X a

then the upper bounds denoted as

Case 1:

,k-1 sX a



X^>0 > Xc and |Aa|>_]Xc|, thenIfCase 2:

A

k>3 • k = odda

k>2 k = evena
c

k>3 k = oddcXa
c a

k>2 k = evena

Proof:

It is similar the proofto

ted

Definition 3-10:

A new upperbound

defined as

S max

S max

S max

s' 
max

of Lemma 3.3a; therefore, the proof is omit

Case 4: If

Case 3: If

_ I i ■ 
denoted as S of the four S 1s in Lemma 3.11 is max max

0>X >X , then — a— c

S max

1-?-'
a

1-Xk a 
l-x2 a

1-Ak
c

i-x2c

1-x2 
c

i-xk
a

C -

,k-l sXc

1-Xk+I
c

,k-l sX a

a^O^X^ and |Xa|<^|Xc|, then

, A-2 sX X a c

s' = max{S ,S 
max max max

— kwhere S = 1-X /1-X defined in Lemma 3.8max max max

a 1-X 
a

cX a

k-1

,k-l sX a

k 
c
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By substituting S and S into S and S , respectively, into Lemma 3»9, 

Lemma 3*10, Theorem 3-6, Corallary 3.7. Theorem 3-8, Corallary 3-9 and Theorem 

3.10, the results are valid. The new proofs are very much the same as the 

proofs of the previously mentioned lemmas, theorems and corallaries.

A property of the absolutely isolated machine is that all past inputs 

are traceable; therefore, the history of state transition and all output produced 

can be determined. , The past history may help to find an error which occurred 

in past. Although a past error may change the character of the machine, or 

probabilities in the state transition matrix, an input-traceable machine is call­

ed a diagnoseable machine as long as the absolutely isolated property exists.
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CHAPTER IV

DECOMPOSITION OF A PROBABILISTIC SEQUENTIAL MACHINE

A. Introduction

We studied the two-state PSM in the previous chapter. Two-state ma­

chines are too restrictive for practical applications because of the small num­

ber of states. We may need an n-state machine for practical applications, 

where n>2; however, an n-state machine can be composed of interconnecting com­

ponent machines, which have less states than n. This problem is known as de­

composition of an n-state PSM. Therefore, in this chapter, we present a PSM 

decomposition technique which enables us to decompose an n-state PSM into inter­

connected, two-state PSM machines.

Bacon [A] and Paz [51] introduced the "lumpability11 and the "separability 

properties of a PSM whereby an n-state PSM could be decomposed into two PSM's, 

which have states less than n, if the n-state PSM has these two properties. 

The decomposition of a PSM deals with the problems of how a sequential machine 

can be realized from sets of smaller component machines, how these component 

machines are to be interconnected, and how information flows in and among these 

machines when they operate. In this chapter, we show a different decomposition 

scheme of an n-state PSM from those of Bacon and Paz.

At first, we discuss an interconnection property of component machines 

(PSM's), which can compose a large system function. Next, a composition ex­

ample for interconnecting two-state PSM's is discussed as a prefacing step to 

the decomposition of a three-state PSM by two-state component PSM's. A decom­

position process for the three-state PSM composed of three two-state PSM's 

is presented in Section ^.4. The process can be extended to an n-state PSM 

decomposition by n(n-l)/2 two-state component PSM's. A computation procedure 



92

of state transitions of the n-state PSM by the matrix product of two-state sto­

chastic matrices (by two-state component PSM's) is described in the last section.

4.1 An Interconnecting Property of N Two-State Machines

Consider an interconnection of n two-state machines, which are numbered 

l,2,...,n, the states on each machine are denoted as = (s]ps]2^'

Mq = (sOi>s„«),...= (s .,s _). The first index of s . refers to the machine 2 z i zz t n ni nz ni

number, and the second indicates the state number. When the interconnection is 

viewed as a single machine, a typical transition probability which presents a 

possibility of the transition between two states in the single machine would 

be

P(spS2,...,s|^/s1,s2,...,sn,x) (4.1)

where s. and s! are the state vectors before and after the transition of the 
i i

machine respectively and x is any input. This may be rewritten as

p(sj/s2,S3,...,sn,s1,$2,•••,,x)

P (^2/s > • • •», s ।, $2, • • •, sn, x)

■pCsj/s^,..,s2.........sn,x)

................P(sn/srs2..........Vx) •

From the knowledge of interconnection of component machines, which describes 

this transition probabi1ity, the probability of a particular next state of any 

component machine can be determined only with the present state of the system 

and the present input. Also, it is assumed that once this input to any com­

ponent machine in the interconnection is specified, the transition of the ma­

chine is independent of the transition of the other interconnecting components.
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In other words, the transition probabilities of the component machines specify 

the transition probabilities of the interconnection through the assumption that 

given its^ input, each component operates independently of the others. Thus

P(si/sH.l's^2-----sn-sl-s2’s3..........5n’x)

I
= p(s./SpS2,s^,...,sn,x) . for i = l,2,...,n-l.

*

Then (4.1) may be rewritten as

p(s[/s1 ,s2,. ,sn,x)p(s2/s1 ,s2,... ,sn,x)

•pCs^/Sj ,s2,... ,sn,x).. •P(s|!1/s1 ,s2,... ,sn,x).

For a given n-state machine, this factorization may be possible by an intercon­

nection of component machines; which is isomorphic to the machine. Namely, the 

input, output, and state sets of the two machines are respectively isomorphic, 

and the transition probabilities for states corresponding with the isomorphism 

are equal. Also, when each component machine has fewer states than n, the 

factorization is called a "decomposition" of the n-state machine.

We shall consider a decomposition which is loop-free; there are no clos 

ed paths of information flow. All delay elements and logical elements in a ma­

chine can be so arranged that the information flow in the machine propagates 

only in one direction from input terminal to output terminal.

A basic property of a loop-free decomposition is that some of the com­

ponents operate independently of all the others. The component machines receive 

only the input to the original machine. Regardless of the states of all the 

other component machines, the transition probability to any next state for 

this machine depends only upon the present state of this component machine and 

the input to the original machine (or the interconnection).



94

Consider an example of decomposition by Bacon [4]. Let M be a four- 

state two-input machine as specified below.

(
.2 .2 .3 .3 \ 7.3 .0 .7 .o x

•° •'* -o -6 i M(x,)=r° -3 •° -7 i
.4 .1 .4 .1 / I .08 .12 .32 . .48 /
.25 .25 .25 .15' . '.06 .14 .24 .5(J

It is easy to find a block partition of states II = (n^ jll^) = (1,2;3,4) and an­

other partition t = = ^>3;2,4). Also, it is simple to check out the

set, {IIjATj ,11^12,I^Atj ,H2At2} = (1,2,3,4} where A is the intersection operation. 

Thus by lumping Hj and II^» we have

Mn(xi) *(’* 7.3 .7\
Mn(x2) =

n 2 \.2 .8/

Summing the columns of M(x.), i = 1,2 on Tj and T2, we obtain the matrices

(
.5 .5x /1.0 .Ox
•° 1-0Y Mt(x-) =/ -0 L° |

.8 .2 • 2 I .4 .6 ‘

,5 .5' ' .3 .1'

In this example, each block of II intersects each block of t in one and only one 

state and the transition matrices of M are uniquely specified as

1.5 .5\_ /1.0 .0
m (n X ) = , m (n.,x ) =

T 1 1 \.O 1.0/ T 1 z .0 Lo

/.8 .2\ / .4 .6
m (n9,x.) =| |, ' m (n9,x9) =

T 1 \.5 .5 / . \ .3 .7

Therefore, the two machines are interconnected as shown below.
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Figure 4.1
A Decomposition of a PSM

The original state transition is computed by multiplying the two states of the 

two machines.

There are many ways to interconnect component machines. The following 

figure explains several interconnections.

Figure 4.2
Interconnection of Component Machines Mj and M2 for Machine M

The types of decomposition for the various connections are as follows.

(a) Loop free serial-parallel decomposition, if connections a,b, 

and c exist.

(b) Parallel decomposition, if connections a and c exist.
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(c) Quasi-parallei decomposition, if connections b and c exist.

(d) Quasi-serial decomposition, if connections a and b exist.

t(e) Serial decomposition, if only connection b exists.

^•2 Composition of Two-State PSM's

Theorems for decomposition by Bacon and Paz are based on "lumpability11 

and "separability" properties of a given PSM. Paz [51] also showed that an 

n-state PSM can be decomposed by two smaller state PSM's; one has two states 

and the other has n-1 states.

X1 X2 X2
(xp, (xp and (xp, are defined as input to the four-state machine. Similarly, 

the states of the four-state machine are defined in vector form as

^s12’S2p and ^S12’S22^’ which be abbreviated in (1,1), (1,2),

(2,1) and (2,2), respectively. The first index of s.j refers to the machine 

number, and the second indicates the state number.

Decomposition represented here is different from those of Bacon and 

Paz. A decomposition of an n-state PSM by n(n-l)/2 two-state PSM's is studied 

in this research. To explain the decomposition of the n-state machine, we 

start with a composition (synthesis) by component machines.

Consider a composition of a four-symbol/four-state machine by two, 

two-symbol/two-state machines. Let the two, two-symbol/two-state machines be

(
1-a a \

>
b 1-b j

(
1-e e \ 

) .
f 1-f /

I 1-c c
M.(x ) = I

1 z ' \ d 1-d

C
l-g 9

h 1-h

(^.2-3)

(A.2-b)

X1 
Consider a pair of two symbols for Mj and M^. The four symbols, (x^),
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Figure 4.3

Four-Symbol/Four-State Machine Composed of Two, Two-Symbol/Two-State Machines

The state transition matrix of the four-state machine for the first symbol is

X1 
M12^X1)

STATE (1,1)
ID

(1.1) ! (1-a)(1-e)
.= (1,2)/ (l-a)f .

(2.1) 1 b(l-e)

(2.2) 'bf

(1,2) (2,i)

(1-a)e . a(l-e)

(l-a)(l-f) af 

be (l“b)(l~e)

b(l-f) (l-b)f

ae %

a(1"f) J (4.3)

(l-b)e ie
(l-b)(l-f)/

Each element in the matrix is constructed as the product of two probabilities, 

•p!.(x ). p?„(x ), where the subscript indicates the transition probability be

tween two states, i to j and k to £, respectively. The superscript is the ma­

chine number. Equation (4.3) is known as the Kronecker product of M^(x^) and 

M2(x1).

Mj (x])<gM2(x1) =
(l-a)M2(x1)

b M2(X])

a M2(X])

(l-b)M2(x1)
(4.4-a)

The state transition matrices for the other three symbols can be derived simi
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(4.4-b)

and

(4Ji-d)

The discussion is a parallel decomposition An example of this decomposition

is shown in the following example.

5

(^.5)

3

33

(A.A-b), (^Ji-c), andsubstitutedThe numerical quantities i nbecan.

for the other three symbols. composition example is the reverseThe preceding

component machines for a given n-state machineof decomposition, how to find

problem, which is solved in this chapter.where n>2, is a decomposition

5
6

5

1

1 
3

2
3
2_
3

9 1
10 3"

L 1
10" 6

1 7
io Kx

I2(x

(x1)®M2(x2)

M12

M12

M12

(x2)®M2(x1)

(x2)SM2(x2) .

9__ 
10 6

5
10 6

1 1
10 S’

2
3
2
3

9_1 
10 6

9 7
To S

j_
6

7
K

a " 10 • b = 3 * = ; f = ■§" , 9 = Y and h = T7* thUSc~2|,d""5,e

= M

=. M

= M



99

4.3 A Decomposition by Two-State PSM's

Any n-state PSM can be represented by n(n-l) parameters which are non­

negative but which are less than or equal to one. Each state of an n-state PSM 

is named s.,sn,...,s . Consider the first row in a state transition matrix of 12 n

the n-state PSM,

/ai 1 > a12 • • ♦ . a,n\
a21 a22 • • • a2n

M = • • •. . •
• • - • • • •
• • • • • •

la ,
ml am2 • • • aJ

(4.6)

3]. is the transition probability from s^ to s.j i = l,2,...,n. Suppose we are 

interested in the transition from s^ to s^, the rest may be regarded as a pseudo­

state. Assign a^ = )-a^, where a^ is the probability of state transition from 

Sj to the rest, 0£a^£l. By focusing the state transition from s^ to s^ within 

to the remaining states, O^a^^l, and so on.

This process can be repeated for the other rows; thus, M of (4.6) can

the probability a^, the remaining states, s^.s^,.•.,5^ become another pseudo­

state so that a^2 = a^(l-a2), where is the probability of state transition 

be rewritten as

,"al 

blb2-

M =

.b
n

a.(l-a ) a a (l-a_)........... a a ...a
iV b;o-b2) .

clc2*l"c3* clc2"cn ,"cl

(4.7)

Each row has n-1 parameters, and the total number of the parameters is n(rows) 

x(n-l)(per each row). The domain of each parameter is [0,11. We state it in 
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the next theorem.

Theorem 4.1:

All n-state PSM's exist in unit volume in the n(n-1) dimensional

Euclidean space.

Proof:

By mathematical induction, when n=2, 

these are 2x1 = 2 parameters, a^ and b^.

Suppose n=m,

There are m rows, and each row has m-1 parameters so that the total number is 

.m(m-1). Consider n = m+1. By increasing one column at the right of the last 

column, circulating each term below the diagonal terms to right in order to fill 
m-1

the new column, splitting the term z a II z. into z(1-z ) and zz , where z. and 
i=1

z are a.,b.,... or c., and a ,b ,... or c , respectively, inserting the term m i i i’ mm’ m’ r 1

zzm into the left vacant entry of each diagonal term and adding one row below 

the last row, we obtain m+1 rows, and each row now has m parameters. The total 

number is (m+1)m. @

When we consider the interconnection of two-state PSM's, each PSM exists 
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in a unit volume in two dimensions. It is convenient to use a binary number 

system representation for each PSM, such as an m-binany digit represents m two- 

state PSM's and digits 0 and 1 correspond to the first and second states of 

each PSM, respectively.

Numbers which are represented by m-binary digits are 0 through to 2m-l; 

the number of states constructed by m interconnected PSM's is 2m . For ex­

ample, when m=3, the number of states is eight. Consider the binary number 010 

or (010) state in three interconnected PSM's; the first, the second, and the 

third PSM's are in state s^, state s^, and state s^, respectively.

Note: The space defined by m-binary digits is in a unit volume of 2m dimension­

al space. We shall distinguish between the m-binary dimension (denoted as m 

B-vector) from the unit volume in 2m dimensional space (denoted as B-unit vol­

ume). Before we discuss decomposition, the follcviing definitions ere needed.

Def init ion 4.1:

A node of a B-unit volume is a point represented by a coordinate (x^, 

x„,...,x ), where x.£<0,1} for i = l,2,...,m.2 m i

Definition 4.2:

The distance between a pair of two nodes in a B-unit volume is defined 

by the difference of the number of "1" bits in their two coordinates.

For example, the distance between (000) and (001) is one; the distance 

between (010) and (110) is also one, while (000) and (ill) are separated by 

the distance three. This distance is known as the Hamming distance.

Definition 4.3:

A pair of nodes which have the distance one are called adjacent nodes.
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Definition 4.A:

An edge is a line between adjacent nodes on a-B-unit volume.

Definition 4.5:

The direction of an edge is the coordinate direction where the distance 

one takes place.

Definition 4.6:

If the direction of two edges is orthogonal, the two edges are called 

orthogonal edges.

Definition 4.?:

A set of edges is a block (or a subset) of states s, and a partition of 

states is a collection of subsets of s such that each state in s belongs to 

one and only one such subset.

Definition 4.8:

If an edge in a block is orthogonal to an edge in another block, these 

blocks are called orthogonal blocks. If all blocks in states s are orthogonal 

to each other then the partitions are called independent partitions.

Using the above definitions, we show that eight states which are con­

structed with three two-state PSM's are blocked into three orthogonal blocks. 

Since the three two-state PSM's are composed of three unit B-vector spaces 

(001), (010) and (100), and are enclosed by eight nodes, there are three dif­

ferent directions of edges. The total number of independent blocks of three 

two-state PSM's is given in the next theorem. We shall present only the de­

composition of a three-state PSM; however, the decomposition method can be ex­

tended to n-state PSM's, n>3-'
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Theorem 4.2:

The total number of independent partitions of the three states of a 

three-sta.te PSM composed of three two-state PSM's is 4x2x3 = 24.

Proof:

3Since eight states (whose binary representation is 0 through 2^-1) con­

sisting of three two-state PSM's are enclosed by a unit volume in three unit 

B-vector spaces, there are three different directions of edges, and there are 

four edges in each direction (see Figure 4.5). The first block of two states 

is chosen in four ways in any one of four different edges in a direction.

There is a surface plan of the unit volume which is parallel to the chosen edge. 

The second one of two states is selected in two.ways in one on the edges of 

the parallel plan in the remaining two directions. The third block of two 

states assumes the third direction edge which connects the parallel plan to 

the other plan containing the first edge (block). The fourth pair of two 

states, which has not been shared in any direction, may belong in any one of 

three directions, so that the total number of independent partitions is 4x2x3 

= 24.

Before showing a PSM decomposition, it is necessary to present the de­

composition of a three-state stochastic matrix. We introduce pseudoprobabi1ity 

for our convenient.

Definition 4.9:

Pseudoprobability x exists in the extended domain -=°<x<0 or l<x<-c°. A 

probability x belonging in the extended domain or in 0<x<l is called extended 

probability. Similarly, we have an extended stochastic matrix as long as the 

sum of the extended probabilities in each row is one.

Definition 4.9 provides a closed domain, -kkxo®, for an inverse matrix
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operation on an extended stochastic matrix.

Lemma .1:

The domain of the entries in the inverse matrix of an extended stocha­

stic matrix is the same domain of the entries in an extended stochastic matrix, 

if the eigenvalue of the original extended stochastic matrix is not zero.

Proof:

-b 0

1-a a

1-bb

extended stochastic matrix, where -“Xa, b^

-b/l-a-b 1-a/l-a-b

1-b/l-a-b -a/l-a-b

a \
I be an 

1-b/

/1 -a
Let M =( 

\ b

a1 and b* are the extended probabilities, and the sum of each row is one.

Using the extended probability, the decomposibi 1ity of a three-state 

matrix is stated in the next theorem.

Theorem 4.3:

If all three rows of a three-state matrix are linearly independent, then 

a partition of states composed of three two-state extended stochastic matrices, 

which is isomorphic to the original three-state matrix, must be independent.

Proof:

Suppose the contrary is true; i.e., the partition is not independent.

Then there is at least one pair of two blocks which are not orthogonal to each 

other from Definition 4.8, and only one bit in the binary number representation 

of edges in the two blocks is different. This means that a two-state matrix 

represented by two unchanged bits becomes a conrnon factoring matrix to the 
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transition matrices of these two blocks.

Since the third block in the partition is the. complement of the first 

two states, or l-s^-S2» where and s^ are the first and second blocks, re­

spectively, if any two blocks have a common factoring matrix, then the partition 

matrix (all three blocks) has the common factoring matrix. From the existence 

of the common factoring matrix, the given three-state matrix must have a common 

factoring matrix,* in order for this matrix to be isomorphic to three two-state 

extended matrices. Namely, all three rows are not linearly independent. This 

is a contradiction. O

The decomposition of a three-state stochastic matrix by two-state 

stochastic matrices is best explained by the following examples.

Example:

Three two-state stochastic matrices are

(
1-a a \ I 1-c c \ /1-e e |

, M (x.) = and M_(x.) = I I
b 1-b/ z 1 \ d 1-d/ 5 1 y d 1-d /

(4.10)

The matrix composed of three two-state matrices, (X|)M2(x^)M^(x^), in three 

binary digit representation, is found as follows. A partition is assumed as

• {‘6,V; 1,3; 2,5,6,7), where the first block, second block, and third block are

composed of the states 0 and 4; 1 and 3; 2,5,6 and 7; respectively. The tran

sition probability p.j(x^) from the

matrix is found as follows: •

t*1 state to the jt^ state in the composed

p..(x.) = p! . (x,)*p? . (x,)*p? . (x ), 
PU r 1^1 1 l2J2 1 ,3J3 1

where the superscript is the machine number, the subscript indicates the state 

transition between, and i = ’ ] *2’3* =
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For example, 1=0 and j=l; the state transition 000->-001 , namely i r0’
Jr0 in M]; i2=0, j2==0 in M2; 1^=0, j.rl in M3; thus ^(x,) - (1-a), xi) =

*2
(1-c), = e and P01(xj) = (l~a) (l-c)e which is located at the first row

and the third column in (4.11).

CT 1,3

CT r(1-a)(1-c)(1-e) a(l-c)(1-e) (1-a) (l.-c)e (l-a)ce

b(l-c)(l-e) . (l-b)(1-c)(l-e) b(l-c)e bee

CT (1-a)(1-c)f a(l-c)f (1-a)(1-c)(1-f) d-a)c(l-f)

(l-a)df adf (l-a)d(l-f) d-a)(l-d)(l-f)

(l-a)d(l-e) ad(1-e) (l-a)de (1-a)(l-d)e

CT bd(l-e) (l-b)d(l-e) bde b(l-d)e

6,7' i b(l-c)f (1-b) (l-c)f b(i-c)d-f) bc(l-f)
'bdf (l-b)df bd(l-f) b(l-d)(1-f)

. 2,5,6,/

04 (l-a)c(l-e) ec(l-e) e(l-c)e ace \

bc(l-e) (l-b)c(l-e) (1-b)(l-c)e (l-b)ce y

CT (l-a)cf acf a(l-c)(1-f)
ac(l-f) \

(1-a) (l-d)f a(l-d)f ad (1-f) a(l-d)(l-f)

CT (1-a)(1-d)(1-e) a(l-d)(1-e) ade
a(l-d)e 1

CT b(l-d)(l-e) (1-b)(1-d)(1-e) (l-b)de
(l-b)(l-d)e /

bcf (l-b)cf (1-b)(l-c)(l-f) (l-b)c(l-f) /

b(l-d)f (1-b)(1-d)f (l-b)d(l-f) (1-b)(1-d)(1-f)J (4.11)

An independent partition {bpb^jb^} = {0; 1,3; 2,5,6,7) is used in

(4.11) and is depicted in Figure 4.5.
Ms <001 oil

Figure 4.5 A Partition {0,4; 1,3; 2,5,6,71
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It is easy to verify that the partition is independent. Let a given three-state

stochastic matrix be

S1 S2 S3
S1 / 1 -a a(l-r) ar

M(xj) = s2 6s 1-6 S(l-s)

> S3 Y(l-t) Yt 1-Y

(4.12)

Let the first block, 0,A, the second block 1,3 and the third block 2,5,6,? be

Sp $2 and s^, respectively. Unknown parameters a,b,c,d,e and f in (4.10) are 

found by equating the first two columns in (4.11) with the first two columns 

in (4.12), respectively.

State transitions are found as

(1-c) (1-e) = l-a, s|">sz: ^~a)e+^e=2oi^-r)

S2"*S1: 0-c) f+df=2gs , S2"*S2: 0"a) = (4.13)

s^s^: 2d(1-e) + (l-c+d)f=4y(1-t), 2b(l-f) + (l-a+b)e=4yt.

