PROBABILISTIC SEQUENTIAL MACHINE MODELING
OF
COMPUTER SYSTEMS
AND
ITS APPLICATION TO ERROR DETECTION

A Dissertation

Presented to

the Faculty of the Cullen College of Engineering

The University of Houston

in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in System Engineering

by

Hitohisa Asail

AUGUST 1975

i



iii

ACKNOWLEDGEMENTS

The author wishes to express his sincere
apéreciation to his major advisor, Dr. Samuel C. Lee
for his advice and continuous encouragements through-
out his years of graduate study at the University.

The author also wishes to thank Mr. Chuck
E. Voss, Mr. Glenn E. Fisher and Mr. Richard O.
Stewart, the staffs of the computing center of the

University for their consulting supports.



iv

PROBABILISTIC SEQUENTIAL MACHINE MODELING
OF
COMPUTER SYSTEMS
AND
ITS APPLICATION TO ERROR DETECTION

An Abstract of
A Dissertation
Presented to
the Faculty of the Cullen Collége of Engineering

The University of Houston

in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in System Engineering

by

Hitohisa Asai

" AUGUST 1975



ABSTRACT

The problems of computer system modeling and of error detection in a
‘computer ‘system are investigated in this research. Probabilistic sequential
machine modeling of a computer system is proposed by considering.input/out—
put flexibilities on the probabilistic sequential machine theory. With the
model, a theoretical approach gnd a practicél approach to error detection are

. .
presented.

In the theoretical approach, a two-state isolated machine, which con-
tains the well-known completely isolated machine as a sdbset, is constructed,
and a decomposition method of a probabilistic sequential machine into two-
state probabilistic sequential machines is studied. Based on the isolated
machine and the decomposition method, properties of the isolated machine
{which consists of states more than two), such as
subsystem activity distribution, and the initial state distribution inde--
pendence, etc., are discussed. Traceback properties of the machine are used

. for error detection.

From distribution of input types to and output chanﬂel activities
.from a computer system, the probability of subsystem activities in a steady
state is determined.in the practical approach by an optimization of a non-
linear programming problem. The nonlinear programming problem is formu-
lated with two phases, a calibration and a monitoring of the computer
system. Next, the most likely subsysteﬁ which contains an error is deter-
mined. A probabilistic sequential machine model of a computer system is
built. The advantages of the practical approéch are demonstrated on the

model which is simulated in a normal computer operation.
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CHAPTER 1
INTRODUCT ION

1.1 Statement of the Problem

As the range of problems undertaken by digital computer systems
increéses, the task of ensuring that a computer system is operating
correctly has steadily becoTe more important. "The rapid grqwthlof compliter
technology has th;ust into prominence: the remarkable advancement of hard-
ware computing capacity and the executive/supervisory software that we refer
to as computer operaéing systems. These prominent advancements have re~
sulted in a massive and extremely complex organization of computer syste@s.
Thus, with the present trends in computer systems, a heavy emphasis on sta-
bility/reliability, maintainabilify, and availability is prevailing rather

than on computation caoabi]ity. speed of computation, memory capacity, and

speed of input/output processing.

The expanding size and compléxity of thé computer systems have made it
.increasingly difficult to ensure corréct machine operation. Moreover, the
cost and time for correcting an error in a computer system is multiplying
exponentially with the system's size and complexity. Therefore, an efficient
.and economical error detection method for large.computer systems is urgently

needed.

1.2 Description of Computer System

The term ''computer system'' means a combination of hardware and soft-
ware components that provides a definite service. A computer system prevides
representations for certain data types and information structures, and it

implements a set of primitive operations on these data types and structures.



Data and information in the computer system are simply all possible contents
of the main memory. Selection of a desired component of these information
structures is accomplished through indexing or memory addressing by base
registers. The interpretation of memory words as data types and informa-
tion is performed implicitly by a central processing unit. Data manipula-
tion on selected information (usually addition, subtraction, multipiication,
division, logicalioperation~of.bits-ANb, OR, etc., and shift bits) is
executed within registers of the arithmetic unit. The services provided by

the computer system are furnished through combinations of hardware and soft-

ware components.

Computer system hardware operates with information, numerical or
otherwise, represented in digital form. From a viewpoint of the hardware
siructure, thne computer system can be ideaily described as an aggregate of
two-valued memory devices, functionally connected by logical networks. The
states of these memory devices undergo discrete changés at certain instants

of time. Their initial states are set up by software.

The operating system, known as software, is a sequence of instruc-
Fions by which a given, specified function is performed in a sophisticated
manner by the central processing unit. Thus, the computer system works as
if it is a high-level organism. Cornceivably, the internal organization of
the computer system may bé very complicated. The system actually consists
of many individual elements (or subsystehs), which are interconnected and

must run simultaneously.

The structures of a computer system have continued to grow in com-

plexity, size, and diversity. The classical four-box picture of a computer



system (arithmetic unit, memory, input/output unit, and control unit) is
certainly an effective organization of components to process information.
However, Tultiprogramming, multiprocessing, hierarchies of memories, virtual
memory, and remote ccmmunication to computer systems force the classical four-
box representation of the organization into distinct levels of analysis of
each component. Each level originates from the abstractioﬁ of the levels
below it. Each hlgher level does a descriptive job in a siﬁplef way, which
the lower level could not because of the unnecessary detail that could force
function looping. A system (at any level) is characterized by a set of com-
ponents (of which certain properties are posited) and a set of ways of com-
bining components to present systems. When the sets are formalized appfo-
priately, the behavior of the systems can be determined by the behavior of

its components and specific modes of the component combination used.

There is a recursive feature to most éystem descriptions. A system,
composed of components struc£ured.in a given-way, may Ee considered a com-
ponent in the construction of yet other systems. There are, of course, some
primitive components whose properties éan nbt be explained as the.resu]ténts
of a system of the same type. For example, a resistor, which can not be
explained by a subcircuit, can be taken as a primitive in hardware, and
cer;ain instructions in software can not be repiaced by other éeftware
instructions. However, sometimes there are no absolute primitives, énd what
basic element is taken is a matter of cqnvention. For .example, we can
build logical Qesign systems from many different primitive sets of logical
operations (AND and NOT, NAND, OR and NOT, etc., in hardware and Execute,

. Test, Set, Erase, Find, Move, lLocate, insert, Read, Write and Print, etc.,

in software).
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Level

Hardware

Software

Major Component| Structure Computer System System Generation
Level Configuration
\ Component Processors,Memories, Processors,Memories,
I/0 facilities I/0 facilities
Programming Structure Programs,Subprograms, | Job Control Language
Level
Component State (Memory Cell), File Assign,File Mani-
i Instruction,Operation, pulation,Software
Control ,Interpreter Processor Execution,
Test and Control
Logical Design' | Structure Major Physical Unit Major Task of Programs
Level (Structured Programm-
ing)
Component ‘Module of Subfuncti- Module of Subtask,
onal Units o Control of Subtask,
Subroutine Groups
Prime Task Structure Switching Circuit, Problem Oriented Prog-
Design Level Combinational and Se-{ ramming Languages
quential Circuits FORTRAN,COBOL ,Assembly
Component Flip-flop,Reset-set, Main Program,Subroutin
Toggle,Delay,AND,OR,
_ NOT,NAND and NOR
Primitive Structure Amplifier,Delay unit,{ Flowchart of Instruc-
Level Attenuation,Clcck, tion Execution
Gate,Differentiator,
Component Resistor,Capacitor, Machine Instruction,
Inductor,Diode, Logical Operation
' Transistor
Table 1.1 Hierachy of Levels of Computer Systems



‘The computer system can be considered as a multilevel structure,
where each level can be analyzed in the same manner. Table 1.1 shows
several structure levels of the computer system. Each level is characterized
: \
by a distinct language for representing the system which is constituted
of components, modes of combination, and laws of behavior. These distinct
languages reflect special properties of the component types and-of the

- [y

way they combine.*

Each level in Table 1.1 actually has two languages or representa-
tions associated with it: an algebraic one and a graphical one. These
are isomorphic to each other; the same entries, properties, and re]atioqs
are given in both. The lowest level, the primitive level, of the hardware
in Table 1.1 is a circuit level. The components are R's,.L's, C's, voltage
sources, and nonlinear devices. The behavior of the system is measured in
terms of voltage, current, and m;gnetic_f]ux. These are continuously -vary-
ing quantities associated wifh various components; therefore, there is con-
tinuous behavior through time. The structure of the circuit level can be
described symholically by first writihg the‘reiationship which defines each
of the components (i.e., Ohm's law, Faraday's law, etc.) and then by writ-
ing the equation which defines the interconnection of the components (i.e.,
Kirchhoff's law). We observe circuit behavior Sy applying an input and
cbserving the output. Alternatively, if we solve the equations which
specify the structure, we obtain expressions which describe the béhavior

explicitly. Actually, even at an abstract level, circuit theory is not

quite adequate to describe computer system technology.

The next hardware level is the switching circuit. The behavior at

this level is described by discrete variables. Discrete variables take on



only two values, called 0 and 1, + and -, true and false, or high and low.
The components perform logical functions: AND, OR, NOT, NAND, etc. The
taws of Boolean algebra are used to compute the behavior of a system from

the behavior and properties of its components.

The outputs of combinational circuits are directly related to the input
at any instant ofitime. If_the circuit has fhe ability to hold values over
a period of time (store information), we have sequential circuits. In a
symbolic representation of the structure, we can write an expression that
reflects the structure of the combinational network; the product of a set
of outputs at time t 1is a function of the number of inputs at the same
time t . Boolean equations as an expression no longer reflect the actual

structure of the combinational circuit but become a model to predict its be-

havior.

A representation of a sequential switching circuit is basically the
same as that of a combinational circuit, although one néeds to add memory
components, such as a delay element which produces a delayed output at time

t due to the input at time t-t where >0 .

A lower level is concerned with explaining the behavior of a certain
structure, whereas the next higher level takes this lower level as a given
component. The higher level is concerned not about internal behaviér but
only how components (which are in lower.]evel systems) ére combined. To
express behavior and structure, there are two hasic representations of
systems in the higher level. One is 'Register Transfer (RT)}" [71 and the
other is ''State System.'" The components of an RT representation are

registers and functionai transfers between registers. A register is a



device that holds a set of bits. The behavior of a system is given by
the time course of values of these registers. The system undergoes dis-
crete operations, whereby the values of various registers are combined
according to some rule and then are stored in another register (thus
"transferred'"). The law of combination may be almost anything, from the
simple unmodified transfer (A<B) to the logical combination (A<B.AND.C)
or to the arithmetfic (A+B+C). .A specification of the system behavior is
a set of expressions (often called productions) which give the conditions
under which such transfers can be made. The Register-Transfer. expression
has emerged from informal attempts to create a notation closer to the job

to be performed. Recently, a formalized Register-Transfer expression

system [33] has been proposed as a tool for system description.

The ceccnd representaticn is the State-System [82], which is the mcst
general representation of a discrete system. 1In a State-System, the system
is represented by n abstract states and the state-tkahsition rules among
the abstract states. While the system is in an abstract state, which re-
presents the system performing a function (n is finife or enumerable),
the next state of the system is determined (and the output associated with
the state transfer) by a transfer function that takes as arguments the

current state and the current input.

A digital computer system (hardware as well as software) can be re-
presented as a State~System, but the number of states required is far too
large to make it useful to do so. However, the State-System becomes a

useful representation in dealing with various subsystems of the total



system.and with the abstracted higher level description of the computer
system. Taking a sequential circuit that controls a line printer as an
example, the number of states of the printer is small enough to be handled.
Another example is a small module of a task taken as a subroutine of a
large programming job could be described with a small number of states by

the State-System so that the task to be performed becomes very clear.

. < s
The entire software column in Table 1.1 can be embedded in the frame
of the programming level of the hardware column. The components of the pro-
gramming levél in the hardware column are a set of memories and a set of
operations. The operations take various data structures as inputs and
produce new data structures, which again reside in memories. Thus, the
behavior of the system is the time éattern of data structures held in its
memories. The unigue Teature of this progranming Tevel is the representa-
tion it provides for combining componenfs, tﬁat is, for specifying what
operations are to be executed on what data structureé. This is the pro-
gramming which consists of a sequence of instructions. Each instruction
specifies that a given operation (or operations) be executed on a specif{ed
data structure. In addition to this, a sequence of instruction executions:
s controlled by a given data structure. Norma[ly, this is done in the
order in which the instructions are stored in memories, with jﬁmps out of
the sequence by branch instructions directed by the given data structure.

This kind of data manipulation has come to play a crittcal role in decision

making of Management Science.

A technique to describe the programming description is the utiliza-
tion of the '"Decision Table'" [38] which is a tabular rehresentation of:

1. Conditions: factors to consider in making a decision.



2. Actions: Steps to be taken when a certain combination of

conditions exists,

3.y Rules: Specific combinaticns of the conditions and the

actions to be taken under these conditions.

Normally, the decision table format is in two matrix forms: condi-
tions (in rows) versus rules ({n columns) and actions (in rows) versus rules
(in columns). Wh;n we assign appropriate independent var}ables as input for
the conditions, appropriate dependent variables as output for the actions,
and proper operation; on these independent variables to produce dependent
variables for the rules of the decision table, the description of the decision
table becomes a set of logical equations (possibly multivalue logic). Most
of the well known techniques of Boolean algebra may be applicable to these
logical equations derived from the decision table. !''Formal system' [15] is
beceming important in the design, implementation, and study of programming
language as well as programming itself. A formal system is an uninterpreged
calculus or logistic system. It consists of an a]phabef, a set of words
called axioms, and a finite set of relations called rules (or productions)

. . P
of inference. Examples of formal systems are: Peano arithmetic, proposi-

tional and predicate calculus, and Post systems.

The computer configuration system described in the highest level of

Table 1.1 consists of central processors, core memories, tapes, disks,

fPeano’s axioms are concerned with the natural number. However, Bertrand
A. Russell (Introduction to Mathematical Philosophys 1919, London-New York)
completed Peano's work (Formulaire de Mathematiques 1895-1905) using Frege's
logicism (Grundlagen der Arithemetik 1884) in the aspect of logicizing of
mathematics.



input/output processors, communication lines, printers, tape controllers,
remote terminals, etc. The system is viewed as processing on three levels:
medium, information, and organized data. Each component has its own opera-
ting characteristics. All details of the programming level are suppressed,
athough many softwares play key roles in data transactions and functional
relations between these components. Neverthéless, this level is more
abstract than the logical level and the programming level of the computer
system. As the complexity of the computer system increases, the level of
abstraction also inc;eases. Another indication of the emergence of the
major component level (system configuration level) lies in the model used

in most operation research types and simulation techniques in computer
system studies, such as capacities, total flow rates, bottlenecks, queuing
probiems, and buffer sizes of information flows [3]. We have been mainly
describing the computer system in the hardware.viewpoint which contains non-
hardware elements, or softwares, as the programming level. The level is
very special, because it means that the importance of software is recognized
in hardware operations.. When the level is focused on and refined in a
different viewpoint, we can see that another distinct hieracﬁy among softwares
exists as shown in the software column Table 1.1. There is practically no
consensus on the nature of this software system level; this is not surpris-
ing because of the state-of-the-art in programming. A main emphasis.here

is that there are a lot of analogies between the systems'of hardware and
software, and each level (mainly in the hardware column) corresponds to the
technologies that are available for the analysis and synthesis of the com-

puter systems. The combinational and sequential logics are special highly

polished technologies.



1.3 Past and Present Efforts

Methods of error (or fault) detection in hardware have been con-
sidered by Yau and Tang [81]1, Sellers et al., [64], Roth et al., [58],
and Su and Cho [67]. The first two methods are based on the Boolean
difference for fault detection; the third one defines and applies the
D-algorithm, which is an extension of Eldred's classical work [17}; and
the the fourth oné is an er;or:locating method using the D-algorithm. All

four methods are deterministic and require exhaustive searching, and hence,

they are costly and time consuming when applied to large computer systems.

Hardware failure in a computer gystem is referred to as a physical
component failure, such as a transister failure due to its malfunction or
its life's extinction. In other words, a hardware failure is a temporary
or permanent change in the component’s characteristics that alters its

function.

Software does not fail. What is often referred to as ''software
failure' is a matter of correctness. Correctneéss of a software system
means correctness of its program description with respect to the software
system's objective as specified by the semantic sentence. Regardless of
the approach taken to favor correctness of a software system, it is always
the responsibility of the designer to convince himself of the correctness

of the system's description.

Two approaches to the correctness of a system have been suggested:
(1) structured programming [13] and (2) proof of correctness [41]. To
correct an error, the following debugging techniques are available: post-

mortem dump, snapshot, trace, and traceback [ 5]. All the techniques



are basically operated in a trial and error mode before approaching the

kernel of an error and, thus, are time-consuming.

These deterministic error detection methods are well established
techniques for small scale system testing. However, the quantity of the
input/output to and from a computer system is usually large; thus, the
total number of te?t sets which are combinations of various inputs are
exponentially large. Furthermore, each test sequence of the test sets,
which is constructed to identify different logical paths in the system,
is extremely 1ong. Direct application of these deterministic error de-
tection techniques to a large system like a computer system is practically
prohibitive, therefore, partitioning or segmenting the large system into
a number of smaller subsystems purély from the structural viewpoint [54]
is necessary. Test sets and té;t szgusnces for each segmented sphbsystem
become smaller and shorter, respectively; so that the error detection tech-
niques are practically applicable.- When applying the error detection to

each segmented subsystem by performing independent, individual subsystem

tests, a whole system viewpoint of testing may be lost.

It is desirable to have a method which makes a bridge from a whole
system testing viewboint to the individual subsystem tests. - 1n.other
words, could we narrow the area of error in the system by knowing an error
symptom? The next problem is how to choose a subsystem to be tested for
an error. One solution is a table for looking up the cérrelation between
error symptoms and possible subsystems concerned with the error. To con-
struct the table would require a large amount of error data and correlation

analyses between errors and subsystems, which have been gathered in

12



a trial and error manner over a long time period. |t should be pointed

out that no such table exists for a brand new system.

It‘is well known thét the past performance history of a system is
useful for error detection [5]. The past performances of subsystems in
a system may provide a bridge from the technjque of system segmentation
to the available deterministic:error detection methods. Therefore, an
inexpensive but efficient method for eQ;luating past subsystem performances
is desired. To achieve this goal, a statistical modeling and method to

determine the error containing segment (subsystem) is proposed, instead of

the trial and error procedure.

In this research, the meaning of the words ''application to error
detection' shall be limited to the past performance evaluation of subsystems

in a system,

1.4 Description of the Research

This research investigates the problem of error detection in large
computer systems. When the past performance of a system can be determined
by some method and made available to the system designers/maintenance
‘engineers, such information is useful for detecting errors in the system.
Thus, the past performance determination techniques presented here are directly

applicable to error detection.

The research consists of the following three parts: (1) the model-
ing of large computer systems, (2) a theoretical approach to error detec-
tion in the model, and (3) a practical approach to error detection in the

model .,



In modeling, a probabilistic sequential machine S for large com-
puter systems is used. By using this model, a theoretical approach may be
applied tp a special class of systems whose past behaviors are traceable.
This traceable property can be used for system diagnosis. In the practical
approach, the error may be located in a subsystem s in an erroneous system
S during its operation. The visiting probabilify distribution of activity
on all subsystems‘is determ;neé from the frequencies of the input load dis-
tribution and the activity of its output. The practical approach is more

powerful than the theoretical one. These two approaches are applicable to

both the hardware and the software of a computer system.

A brief description of the thesis by chapter is given below. Chapter
11 begins with the justification of modeling computer systems by probabilistic
seéﬁenfiai-maéhiﬁes (PSM). A geﬁeraifzed model of F3M is proposed of which
the input to and the output from the machine are describéd by a stochastic
vector and a matrix, rather than a single input symbdl and a vector, respec~
tively. This generalized PSM is then used for mode!ing the structures and
behaviors of large computer systems. The most basic éSM which has only two
states is studied in Chapter 1ll. The input traceable machine, a special
‘class of the basic PSM whose past inputs are traceable, is defined. When
uginé the input traceable property the error in an input-traceable machine
may be determined by finding a subsystem of the whole system which has been
most active in the past operétions. Decomposability of a large PSM into
basic PSM's is presented in Chapter IV. It is shown that a (large) PSM which

is decomposable into basic PSM's is shown to also te input-traceable if each

decomposed basic PSM is input traceable. The error detection in an N-state
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input-traceable PSM is discussed in Chapter V. Since the class of input-
traceable PSM class is a subset of the set of PSM's, it can only model

the subset of the set of computer systems. However, the class of input-
traceable PSM's can be enlarged by approximating the infinite input

sequence length by a finite one. This class of machines is called k-input-
traceable PSM's, where k denotes the finite length used in the approxima-
tion. An even more practic;I t;chnique of error detection based on a mathe-
matical op;imization scheme is presented in Chapter VI. This technique can
be applied to error detection of any generalized PSM, input-traceable or not,

and hence of any computer system. Finally, concluding remarks and suggested

future research are included in Chapter yii,



CHAPTER 11

COMPUTER SYSTEM MODELING

\

2.1 Justification for Modeling Computer Systems by Probabilistic Sequen-

tial Machines

A computer system is an example of a lafge system composed of many in-
teracting subsystems or moéule;. Due to the size of the computer system, it
is essential that module's rules are specified in such a way that mcdule de-
scriptions are independent of the pattern in which they are interconnected to
form the whole system; each module's behavior must be clear and correctly un-
derstood regardless of the situations in which the module is used. All inter-
actions between modules must be through explicit points of information flow
and control of task execution by the designer of each module.

If two modules or subsystems of a system are independently designed,
then the timing of events witﬁin one subsystem can-only.be constrained with
respect to events in the other subsystem as a result of interaction between
the two subsystems. So long as no interaction takes place, events in two
subsystems may be processed concurrently and no definite time relationship

will exist between them. A time relationship between independent actions of
separate parts of'a system makes comprehension of the system's behavior more
difficult. Concurrent and asynchronous operations in multiprocessing and
multiprogramming systems’with interruption mechanisms are fundamental aspects
of a computer system.

When we consider the situation of multiprogramming and multiproccessing
of a computer, the possibility of asynchronous interruption and hardware in-

terlock make execution of hardware nondeterministic; that is, there may be

many successor states possible for a given state of the system. The hardware



facilities for process switching and interrupt processing are usually control-
led by software for interprocess communications, which are implemented by the
scheduling modules of the operating system. The environment for software exe-
cution consists of the central processing unit on which the software runs, to-
gether with any hardware components éther than subsystems which are required
by the software. The software and hardware must interdct as a system in order
to realize some désired function; certain hardware of the computer system is
called the host system of the software. The host system may be the central
processing unit and ﬁain/auxiiiary memory hardware.

An operating system is a software system having many software modules
and appropriate mass storage devices. The software system consists oi an-editor,
an interpreter, a command processor, facility inventory controller, scheduler,
core allocation, job dispatcher, and input/output co-operative controller.

The designers of software and hardware wish to achieve certain goals.
The goals are gxpressed in térmsipi five propeifies desired of the completed
software and hardware systems: function, performance, correctness, reliability/
stability, and maintainability. Some available techniques to achieve these
goals are described in Section 1.2, Description of Computer System. For a
large system, it i§ very important to provide the last three goals: correct-
ness, reiiability/stabiiity, and maintainability. Some suggestions for
achieving these goals have been proposed and have been implemented in large
systems. Examples are structural hierarchies, mechanisms for protection from
alien activity, modularity of subsystemé/components, portability of system/
subsystems/comﬁonents which are concerned with changes in the operational en-
vironment, adaptability of system/subsystems/components which is also concern-
ed with changés'in the logical structure of the system, and testing/diagnosis.

Although the designers are working on these considerations and very careful



design processes, attaining the goals is almost impossible. The reasons for
failure are the large size and complexity of a computer system. For example,
problems are created by poor communication between designers and engineers,
logical errors in interfacing subsystems, logical loopholes in parallel multi-
activities of system performance and undefined boundaries of system definitions,
etc.

Subsystem‘testing,s;stém integration testing, diégnosing of system
functions, and system monitoring are currently evoking a great deal of interest
in the digital computer field, and a number of significant advances have been
made. Noteworthy advances are the D-algorithm [58] in hardware and the work
of Vienna's group who were able to demonstrate an error in an IBM PL/1 Com-
piler by formal methods [30] in software.

When engineers and programmers commence testing, diagnosing, and mon-
itoring of the system, they should be reminded that these actions can never
show the absence of errors but only the preseﬁce of errors. Testing is demon-
strating the presence of an error, diagnosing is identifying what kind of error
it is and where it occurred, and monitoring is coliecting érrors during the
system's normal operation. We shall subject ourselves to the monitoring and
.diagnosing of the system.

The system's normal operation is a steady-state behavior in daily op-

erations. Northouse and Fu [48] indicate that dynamic scheduling of large

computer systems leads to a steady state of the system. The performance of a

system in a steady state is some reasonable function of the input (more pre-
cisely the past input as well as the present input), thus the change in the
sysfem's performance due to the present input is predictable. For example,
if the input changes from jobs of one type to jobs of a slightly different

type, then there may be a little unpredictable behavior until the system



settles down to another steady state which is a function of the new job.

A set of inputs belonging to a job type always requires an expected
variety ind degree of computer services, but a set of inputs in another job
type also asks the other expected variety and degree of services. These vari-
eties and degrees of required services for each job type can bg described by
probabilities of the system's function executions since we seldom, if ever,
know the exact sequence of }ob; or requested services, whicﬁ are submitted to
a computer system. Furthermore, we do not know the exact characteristics of
the jobs ér_the requested services. Ordinarily, the most we know (or can esti-

mate) is the probability distribution of such quantities as classifications of

the job type and its resource demands on the system.

The system is In a steady state whilé.processing inputs of one job
type. This operation of the system can be regarded as a stochastic process,
which is a famiiy of random variables in time. A stochastic process can aiso
be considered as a time series of the ﬁixed variables {xt} consisting of job
type inputs, aéfnchronous interrdptions and interlocks of hardware rescurces
caused by input/output processing, wﬁich chaﬁges the execution course of func-
tion sequences. Since {xt} is a sequence of discrete random variables, there
must be a probability distribution assigned to the sequence. If an appropriate
.sampling time to ﬁeasure the system's executing functions is chosen, the
probability that the system shall perform a function b at the next sampling
time, depends only on the executing function a at the present sampling time,

or

P{xt+l = b|x, = a, x =a, X

=17 2 b= Pl 7 blxg = ad

t-2 = a2’... t

where a,2,,... are the other system functions.



It may be said that the evolution of the system, given the present time
(that is X, = a) is independent of the previous states assumed. This stochastic
process if a Markov chain. The other steady state caused by inputs from the
other job type can be described with another Markov chain. A set of Markov
chains, which can be distinguished by each job type (or input symbols in the
terms of probabilistic sequential machines), is a probabil%stic sequential ma-
chine. Because this stochastic property is basic to an opefatfng system, we
should expect that it will also show up with some acceptable precision in a
logical méde] using a probabilistic sequential machine.

Next, suppose that input types are mixed. When the mixing ratio is
known, system functions performed for the given inputs can be predicted
probabilistically by combining the probabiliffes of Markov chains associated
with each job type in the inputs. Reversely, when the miging ratio of input
types is unknown, the unknown ratié couid be identified by comparing collected
statistics of performed system outputs Qith the probabilities of Markov chains.
In these aspecfg, system monitor{ng is nece;sary.

In order to monitor a computér systeh, we need to know the system's
structure and organizafion; most systems are sufficiently complex that any
useful model aids in the understanding of the system in some precise aspects
but not in detai]i A complete, detailed description of the system is gen-
erally not useful, since it contains a large amount of unnecessary information
and does not explicitly exhibit the relationships between basic system func-
tions. A desirable model is an abstraction containing.only the significant
functions and relations to satisfy a particular purpose. Graphical represen-
tation of a computer system may provide a useful tool for abstracting the

system. --



2.2  Graphical Representation of a Computer System

One of the simplest representations of a computer system is a direct-
ed graph{ which basically shows function sequence and information flow. Gen-
erally, some of the sequence and flow details have been suppressed, and some
additional information which may help to understand the system.has been added.
A directed graph is a set of nodes and directed arcs (some£imes called edges).
Each arc in the graph origihatés at a node and terminates at a.node (possibly.
the same node). More than one arc may originate or terminate at a single node.

In medeling with a directed graph, the arcs represent the paths of
possible function sequence performed by the system (or by the subsystem). The
nodes represent individual functions of the system; input to a node (or.a
function) and output from the node (or generéted from the function) are attach-
ed along with the node or a path associated with the functicn sequence. Branch
points are represented by nodes with more than one arc originating at the node.
Additional information may be aésotiatéd with the node and arcs. For example,
the Erobabi]itz‘that function seduence exisés from a branch point along a
given arc is often associated with tﬁe arc Qf a dirécted graph.

Ramamoorthy [53] developed an algorithm based on the connectivity ma-
trix derived from a direct graph. By his generating functions of the direct
graph, he pointed ﬁut a direct analog between software and discrete electrical
circuits, which are characterized by entry and exit points in software and
sources and sinks in hardware. The connectivity matrix can be explained by
the following example. Figure 2.1 shows a directed gréph {(which is omitted
information flow).

The connectivity matrix of the graph is shown in Figure 2.2. In par-
ticular, the arc from node i to node j describes the following functional re-

lation. After performing the function i and with certain output generated by



Figure 2.1 A Directed Graph

the function i, sequential control of the system function leaves node i and en-
ters node j as the next function to execufe. The input information to node j
ig the output from node i. Each row of the matrix in Figure 2.2 represents a
possible transfer of function. For example, the third row shows that.node 3

is directly connected to nodes 4, 6, and 7 by displaying the 1's in the third
row. The 0's in the row show no direct connection from node 3 to the others.
When a node is a branch point, indicating the directed connection to others
(more than one node), which functional branch is selected next is, in the most
cases, dependent on the input to the system and on the past history of the

function's sequence. This property is known as reproducible system behavior;
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Figure 2.2 The Connectivity Matrix of a Directed Graph

it is called a determinacy property. Dennis [12] presented an important result:
if interactions between subsystemé obey certain natural conditions, then deter-
minacy of the subsystem guarantees determinacy of the whole system using Petri

net [32], which is another directed graph. However, when a set of inputs is ap-

plied to the

n

yetam 2n

(a0l
(o9

the order of the individual input in the set is unknown,
the behavior of function sequence at a branch point at a particular moment cannot
be predicted deterministically but can be predicted prébasilistically, if differ-
ent job type categories and the mixing ratio of them in the set are known. These
probabilities of function sequence transfers at branch points can be found and

be inserted in the entries of ;he connectivity matrix of a directed graph. Thus,
the connectivity matrix becomes a probabilistic transfer table of the system's
functional sequence. It is pointed out that asynchronous interruption in a

computer system causes the execution of system components in a nondeterministic

order during a short time period, but in an integrated long time period the
system behavior is in a steady state. From the determinacy property of the sys-
tem and the probability due to the unknown order of original inputs, we have a

better understanding of the relationship between the nondeterministic behavior

and the steady-state behavior of the system.




A set of inputs belonging to a job type category always provides same
probabilistic transfer of function sequence at branch points, but a set of inputs
in another job type category also provides the other probabilitic transfer table.
In this situation, a computer system could be considered as a probabilistic se~
quential machine. As mentioned previously, outputs are produced from the nodes
in the system-directed graph; therefore, most outputs of systems are functions
of the states (rep;esented b; th; nodgs) of the probabilistic sequential machine.
Specifical]y; the probabilistic sequential machine is a Moore type. Before
building a model of the probabilistic sequential machine and drawing a graphical
representation of a computer system, a real system analyéis is necessary tc focus
attention on a particular system problem. In the aﬁalysis, test sets of input,
which cover a wide range of a system's behavior, are essential for the model
and the graphical representation. . .

In order to deFermine an economical and efficient £est data set for diag-
nosis, a method is needed that will succinctly expose the complex interrelations
between the flow of program control and the flow of data during that program's
execution. Desirable test data is short and examines many diagnostic items
simultaneously. Of special importance is the isolation of program segments in
order to reaéh any one segment or data definition from any cther segment or
data definition. l£ is within such segments that we hope to identify the input
to and the output from the computer system. A convenient method needs a simple
but effective means of undérstqnding, visualizing, and analyzing the test pro-
blem associated with the system diagnostics. The graphic representation can
simplify the understanding of a large logical system's operation and can assist
system analysts in handling unforeseen and unexpected problems.

Nodes in the graph rebresent'functiona] elements. Directed arcs con-

necting two nodes represent lines of data transfer (or signal propagation)



and/or lines of function transition. In particular, the arc from node i to
node j describes the functional relationship as the arc from node i enters
‘node j lfke a passing of a baton. As is pointed out previously in Section 1.2,
the computer system can be considered a multilevel structure, where each level
can be analyzed in the same manner. Since the graphic representation is valid
whether the node represents a single element, .a logical bu}lding block or a
complex functional modul¢{~éna]ysis and techniques used in'combuter diagnosis
are heavily dependent uéon the level with which we are working. Therefore,
to develap an efficient and economical diagnostic test set depends on the
analyses and manipulations of a graphical level which describes the system's
organization and performance: A higher level graphical representation could
simplify the understanding of the operation of a large logical system.

A generali;ed approach to provide a sFructural g;aphiq.reprgsentation

and diagnostic test sets. is proposed by C. V. Ramamoorthy [54] as foiiows:

(a) Structural repfesentation of the system ét appropriate level.

(b) Partitioning or segmenting the system into a number of smaller
subsystems purely from tHe stfuctural description.

(c) Strategic location of test point for purposes of subsystem sag-
mentation, isolation, injection and/or monitoring of data during
diagnostic tests. |

(d) Sequences in which test must be performed for error (fault) de-
tection and/or location. |

(e) Determination of functional hard-core of the system.

The choice of a complex system level to consider depends primarily on
the characteristics that we wish to study. Proper representation must mask

out those details which are not pertinent to studying the problem at hand.



For diagnosis, we must look at the computer system from two distinct viewpoints,
the structural viewpoint and the behavioral viewpoint (or function control and
information flow viewpoint and the stimulus response viewpoint, respectively).

_ . i

The behavioral aspects like input/output relationships can be modeled by a

sequentiai machine. When a system has a large number of responsive stimuli as

in;ut and has many variant responses as output, we become lost in a maze when
considering the whole systeh in detail. For this reason, it is better to study
the structure of the interconnections and the flow of information first and
then derive valuable information before we use the behavioral description for
devising the diagnostic test. |If only the primary (externaily controllable)
inputs and observable (externally available) outputsare used for diagnosis of
the computer system, the total number of test sequence will be very large and
resolution of the error locating (fault) becomes low. Thus, it is desirable
to break up a iarge system into smali subsystems which reduce the lengtn of
test sequence as well as the average test time and which will also improve
the resolution.

A procedure for diagnostic system treatment based on graphical repre-

sentation is as follows: .

(a) A structure graph which represents a system, by flows of function
control and information in the system, is needed.

(b) Identification of externally controllable inputs and externally
observable outputs of the system must be détermined.

(c) The interrelationship between the input and the output must be
established as the behavioral viewpoint of the system.

(d) When the numbers of the inputs and the outputs are very large,
the large system must—Se broken into small subsystems.

(e) Then, the input and output to/from a subsystem must be identified,



and the interrelationships between these subsystems should be

clearly determined. .

\

Since the computer system is represented in a multilevel structure re-
cursively, Steps (d) and (e) may be repeated as many times as needed for test
diagnosis.

~ -

2.3 Sequentiaﬁ Machine From a System Viewpoint

From a broad engineering viewpoint a sequential machine (and automata
theory) can be considered as a branch of system theory that is concerned with
the dynamic behavior of discrete parameter information éystems. As such, it
differs from switching theory in that its main objective is to model the macro-
scopic behavior of a system rather than to describe the microscopic details
of the system's construction from such basic logic elements as AND gates, OR
gates, and flip-flops.

System theory is based on the assumption that the external behavior of
any physical device can be described by a suitabie mathematical model, which
identifies all of the critical features that influence the device's operation.
The resulting mathematical model is called a system. Because many seemingly
.unre]ated devices can be represented by essentially the same model, system
theory provides a unified treatment of the mathematical techniques that can
be used to investigate the dynamic behavior of these models.

The behavior of ény system can be represented in terms of mathematical
relations betwéen three sets of variables, which describe the input, the out-
put, and the state of the system. The input set represents thcse external
quantities that can be applied to the system to produce a change in the sys-
tem's behavior; the output set represents the possible, observable behavior

of the system in response to these inputs. One of the basic characteristics



of any system is that its current output is a function not only of the present
input but also of the past inputs and outputs. Because of this, we can think

of a system as possessing a ''memory', which stores information about the past

behavior of the system. The state set, the third set of variables, is used to
represent the amount of information.stored by the system.

The response of a system to a given input can be represented by a set
of equations that‘describe ;hebfunctional relationships betheﬁ a set of inde-
pendent and a set of dependent variables. In many systems, these functions are
described in terms of integral-differential equations, and of the variables
taking on continuous values.

In a sequential machine (and automata theory), however, we are fnterest-
ed in a different class of systems. The sysééms are chargcterized by the fact
that all of the variables can'assume only discrete values. For example, one
variable might be ailowed to take only the value 0 or 1; whereas, another
variable might take the value a;b,‘or c. Systéms of this type are referred
to as discrete-éarameter,systems.

As would.be expected, the functions that describe the behavior of dis-
crete parameter systems can no longer be represented by integral-differential
.equations. Fortunately, there is a branch of mathematics, referred to as ab-
stract algebra, that provides a source of mathematical techniques that can be
used to describe the functional relationships that characterize the operation
of discrete-parameter systems.

The basic system model that we shall use can be thought of as a black
box with a set of input and output terminals that can receive and discharge
infbrmation, respectively. The black box is assumed to be constructed from
storage elements and combinational ‘Togic elements. The actual details of

internal structure are not available, and the only interest we have is in the

resultant dynamic properties of the system that affect the way in which it
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processes information.

Because of the storage elements, the present output depends on the
history of the system. The following general representation is used to describe
4 R .

systems of this type. The input to the system is represented as a sequence of

symbols XysXgseeesXpseoss where x., is the first symbol, x, is the second symbol,

1 2

ana'xk is the kth symbol. The value of a given symbol can be specified by
identifying it as*a particular value from a set X of all'possibfe input sym-
bols. For example, in a given system, X might consist of the set {0,1,2}.
Thus, one possible input sequence might be 0,1,1,0,1,2,0,..., where Xy = 0,
xil,..., etc.

Inside the black box, there are storage elements that can remember past
history of the input and response of the system. The contents of these storage
elements at a given observation determine the state of the system. Because
the system's input and output can take on only dlscrete values, the parameter
representing the memory of the system can also be represented by a variabte
that can take on only discrete values. The state of the system at the ith
observation is represented by the variable Si» and it is assumed that s; can
take on any one of the values that beleng to the set S of all possible states
of the system. Because the state of the system represents the memory of the
.events that have pfeviously occurred, it is possible to develop an expression
that relates the value that the state variable will have at the next observa-
tion to the present value of the state variable and the .value of the present
input symbol. When an output'is generated, its value will depend on the sys-
tem's present input and state (or on only the present state of the system
which will be explained later).

One representative class of discrete-parameter systems are digital

networks, which are constructed from standard logic elements such as AND, OR,



NOT, or Exclusive OR circuits and storage elements such as flip-ficps and de-
lays.

ﬁnother example of discrete-parameter systems is an information trans-
mission system, which consists of a sequence of information processing blocks;
such as an information source generétor, an encoder which accepts a sequence
of input symbols and which generates an output. sequence to.transmit through
a particular chanhel in which &sually unavoidable noise is éupérposed and a
decoder which reconstructs the original input sequence from the received out-
put sequeAce of the transmission channel. Note: the decoder can make use of
both present and past received symbols. Another example of discrete parameter
systems is the neural network. McCulloch-Pitts '"‘cells'" or '‘neurons' are
models for certain aspects of brain«function:' The models are interconnecting
cells, which are a very simple, two-state, sequential machine. Once we un-
derstand perfectly each simple part and how it interacts with the others, we
have a chance of understanding the netwérk as a whole or as a system.

A finai éxample of a disgrete-paramé;er system is a digital computer,
which provides other rich sources ofisequent}a] machine problems (and auto-
mata theory). For instance, the problems of determining the theoretical
capabilities of a computer, the programming language translation, man-machine
.communication, etc; exist.

A deterministic sequential machine and a probabilistic sequential ma-

chine are described in detail in the following two sections.

2.4 Deterministic Sequential Machine

We are familiar the black box representation' of the dynamic behavior
of discrete systems and normally have no detailed description of the system's

internal structures with which to work. The internal behavior is expressed



in terms of a set of possible states that the system might enter, while the
number of elemants in this state set provide a measure of the amount of infor-
mation storage presented in the system.‘

The possible inputs to the system are assumed to be sequences of
symbols in a finite set of input symbols, and the resulting output are sequences
of'symbols selected from a set of output symbols. Any black box that produces
an output symbol &henever a; iéput symbol is applied and that satisfies the
above mentioned properties is called a deterministic sequential machine (DSM).

When we are étudying DSM characteristics, the input set X, the output
set Y, the state set S, and the relationships between these sets are of fun-
damental importance. Sets X and Y are external to the DSM and can be defined
by direct observation. However, the internal structure of the machine is
generally not available for direct observation. Thus, the set S is not easily
found. The selection of a set of states for a given machine is not a unique
process; it is not a serious limitation to describe the general input-output
behavior of the machine rather than its actual construction. Methods to com-
pare different state sets for a given DSM have been discussed by many re-
searchers. A state set which has the minimum number of states is useful to

.describe the DSM for practical, as well as theoretical reasons. Such a de-

scription can be found in books by Hu [34], Booth [ 8] and Ginsburg [22].

Definition 2.1

A DSM is a five-tuple M = ($,X,Y,8,1) where

S is a nonempty set of states.
X is a finite set of input symbols.
Y is a finite set of output symbols.