For simplicity, we shall use the following conventions:

Pivot states denoted by p^ and ?2 are the diagonal term transition in

(4.13); s2')"s2'
/ i P]2 \

Pivot matrix denoted by I is a 2x2 matrix of which the
\ P21 1"P22/

diagonal terms are the pivot states.

Note: Pivot matrix is a principal minor or a matrix with a rearranged order of

rows/columns of the principal minor. In (4.13), Pj = and P2 = and

P11 = a, P12 = 2a(1-r)> P2] = 2^s and ?22 = 0-

Each column element of the third row in (4.13) which is called the off- 

pivot state is containing the off-diagonal term of the same column of the pivot 
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matrix and can be rewritten by substituting the quantity of the term in the ele­

ment. Therefore, the remaining parts of the column elements of the off-pivot 

state denoted by and q£.are the probability difference of the state transi­

tions from the off-pivot state (1) to the pivot state and (2) to the off-dia­

gonal state of the pivot matrix in the same column. In (4.13), the probability

the first column is the probability of the state transition

pivot state) minus the probability of the state transition

off-diagonal state) or

the probability of the the pivot

state) minus the off-d ia-

called

difference q^ in 

s^s| (s] is the 

s^-*s2 (s2 is the 

second column is

q^ = 4y(l-t)-20s. Similarly q2 in the 

state transition (s2 *s

probability of the state transition *s the

gonal state) or q2 = 4yt-2a(l-r). p.j and q. for i, j = 1,2 shall be 

p-q parameters.

From (4.13), we have six unknowns and six equations.

Note: The multiplication factors 4 and 2 in the above q^ and q2 equations come 

from the sums of two rows in the second block 1,3 and four rows in the third 

block 2,5,6,?, respectively, by assuming equal distribution among states in 

each block. The equations (4.13) can be rewritten as follows:

c(l-e)+e=a=p^ , (l-a+b)e=2a(l-r)=p^2 ,

(1-c+d)f=2gs=p21 , a(l-f)+f=3=p22 ,

2d(l-e)=4y(l-t)-2Bs=q^ , 2b(1-f)=4yt-2a(1 -r)=q2 . (4.14)

The unknown quantities, a,b,c and d are found to be functions of e and f from 

(4.14)^
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b-b " 2(l-f) ’

pire 
c/— ’

d_ qi
d 2(l-e) ’

(4.16)

(4.17)

(4.18)

By substituting a,b and c,d into the remaining equations in (4.14), re­

spectively,

Pii9]
° p2i ■

and
P9<f 9

(|-+HFTT16 " pi2 (,,-20)

By solving (4.19) and (4.20) for e and f.

(4.21)

and

(4.22)

{2(l-e)-2(p11-e)+q1]f = 2p21(l-e)

{2(l-f)-2(p22-f)+q2}e = 2p]2(l-f)

f " 2^ [2P|2-(2<'-P22>+cl2>e] •

2p21(1-e) 
f - 2(l-p1 ^4-q

By eliminating f from (4.21) and (4.22),

Zfp12P21^~e^ = t2p12-(2(l-p22)+q2}e]{2(l-p]])+q1}

[{2(1-pj])+q1}{2(l-p22)+q2}-4p12P21]e = 2p{2(2(1-p1})+q])~4p)2p2j

= 2p12{2(l‘Pll)+ql}-Z,p12P21 ____
6 {2(l-p] ])+q1 }{2(l-p22)+q2}-4p1"2p2] (4.23)
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By back-substitution of the quantity e in (4.22), (4.18) and (4.17) and of the 

quantity f in (4.16) and (4.15), numerical quantities for a,b,c and d are de­

termi ned.s

Numerical Example 4.2

(
0.3 0.6 0.1 \
0.2 0.6 0.2 I, (4.24)

‘o.l 0.2 0.7/

find a,B,y,r,s and t in (4.12) as follows:

a = 7/10 , ' r = 1/7 ,

B = 4/10 , s = 1/2 ,

y = 3/10 , t = 2/3 .

From (4.14),

Pj! = 7/10 , p12 =6/5 , '

P2] = 2/5 , p22 = 4/10,

q, = 0 , q2 = -2/5. ' (2.25)

From (4.23), (4.22), (4.15), (4.16), (4.17) and (4.18),

e = 1/3, f = 8/9, a = -44/10, b = -9/5 , (2.26)

c = 11/20 and d = 0 .

Mj(xj) is an extended stochastic matrix because of a,b<0;

M2(Xj) and M^(x^) are stochastic matrices

In order for all decomposed two-state matrices to be strictly stochastic, 

we shall find conditions which are assured stochastics.

There are three ways to map the third block b = 2,5,b,7 onto a state 

s. for i = 1,2,3 along three axes*
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1.

The q-parameters are

= 4gs-2y(l-t)ql
(t.27)

= 4g(l-s)-2ar .q2

2. On

The q-parameters are

(^.28)

There

4.2:Lemma

is always selected as the off-pivot, then there exists at least one single set 

of the positive q-parameters along the three-way mapping (three directions) of 

the third block.

Proof:

a given three-state stochastic matrix beLet

a

a21

all

a22 a23

a31

a12

at least one single set of positive q-parameters.

the mapping of the third block b^

a13

a33

On the mapping of the third block b 
/I-a ar 

the pivot matrix

on Sj and b^-*s^, b^-^s^, we have

on s2 and b|->S], ^2^S3’ We *iave

q^ = 4-a(l-r)~2yt

the pivot matrix I
\ Yt

Let {bpb2,b^} be an independent partition of eight states composed of 

three two-state PSM's. If the block,consisting of four states in the partition, 

q2 = 4’ar-2S(l-s)
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Without loss of generality, {b^bz.b^} is assumed as (0,^; 1,3; 2,5,6,7).

By selecting S3 as the off-pivot state, the q-parameters are computed,

S] = =31 - 2 a21

q2 - a32 " 2 a12 '

Let and q^ be negative so that

2 a^ < a2j and 2 a^ < a^ .

2. By choosing as the off-pivot state, the q-parameters are

ql * 11 a21 ' 2 a31

q2 ■ a23 " 2 =13 '

sine a^ < y from the first mapping,

ql = 21 a21 ~ 2 a31 > 4 a21 ~ 2 2 a21 = 3 a21 > °

so q^ is positive.

Suppose q„ is negative, 2 a__ < a., . 2 15
3. In the last mapping of the third block, the q-parameters are

ql = =12 " 2 =32

q2 " =13 ' 2 =23 '

q^ and q^ are positive since a]2>^'a32 anc* a13>2a23 " ®

For the sake of simplicity, mapping notations are defined as follows:

The first row indicates block assignment to the states, and the second row
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presents p-q parameters assignment to the blocks. The form is as follows:

y z 
p q

For example

P1

b2

P2

means blocks b^ and b^ are assigned 

the numerical constants, P■] i»P2] 

and two, respectively. Finally ll|"

into states s^ and s^, respectively, and 

and P]2,*D22,C*2 are ass*9nec* to columns one 

in the third column shows that state s^ is 

the off-pivot state. This mapping assignment is related to compute the unknown 

variables a,b,c,d,e and f. Equations (A.1A) can be represented in the following 

shortened form.

c e

f a

d b

indicates a,b and e are always associated with block b^ and p^-parameters, and 

c,d and f are always associated with block b. and p -parameters. When the block
I b2 bl \ 

assignment is reversed like , the expressions of a,b,c,d,e and f areI P1 p2 /

changed like

a f

e c

b d

which means P22">"P11 qr>q2’ P12"*P21 and P21""P12 ' 
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Also, a,c always come from the diagonal terms of the pivot matrix; b,d always 

come from the off-pivpt state (in the above example, s^), and e,f always come

from the off-diagonal terms of the pivot matrix.
2

Since q_ = - ■=■ of M(x.) 
<- b I

in the numerical example 4.2, we must find an

other mapping in order to get three two-state stochastic matrices.

Consider a mapping

e.

b

a

the six equations to solve are as follows.

(1 —c)(l-e) = l-a

2d(1-e)+(l-c)f+df=4Ss

(1- c) f-i-df^Zyo-t)

(l-a)e+be=2ar

(1-a)e+2b(1-f)+be=4g(1 -s)

(l-a)(l-f) = l-y .

(4.29)

Then Pj = «> 9] = 4Bs-2y(l-t), p21 = 2y(l-t), pJ2 = 2ar, q2 = 4g(l-s)-2ar and

P22 = Y-

To find a,b,c,d,e and f,

h = 2
b ITFry

pire

C = -TT-

. qi
d rrr^y

(4.30)

(4.31)

(4.32)

(4.33)

f = J__
2p12

[2p12-{2(l-p22)+q2}e] (4.34)
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2p12E(2(l-p11)+q1}-2p21J
6 = ---------------------------------- :------
' {2(l-p11)+q1){2(l-p22)+q2}-^p12p21

(^.35)

= 7 i 1=1 n = ? JL 1 = 1P11 10 , q1 - 4 10 2 " 10 3 5 5 5 ’ P21 10 3 5 ’

n =0-21=1 n = L AL-7.1L- 1L- 1=1p12 z W 7 5 ’ - 2 . 10 2 IO 7 “ 5 5 5 *

n = _3
p22 10 *

Thus q^ and q2 are positive.

Decomposed matrices are found as:

= 1 . _ 21 n
50 ’ 50 ’ c 60 ’

7 1 2d = 20 » e = j , and f = y .

By substituting these values In and taking the sum of all elements in a

block divided by the number of rows in it, (see Definition 4.14), it is easy 

to check the substituted matrix having the same quantities as (4.24).

Note: Equations, (4.30) through (4.35) are the same as (4.15) through (4.18) 

and (4.22) and (4.23) . The next step is to show that the two diagonal terms 

of the pivot matrix are positive when equating (4.11) with (4.12). The equat­

ing result is shown in (4.13) or (4.14). The two terms which assure a and c>0 

of (4.15) and (4.17), P^i"e^.O and P22“f2.0, are included in the next theorem. 

The necessary and sufficient conditions of a decomposable three-state matrix 

are also stated in the following theorem.

Theorem 4.4:

Suppose {bpb2,b^} is an independent partition, and the block consist­

ing of four states is always assigned as the off-pivot state.



116

A given three-state stochastic matrix is decomposable by three two-state

stochastic matrices if and only if

1. 2X1. >0 for i = 1,2, (4.36)

and

2. e = {2(1-p11)+q1}{2(l-p22)+q2}-iip12p21>2p.-r {2+q.-2(p1 .+p2.) }>0

(t.37)

2p.~
3- e >‘ {2+qi-2(plj+p2.)} for i = 1,2' (If.38)

where i = 2 if i=l

= 1 if i=2 .

Proof:

Without loss of generality, {bpb2,b^} is assumed as {0,4; 1,3; 2,5,6,?}.

Proof of Sufficiency:

matrix.with the given three-state

hypothesis 1, (4.16) and

(4.39)

f = 1-

pivot state, and b^ and b2 

through (4.18), and (4.22)

1 KH11 P21

P2, respectively, (4.15) 

equating the block matrix

2pIZ 
e - ---------e

Note: 11P|1,P22-O> 2^P]2’P21-° and ^l ,q2-"2* From

(4.18), l>_b, d>0, if l>e, f>0. From (4.22), (4.23) and hypothesis 2,

. ) , the row elements of the off-
'"p22/

states Pj and

and (4.23) are obtained by

Taking the pivot matrix I
\ P21 

as the pivot

2p. {2(l-p _)+q }
2^------------<2tq]-2(p],+p21))

= [{2(1-p11)+q1){2(l-p22)+q2}-4p12p21

- {2(l-p22)+c2}{2+q1-2(p^,+p21)}]
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= 1 [{2(l-P22)tq2){2(l-p11)+q1-2-q1+2(p11 + P2])}-l,p]2P2|]

= -AL {2(l-p )+q -2p } = —{2+q -2(p +p )}<1 . (4^0)
C» l»U. U I «P» C» te \ L 4-L

Since p.-p 1-p.q.^0 (by Lemma 4.2) for i =1,2, from (4.40) and the similar 

equation of e to the above equation of‘f , 

{2(l-pi1)+q1}{2(l-p22)+q2-2pi2} 2pi2{2(1"P11)+q]"2P21} .
e = 1 - —•----------- ‘ '1 1 ’'

so l>e, f>0

Also from (4.15), (4.17)

pll^e

and 1>P..>0

e e

and hypothesis 3, namely (4.38),

and P22

so that l>a, c>0 . (4.42)

Proof of Necessity:

Since the three-state matrix is decomposable, there are l>a, b, c, d>0 

and l>e, f>0.

From Lemma 4.2, there is at least a mapping of blocks to states such

that q.^O for i = 1,2. From (4.16) and (4.18)

2(l-e)>q1 and 2(l-f)>q2 .

Also

1 -e>^Pj j -e>0 and 1 -f>_P22~f>0

Inserting (4.22) and (4.23) into the above equation

Pn-«2P
2P {2(1-P )+q 1-1.P22P 2P (2+q -2(p )}

Pl I i------------------ =----------------------------- ------------------ s------------------ ('>.‘13)
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and

P22-f>0

2P2]
P„ > —{2+q -2(p +p )} Ul.W)
£ £ Z- I 4-

vie have

2p.- **
e > {2+q.-2(p1 .+P2.)} for i = 1,2

i i

From (4.42), (4.43) and (4.44)

2P^*ri o
1>e = ---- LL {2+q -2(p +p )}>0

£ 1 1121—
(4.46)

2P
1>f {2+q.-2(p._+P„)}>0 ,E 1 1Z ZZ —

(4.47)

E>2p.-r- {2+q.-2(p1 . + P2.) }>0 (4.48)

From (4.15) and (4.17),

1 > p.. . — i i

.Finally, by (4.16) and (4.18)

2(l-f)y2 and 2(l~e)>qj, (4.4g)

since l>e, f>0 ,

2>q. for i = 1,2 , ®

The decomposition of a three-state PSM by three two-state PSM's may be stated 

in procedure form.
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Step (A). Evaluate a,3,Y and r,s,t of a three-state matrix from (4.12).

Step (B). Find an independent partition of eight states composed of three B- 

vectors or eight nodes in B-unit volume.

Step (C). Determine a mapping of the partition on states of the given three- 

state PSM such that all q-parameters of the mapping are positive by 

using (4.14), (4.27) or (4.28). Lemma 4.2 shows that there exists 

at least one single set of such q-parameters.

Step (D). Apply Theorem 4.4 on the partition and the mapping. If the conditions 

of the theorem are not satisfied, then find another mapping such that 

all q-parameters are positive and go to step (D). If there is no 

more such mapping, then the given three-state PSM is not decomposable.

Step (E). Otherwise, the three-state PSM is decomposable (only when the condi­

tions are satisfied). Compute the state transition probabilities of 

the three (component) two-state PSM's.

The decomposition procedure is demonstrated in the following example.

Example 4,3:

A given three-state transition matrix is (4.24)

Step (A) from (4.12), a = 7/10, B = 4/10, y = 3/10 and r = 1/7, s = 1/2, t = 2/3.

Step (B) from Figure 4.5, an" independent partition is found as {b^.b^jb^} =

(CT; 1,3; 2,57577).
I b1 b2 

Step (C) A mapping is chosen as I
\ s] s2

the second states of the three-state PSM. 

where s, and are the first and
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In this mapping the first and second blocks and b^ are assigned onto the 

first and second states s, and sn of the given three-state transition matrix. 

In other twords, the sum of.state probabilities in a block represented by 

three binary digits, or by the combined individual states of the three two-state 

matrices and of (4.10), is regarded as the state probability of the 

state mapped by the block in the three-state matrix. The resulted equations 

of this mapping are described in (4.13) through (4.23). From (4.14)

ql 4y(l-t)-2gs 4 -2 1() 2 0,

q2 = 4y(t)-2a(l-r) =4yQ-j-2-j-Q-j=-^-.

The quantity of q2 is negative so that another mapping which provides positive 

q-parameters, must be considered. Since there are three-way mapping of the 

third block b^ onto each direction of three-dimensional space, we take the

/ ^1 ^2 \
other mapping , where s_ is the third state of the three-state matrix.Is s I 3\S1 53/ 5

The resulted equations of the second mapping are described in (4.27),

and (4.29) through (4.35). From (4.27),

ql /»Bs-2Y(l-t) 4 1Q 2 "2 3 

the quantity of q^ is found as positive,
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q2 2‘5(l-s)-2ar 11 jq 2 " 2 ]0 7 = 5 ’ 

so that this mapping provides a set of positive q-parameters.

Step (D) From the quantities a,g,Y,r,s and t and the mapping (4.29) , Pj| = fo• 

1 1 3 3 3
P12 = J’ P21 = S’’ P22 = To’ ql = *5 and q2 = "S' Fr°m the second condition of

the theorem,

e =

56 
25’

2p12{2+qr2(pll+p21)} = 2 J {2 + 5 " 2(^0 + 5)}

- 2f13 8. = 2 5 _ 2
" 5k5 5’ 5 5" 5 *

2p21{2+q2-2(?.??22)} = 2 ^{2 - 2(- ^)}

= 2 ,13 5x _ 2 8 = J6.
5 5 5' " 5 5 25 *

The first condition.

3
2 > v > 0 is held;

!>

the second condition

§ > > 0 and 5| > 1| > 0, and

the third condition

56 10 2 = 20
25 5 7 35

and

56 16 2 „ 6 _2 8 , . .
TT------ -  Y = 2 — - 2-j-=-=7Y> 0 are also held.
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All three conditions of the theorem are satisfied; therefore, the example matrix 

is decomposable.

step (E)' From (A.30), (4.31), (4.32), (4.33), (4.34) and (4.35),

1 k 21  39 . 7 1a " 50’ b 50' C 60* d " 20’ e 7

. , 2and f = — .

The decomposed matrices are

, 49 1
/ 50 50

M.tx.) =1

\1L 29X 50 50

and

/A 1 >
I 1 7

M,(x.) =
\2 5 .
X7 7 '

/21 39
[ Ko 60 

M9(X]) =
\7_ J2

20 20

Theorem 4.5:

If all state stochastic matrices associated with each input symbol in 

a three-state PSM are decomposable, then the three-state PSM can be decomposed 

by three two-state PSM's.

Proof:

From Theorem 4.4, since each three-state matrix is decomposable, these 

exist decomposed three two-state matrices for each three-state matrix. By de­

fining the first two-state PSM consisting of all the first two-state matrices, 

the second two-state PSM with all the second tv/o-state matrices and the third 

two-state PSM with all the third two-state matrices, the original three-state
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transitions are isomorphic to the transition of blocks which are used for de­

composition.

The e equation in Theorem 4.4 can be rewritten in a matrix form so that 

the decomposition, n>3, can be handled in a similar manner.

In (4.14) and (4.29), p~q parameters are rewritten in:

(4.50)

For the sake of simplicity, each parameter after the replacement (4.50) is ex­

pressed by its original notation without prime, thus we get the following equa­

tion.

e = {2(l-p11)+4q1-2p2^}{2(l-p22)+4q2-2p12}-4-4p12P2]

= 4(1-?^) (l-p22)+8(l-p]1)q2-4p12(l-p11) +8(1 -p22)q 1

16q;q2-8p,2q,, U-P22)-8p2, 2p2,• l,p,2p2!

= 4{(l-p]1)(l-p22)-4p12p21}+8{(l-p22)q2-p]2q]}

+ 8^(|-?22,VP21q2Hp12(,'Pl1,"‘'P21('"P22,

" 8p12P21+l6qlq2

+8
ql q2

P21 1-P22

- 4p12(l-p11)-4p21(l-p22)-8p12p21+16q1q2
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’■P]]

P21

P12 

l-p22
+ ^^2! + 4 <2

’’Pll P12

ql -q2
‘ P21(,"P22)

4.4 Decomposition of a Matrix Which Consists of Dependent Relations Among 

Its Rows

In the previous section, the discussion of decomposition is based on a 

linearly independent relation between rows of a given matrix. When rows in a 

matrix are linearly dependent, the required number of elemental two-state ma­

trices is reduced in decomposition. This special case is discussed here.

Using an example,
S1 S2 S3

s, /1-a a(l-r) ar \

MCx.j) = s2 I gs 1-g e(l-s) j (A. 12)

s^ Xyt Y(l-t) 1-y /

If numerical quantities of g and s are dependent on a,r,y and t, namely

g = f(a,r,y,t), s = g(a,r,y,t), the required number of two-state matrices for 

decomposition is two. These are

(
1-a a

b 1-b (
1-c c \

)• (4.52)
d 1-d /

A matrix composed of the two preceding matrices using blocks: {00}=0=s^, 

{01,10}=l,2=S2> 111}=3=s^ follows:
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(l-a)(l-c) (l-a)c+a(l-c) ac \

l{(1-a)d+b(l-c)} l{(l-a)(l-d)+(l-b)(l-c)} |{a(l-d)+(1-b)c) J (4.53) 

bd b(]-d)+(l-b)d (l-b)(l-d) /

(1-a)(1-c) = 1-a , (l-a)c+a(l-c) = a(l-r)

b(l-d)+(l-b)d = y(l-t), (l-b)(l-d) = 1-y ,
*

we get

a = a+c-ac, ' a+c-ac-ac = a(l-r) = a-ac
(4.54)

y = b+d-bd, b+d-bd-bd = Y(l~t) - Y~bd

r = TT~TT and t = uTjAit • (4.55)a+c-ac b+d-bd 

By inserting a = ™ ar.d b = y 
d into the rigrit"*hand sides of ct and y,

ar . ar yt . . yt . /,. r<\«=7-+c- —c, Y = 7-Td-— d (4.56)

2
c -(ar+a)c+ar = 0

2d -(yt+YJd+Yt = 0

Hence

r = (cir+ci)±>/a^(r+l)2-liYt
2

(Yt+Y)±*/Y2(t+l)-4Yt

(4.57)

(4.58)

a _ ar _ _____2ar_____________
C Q -

a(r+l)±/a (r+1) -4Yt

b = Il = 2Yt____________
d

Y(l+t)±/Y (t+l)'u-4Yt 

(4.59)

(4.60)
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Decomposable conditions are 0<a, b, c, d<l, so that we have to select the ap­

propriate signs for these square roots.

4.5 Multiplication of Stochastic Matrices by Decomposed Two-State Matrices

State transitions of an n-state machine which processes an ^-length in­

put string are the product of matrices M „ ....M ,M , where M. for i=m-£-l, r 3 r m-£-l m-1 nr 1 

...,m-1,m is an qxn stochastic matrix. Since interconnected (decomposed) two- 

state component machines are isomorphic, the state transitions of the original 

n-state machine can be computed by matrix products of the component machines.

When we are interested in a single state transition, s. to s. in the original

PSM, then-state probability p.j of the state transition can be found in the

element (i,j) of the product of the n-state matrices. The probability p.. can

also be computed by the product of the component (two-state stochastic) matrices 

along with the interconnection i to j with which we are concerned. Multipli­

cation of the component matrices is presented in this section.

Thus the results of a twO-state PSM in Chapter III may be applicable 

to all insights of the decomposed component machines and consequently to the 

original n-state machine.