§ is a mapping from SxX to S called the next state function.
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A is a mapping from SxX to Y called the output function.

A DSM in which the state set S contains only a finite number of element
states is called a deterministic finige state machine. The machine thus de-
fined is a Mealy machine. A modification of this definition, mapping A from
S to Y, is called a Moore machine.

Three techniques that have come into common usage to present the
analytical properties of a DSM are the transition table, the transition direct-
ed graph, and the transition matrices. A DSM is defined when each technique
properly formats the input, output, and state of the DSM.

The transition table representation of a DSM displays the properties
of the next state and output-mapping in tabular form. The columns of the
table corfespond to input symbolg, and the rows‘correspond to states of the
machine. The entry found at the intersection of the kth row and the jth column
is é(xk,s}/A(xk,sj). . For a Moore machine, the output function in any row in
the transition table is independent of the column, éince-k(sj) has only one
argument Sj' See Figure 2.3 for illustrations of.transition tables.

A Mealy machine is equivalent in machine behavior to a Moore machine

and vice versa.

X X
\E\\\\ 0 - 1 \g\\\ 0 1 l(si)

s 53/a sz/b 54 S 53 a

s, s]/b 53/c S, 53 59 b

S3 53/0 s]/a _ Sq Sy 51 a
(a) A Mealy Machine (b) A Moore Machine
where where

= 1 = i = =
S {51,52,53,,X {6,1} S {51,52,53},X {0,1}

Y = {a,b,c} . Y = {a,b}
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55 = 6(0,5,),5, = 8(1,s,) s, = 8(0,5,),5, = 8(1,5))
5| = 6(0,52),53 = 8(1,s,) Sy = 6(0,52),51 = 6(1,52)
sy = 6(0,53),5l = 6(1,53) s, = 6(0,53),51 = 6(1,53)
a= x(o,sl),- b = A(l,s]) a= A(s])
b = x(o,sz), c = (l,s.,) b = A(sé)
¢ =1(0,s,), a-= A(1,s,) ‘ a = A(s3)

_Figure 2.3 1llustrations of Transition Tables

A transition directed graph provides a graphical representation of the
operation of a DSM. Each diagram consists of a set of vertices labeled to
correspond to the states of the mééhfne. For each ordered pair of states s;
and sj (not necessarily distinét), a directed edge connects vertex s, 1o 5.,

4

if and only if there exists an input symbol x eX such that 6(xk,si) =S5

When a directed edge connects S; to sj applying the input X, to the machine,

k
the edge is labeled as xk/l(xk,si). Thus, fhe vertices of the transition
graph correspond to the present state of the machine; the label on the edge
indicates the present input and the present output. The arrowhead on each

edge indicates the.next state of the machine. Figure 2.4 is the transition

directed graph that corresponds to the transition table in Figure 2.3(a).

Figure 2.4 Typical Transition Directed Graph
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If the machine is a Moore machine, the output mapping depends only up-
on the present state of the machine, and this property is used to simplify the
transition directed graph. The output is usually ind;cated by including it in
.the Iabefing of the vertex. A transition directed graph provides easy under-
standing of the operation of a given DSM. InAparticular, abstract concepts
associated with the ' DSM theory may become simple, visual interpretations of
the DSM. However, as the number of states increases, it becomes difficult to
present the transition directed graph of a machine in a compact manner. It
is also difficult to use the information contained in one of these graphs to
carry out computations on a digital computer. To overcome some of these pro-
blems, a transition matrix is useful.

A transition matrix, which has p rows and p columns, is an array of
symbols, denoted input/present output. The rows coirespond to the present
state, and the columns correspond to the next state of the machine. The eniry
Eij at the intersection of the ith row and the jth‘columﬁ indicates which
input symbol will take the machine from state S to state sj as well as which
output symbol produced by the machine will cor(espond to this transition.
Figure 2.5 is the transition matrix corresponding to £he transition table in

Figure 2.3(a).

S S S

1 2 3
s, - Wb 0/a

M= s, fo/b  --- /e (2.1)
Sy 1/a --- 0/c

Figure 2.5 Typical Transition Matrix

Another class of machines exists in which the characteristics of the next state

mapping and output mapping can be described only in a probabilistic rather



than a deterministic manner. Examples of each machines are those constructed
from unreliable components or those in which internal noise sources are pre-
sent. Machines of this type, which are called '"probabilistic sequential ma-

\

chines', are described in the following section.

2.5 Probabilistic (Stochastic) Sequential Machine

We have been dealing with deterministic systems. Each sequence is well

defined, and the behavior of any system is described exactly by the properties
of its state transition direeted graph. However, there are many systems in
which these'processés cannot be defined in a determinis;ic manner, and it is
necessary to use statistical concepts to describe‘the system's behaviors.
Techniques for analyzing thé behaviors of continuous systems excited by random
processes are well known. But Qhen one attempts to analyze the behavior of
the discrete parameter svstems, such as found in a nrobabilistic segunentiaj
machine (PSM), it is.conceivable that many of the standard techniques develop-
ed for the analysis of continuous systems are not directly applicable to dis-
crete systems. Therefore, it is necessary to study some of the basic proper-
ties of the discrete randoﬁ processes. |

When we discussed the properties of a deterministic sequential machine,
.we assumed interest only in the response of the machine to determine sequences.
Also, we assumed that the mappings §(XxS) and A(XxS) uniquely defined the
néxt state and present output of the machine. These assumptions aré relaxed
in that input sequences are either wholly or partially probabilistic and in
that the mappings 6 and A are defined in a probabilistic manner due to a ran-
dom property of the input sequences.

We start with an example of Markov chains in order to describe a PSM.

Consider a physical system in motion. Let the various positions (states) cf



the system be denoted by 0,1,2,3,..., and let pgg) be the probability of the
system's transition from the state i at time m to the state j at time mtr
(for any m); this is called an r-step transition probability. The matrix
p = (ng)) is called a stochastic matrix of the system. A sequence of various
states of the system, {sk} for k = o,i,z,..., is called a Markov._chain if,
for every finite collection of integers 2]<22<.;.<2r<2,'wher§ 2 js the length

»
of the sequence. In other words, after £ moments of a unit of time, we have

-

Pr{szlsz_r,sl_r+],...,sz_l} = Pr{sllsz_]}. (2.2)

Let s, and s __

2 -1 be the ith and the jth states, respectively, then

Pr{szlsl_]} = Pij(z) .. for i,j = 0,1,2,..._ (2.3)

If Pijil) is independent of & for i,j, we say that the chain is homogeneous.

For a homogeneous Markov chain, let-us denote

p;{sz=j|sz_] =i} = Pij _ 'H ‘ (2.4)

and quite generally,

=jls, =i} = psg) for r = 1,2,... (2.5)

The probabilities (2.5) can be expressed in terms of (2.4), as follows:

(r) _ e s . L
Pi; = LPlsgyy = iplsy = P Ls = iylsy = 1))
= ¢ - i
) 'Pr{52+r IS804 'n-l}
=lepi Py, TPy (2.6)

for the sum on PRI PYTERTY N
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we have, from properties of probability,

pgg) >0 and } pg;) = 1 for r = 1,2,... (2.7)
. J

Suppose the initial state of the system is the ith state, the probability
of the system being in the jth state is pij after one unit of time where

J=0,1,2,...,i,4.., in a matrix form,

Poo Po1 Poz Poz -

) the ith p p p o
(0,0,...,1,0,...) 10 711 M2 M3 = (P PoyennPiynnl).
i0? il it
Poo P21 P2 Pa3z -
: - e L BN ] e e o 0 8 (2.8)

When the number of states is finité, the system becomes a finite Markov chain.
Feller {15] applied his theory of recuirent events tc Markov chains and de-
veloped a simple and more elegant theory, which made no distinction between
finite and infinite chains. We shall limit ourselves to a finite state system.
Relaxing the DSM assumptions mentioned previcusly (namely the introduction of
random inputs to discrete parameter systemé), the next input symbol is dn-
certain. Thus, the appearance of a specific symbol xisX is described with a

" probability Pis where X is a finitg set of inpgt symbols. Using the example

in Figure 2.5, let Po and Py be a set a of the appearance proEabilities of

input symbols 0 and 1, respectively. The state transition becomes

0 P, P, 70 0 1 01 0
M(a) = Pp O Py | =py |1 0 O | +p 0 0 1 (2.9)
P, O P 0 0 1 1 0 0

. ’ 1
If we introduce the other set denoted by a B of probabilities pé and Py» the



transition matrix is

0 Py Po 6 0 1 01 0

=
—~
kos)
~
!
o
©
-—
ft

1 0 0 +p; 0 0 1

0 0 1 I 0 0

©
—
o
©
o

The probabilities of the output symbols are

L}

0 0 Po 0 Py 0 0 0 O
M(a/a) = 0 , M(b/a) = | py 0 0 |, H(c/a) =| 0 0 p,
p, 0 0O c 0 o 0 P,
(2.10)
1 U |
0 0 pg _ 0 p, O | 00 0
M(aZ6) = 0 o0 o0 |, M(b/g) = pé 0 0 |and M(c/g) = | © p;
' p; Y o _\o.o G, \ O pé/

Example:
Consider a DSM (5,X,Y,8,\) where

S = {51’52}’ X = {0’1’2’3}9Y = {a’b}
M and X in matrix form augmented by the input symbol are

M) = (o 9, M = 0, Mm@ = (D) andu3) = G D,

10 0i
(o) = (59, a0 = CH, a2 = @ ) anda3) = (D).

Two sets of probabilities of random input are introduced

I Lo 1L
Pa (EJ -l}-’ 0) 'E') and PB = (6’ 0, 2 3) .

The constructed PSM = (S,X,Y,{M(x)},A), where xeX is as follows:



S = {s],sz},
X = {U,B}’
Y. = {a,b},
W =1L+ HE Dl D 3O
_1.0 01, , 1,10 .10
M) =3 D+ o 3 D+ 30 )
then
/L X 2 1
Ma) ={ 2 2] and M(p) =| 3 3
1 3 11
YA 2 2
1 » o )
Masa) =| 2 ), A(b/a) = ( ’*) -
11 . - o iR
\ 2/ Wy
1 LI
Aa/B) = 6 3 and ~ A(b/g) = 2
0o 1 AL 1
6 2 3

We shall define a probabilistic sequential machine formally as follows.

Definition 2.2

A Mealy type probabilistic sequential machine is a quadruple PSM =

(5,X,Y,{M(y/x)}) where

S is a nonempty set of states.
X is a finite set of input symbols.
Y is a finite set of output symbols.

{M(y|x)} is a finite set containing |X|X|Y| square matrices of order
|S| such that mij(ylx)zp for all i and j, and
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m,.(y]x) =1 where M(y|x) = [m, .(y|x)],
yeY j=1 ' '+

where the symbol |S| denotes ''the number of elements' in the set S.

Definition 2.3

A Moore type probabilistic.sequential machine is a five-tuple PSM =

(S’X»Y,{M(X)},A) \'Nhere «

S is a nonempty set of states.

X is a finite set of input symbols.

Y is a finite set of output symbols.

{M(x)} is a finite set containing |X| square stochastic matrices of
order |[S].

A is a deterministic function from S into Y.

From the preceding discussion, we can say that the DSM is a special case of the
PSM. In other words, the PSM is a generalfzed machine of the DSM, in the sense
of machine behavior.

The PSM can be generalized by imposing random inputs and by introducing
a transfer matrix, state versus item of output. This generalized machine is

‘described in the next section.

2.6 Definition of a Generalized Probabilistic Sequential Machine

Definition 2.4

A generalized probabilistic sequential machine (GPSM) is a six-tuple

GPSM = (S,X,Y,{M(x)},4,T), where

S is a nonempty set of states.

X is a finite set of input symbols.



Y is a finite set of output symbols.

{M(x)} isAa finite set containing |X| square stochastic matrices of
order |si.

¢ is a distribution of input symbols.

T is a transfer matrix of states versus output symbols.

A PSM imposed with random inputs is just another PSM. Without loss of

generality, the two symbol-two state PSM expounds this property as follows:

0 0 1 1
- P11 P12 P11 P2y
M(0) = 0 0 and M(1) = . .
P21 P22 P21 P22
where z p?j =1, p?jzp for all .i and k.
j

Sucrose a specified random of inputs are given by o = (nﬂ,w]) where W0+ﬂ] = |

and Ty wlzp. Thus

0 0 ' 1 1
Pii Pz g Pl P12
Mo =7t o o *m o
P21 P22 P21 P22
k _ k —
where 2 z mPir = 1 and T, p..>0 for k = 0,1 and 1,j=1,2,
. k j 1) k"ij—

However, when the imposed randomness or a distribution of input probability is
unknown in machine operation and when we need to know the distribution by some
approximation, a model using this generalized—machine.is helpful. A large-

logical system described in Chapters V and VI is modeled by GPSM.

2.7 A Model Used Generalized Probabilistic Sequential Machine

We now focus our attention on the central problem of system modeling.

A system model expresses in some form the relationships which exist between



the basic functions of the system. The system model may be very simple, or
it may be quite complex, depending on which level of the system we are in-
.terested.in and how the model will be used.

It has been pointed out that a Moore machine of a PSM can represent a
computer system. The stochastic nature of the PSM really reflects a basic
property of computer system performance (Section 2.1). Although the exact
sequence and cha;acteristics of jobs are seldom known, the probability distri-
bution of the job type and its resource demands can be predicted. This sto-
chastic property is basic to the operation of a computer system. Before re-
presenting a computer system model, a description of a general contemporary
computer system is needed. A computer syste@ is managed by its operating sys-
tem. Generally, an operating system has three main parts: job management cr
setting up the environment for the user's job execution, task handling or sys-
tem resource management and data or input/output management. Operating systems
can be divided_into any number of parts associated with computer system levels.
as mentioned previously.

Job management or the total environment of a computer system is handled
by the executive function. The executive arranges for the operator and for
.the user-programmer to communicate with the system either through operator
commands or job control cards presented to run the program. The operator must
be able to communicate with the operating system in order to tell the operat-
ing system what resources must be made available for his program;

Task management or allocation of system resources concerned with thte
program (once éhe program is executed) is directed by this portion of the op-
erafing system. Typically these system resources include main storage, cen-
tral processing unit (CPU) time, ihput/output operations, and a system clock

which arranges the programs in main storage in their proper place and takec
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programs from secondary storage memory and brings them into an execution mode.
Data or input/output (I1/0) management is that portion.-of the operating system
which controls the utilization of space on mass storage for direct access, con-
trols the allocation of tape drive if it is a tape data set, or controls the
reading in of cards and the output of printed matter. In short, all 1/0 op-
erations must be scheduled and executed by the operating system, not the user's
program. A typical computer system js iliustrated in Figure 2.6. In the fig-
ure, the coarse scheduler, dispatcher, and facility inventory are performing
the job management; the dynamic allocator is handling the task management;

the symbiont complex, C/SP (Commun, Symbiont Processor), 1/0, and communication
handler are directing the data management performénce.

The following abbreviations are used in Figure 2.6:

PCT {Program Contrcl Table),
CQE (Core Request Queue Entry),
SWL (Event Monitoring Switch List),
SCHQ (Schedule Queue),
READS (Card Images READ from Card Réader), and 4

PRINT$/PUNCHS$ (Card Images to PRINT/PUNCH to line printer/card punch).

We classify computer job types into categories such as scientific com-
putation, business computation, conversation mode, simulation, and data manage-
ment according to their bhargcteristics. Each category may be considered as
an input symbol to a (Moore-type) PSM used to model the system.

The next step of the modeling is to determine the structure level of
the system which shall be used. Then the connectivity matrix of functional
elements in the selected structure level should be built from a directed graph

representing the structure of the system. The probabilities of function trans-
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fer (state transfer matrices) for each input symbol (for each job category} at
branch points of the directed graph should be evaluated. Generally, the out-
put items of the computer system are activities of output data channels, for
example, swap file channel, program file channel, mass storage file channel,
magnetic tape channel, line printer/card puncher channel, remote communication
channel, etc.. Therefore, a transfer matrix from states (qr the functional
element) of the P%M to these output items is needed. This is a generalized
probabilistic.sequential machine (GPSM defined in Section 2.6), if we éssume
there is a input load distribution of the classified input category to the

system.

For illustrating a computer system, a large logical system is

GPSM = (S,X,Y,{M(x)},$,T)

where
S = {Symbiont complex, f(o-control,‘cdaése schedulan, dynamic allo-
cator, dispatcher, user/exec. activity},
X = {Scientific computation, business computation, conversation mode,
simulation, data management},
Y = {Swap file channel, program file channel, mass storage file

channel, magnetic tape channel, linéprint/cardencher channel,
remote communication channel},

M(x), for xeX is the state transition probabilistic matrices asso-
ciated with each input sy;ggl,

¢ is.a load distribution of input category,

T is a transfer matrix of states versus output symbols (or output

items).

There are two cases where the GPSM is useful:



(1) When the input load distribution is known, the output items could be com-
puted by the model. Testing/debugging and benchmarking of the system

belang in this case because the input jobs are canned or known.

(2) Inﬁut load distribution, which is unknown and which produces the system
outputs could be computed with the model, when statistics of the computer
system outpu} performance (for example system fai]u}e)are'available.

This case is useful to determine internal past activities of the system,

which might be épplicable for performance analysis and failure detection

of subsystems as well as the system.

A number of problems always arise wheneQer we attempt to model a sys-
tem. .The most significant problem is that of the validity of the model. A
model of a system is an abstraction of the system in which many details of
the system's structure have been omitted. Thé model is basically a simp!%fied
version of the system. In the process of deriving the ﬁodel from the system,
some significant relatipns may be dropped or some important constants may be
estimated incorrectly. If this happens, the model is not valid, that is,
.the behavior of the model for a given input will not match the behavior of
the real system within ;easonable limits. An invalid model is relatively
useless. The problem of mcdel validity is probably the most difficult and
certainly the most serious problem in modeling, especiaily for modeling of
a large system.

The most difficult task in our modeling is the evaluation of the state
traﬁsition probabilistic matrices and the transfer matrix of states versus
output items. A rough evaluation of these matrices could be done by studying

the internal logical structure of the operating system and estimated output



channel activities. A better way to evaluate these matrices is system monitor-
ing using benchmark programs with an item of a job type category. Several

_monitoriqg methods in hardware and in software [ 1], [70] are available.



CHAPTER Il

TWO-STATE INPUT-TRACEABLE

PROBABILISTIC SEQUENTIAL MACHINES

3. Introduction

This chapter provides the mathematical foundations o% the theoretical
approach to error detection {ﬁ a.computer system modeled by 5 geﬁeralized
probabilistic sequential machine (PSM). The foundations include a closed form
representat}on of the product of any infinite or finite number of two-state
stochastic matrices and the input traceability property of a two-state isolated
PSM.

A review of the class of two-state, tw&fsymbol, completely isolated PSM
[79] and the class of two-state, multisymbol, completely igolated PsM [68] is
presented in Section 3.2. Following it, a broader class of isolated machines

called the absolutely isolated maéhihe, which includes the completely isolated

t

machine as a subéiass, is introducéd. It is éemonstrated that the condition
for isolation given by Yasui and Yajimé [79]»aﬁd Tan [68] is unnecessarily con-
servative. New conditions for determining the isolated property of a PSM are
presented. It is shown that an isolated machine satisfying the new conditions
m;y not satisfy the’condition proposed by Yasui and Yajima and Tan. Section 3.5
introduces approximate probabilities and errors of approximation. It.is shown
that any PSM isolated by some kth approximation accepts a (k+1) definite language.
An algorithm is derived to synthesize an absoTutely‘Tsoléted probabitlistic auto-
mata with any level of approximation.

The last section deals with the past input traceability property of an

isolated machine, which can be applicable to error detection.



3.1 Completely Isolated Machines

First consider a two-state/two-symbol PSM. Let X and X, be the two
symbols and let
. \
I-a a l-¢c ¢
M(x]) = : and M(xz) =
b 1-b d 1-d
be the two-state transition~(siochastic) matrices, where 0<a,b,c and d<l. Let

the fundamental matrix Mi(x]) for i=1,2 be defined by

M](xl) =

(b/(a+b) a/ (a+b)
b/{(a+b) a/(a+b)/ ,

a/(a+b) -a/(a+b)
o 1 )

\lb/(a+b) b/(a+b)/

and

M](x]) = X.Y, and Mz(xl) = X

1" Y,

2

+th

where Xi and Yi are the ith characteristic column vector and the i character-

‘istic row vector of M(x]) and M(xz), respectively.
Then
M(x') = I-M](x])+AM2(x])

where A = l1-a-b is the eigenvalue of M(xl). The other eigenvalue of the matrix

is 1. Similarly,

H(x,) ='1-M](x2)+umz(xz)
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where

d/ (c+d) c/(c+d)) c/ (c+d) -c/(C+d))

M, (x) = M, (x,) =
1% <d/(c+d) c/ (c+d) 272 -d/(c+d)  d/(c+d)

and y = l-c-d.

A product of stochastic matrices M(x]) and M(xz) is

MOx IMOx,) = (M) O )0, (DT () vl (x,))

='M](x])M](x2)+uM](xl)Mz(x2)+AM2(x])M](xz)

+

AUMZ(X{)MZ(XZ)

Using the multiplication table of the two stochastic matrices M(x]) and

M(xz) given by Yasui and Yajima [79], we obtain

M(x,IM(x,) =-Ml(x2)+uH+AuM2(x])
where

o=l
_ _ bc-ad

For simplicity, let A = M(x]) and B = M(xz). The multiplication table of the

"two stochastic matrices, A =.A]+AaA and B = B.+)x, B, is as follows:

2 1 "b"2
A] A2 BI B2 H
A] A] 0 B] H H
A2 0 A2 0 A2 0
BI Al -H B] 0 H
B2 0 B2 9_ B2 0
H 0 H 0 H 0

where Ai and Bi are the ith fundamental matrices, for i=1,2 and Aa and xb are



the A and u eigenvalues of A and B, respectively.

In general, M(x), xeX T can be expanded as follows:

H(x)

]

M(ol)M(oz)M(o3) cen M(cm)

MI(om)ﬂ‘li(Gm-l)MZ((’m)‘l-)‘mAm-lMl(cm--Z)M (Om-‘)

LRI 20 S0 SRR lez(c]) (3.1)

where o, is X| OF X5, and Ai is A or p depending on X; or x, for i=1,2,..

and x = 010203...0m«

Definition of lsolated Machine by Yasui and Yajima'

The (1,2) element of (3. l) is called the mth approximation probability
denoted as p( )(x) after processing input x*. Yasui and Yajima defined a set
of two stochastic matrices as being completely isolated by the mth approxima-
tion if and only if every pair of input strings of length m+l (which is pro-
duced from the set of matrices) is isolated by the mth approximation.

When the length m input string is truncated by the last k+] symbols, the

truncation error of the product (3.1) is bounded by a constant

Bl 1y ) 1)

where 8 = max(|A|,|u|),Hij = Ml(xi)MZ(xj)' The norm ||A||(E) is defined by
the absolute value of the (£,2) element of the matrix A, where £=1,2. |If
ALY = 11a11®), then [1A]] is interpreted as ||a]] ‘&),

The preceding properties of two-state/two-symbol PSM have been extend-

ed to the two-state multisymbol case by Tan.

TThe symbol X* denotes the set of all possible input strings that can be formed
by the elements of X.
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In this chapter, the properties of a two-state multisymbol PSM have
been extended further. In particular, a much tighter upper bound than the pre-
vious equation for the two-state multisymbol PSM is presented. It is derived
by considering the sign of the eigenvalue of each stochastic matrix rather than
just the absolute value. It is shown that a PSM which is not isolated by Yasui
and Yajima and by Tan's defjnigions may actually be isolated. Consider the

following PSM

0.2 0.8 0.5 0.5
M(Xf) = and M(xz) =
0.1 0.9 - ~\0.9 0.1
and evaluate Yasui and Yajima's criterion (h<l) of the PSM (details of the
evaluation are presented in the section 3.5). The value h of the PSM is 2.1>1]

so that it is not an isolated machine in their sense. However, the PSM is

isolated in our sense. Our discussicn begins in the next section.

3.2 The Product of 2x2 Stochastic Matrices

In the PSM (S,X,Y,.{M(xp},A), the parameters are defined as follows:

S is a set of states, {s],sz}.

X is a set of input symbols, {XI’XZ""’Xn}'

Y is a set of output symbols, {y],yz}.

{M(xi)} is a set of state transition stochastic matrices.

A is a deterministic .-function from S into Y.

The PSM is obviously characterized by the transition matrices M(xi) (i=1,2,...,n).
For simplicity, we shall denote M(xi) by M('). The behavicr of the PSM due

to an input string x = 010y, can be determined by the matrix product

M M, Mje{M(')} and ojsX for j.= 1,2,...,m. A closed form of matrix

IMZ"' m



expansion is presented by considering element by element multiplication. First

we prove the following lemmas.

Lemma 3.f:

The eigenvalues of a 2x2 stachastic matrix

l-ai o
Mix) aw ol
B, 1-8,
are 1 and l-ai-B}, where 1>a;8.>0 .

Proof:

The eigenvalues of M(') are obtained.by solving for A from the equation
IAI—M(')I =0, i.e.,
A-1+a, -,
i i

2 .
= A.'(Z-ai‘Bi)A + (1‘d§~8.) =0
'Bi “A-]+8i ) i

Thus,

A= =1 or ]-ai-Bi B

(i)

Denote the second eigenvalue A of M by Ai and consider a multipli-

cation of the two matrices:

a }1-a a - [l-a

1-a m-1 m m m-1

m-1

]
—
W

.

™Y

where



W
[

o
]

The eigenvalue

A=
m-1

Similarly, the

where

[+
|

o
[

-The eigenvalue

>
It

= am+(]~am-bm)a

=b +)A b +A A

= a +Xx a

m-1 m ' mm]

b+A b

bm+(]-am-bm)bm~l m m m-1

of the matrix product is

+
m “mm-] Amlm-lam-Z ’

m mm-l "m m-lbm-z

of_the product is

o
|

i~

= a +X a +Xx A a +...+ I A

m mm-l mm1l m-2 j=0 m-jam-i

=b+Ab +A A b ot 'n\

m mml mm1 m-2 =0 mj m=i

m

Fm-2 "1 I-a %m
l-bm_2 bm-l l-bm_] bm 1-b
a l-a' .- a 1-a
m=-2 m- 1 m=1 m-2
] H = 1
]-bm'-7 : 'bm-' 1 ]-bm-] ‘ ‘b‘m*?_
= a +X a

54



Then

Proof:

+ A

+

=2

. . t ' .
By substituting a__, and b__. into (3.3),

1-a -b

m m-km(am-l+bm-l+xm-l(am-2+bm-2

Am(l-am_]-b

bm-3+ -

A A

Am-i+l

A A

A A

Theorem 3.1:

« ot

m m-llm-z

(am-i+b

m m-llm-zxm—3

mlm-llm-zlm-3'

(1-a

m-i+l(am-i+

b

lm—i+l

..

m=1

X .
m=-i

+b .)...)

m-2(am—3+bm-3+"'+lm-i+l(am-i m- i

m-l-Am-l(am-2+bm-2+lm-2(am-3

..)

m m-l('-am-Z_bm~2+Am-2(am-3+bm-3+'"

The product'of 2x2 stochastic matrices, MIM2M3

ed as follows:

where

M]M2M3

es oM
m

’

‘for i=1,2,3,...,m
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(3.3)

...Mm, can be represent-



and
' A + + " L
i] =a ) a R A, ...+j£0Am_ja‘ (3.4)
b! = b +A b + b 4.+ A b (
1 m Anme1 Amxm-l m-2 "'+j£0Am-j 1 3.5)
Proof:

We shall prove this theorem using the mathematical induction method.
Let k be the upperlimit of I in the above equations. For k=1, we have (3.2)
which has been proven to be true.

For k = i-1, we have

' - 4t +' +i‘] . (3.6)
am-i+] = A A1t jzolm—jam-i+] 3
b’ =b +\ b N SJal b | (3.7)

m-i+] mmm-1."" j=0 m-j m=i+l ° ’

which we assume to be true. Now we want to prove that k=i is also true.

For k=i,

- I '
! fm=i  Pm-i ] i+l m-ie ) ] =i Om-i

bm-i ]-bm-i bm-i+l ‘-bm-i+l m-i m=i

The (1,2) element of the left-hand side of the equation is computed first,

' ) _
(e en a1 U004y
—t i B ~

1
(]—am-i+]_bm"i+])

a .. .+a .,
m-i+l m-i
] Al

a ., .t - N
m-i+l "m-i+l m-i

By substituting the equations "(3.3), (3.6), and (3.7} into the above equation,

we obtain



m-i - % Anlmet j= OAm-J m=i+] Oxm i%m-i

Similarly, we can compute b;-i which is
\

b .=b+x b +...+ H s
m~i mmm-1 j=0 m-J =i

This completes the proof. . . , )

L]

Corollary 3.2:

The eigenvalues of the product of m 2x2 stochastic matrices, MIMZ"'Mm’

are 1 and A A e AaA,, Where . = l-a,-b, is an eigenvalue of the matrix M.
m m-1 271 i i i i

in the product when i = 1,2,...,m.

Proof .
By Theorem 3.1:

Lt N
/.a a,
(b .)_

From Lemma 3.1, the eigenvalues of the product matrix are

™~

l—l
= | and I-a]-b}

Lemma 3.2 proved that

] 1
1=a=b = A A A _,.edoh

The proof is thus completed. ) 4]
It should be pointed out that this closed form expansion of 2x2 matrix

multiplication is similar to the fundamental matrix expansion given by Yasui

and Yajima, but this formula is much simpler when the individual elements a;,

b],l a , and 1~ b of the above matrix are under conslderation.
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3.3 ~ Two-State Isolated PSH

Using the properties developed in the previous section, we present an
"isolated'machine, which includes the ones defined by Yasui, Yajima, and Tan.
In this section, we treat the PSM for which max{lki|}<l for i = 1,2,...,n,
i

holds true. We can assume that one state of a PSM is the .initial state and

the other state of the PSM is the last state (we assume s, Is the initial state

. ]
and Sy is the last state). In general, the initial and last states are either
Sy O s, Thus, after an input string x is accepted by the PSM with the ini-
tial state distribution (1,0), the probability of the last state is the (1,2)
element of the multiplied matrices M]MZ...Mm, where the length of the input
string is m.

Before we introduce the concept of an isolated machine, a few lemmas

are needed,

temma 3.3:

Let S be the series,

.k
S = AP 1% 2 e 1 223 L e Pkt
_where Aje{(l~ai-8i)} for i = 1,2,...,n and j = m,m-1,m-2,..., and am_ze{ai}
for £ = 1,2,... . lLet a= mgx{ui}, c = min{ai}, Aa = max{l-a‘-si} and

i H i

' AC = mEn{l-ai-Bi} for i = 1,2,...,n. The maximum and the minimum of S denoted
i

by S and S ., , respectively, are found as follows:
max min : )

Case 1: |If A_>x >0, then

and S . =

Case 2: If % >0>x_ and |A_|>[x |, then
—— a——c a'='"c



= _9 _ c
Smax TSN and Smln cta -2
a a
»Case 3: 'If A_>0>Xx and |A_|<|x |, then
_— a——"¢c a'—'"¢
142 ' A (1+1))
smax = 3 g and S . = cta < za
-2 min 1=\
c c
. - *
Case 4: If 0>x >x , then
—_— —a—c
a Aa Ac
S = + c =— and S =c+ a .
max ]_12 I-AZ ]_XZ
a c
Precof:
Case I: Since A >x >0 ,
Lase t a2t s
S < a(14A #A4A4...) = =5
- a a a I-Aa “max
s > c(14a_ +A Ak..l) =S =5
c 1-a min
C .
Case 2: Since A_>0 and |A_|>|A |
—_— a— a'—'"¢
S < all +A 34y =2 =
_ a l-xa max

To find Smin is to find the largest negative value for the partial sum

k

a(Am+lmAm_]+Amkm_]Am;2+...+2£0Am_2+...)

k
= axm(]+xm_]+xm_lxm_2+...+2£]Am_£+...)

To make this partial sum negative, from the condition Oz}c, km

The sum of the terms in the parentheses Is maximum when all A

are eaual to Aa. Thus

m-1’
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should be ) .
c

Am—2’



A
S>ctar (1+x +A2+x +...) = cta —=-= 5
- c a a I-Aa min

Case 3: To determine Smax’ terms with an odd number of A's must contain a Aa

A

in order to be positive and terms with an even number of A's must be all AC;

thus
S < a(l+x +A2+A x2+xh+x x“+...)
‘acac~c.ac
_ 2 h h
= a{l+J\C ot .+A (I+A C ...}
I+Aa
= a = S
I-Az max
(o}

To find Smin’ we should make each term, except the first constant term, have
the largest possible odd number of Ac's in order to make it have the largest

possible negative value.

S > c+al +a) A +ax3+ax A3+aA5+..

- C a cC C a C [

= c+al (1+A2+Ah+. )+aA A (1+A h eed)
C cC C C
AC(I+Aa)

=eota ——— = Smin :

1-A
C

‘Case 4: To determine Smax’ terms containing an even number of A's should be
all Ac's and terms containing an odd number of A's should be all Aa's to make

them the largest positive numbers and smallest negative numbers, respectively.

Hence
S < atcl +ak2+cx3+alh+cks+...
- a c a c a
= a+aA2+aAh Hed (1+A2 h+...)
c a’a
a Aa
= + c 2=S
1-A 1-2 max



To find. the Smin’ odd A-terms, which will be negative, should be made as large

as possible and even A-terms, which will be positive, should be made as small

as possiblg. Thus

S > ctax +cA2+aA3+cAh+aA5+...,
— ¢ a c a c
= c(]+k2+kh+16+...)+a(k +x3+15+...)
a'a a [
. Ac ~ AC : :
= + a > c+a =S . . & ]
1-22 1-22 j-x2  min
a c c

From the above lemma, we have

Lemma 3.4:

The four upper bounds, Smax's of S in Lemma 3.3, are always positive,

and the four lower bounds, S . 's of S in the lemma, are positive or negative

min
depending on the guantitias of a,c,Aa, and Ac. When sm'n is negative, the
. o1 -
lower bound of S . is S . = ctal =———— where ) = max{|1~a,-B,]} for
min =min c ]-Amax m ; i i

i=1,2,...,n.

Proof:

For the S case, it is obvious that S 's in Cases 1 and 2 are posi-
max max

tive.

In Case 3, since Aazpz}c and Ikaljjkcl, '

E> U 9%
S = a > a =
max a7l ged
Cc a a

In Case 4, since 02X >\ _ and a>c,

max 2
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Since Ika|<l and a>0, all Smaxls are bounded by so that they are positive.

a
1=
a
For the S . case, since |1 _|<] and ¢>0 in Case 1, then S ., is positive. How-
min c min :
ever, A_ is negative (or nonpositive) and a>c>0 in all the other cases; there-
fore, Smin may be negative or positive, depending on the magnitude of the sec-

ond term compared with the first one of Smin' When Smin is positive, it is

the same as Case 1. When Smin is negative, . the following cases hoid.

Case 2: Since A =2,
—_— max a
Ae
Smin A Y
max
Case 3: Since A >0>x , [r_|<[a |, and 2 = |2 |,
—_— a——c a'—'"c max c
143 =X, Ao
S . = cta) >c+al = cta
min I-AZ c ]_12 1+
- e c
Ac
= cta .
max
Case 4: Since 0>A >A_ and A __ = |a [,
—_— —a—'¢ max c
A Ae Ae .
Smin T 2T AT T SRR - @
I-Ac c max

Lemma 3.5:
l-ai o, _ .
Define M(xi) =\ g ]_é . The absolute maximum radius y of the
i i

transferable range with respect to the (1,2) element oy of the right-most me-

trix M(xi) of the & matrix multiplication (2 = m,m-1,...) is bounded by

Y-i-l)kilsmax = Ymax °



Proof:
From Theorem 3.1, the (1,2) element of a product of infinite matrices,

oMM MUk, s

i T ai+ki(am-I+Am-lam-2+km-lkm-Zam-3+'") (3.8)
where

Aje{l-ak-ek} for k = 1,2,...,n and j =m-1,m-2,m-3,...

From Lemma 3.3,

Rt PO ECTRL SRPE P WY WP IS SPPY

<a.+|1, S .
— 1 1 max

From the definition of v,

Y= Yi_uif—-l)‘ilsmax = Ymax ’ @

Note that the product of stochastic matrices is also stochastic; thus the (i,2)
element cannot exceed the bounds zero and one. Similarly, the lower bound of

-y also exists.

Lemma 3.6:
The absolute radius of the transferable range with respect to the {1,2)
element of the right-most matrix M(xi) of the product of infinite matrices is

bounded by

Yz-I)‘i"smirl = Ymin

where Sm is defined in Lemma 3.3.

In



Proof:

Using (3.8) and Lemma 3.3,

Y. >, + .
Yi2% Aismin

Considering the sign of Ai’ the radius, vy = I therefore is
YihiHS' |=Y S . . ¢

min min

Definition 3.1:

Considering the sign of Ai in Lemma 3.5, the directed transferable rahge

from a, is in [a,, a.,+A,S 1 if 2,50 and is in [a.+A.5___,a,] if X.<0. Simi-
i i’ 71 "i"max i i TiTmax’ i i

larly in Lemma 3.6, the directed transferable range from a, is in [ai,ai+ki5min]

If X, and S_. have the same sign and is in [a.+X.S .
i min i TiTm

ln’ai] if the signs of A,

and S ars diffzrent.

min
The concept of the absolute radius introduced by Yasui and Yajima and "’
Tan is too conservative. We therefore abandon the concept of the radius of the

transferable range of o and instead define the maximum transferable range R

from a; as follows:

Definition 3.2:

The transferable range;

Rmax(ai) = min{l-ai,lismax} . if x>0,

(o) = min{a,as ) . if A<,

Rmin(ai) = min{lismin,O} if A>0,

R.o(a.) = max{y;s . ,0} if A;<0 ,
therefore -

R(e;) = R (ay)-R . (a)) If 2,0,



and R(ai) = -Rmax(ai)+Rmin(ai) if Ai<0 .

Let @, be the (1,2) element of the two-state stochastic matrix associated
with the input symbol X, for i = 1,2,...,n. When o is plotted on the line

[0,1], the line [O,ai] represents the state transient from s, to s, of M(xi).

1

The complement line [ai,l], which is the length l-ai, represents the state
transient from s; to s, of“M(is). Suppose o, and o) are a pair of adjacent
(1,2) elements on the line [0,1] and ai>aj. Since Aksmax depends upon the

sign of Ak,vthe transferable range Rmax(ak) of the (1,2) element of a matrix
product for any combination of the matrices described by the order of the input

symbols is only in one direction, to the right or to the left from the point

()

Similarly, the transferable range Rmin K

@ depending on the sign of Ak.

is to the opposite direction from the range of Rmax(ak)' Note: When the

direction of the transferable range Rmin(ak) is the same as the one of the

range Rmax(ak)’ R (ak) is zero from Definition 3.2.

min
Let Ai and Aj be the eigenvalues of the two-state stochastic matrices

y ()

and M(J), respectively. The following four cases in involving the ad-

jacent points o, and o on the line [0,1] are considered separately.

“Case 1: XA.,X.>0 ,

Rmin(aj) Rmax(aj) Rmin(ai) Rmax(ai)
) - { v g - + e
j . i
Case 2: A.,>0,1.<0
~a5¢€ £ FagRg
max(aj) Rmin(aj) Rmnn( l) Rmax(ai)
g 3 (s sl } n



min(aj) max(aj) Rmax(al) MIn(al)
g A 3 Lo -3 i tien
a, o
j i
Case 4: A,.,).<0
Rmax(aj) . Rmin(aj) . Rmax(ui) Rmin(a )
aji B = aii B

Definition 3.3:

The (1,2) elements o, and aj which are adjacent on the line [0,1] are
isolated if there is no overlap of transferable ranges from o, and aj.
The following theorem is concerned with the isolation of transferable

ranges.

Theorem 3.3:
The (1,2) elements o, and o which are adjacent are isolated if the fol-

lowing condition is satisfied. Assuming aé>aj .
Case 1: If Ai,ljzp ,

ai-ajzﬁmax(aj)-Rmin(ai) , | ' - (3.9a)

Case 2: |If Aigp,xjgp ,

ai-ajzﬁmin(aj)-Rmin(ui) . (3.9b)

Case 3: |If Aijp,xjgp ,

a.*a.zﬁmax(a.)-R (ai) , (3.9¢)

] Jj7 max



Case 4: If Ai,kjfp ,

o,-o.>R .
i “j—min

(OLJ.)-Rrna (a;) (3.9d)

X0
It is evident from Lemmas 3.5 and 3.6 and Definitions 3.2 and 3.3. =
Before we introduce a new concept of the "absb]utely" isolated machine,

one additional lemma is needed.

Lemma 3.7:

Define Amax = m?x{ll-ai-sil} for i = 1,2,...,n .

i
' - 3 H -
The upper bound of thg four Smax s in Lemma 3.3 denoted by Smax is a/l Amax'
Proof:
In Cases 1 and 2, it is obvious. In Case 3, since A >0} , Ikalgjxcl,
and A _ = Ixcl, '
1+Aa I-AC a a
S = a < a = = e "
max 1=22 122 1R [Ac[
S - Te
In Case 4, since 0>x _>X , and A =|x ],
—a— ¢ max c
A A
a a a c a
S = +c < -a =
max ]_sz ]-AZ l-kz 1 AZ ]+7\c
c a c c
a
BREIP)
c
To summarize
Smax < Smax ~ T-x ) . = (3.19)



By substituting S into S of Definition 3.2, a new R___(a,) can be defined
max max max i

with Definition 3.2 in a similar manner and can be denoted as Egax(ai)'

3;4 An\Abso]utely Isolated Machine

The definition of an absolutely isolated machine is quite similar to the
completely isolated machine introduced by Yasui, Yajima, and Tan. However,
the class of absoluytely isolated machines contains the class of completely

isolated machines. In other words, the latter is a subset of the fermer.