Let A and B be matrices;

(^61)

Definition 4.10:

By moving every row up one and inserting the displaced top row into 

the vacant bottom row, B becomes ^B such as
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Similarly are found

and

in this section, it is assumed that each row and column involved in matrix mul­

tiplication consist of each other so that the multiplication is always defined.

Definition 4.11:

The sum of *B for i=0,1,...,m-l is denoted as

RB = °B + + 2B + ... + m"1B 

where B = B, and m is the number of rows.

(4.62)
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Definition 4.12:

A special multiplication between A and B called dot-circle multiplication 

is defined as

AQB = A • RB = - (A-B + A-'bh-. . .+A*m"1B) 
m (4.63)

where ' indicates the regular matrix multiplication.

Definition 4.13:

Let A.. and B. .
. |J U

which are referred as "block matrices", be qxq sub­

matrices in A and B, respectively. A and B become

A11 A12 • • • A, Im .
• • • •

A =1 * • • • • * 1“ (A:;)
• • • •

\ ’ • • . • * /

A£1 A£2 • • • A£m

(4.64)

; . B  ... B ipl m2 mn

AOB = ( Y A., O B, .) = (C..) 
ik kj ij

(4.65)

(4.66)

Example

A21

A11 A12 \ /Bn 6i2

' B21 B22



129

C A . AAn' B11 A12* B21

C)2
R R

= An- B12+A12- B22

R Re21 =A21' B)l+A22- =21

R R
C22 = A21* B12+A22" B22 *

Def init ion 4.14;

Let A be

a . a „ ... a ml m2 mn

(4.67)

The total sum of elements in A divided by the row number m is called a "block 

sum" denoted by [Al, such as

. m n
[A] = 1 I I a...

m 1=1 J-l 'J

Theorem 4.6:

A Q B = ~(A00B+A01B+A0?B+...+AOm"1B) (4.68)

Proof:

Without loss of generality, we use 4x4 matrices of A and B. A., and B..
U U 

are 2x2 submatrices of A and B, respectively, where i,j=1,2.

Left-hand side:

A O B = A(°B+1B+2B+3B)



130

(4.69)
Right-hand side:

0 ,v /All A12\ /B11 B12\ /All A12\. / B21 B22 \
aoub+ao'b = 0 + 0 (4.70)

\A21 A22 ' \B21 B22 ' ' A21 A22 'Bll B12

A 1Rb1)+A|2s21+A11B2l +A£B11 A!1B12+A?2B22+A?iB22+A?2B!2 \

""I R R R R R R R R / (4-71)
U21 B1I+A22B21+A21B2I+A22B1I A2IB|2+A22B22+A21B22+A22B12/

Consider the (1,1) elements in (4.71) and (4.69), 

_ ,0_ 1,. o 1 x ,0 I n I ■Ai') “iC 62r “21’ + Ai2! B2r 'B2r'8li+ Bii)

By definition

, I b21 b22 \ / b41 b42 \
B = I and B" = I,

b31 b32 ' ' bll b12 '

and comparison

A1](1bH+1b21) + A12(1b21 + 1bU) in (Z,e72) to

= B +B

A^(b'+B ) + Aj2(B +b") in (4.69).

, / b21 b22\ / b41 b42
B11+B2I= L . V L , 

\b1l b12/ \ b31

Comparing (1,2), (2,1) and (2,2) elements in (4.71) and (4.69), each element is
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equal.

We shall present the scheme using the example'of a three-state PSM.

The scheme could easily be extended for n-state PSM, n>3.

Suppose a partition {bpb^jb^J is {0,4; 1,3; 2,5,6,7). Since the ori­

ginal PSM and the decomposed two-state PSM’s are isomorphic, there must be an 

equivalent matrix multiplication on the decomposed matrices to the multipli­

cation on the original three-state matrices.

Using state transfer notation "ij" which indicates s

parameters a,b,c,..., (4.11) becomes

to s. instead of
J

s

M

M31

M21

S3

S2

00 04 01 03 02 05 06 07

40 44 41 43 42 45 46 47

10 14 11 13 12 15 16 17

30 34 s ? 32 35 36 37

20 24 21 23 22 25 26 27

50 54 51 53 52 55 56 57

60 64 61 63 62 65 66 67

70 74 71 73 72 75 76 77

Consider the state transfer s^ to s after a multiplication denoted as

there are three ways to reach- s^.
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This computation process is indicated by

(4.74)

second matrix."where the prime indicates the

Theorem ^.7:

If each element of n-state transition matrix is a block matrix, thenan

the state transition s. after receiving two inputs isto

n
(4.75)

k=l

where m is

Proof:

Without loss of generality,

namely

(4.76)

where

S i nee

s.
J

M* .
nj

the row number of M., . ik

= [M11][mJ1] + [M12J [M^] + [m13][m^]

[M., ] [M,1 J = - [(M.. M.. 
ik kj mil i2

we shall use (4.73), M matrix, or (4.74),

Mi ,0m;,

... M. )O 
in

M ,00 04x , ,00 04xH11 = ^0 If-,1 and M11 " (40 •

/«ii\
[(Mu M,2 hi3)G(m2J] = j [M|1O1||+M12C>121+M|;1G^31] 

Si

s. = s, and s. = s..
i 1 J 1
Consider the path, s.—s.—s1 which means

M..
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,00 0Au,00_ Xo _ 1 /CO 04h00+52
2 '40 44m40 'W k00 Ok'1 ~ 2 k40 44m40+00 kk+Ok’ *

taking the "block sum" of the individual term in (4.77)

1 [Hn'Hn1 ' [(°o °i)1[i2
- [«,,][«;,] .

Similarly, we can compute the path,

Sj------- -------------Sj , considering the following substitution,

00 -a-01, 04-5— 03, 40-5—41, 44——43,

oo-s— To, oT-—-TT, 30, TT-s—3^,

We obtain

[M^] [M2)] = rM12CJM2i3 •

Consider the path, s^-------- s^-------- s^

[Mt 3] = 1 {02+05+06+07+42+45+46+47}

[M^ 1 ] = -J- .{^2^+^+54+60+64+70+7^}.

we shall prove

^M13^M31^ " 2^M13'M31^ = ^M13{M31+ M31+ M31+3m31^

[M13] [M^ 1 ] = |[M 13] {20+24+50+pr+'50+Pr+70+75‘}.

and consider 02 { 2O+2T+5O+5T+,5o+W+7O+7T}

+ os^+pr+^+PT+To+TT+Io+IT}
+ O6{13+^+7O+77r+2C+2T+5O+52r}

(4.77)

(A.78)

(A.79)

(4.80)
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Example

where

so that

+ 47{70+7^+20+24+50+54+60+6A},

20 24 50 5^ 70 T-a
1 ,02 05 06 07JH 50 5^ . ,^0 ^.,70 7Tx.,20 2^
2 ^42 45 46 47;4tv 60 64 1 VO 74' k20 24' l50 54J

To TV nr 50 5V Vo 6V

1 [(022 lk42
05 06
45 46

2tMi3*M3^ ‘ 0

4.4:

Let M be

.4

.1

.2

J

.3

.4

•h
.2

I*2
M" t3

.1

.2
>

.3

.4

M21

.1

.6

.3

.1
and

I 12 .4

.2

M =

[M,,]

[M21!

[mI21\/;'1 •6

[M22J / \ .55 .hs
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Consider the paths, s^------- s^--------- s^ and

S1--------S2-------- S1 »

[M] 1 ] [M^] = 0.4x0,4 = 0.16 

and

[M12][M2f] = 0-6x0-55 = °-33

Using (4.77),

>,1%,] '\WX ;|)}]
"f[(:3 :1)(:5 =tI2(:5,(-5 •3)1

”^^^ 25 1*5^ ~ T (•15-i-.u3-r.25-i-.i5) = .25*.64 = .16

and

2^M12GM21-’ = 2^.1 .4^^.! .4^+^.6

4[(j :4)(:7 :4)] =t[2(‘,5)(-7

= V[2(:35 ^20)] = {(•z»9+-28+.35+.20)

= 0.25x1.32 = .33

Dot-circle multiplication can be extended to determine state transition, s. to

3 3sj, on more than two input lengths. For example s.-------s, typically, s^—"—s,

in a three-state PSM will be
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(A.81)

Note: The commutative, distributive and associative laws on the operator, 

dot-circle multiplicat ion, do not exist.

Contraction Coefficient:

The decomposed component matrix is shown in (4.11); each block matrix 

r* 0consists of the product of the coefficient matrix ) and the stochastic rr.a- 

Therefore, when a dot-circle 

of state transition (or a product 

no longer has the stochastic pro-

a9 2), (4.82)

0 Sj bj 1-bj 0 s2 b2 1“b2

trix ( , . where 0<a, b<l and 0<r, s<l.D l"D — — —
multiplication is performed on a computation 

of block matrices) the result of the product 

perty (the sum of a row is one).

For example,

r. 0 1-a. a. r 0 1-a

where 0£apa2,b1> b2£l and O^r^ ,^,5^ ,s2<l.

The resulting product can be contracted due to the diagonal matrix in 

which all diagonal terms are less than one but are nonnegative. When r|=s^ and 

r2=:s2, tbe Proc*uct (4.82) becomes 

1-a. a 1-a a
A = rlr2( b] l-bj( b2 l-b2)

When Tj/Sj and r27fs2’ tbe following process may provide a simple way of comput­

ing the matrix product.
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Define:

P = r2/s2*

= 1~a2-pb2, X12 = p-a2-pb2,

1 "1 "I L 1 1 "I
X21 = P ‘P a2"b2’ X22 = 1"P a2"b2*

p or p is attached on the term X.j which does appear in the (i,j) element in 

the matrix; the term A becomes*

0 S1S2

\ I l-ag-ajX^

/ \ b +b X ,-b2-b1X22
(1i.83)

Equation (4.83) is very similar to the result in Chapter Hi. Note:

X.j. = 1-a2"b2 for i,J = 1,2 when r2 = s2.

Equation (4.11) can be rewritten in block matrix form:

/1-a a /(l-a)e 0\ /l-c c \ 
(1-c)(l-e)^ b 0 be/ \1-c c/

I
/(1-c)f 0\ /1-a aV [l-c c \
In aJ 1 a J* (l-s)(l-f) I . . .
\ u dr/\ida/| \ d l—d/

'cf 0 Vl~a a 
P (l-d)fAb 1-b, a(l-f)

, I
1-b\.

1-b/.

I

I

[1-a 
d(l-=)

(
1-c c \

a i-a/ d 1 wd/

/1-a a \ /ae 0 Vd 1-d
(l"d)(1*e)(b (l-b)eAd 1-d

cf 0 Vb 1-b\ [l-c c \
n <1 alfAh i h/,(l-b)(l-f)l , „ .).! 
<0 tl-djt/yb 1-b/ \ d i d,'/

Compute the path, s^ s1’ the elements of the second matrix is represented

with primes,

= (1-c)(1-e)(l-c')(1-e') ^’a

1-b/ ))
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These computations are carried out using the results of (4.83) and Chapter Hi.

Most properties in Chapter ill are valid, if p = r/s, where r and s are the 

elements of a coefficient matrix, is closer to one.
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CHAPTER V

N-STATE INPUT-TRACEABLE PROBABILISTIC SEQUENTIAL MACHINE

5. 'Introduction

The two-state, input-traceable machine and the decomposition of an 

n-state PSM by two-state machines have been studied in Section 3.6 and Chapter 

IV, respectively. From these results, we shalb discuss a logical system class 

which traces all past system performances by knowing only the present state 

distribution. In this case, all past behaviors of a system can be played 

backwards like the playing back of a movie film. Most aspects of system 

evaluation (past state transition history, input sequence supplied, correctness 

of produced outputs, the most active subsystem, the most likely subsystem 

where errors occur, etc.) can be accomplished as straight backward tasks by 

using the playback of the system.

Balser [5] has shown that a playback technique is a very powerful 

tool for error detection/errof correction. The technique is, however, only 

applicable to a precisely deterministic machine, whenever errors occur in the 

course.of execution. We shall show that a playback technique for a system 

consisting of PSM's may be applicable, when certain conditions are satisfied, 

for determining the most likely subsystem in which errors occurred in the 

past.

Suppose a large system is decomposable by two-state absolutely isolated 

machines. These two-state machines have the input traceable property in the 

past as shown in Corail ary 3.8. Since the set of decomposed component ma­

chines is isomorphic to the original system, we can determine most past system 

performances from the present state distribution. The input traceable pro­

perty is a useful and key property of the (absolutely) isolated machines which 

shall be presented later. The past inputs supplied to the whole system are 
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the same as the inputs traced by absolutely isolated component machines; there­

fore, visiting frequencies of individual states can be determined. The state 

(or subsystem) which has the highest visiting frequency is the most-likely 

state in which errors occurred in the past machine operation. Thus, we call 

it an input traceable machine as well as a diagnoseable machine (or in more 

general terms, a performance traceable machine), if the machine is absolutely 

isolated after an error occurs.

5-1 Decomposable PSM by Kronecker Product Matrices

When a PSM is decomposable by interconnecting component PSM's with

Kronecker product matrices, the PSM may be a past-input-traceable machine. 

Conditions for an input-traceable machine of a PSM are presented in this sec­

tion.

Definition 5-1:

A and A1 in a Kronecker product matrix A®A' are called the left (the 

first) and the right (the second) machine, respectively.

Definition 5.2:

Two or more PSM's which have the same number of states may be consider 

ed as a single PSM by introducing combined input symbols of the original ma­

chines (see Chapter III). The single machine is called a combined machine.

Example 5.1•

Let Mj and M^ be two-state PSM's.

the PSM's are as follows:

The state transition matrices of

b 1-b,
and M-(y-) =
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The combined machine Mc is defined by introducing new input symbols 'x^y^1 and 

lx^y2le The corresponding state transition matrices are found as follows:

(
1-g g \ / 1-i i \

and ’M (x.y ) =
h 1-h/ c i z )

where g = a+c-a(c+d), h = b+d-b(c+d), i = a+e-a(e+f), and j = b+h-b(g+h). 
*

Note: g,h,i and j are found by matrix multiplication, (x^)(y^) and 

Mi(xi)'M2(y2)-

A matrix product of two Kronecker product matrices is another Kronecker 

product matrix. Each element of the Kronecker product is a matrix product of 

two left machines or two right machines. This is described in the following 

1emma.

Lemma 5 -’ :

Let A = (ajj), B = (b.j), A* = (a!j), and B1 = ^jj) be matrices, then

(AQA1)•(B©B') = (AB)0(A,BI). (5.1)

Proof: /

Let A,B and A'jB' be mxn and pxq order matrices, respectively.

A0A1 = (a..a..) = (c.. . ) =C ij k£ ik,j£

where the double indices ik,j£ of the element of C are ordered lexicographi 

cally,

ik = 11 ,12,..., Ip,21,22,... ,2p ml ,m2

j£ = 11,12,...,lq,21,22,...,2q,...,nl,n2,...,nq.

I I
The ik, mn entry in A0A' is a.^ a^, and the mn,j£ entry in B0B! is 
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in the left side of (5.1). In the right 

and the k£ entry in A'B1 is V a,* bV.
1 Lr kr r£

(AB)®(A*Bi) is Y a. b . Y a' b' .
' Lt it tj Lr kr r£

side, the ij entry in AB is

Therefore, the ik,j£ entry in

ait

H a. a'
L L im kn m n

I T1 X-* IIb .b = Y y a. b .a. a 
mj n£ L u im mj kn n£J m n J

(5.2)

Since the summation of n is separable from the summation of m, (5-2) is rewrit­

ten as

y a. b .a, b = a. b . a, b 
u u im mi kn n£ u im mj u kn n£ m n m J n

The right side of (5-3) is the same as the right side of (5.1). The 

reverse proof is similar to this proof, so the reverse proof is omitted. £3

Suppose an N-state machine is decomposed by a Kronecker product. From 

Lemma 5.1, a state transition, represented by" the multiplication of Kronecker 

product terms in the left side of (5.1)> can be computed in another way. 

Namely, the individual terms in the right side of (5.1)» AB and A'B1, are ma­

trix products of the component machines. A Kronecker product operation on 

these products represents the state transition. Therefore, the decomposable 

PSM by Kronecker product component machines may be an input traceable machine.

Theorem 5.1.

If a PSM which consists of four states is decomposable by Kronecker 

product component machines and if each combined machine of all the left com­

ponent machines/all the right component machines is an absolutely isolated 

machine with respect to the (1,2) or (2,1) elements, then the PSM is an input 

traceable machine.
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Proof:

In reference to Figure 4.3> the input symbols to the PSM are in a vec­

tor form consisting of input symbols of component machines. From Lemma 5.1, 

the transition of the PSM is determined by the Kronecker product of the com­

bined left and right component machines. From the imposed assumption, each 

combined component machine is an absolutely.isolated machine. Thus, all past 

input symbols (string) to each component machine can be determined uniquely 

using Corallary 3.8, and the past inputs to the PSM can also be determined, 

since each original symbol to the PSM is a vector of input symbols of each 

component machine.

Example 5.2:

A PSM which has four states/four symbols is given as follows:

/l 1 
p; i

1 1
T 2

3 1
V 2

3 f \ 
¥ 2 \

1 7 1 3 3 7
3 3 \

H(y.) = 10 V io 4 10 4 10 | (5.4)
1 1 1 1 1 15 1 15 1 /

IT 2 16 2 16 2 16 2 /

\1 7 1 3 15 7
15 3 /

x16 10 16 10 16 10 16 10/

/2 1 2 4 1 1 1 4 \
/ 3 5

3 5 3 5 3 5 \

2 1 2 9 1 1 1 9■■■
M(y2)- 3 10 3 10 3 10 3 10 (5.5)

2 11 1 11 4 4 1 4 4
15 5 15 5 15 5 155 /

11 1 1 9 4 1 4 9 /
\15 10 15 10 15 10 15 10/
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M(y3) =

and

M(y4) =

2 U 2 ]_ 2 1 1 \
t 5 4 5 4 5 4 5 \

2 1_2 7_2 3_2 7_
T 10 4 10 4 10 4 10

3_i 1_1 LA 7_L 
10 5 io 5 10 5 10 5 /

1_3_ L_l_ 7_1_ 7_7_ /
U0 10 10 10 10 10 10 10/

/I 2 3. 3 12 1 1 \
f 4 5 4 5 4 5 T 5 \

31L129J_r!_j_29 
4 40 4 40 4 40 4 40

7 2 7 3 1 2 1 3
8 5 8 5 8 5 8 5

(7 11 1_ 29 1 11 1 29 /
So" 8 So 40 8 40./

By inspection, we find

, M(y1) = (x1)0M2(x2)

M(y2) = M](x2)oM2(x^)

M(y3) = Mj (x3)sM2(x2i)

mCy/,) = M] (xZt)e>M2(x1)

where ] > Ml^x2^=lll 4

\"i6 16/ \I5 T5.

/2 - \ - 
Mi(x3)=fJ and M1(x2|)=H

. \To To"/ \8 B"

/2 3
/ 5 5

M9(x.) =
\ n 29
xSo 40

/I 1/ 2 2
M9(x-) =

z z \ 7 3xTo fo

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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J
5 5

M?(x ) =
\L_ 1_X10 10

/A 1 / 5 5
and M_(xJ =

\1_ 7_
'10 10

Therefore,

Consider a product of M(y.)M(yj) for i,j = 1,2,3,A,

M(y.)-M(y.) = {M1 (x.)®M2(x.+1) }{M1 (xp^Cx^p } 

= {M1(x.)-M1 (xj.)}0[M2(x. + 1) •M2(Xj+])}

where i+1, j+1 and k+1 are found by mod(4) operation, residues of the power

M(y.) 'Miyj) ‘M(yk) = [{M] (x.)M1 (x.) }®{n2(x. + ]) (Xj+1) J1

• [M1(xJ<)0M2(xk+1)]

= {M1 (x.lMj (x^Mj (xk) }®{M2(x.+1) ■m2(xj+1) 'M2(xk+1) )•

(5.11)
Thus the behavior of the PSM for any input string y*cY = [y^,y2,y^,y^) 

is determined by the behaviors of the combined left and the combined right ma­

chines, and M2> by corresponding input strings x''cX, where X = {x^ ,x2.x^.x^}, 

to y'\

We shall investigate the combined left and the combined right machines 

using theorems developed in Chapter III.

The Left Machine

Consider the combined left machine described in (5.9). By using nota­

tions in Chapter III and applying Lemma 3.3
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(
1—a. a.
B.' !-»

ax= max{a.} = and c = min{a.} = t-
1 1 i

X = max{1-a.-g. } 
i

1 
5 ’

X = min{1-a.-g. } 
i ‘

1 
""K •

The combined left machine is classified in Case 2 of Lemma 3-3 so that

c = a = 1 5 = 15
max 1-X 44 16a

S .min c+a = 1 _ 3 1 5 = J7_ >0
4 484 16-8 u>

X c 
1-X a

and R . = 0 by Definition 3-2. mm
3 2 1 1From Theorem 3*3, we have four a., y, and y. Considering a pair

of adjacent a. and each eigenvalue of each matrix of trie mdchine, vve have

i 1 2 3 4

a.I
3
4

2
4

1
3

1
• y

X.I
3_
16

1
5

1
“ 15

i
" 8

6i
1
16

1_
10

11
15

7
K

Since X^ and X 2 are positive, the case for the pair (1,2) belongs in Case 1 of

Theorem 3-3 where -a->X_ S must be2— 2 max satisfied.

3 2 1 i 15 3 . 4- - T = T > V TF = TF 15 true.4 4 4 5 16 16

For the pair (2,3), the case is classified as Case 2 of Theorem 3.3, since

X2>0 and X^<0 No constraint is applied.
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The case for the pair (3,^) is determined as Case 4

tive a_-a>>-X- S should be held3 h— 3 max

since X
3

and are nega-

T 1 1 1 15 1 - 
3 ‘ K' 12 > T5 16 = 16 15 true

Similarly, adjacent pairs of f3. are satisfied with the conditions of Theorem

3.3 using a = maxlg.} = Z-. Hence, the combined left machine is an absolutely 
... I O' 1 *

isolated machine.

The Right Machine

Consider the combined right machine, (5-10), and apply Lemma 3-3 and

Theorem 3-3»

a = maxla.} = —, c = min{a.} =4-, X = i- and X = 
. 1 5 a o c

This case is classified as Case 3 in Lemma 3-3,

c - 1+Aa  1 + 75  1 15  15
max a 5 1 5 1 16 16’

c ■ 25

and
c + ^c^^a^  £ 1 1 9 25 = 1 9_  = 1_
min c a 2 5 ’ 5 5 2 24 5 2^0 240

so R .min = 0.
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Since and are positive, the case for the pair (1,2) is Case 1 of Theorem 

3.3.