Definition 3.4:

A machine is absolutely isolated if ali adjacent pairs o, and a, are
isolated.

From the preceding statement, we have the following theorem.

A PSM is absolutely isolated if all adjacent pairs (aj,ai) on the line

(k)

[0,1] of the (1,2) element of the two-state stochastic matrices M for
k=1,2,...,n satisfy the following conditions:
Case 1: If Ai’Ajip ’

i max(aJ)_ min (o |) ' (3.11a)
Case 2: If Aizp,xjfp .

ai J m|n(a ) R in(ai) ] . (3']lb)
Case 3: If Aigp,szp s

ai-“J>Rmax(aJ) Rm (ai) . ‘ | (3.11¢)



Case h: If Ai’xj <o,
ai-aj—Bmin(aj)-Rmax(ai) (3.12d)

where ai>aj .

The proof again is evident from Lemmas 3.3 and 3.6, Theorem 3.3, Defi-
nitions 3.2 and 3.4 and the fact that the traésferablé ranges of fhe pairs
[0,c] and [a,}] with negative and positive \'s respectively, are again [0,c]
and [a,1]. This is correct because the (1,2) element of the stochastic matrix

product never exceeds the extreme points zero and one. G

Definition 3.5:

When we are interested only in the last k+l symbols, which correspona
to the last k+l matrices from tne rightmost of an infinite matrix product, ihe

series Sinf = am+k a ¥t ) +A A is truncated at the term

mom=1""m"m-1%m-2""m m-]lm-zam-3+"'

th

A L.l It is called the k™ approximation of the infinite series

m m~1 m=k+1°

Sinf' More preCIsely,i

S = am+xmam-]+kmxm-]am-2'"+Amxm-l"’lm-k+lam-k .

th

3.5 The k= Approximation of the Absolutely lIsolated Machine

Consider the kth approximation of the infinite series Sinf and we have

the following lemma.

Lemma 3.3a:

The S and S . of the term S (in Lemma 3.3) of the S, are as follows:
max min

k
|
kgl a

+"'+£=1 m-%am-k ’

where S = am-l+xm-]am—2



Case 1: If Aazﬁczp, then
1-2k 12k
_Smax R ) and Smin R 5N
\ a . c
Case 2: If A _>0>x_ and |A_|>|2_|, then
— a——c a'='"c
l-xz xc(l-xz")
Smax R Y and Smin = cta I-Xa
Case 3: |If A >0>x and |A_|<|x |, then
— a——c a'='"c
I-A:-' 1
Smax " a(H)\a) 2 tail k23,
I=a
c
1k
Smax = a(l+Aa) 5 k>2,
=2
c
Lk=1
_ c
Smin = c+axc(l+xa) 5 k>3,
1-2
c
k=2
S . = ctar_(1+1)) c 4 gk k>4,
min c a 2 c -
1=
c
Case 4: If 0>A_>A_, then
12! (1-57h
S = a 7t ch 5 k>3,
max -3 1-2
c a
12 A
s =a + A k>2,
max I-Az a -AZ
c a
and -
1Akt 1!
S, =c¢ + a\ k>3,
min l_}‘2 I-AZ
a c.
12 -2
S . =c¢ + ax k>2,
min ‘_AZ c -AZ
a c

(1]

odd

even

odd

even .

odd

even

odd

even

70

(3.12)

(3.14)

(3.15a)

(3.15b)

(3.16a)



Proof:
The proof of this lemma is similar to that of Lemma 3.3 for the infinite
series case; we may thus omit it. =

, »
In parallel to Lemmas 3.4 and 3.7 for §min and Smax respectively, we

have the following iemma.

Lemma 3.8: ‘ ~
The upper bound, denoted as B , of the four S 's in Lemma 3.3a is
max max
a(l-lk Y/ 1= , and when S ., is negative, there exists the lower bound
max max min
of S . , which is denoted as S . = c+aX (I-Ak-l)/l-k -, where A = max
min —min c max max max .

i
{|l-ai-8i|} for i =1,2,...,n and k indicates the first k (finite) terms in S.

Proof:
For §;‘“:
nan
Cases 1 and 2: A = A . Thus
max a
1=K
= = 3 max
max -2
max

. . k-3,,k=1 ¢
Case 3: There are two subcases to be considered. Since [Ac[<l, AC >Ac or

.k =4,5,... and from A,20>2  and lxaifjxcl,

(a) k is odd
127 k-1 R
a(l+ka) + ak. fg(]-xc) +a;
1-1 ¢ R
[} [+
(1-2)

_ k=3, k-1
= g (]‘)\Cj(]'i')\c) {l )\C +AC (]+AC)}

Y

k-1
{1 xc

IA

k=1, 1.
. - D}



a -2
= 3 ] (]“Al:: II}\CI) = a ]_)‘max
I-IA i max
c
(b) k is even
Similarly
l-xt’z l-xt'z l-At l—xﬁax
a(l+x) < a5 <a-=- = a
a I-Ai ! lkcl [ lxcl ] Amax

Case 4: From 0>x_>x  (|r_]<|x_|<1) and AK"35 k1
—_— — a— C a — C C C

(a) k is odd,
I-A:-] 1-x§'3 l-xt_‘ l-xt_3
a + cA — < 3 + cA
-2 a l—xi l-xi a I-Ai
k-1 k-3
1-2 1-2 } .
< a C - C —<-a I = {I-AE L A (1 A% 3)}
—_ 1_.\2 < ]'.\a_ - a = o C
1A Vi T A
[ a C
1-2 -
< a —'——2- {l-x'é ]—AC(I-,\'Z Y -a ; (1-2%7h
12, 1-);
. k
a1 SNk 1-2
= 3 C < a ___C__= a maXx ,
]-i)‘CI - ] -IACI ! Amax
“(b) k is even,
I-AE-Z I-x:'z I-AE-Z 1-2k"2
am gt iAo, —
-2 l-Aa l-lc l-ka
] At-z I-At'z 1-2 ‘-2
a 3 —cAC > < a ; (1-2" %)
1-xg 1= 1=x_ ¢
1-ak2 I-At l-xﬁax
= a < a =g -
] I)Cl - ]-l'\Cl ) I—Amax

For S . , S i MaY be negative in Cases 2, 3, and 4.

for k = 4,5,...



Case 2: Since A ___ = |x_| and from (3.14)
==L max a

I-Ak-]

S = c+al max
c |-

max

Case 3: Since A >0>2 and A = IACI, and from (3.15b),

d

(55 k is odd,

[y ]‘_)\k“] ]'Ak-]
- c _ c
Smin = ctar_(1+1) 5= > ctar_(1-1) 5
1-) -2
c c
I-At ! I-Aﬁ;l
= c+akc T = c+alc 7= ,
max
(b) k is even,
1-2k2 k1
S . .= c+ar (141 ) —&— + ar
min c a . <
1-x
c
k-2
-2 k-1
> ctax _(1-1) + ax
- c c 2 c
1-A
c
I-At'2+xi'2(l+xc) 1+A:-]
= c+alC { ) } = c+aAc Y
c c
R
= ctake T3
max

Case 4: Since 0>A_>) and A = |a_| and from (3.16b),
—— ~"a="¢c max c

(a) k is odd,

I-At"] 1—At" I-A:;l
Sminzp+alc T2 ctal . T T ol X ,
1-2 c max



(b)  k is even,

I—At l-x'é" I-A::;l
Smin3p+aAC : 5 > ctak rou c+a)\c ] . g3
\ -2 c max
c
Considering an input string with k+1 symbols. The matrix product of Mm-k .....
Mm-le represents the behavior of a PSM due to the input. Suppose that the
fe _uli) o en(d)
last symbol is x., B =M and the rest Mm—l’Mm-Z""’Mm~k'.€{M } for

j=1,2,...,n, then the transferable range of a; with the k+1 input length can

be drawn on.the line [0,1] in a similar manner as Theorem 3.3.

Definition 3.6:

If there are no overlapped rangés between two transferable ranges of
a; and aj after taking k+l1 i?puf s*mbols, the pair (aj’di) is called the kth
isclated pair where &j and ai are the {1,2) elements of M(i) and M(i), re~
spectively. |

The next .lemma describes the kth isolated adjacent pair (aj,ai).

Ltemma 3.9:

An adjacent pair (aj,ai) on the line [0,1] is the Kth

isolated pair if
k is determined by the following equation. From Theorem 3.3 and Definition
3.2, we need to consider two cases or Smin is nonnegative and-Smin is negative.

By assuming aj<ai,
When S . >0 ,
min—

Case 1: X,,A.>0,

-

a.-a.
= -1 (-
[k] Rn{l Aja Q Amax)}(ln Aax ‘ (3.173)



Case 2: Aizp,xjgp,

k is arbitrary

Case 3: xifp,szp,

[k] = en{l-

-

]

Case &4: Aifp,xjgp,

;12

: a,."o.
= -t d .
[k] = an{l N Amax)}/Zn A

When S . <0,
min

Case 1: A.,x.>0,

Q.~0.FCA,

[k-1] = 2n{1- _%__4___17_

ali.=A.A
j "i'c
Case 2: Aizp,xjgp
i | o, -a.
[k=1] = ln{l-(x—:ii"c)
ji
‘Case 3: Aifp,Ajzp,
a;-a,
k] = a0l
j i
Case 4: Aifp,kjjp,
' ai-a.-ck.
[k=-1] = 2n{1- NS
cj i

i J -
e

aa

(I-Amax)}/ln A

where [k] is Gauss notation, and

max

C

% .

1/ en xma

(]-Amax)}/zn Amax

Amax)}/zn ?ma

(lflmax)}/ln Aa

X

x °

X

X

(3.

(3.

(3.

(é.

(3.

(3.
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.17b)

17¢)

17d)

18a)

18b)

18¢)

18d)



a= m:x{az}, c = m;n{az},kmax = mix{|!~a2—ﬁll}

= leqy - =lepy - TrINT]
Ai 1 o5 Bi’kj ] aj Bj and "'&n
\

Is the natural logarithm function which is only defined for a nonnegative argu-
ment.

Proof:

-~ -
L]

From Theorem 3.3 and Definition 3.2, and Lemma 3.8, we have smingp;

Rmin(ai) and Rmin(aj) are zero by Definition 3.2,

Case 1: ai—ajz}j S ax : (3.19a)
Case 2: a;-ajzp (No Restriction) (3.19b)
Case 3: a:-ajzjllil+|ljl) S, ax (3.19¢)
Case 4: ai-ajzjki| S max . (3.194)

Smin<0; Rmin(ai) and Rmin(aj) are negative by pefinition 3.2,

_,k I-Ak_]
3 max max
. - - = - + ——
Case 1: o ajzﬁjsmax \S o Aja S ki(c ak_ 7o max) ,
Since |A |<landl-Ak <I-lk-] R
max max— max
L
max
(!i aj_>_a(>\j )\i}\c) -I_:)\_——- )\iC . (3.203)
max :
: - =A.S . = (XA,-X.)S . . .20t
Case 2: a ajlxj-s—min Ao (AJ A)S . (3 )
;o= S xS = (amA)S . ‘ .2
Case 3: a, ajz}jsmax XS (kj ADS (3.20¢)



— —lt;l ]-Aﬁax
Case 4: a.,-a.>A.5 . -i.S = X, (ctax =Z)-1.a
——— i j= j=min "1 max J c ]-Amax ]-xmax
Since 1-AX < 12K
max — max
o (
G-"Goz_a()\ k--;\-) —‘:'"—'+ CA. 3.20d)
i c 'y il Amax J
_ 12K l-)\:‘;l
where S =a——"2% and S . = c+al .
max 1-X “min c i-A
max max

The k's are found by solving the above equations (3.1%9a), (3.19¢c), (3.19d),
(3.20a), (3.20b), (B.éOc) and (3.20d) with an equals sign substituted for the
greater than or equal sign, &
When comparisons between the a/l-Amax and a(l- A )/I A ax and the
c+axc/1-xmax and c+axi (l X )/l A max 2'e made, the differences between these
comparisons suggest that if the pair (nj,ai) is isnlated by an infinite length
of input, then the pair is also isolated by a fjnite length of input (or by the
kth input length, namely by the kth approximation of the matrix product |

Mm-k""'Mm-le for k = 1,2,3,...). This is described in the following lemma.

Lemma 3.10:

If an adjacent pair (aj,ai) on the line [0,1] is isolated in the trans-
férab]e ranges of aj and o with an infinite length of input x*, then the pair
(aj,ai) is also isolated in the transferable ranges with the k*1 length of in-

put (by the Kth approximation).

Proof:

It is evident from a(1- k )/l “Xax <a/1-~)\max for S and for §min’

crar (1-AK" Ny /1.2 sctar /1-2__ when S, <0, where 0<A__ <I. 2
C max max C max min max

We are now in a position to introduce the Kth (absolutely) isolated machine.



Theorem 3.5:
A PSM is the kth (absolutely) isolated machine if all transferable
(i)

.ranges of adjacent pairs of the (1,2} element of M for i = 1,2,...,n are

at least the kth isolated adjacent pair.

From Lemmas 3.3a, 3.9, and 3.10 the k;h isolation for each adjacent
pair of the (1,2) elements for & = 0,1,2,...,n can be determined.
Take k such as the minimum {kz} for & = 1,2,...,n, so that all adjacent

kth

pairs are absolutely isolated at least by the approximation. E3

Example 3.1:

Consider the following ekample, which is an isolated machine in both
Yasui. and Yajima's sense (completely isolated machine) and the sense of Theorem

3.4 (absolutely isolated machine).
PSM = (S,X,Y,{M(x)},A(s))

where S = {SI’SZ}’ X ='{Xl,x2}, Y = {a,b},

0.8 0.2 0.6 0.4
and M(xz) =
0.7 0.3 0.5 0.5

M(x])

and

|
o
*

A(s]) =5 - and A(sz) =

(a) Completely lIsolated Machiner
The criterion for the completely isolated machine, using Yasui and Yajima's

result,
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The norm and the matrices H, Mz(x]) and MZ(XZ) are defined in Section 3.1. |If

hAEﬁAt then a PSM is isolated by the kth approximation (or the k+l input length)

where A = max{1-a,-8.}, A_ = min{l-a;~B;} and A _ = max{ll-ai-8i|} for i=1,2.
The preceding PSM has the following quantities:

A, = A, =0.0, [[H]] = 0.]8/0.8],||M2(x1)|| = 2/9,|IM2(x2)|| = L/9,

and h = 2x0.1x0.81x4/0.9x0.,18x9 = 4/9<1,

then (h/9)0.1k<0.lk for k = 0,1,2,...; it is an completely isolated machine.

(b) Absolutely lIsolated Machine:

Since Aa = AC = 0.1>0, the PSM belongs in Case 1 of Lemma 3.3 or of

lemma 3.3a and smin is positive. By Definition 3.2, Theorem 3.3 and from
(3.92) or (3.19a), we have

k
T = —a = —max:
a; aj>AJ.Smax = Aj T (or Aja T ),
- “max max

where a, = 0.4, «.=0.2, 1.=0.1, a=0.4 and A _ =0.1
! J J max

'Therefore, the foilowing equation is held true,

K
0.54-0.250. 1x0.4 ‘5?5‘
og>%%5(b045 for k = 1,2,3,...

For the other pairs (the edge pairs),

a, = 0.2, aj = 0., Aa = 0.1 and Amax = 0.1



1-0.1%
0.2-0.50.1x0.4 L2 for k = 0,1,2,...

a, = 1.0, a, = 0.5, A_=0.1and A___ = 0.1
i j a max

1-0.1% :

1.0-0.4>0.1x0.4 —59§l— for k = 0,1,2,...

80

so it is an absolutely isolated machine by the kth approximation for k = 1,2,3,...

Examglé 3.2:

chine but which is indeed an absolutely i'solated machine.

Consider another example of a PSM which is noi a completely isolated ma-

We assume the same

sets of states, input, output, and output functions from the previous example

but different state transition matrices: T
{0.2 0.8\ (0.5 0.5)
H(:l) =) ! and M(xz} = !
\p.l 0.9/ \o:9 0.1/
(a) Completely Isolated Machine:

Then

The criterion for the completely isolated machine,

a=0.8, ¢ =0.5, A, = 0.1, A_ = -0.4 and Amax = 0.4,

[Hl] = 0.1%0.5-0.8x0.9 _ 0.68
0.9x1.4 1.26 °

MG =20 1,60 1] = 52

_ 2x0.4

b 1.26
V=706

0.8 = 2,1>1.

wjoo

-

Therefore it is not a completely isolated machine.
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(b) Absolutely Isolated Machine:

Since A_ = 0.1>0 and A_ =-0.4<0 and {x_|<[x [,  the PSM is in Case 3 of
a c 142 c

_ Aa 1+0.1
Lemma 3.3 or Lemma 3.3a, but S . (= ctal Y = 0.5-0.8x0.4 108 = 0.5-0.381)
c
is positive. By Theorem 3.3 or Lemma 3.9, a, = 0.8,a, = 0.5, Ai = 0.1 and

! J

Aj = -0.4; the pair (0.5,0.8) is in Case 2 in the theorem or the lemma. From

Definition 3.2, R, (a,) = (a.) = 0; thus, ¢.-a., = 0.8-0.5>0 in (3.9b) or
min i [ )

R .
Smintj
(3.19b) is true.

The transferable ranges of the other pairs [0,0.5] and [0.8,1.0] are
the same ranges [0,0.5] and [0.8,1.0], respectively. Because the stochastic
matrix product is again the stochastic matrix, the (1,2) element of the pro-

duct never exceeds the extreme points zero and one.

THis is the absolutely isolated machine.

Truncaticn Error {withi the k-1 approximation)

The truncation by the last k symbols in an input string denoted as Y;

(k)

and expressed by (3.8) over xeX* for i = 1,2,..., n, induces an error ¢ de-

fined as follows.

Definition 3.7:

The infinite series Y; of (3.8) can be divided into two parts, the first
k terms (corresponding to the last k input symbols of a matrix product) and

the remainder such as

L Y(k) + e(k) (3.21)
(k) o
where Yi = ai-r)\i (am_‘+)\m_]am_2+)\m_]>\m_23m_3+. .o
k-2
-2 | _ . (3.22)

j=1 m-jam-k+l .



and

e(k) A kil A _.(a _,+__ a
i j=1 m-j m-k “m-k m-k-1

AimkPmek=12mek=2 A m-kAm=k- 1 *m-k-2m-k-3
+ ...) . . (3.23)

for i = 1,2,00050 o -

Theorem 3.6:
(k)l

By cutting the first k terms of Yio the truncation error ]s

bounded on both sides; the upper and lower bounds are

k-1
T Il m Al mln| and : (3.24)
j=1 _
—(k) . k] = -
Y - !AllJ ]!lm-Jlbmax i (3.25)
therefore
v < e (k)l 7 (3.26)

where

a= m?x{ai}, c = m%n{ai}, and Smin and Smax are defined in Lemmas 3.3

and 3.7, respectively, for i = 1,2,...,n.

Proof:

From Lemmas 3.3, 3.4, 3.5, 3.6, and 3.7 and Theorem 3.3,

(k) k-1 '
|e ISJA;|j£]llm_j|a(1+km_kfkm_kkm_k_l+...)
k-1 k-1 _
<hyvbaia s <oy LS
— j:] m=J max— j""] m=J max



and similarly

k-1
1@ s ] eCa
— =y m™J

\

m—k-’-km--k)‘m--k--l+'")l
k=1

o 45 ] s |
J=l J min

Since ]+Am-k+km-kkm-k-l+"" where

Am-z e{l-ai-Bi} for i = 1,2,...,n and & = k,5+l,...,

thus the bounded sum is described in Lemma 3.3. g8

The error bounds of (3.23) are directed by the signs of (Ai .H] Am-j)

and Smin’ therefore, the upperbound error exists in only one direction.

Corallary 3.7:

When S_. is nonnegative,
min

_ k-1
0y (K) ¢ (K) (k) ifsign (A, T A__.)>0, (3.27a)
- = —_ 1 j=1 m=J
: - k=1
_§(k)<€(k)<-y(k)<o if sign (A, T x __.)<0, (3.27b)
— — L —_ | j=] m=)

when S . s negative,
. min .

: k-1
(k) (k) —(k) e
Y <0<e’ <y if sign (Ai jgl Am_j)>0, _ (3.27¢)
—()__ (k) <0y ¥ if sign O, T A_.)<0 (3.27d)
=y '<e == : i j=1 m= j
Proof:
From Definition 3.7 and Theorem 3.6, it is obvious. &

For future reference,. all (3.27) equations can be denoted as
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!E(k) li(l(k) ’:;(k))

3.6 Two-State Input-Traceable Machine

When a two-state PSM is absolutely isolated, all past input symbols can
be determined precisely; therefore, the past history of the behavior of the
PSM may be traceable from the known initial state distribution (1,0) and the
present state diitribution, |

From the property of the absolutely isolated machine, we have the fol-

lowing corallary.

Corallary 3.8:

Given an absolutely isolated PSM and if the value of the (1,2) element
of the matrix product is known after an input sfring has been accepted, then we can

determine all symbols supplied in the input string.

Proof:

Let V be the value of the (1,2) element of the matrix product,

V= am+xm(am_]+lm_](am_2+lm_2(am_3+...)...))
where aj e{ai} and Aj E{‘-ai-si} for

i=1,2,...,nand j=mm1l,... .

Since the machine is absolutely isolated, .V must belong to an isolated trens-

ferable range of a;. Suppose Vbelong in the range of a, so that the last sym-

2

bol read is ag-

Then compute

\I-a2
X, %=1 1 Yeur)

am—2+km-2(am-3+"'
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where Ag = l-aQ-B2 .

Again \I-aR’/A2 must belong to a transferable range of o, due to the property of

‘absolute'isolation. Therefore, the otheraz_] is found by computing (V-az/ll)

-a, ./ and so on. , . 5]

Ae-1

An equivalent corallary of Corallary 3.8 is given below.

-1

1

Corallary 3.9:

If a PSM is the kth isolated machine, the last k+l symbols of an input
string to the PSM are uniquely determined from the (1,2) element of the matrix

product, L

Proof:

The proof is similar to that of Corallary 3.8 and may thus be omitted.
The theorem given by Yasui, Yajima and Tan which desciibes {kt1) deflinite
events (or languages) is stated here in the sense of the absolutely isolated

probabilistic automaton (PA) similar to theirs. A PA is defined as follows.

Definition 3.8:

A probabilistic automaton (PA) is a system composed of four elements,
PA = (S,M,ni,F), over the alphabets x, where S ='{s],52,...,sn} is a finite
nonempty set of sfates, M is a mapping of xeX into the set -of .nxn stochastic
matrices, L is the initial state distribution, and F is a nonempty subset
of S (the subset is the set qf designated final states).

An event (language) accepted by a PA is defined as follows.

Definition 3.9:

Let n be a real number, O<n<l, and €>0 be an arbitrary small number.

Then a set of input strings for a PA is defined by
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L(PA,n,¢) = {x|xeX*, [T M) ] <(e,e) ) (3.28)

where Hf is an n-dimensional column vector whose jth component equals 1 if sjsF
.and 0 otaerwise. The event (language) denoted by L(PA,n,e) is the one accept-
ed by a PA with cut point n and error e = (EJE). € and t were defined in
Corallary 3.7 with the kth approximation.

By defining -

S = {51’52}’ X = {x],xz,...,xn}, M= {M(xj)}
for j=1,2,...,n, F = {s,}, I, = (1,0), 1, = (0,1)

and A

it

{HiM(x)Hf} for xeX* in a PA, the properties of a two-state PSM de-

rived in the previous sections may be applicable to a two-state PA.

Theorem 3.10:

If a PA has a set of stochastic matrices which is absolutely isolated by

the kth approximation, then
L(PA,n,E) = Z U {X#x} | (3.29)

where Z is a finite set of input strings of lengths less than k+l, x is any in-
put string of length k+l for k<g, X* in X*x is any pre-fixed input string,

k k) —(k
0=y (k) (k)

and € = (y Thus, the PA accepts (k+1) definite events:

h

(Tanguages) for k=0,1,2,...,%, where n and € are found with the k" approximation.

The proof is obvious from Definition 3.7, Theorem 3.& and Corallary 3.7
since the truncation error for any input string e{X*x} is btounded and the state
after processing{any input st(ing}sZ is isolated. 5

The absolutely isolated PA has finer resclution of error bound than the



completely isolated PA does.

independence of the Initial State Distribution

Wé should point out another important property of the absolutely iso-
lated machine. The initial state distribution has always been assumed as (1,0),
or s, = 1 and s, = 0. When this assumption i§ relaxed, s]'= ];s and S, =S
where 0<s<l, the absolutely isolated machine still has the same pfoperty with

the initial state distribution (1,0), if the machine is processing an infinite

length of input string.

Theorem 3.11%: -

If a two state PSM is absolutely isoiated with ;he starting initial state
distribution of (1,0), then the behavior of a PSM with a starting initial state
distribution of (1-s,s) where O<s<l is the same as the machine behavior with
the initial distribution (1,0), when the PSM is processing an input string

with an infinite length.

Proof:
After processing m input symbols, the product of the stochastic matrices
of state transition associated with individual input symbols in the m length

‘becomes the following matrix from Theorem 3.1:

] t
("?1 3, )
b1 l-bl
where a; and b; are expressed in (3.4) and (3.5), Tespectively.

Compute the present state distribution from a given initial state dis-

tribution (1-s,s)

]—a' a'
{1-s,s) .] 1|\ = (l-a;-sx;,a;+sx;) (3.20)
RNy
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] ] 1
where k] = ]-a]-bI .

l"l

From Lemma 3.2 L Amxm_lxm_z WE
]
A] becomes zero as m»e, since
|2 <1 for i =1,2,3,... .

-~

Therefore, the present state distribution becomes (l-a;,a;), which is the same
as the starting state distribution of (1,0). &2

From Theorem 3.11, we have the following corallary.

Corallary 3.12:

An absolutely isolated two-state PSM becomes an initial state indepen-

dent machine as a processing length of input symbols approaches infinity.

It is evident from the éroof of Theorem 3.11. &

When we are interested in the ktP approximation of the finite series S
with the initial state distribution (1-s,s) where 0<s<l instead of (1,0), Lemma
3.3 should be modified by adding the new term, sAmA

yesesA , at the end

m=k+1

of the series as seen in (3.30). We have the following lemma.

m=-1

Lemma 3.11:
. k k

i = a + + +... +s 13
Given S, 1= A Al 1 - 13m-2" Yo Mo 2o k- 150 Mg

then the upper bounds denoted as S;ax of the term S of S are the following:

K+1

Case 1: If A_>A >0, then
—_— a—c—

' - 4 skz-]



Case 2: If A >0 > A _and [A_|>]r |, then
—_— a— c a'='"c

Case 3: 1f A_>0>X_ and Ixaljjhcl, then

max

max

Case 4:

If

S
max

Proof:

It is similar to the proof of Lemma 3.3a; therefore,

.ted.

Definition 3.10:

k-1
]-Ac k-1
= a(l#)_ ) ———= + (5+s)A
a 2 c
- 1-2
c
k
_)\ _
= a(l4) —< + sa A<72
a 2 ac
-2
c
0>\ >\ , then
—a— ¢
12K 1-ak7 -1
= a cn + cA ——“E:—-+ sA
}‘RL a }_AL C
e a
12k RN
= a 3 + cla > + sxa
1-2 1-A
- Te a

—1 1
A new upperbound denoted as S of the four S
max max

defined as

max

where S
ma

X

max{$s S
max’ “max

k
max

/1-2

defined in Lemma 3.8.

max

k>3,

k>2,

k>3,

k>2,

89

= odd

even

= odd

even

the proof is omit-

&2

in Lemma 2.11 is



By substituting S;ax and g;ax into Smax and g%ax’ respectively, into Lemma 3.9,
Lemma 3.10, Theorem 3.6, Corallary 3.7, Theorem 3.8, Corallary 3.9 and Theorem
3.10, the results are valid. The new proofs are very much the same as thé
pfoofs of Ehe previously mentioned leﬁmas, theorems and corallaries.

A property of the absolutely isolated ﬁachine is that all past -inputs
are traceable; therefore, the history of state transition and all output produced
can be determined., The past-history may help to find an error which occurred
in past. Although a past error may change the character of the machine, or
probabilities in the state transition matrix, an input-traceable machine is call-

ed a diagnoseable machine as long as the absolutely isolated property exists.
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_ CHAPTER 1V

DECOMPOSITION OF A PROBABILISTIC SEQUENTIAL MACHINE

\

4, Introduction

We studied the two-state PSM in the previous chapter. Two-étate ma-
chines are too restrictive for practical applications because of the small num-
ber of‘states. We may need an n-state machine for practical applications,
where n>2; however, an n-state machine can be composed of interconnecting com-
ponent machines, which have less states than n. This problem is known as de-
composition of an n-state PSM. Therefore, in this chapter, we present a PSM
decomposition technique which enables us to decompose an n-state PSM into inter-
connected, two-state PSM machines.

Bacon [ 4] and Paz [51] introduced the '‘lumpability' and the ''separability"
properties of a PSM whereby an n-state PSM could be deccmposed into two PSM's,
which have states.fess than n, if the n-state PSM has these two properties.

The decomposition of a PSM deals with the problems of how a sequential machine
can be realized from sets of smaller component machines, héw these component
machines are to be interconnected, and how information flows in and among fhese
machines when they operate. In this chapter, we show a different decomposition
.scheme of an n-stéte PSM from those of Bacon and Paz.

At first, we discuss an interconnection property of component machines
(PSM's), which can compose.a large system function. Next, a composition ex-
ample for interconnécting two-state PSM's is discussed as a prefacing step to
the decomposition of a three-state PSM by two-state component PSM's. A decom-
position process for the three-state PSM composed of three two-state PSM's
is presented in Section 4.4k, The process can be extended to an n-state PSM

decomposition by n{n-1)/2 two-state component PSM's., A computation procedure
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of state transitions of the n-state PSM by the matrix product of two-state sto-

chastic matrices (by two-state component PSM's) is described in the last section.

4.1 An Interconnecting Property of N Two-State Machines

Consider an interconnection'of n two-state machines,'which are numbered
1,2,...,n, the states on each machine are denoted as MI =~(sI];s]2),
M, = (521’522)":"Mn = (Snl’an)' The first index of sni_refers to the machine
number, and the second indicates the state number. When the interconnection is
viewed as a single machine, a typical transition probability which presents a

possibility of the transition between two states in the single machine would

be

t ! 1 - : .
P(sl,52,...,sn/s],sz,...,sn,x) (&.1)
! rors hef i af tr) f the ith
where St and s, are the state vecrtors before and after the transition of the |

machine respectively and x is any .input. This may be rewritten as

. '
p(s;/s;,s3,...,sn,s],sz,...,sn,x)

~p(sé/s;,...,sn

,s],sz,...,sn,kf
] ] 1
'p(s3/sh,...,sn,s],sz,...,sn,x)

1
........p(sn/s],sz,...,sn,x) .

From the knowledge of interconnection of component machines, which describes
this transition probability, the probability of a particular nexi state of any
component machine can be determined only with the present state of the system
and the present input. Also, it is assumed that once this input to any com-
ponent machine in the interconnection is specified, the transition of the ma-

chine is independent of the transition of the other interconnecting corponents.



In other words, the transition probabiiities of the component machines specify
the transition probabilities of the interconnection through the assumption that

given its input, each component operates independently of the others. Thus

1 ] 1 ’
P(Si/si+1’si+2""’Sn’sl’52’53""’sn’x)

, .
= p(si/sl,sz,s3,...,sn,x) . for i =1,2,...,n-1.

-~ -

)

Then (4.1) may be rewritten as

i - t
p(sr/sl,sz,...,sn,x)p(sz/sl,52,...,sn,x)

- ' '
p(s3/s],52,...,sn,x)...p(sn/s‘,52,...,sn,x).

For a given n-state machine, thiS'factorizatién may be possible by an intercon-
nection of component machines, whiqh is isomorphic to the machine. Namely, the
input, output, and state sets of the two machines are respectively isomorphic,
and the transition probabilitieé fér states coffesponding with the isomorphism
are equal. Alsé, when each comp;nent machine has fewer states than n, the
factorization is.called a '"decomposition' ofuthe n-state machine..

We shall consider a decomposition which is loop-free; there are no clos-
ed paths of information flow. All delay elements and logicai elements in a ma-
chine can be so a?ranged that the information flow in the machine propagates
only in one direction from input terminal to output terminal.

A basic property of a loop-free decomposition is that some of the com-
ponents operate independently of all thé'others. The ;omponent machines receive
only the input‘to the original machine. Regardless of the states of all the
other component machines, the transition probability to any next state for
this machine depends only upon the present state of this component machine and

the input to the original machine (or the interconnection)}.
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Consider an example of decomposition by Bacon [ 4]. Let M be a four-

state two-input machine as specified below.

20 .3 .3 .3 .0 .7 .0

M(XI) = ."} . . M(XZ) = -0 -3 .0 -7
'S D .08 .12 .32 .48
.25 .25 .25 .25 . '.06 .14 .2h (56

It is easy to find a block partition of states Il = (HI,HZ) = (1,2;3,4) and an-
other partition T = (T],Tz) = (1,3;2,4). Also, it is simple to check out the

set, {H]AT T, AT, 0 AT, 0 Arz} = {1,2,3,4} where A is the intersection operation.

1’71222

Thus by lumping H] and HZ, we have

o " .6\) AP 1.3 .7)‘
M_(x,) = , M = .
e (.5 s/ . T 2\ e |

Summing the columns of M(xi), i=1,2 on T, and Tyy We obtain the matrices

5 .5 1.0 0
MT(X]) - .0 1.0 , MT(XZ) .=' 0 1.0 .

.8 .2/ Lo 6

s 5 .3 .7

In this example, each block of II intersects each block of T in one and cnly one

state and the transition matrices of MT are uniquely specified as

5 .5\ 1.0 .0
M (T,,x,) = , M (m,,x,) = ‘ ,
LA (.o l.o) LR .0 1.0 )
(.8 .2) b .6)
M (H !x ) = b ] 'M (r[ ’x ) = &
2%y 5 T 2°%2 3 .7

Therefore, the two machines are interconnected as shown below.



~Figure 4,1
A Decomposition of a PSM

The original state transition is computed by multiplying the two states of the
two machines.
There are many ways to interconnect component machines. The following

figure explains several interconnections.

roo-ac-mooan'- A E VD AP WP OB P O G b aE T T >

1
!
¢
8
i

L-t—-----oo---n---a-o-co-o—-- --J

Gereral ™M

Figure 4.2
Interconnection of Component Machines M} and My for Machine M

The types of decomposition for the various connections are as follows.

(a) Loop free serial-parallel decomposition, if connections a,b,
and ¢ exist.

(b) Parallel decomposition, if connections a and c exist.
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(c) Quasi-parallel decomposition, if connections b and ¢ exist.
(d) Quasi-serial decomposition, if connections a and b exist.

(e) Serial decomposition, if only connection b exists.

L.2 Composition of Two-State PSM's

Theorems for decomposition by Bacon and Paz are based on ''lumpability"
and "separability' properties of a given PSM. Paz [51] also showed that an
n-state PSM can be decomposed by two smaller state PSM's; one has two states
and the other has n-1 states.

Decémposition represented here is different from those of Bacon and
Paz. A decomposition of an n-state PSM by n{n-1)/2 two-state PSM's is studied
in this research. To explain the decomposition of the n-state machine, we
start with a composition (synthesis) by component machines.

consider a composition of a four-symbol/four-state machine by two,

two-symbol/two-state machines. Let the two, two-symbol/two-state machines be

1-a a 1-¢ ¢
= T
M](x]) , Ml(xz). (4.2-3)

b 1<

l-e e
Mz(x]) = ( c e , MZ(XZ) (4.2-b)

i}
_——
—
o i
(e}
—
1 [{n]
o

X
Consider a pair of two symbols for Ml and MZ' The four symbols, (x:),

x x x .

(x;), (x%) and (xg), are defined as input to the four-state machine. Similarly,

the states of the four-state machine are defined in vector form as (511,52!),

(511’522)’ (512,52]) and (512,522), which shall be abbreviated in (i,1), {(1,2],

(2,1) and (2,2), respectively. The first index of 51 refers to the machine

number, and the second indicates the state number.
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Figure 4.3

Four-Symbol/Four-State Machine Composed of Two, Two-Symbol/Two-State Machines

The state transition matrix of the four-state machine for the first symbol is

STATE (r,ny o (1,2) {2,1) {2,2)
ID :
(1,1) (l-a)(l-e) (1-a)e . . af(l-e) ae A
oy = (L2 (=a)f . (1-a) (1-F)  af a(1-f) (4.3)
2,1\ b(i-e) be (1-b) (1-e) (1-be /

(2,2) \bf b(1-F). (1-b) £ (1-b) (1-f)

Each element in the matrix is constructed as the product of two probabilities,
p!j(xm). pkl(x ), where the subscript indicates the transition probability be-
tween two states, i to j and k to &, respectlvely. The superscr:pt is the ma-
chine number. Equation (4.3) is known as the Kronecker product of M](x]) and

MZ(XI)'

(1-a)M,(x,) M, (x,)
#h2 A ) . (4.4-2)

My (x)&M, (x,) =
e ( b My (x)  (1-b)H, (x))

The state transition matrices for the other three symbols can be derived simi-
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larly.
)
MIZ ( ) = M](x])ﬁMz(xz) (h.4-b)
X
\ 2
%2
M]2 § =.M](x2)8M2(x]) : (4.4-c)
l )
and ' X
) x,
MIZ' ) = MI(xZ)QMZ(xz) . (4.4-d)
2

The discussion is a parallel decomposition. An example of this decomposition

is shown in the following example.

=1 =1 =1 LR | =1 =1 =4
a =35’ b= 3 C =1 d T e =7z, f= g+ 9=3 and h = 15 thus
3.5 2.1 1.5 1.1
i0 § 10 6 10 6 10 6
Ny sl 97 L1 17
“12(":) - 10 10 10 10 (5.5)
15 11 25 21
36 36 36 38
11 17 21 27
38 3% 3% 378

The numerical quantities can be substituted in (4.4-b), (4.4-c), and (L.h-d)
for the other three symbols. The precéding composition example is the reverse
of decomposition, how to find component machines for a given n-state machine

where n>2, is a decomposition problem, which is solved in this chapter.



4.3 A Decomposition by Two-State PSM's

Any n-state PSM can be represented by n{n-1) parameters which are non-
negative but which are less than or equal to one. Each state of an n-state PSM
is named S12SgseeesS Consider the first row in a state transition matrix of

the n-state PSM,

a1 .%12 - 9
a1 %22 - N

M = . . .o a - (ll.6)
aml am2 amn

ari is the transition probability from s. to Sis i=1,2,...,n. Suppose we are

1

interested in the transition from 5, to Sys the rest may be regarded as a pseudo-

state. Assign a1y = }-a], where = is the probabillity of state trensition from

s; to the rest, Ofglg}. By focusing the state transition from sy tos, within

the probability as the remaining states, 53’54""’5n become another pseudo-

state so that a,, = a](l-az), where a

is the probability of state transition

12 2

to the remaining states, 0<a,<1, and so on.
This process can be repeated for the other rows; thus, M of (4.6) can

be rewritten as

I-a] al(]-az) a]az(]-aj) ...... aja,..-a
- - 1.
b]bz..bn 1-b, b](l b2) blb2(¢ b3)..
M= * * : * (l*~7)
c](l-cz) c]cz(]-c3) cee. €1 %, ]-cl

Each row has n-1 parameters, and the total number of the parameters is n(rows)

x(n-1) (per each row). The domain of each parameter is [0,1]. We state it in
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the next theorem.

Theorem 4.1:
A1l n-state PSM's exist in unit volume in the n(n-1) dimensional

Euclidean space.

Proof:

By mathematical induction, when n=2,

l-a1 -y
- b1 l-b1
these are 2x1 = 2 parameters, ay and b1.
Suppose n=m,
1-a, al(l-az) Ceeeee ajaye..a
/ N\
Eiby..b 1-b \
1 2°""m 1. 1 ceeres blbz"bm-2(1 bm-l)
M= .
c(1-c,)  cevevee. ciCheec 1-¢
1 : - .
2 . 172 mi- 1 1 (4.9)

There are m rows, and each row has m~1 parameters so that the total number is
m(m-1). Consider n = m#1. By increasing one column at the right of the last

column, circulating each term belcw the diagonal terms to right in order to fill
) m-1 )
the new column, splitting the term z = 1 z; into z(1-zm) and 2z, where z; and
’ i=1 '
z are ai’bi"" or Ci» and am,bm,... or ot respectively, inserting the term

zz_ into the left vacant entry of each diagonal term and adding one row below
1

the last row, we obtain m*+1 rows, and each row now has m parameters. The total

number is (m+1)m. 3]

When we consider the interconnection of two-state PSM's, each PSM exists
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in a unit volume in two dimensions. It is convenient to use a binary number
system representation for each PSM, such as an m-binary digit represents m two-
state PSﬂ's and digits 0 and 1 correspond to the first and second states of
each PSM, respectively.

Numbers which are represented by m-binary digits are 0 through to Zm-l;
the number of states constructed by m interconnected PSM's is 2™, For ex-
ample, when m=3, the numberxof.states is eight. Consider the binary number 010
or (010) state in three interconnected PSM's; the first, the second, and the

third PSM's are in state s], state Sy and state s., respectively.

1

Note: The space defined by m-binary digits is in a unit volume of 2™ dimension-
al space. We shall distinguish between the m-binary dimension (denoted as m
B-vector) from the unit volume in 2" dimensional space (denoted as B-unit vol-

ume). Before we diccuss decomposition, the following definitions are needed.

Definition 4.1:

A node of a B-unit volume is a point represented by a coordinate (x],

X .,xm), where xie{O,l}'for i=1,2,...,m.

g2

Definition L.2:

The distance between a pair of two nodes in a B-unit volume is defined
by the difference pf the number of "1" bits in their two coordinates.
. For example, the distance between (C00) and (001) is one; tHe distance
between (010) and (110) is also one, while (000) and (111) are separated by

the distance three. This distance is known as the Hamming distance.