Since and X^<0, the case for the pair (2,3) is Case 2 of Theorem 3-3 and 

no constraint is imposed. ,

The case for the pair (3,M is Case 4, a_-a>>-X_ S should be satisfied since ’ 3 4— 3 max

and X are negative

1 1 3^215-.,.
2 ‘5'To "To 16       held*II12**ls

(A.0A.6...6A ) • (B.6>B_0.. .6» )12 n I 2 n

= (A,B.)e(A7B>..6(A B ). - ' (5.12)
II 2 2 n n

Proof:

By the mathematical induction, n=2, the lemma holds as shown in Lemma

5.1. Suppose we have the following equation at n = m-1

(A.6A-0. ..®A .) • (B.OB,,®.. .OB .)12 m-1 12 m-1

= (A.B1)®(A9B9)0...€>(Am ,6 ).II 22 m-I m~I

The above equation is rewritten as

Similarly, adjacent pairs of g. are satisfied with the conditions of Theorem
7

3.3 using a - maxip.) - -p. Therefore, the combined right machine is also =n 
T

absolutely isolated machine.

Lemma 5.2:
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A-B = C 

where

A = A,eA2o.. ,

B = 6,08.0. ..es ,,12 m-1

C = (A.B )g>(A B,)»...©(A ,B .).II 22 m-I m-I

By multiplying (A^B^) on C from the right in the sense of a Kronecker product 

and applying Lemma 5.1,

C0(AmBm) = (A0AJ-(B®B ) mm m m

is held at n=m. This case is the Equation (5.12). O

Theorem 5.1 can be extended to the PSM which consists of 2n states, 

n>2.

Theorem 5.2:

If a PSM which consists of 2m states,'m>2, is decomposable by Kronecker 

product (two-state) component machines and if each combined machine of the 

first, the second, the mth component machines (in Kronecker product) is an 

absolutely isolated machine with respect to the (1,2) or the (2,1) element, 

then the PSM is an input traceable machine.

Proof :

The proof is similar to that of Theorem 5.1 by using Lemma 5-2 and 

Corallary 3-8, so it is omitted. 0

When interconnecting component machines in a Kronecker product struc­

ture are the kth absolutely isolated machines, the composed PSM is the last k+1 

input symbol traceable machine.
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Corallary 5.3:

If a PSM which consists of 2m states, m>2, is decomposable by Kronecker 

product (two-state) component machines and if each combined machine of the 

first, the second,...the mth component machines (in Kronecker product) is at 

least the kth absolutely isolated machine with respect to the (1,2) or the 

(2,1) elements, then the PSM is the last k+1 input symbol traceable machine.

Proof:

This is a finite case of an infinite length input string in Theorems 

5.1 and 5.2. This proof is similar to those theorems by using Lemma 5-2 and 

Corallary 3.9, so the proof is omitted. ® 

5.2 Decomposable PSM by N(N-l)/2 Two-State PSM's

A decomposable PSM by interconnecting component PSM's of a Kronecker 

product structure is presented in the previous section as an input traceable 

machine, if each combined component machine in a Kronecker product interconnec­

tion is an absolutely isolated machine.

The decomposition presented in Chapter IV, Theorems k.k and ^.5, is a 

parallel interconnection of component machines. From the parallel interconnec­

tion and the property of the isolated machine, a decomposable PSM by Theorem 

A.5 may be an input traceable machine.

Theorem 5*^*

If a PSM is decomposable by Theorem 4.5 and if each component machine 

determined by the theorem is an absolutely isolated machine, then the PSM is 

an input traceable machine.

Proof:

Since the PSM is decomposable, there are three two-state PSM's and
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each two-state PSM is an absolutely isolated machine. By Corallary 3.8, all 

past input strings to each component machine can be traceable. The past input 

strings (each component machine and the interconnection of component machine) 

are known. Therefore, the PSM is an input traceable machine. ES

Similarly, with Corallary 5-3, we have the following corallary.

Cora 11 ary 5-5:

If a PSM is decomposable by Theorem 4.5 and if each component machine 

determined by the theorem is at least the kth absolutely isolated machine, 

then the PSM is an input traceable machine to the last k+I symbol process.

Proof:

This is an finite case of an infinite length input string in Theorem 

5.4. This proof is similar to that of Theorem 5-4 by using Corallary 3.9 

instead of Corallary 3-8. Therefore, this proof is omitted. S

Remark: The original input traceable machine may be affected by an error occur­

rence during machine operation. In other words, after an error occurs the 

character of the machine changes. Therefore, the eigenvalue of the state 

transition matrix of the machine may be increased in the magnitude , hence, 

the property of the absolutely isolated machine may be lost. However, as long 

as the absolutely isolated property is held, the machine is an input traceable 

machine and is a diagnosable machine by the playback process.

Generally speaking, necessary conditions of the input traceable pro­

perty; (1) an N-state PSM is decomposable by two-state component machines and 

further more (2) all the decomposed component machines are absolutely isolated 

machines, are fulfilled by a class of N-state PSM's. In other words, appli­
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cability of the input traceable property is limited within the class. More 

powerful technique for estimating the past performance of an N-state PSM is 

presented' in the following chapter.
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Chapter VI

ERROR DETECTION IN A LARGE COMPUTER SYSTEM

6. Introduction

When correcting an error in hardware or software, systematic and 

immediate detection of the subsystem which possibly contains the error is 

very helpful. We shall present a statistical estimation, technique to 

economically find an error!ng subsystem^.

The statistical technique has advantages when compared with the 

trial and error procedure; the advantages can be demonstrated by the 

following example. Suppose that a system has ten subsystems and that one 

subsystem contains an error. A maintenance engineer has ten checkboards 

to detect the error for each individual subsystem. He picks a subsystem 

to check. If this subsystem is error free, then he picks another sub­

system and so on. He continues to check subsystems until the subsystem 

which contains the error is found. The order of choosing subsystem is

. random, and no prior knowledge of error occurrences exists. Neither the 

frequency of the past error occurrences nor a diagnostic table for error 

symptoms is used. Thus the engineer assumes the equal probability of 

error occurrence in each subsystem, namely 1/10, and therefore the 

expected value to find the subsystem which contains the error is:

10
E[nJ = S i J_ = 5-5.

i = 1 10

Over a long maintenance time span, the average time to find the erroring 

subsystem is 5-5 by the trial and error method.

fit is assumed that error occurrence may be proportional to subsystem activity 
in hardware. In software, it should be said performance measurement of sub­
system activity.
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The proposed statistical technique provides a probability distri­

bution of each subsystem's activity. Suppose the engineer has the proba­

bility distribution (0.08,0.03,0.21,0.05,0.0^,0.02,0.19,0.07,0.3,0.01) for 

activities of subsystems 1,2,...,10. He checks the ninth subsystem first 

because of its largest probability 0.3. If the ninth subsystem is error 

free then he must pick the third subsystem, because it has.the. second 

largest probability 0.21 and so on. The expected value is found as follows:

E[n] = 0.3+0.21x2+0.19x3+0.08x4+0.07x5+0.05x6 

+0.04x7+0.03x8+0.02x9+0.01x10 = 3.04 

using the statistical technique, the average time to find the subsystem 

which contains the error is 3•04 in a long maintenance time span.

Since the working cost of a large computer system is very expen­

sive, a reduction in computer downtime (in the example downtime reduction 

from 5-5 to 3*04 in ratio) not only improves computer efficiency but also 

decreases the loss of manpower due to computer downtime.

In Section 6.1, an iterative process of model building (analysis 

of a computer system, design of a model, testing of the model, reanalysis, 

redesign, and retesting to improve the model) is emphasized. Techniques 

to estimate the most active subsystem (in which error occurrence may be 

proportional to activity) are presented. An optimization to estimate 

the most likely active subsystem is mathematically formulated; the optimi­

zation becomes a nonlinear mathematical programming problem which is 

described in Section 6.2.



An application of the estimation techniques developed in this

research to a real computer system is presented in Sections 6.3 and 6.^*.

In Section 6.3, a model of a computer system is built. In the last Section 

daily computer operation is simulated. The optimization of the nonlinear 

mathematical programming is applied on the simulated result in order to 

find an order of subsystem activities.
*

6.1 Model Building

Modeling a computer system with a Moore type generalized proba­

bilistic sequential machine is discussed in Chapter II from a viewpoint 

of multi-levels and hierarchey structures of the system. Some difficulties 

in modeling are emphasized in Section 2.7- In this Section, modeling is 

discussed from another viewpoint how the difficulties can be overcome.

Large scale, complex system analysis and modeling do not lend them­

selves to a conventional approach. There are no overall methods to be used 

There is no clear place from which to start or end. A system behaves, how­

ever, according to a set of relations. This is the precise point of attack 

Even though initially the rules for interrelationships may not be consis­

tent, they form the basis for model structure.

A model must start somewhere. Since there are numerous choices, 

it is difficult to develop a model without going through a process of set­

ting down hypotheses and abstractions. A representation of the system - 

the rules and relationships that describe it - is defined as the model. 

In a sense, the model becomes an algorithm, a procedure statement of the 

problem, or a set of numerical equations. Once a coarse model of the over­

all system concept is established, the model becomes a definition of the 

system problem and a working tool.
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Adequate data for a model are usually not available but a model 

under investigation needs (1) data, (2) system constraints, and (3) valida­

tion. While the GIGO principle (garbage in, garbage out) is well accepted, 

something can be learned from "garbage in". The input data, while not veri­

fied, can be made to represent the range of possible values. Insight is 

gained in spite of the lack of adequate input data. The results can be fed 

back to the system analysis and modeling. This process is definitely cyclic, 

and the series of steps overlap each other.

In a formulation of the system problem, there must be a statement 

of objectives involved, since formulating the problem without formulating 

the objectives may mean solving for system symptoms only. It should be 

emphasized that the objectives can not be treated separately from the 

model formulation. in some cases, moreover, the idea of a model and the 

idea of an objective are completely confounded,.and the form by which the 

model is stated is in fact that of" the objective itself. The interrela­

tionship of the objective and of the model is subtle and intricate, but 

we have to be quite clear about the way in which they differ and to under­

stand the way in which they interact with each other.

We are concerned, in model building with some understanding of 

reality. Reality is observable, measurable, and systematic. Observable 

means the ability to see some aspects of what is happening, to try and 

understand the characteristics of these aspects, and to be able to build 

some form of prediction not only of behavior but also to compare the 

results of this hypothesis by making further observations with actual 

performances of the subject.
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Another criterion of reality is that certain aspects should be 

measurable. In some cases, measurability is not possible; however, measura­

bility should be able to estimate some events in common terms.

The third aspect of reality is a set of causes and effects inter­

acting simultaneously in a complex manner. The sets of causes and effects 

which can be allowed to operate on actual systems can be. numerous and in 

general more than we can conveniently handle or would like to handle. We 

have to have a meaningful way of classifying these causes and effects in 

groups.

The system operation is continuous in time with discrete states 

of the system, and we are able to describe the present state of the system 

at any time. The richness involved is such that we cannot hope to consider 

and tabulate every bit of the system's information, and hence, the system 

may be classified rather than described. The sets of causes, states, and 

objectives are linked together by means of basic assumptions, conclusions, 

and a model.

The objectives are admitted in order that we can devise a useful 

and meaningful hypothesis which can often be formulated as a qualitative 

statement of the system problem. The qualitative statement gives an out­

line of what is termed a model. A set of states of the model can be derived 

from the set of causes (or from reality) by prediction. Then the behavior 

of the model is compared with reality. Clearly there is never an exact 

correspondence betv/een them. Discrepancies can be determined by direct 

experimentation on a small scale or by observation on a large scale. There 
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are three ways to judge a discrepancy: (1) it is within an acceptable 

level, (2) it may be explained by chance causes depending on the criterion 

for acceptance, and (3) it is too large to be acceptable. The last case 

must return to the previous stage in order to improve the model.

In early stages of model building, we may often neglect to consider 

what the objectives are. Frequently, objectives are not realized until the 

end of the process of model building. If this is the case, then looping 

back of the process has to take place so that objectives can be reformulated.

We shall build a GPSM model of computer system with the remaining 

of the process on how to overcome difficulties of model building. From the 

reality of observable and measurable system behavior, input job types and 

output activities of the model are determined. Internal states of the 

model are defined by considering causes and effects of the system.

The next phase is to determine the steady state distribution and 

output activity distribution for each individual input job type. Typical 

benchmark computer programs which belong in each job type are selected as 

real input symbols of the model or the GPSM. Each set of benchmark programs 

which represent a job type is executed in the computer. During execution, 

the performance of the computer system is monitored by the software package 

or hardware instrument in order to decide patterns of these two distribu­

tions. Execution of sets of all job type benchmark programs produces a 

set of steady states and output activity distributions, which is the result 

of a calibration of the system performance. This phase is called the cali­

bration phase. The calibration data is used in an optimization process 

described in Section 6.2.
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Assume that output activity distribution during normal computer 

operation is available. When an error (or a default) has occurred in the 

computer operation, estimation of the most likely active subsystem (to 

which the probability of error occurrences may be proportional) could help 

maintenance personnel quickly to find the error. The estimation is an 

optimization process using the output activitydistributions in normal opera­

tion and in the calibration phase. The result of the optimization is the 

most-likely mixing ratio of the input job types. Next, the summation of 

the steady states weighted by the most-likely mixing ratio for each input 

job type indicates the past activity of each subsystem. The estimation can 

be improved by combining prior knowledge of error frequency and the other 

estimation techniques; for example, maximum likelihood estimation and Bayes 

estimation, etc. The calibration phase and the estimation phase of sub­

system activity distributions are shown in Figures 6.1 and 6.2, respectively.

Determination of the state transition probabilistic matrix for each 

input job type and of the transfer matrix of states versus output activity 

are not necessary to detect the most-likely active subsystems; however, 

this determination may be useful in GPSM model simulation of the behavior 

of the computer system.

Given the matrices in the terms of GPSM, S is the internal states 

and, X is the input job types, Y is the output activity, M(x) where xeX are 

the state transition probabilistic matrices, and T is the transfer matrix 

of state versus output activity. There are several ways to determine the 

matrices. For example, the matrices could be estimated directly by analysis 

of the operating system by guessing required services from individual input
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job types, and by collecting statistics of the system behavior from 

system monitoring (software or hardware monitor) during the calibration 

phase. Also, normal system operation can be used to form the matrices. 

When statistics are available, the problem is to determine the unknown 

entries of the matrices using several observed operational points of 

system behavior; the least mean square method (or other curve fitting 

techniques) can be applicable to establish the matrix entries.

In general,.the hardware measurement technique easily provides 

information as to what happened in a system, and the software measurement 

technique easily provides information as to why something happened in a 

system. Most of the software techniques have the attribute of inserting 

themselves into the normal flow of programming execution courses to obtain 

the required information, but almost all data acquisition may be performed 

with software techniques. Due to the insertion, software measurement tech­

niques do use facilities of the host system. They take not only Central 

Processing" Unit (CPU) time to execute, but also space in processor storage, 

space in auxiliary storage, and time to read out the results of the measure­

ment. These system facility requirements are the principle disadvantage of 

software measurement, which causes a disproportionate interference with 

normal system operation.

Principal reasons for utilizing hardware measurement techniques are 

ease of use, removal of system overhead by measurement, and the ability to 

obtain data in a way which does not interfere with the workload in process 

by the host system. However, one of the most critical considerations in 

the application of hardware techniques is a design of the interface 
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connection between the host system and measurement devices. The 

functional capability of hardware techniques is based on types of 

information that could be obtained from the host system. A general 

characteristic of the interface is that signals in the host system 

are either sensed or derived by combinational logic within the system 

itself and then driven through.an appropriate signal cable connecting 

to a measurement device. This kind of circuitry is necessary to sense 

as well as amplify for transmission is quite time consuming and costly 

to construct in circuit locations of the host system. Furthermore, 

when considering various functions that the hardware techniques can per­

form, it would not be unusual to find interface requirements of over 200 

signal lines. This is the case if memory address generation is distri­

buted over several functional areas. Complex and long wiring require­

ments in this situation may cause signal interferences with the normal 

circuit operation.

A data reduction process is usually needed on. collected raw data 

in order to produce essential and required sets of measurement data in 

both software and hardware techniques.

The following basic assumptions for the model building are imposed 

from the proceeding discussion:

1. Estimation or collection of data in output channel activity

is easily accomplished by observation or by monitoring output 

channels in the calibration phase and the estimation phase.

2. Estimation or collection of steady state distribution could 
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be accomplished in the calibration phase because of: (a) 

relatively short time executions and (b) known predefined 

services required by benchmark programs.

3. Collection of steady state distribution is almost a prohibitive 

process in regular system operation due to the time consuming 

and very expensive interface in hardware measurement techniques 

and djje to large interferences (unacceptable system overhead 

and heavy influences to computer workload) in software measure­

ment techniques during long term system operation.

The following special case (in which a system holds the input trace­

able property) does not need to assume the restrictions described in the above:

Application of Input Traceable Property

If the modeled GPSM or all state transition probabilistic matrices 

are decomposable into a set of two-state component machines as described in 

Chapter V and if the two-state component machines are absolutely isolated 

machines, then the GPSM is an input traceable machine. Thus the sequence of 

the past input job types supplied to the system can be determined as well as 

the histories of state distributions of component machines so that the history 

of the state distribution of the GPSM is revealed. From the history, the past 

subsystem activity distribution of the GPSM can be computed; the computed dis­

tribution could be the same as the estimation derived from the optimization. 

There may be some discrepancy .between the results of the two calibrations of 

the computer system with the set of the benchmark programs taken before and 

after an error occurred. This discrepancy of the two calibrations may be 

caused by the error. Therefore, the discrepancy is a clue to determining the 

state or subsystem which contains the error.
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6.2 An Estimation of the Most-Likely Active Subsystem

When a computer system is calibrated with n job types, the results 

of the calibration are (1) n steady state distributions and (2) n m-output 

activity distributions for each input job type. Let the steady state distri­

butions and the m-output activity distributions be:

s ,s ,s ,...,s and e ,e ,e ,...,e for- i=l,2,...n, respectively, where 
11:2 13 1 $, 11-12.13 im

£ is the number of internal states (or subsystems) of the computer system, m 

is the number of output activities (or output channels) and n is the number of 

input job types. The output activities as denoted by: P (E |x ) = e are
r j i ij

normalized by numerical quantities A , where x and E are the ith input and 
i i j

the jth output activity, respectively. The probability e can be tabulated
. ' ' ij

ni
as input x versus output activity E . Note E e = 1 for all i's.

i j j = l ij

Given an output activity distribution, denoted as a ,a ,...,a
1 2 m

and measured during a normal computer operation, an optimum job type distri­

bution II ,11 ,..,11 produces the closest job type mixing ratio with the minimum 
1 2 n

difference between a ,a , ...,a and BP (E ),B P (E ) BP (E ) where 
12 m 1 r 1 2 r 2 m r m

n
P (E ) = E n e , (6.1)
r j i=l i ij

and B for j=l,2,...,m is a factor defined in (6.7). 
j

The probability P (x |e ) is found as: 
r i j .

n.e. .
P (x I E ) = -LJJ  (6.2)
r i j P (E ) 

r j
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We introduce an unknown probability r.j which constitutes 

m
II. = V r.. for i = 1,2,...,n, 

1 j = ] U

n
Pr(E;) = Z rs; for j=l,2,...,m
r J i=l U

n n m
and 1 nj = I 1 r.. = 1.

i = l 1 «i=i j=l IJ

(6.3)

(6.4)

(6.5)

A mathematical formulation of the optimization becomes a nonlinear 

mathematical programming problem to find the most likely input job type, mix­

ing ratio of a set II. ,no,... ,11 .I z n

r 2 (a-BP(E)}2= nieii)} (6*6)
rij j=l J J r J j=l J J i = 1 ' U

subject to (6.5)» where for j=1,2,...,m is defined in (6.7).

Note r.j>0 for all i's and j's since r.j is a probability. In order to find 

the optimum mixing ratio H., i=l,2,...,n, the Lagrange multiplier method is 

used to solve the nonlinear mathematical programming problem easily.

n n
B. V e.. H. = y A. e.. II. for j=1,2 m (6.7)

J ij. । । U । J

where A. is the normalized factor of the output activity distribution of the 

ith job type.

The nonlinear mathematical programming problem described in (6.5)

and (6.6) is optimized by the Lagrange multiplier method which is shown here:

Mi n 
n.।

m
f= 1

j=l

9(a. - y A. e. . H. } 
j jii । *j ।
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subject to
n

h = Z n - 1 and II > 0 for i=l,2,...,n.
i = l i i

where m and n are numbers of output activity channels and of job types in

computer system modeling, respectively. Define a function g = f + Xh.

Calculate Jocobian of g with respect to H ,n II and X. The minimum of 
1 2 n

g exists at the point which is the solution of the following equations:

m n
52. = 2 E { a - Z A e H }(-A e )
an j=l j k=l k kj k i ij 

i

m n m
= 2 Z A e ( Z A e II ) - 2 Z a A e = 0 for i = l,2,...,n 

j=l i ij k=l ,k kj k j=l j i ij

8g = h = 0 
ax

Thus we have n + 1 unknown variables, II ,H , ...,n and X and n + 1 equations
1 2 n

in Jacobian of g. The unique solution of the simultaneous equations can be

found by the Gauss-Jordan method. The unique solution may not satisfy the

other constraint, II > 0 for all i's.
i

The function g is a linear combination of the functions f and h,

and the functions f and h are quadratic and linear, respectively. Therefore,

the surface of g is unimodal. When a n among the solution of the simultan-
k

ecus equations is negative, the optimum value of the minimization along with

the II axis is zero because of the unimodal characteristic. The rest of II
k i

is needed to compute again the simultaneous equations without the II term (or
k

by forcing II = 0). Computing examples of the' optimization shall be shown in
k

Section 6.4.

An illustrated example of an optimization is in Figure 6.3* Three

job types and five output activities are assumed in the example. The input
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job type mixing ratio is given as: U ,n ,11 for job types x ,x ,x and the
12 3 12 3

optimum solution is indicated with "X's" in the figure.

After the optimum solution, which is the optimum mixing distribu­

tion H ,n of the job type is found, the most likely active state (or
1 2 n

subsystem) in the past normal computer operation can be determined by cal­

culating the state.sum distribution s *,s s * of the calibrated steady
1 2 H

states weighted by the optimum mixing distribution: 

(s *,s *,...,s *) = (n ,n ,...,n )/s s ... s \
12 £ 12 n/ 11 12 u\

s s ... s \
21 22 2£ \

• * • L <6-8)
\ s s s /

■ \ nl n2 n £ /

The maximum s among i = 1,2,..., £ is the most likely active state in the 
i

past computer operation based on the past output activity distribution a ', 
' 1

a ,...,a and the calibration results, s ,s s. , and e. e. ,... e.
2 m il i2 i£ il’ i2’’’’’ im

for i = l,2,.i.,n. The second largest 

second most likely active state and so

s * among i = 1, 2, ..., £ is the 
i

on.
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6.3 An Example of Computer System Modeling

In Section 2.7, the computer model used is a generalized probabilistic 

sequential machine. The computer system in Figure 2.6 is a block diagram of 

the UNIVAC 1110 EXECS, and we shall continue to use this system as a discussion 

example. Another block diagram of the system is depicted in Figure 6.4, and 

the connectivity matrix of the figure indicating the logical execution course 

of the computer system is shown in Table 6.1. As emphasized in Section 2.1, 

the probabilistic property of a computer system can be due to unknown job se­

quence, unknown job characteristics of required services, asynchronous inter­

ruption, interlocks of hardware resources, and exhaustion of a given time 

slice for a task. Random state transition from one state to another in which 

both states are not connected directly in the connectivity matrix may happen 

due to characteristics of the computer system operation.