Definition 4.3:

A pair of nodes which have -the distance one are called adjacent nodes.
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Definition L. 4:

An edge is a line between adjacent nodes on a B-unit volume.

‘Definition 4.5

The direction of an edge is the coordinate direction where the distance

one takes place.

L

Definition 4.6:

If the direction of two edges is orthogonal, the two edges are called

orthogonal edges.

Definition 4.7:

A set of edges is a block (or a subset) of states s, and a partition of
states is a collection of subsets of s such that each state in s belongs to

one and only one such subset.

Definition 4.8:

If an edge in a bloék is orthogonal to an edge in another block, these
blocks are called orthogonal blocks. If all blocks in states s are orthogonal
to each other then the partitions are called independent partitions.

Using the above definitions, we show that eight states which are con-
structed with thrée two-state PSM's are blocked into three orthogonal blocks.
Since the three two-state PSM's are composed of three unit B-vector spaces
(001), (010) and (100), and are enclosed by eight nodes, there are three dif-
ferent directions of edges. The total number of independent blocks of three
two-state PSM's is given in the next theorem. We shall present only the de-
composition of a three-state PSM; however, the decomposition method can bg ex-

tended to n-state PSM's, n>3.
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Theorem 4.2:
The total number of independent par;itions of the three states of a

three-state PSM composed of three two-state PSM's is Lx2x3 = 24,

Since eight states (whose binary representation is 0 through 23-1) con-
sisting of three two-state PSM!s are enclosed by a unit volume in three unit
B-vector spaces, there are three different directions of edges, and there are
four edges in each direction (see Figure 4.5). The first block of two states
is chosen iﬁ four ways in any one of four different edges in a direction.

There is a surface plan of the unit volume which is parallel to the chosen edge.

The second one of two states is selected in two.ways in one on the edges of

the parallel plan in the remaining two directions. The third block of two

states assumes the third direction edge which connects the parailel plan to

the other plan containing the first edge (block). The fourth pair of two

states, which has not been shared in any direction, may belong in any one of

three directions, so that the total number of independent partitions is Lx2x3

= 24, =
Before showing a PSM decomposition, it is necessary to present the de-

‘composition of a three-state stochastic matrix. We introduce pseudoprobability

for our convenient.

Definition 4;9:

Pseudoprobability x exists in the extended domain -=<x<0 or l<x<-=. A
probability x belonging in the extended domain or in 0<x<l is called extended
probability. Similarly, we have an extended stochastic matrix as long as the
sum of the extended probabiiities in each row is cne.

Definition 4.9 provides a closed domain, -«=<x<eo  for an inverse matrix
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operation on an extended stochastic matrix.

Lemma 4.1:
The domain of the entries in the inverse matrix of an extended stocha-
stic matrix is the same domain of the entries in an extended stochastic matrix,

if the eigenvalue of the original extended stochastic matrix is not zero.

Proof: . ~
1-a a
Let M = be an extended stochastic matrix, where -«<a, b<w,
b 1-b
1-a-b # 0. )
-1
l-a a 1-b/1-a=b  -a/l-a-b 1-a' a!
b 1-b -b/1-a-b I-a/l-a-b' b! 1-b!
a' and b' are the extended probabilities, and the sum of each row is one. 3

Using the extended probability, the decomposibility of a three-state

matrix is stated in the next theorem.

Theorem 4.3:
If all three rows of a three-state matrix are linearly independent, then
a partition of states composed of three two-state extended stochastic matrices,

which is isomorphic to the original three-state matrix, must be independent.

Suppose the contrary is true; i.e., the partition is not independent.
Then there is at least one pair of two blocks which are not orthogonal to each
other from Defiﬂiticn L.8, and only one bit in the binary number representation
of edges in the two blocks is different. This means that a two-state matrix

represented by two unchanged bits becomes a common factoring matrix to the
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transition matrices of these two blocks.
Since the third block in the partition is the complement of the first

two states, or l-s S, where 5y and s, are the first and second blocks, re-
\

1
spectively, if any two blocks have a common factoring matrix, then the partition
matrix (all three blocks) has the common factoring matrix. From the existence
of the common factoring matrix, the given three-state matrix must have a common
factoring matrix; in order for this matrix to be isomorphic to three two-state
extended matrices. MNamely, all thrée rows are not linearly independent. This
is a contradiction. 5

The decomposition of a three-state stochastic matrix by two-state

stochastic matrices is best explained by the following examples.

Example:

Three two-state stochastic matrices ars

1-a a 1-¢ ¢ l-e e
M, (x,) = , M.(x,) = “and M,(x,) =
1 b 1-b 271 d 1-d 371 d 1-d

(&.10)

The matrix composed of three two-state matrices, M](XI)MZ(XI)M3(XI), in three

birary digit representation, is found as follows. A partition is assumed as

- {0,%; 1,3; 2,5,6,7}, where the first block, second block, and third block are
composed of the states 0 and 4; 1 and 3; 2,5,6 and 7; respectively. The tran-
gition probability bij(x]) from the ith state to the jth state in the compcosed
matrix is found as follows: -

(x,)pF 5 (x))p7

1
p..(x,} =p, .
Ty 232

ij j3(xl)’

3

where the superscript is the machine number, the subscript indicates the state

transition between, and | = I‘IZ!B, J = J‘JZJB'
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. For example, i=0 and j=1; the state transition 000001, namely i.,=0,

|
P Lo s oon Lo C oy s . 1 - - 2 -
3 0 in M], i 0, Jy=0 in My; s 0, i3 1 in M3, thus poo(x‘) (1-a), pOO(xl)

(1-c), pg](xl) = e and po](x]) = (1-a)(1-c)e which is located at the first row

and the third column in (4.11).

R | I

a—n-((l-a)(l-c)(l-e) a(l-c) (1-e) « (1-a)(1=c)e . (1-a)ce

b(ime)(1ze) . (-b)(1=e)(1ze): b(l=ede  ~ bee
3 (1-a) (1-¢c)f a(l-c)f ; (1-a) (1-c) (1-F)  (1-a)c(1-f)

(1-a)df ‘adf D (1-a)d(1-f) (1-a) (1-d) (1-f) -

(1-a)d(1-e) ad(1-e) : (1-a)de (1-a) (1-d)e
5 bd(1-e) (1-b)d(1-e) - bde b(i-d)e
ﬁ\b(l-c)f (1-b) (1-c)f  * b(1-¢c) (1-f) be(1-F)

bdf (1-b)df L bd(1-f) b(1-d) (1-f)

. 2,5,8,7 '

o4 (1-a)c(1-e) ec{l-e) a(l-c)e ace

belze) (el (m)0-de  (blee
1,3 (1-a)cf acf - a(l-c) (1-f) ac(1-7)

(1-a) (1-d) F a(1-d)f ad(1-f) a(1-d) (1-f)
2,5 (I-a)(l-d)(i-e) a(1-d) (1-¢) “ade a(l-d)e
6,7 b(i-d)(1-e) (1-b) (1-d) (1-e) (i-b)de (1-b) (1-d)e

bef (1-b)cf (1-b) (1=c) (1-f) (1-b)c(1-f)

b(1-d)f (1-b) (1-d) f (1-b)d(1-f) (1-b) (1-ad) (1-f); (L.11)

An independent partition {b],bz,b3} = {0,4; 1,3; 2,5,6,7} is used in
(4.11) and is depicted in Figure 4.5,
Ms ig‘ci 61l
10! 1
“%om M2

£ q -
Ww

A Partition {C,4; 1,3; 2,5,6,71}

Figure 4.5
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It is easy to verify that the partition is independent. Let a given three-state

stochastic matrix be

s] Sy s3
5) 1-a a{l-r) ar
M(x]) = s, -Bs 1-8 B(1-s) (k.12)
os3 V(- Yt 1y

Let the first block, 0,4, the second block 1,3 and the third block 2,5,6,7 be
S1» 5, and S respectively. Unknown parameters a,b,c,d,e and f in (L4.10) are
found by equating the first two columns in (4.11) with the first two columns

in (4.12), respectively.

State transitions are found as

9"

ERSTE (1-c) (1-e)=1-0a, 5S¢ (1-a)e+be=20(1-r)
$,75 ¢ (1-c) f+df=28s , $,75,° (1-a) (1-f)=1-8 (4113)
s,*s.: 2d(1-e)+(1-c+d) f=by(1-t), s.+s,: 2b(1-f)+(1-a+b)e=lyt.

371 3

For simplicity, we shall use the following conventions:

Pivot states denoted by P and p, are the diagonal term transition in

(4.13); sp7sy, s,7s,.
=Py Py
Pivot matrix denoted by is a 2x2 matrix of which the

Pay " 17Pyy
diagonal terms are the pivot states,
Note: Pivot matrix is a principal minor or a matrix with a rearranged order of
rows/columns of the principal minor. in (4.13), Py = Sy and P, = 5, and

Pip = @ Pyp = 2a(1-r}, Py = 28s éﬁd Py, = B-

Each column element of the third row in {4.13) which is called the of f-

pivot state is containing the off-diagonal term of the same column of the pivot
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matrix and can be rewritten by substituting the quantity of the term in the ele-
ment. Therefore, the remaining parts of the column elements of the off-pivot
state denoted by q, and q,. are the probability difference of the state transi-
tions from the of f~pivot state {1) to the pivot state and (2) to the off-dia-
gonal state of the pivot matrix in the same column. In (4.13), the probability
di?ference q; in the first column is the prdbability of the state transition

~ -

5 (s] is the pivot state) minus the probability of the state transition

3
5375, (s2 is the off-diagonal state) or qq = hy{1-t)-2Bs. Similarly q, in the

S

second column is the probability of the state transition s.-=s (s2 is the pivot

372

state) minus the probability of the state transition s s (sl is the off-dia-

3
gonal state) or q, = byt-2a(1-r). Pi and q; for i, j = 1,2 shall be called
p-q parameters.

From (4.13), we have six unknowns and six equations.

Note: The multiplication factors 4 and 2 in the above q; and a, equation§ come
from the sums of two rows in the second block 1,3 and four rows in the third
block 2,5,6,7, respectively, by assuming equal distribution among states in

each block. The equations (4.13) can be rewritten as follows:

c(l-e)ve=a=p | , (1-a+b)e=2a(1-r)=p,, ,
(1-c+d) F=285=p,, al1-f)+f=6=p,, »
2d(1-e)=by(1-t)-28s=q, ,  2b(I-f)=byt-2a(l-r)=q, . (18

The unknown quantities, a,b,c and d are found to be functions of e and f from

(4. 14),

p,,~f
a= fff , , : (4.15)
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9
b = m ’ (l§.16)
pPy,;~€
_
ﬁ = , . (4.17)
9
d = 5=y - (4.18)

By substituting é,b\anq c,d into the remaining equations in (4.14), re-

|

spectively,

Pii® 9 \
{"' T-e + z(l_e)}f = p2] (11.19,
and
Ppa”f %
U= 35 * z-p0e = P2 (.20)
By solving (4.19) and (4.20) for e and f,
{2(1-e)-2(p,-e)+q}f = 2p,,(1-e)
2p,, (1-e) .
f = . (&.21)
2(]“p115+q]
and
{2(1-F)-2(py,-f)+q,}e = 2p,, (1-f)
- _r - -
f= 2—p-—' [Zplz {2(1 p22)+q2}e] . (4.22)

12
By eliminating f from (4.21) and (4.22),
o) = - - - 1
bpi,pyy (1-e) = [2p,,-{2(1 Py, )+a,tel{2(1-p, ) +q,]

[{2(1-p ) +a, 32 (1-p,, ) +a, -bpy opy e = 2p, {2(1-p) ) +a; F-hp o,

.- 2py,1200-pyy)+a; J-hp Py,
{2(1-p J+q  H2{I=p,, ) +ay3-bp 0y

{(§.23)
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By back-substitution of the quantity e in {4.22), (4.18) and (4.17) and of the
quantity f in (4.16) and (4.15), numerical quantities for a,b,c and d are de-

termined.,

Numerical Example 4.2

0.3 0.6 0.1
M(x,) =| 0.2 0.6 0.2 |, ' ‘ S (h.24)
0.1 0.2 0.7

find o,B8,Y,r,s and t in (4.12) as follows:

7/10 , r
/10 , s
3/10 , t

]

/7,
/2 ,
2/3 .

o

<
1]

From (4.14),

= 6/5 .
4710,

ire

©
—
I

2/5

q = o- , q = -2/5. ’ (2.25)

From (4.23), (4.22), (4.15), (4.16), (4.17) and (4.18),

(1)
il

1/3, f =8/9, a=-h4/10, b =-9/5, " (2.26)

11/20 and d =0 .

0
[}

Ml(x]) is an extended stochastic matrix because of a,b<0;

Mz(x]) and M3(x]) are stochastic matrices .

In order for all decomposed two-state matrices to be strictly stochastic,
we shall find conditions which are assured stochastics.

There are three ways to map the third block b_ = 2,5,6,7 onto a state

3

S5 for i = 1,2,3 along three axes.
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1. On the mapping of the third block b, on s_ and b >S5, b2+53, we have

- 3 2 1
o ar
the pivot matrix( ) . The gq-parameters are
y(1-t) 1-y
q] = ABS’ZY(]"t)
(5.27)

q, = Lg(1-s)-2ar .

2. On the mapping of the third block b3 on s, and b{+s3, b2+sz, we have

1-8 8(1-s)
the pivot matrix . The q-parameters are

LAT e

qy h.o(1-r)-2vt

(4.28)

qy hear-28(1-s)

There is at least ones single set of positive q-parameters.

Lemma 4.2:

Let {b],bz,b3} he an independent partition of eight states composed of
three two-state PSM's. If the block,consisting of four states in the partition,
is always selected as the off-pivot, then there exists at least one single set
of the positive g-parameters along the three-way mapping (three directions) of

the third block.

Proof:

Let a given three-stdte stochastic matrix be

i1
21 22 723

31 732 733
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Without loss of generality, {b],bz,b3} is assumed as {0,4; 1,3; 2,5,6,7}.

By selecting s, as the off-pivot state, the g-parameters are computed,

3

q = L a3] -2 351

q, = L azy - 2 ay,

Let q and q, be negative so that

2‘a3] < a21 _ and 2 a32 < a12 .

By choosing s, as the off-pivot state, the q-parameters are

2

q = 4 a5 - 2 a3]

q, f L 3,3 " 2 33
. | — .
sine ag <73 from the first mapping,
b . - .1 -
G =hay - 2ay>ha m 272, =38,>0

s0 q, is positive.

Suppose q, is negative, 2 a23 < a]3 .

In the last mapping of the third block, the q-parameters are

qq = 4 ay, - 2 a32

q, = 4 az -~ 2 a3

q) and q, are positive since al2>2a32 and al3>Za23 . e

For the sake of simplicity, mapping notations are defined as follows:

The first row indicates block assianment to the states, and the second row
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presents p-q parameters assignment to the blocks. The form is as follows:

( b, b,
P1 P

means blocks bl and'b2 are assigned into states S and Sy respectively, and

the numerical constants, Py12Poy29y and PygsPyyiG,y are assigned to columns one
and two, respectively. Finally ”I“ in the third column shows that state 53 is
the off-pivot state. This mapping assignment is related to compute the unknown

variables a,b,c,d,e and f, Equations (k.14) can be represented in the following

shortened form.

indicates a,b and e are always associated with block b, and pl-parameters, and

2
‘c,d and f are always associated with block b] and p,~parameters. When the block
b, b . S
assignment is reversed like ( p2 p] ) , the expressions of a,b,c,d,e and f are
1 2 .

changed like

a f
e ¢
b d

which means p,,7Pyys 9p7d1s Pyy7Pygi 9)70ps PypPPyy and Py =Py



Also, a,c always come from the diagonal terms of the pivot matrix; b,d always
come from the off-pivot state (in the aboveexample,s3), and e,f always come
from the off-diagonal terms of the pivot matrix.

Since q, = - %-of M(x‘) in the numerical example 4.2, we must find an-
other mapping in order to get three two-state stochastic matrices.

Consider a mapping
1

b b T e,
( ! 2 ) > b
P .p2 - f a

the six equations to solve are as follows.

oo

(1-c) (1-e)=1-a (1-a)et+be=2ar
2d(1-e)+(1-c) f+df=Lgs (1-a)e+2b(1~f)+be=kg(1-s) (4.29)
(1-c) f+df=2y{i=t) {J-aj (1-f)=1-v .

Then pjy= @, q; = Lgs-2v(1-t), P,y = 2vy(1-t), Py = Zar? q, = 4g(1-s)-2ar and
p22 = Y'

To find a,b,c,d,e and f,

p,,~f

a= fff (4.30)
9

b = m (4.31)
Pii-€

c =L (4.32)
94

d = 2. ]_—T-e ) ’ “’33)

_ 1 - -
f = 55—]; [2p]2 {2(1 p22)+q2}e] | (4.3%)
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. 2p]2t{2(1-p1])+q1}-2p2!] . 35,
v {201-p )*a H2(1-p,, ) +a,)-kp b, g
TR NUREE F s E Ak 2E A N R e
T e T
P22=T'c3)"

Thus q, and q, are ﬂositive.

Decomposed matrices are found as:
2
,and f=7'.

By substlituting these values In {4.11) and taking the sum of 211 zlements in a

b
tn

block divided by the number of rows in it, (see Definition L 1h), it is easy

to check the substituted matrix having the same quantities as (4.24).

Note: Equations, (4.30) fhrough (4.35) are the same as (4.15) through (4.18)
and (4.22) and (4.23) . The next step is to show that the two diagonal terms
.of the pivot matrix are positive when equating (4.11) with (4.12). The equat-
ing result is shown in (4.13) or (4.14). The two terms which assure a and c>0
of (4.15) and (4.17), pll-ezp and p22~f39, are included in the next theorem.

The necessary and sufficient-conditions of a decomposable three-state matrix

are also stated in the following theorem.

Theorem 4.4:

Suppose {bl’bz’b3} is -an independent partition, and the block consist-

ing of four states is always assigned as the off-pivot state.
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A given three-state stochastic matrix is decomposable by three two-state

stochastic matrices if and only if

1. 229,20 ' for i = 1,2, (4.36)
2. €= {2(l-pl])+q]}{2(1-p22)+q2}’4P]2P2]>2P57'{2+q;'2(P1i+P2;)}39
aﬁa ) (h.37)
27 , .
3. €3> L {2+qi-2(p”+p2i)} for i =1,2 (4.38)
where 1 = 2 if i=1
T = if i=2 .

Proof:

Without loss of generality, {b],bz,bs},is assumed as {0,4; 1,3; 2,5,6,7}.

Proof of Sufficiency:

(17201 Piz
Taking the pivot matrix , the row elements of the off-
p 1-p
21 22 '
pivot state, and b, and b, as the pivot states p, and p,, respectively, (4.15)

through (4.18), and (4.22) and (4.23) are obtained by equating the block matrix

with the given three-state matrix.

' Note: ]ZP]l’pzzzp’ Zzplz,pZIEQ and hzg],ngyz. From hypothesis 1, (k.16) and
(4.18), 1>b, d>0, if 1>e, f>0. From (4.22), (4.23) and hypothesis 2,

2p
12 i . :
— {2+q, 2(p]]+92])}<1 , | (4.33)

2p), 12(1-p,,)+q,} \

f=1- T ——— {2+q=2(p| 1 +p,;)}

1
¢ [205p )20 12 (1-pyp)+a, 1key 5py

'.{2(}‘P22)+q2}{2+q1-2(p1!+p2])}]
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]

] .
E—[{Z(I DZZ)+q2}{2(1 p11)+q1 2~q,+2(p]1+p21)r-hp}2p2,]

2Py 2Py
= (20mpy,)*aym2p) ) = 7 {24q,-2(

p12+p22)}<1 ) (4.40)

\

Since PiTs ]—pii’ qizp by Lemma 4.2) for i =-1,2, from (4.&0) and the similar

equation of e to the above equation of f ,

i {2(}-p]‘)+q]}{2g1-p22)+q2-2p]2} _ 2p]2{2(l-P1])+q,-2p21}]
e = 1- — = (4.41)
c €
Xs) 1>e, >0
Also from (4.15), (4.17) and hypothesis 3, namely (4.38),
Piy 2 e . and Pyp 2 f

and 1>p,.>0 so that 1>a, ¢>0 . (4.%2)

Proof of Necessity:

Since the three-state matrix is decomposable, there are 1>a, b, c, d>0
and 1>e, f>0.