For simplicity, we shall reduce the number of the states of the com­

puter system from 34 to 16 by reasonable combination of a few states. The re­

duced states in a graph is shown in Figure 6.5. User activity in Figure 6.4 

is split into two sections, the user's area and the user's ER (Exec Request) 

[72], in the new Figure 6.5.

We shall use system monitoring data of EXEC 8 computer systems pro­

vided by UNIVAC [74], [75]. The data are collected from two computer systems, 

designated the "A" and the "B". The two computer systems are differentiated 

by the applications they support. The "A" system processes most of the 

scientific programs in batch mode only. The "B" system processes most of the 

commercial (business) workload and three time-sharing/online programming real­

time mode. Figures 6.6, 6.7, 6.8, and were obtained by continuously mon­

itoring 24-hour periods arbitrarily defined to start at or before 1200 hours 

daily. The explanations for the figures are quoted from the UNIVAC reports.
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Figure [6.6] is representative of CP (Central Processor) behavior 
on the "A" system. It is an hourly plot of CP utilization from 
1000 hours on October 19 until 1000 hours on.the 20th. The upper 
curve traces the percent of wall time that the CP is executing 
any code except the idle loop in the exec. The lower curve 
'traces the percent of wall time that the CP is executing EXEC 8 
code. The difference between the two curves, then, is the per­
cent of wall time that the CP is executing applications program 
code commonly known as guard mode time. Note that the hourly 
CP idle value is the difference between a hypothetical horizontal 
line drawn through the "100%" value on the left and the top curve. 
For example, the hour, between 1000 and 1100 can be accounted for 
as follows: 20% of the time the CP was executing EXEC 8 instruc­
tions; about 67% of the time it was executing applications pro­
gram instructions; therefore, the CP remains about 90% utilized-- 
save the valley at 1930 hours. The Dynaprobe data (which is a 
UNIVAC hardware monitoring system) for that interval indicated 
operator intervention; but, the major cause of the dip was most 
likely forced processor idle due to FASTRAND 1/0 (file system 
loading).

While Figure [6.6] establishes-an ideal processor profile for a 
batch system, Figure [6.?] depicts something less desirable. 
The data presented in this plot was collected during October 5 
and 6 when turnaround for the large FORTRAN application mentioned 
earlier was waning. Like the previous time series, it is an 
hourly summary of CP activity, in the first 10 hours, it approxi­
mates the series in Figure [6.6]. However, after 2200 hours, the 
two series have little in common. For 12 hours or so the "A" 
system exhibits extremely cyclical behavior. What is captured 
here are extreme periods of forced processor idle due to the 
8^60 Disc subsystem which (is hardware of file systems.)

Both the business computation in batch mode and the time sharing/on- 

line of user real-time applications co-exist on the "B" system. During normal 

working hours, however, the batch processing which comes from a card reader is 

superseded due to the requirement of fast response time of the time sharing/ 

online application to remote terminals. A small number of remote batch jobs 

can be executed in the working hours by issuing a "©START" EXEC 8 command [76].

(Figures 6.8 and 6.9) supply sufficient evidence to the contrary. 
In both figures, the CP utilization is plotted on an hourly basis 
from 0600 hours one day to 0600 hours the next. The lower curve 
traces the percent of elapse time that the CP is executing EXEC 8 
code. The upper curve traces the percent of elapsed time that 
the CP is executing any code except the idle loop in the Exec. 
The difference between the two curves, then, is the percent of 
time that the CP is executing instructions from applications pro­
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grams. Note that the hourly CP idle value is the difference be­
tween a hypothetical line drawn through the “100% busy" level 
and the top curve. In Figure [6.8] for instance, the hour be­
tween 0600 and 0700 can be accounted for as follows: 15% of the 

stime the CP was executing EXEC 8 instructions; about 20% of 
the time it was executing applications program instructions; 
therefore, the CP was busy about 35% of the hours.

The CP shows some very definite trends in Figure [6.8] that have 
not been discussed previously. Starting from a reasonably idle 
state in the morning, the CP utilization climbs steadily from 
0730 hours to 1400 hours. It begins to trail off until about 
1630 hours. At that point, a rather significant change takes 
place and the CP climbs to a totally saturated state in three 
hours. It reacts slightly at about 2400 hours. A surge is made 
again, but soon the CP activity is trailing off in the morning 
hours.

Such behavior can be explained quite readily. First, the time­
frame of 0300 hours to 0700 hours is a period in which the sys­
tem is often idle. At about 0700 hours, a spike in the utili­
zation could have been caused by the initialization of real 
time files and programs and/or to the commencement of ESI 
(communication line) network management functions (time shar­
ing.) More likely than not, this transient was due to some 
contingency since a si mi lai spike dues not appear in Figure 
[6.9] at that time. The steady rise in CP activity during the 
morning and early afternoon hours is closely correlated to the 
real time transaction load. It increases as more terminal users 
come on line. Similarly, it trails off toward 1630 hours as 
users finish making their daily inquiries and sign off. How­
ever, a more substantial reason for this particular trail off 
can be identified. Figure [6.8] is drawn from data collected 
on a Friday/Saturday boundary. In the initial description of 
the shop schedule, it was stated that all real time applications 
are removed at 1630 hours on Friday. Since a critical check­
point of the master real time files is taken immediately there­
after, batch runs are constrained from entering the system at 
that time. At the completion of the checkpoint, there is an 
additional 123,000 words of allocatable program space for batch 
work. Eventually the system becomes totally CP bound three 
hours into the batch production period. The drop at 2400 
hours is probably due to a shift change. Finally, the drop 
after 0100 implies the machine is running out of work to do.

The time series in Figure [6.8] is somewhat different from that 
of Figure [6.9]. In the latter, the total CP utilization ,upper 
curve, shows no tendency to decline in the late afternoon. Thus, 
neither the lull at 1630 hours nor the fantastic differential 
between the real time and batch only processing periods is evi­
dent. In both sets of curves, however, the EXEC busy line , the 
lower plot? shows the characteristic day time rise/fall.
The explanation for this observation lies again with the oper-
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ations schedule. Since Figure [6.9] is based on data collected 
across a Wednesday/Thursday-boundary, the time series reflects 
the fact that IMPACT (a time-sharing program) is still in the 
system past 1630 hours. No checkpoint is being taken on Wednes­
day, therefore batch runs are allowed in and quickly use the 
'available CP capacity. One observation that can be made from 
either of these figures is that the time spent processing appli­
cations programs, referred to as guard mode time, is always less 
during periods of real time activity. This phenomenon is caused 
by two factors: the overall CP utilization is actually lower 
during periods of real time processing; and the EXEC 8 activity 
is higher in the same, timeframe.

From the monitoring data, we can determine the five typical input job 

types.

1. Time sharing with the background of a small number of batch 

jobs indicated by the time period HOO to 1800 in Figure 6.9*

2. File manipulation such as FASTRAND (mass storage term in

• EXEC 8) !/n ’’nd the checkpoint of the computer operation in­

dicated by the time periods 1900 to 2020, 2240 to 2i|A0, and 

I63O to 1800 in Figures 6.6, 6.7, and 6.8, respectively.

3. Scientific computation indicated by the time periods 1500 to 

1820 and 1630 to 2130 in Figures 6.6 and 6.7, respectively.

A. Business computation with the normal 1/0 load indicated by 

the time periods 2020 to 2A00 and 1930 to 2240 in Figures 

6.9 and 6.8, respectively.

5. Business computation with the heavy 1/0 load indicated by 

the time period-2240 to 0330 in Figure 6.8.

The CP utilizations by activities, EXEC, user, and idle loop in each 

job type are tabulated in Table 6.2.

By analyzing the operating system EXEC 8, we have estimated state 

transition matrices for each input job type to realize the Central Processor 
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(CP) utilizations in the above five time ranges, which are defined from the 

monitoring data.

Table 6.2 The CP Utilization in Percentage for Each Job Type

Job Type
Reading from the 
Monitoring Data

Computed Steady State from each 
Job Type Transition Matrix

Exec User Idle Exec » User Idle

1 70 23 7 87.2 11.4 1.4

2 33 33 34 36.7 29.0 34.3

3 24 74 2 25.1 73-4 1.5

4 40 57 3 38.8 56.9 4.2

5 38 48 14 46.3 40.6 12.8

The state transition matrices for each job type are in Tables 6.3 through 6.7. 

Computed steady states from the state transition matrices of each job type are 

tabulated in the right frame of Table 6.2. Both quantities in Table 6.2 from 

the monitoring data and from the computed steady states for each job type are 

very similar to each other.

The computer system configurations of the "A" and "B" systems are very 

similar. Each input/output data channel is described as follows. Channel 0 

leads high speed drums as used Swap$ file for multiprogramming/time-sharing 

purposes. Channels 1 and 2 are a dual channel system to connect high speed/ 

medium speed drums or disks as auxiliary memories holding the nonresident 

elements of the operating system and using temporary files of user's programs. 

Channel 3 is utilized as mass storage or as principle hardware of the computer 

file system which is stored in a slow speed drum. Channel k is a magnetic 

tape data channel. Channel 5 is used as a line printer. Channel 6 is con­

nected to the communication terminal modular control unit as access to communi­

cation lines. Channel 7 is a complex subsystem used as a card reader, a card



Table 6.3. 
■ State Transition Table of Tim

e Sharing.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 .0 .0? .08 .07 .0 .08 .07 .08 .07 .07 .05 .05 ,15 .05 ' .08 .03

2 .0 .20 .10 .03 .0 .09 .12 .09 .10 .08 .0 .0 .15 .0 .04 .0

3 .0 .14 .21 .13 .0 .06 .06 .06 .07 .08 .0 .0 .15 .02 .02 .0

4 .02 .05 •13 .17 .03 .08 .08 .08 .08 .01 .04 .01 .15 .04 .04 .0

5 ' .01 .06 .07 .07 .0 • 09 .10 .10 .09 .03 .03 .03 .20 .05 .06 .01

6 .0 .08 .05 .03 .0 .10 .11 .10 .10 .04 .04 .04 .18 .06 .07 .0

7 .0 .05 .02 .02 .02 .20 .20 .20 .15 .01 .01 .01 .08 -.01 .02 .6

8 .0 .10 .08 .02 .0 .10 .20 .20 .20 .0 .0 .0 .08 *.0 .02 .0

9 .0 .10 .09 .05 .0 .10 .25 .10 .08 .03 .03 .0 .13 .02 .02 .0

10 .0 .15 ■ .10 .0 .0 .02 .03 .0 .05 . .10 .15 .15 .15 .0 .10 .0

11 .0 .06 .06 .06 .0 .08 .08 .05 .08 .20 .05 .03 .20 .03 .02 .0

12 .0 .01 .01 .01 .0 .08 .08 .08 .08 .0 .0 .0 .40 .10 .15 .0

13 .0 .06 .06 .06 .0 .08 .08 .08 .08 .0 .0 .0 .20 .15 .10 .05

14 .0 .06 .06 .06 .0 .08 .08 . .08 .08 .0 .0 .0 .15 z15 .15 .05

15 .0 .06 .06 .06 .0 .08 .08 .08 .08 .0 .0 .0 .15 .10 .20 ' .05

16 .01 .06 .06 .06 .01 .07 .08 .08 .08 703 .03 .05 .23 .05 .06 .03
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Table 6.4. - State Transition Table of File M
anipulation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 .0 .03 .03 .03 .03 .02 .02 •02 .02 .0 .05 .02 .15 .10 .18 .30

2 .0 .02 .03 .03 .03 .02 .02 .02 .03 .04 .05 .02 .20 .12 .20 .16

3 .0 .02 .02 .02 .02 .02 .02 .02 .02 .15 .05 .02 .20 .12 .20 .10

4 .0 .02 .02 .02 .02 .02 .02 , .02 . .02 .20 .08 .04 .10 .12 .20 .10

5 .0 .06 .06 .06 .04 .03 .03 .03 .03 .03 .10 .05 .10 .10 .18 .10

6 .0 •05, .08 .05 .03 .05 .10 .10 .10 .02 .02 .02 .06 .05 .10 .17

7 .0 .05 .08 .05 .03 .05 .10 .15 .08 .02 .02 .02 .05 .05 .10 .15

8 .0 .05 .08 .05 .03 .05 .10 .05 .15 .02 .02 .02 .08 .05 .10 .15

9 .0 .08 .10 .15 .06 .05 .05 .05 .02 .02 .02 .02 .08 .05 .10 .15

10 .0 .02 .03 .03 .02 .0 .01 .Cl .01 .08 .22 .25 .15 .10 .02 .05

11 .0 .02 .03 .03 .01 .01 .01 .01 .01 .10 .10 .10 .12 •10 .05 .30

12 .0 .02 .03 .02 .01 .01 .0 .0 .0 .04 .08 .10 .20 .11 .08 .30

13 .01 .02 .02 .02 .01 .0 .01 .01 .01 .03 .08 .15 .08 .10 .18 .27

14 .0 .0 .02 .02 .02 .0 .0 .0 .0 .0 .05 .02" .10 .12 .30 .35

15 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .07 .05 .08 .10 .20 .50

16 .0 .02 .03 .03 .03 .0 .0 .01 .03 .0 .0 .0 .15 .15 .15 .40
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Table 6.5- 
~ State Transition Table of Scientific C

om
putation.

1 2 3 4 . 5 6 7 8 9 10 11 12 13 14 15 16

1 .02 .08 .14. .02 .02 .0 .0 .0 .0 .06 .04 .05 .06 .50 .01 .0

2 .01 .04 .12 .04 .02 .0 .0 .0 .0 .06 .04 .06 .05 .50 .03 .03

3 .01 .02 .10 .08 .05 .0 .0 .0 .0 .06 .04 .05 .04 .50 .04 .01

4 .01 .02 .12 .05 .08 .0 .0 .0 .0 .06 .05 .06 .05 .43 .04 .03

5 .01 .02 .10^ .05 .10 .0 .0 .0 .0 .08 .06 .05 .05 .41 .03 .04

6 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

7 .0 .0 .0 .0 .0 .0 1 .0 .0 .0 .0 .0 .0 .0 . .0 .0 -.0

8 .0 .0 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 * .0 .0 .0

9 .0 .0 .0 .0 .0 .0 .0 .0 1 .0 .0 .0 .0 .0 •0 .0 .0

10 .0 .01 .02 .01 .01 .0 .0 .0 .0 .08 .20 .07 .05 .50 .03 .02

11 .0 .01 .02 .01 .01 .0 .0 .0 -.0 .11 .07 .15 .17 ,38 .05 .02

12 .0 .02 .08 .04 .02 .0 .0 .0 .0 .02 .02 Jo .15 .50 .04 .01

13 .0 .01 .02 ' .01 .01 .0 .0 .0 .0 .01 .03 .08 .11 .65 .05 .02

14 .0 .01 .02 .01 .01 .0 .0 .0 .0 . .01 .01 .02 .10 .70 .10 .01

15 .0 .01 . .02 .01 .01 .0 .0 .0 .0 .02 .02 .06 .10 .65 .07 .03

16 .0 .02 .04 .02 .02 .0 .0 .0 .0 .03 .03 .09 .20 .40 .05 .10
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Table 6.6. - State Transition Table of Business C
om

putation 
1.

1 2 3 "4 5 6 7 8 9 10 11 12 13 14 15 16

1 .02 .08 .14 .02 .02 .0 .0 .0 .0 .05 .04 .05 .06 .41 .06 .05

2 .01 .04 .12 .06 .05 .0 .0 .0 .0 .06 .05 .07 .06 .38 .05 .05

3 .01 .03 .10 .08 .07 .0 .0 .0 .0 .07 .05 .06 .05 .40 .04 .04

.01 .03 .12 .06 .10 .0 ' .0 ■ .0 .0 .06 .05 .06 .06 .35 .06 .04

5 .01 .03 .10 .05 .12 .0 .0 .0 .0 .08 .06 ' .05 .05 .37 .05 .03

6 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

7 .0 .0 .0 .0 .0 .0 1 .0 .0 .0 .0 .0 .0 /o .0 .0 .0

8 .0 .0 .0 .0 .0 .0 . .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0

9 .0 .0 .0 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 ; .0 .0

10 .0 .03 .08 .04 .05 .0 .0 .0 .0 .08 .10 .07 .05 .50 .03 .02

11 .01 .02 .08 .06 .05 .0 ‘ .0 .0 .0 . .06 .04 .08 .09 .40 .07 .04

12 .0 .03 .10 .06 .04 .0 .0 .0 .0 .03 .03 .04 .08 .50 .06 .03

13 .01 .02 .08 .05 .04 .0 .0 .0 .0 .02 .03 .04 .04 .60 .05 .02

14 .0 .03 .07 .05 .04 .0 .0 .0 .0 .02 .03 .02 .05 .60 .05 .04

15 .0 .04 .06 .05 .05 .0 .0 .0 .0 .03 .05' .06 .08 .52 .03 .03

16 .0 .04 .06 .04 .04 .0 .0 .0 .0 .04 .05 .09 .09 .30 .10 .15

H a u



Table 6.7- 
State Transition Table of Business C

om
putation 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 .01 .08 .12 .06 .04 .0 .0 .0 .0 .07 .06 .07 .08 .28 .06 .07

2 .01 .04 .12 .07 .04 .0 .0 .0 .0 .07 .06 .03 .07 .30 .06 .08

3 .01 .03 .10 .07 .06 .0 .0 .0 .0 .08 .06 .07 .06 .29 .07 ..10

4 .01 .03 .11 .06 .10 .0 .0 .0 .0 .07 .06 .07 .07 .25 .06 .11

5 .01 .04 .10 .06 .12 .0 .0 .0 .0 .08 .04 ,.06 .07 .25 .07 .10

6 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

7 .0 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 .0- .0 .0 ’ .0

8 .0 .0 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0' 0 .0 .0

9 .0 .0 .0 .0 .0 .0 .0 .0 1 .0 .0 .0 .0 .0 .0 .0 .0

10 .0 .03 .08 .06 ,05 .0 .0 .0 .0 .06 .10 .08 .05 .33 .06 .10

11 .01 .03 .10 .06 .05 .0 .0 .0 .0 .04 .05 .07 .07 . .32 .07 .13

12 .0 .03 .11 .07 .05 .0 .0 .0 .0 .02 .02 .05 .08 .35 .08 .14

13 .01 .02 .10 .06 .05 .0 .0 .0 .0 .02 .03 .06 .05 .39 .07 .14

14 .0 .03 .07 .05 .04 .0 • .0 .0 .0 .03 .04 .05 .06 .45 .06 .12

15 .0 .04 .08 .05 .05 .0 .0 .0 .0 .04 .05 .08 .09 .35 .05 .12

16 .0 .04 .06 .04 .04 .0 .0 .0 .0 .04 .05 .06 .07 .30 .10 .20
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Utilization Percentages of Data Channels

_ Channel

Job Type

1

0 1 2 3 4 5 6 7

70 20 65 30 5 15 35 10

2 7 35 80 50 30 20 5 15

3 16 25 .35 35 25 75 0 35
k 20 40 60 30 35 80 0 35

5 15 15 30 10 15 55 0 20

Table 6.8a Collected and Expected Channel Activities

Table 6.8b The Computed Channel Activities

•^^Channel q 1 2 3 4 5 6 7
vvu type

1 75.6 27.2 86.6 37.8 13.1 25.4 41.4 13.2

2 3.0 22.4 73.9 54.3 21.4 32.5 6.1 18.5

3 18.1 32.9 10.4 32.0 44.0 81.7 3.6 49.1

4 16.9 17.2 5.0 30.7 33.8 72.6 3.3 38.7

5 10.5 12.1 24.6 37.0 •26.0 58.8 3.0 28.5



■^Chann<51 0 1 2 3 4 5 6 7

1 2 2 20 30 5 25 2 3

2 1 1 20 30 4 35 2 2

3 2 2 40 40 3 40 3 2

4 2 2 40 40 5 30 1 4

5 3 1 50 50. 6 30 2 3

6 • 170 ' 8 ‘ 15 26 1 -12' 95 2

7 179 10 180 26 2 15 90 1

8 -172 9 15 15 1 -10 85 2

9 182 8 16 25 2 -14 90 2

10 5 4 10 30 10 90 5 10

11 8 5 12 30 8 70 3 9

12 7 3 18 40 .20 80 2 6

13 6 5 250 30 12 50 3 50

14 38 4 -64 10 50 100 4 65

15 -100 380 280 200 110 35 3 10

16 20 -130 -10 20 -20 -10 2 5

Table 6.9 The Transfer Matrix State versus Channel Activities
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punch, and a line printer. These channels are displayed in Figure 6.10.

Utilization percentages of output data channel activities of channels 

0 through are reported in the Univac documents. These utilization percentages 

are also used in the model. Utilization percentages of the other channels 

are estimated from characteristic job categories and the internal executive 

functions of the EXEC 8 operating system. These utilization percentages are 

tabulated in Table 6.8a.

The next step is to build the transfer matrix between steady state 

versus output data channel activity. We determine the transfer matrix of the 

model by trial and error as described in Table 6.9. Negative values in entries 

of the matrix indicate interference with the normal operation of the channel 

by the state activity, for example, priority schemes used in the operating 

system.

The computed utilization percentages from the steady states of each 

job type and the determined transfer matrix are tabulated in Table 6.8b. The 

discrepancy between the two tables in Table 6.8 looks large, but it is an 

acceptable range for the first model.

6.4 Computer Simulation of the Example

In the preceding section, the model of a computer system is built us­

ing a generalized probabilistic sequential machine (GPSM). Five input job 

types (input symbols), sixteen states, eight output items, five state transi­

tion matrices for each job type, and a transfer matrix from state distribution 

to the output items have been determined from the computer configuration and 

from the monitored computer performance data given in the UNIVAC report. As 

defined in the preceding section, the calibration phase and the estimation 

phase are involved in an application of the statistic technique. The call­
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bration phase is finished by model building. In order to present the estima­

tion phase, daily operation of the computer system is simulated in a computer 

based on the model which has been built. Then the optimization process is ap­

plied on a simulated result of the daily computer operation. The estimated 

error location in a subsystem is compared with the computed simulation result 

of the subsystem activities.

The essentials of the simulation are mixing of input job types in 

accordance with pseudorandom numbers generated in a computer. A mixing ratio 

of job types (input symbol distribution) is predetermined; therefore, the next 

state distribution is computered using the state transition matrix chosen by 

a generated random number. When a state distribution is reached in a steady 

state, the simulation process is terminated. The steps of the simulation are 

described in the following paragraphs.

1. Read

State transition matrix and
the transfer matrix, state versus output.'

2. Generate

A random number vector.

3. Print

The matrices and the distribution of the generated random 
numbers.

A. Read

The initial state distribution and a mixing ratio of input 
job types.

5. Print

The initial state distribution and the mixing ratio.

6. Loop Entry

Get a job type index from the random number vector.
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7. Compute

The next state distribution.

8. petermine

Is the present state distribution a steady state?

9. Branch

If it is not a steady state, then compute the present out- 
put^activity.- Go to the loop entry.

10. Terminate

If it is a steady state then terminate.

A definition of the steady state for computational convenient is in­

troduced as follows;

Define e. such as 
----------- J

E.>ls.(t )-W.S.(t .)-W0S.(t o)-W_S.(t 
j—k 1 j m 1 j m-r 2 j m-2' 3 J m-3 1

k r+ r + ... = t------ >-1 as k-*<»,1 -r

thus r = .

Only when the maximum e. for j=l,2,3,

for j = 1,2,3,,...,16,

where Sj(tm) is the jth state probability at a time tm and is the weighting

factor at the time The weighting is assumed geometric, namely W^=r,

2 kW^^r ,...,W^=r ,... so that the sum of for k = 1,2,3,... must be one 

2 3 A r+r +r+r +

16 becomes less than a given

criterion e the present state distribution S.(t ) j m for j=l,2,3,...»16, i s re­

garded as a steady state.

An example of a computer simulation is presented here. A job type 

mixing ratio is given in Table 6.10a. Computed steady state distribution ind
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output channel activities are tabulated in Tables 6.10b and 6.10c, respectively. 

Since the probabilities of the state distribution and the utilization of out­

put channels are in a steady state, this situation of the computer system shall 

be continued in a certain time period until the system moves into a transient 

period to settle down in another steady state. Suppose an error occurred dur­

ing the steady state. An estimation of the subsystem1s activity is performed 

by optimizing the nonlinear mathematical programming problem described in Sec­

tion 6.2.

The Lagrange multiplier method is used to solve the nonlinear mathe­

matical programming problem. The optimum solution of the problem (the estima­

tion of the job type mixing ratio) is presented in Table 6.10d. The estimated 

steady state and the difference between the estimated steady state and the 

computed steady state are tabulated in Table 6.10e. Activity orders of the 

estimated steady state and the computed steady state are presented in Table 

6.10f.

Table 6.10b Computed Steady State

Job Type No. 1 2 3 4 5
Probabi1ity .025 .025 .025 .024 91

Table 6.10a Mi
Si

xing Ratio 
mu1 at ion

of Job Type Used in a Computer

State No. 1 2 3 4 5 6
Probabi1ity .003185 .02859 .07437 .05415 .05923 .02008

State No. 7 8 9 10 11 12
Probabi1ity .03210 .03294 .03454 .03871 .04123 .05359

State No. 13 14 15 16
Probabiii ty .05775 .29751 .06009 .11195
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Table 6.10c Output Channel Activity in the Computed Steady State

Channel No. 1 2 3 4 5 6
Percentage Utilization 30.36 11.69 28.81 35.28 22.89 51.16

Channel No. 7 8
Percentage Utilization 13.36 25.28

Job Type No. | 1 2 3 4. 5
Probabi1ity | .254 .110 .0 .636 .0

Table 6.10d The Opti mal Job Type Mixing Ratio (The Esti mated Rat

State No. 1 2 3 4 5 6
Estimated .002463 .04395 .07359 .04990 .03584 .02576
Computed .003185 .02859 .07437 .05415 .05923 .02008
Difference -.000722 .01536 -.00078 - .00415 -.02339 .00568

State No. 7 8 9 '10 11 12
Est imated .03381 .02890 .02840 .03283 .03464 .03337
Computed .03210 .03294 .03454 .03871 .04123 .05359
**••<* r .utt iei chuc .0017 < -.00404 '.00514 - nnr QO -.00658 -.02021

State No. 13 14 15 16
Estimated .08624 .35539 .06718 .06774
Computed .05775 .29751 .06009 .11195
Difference .02839 .05788 .00709 .04421

Table 6.10e Most-Likely Steady State (Estimated Probability) 
and the Difference of the Probabi1ity-from the 
Computed Steady State Probability (6.10b).

Activity Order 1 2 3 5 6 7 8 9 10 11 12 13 1^ 5 16
Estimated State 14 13 3 16 15 4 2 5 11 7 12 10 8 9 6 1
Computed State 141631551341211 10 9 8 7 2 6 1

Table 6.10f The Activity Orders of the Computed Steady State and 
of the Estimated Steady State.

Although the estimated job type mixing ratio by the optimization de­

viates wildly from the imposed mixing ratio in the simulation (as shown in 

Tables 6.10a and 6.10d), the estimation of subsystem activities indicated in 

Table G.lOe is very good. The estimated result is nearly consistent with the 
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computed activity order (see Table 6.10f) except states 2,13 and 12,16. The 

estimated activities of states 2,13 and 12,16 become higher and lower than the 

computed activities, respectively. The higher estimated probabilities of job 

types 1 and 2 compared with the forced job mixing probabilities in the simula­

tion may cause higher activity in states 2,13 and lower activity in states 

12,16. A deviation from the uniform distributed random number which is used 

in the switching of job type mixing could result in the higher estimated proba­

bilities. Nevertheless, the estimated state activities are close enough to 

the computed state activities in the example. The expected values, 
16
y i P (s.j where P (s.) is the probability of the ith steady state shown in 

i=l r 1 r 1
Table 6.10e, are about 4.80 and 5.12 in the estimated steady state and the 

computed steady state, respectively,

Another application results of the statistical estimation technique 

are given in Table 6.11. Probabilities of job type mixing ratios in too simula­

tion and the optimization are shown in Table 6.11a and activity orders of the . 

computed (simulated) steady state and of the estimated steady state are pre­

sented in Table 6.11b. The expected values in the simulated steady state and 

the estimated steady state are about 3.^1 and 3.12, respectively.

The optimization provides a good solution consisting with the sim­

ulated result where the probability of a state .is clearly distinguishable 

(larger or smaller) but the optimized solutions of states, where probability 

differences between the states in a set are not large, do not match exactly 

to the simulated results. Nevertheless, the expected values in the simulation 

and the estimation are close enough to each other, so that this technique is 

very useful to find a subsystem which contains an error over a long mainte­

nance time period.

The detailed results of these computing examples and the computer
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program listings are attached in Appendix A.

Job Type No. 1 2 3 4 5
Est imated .178 .0 . .726 .096 .0

'Computed .10 .10 .60 .10 .10

Table 6.11a ’robabi1i ties of Job Type Mixing Ratio

Activity Order I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Estimated State 14 13 15 3 12 2 4 7 10 11 8 9 6 16 5 1
Computed State 14 13 15 12 8 9 7 3 6 11 10 16 4 5 2 1

Table 6.11b The Activity Orders of the Computed Steady State and 
of the Estimated Steady State.

This statistical technique can be applied iteratively on a subsystem, 

which is handled as a whole system in order to examine its relative subsystems. 

After a determination of the subsystem activity order in a system, any deter­

ministic error (fault) detection methods [69]» [651 shall be applied on each 

subsystem to locate an error.



CHAPTER VI I

CONCLUDING REMARKS AND SUGGESTED FUTURE RESEARCH

The probabilistic sequential machine has been broadened into a 

more general form. This generalization includes uncertainty of incoming 

input symbols and a vector form of the outputs. Based on this generalized 

probabilistic sequential machine (GPSM) theory, a new approach to the 

computer system modeling and error detection problem (regardless of the 

computer structure level under consideration) has been presented. The 

representation of computer systems by generalized probabilistic sequential 

machines and the subsequent analysis are shown to be a useful tool in 

error detection as well as in system performance measurement.

The two-state absolutely isolated probabilistic sequential machine 

(PSM), which is obtained from newly defined state transferable ranges of 

the PSM, has been constructed. These ranges are defined by considering 

the signs of eigenvalues of each state transition matrix and are generally 

narrower than those of the well known completely isolated machine; therefore 

the absolutely isolated machine includes the completely isolated machine as 

a subclass. It is pointed out that the absolutely isolated properties 

(such as the past input traceability and the past state or subsystem 

activities, etc.) are applicable to error detection. In addition, both 

the kth term approximation of the infinite series that represents the 

isolated properties and error bounds of the approximation have been dis­

cussed. Based on this study, an input string cutpoint to a probabilistic 

automaton (PA) is determined using the error bounds. The set of input 

strings recognized by the PA is much larger than the set recognized by the 

well known completely isolated PA.
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In general, the initial state distribution of a PSM plays an important 

role in the probabilistic sequential machine theory. However, it has been 

proven that the influence of the initial state distribution diminishes as 

the length of an input string approaches infinity. This initial state • 

independence property, one of the absolutely isolated properties, is dis­

cussed in detail in Chapter III. This property may be used in estimating 

the upper bound influenced by the deviation of the initial state distribu­

tion from (1,0) or the first state s = 1 and the second state s = 0.
1 2

Furthermore, when state transferable ranges of an absolutely isolated 

machine are spaced with more marginal distance than the upper bound of 

the initial state distribution influence, it is shown that the absolutely 

isolated machine is initial state independent.

A method for decomposing a three-state PS." Into three two-state PSM's 

has been presented. The method can be extended to the decomposition of a. 

general n-state PSM with n > 3, that is, an n-state PSM may be composed of 

two-state isolated machines, so the PSM has the absolutely isolated pro­

perties. The past input traceability of an n-state PSM can be applied to 

system performance analysis as well as error detection, if it is isolated 

and decomposable. A method for computing a state transition along with 

a particular path from the ith state to the jth state in a three-state 

(or an n-state) PSM has been discussed with decomposed two-state transition 

matrices which consist of component PSM’s. The method provides a state 

transition allotment among substates of a state in the decomposed machine. 

The substate transition allotment computed with this method is a loading 

distribution of substate activities which may be useful for component re­

liability analysis in the realized PSM.
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As discussed, a GPSM is suitable for modeling large computer systems. 

In order to determine the past subsystem activities of. a GPSM model which 

may or may not have the input-traceable property, a statistical technique 

which is a nonlinear mathematical programming problem has been formulated. 

The optimization of the programming problem provides the most-likely past 

subsystem activities based on collected data in two phases. These data 

can be gathered in a relatively simple way so that the technique is easily 

applicable to a real situation. A GPSM model of a UNIVAC EXEC 8 computer 

system has been built, and daily computer operation of the model is simu­

lated in a computer. Incoming inputs to the model are determined from 

pseudo random numbers. It is demonstrated that the most-likely state dis­

tribution obtained by this technique closely agrees with the steady state 

distribution computed from state transition matrix multiplication in 

examples of the simulation.

The theory and techniques presented here do not pretend to solve 

all problems with which a computer system is faced today, but its value 

rests on the new insight it provides to the hardware designer and the 

maintenance engineer as well as the software engineer. The result is a 

"preliminary report on the subject of computer system modeling and error 

detection. Much fruitful work remains in many aspects. Some possible 

research areas are described in the following paragraphs.

Future research topics evolving from Chapter II include improve­

ments in model building techniques. A technique to determine better con

stants (parameters), methods to insert measuring probes in the computer

system, and a systematic separation of subsystems are possible subjects.
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Chapter III suggests a relationship study of the isolation of (1,2) 

elements with (a) eigenvalues, (b) the (2,1) elements of the matrices, or 

(c) a number of input symbols. The (1,2) elements are elements of state 

transition matrices of a two-state multisymbol PSM.

From Chapter IV, a decomposition using weighted state transitions 

among substates of a state,-instead of assuming equal weighting of the 

substates, may expand the decomposable class of PSM's. Serial decomposi­

tion with n(n-l)/2 component machines, where n is a number of states, may 

bring to research a new area of PSM decomposition. A review of the dot­

circle multiplication from the matrix theory would be another interesting 

topic.

Studies of a relationship between decomposability and isolation in 

an n-state PSM and of the input traceabi1ity as opposed to other charac­

teristics such as eigenvalues and steady state of the PSM may be interest­

ing topics in Chapter V. Applications of the input traceability to other 

fields are also worthwhile.

Combinations of the technique presented in this paper with other 

"statistical estimation techniques in order to improve accuracy and optimi­

zation development for ergodic states are immediate research topics. 

Direct application of stochastic programming method [77] to the estimation 

of past performance of a computer system is an exciting subject in place 

of nonlinear mathematical programming. Applications of the GPSM modeling 

and the statistic estimation technique to other fields such as economics 

and social science are expandable.
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APPENDIX A

1. Simulation Program of Computer System Operation Modeled

by Generalized Probabilistic Sequential Machine.

2. Simulation Examples; Example 1 and Example 2.

d* OpZqLion Pio^xcuTl of Llic. SLoLisLidL TZsL^.rm'Licn 

Technique.

4. Optimization Examples of the Simulation Examples.

5. Block Diagrams of Computations.
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oooo I nonnoo j

SU1 AObT if.L. MmTi-.Ul (LfM*N» ArBrCfiiD) 
ul;..L- ibiu: Atun-'?) FB(MD»i>) »C(_h;) 
LIU 10 1 = 1 »L
El U 1 ' J «J — # । '<
Sb,-.-a.
Du 5 ,\=x»M
SbM=SUr h A( I. K) *B(K» J).

5 Cf.|4TlU:jr:
CiI,j)=SuM

io cuntiHue
RETURN
EisD

h uOi-.PiLriTiCN i i,C uIkGnCSTICS.
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1 vUiHi.l h’Oi'JT UI?1,1l5

fEb'ErxLi

;Duri

^lLmTIVE LOCATTCN, IjAhE)

) *1J C o
000070 in 
ooonpt'r iv

.015

0001
0000

26; D,U'a(u) OuOUUt; 3LAi.K C0)'iVON(2) oooooo

uoul 000u55 132G
UOuO I OU0G01 I

^uBR-DUTl'^ OUTPiVKSr Of RrErNC,MO)
t-lMENSlui; 6(NO) fO(IIO) rR(M3) »£(;,O) 
ID-6
i Ml-dui^Cu) i- 0

-On hORM--U/i i TTrxAi tdij
aCi r dRu-t t < 5X r ‘tul-Dlf.TE»uuTPuT-i'-'-c.ASURt- » Act S-'i • STATE aNU EPS )VJ?. 1 T ~ 11U r tj (j j.)

Jp.ri iLUDi’z) (d(1) rl = lrr:j)
.•IRI TEl JurSLE) (o ( I) r 1 = 1 * I’0)
JR I I E i I u i L-t 2 ) (r . ( 1 ) * I — 1 friO)
v.Rl'i T( (l(I) rl-l,r'v)

uOc FO-.M.i ( (IPX,5(1X,El-2.'/) ) )
RlTu-I.,
Ei-.D

[ uOi-.PjlLaTIOm 1.0 . uIAG.;OSTICS



• a r\Ml-< » • A^riHrl
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, ,1. < I u
uiiTRY rClf.'T dOLl^O 
t-i.iR’Y r’Gl-'ri uOul^l

d£j: CO^E(l) 0C0157; DATa(u) OuCU6C? PLM.K C0MY,Oisi(2) oooooo

'LrrnLuCi_S ( lLCC K f

dS i 'ciMi'iL.. <T (ui_CC.x» TYPl, RELATIVE LOCATTOM, nAi- e)

jlJ 1G
1
i \A.-.

U J L-1 
uDuC

CuOji^A 12u
CuOl'+A I'-'jPe

0001 A0D0A3 1216
OOuO I 000925 IU

0001 OOnr-A-? j
0000 I OOOCnn J

SLl^ixOvl i Y E R Ai .l-Ei < (i.Ai-.D r T Ai'i)
nLEE .15TON RANDHRAiJ
r</M ID i X ) — IS Z I e

C /. L L r< A l , DUtr.ANDr IRAiI)
DiLEf.'jlU.'i JH.ANV («°1)
Iv = o
DU 5 1=1,IRAN
K=[\h lu ( 1) * E u • +1»
Jh Ai IV (h.) =urAL v ( K)+1

5 Cu.J'L.UE
..MTE(lJrUGu) (J,-:aI.V(I) ,1 = 1,21)

500 FuiM-.AT(/lU,v,15H RaIiu. V. uIST. ,/16X,2,113)
RtTUiO.
EllTRY . RALTR(I|;,RK,.?ANn',L)
DlHcDtlvt ! rt.Al'* 11»(t_)
RAM=R,J- u( ID
IR=1R+1
Lu 10 1 = 1,1.
IKHA.-I.lE.RaLIL 11) ) GO TO 12

1U Cur.'l I.IUc
Kr\~L
Rt-TuhN

12 LG^'flMDL "
K.K=1
TLTuGN
Ei .0



• t Luit .rLuX 
m/7j-ii:oz:D5 (ii)
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. rLUT i£l.:TKY FC1LT uOU5u4

>e<j: Culu(I) OuDbav; l„T/a(u) 0j0o13; p.LAr.K co'.:,,o?4(2) oonooo

iti-T t\t-.<CES (u>L^CK» f.H.'i.)

r U J Jj
0^=
O1S
OcL'*’.
Ri>3s ,

>birniiL.;<[ (dluCm TYPt_f ^llLaTiVL LCCATIOM, f-iAiiF)

X „L •J J..1- HL 0001 000221 1?L 0001 nrinnA?
1 ghG ;; iui !: J3212 17J3 UOul OOOLA-l 2076 0001 00,9315
c-7L U Jvl 0 J •'j H- o 2‘-L UOuI OUOM-Fu 3016 ooon r^nmf:

)'jvr.D L>.2F J J.. 3 0 U '? L* 1 * * * * * * ( U JF 00u1 000123 FL 0000 R 0 0 n n -* o
)i"' /<=- i J.itjO 11 U 3 C_ U L, Xl'JP^ 00un I 0j0o34 P'O 0000 I n f n 12
:?;jiu 1 c 0 -I Li C 1 ru'iji/ J OOjO I 309031 JPL onon j nf^nop,
jOj'.u L' j 0 1 OuluL^ i ’LUS U 0 u G P 0001.20 P’-AX ooon I rri001.5
;fi U 0 j 0 s-'. ijU'1u<:7 OOuO P. 000125 SCALF onon I Or’09'73
i U .i ? u G i\ iF L U J J 0 I i J u 0 U1 o

S CuNT iKJUfc
Gu ALE l J« ? ') -i
.^Aie^ • -) -Qiw
RANG :-PH'X-GWA>
>jCALE( Jr -i ) -R-AM^E
IRP-0
SCALF-LO.
TF (PAAicr.,.!. I. ■) t»CALF-.l

|C

f- 
K 

h 

k 

F-

1=

k 

k 

k 

k 

K

F 

t

F

SLuflDuTlM-- PLOTCMf t Ml- * iV.T A.»Sc ALE, M»i I)
Di’. c-J^IuN uAi t SCALE (NDr1^) »LSiJ(lCU) ,SP(1C1) . SYM5L (10 )
EuUIVmLli-Ll <LjF rSp)
l.lTt SER GY , rL.JS f ZE^G t 3LANK» PNG r SP
(JmTa SP/1U14-* ’ /
l)aTA SY-RL/’^ ’»'+ * r ’ ( l , f - fr » = * r •$

1» • . • r «U ’ t «5 t , t R */

IjATa PuUo/’+ V
OrtTn EEaC/’u- ’/
DaT a V
i IL r N;J ALE RaTa DI.I.
UrM z rc. ChTh LjIz_E
S l A u <_ Io uUdT Gr/\CZ
lu=u
DG lv
P,1AA = 'j.
^I4Aa=v.
UO 8 1-xrM
IF (D 1 i A I 1 r,_) .&T.PMAX) I'Mav.-Rata (i 1 J)
IF(uAiAt Irj).uT.QMAX) uMAV=DATa( I t J )



LU, I i II\|:jL. 215
x ih (R GO "10 11

JRrR>.,j;3l_
Ir (JR-'MMG£.Li .u. ) 3u TO 10

11 Lu|vli [Nuu
R KI . V :£ — P rthi < C / SC A L F
1R|’-Ipp+1
C-l "10

lu ClSTI^Cil
CO Ih
'dL i\L-Z ( J r 1 ) — 1 e J
It- (C. ) SCALE (Jr L)-2.0
RrCT‘>-l.u
Du lu. I-lrIRP
IF(l.ER.i) GG TO 12
Hr Cl < —i\FC I R*SCAi-F1c CuNUhVj--
SCr.LE ( J r 3 ) ~;XrC TR/SCz\LE (J r 1)

14 Cv .HMcE
bP(l)=iJLuS>

Lu 2 j <j—1 f .t
LUv.-dCmLl (o r 2-)
ASM.
■JpL-.AQ;‘,\X¥ 1 U C) . *SC ALE ( J r 1 )
IPL-Ji‘L+1
s?( [riJ^ziixO

SlM3=uYM6L( J)
'/.R1 I E (1J r 5!' u ) SY;- Br S?• SCALE (J r 5)

a Ou Fu A| ( lux r A i r 10 .< r 1 T1 Al r r. 10 • a)
d01 rO.L’.Ail 21Xr xi‘ll'+~ — — ———4-————4-——4.

j—4.---------+-----------4.----------4.---------- - -----------4.----------4.---------- 4.----------4.----------4.--—4. )

5p( iPD-Bi-rV i.X
2u CvLiI

I.c. I i C. ( I U f Ui! 1 )
I. ID-3
u u J 0 x - j. r Fl
Pi\1«j=h1_a ■!<
Du <.0 u-111<
S i M.j=uYMFl (u)
PDA i'.A- (u/'T;- (I . J)-SCALE (urD) )/SCALE ( Jr 4)
Jt: L-^DaTA*] u0 . / SC ALE ( J r b)
IF(gCALE(ufu).LT.1.j) jPL=FDATH*inO.*SCALE(Jr5)
1FL-JPL+1
IF(IPL.uf.Jul) IPL=lul
SP(1PL)=SYMB

2o CuNHN'E
INO=II^O+1
ir(xJO.tl.5) uu TO 27
PiXIa— I
IMO-D
V/iR.ITc (1 ur ur) r iiC «bP
fO'MaTC L ■; < ♦ IC » L> >■ r 1 u 1A 1 )
GO "7 3 2L

2 7 CuNllM'Ju.
WRI i 1 ( 1 u> r b'j3 ) C »SD

bCu rC.-MA.T( 1 AC r D,< r 101^1 ) ..
2o CuNTIM.-F.

DO 29 u-2,_'?x
5p( J)-BLANK

29 uONTTM'.E
SP(x)-pLnb

Ci- csmtiMdE
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i) 4 — 112 Li 4
r i-,7ov> SIZl_ (J./1..) — SoC1 /74

LEVEL 79-1
CTxOh - rii-.E 1.257 SoCOr-DS



Example 1 217
l.jlllAu SI,ME A;.:, IiSPuT PATfERil

. C u 0 U v. L 9

. 0 u 0 u ■? U 0

.oucur.jn

.1UCUuLC+31

.250JulC~3i

. G 0 u '3 G 0 G

. L f) u U G u

. l.OuObUL

.bOuOuOL-Ol

. 0 b 0 0 0 0 0

.OuOonoo

.0000000

.7500033-01

.0000000 

. 0 0 i) 0 0 0 0 

.OOlCuOO

.9900000-01

.0000000

.oooonoo

.0000000

.9500000+00

iTEnAriuN 20
SI Al E i OUTF 11 i -l-.r aSiJPE fHCbP.STATE Ai .4) EPS

. 29^167 6—Gc, .3lu3SC4-31 . 7266*110-^1 .5525000-01 .5328462-01

.2u0/c--^-)l .3209976-.JI .3293716-01 .3454145-01 .3676768-01
• 4c;26^St>“91 .57+4967-01 .6122396-01 .2795379+00 .6392842-01
.1249861+3j
.2<358S-,i5+32 .1139908+02 .3154093+02 .3607105+02 .2223392+02
.4958164+ 3^ .1331978+02 .2439447+n£ .0000000 .oooonoo
.CUOUSOO • Q G U 0 u C U ‘.GuOOOOO .0000900■ .0000000
. 9 b 0 U j C n
.4599Jlu-9^ .5(^97771-01 .1253677+00 .9808996-01 .8844797-01
.6545162-31 • 0 5 u 4 35—0 1 .8458^44-01 .8890079-01 .6969392-01
.836 787*5-j 1 .9P.968.32-U1 . 14247,25 + 00 .4423416+00 .1751887+00
.289 70 Za + C1;:
.1284741-?^ .3698,^70-02 .1996043-01 .1241002-01 .1812127-01
.2b3u543-31 .2G85i:4C-JI . 1.871513-01 .1981788-01 .3841420-02• bC 0 98 1 b*" 3 • 15 93 ‘j b 1 - u 1 .1998453-01 .1132341+00 .4733186-01
.39705^1-3t

11 jTt_Gr<A 1 £6 GU. . 1? SnO,txT AhD L05G TI;,E PERIODS

.5651724-61 • 606 5960+0 0 .1407304+01 . 104 1566 + 01 .1027935+01
.34 17516+'!.. - 379,,&20 + !JP .3661086+40 , 5855724 ( ZiO .7415677+nG
. Cu4 + u06+ ).j .1029u89+ul .1380203+01 .5755012+01 .1388426+01
.3285799+01

. U C u C 3 0 0 . (J u 0 0 0 u 0 • bOOO.JOj .4000000 .0008000
. OuCu O'JC . 0 C; U 0 j 0 b . 0 b 0 0 0 G 0 •UOuOuOO .0000900
. 0 u G u 'j J n . b 0 J 0 u u u .GuOOOjO .0000000 .0000900
.OuCUuuC

.5651724-ul •6065960+00 .1407304+01 .1041566+01 .10279+5+01
.3a17516+3u .379082u+jn .3 6610 C'6 + 00 .3855724+00 .7415677+01"
.buO+606+3u . ir 29b£-9+ul .1383208+01 .5735012+01 .1338426+01
‘.3285799 + 01

. G 0 b 3 G 0 U .OuOUOuO .GOGOGOu .OGOOOOO .0000000
• n u 0 u j <. '3 . l 0 u G u 0 C .fiuO.jno'J ■ .0030000 .0000000
. 0 u 0 'J 0 7 3 • G 0 u 0 C 0 u . 0 U 0 0 0 d 0 .0000080 .0000000
e0uGuL5C#

♦ -Me S T t_ .A tj Y S 1 A i l. -f

ITEhAi'K,.* j7
STATE# <>jT!-U 1- EmSJPE# MCLV.STAir A; .n EPS

. 31649+3-1,7 .285^0^8-01 .■7436",77-0i .3414658-01 .59^3331-01
• 2uO79a9-9 l .3209973-.1 .3L;QZ716-ri .34 5'' 14 5-01 .38‘70775-01
.41/254.'-U . "774566-91 .2975132+00 .6O99'|S1-O1
.1x194501 0
.3635057+ ’2 . iJ6893o+ i? . "P,81262 + n2 .35'o7657+02 .2289457+02
.51162231- )2 . 13356-A +j? .7523291+02 .tin ,r-JOO . 0 G 0 3 n 0 0
e n b, i'i *J ' > ? . -. G 1L 11. . juOunui'1 * 0 n u 0 0') 0 . G 0 n U n U 0
e < > U s> ' e



6368921-12 
'4 D158 3,/,-'Ji 

l-'Jj.
223812.3-rOu 
9656669-06 
1930166-06 
bsi?itu82- 35

.571 78.1 8- j 1 
• u'll'-J >"11~U1 
. 1071J3U+jO 

.3177673-u5 
»i5d79f'5-J6 
. 15^"5u8d-0U

. 14t8728';f hU .1082816+00

.66374+6-01 .6908306-ul

.115+6+0+00 .59519+0+00

.6738119-05 .113621+—0+

.1+2492+-06 .15087+3-06

.726o6+4-95 .1676120-03

.1164531+00 218

.7740713-01

.1201719+00

. 135386+-0 +

.83+2834-05

.1772726-0+



v Example 2
IhIIIAL STATE Ai-.E LJ'UT PATIEKN

. C L 0 u v L D • L1 C u n u o l .OuOOOOO .0000000 ♦0000000

.OcOu3l0 . (.CuO.jCu . o o n u o u o • u 0 0 0 0 0 0 .0000000

. OUOU‘: JC • C* 0 u 0 U 0 L . OuOunun .OObOOGO .oooonoo

.lUOUui0+01

.IlOulOU+ju .4.000 J-JC + UC . .fiuOOObn + rib .9000000+00 .9900000+00

ITEkA 1 11,.! 20
SIA'TEfCUTr ।.'f-.. EASuF.l r ACU.*'. STA I" ALP EPS

. IbOo^^p.-Od .9320 i+6-?. .2992015-01 .1493363-01 .1295512-01

.97855c3-Ji . 12d997 + + c(? . 1071.937 + 00 .1013+01+00 .1917536-01

.2U5GD/C.-C1 • vE 7t'c92-u 1 .51227++-01 .3259308+00 .31106o2-01

.lc6U299-Ji

.eo326i.7 + 3f_ .15 79866+b? .310931^+02 .2663503+02 .2222333+02

.4303cg7+0^ • + ('66u32+v2 .2583262+02 .OObOOGO .6000000

. 0 L C u G 0 0 .eounuou *. OuOOOOO .0000000 .oooonoo

. 0 U C u L J C
.5310129-31 .7998884-01 .5021623-01 .2431538-01

.192812u+3j • 24 2?‘rU*t + u0 .2101905+00 .1996035+00 .3804168-01

.37 5790 + - )i . 56^62;97-u] .15653+6+00 .5137754+00 .964730^-01

.QlL9C5l“0i 

.873^152-3u .SASJ-Sb-Cl .2014355-01 .2034898-01 .160055^-02

.289+^9 5- .575++48-32 .4196932-02 .3076658-02 .30^0+78-03

.39323/1-0^ .1+99087-31 .5+12971-01 .1390661+00 .3425981-01

.1299952-01

I uTEGkA i t-L' SI!,

.<78A./55-i 1

I! Gi.vrsT r.is
.+ + 53766-100

9 LUKb TI...E PERIODS

.7769937+60 .5132435+00 .3447829+00
• Ii3696<+'',J x • 1316515-i ul . 1198229;Gi « 1 r- G 6 7 5 sj + u 1 • “f *T J. ’ > L/ ' » 'j ’ ’
.9770319+0 J .712316L+ui? . .Io67331+01 .6542792+01 .12804GQ+01
.193+359+31

.UOuOuub . 0 u .1 j C b 3 . u 0 u 3 0 0 u . n o n o o o 0 .0000000
. 0 u 0 J -? 0 0 . GUUilLOi, .OGOOOUO . 0 0 0 0 U 0 0 .OOOOnon
. 0 u b J ‘i c 3 . G 0 U'? b U C • . OuGuobO . 000n000 .oooonoo
. 0 u C u C C C

■ .2289759-01 .++5j7u6+0G .7739937+00 .5132435+00 .3447829+00
.1136969+01 . 1316515+61 .1198220+01 .1206753+01 .4241055+01)
..11770019+Jc .7123168+00 .1867331+01 .6542792+01 .128040^+0.1
.193433++31

lUOU’iC'u . 0 U 0 u 0 u 0 . 0 0 0 0 U 0 u .0000000 .0000000
.OuOb J-„u . C 0 u 3 u u v . OCOuGDO .0000000 .0000000
.OuCdv'. r . b b U'? b ।1 u" . OuOuOUO .OOOOuOO ♦0000000
.CuOUOCO

I Tl.hA 1 lu! +0
S'l / T.£ »i.U’i i L'T-M'. AS.,r- S 

. 133252 2-'"9. .1565039-01
fix CUP. ST Afc Ar 
.37^4130-01

r' EPS
. 1694943-01 . 1621867-01

.2uf.l2 /7- > j .Z5+G5?g-0i . 33310301-01 . 36204.34-01 .30^8134-01

.33562C2-*)x .64’79^11-31 . ll9j+95+00 .4591194+bO .4806601-01

.3689+7^-31 

.37 5-5^2-+ E-. . 176 i2''5 +J? .0+18360+02 .2,?Z^233 + 02 .3106886+0?

.t-'-Cr.-36r • i^TD . D + L■-, . 3 7 + 3256 + OrL . J n v C u 0 U .ucnuoun

.r-uGu- :' . 1. f ; i., - ’ l_> •' t . C-1.0 b + 0 0 , b U 0 0 0 0 ♦OOOOnon

. Cu ’• ■ 

.35AS+29- .'2 .^238,060-01 . U ! n + Sii 1. — 01 .35^-1636-01

.536+1S6"', . 79755*?*'" -1 .78-';89+':-oi .2035703-01 .6372830-01



.5^L-t£23t-i. u
.^i2x07°«-j_ 
. 1 u21122i-02 
.2^5/562+1^

.8015298*01
• 2676425 + 62 
.1U2'3l29 + j2

• 13 U1 civ' o — u 2 
. 5c026,>6- ll 
.2bD283't~3i
.5o934t,6-0i

.2003325-01
.6691ur2-J1
.3563819-01

. 1 7 6290 + u2
. ',it5iJ357 + 02 
.332793'4 + 02.

.10m9675+02 
.2414417+02 
.1431735+03

,7696646+r. I
.8595171+01
.2898946+02

.3940725-01
.6125393-01
.8319334-01

.262468t'-01
.6036044-01
.3579337+00

.1924161-C1
.2149543-01
.7247364-01

+ * + STl.tiUY STATE ++ +

5

10

ITEhATlO 1 692
S3 ATE , OUTPUT-,. EASUFE* ^Cijv. STATE AuD EPS

.622^0 77-.lu
• 19 6 5 o 01 — i? 1 
. lt3o+ufJ- )1 
. 1352225—j1 
.3730160+0^ 
.712u5h5+3e
•GuGuOGO
• 0 u C 0 ■> 0 0 
.124b.JP-3-3S 
.3932326-01
• 3c7 + 2‘-r3—01 
.27G3oSC-3i
• 67 ?o9xlt” )*"> 
. 7£5u35T.—j j 
.1323j37-0-r

. 1012667-Jl 
•u36497o-01 
.uaSSuUA™G1

.2995u67+02 

.1396^0^+02

. GOuOu'Ju

.2535182-01

.3410161-01

.8899221-01

.1655583+02 

.4336582+02 

.0000000

.2025 731 
•e7o07Ob-U1 
.L9u8bp9-31

• 399048*4 —u5 
.7562Z39-05 
.1li32 10 7-54

.5571540-01 

.-82U971-O1 

.1779883+00

.1176004-04 

.6489921-05 

.3907830-05

.1307210-91

.3335502-01

.5724^99+00

.3082191+02

.0000000

.0000000

.2615257-01 

.6770o54-01 

.1144641+01

.8673174-55

.6493769-05
,1392961-03

. 394 0 ±93- j*T
9

.1242574-01

.1644696-01

.7247263-01

.3585940+02

.0000000

.0000000

.24O579'7-01
'<,3290364-01 
.1449435+00

.6486312-05 

.97311 S'7-05

.1745299-05

-g- w- —«• we. -J- w *». -y ee — —• ■» —• -4“ w —- -we w— e-r — -5- • —► ■» -1- —* -4- w ^ee -j — er^

*
+ +
+ *
+ *
+ ♦
+ ♦
+ *
+ ♦
+ *
+ ♦
+ *
+ *
+
+

*

*

220

15
+ *



N
9/ 75-32: 13:21 I .0)- 

221

'fiK

ED: CODEC L> 031472; DATA(O) 3J1434; BLANK C0MM0N(2 ) 000000

EFERENCES 13L0CX. NAME)

-R
NTR$

;ou$ 
02 $ OPTIMIZATION PROGRAM

iJD US
01$

STOPS
*

ISIGNKENT (BLOCK* TYPE. RELATIVE LOCATION, NAME)

0354 122G 0031 030134 133G ODDI 000141 1373 0001 000152 145
:ui7i 1573 0001 L00173 162G 0001 000175 16 6 G 0CU1 06(1217 177
0241 23 5 3 0031 000271 22 2G 0001 000272 225G 0001 000 30 4 23-

JU4U4 2 5ZG 0001 000425 263G 0001 000427 26 6 G or.oi 060431 272
3471 3133 O!3D1 0UU472 313G no 01 000503 3213 0001 000 59 4 3 24

10 533 34L 0001 LLJU5E6 3 EOG 0001 000567 Z53G 0C01 0(0633 •2 £ 7
0352 377 3 0001 030733 41 2G no 01 000740 416G 0001 000761 433

10777 4 41G 0001 001032 4 EOG 0 co 1 001073 472G oroi 00(1545 42 4
1347 4 3 3L 0031 30134 1 492L 00 00 001048 50UF 0000 001050 5 01
Jlltll 5 (JEF UGLiO 001211 5(J3F 00 on 001167 504F OOLO 001112 eg:
1122 5 J5F U UU li 3 U1 2 U 3 ^i3 7F 03 uO MW 1 X M W 303" uCUu ML-* JL » «-

11158 51 IF OOLO 001043 512F 0 000 001044 513F 0001 001127 E1Z
1147 5 2 5 3 0001 331187 5 3 4G 0001 001172 5403 0001 001222 5 3 i

JI 24 7 5 7 LG 0001 001307 8L12G 0 001 001314 6 06 G 0001 001337 c Z C
13 82 527 G (31301 301422 64 2 3 01)01 001427 6 4 0 3 0001 001 32 4 71_

Jl 44 8 78L 0001 001454 8UL 0000 R 001311 B 0000 R 001215 D
113 22 13 0000 I 001036 IU 0000 I U01U4D IV 0000 I 001024 IX
J1U27 IX5S CiDbt) I 001033 J 0 000 I 000776 JJ 0000 I 001042 JM A
11325 JX5 0000 I 001035 K 00 UD I 1301037 KK 0000 I 0D1031 L
21041 N 0000 R 000000 P 0000 R 000632 Q 0000 R 061034 SUV

Dlf'ENSlON P( 20» 20).D (10 wlG) »B ( 10 ). VI 10) »Q( lOwlO) 
EQUIVALENCE (D(1.7),Btl)) 
DIMENSION JJ(ZU) 
10 = 10 
JX=8 
IX=5 
JXS=JX*1 
IXS=IX+1 
IXSS=IXS+1

512 FORMAT(141)
513 FCEKATt////) 

READ(5«51U)
510 FCRMAT(IOIS) 

DO 15 0 L =11 M 
WRITE!8.512) 
WRITE(G.51^) 
WRITE!8.501)



v DO 111 I-lf IXS 222
RE69(5«3DU) <P(I.J),J-l.JX ) 
URITE(B»5UE) (P(I .J ) ») 

10 CONTINUE 
SOU FOPKA-Tt 5F1D. 5)
501 FORMAT(/13X,G3R THE FIRST FIVE SETS AND THE LAST SET ARE CHAHN

ACTIVITIES IN./17X. BGHSTEADY STATE FOR EACH JOB TYPE AND IN RE 
♦ PE.RATION* RESPECTIVELY )

502 F0RHAT(18X.lX»ElZ.6tlX»E12e6»lX»E12.G»lX»E12.6»lX»E12>6>
DO 2,0 1 = 1. IXS
DC 18 Jzl.IX 
sur<=o. 
DO 16 K=1.JX

16 SUM 2 SUM *P 11 • K )*PI J» X) 
- D( I,J!)=SUM 

18 CONTINUE 
2L WRITE(6.5U2) (D (I ,K) .K-l.IX ) 

DO 33 1=1.IX
D( I.IIXS)=1. 
3(1)=D(IXS.I) 

31 D(IXS»I)=1.
D(IXS.^XS)=O. 
B(IXS)=1. 
V(1 ) = 5« 
WRITE(6.5D51 

505 FORMAT(1HJ,13X.33H THE SIMULTANEOUS EQ. TO SOLVE ) 
DO 32 1=1.IXS
DO 31 J=L.IXS 

31 Q ( I . J!) =D ( I » J ) 
Q<r.ixss)=B<i) 

3 2 n I ; c i G » 5G 2 i tu«I*Ji*J=l*XASSi
CALL GJR(3.ID.ID.I XS.I XSS.$200.JJ.V) 

3*6 CONTINUE 
WRITE(5.509) 
DC AD 1 = 1.IXS 

AO WRITE(6.5J2) (DC I.J),J=1.IXSS) 
KRITEt6.5UE) 

505 FORMAT(1H0.13X.23H UNIT MATRIX FOR CHECK ) 
DO A8 1=1.IXS 
DO 46 J=1.IXS 
SUM=O. 
DO 44 K=1.IXS 

4'4 SUF‘=5UM*D ( I »K ) *Q <K .J ) 
46 P(I.J)=SUM 
46 KRITE(6.5D2) (P (I . J ) , J=1.IXS) 

DO 43U 1=1.ID
DO 4£U J=1.ID 

4 80 P(I.J}-=D.
DO 482 1=1.IXS
DO 482 J=1.IXS 

482 P(I.J!) = ^(I.J) 
J = 3 
DO 484 1=1.IX
IF! B (I) .3E. D. ) 60 TO 434
J= J + l 
K=IXS+J 
P( K»I!)=-1. 
P(I.K ) = -l. 
B(K)=Q. 

43^ CONTINUE 
IU=U 
CO 485 I=1.K

i J to



v00 4 35 JH.X
^85 D(I»J:)=PCI»J) 1

'4 87 CONTINUE 
KK=«+1 
DO 433 I^LeK 

486 PtI»KK)=3<I»IXSS> 
WRITE('6r 5D3 ) 

5DS FCRHA-Tt 1HD»18X»4 5HIMFCSED NEG. FHlrZERO CCND. MATRIX TO SOLVE ) 
DO '483 1=1.K

488 WRITE<6.502) (P (I ,J ) .J-l,KK )
V(l)=5. 
CALL GJR(pt2U*2U»K«KK.$49D*JJ•V) 
WRITE(6f509) 

509 FORMAT(1H0v18X*5 EH THE INV. MATRIX AND SOLUTIONCIN THE RIGHT MOST 
♦COLMN.T )

DO 489 1=1,K
489 WRITE(6,502 ) < P ( I, JJ , J=1 , KK)

IF(IU.EG.l ) * CO TO 490 
IV=3 
10 = 1 
DO 491 1=1,K
DO 491 J=1,K

49L PII. J)=0( I, J) 
DC 4S2 1 = 1,IX
IFl?(I,XK).GE.-l.UE-5) GO TO 492 
IV=IV+1 
K=K*1 
DO 433 N=1,ID 
P ( K ,N)=D. 
P ( N,K!)=U. 

493 CONTINOS 
P( K,I?)=-1. 
PII,K)=-1. 

492 CONTINUE 
IFtIV.EQ.D) G-3 TO 490 
GO TC 487 

49D CONTINUE
WRITE(6,511) 

511 FORMAT(1HJ,13X,35HSTEADY STATE DIST. OF EACH J 03 TYPE ) 
DO 49 I=1»K
B(I)=P(I,K<) 

49 CONTINUE 
JMAX=16 
DC 50 1=1,IXS
REAO(5,5O9) (P(I,J>,J=l,UMAX) 

5Q h'RITE(6,5U2) (P (I ,J ) , J=l, JM AX ) 
DO 54 1=1,IXS
SUM=O. 
DO 52 J=L»JMAX 

52 SUM=SUM + P( I»J) 
54 P(7,I)=SUM 

DO 60 J=1,JMAX 
SUH=O. 
DO 58 I=1»IX 

58 SUP. = SUM*B( I ) *P( I. J) 
pt;x»j)=p<ixs,J)-sum 

60 V(J)=SUM
WRITEt6.5C4)

S'Of FORMAT (IHD.iax, 33HM0ST LIKELY STATE D 1ST RIB . , D IFF . AN0/13X, 
V24HCHECK SUM OF STATE CIST. ) 

URITE(6,50?) (V(J),J=1,JMAX)
WRITEt6,502) (P(J X*J)»J=L,JMAX)



► WRITE(6»5G2) tP( 1 .J } *J = 1•IXS)
\ V(1 )=7.

» c RE-INVERSE
CALL GJR(DtI3« I3»’JXS. I XS S < $7 1 • J J» V )

» WRI7E(6.5Li7)
FORMAT(1HJ»13X.11HRE-INVERSE )
DO 70 I-l.IXS

k 73 WRITE(S,502) <D(It J). J=1»IXSS)
♦ 71 CONTINUE
n WRITE(6«5D2) V(2)
* DC SO K=2«IXS
k KK=K*1
♦ DO 7S I-lfK
► DO 72! J = L«K
* 72 D(I»J!)-3(I«J)
k 0fI«KK)=3(£)
♦ m CONTINUE , .

Vll)=7.
* CALL G JRl D ♦ ID el D*»K »KK e$ 78 • J J* V )
t 75 CONiTINUE
♦ DO 76 1=1.K
* 76 WRITE(6.50?) ( Dt I. J) . J=1 . KK)
♦ WRITEt6.502) V<2)
► GO TO 80
♦ 78 WRITEt 6.5U3)
* GO TO 75
* ‘ 8C CONTINUE

GO TO 150
» 20 U WRITE(6.5D3)
♦ GO TO 34
* 15 0 CCMTTNnE
* STOP
* 50 3 FORMAK1HD.18X.1DH0VERFL0W )

ENO

224

F :OMPI‘-4TI3'4: M2 DIA3N0STICS.

09-02:13
• PROS SIZFI I/D):555o/3L57

LEVEL 73-1
CTION - TIEE 1.2<»7 SECONDS
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Example 1

THE FIRST FIVE SETS AND THE LAST SET ARE CHANNEL ACTIVITIES IN
STEADY STATE FOR EACH J03 TY? 

.75613^+02 .272UU3+U2

.2541$Y*02 .413312*02

.3D<mSl*Ul .223587*02 

.32^617*02 .CD3343+01

.181DEl*n2 .328651+02

.817112*02 .357778*01
. 185*135 + 02 . 172*120*02
.72GD93*0Z .331725*01.
.105067*02 ‘.12060*1*02
.587675+02 .301147*01
.303606*02 .116853+02
.511623*02 .133580*02
.18U994+05 .108528*05
.108923*05 .103055*05
..782202 + 0** . 781891+04
.6 27883*0'4 .6 2 8 33 3*04
.655725+04 .713546+04
.392933*04 .709753*04

E AND IN REG.
.866407*02
.131621+02
.738658*02
.185176*02
.104135*02
.491109+02
.499045*01
.337337+02
.246345*02
.234340+02
.288126*02
.252329*02
.782202*04
.781891+04
.135746*05
. 112400+05
.937220+04
.883347+04

OPERATION. 
.378033+02

.543060*02

.319533+02

.307012+02

.369883+02

.352766+02

.627889+04

.623338+04

.112400+05

.947673*04

.789656+04

.745430*04

RESPECTIVELY 
.130941+02 

.213845+02 

.439975+02 

.337858+02 

.257948+02 

.228946+02 

.698725*04 

.713546*04 

. 9 3 72’20+ 04 

.739'366*04 
.717069*04 
.633245+04

THE STKULTAN 
.18a994-*05

Xr*riD L'LJ*ni 
.108923*05 
.100000+01 
.782202*04 
.100060+01 
.627839*04 
. 11'000 0 + 61 
.638725+04 
. 1001300 + 01 
.100000*01* 
.000000

ECUS EQ. TD SCLVE 
.193928*05 .782202+04
.892929^04 
.108355*05 .781891+04
.709755+04 
.781391*04 .135748+05
.883847*04 
.523988*04 .112400+05
.745480+04 
.713543*04 .937220+0'4
.683245+04 
.100000*01 .100000*01
.100000+01

.627389+04

.628938+04

.112400+05

.947673*04

• 73 9S6 6+04

.100000+01

.693725*04

.713546+u4

.937220*04

.739565*04

.717069+04

.100000+01

HE LNV. MATRIX AND SOLOTI3
.236433-03 -.152084-02

-.229657*09 .240471*00
-.152085-02 .200814-01
.366271*01 .303864*00
.159450-02 -.229130-01

-.682965*01 -.772747*00
-.453303-02 .E5U287-01
.146344*02 .187472*01
. 42229.4-02 -.606762-01

-.132378*02 -.646307*00
-. 225658*00 . 366272+01
-.257240*04 .567913*02

Nt IN THE RIGHT MOST COLMN 
.159450-02 -.453302-02

-.229130-01 .650287-01

.284156-01 -.774718-01

-.774718-01 .216785+00

.703747-01 -.199809*00

-.682966*01 .146344*02

. )
.422294-02

-.606762-01

.703747-01

-.199809+00

.185887+00

-.102378+02

L'NLT MATRIX 
.lOUUOUtOl 

-.11641:5-05 
.163913-05 
.186265-08

- .7 7 4 860-05

FOR CHECK
-.?35847-U6

.100001*01

-.393391-05

.139990-06

.163913-05

. 33 8936 *;2U

— • 76363d —06

.545332-05

- .3'33351-03

-.763635-06

.926352-05

-.119209-06



-.186265-08 226
\ 1768111-114 .331402-04 .483990-04 .100005+01 .331402-04
.7^5058-08

-.11'490 4-04- -.257492-04 -.562668-04 - .410080-04 .999974+00
-.7^-5053-08
-.305176-04 -.100708-02 -.296021-02 - .198364-02 -.305176-94
.100000*01

IMPOSED NEG. PHI-ZEPO CCND. MATRIX TO SCL VE
.180994*05 .198328+05 .782202+04 .627889+04 .693725+04
.luuDbn+oi .DOOU00 .000000 .892389+04
.108923*05 .103055+95 .781891+04 .628933+04 .713546+04
.100000*01 .000000 .OC'UOOO .709759*04
.782202*04 .781891+04 .135746+05 .112409*05 .937220+04
.1110000*01 -.100000*01 .000000 .883847*04
.627839*04 .623988+04 .112409+05 .947673*04 .789666+04
.100000+01 . 0'00000. . .000000 .745480+04
.698725*04 " .713546+04 . 337220+04 .789666+04 .717069+04
.100000+01 . 0.00000 -.100000+01 .683245+04
.130000+01 .100000+01 .100000+01 .100000+01 .100000+01
.000000 .000000 .000000 .100000+01
.330003 .□00900 -.100009+01 .000000 .000000
.000000 .000000 .000000 .000000
.330003 .000099 .000000 .000000 -.100090+01
. [4.10000 .COODOO .000000 .000000

T8E INV. MAIR ix iND sooirrio N(IN THE RIGHT' MOST COLMN. )
.140488-03 -•142280-03 .000000 .179279-05 .000060

-.416978-02 .240098-02 -.236267-01 .253386+00
-.142280-03 .273925-03 .000000 .131644-03 .000000
.4-17963; DC - .328'14 2- 01 .3388’:8-C9 -11924 4-*90

-.181018-10 .750424-10 •uuuuuu .612448-09 .UUUUUU
.263110-08 -.100000+01 .327059-07 .471727-07
.179284-05 -.131644-03 .000000 .123352-03 .000000
.585200*00 .103044+01 .684779+00 .635370+90
.164356-10 -.330757-09 .009000 .149012-08 .000000
.479415-05 -.127577-08 -.100900+01 .663941-07

-. 416965-02 .417967+00 .Ulil.OOO .536199+09 .090000
-.315805*04' .165623+04 -.575763+03 - .858713*03

.240083-02 -. 328436-01 -.1110000*01 .103044+01 .000000
.166623*04 -.564128+03 .213572+03 .297395+03

-. 236267-01 .338848+00 .909000 .634779+00 -.100000*01
-.575763*03 .213572*03 -.862353+02 - .109303+03

STEADY STATE DTST. CF EACH JOB TYPE
.123320-02' .896333-01 .783959-01 .527624-01 .431910-02
.593446-01 .130079+00 .109387+00 .104376+00 .292177-01
.163037-01 .115376-01 .14 6032+00 .514521-01 .619545-01
.134574-01
.1Z134IJ-02 .166783-01 .248650-01 .245323-01 .193151-01
«.485819-02 . 7094 40-0 2 .102043-01 .172421-01 .228897-01
.^81537-01 .480695-01 .121347+00 .119382+00 .170390+00
.343209*05
.708109-03 .115243-01 .283509-01 .148753-01 .141407-01
.01GO00 .(■00000 .900000 .000000 .187170-01
.208993-01 .396441-91 « 1912 74+00 .651501*00 .824743-91
.153865-01
.317030-02 .3 94335-01 . 799132-01 .531532-01 .512953-01
.010000 . (iOGOUU .900000 .000000 .359977-01
.5'96155-01 .395386-91 .562302-01 .517663+90 .512686-01
..416508-01
.361780-02 .3 24 768-91 .844769-01 .615063-01 .672644 — 01



.3JU00J .auuuuu .UUUUUU .000000 .439690-01 227
\ 4-G8289-01 .608702-01 .655945-01 .337952+00 .682630-01
.1271G1*OD'
. 318493-02 .285907-01 .743678-01 .541466-01 .592331-01
.200791-01 .3 20 99 3- 01 .329372-01 .345414-01 .387077-01
.412254-01 .535866-01 .577456-01 .297513+00 .600948-01
.UL945 + 03: -

MCST LIKELY 5iTfiJE DISTRIB. vDIFF. AND
HECK SUM OF SHATE DIST.

.245278-02 .439469-01 .735862-01 .499042-01 .358431-01

.257573-01 .338072-01 .283968-01 .284004-01 .323313-01

.348400-01 .333700-01 .862400-01 .355391+00 .671844-01

.677373-01’

. 722169-0'3 153563-01 .78158 7-03 .424238-02 ' .233900-01
- .567853-02 -.170746-02 .404032-02. .614106-02 .587647-02

.553543-02 .202166r01 -.284944-01 -.578774-01 -.708960-02

.442071-01 •
.100000+01 .100000+01 ,939999+00 .100000+01 .100000+01
.993993+03

RE-INVERSE -
.236433:-03 -.152034-02 .159450-02 -.453302-02 .422294-02

-.229657+00 .197207+03
-.152035-02 .200314-01 - .229130-01 .650287-01 —.635762—01

.366271+01 -.314518+04

.159450-02 -.229130-01 .284156-01 -.774718-01 .703747-01
-.682965+01 .586466+04
- .453303-02 .550237-01 -.774713-01 .216785+00 -.199803+00

.146344+02 -.125566+05
229u-D2 - =6 06762-1)1 r7057t»7-ni -.199809+nh .185387+nn

-. 10237 8+02 .87 9120+04
- .223653 + 00 .366272+01 -.632366+01 .146344+02 -.102373+02
-.267240+04 .229483+07
.253376+02
.999684+03 1D0776+JJ4 .336673+07

- .308728-02 .320477-02 - .106834+02
.238037+01
.679531+03 -.688353+03 .515602+01 .233033+07
.•175832-02 -.162350-02 -.780621-04 .499513+01

- .533051-02 .531144-02 . 35 3 741-04 - .172530 + 02
.►117430+02
.4-86577 + 02 -.492222+02 - .239757+01 .327474+01 .1D9195+06

-.732849-02 .251939-02 -.126987-03 ■ .212104-04 -.939439+01
.705115-01 -.715714-01 .993303-03 -.393519-03 .249785+03

-.839106-01 .650620-01 -.100452-02 .435494-03 -.295446+03
.184820+02

-.162198+00 .116224+01 -.138119+01 .366642+01 -.323086*01
- .862652 + 05

.192904-02 -.187458-02 -.215624-03 -.129479-04 .231760-03

.755145 + 01=
-.290897-02 .420214-02 .252236-02 .195438-03 -.485891-u2
-.441690+02

.735794-02 -.913143-02 -.290465-02 - .296757-113 .6040138-02
.599649+02

-.621884-02 .641813-02 .129470-03 ►498940-04 -.411558-03
-.248935+02

.272776+02
- .140335-01 .905394-01 - .949757-01 .270009+00 -.251539+90

.136791*02 .313849+08

.222207-02' - .399475-02 .232905-02 -.673250-02 .617613-02

.27C632-U1 . 6227 10 +0 5



$21721-02 
2L3178»UD 
102575-01 
267788 4-00
6 3US<« U-CIZ 
827132-02 
272211+01 
251QO1+O3
217505+02

.205029-01
- .490996 + 06 

301109-01
<Glbl62+U6
.706612-02

-.190599+05
.196952+02

-.573391+09

-.175222-01 .531258-01 -.512892-01 228

.222797-01 -.667863-01 .693695-01

-.698258-03 .210359-02 -.221305-02

-.236386+02 .629208+02 -.597559+02
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Example 2

THE FIRST FIVE SETS ANO THE LAST SET ARE CHANNEL ACTIVITIES IN
STEADY STATE FOR EACH JCE TYPE AND IN REG. OPERATION. RESPECTIVELY

.76 6134-*D2 
. 254154+02

.272408+02

. 413912+02
.86 6407+02
.1 3162-1 + 02

.373083+02 .130941+02

.304031+01

. 324617 + CI2
.223537+02
. 608343+01

.733658+02

.185176+02
.543060+02 •213845+02

.181051+02 .323351+02 .104139+02 .319533+02 .439975+02

.617112*02 .357778+01 .491109+02
.169433+02 .172420+02 .499045+01. .307012+02 .337853+02
. 725093+02 . 331726+JJ1 . .387337+02
.105057 + 02! 
.567673+02

*. 120304 + 02
.301147+01

.246345+02

.284840+02
.369333+02 .25 7 94-8+02

.373016+02 

.712555+02
.299503+02
.1386ED+U2

.165559+02

.4 3363 8+0 2
.303219+02 .388534+02

.180934+05 .108323+05 .782202+04 .627389+04 .698725+04

.108928+05 . 108055 + 05 .781891+04 .628988+04 .713546+04

.782202+04 .781891+04 .135746+05 .112400+05 .337220+04

. 627882 + 0.4 .628988+04 .112400+05 .947673+04 .789666+1:4

.698725+04 .713546+04 .937220+04 « 789666 + 04 .717069+04

.970544+04 .771183+04 .125284+05 .103898+05 .276855+04

THE SIM'JLTANEDUS EQ. TO SOLVE
.180994+05 .108928+05 .782202+04 .627889+04 .698725+04
.16DG00 + r,i
.1U8928+D5

.<370544 -04 

.108055+05 .781891+04 .628988+04 » 713546+04
.100000 + 01-
.1782202 + 0.4

.771133+04

.781891+04 .135746+05 .112400*05 .937220+04
.LDOOOU+Ul • 
.627889+04

.125234+05

.628988+04 .112406+05 .947673*04 .789666+04
.190000+01
.698725+04

.1D3393+U5 

.713546+04 .937220*04 .789566+04 .717069+04
.100000+01
.100000+01

.376355+04

.100000+01 .100000+01 .100000*01 .100000+01
.033Q03 .1DOOOO*U1

THE INV. MATRIX AND SCLUTIO'UIN THE RIGHT MOST COLMN.)
.23G433-03 -.152034-02 .159450-02 •-.453302-02 .422234-32

-.229657*00 .24 5005 +U0
- .152035-02 .200314-01 - .229130-01 .650287-01 -.606762-31

.366271+01 .293651+00

.159450-02 -.229130-01 .234156-01 -.774718-01 •703747-01
-.682965+01 .116619+00
-.453303-02 .650287-01 -.774718-01 .216785+00 -.199309+00

.146344+02 . 184404+01
.422294-02! -.606762-01 .70 3747-01 -.199809+00 .135337+00
-.1CZ378+02 -. 149931+01
- .2 296 53 + 00. .366272+01 -.632935+01 .146344*02 -.102373+02
-.267240+04 .576922+02

UNIT MATRIX -OR CHECK
.1VLDUU+D1 -.266847-UE .189990-06 -.763685-06 -.767685-J6

-.116415-03
.163913-05 . 10.111101 *01 .163913-05

m
 

oiC
M 

05 
M

 
Ll 
jr U1 .926852-05

.136265-03
-.774860-05 -.393331-05 .999986+00 •

U
-) 

:□iHG
) 

cn 
Mi -.119209-06



-.120255-08, 230
.178 Bll-US
.745058-05

.331402-04 .433990-04 .100005+01 .331402-04

-.1043Ui-0'4
-.745058-08

-.2.57492-04 -.552558-04 - .410080-04 .999974+00

-.30 5176-04"
.1LU(jUIi*U1

- .100703-02 -.295021-02 -.198364-02 -.305176-04

IMP25ED NEG. PHI^ZERO 2GN0. MATRIX TO SOLVE
.180994+05
.100000+01

.108928+05

.000000
.782202*04
.970544+04

.627889+04 .698725+04

.108928+05 .108055+05 .781891+04 .628988+04 .713546+04

.100000+01 .000000 .771183+04

.1732202+04 .781891+04 .135746+05 .112400+05 .937220+04

.180000+01 .900000 .125284+05

.527889+04 .628988+04 .112400+05 .947573+04 .789666+04

.100000+01 v.300000- • .103893+05

.696725+04 .713546+04 .937220+04 .789666+04 .717069+04

.100000+01 -.lOOUuO+Ul .876855+04

.ICQOOU+Ul .100000+01 .1(10000+01 .100000+01 .100006+01

.00J003 .000090 . 100000+01

.LOGO00 .OOOUGO .0HOODO .000000 -.100000+01
.OODOOJ .□uouou .000000

THE INV. MA-TR -X and SCLUTI CN<IN THE RIGHT MOST COLMN. )
.140498-03 -.142420-03 -.425603-05 .617345-05 .000000
.2922119-02 227177-01 .273065+00

- .142420-03 .275837-03 .582213-04 - .191633-03 .000000
.320956+00 .326414+00 -.195745+00

-.425503-05 .582200-04 .177265-02 - .182661-02 .000000
-e 29S5? E+u-l -.378568+00 .684240: GO
.617842-05 -.191537-03 -.182661-02 .201207-02 .000000
.362987+01 .107489+01 .232439+00
.158923-19 -.323330-09 .226148-09 - .172315-03 .000000
.102586-06 100000+01 .122361-09
.292207-02 .320956+00 - .295375+01 .362937+01 .000000

-. 323625+04 .550754+02 -.248830+02
-.2Z7177-O1 .326414+00 -.378533+00' .107489+01 -.100000+01

.550753*02 -.537860+01 .806569+01

IHP3SED NEG. ^HI=ZERO COND . MATRIX TO SOLVE
.180994+05 .108928+05 .782202+04 .627889+04 .698725+04
.109000+01 ■ . 0000'90 .000000 .970544+04
.106928+05 . 108055+05 .781891+04 .628988+04 .713546+04
.100000+01 .'HJ 00'9 0 -.100000+01 .771183+04
.782202+04 .781891+04 .135746*05 .112400+05 .337220+04
.100000+01 .000000 .ooonon .125284+05
.627889+04 .628988+04 .112400+05 .947673+04 .789666+04
.100000+01 .Duouau " .000000 .103898+05
.698725+04 .713546+04 .937220*04 .789666+04 .717069*04
.109000+01 -.100090+01 .000000 .876855+04
. 1UGL)LU*U1 .100000+01 .11.000 0*01 .100000+01 .100000+01
.003009 .□UUODU .000000 .100000+01
.LLUOUU .GOO000 .0 0000 0 .000000 -.100000+01
.00300'9 .0000'90 .000000 .OGOOUO
.COODUU -.100000+U1 .000000 .000000 .000000
.099009 .300090 .000000 .000000

THE IGV. MATR IX AND SOLUTI CNtIN THE RIGHT MOST COLMN. )
.669534-04 .3JUUU0 .253047-04 - .927631-04 .000000
. 168638+Ub .145816+00 .516320*00 .177999+00

-.181399-11 .tJOUULid • 454747-12 - .131339-11 • U U U 0 Le Lj



.135222-01

.372529-08
\ 25604 1-0.4

.372529-03

.000000
-.100000*01

.176036-02
-.166265-03
-.178616-02

-.302143*01 - .447433*00 -.211067+00 .725555*00
-. 92767 4-04 . ( LOG00 -.178616-02 .187893-02
.385235*01 .130167*01 .694746*00 .964434-01

-.151049-09 . 0000OU .294394-09 -.194778-08
.473805-05 - .100000*01 .117213-05 -.229325-06
.16863£*Ub . LbCOliU -.302149*01 .38^286*01

- .360970*04' - .324730*03 - . 116357*04 .202379*03
.145816+00 .(00000 -.447484+00 .130167+01

-.324730*03 -.391343*03 -.118335+04 .239701*03
.516320+00 -.lUObOU+Ul -.211071*00 .694751*00

- .116357*04 -.113336*04 -.362533*04 .709639*03

STEADY STATE 
.125320-02

DIST. QF EACH 
.895333-01

JOB TYPE 
.783959-01 .527S24'-01

.993446-01 .130079*00. .109387*00 .104376*00
.163037-01 '.1153 76-01 . 146032*00 .514521-01
.134574-0-1
.121340-02 .166733-01 .248650-01 .245823-01
.485819-02 .709440-02 .102043-01 .172421-01
.4-B1537-0V .4-3U695-U1 .121347+00 .119382*00
.343209*00
.708100-03 .115243-01 .288509-01 .148763-01
.L00000 . 0 Li 00 Lib .UOOOOO .DOOOUO
.206993-01 .396441-01 .101274*00 .651501*00
.15388E-01 
.317030-02 .304333-01 . 799132-01 .531532-01
.CUUOUO .000000 .UOOOOO .ooonoo
.396153-01 .395386-01 .562802-01 .517663*00
.416502 01
.351730-02 .324768-01 .84 4 7 60-01 .615063-01
.000000 .1'00000 .000000 .000000
.463233-01 .603702-01 .655945-01 .337952*00
.127161*00
.622210-03 .101237-01 . 253518-01 .130721-01
.138580-01 .336498-01 .341016-01 .338500-01
.183646-01 .343360-01 .889922-01 .572490*00

M3ST LIKELY STATE DIS1313.•DIFF. AND
CHECK SUM OF STATE DIST.

. ID 3 904-02" .272513-01 .426836-01 .253116-01

.176332-01 .231538-01 .194708-01 .135788-01

.218873-01 .346310-01 .104902*00 .531785*00

.175777-01
-.416827-03 - .171246- 01 -.173313-01 -.122395-01

.197480-02 .104953-01 .14630 8-01 .152712-01
-.352266-02 .205074-03 - .153094-01 .407050-01
-. ({-05541-02
.1030011*01 .100000*01 .993993*00 .100000*01
.999983*00

RE-INVERSE
.236433-03 152084-u2 .153450-02 -.453302-02

-.229657+DD -.465320*02
-.152065-02 .20U814-U1 -.229130-01 .650287-01
.366271*01 .74-3 079*03
. 159450-0’2 -.2291ZU-U1 .2 84156-01 -.774718-01

-.682965*01 -.133558*04
-.453303-02 .650237-U1 -.774718-01 .216785+00
.1^6344*1)2 .2968981-04

231
.000000

.000000

.000000

.000000

-.100000*01

.000000

.431910-02 

.292177-01 

.519545-01

.193151-01 

.222897-01 

.170390*00

.141407-01 

.187170-01 

.324743-01

.512953-01 

.3E8977-01 

.512333-01

.572844—01 

.439690-01 

.582630-01

.124257-01 

.164470-01 

.724725-01

.159759-01

.222528-91

.753162-01

-.355014-02
-.580580-1)2
-.334356-02

.100000*01

.422294-02

-.6CE7G2-01

.703747-01

-.199809*00



i7229^-02. 
11)2376*02

-.606762-01 
-.207701+04

.703747-01 -.199809+00 .185337+IJO 232

229653*00 .366272*01 -.632966*01 .146344+02 -.102373+02
2672U0 + 0'; 
258375*02

-.542178+06

7678U2+U2 .774046*02 .610952*05
2^6033-031 
q84661 + 0>l

-.155532-03 -.127038+00
e

605297 + 02! .816224*02 - .610939+00 .652504*05
329590-03 .492747-03 -.939021-04 .511615+00
812153-03 - .914581-03 .132475-03 -.901001+00
138759*02
572227*02 -.573365*02 -.281331*01 .335118+01 -.303394+05
A26795-02 .450158-02 -.304352-04 -.110665-03 .325842+01
130043*00 - .131793*00 -.193956-02 .361294-02 -.905774+02
154604*01; . 1565 76+00 .247887-02 -.432231-02 . 107284 + 03
193199*02 *
101588*00 ‘.727941*00 -.865077*00 .229638*01 -.202358+01
127652*05 
132591-02 
141405+01

-.185213-02 -.242303-03 .578725-04 .219353-03

. 290064-02 .414244-02 .259329-02 .713407-05 -.469298-02
358862*01 
(734171-02 901513-02 -.304286-02 .701194-04 .571678-02
144-905*02
620919-02

466893*01
.634893-02 .211709-03 -.168411-03 -.219188-03

,277455+02
,393571-01 .253161*00 -.265421+00 -.754571 + 00 -.702954+00
,382282*02 -.207223*08
,212440- 02 - .5 36 6'4 8 02 .167035-02 -485988-22 .•443161-02
,121932*00 -.661377*05
,445415-02 .159947-01 - .123763-01 .384964-01 -.376606-01
, £54316*00 .517631+06
,929672-02 -.239305-01 .157956-01 - .48365 5-01 .472047-01
,120035*01 £51413+06
,627513-02 .6352!4-3-02 -.424213-03 •145665—02 -.161963-02
,405402-01 .219937+05
,182604*01 .139314+02 -.175957*02 .452414+02 -.387511+02
, 112173*04
.207228*02

.608427+09



Figure A.l A Block .Diagram of Simulation
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Figure A.2 A Block Diagram of Estimation Method
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Calibration 
Phase

Monitoring 
Phase

Figure A.3 An Overall Diagram of Simulation and Estimation
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w 
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