From Lemma 4.2, there is at least a mapping of blocks to states such

that qizp for i = 1,2. From (4.16) and (4.18)

2(l-e)zg] and 2(1-f)>q, .
Also

I-ezPll-ezp " and _ 1-f3P22-f39

Inserting (4.22) and (4.23) into the above equation

Pyye0. ,
- - 2 I -2{ M
ZP]Z{Z(I p]])+q]} hp, o2, ) 2P, {2+q =2(p; 4P, )} "

11




‘and

Pyp~ 20

\

2Py

Pyp 2 g (2+ay=2(py*py,)}

we have
ZP.i— ) )
€ > {2+qi-2(P]i+P2i)} for i =

From (4.42), (4.43) and (4.hk)

2P ]2
————-{2+q] 2(p]]+p2])}zp

I>e

2Py,

— {2+q] 2 +p )}>0 s

1>f P12 22’

From (4.15) and (4.17),
1 > Pi -

Finally, by (4.16) and (4.18)

2(l-f)292 and

since 1>e, >0 ,

239; ) for i = 1,2,

Z(I-e)zg],

18

(4.44)

(4.45)

(4.46)

(L.47)

(4.48)

(4.49)

=

The decomposition of a three-state PSM by three two-state PSM's may be stated

in procedure form.
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Step (A). Evaluate o,B,y and r,s,t of a three-state matrix from (4.12).

Step {B). Find an independent partition of eight states composed of three B-

vectors or eight nodes in B-unit volume.

Step (C). Determine a mapping of the partition on states of the given three-
state PSM such that all g-parameters of the mapping are positive by
using (4.14), (4.27) or (4.28). Lemma 4.2 shows that there exists

at least one single set of such gq-parameters.

Step (D). Apply Theorem 4.4 on the partition and the mapping. If the conditions
of the theorem are not satisfied, then find another mapping such that
~all g-parameters are positive and go to step (D). If there is no

more such mapping, then the given three-state PSM is not decomposable.

Step (E). Otherwise, the three-state PSM is decomposable. (only when the condi-
tions are satisfied). Compute the state transition probabilities of

the three (component) two-state PSM's.

The decomposition procedure is demonstrated in the following example.

Example 4.3:

A given three-state transition matrix is (4.24)

Step (A) from (4.12), o = 7/10, 8 = 4/10, y = 3/10 and r = 1/7, s = 1/2, t = 2/3.

_Step (B) from Figure 4.5, an’ independent partition is found as {b]’bz’b3} =

{0’4; 133; 2’55697]-
{ b b2
Step (C) A mapping is chosen as

)where s, and Sy are the first and

1
\51 )
the second states of the three-state PSM.
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In this mapping the first and second blocks b] and b2 are assigned ontc the

first and second states 5, and Sy of the given three-state transition matrix.

In éther words, the sum of.state probabilities in a block represented by

three binary digits, or by the combined individual states of the three two-state
mafrlces M],M and M3 of (4.10), is regarded as the state probability of the
state mapped by the block in the three-state matrix. The resulted equations

of this mapping a}e descrisgd }n (4.13) through (4.23). ‘From (4.14%)

PN

- ’_ — .3___‘_ l—:
by(1-t)-2Bs = 4 03 2157 =0

Na]
—
[}

by(t)-20(1-7) = éa-g- 7S

[}
~ifon
Ui N

9

The gquantity of a, is negative so that another mapoing which provides positive
g-parameters, must be considered. Since there are three-way mapping of the

third block b, onto each direction of three-dimensional space, we take the

3

b

S

3

1

) , where s_ is the third state of the three-state matrix.
1

3

b
other mappfng( s

The resulted equations of the second mapping are described in (4.27),

“and (4.29) through {4.35). From (4.27),

I-l?

i_ =3
103 5

1
3

[an)
N|—-

q, = 48s-2y(1-t) =

the quantity of 9, is found as positive,



q, = kg(1-s)-2ar

L

L
10

1
2

-2

_7._ _—...3_
10 5°

il
7

so that this mapping provides a set of positive gq-parameters.

\

Step (D) From the quantities o,B,y,r,s and t and the mapping (4.29), Py =

Z_
10°

Pip = %3 Poy = %3 Py = %63 q, = %-and q, = %u From the second condition of
the theorem, ’
e (03 + I3, 1 _12 &
e= QG+ +ry -bys 25
.56
=55
2p. {2+q,-2(p, 4p, )} = 2 £ {2 + 2 - 2(L- + 1)}
P12147974 P11 7Pyy 5 5 1075
S203_ 8 _25_2
55 5 5 5 5
) 2 -1 4 3 - 1 .n.}.... .1. .3...
_.2_(.‘_—1_.5_)_153_,.‘_@
5 5 5 55 25 )
The first condition,
2> §-> 0 is held;
5
the second conditfon
56, 10 56,16
5% > 75 >0 ° and 7% > 7€ > 0, and
the third condition
257 % 7~ 35 and
56 _162_,6 _,2 8
5t 3 2 25 2 T > 0 are also held,
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All three conditions of the theorem are satisfied; therefore, the example matrix

is decomposable.

‘Step (E)' From (4.30), (4.31), (4.32), (4.33), (4.34) and (4.35),

L R R SN |
a=gg b=%p =gy 9= =73
and f = %-.
The decomposed matrices are
49 1 21 39
) t0 50 ) 60 60
M, (x,) = s M, (x,) =
1\ 21 29 2\ 7 13
50 50 20 20
and
/6 1
(x.) 7 7
M., (x =
3 25
7 7

Theorem 4.5:
If all state stochastic matrices associated with each input symbol in
a three-state PSM are decomposable, then the three-state PSM can be decomposed

by three two-state PSM's.

Proof:

From Théorem 4.4, since each three-state matrix is decomposable, these
exist decomposed three two-state matrices for each three-state matrix. By de-
fining the first two-state PSM consisting of all the first two-state matrices,
the second two-state PSM with all the second two-state matrices and the third

two-state PSM with all the third two-state matrices, the original three-state
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transitions are isomorphic to the transition of blocks which are used for de-

a2

composition.

The € equation in Theorem 4.4 can be rewritten in a matrix form so that
the decomposition, n>3, can be handled in a similar manner.

In (4.14) and (4.29), p-q parameters are rewiitten in:

“ N ! 1
=Py Pys P 2Py
) ]
o1 TPy = 2Py P2 |* (4.50)
3
9. - kq;-Zpé] hq£'2p12

For the sake of simplicity, each parameter after the replacement (4.50) is ex-
pressed by its original notation without prime, thus we get the following equa-
tion.
€ = {Z(I-p]]?+4q]-2p2]}{2(l-p22)+hq2~2p]2}-h'hp]2p2]
= 4(1-p; ) (-p,, ) +8(i-p ) q,-bp,, (1-p, ;) +8(1-p,,)q,

* 16019,8p  a~lp, (1-py,) -8py 14, by ypy  holip Py

= 4{(1-p1])(l-pzz)-4p12P2]}+8{(1-p22)q2-p]2q]}

= 8p Py *16aga,

=P Py =PIy Py 9h 9
= +8 +8

Py 17Py Q@ 9 Py 1°Pyy

- hplz("pll)'hpzl({'pzz)78912p21+‘6q1q2
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"P1y Pi2 P Pi2
= l{ ]— + l{q]qz + L' 2 = pzl(l-pzz)
P21 P22 G %
\ R
+ 4 {2 - - plz(l-p”)} = 8p Py (k.51)
P21 ""P22
L. 4 Decomposition of a Matrix Which Consists of Dependent Relations Among
Its Rows

In the previous secﬁion, the discussion of decomposition is based on a
linearly independent relation between rows of a given matrix. When rows in a
matrix are linearly dependent, the required number of elemental two-state ma-
trices is reduced in decomposition. This special case is discussed here.

Using an example,

I % °3
S, i-a af(l-r) ar
Mx,) = s, | Bs -6 8(i-s) - (4.12)

S3 vyt y(-t) 1-v

If numerical quantities of B and s are deperndent on a,r,y and t, namely
B = f(a,r,v,t), s = g(a,r,y,t), the required number of two-state matrices for

"decomposition is two. These are

1-a a
M](x]) =( ) and Mz(x])

1-¢ ¢ '
. . (k.52)
b 1-b d t-d

A matrix composed of the two preceding matrices using blocks: {00}=5¥s],

{01,10}=TT§¥52, {l]}=§¥s3 follows:



we get

By inserting a =

Hence

(1-a) (1-¢) (1-a)c+a(1-¢c) ac

%{(l-a)d+b(l-c)} —{(1-a) (1-d)+(1-b) (1-¢)} %{a(l-d)+(l~b)c}

bd

(1-a) (1-¢) = 1-a ,

1
2

b(1-d)+(1-b)d (1-b) (1-d)

b(1-d)+(1-b)d = y(1-t), (1-b) (1+d) = 1-y ,

a =.atc-ac, atc-ac-ac = a(l-r) =

Yy = b+d-bd, b+d-bd-bd = y(1-t) =
= .ac ' -
= emac and t =

a:

%L end b =X% into the right—hand sl
ar ar Yt |, vyt
— - —— S e - ———
. c-—"¢C, Yy=q-1 d 3 d

c?-(ar+a) ctar = 0

dz-

(yt+y)d+yt = 0

- (ar+a)t/ﬁ2(r+l)2-hyt

2

- (thy)i/¥2(t+l)-47t
2

ar _ 2ar

¢ 2 2
alr+1)+va” (r+1) -hyt

Yt o 2yt

d

y(+t) A2 (£41) 2 byt

(1-a)c+a(l-c) = a(l-r)

125

(4.53)

(4.5h)

(4.55)

(4.57)

(4.58)
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Decomposable conditions are O<a, b, c, d<l, so that we have to select the ap-

propriate signs for these square roots.

: ‘
k.5 Multiplication of Stochastic Matrices by Decomposed Two-State Matrices

State transitions of an n-state machine which processes an £-length in-

put string are the product of matrices M . , where Mi for i=m-2-1,

m-%-1 m-le

«..sm=1,m is an nxn stochastic matrix. Since interconnected (decdmposed) two-
state component machines are isomorphic, the state transitions of the original
n-state machine can be computed by matrix products of the component machines.
When we are interested in a single state transition, S; to sj in the original
n-state PSM, the probability Pi; of the state transition can be found in the
element (i,j) of the product of §h§_n-state matrices. The probability pij can
also be computed by the product of the component (two-state stochastic) matrices
along with the interconnection | to j with which we are concerned, Multipli-
cation of the component matrices is presented in this section.

Thus the results of a two-state PSM in Chapter |l! may be applicable
to all insights of the decomposed component machines and consequently to the
original n-state machine. '

Let A and B be matrices;

11 12 °°° Im 11 12 **° in
31 92 byy byp wee by,
A= . . s . and B= . . *ae -
L] * * e e “. / L] L ] -
q1 %2t bml bm2 tet bmn

(4.61)
Definition 4.10:

By moving every row up one and inserting the displaced top row into

the vacant bottom row, B becomes ]B such as



Similarly 28,...,™!

*

b

b

b

22

32

12

-~

B are found

-

31 3 o
By byp -
25 - L
b2] b22 ‘
and
bn'ﬂ me e
b]] b12 e
mlg - L
bm—llbm-lz )

2n

bm-ln
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in this section, it is assumed that each row and column involved in matrix mul-

tiplication consist of each other so that the multiplication is always defined.

Definition L.11:

The sum of '8 for i=0,1,...,m-1 is denoted as

R 0 1

w
i

where oB

2

B+ B+ "B+

+

m-1

B

B, and m is the number of rows.

(4.62)
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Definition 4.12:

A special multiplication between A and B called dot~circle multiplication

is defined as

AOB =24 % (A-B + A 'B+...+A-™ Tp) (4.63)

1
m

where ° indicates the regular matrix multiplication.

-~

»

Definition 4.13:

Let Aij and_Bij, which are referred as 'block matrices', be qxq sub-

matrices in A and B, respectively. A and B become

Aip A e AL
o O N CTL | (h.64)
\ * /
Azl Azz Azm
Bip By oo+ By,
B=l Ll = 8y) : (.65)
Bml By e+ B
AOB = ( § AikOBkJ.) = (c;) ‘ (4.€6)

=]

Example



129

Cor = A B tAy B

Cra = A1yt Bgthypt By 6
.67
- .R .R
Cop = Agyt Byy¥hy, By,

- cR 'R
Co2 = Ayt Bygthyn™ By
Definition 4.14: . .
Let A be
. a]] a{z .o a]n
Ay Ayy e By
A= - L] " 00 - L ] .
a1 %m2 t %mn

The total sum of elements in A divided by the row number m is called a 'block

sum'' denoted by [A], such as

=17 §
Aj = — -
=1 j=1 Y
Theorem 4.6:
] 0 ] ? c"]
AQPB = -n;(Ao B+A0 B+A0“B+...+A0 'B) (4.68)

Proof:

Without loss of generality, we use hxh matrices of A and B. Aij and Bi'

‘are 2x2 submatrices of A and B, respectively, where i,j=1,2,
Left-hand side:

AQB = %— A(OB+]B+28+3B)

J
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Comparing (1,2), (2,1) and (2,2) elements

130

in (4.71) and (4.69), each element is

P21 P2t By by - By
A.. A\ B.. B B.. B
[ ™1 M2 1 °i2 b.. b b 21 P22 . e .
O R ) N K
Al Ao BBy B!\ by by, byy/ By Byy Co )
‘ byy By, by byy ++ by
(L.69)
Right-hand side:
o 1o (M A2y B B\ A Ay By By
A0 B+A0'B = 0 + 0 } (4.70)
I Ba1 Baad VA, Ay Bir B2
R R R R R R R R
(Ali B 1A 28118 A8 Al1312+A12322+A11Bzz+A12812) (
= 4,71)
R R R R R R R R
Aot BritAgaBar Ao iBar™AanB iy A BaAgB o A Bon A0y,
Consider the (1,1) elements in (4.71) and (4.69),
10 1 0 1 {0 _._! .1.0 Lt } L g2
A BT Byt By Byy) + AU, B8 8y .72
By definition
[ P21 Pa bhr Puz
B = and B! = ,
bsy by : Byy b2
and comparison
A +18. ) +a (s 8. ) in (4.72) to
B Bt By 124 Boyt By (B.72,
[N ] LI ¥ PO
A”(B +B ) + A]Z(B +B ) in (14.63).
o by b2z by by .
B.,+B,, = + =B +B
nt Pt b
1n 212 27



equal.

We shall present the scheme using the example of a three-state PSM.

‘The scheme could easily be extended for n-state PSM, n>3.

Suppose a partition {b],bz,b } is {0,4; 1,3; 2,5,6,7}. Since the ori-

3

ginal PSM and the decomposed two-state PSM's are isomorphic, there must be an

equivalent matrix multiplication on the decomposed matrices to the multipli-

.

cation on the original three-state matrices.
Using state transfer notation '"'ij'" which indicates s to sj instead of
parameters a,b,c,..., (4.11) becomes
S| 52. 53
S 00 04 01 03 02 05 06 07
Lo L4 k1 43 b2 45 L6 47

s,/ 10 1% 11 13 12 15 16 17
2 M. M. M
30 3% 31 33 32 35 3¢ 37 | 1 iz i3
20 26 21 237 22 25 26 27 |=| M2y Mo M3 . (8.73)

3160 646 61 63 62 65 66 67

50 54 51 53 52 55 56 57/ May M3y Mg
70 7% 773 72 75 76 77

—5,:

Consider the state transfer s, to S, after a multiplication denoted as Sy 1

1

‘there are three ways to reach- Sy-
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This computation process is indicated by

M
1 ]
LMy My Hy3) Q(“zl)] =3 4 QM +“12@“‘21”13.0”31

L LD N CRN TS I CRNT (4.74)

where the prime indicates the second matrix.

-

Theorem 4.7:

If each element of an n-state transition matrix is a block matrix, then

the state transition S; to Sj after receiving two inputs is

i

n ! 1 M;.

kzl M, ] [Mkj] ol (C N PR (A8 o) :J (4.75)
M.
nJ

whare m is the row number of Mik'

Proof:
Without loss of generality, we shall use (h.ZB), M matrix, or (4.74),
namely S; = S, anq sj =S,

Consider the path, $y—S;—5, which means

! _ l. ! ' ‘
[MI]][M]J] =3 [M]fJMll] , (4.76)
00 Ok '« 00 Ok
where My = (4o gy) and My = Gg 33)
Since
I LA VLV O
1My =3 My n’nn



-1 00 ok [
T2

40 44“(40 T * G P =7 o i

taking the ''block sum'" of the individual term in (4.77)

\

[,y 4]

M

11 [(28 22)][%-2 (00+L0+00+LE) ]

My 1 DMy

Similarly, we can compute the path,

S

1

00 —— 01, Ok —= 03, 40— 41, hh—= 13,
00 o TO, 0F e TH, T0 -z~ 30, TF —==-3F,

We obtain

[M),1 M) 1 = [”120'421]

Consider the path, s

%3 I
[M,5] = § (02+05+06+07+42+15+46+47}
[M;,] = § (ZOZESTSTE0ETT0+ TR,

we shall prove

- 1 2 3
{M ][M ] [ 13 M3]] [M]3{M3‘+ M3 + M3]+M }]

[M]3][M3]] = H{M]3]{§5¥§ﬂ¥§54gu4gﬁkgﬂ%75¥7ﬂ}.

and consider 02{20+25+50+55+60+6h4+70+7%}
+ 05{50+Sh+B0+8E+70+75+20+25)
+ 06{B0+6h+70+7h+20+24+50+5h}

4
1
t

133

56 L. L (00 ol;) (00+E Oh+Lh

(4.78)

, considering the following substitution,

(4.79)

(4.80)
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__,__..___._,._____._.____.__

_ L 02 05 06 07,1,, 50 54, 60 6k 1_0__7_20_?:__
= Gy w5 oue w75 )G W wHEg Y
70 7% Zo ZL 50 B4 60 6L
_ 1 :,02 05 06 2.1 3
=710 53 he Al My Hy )
LT I ~ ' B
213 317
Example L.y,
Let M be
2 .1 kL3
Wl o3 2500 h
d .3 0.2 LG
6 .1 .1 L2
where
(2 .I) ( 4 3)
M , M, =
s 2 L
[0 ) e )
M,, = and M ’
so that

( [Mll] [MIZ] ) ('.4 16 )
M = = .
[MZ]] [MZZ] .55 .45
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Consider the paths, S S 3 and

S S

] 2 =S

] H

LANVILIRY

0.4x0,4 = 0.16

and

[M]2][M2]ﬂ = 0.6x0.55 = 0.3;
Using (4.77),

M2y, o3 .2
20 G N

and

1 I 3.l .3 6 L
FIM By, = _E{ AR AL TN LA GPR D)

gl 3y 7 Wby M7
=iy WGy =520 07 4]

1. b9 .28y,
= 4[2(.35 .20)] = z(.h9+.28+.35+.20)

]

0.25x1.32 = .33

Dot-circle multiplication can be extended to determine state transition, s. to

sj, on more than two input lengths. For example 5

. 3
sj, typ:cally, Sy —— s,

in a three-state PSM will be
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M M2 My M
[{(M”M]zr4”)(<:~121 Mzz M23 } 0] My 1. . (4.81)
\ M3y Myp My3 May

Note: The commutative, distributive and associative laws on the operator,

dot-circle multiplication, do not exist.

- »

Contraction Coefficient:

The decomposed component matrix is shown in (4.11); each block matrix

consists of the product of the coefficient matrix (g g) and the stochastic ma-

1-a a
b 1-b

multiplication is performed on a computation of state transition (or a product

trix ( ), where 0O<a, b<l and 0<r, s<1, Therefore, when a dot-circie
of block matrices) the result of the product no longer has the stochastic pro-
perty (the sum of a row is one).
For example,
r, 0 1l-a, a r .
a= (1 oc Tt e e 2Ry, (4.82)

0 sl b] l-b] 0 3 b 1-b

where O<a,,a,,b,, b,<l and ngi,rz,s],52<].

The resulting product can be contracted due tc the diagonal matrix in

which all diagonaf terms are less than one but are nonnegative. When r]=s1 and

Fy=Sy» the product of (4.82) becomes
l-a, a, l-a, a
i ] 2 2
A=r.r I )
12 bl i b‘ b2 1 b2

When r]#s] and r2¢sz, the following process may provide a simple way of comput-

ing the matrix product.
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po= rz/sz,
Mp = magpmeby, Ay, = wayub,,
}‘21 =y -u a,~b,, AZZ = l-u-Iaz-bz,

u or u-1 is attached on the term Aij which does appear in the (i,]j) element in

the matrix; the term A becomes

ao|lh2 o Tmaymagdyy 3y,
. . (4.83)
2 |

0 54 b2+b1>«21 1-b2-b1.\22

Equation (4.83) is very similar to the result in Chapter 1ii. Note:

A.. = 1-a,-b, for i,j =1,2whenr, =5

ij 27"2 2 = 52

Equation (4.11) can be rewritten in block matrix form:
(1-a)e - O) <1-c c >
( 0 be i1-¢ ¢
(?1-c)f 0) <l-a a)i < <l-c c >:
0o af/ \1-a o/ (TR y y),
((l-a)e é) d 1-{); 1-a a ae 0 \fd 1-d
0 be) \d 1-¢/' (1)(i=e}y l-b>’ 0 (1-b)e/<d 1~d)
(tlﬂc)f 0) ( b 1-b). ' (l-c c :<ff 0 > b l-b) ) ; (l—c c \/
0 df/ \ b 1-b/, b N4 1-¢/i\0 (a)if\p 1/ IDVO-O 4 oy)

Compute the path, sl*-z-' Sqs the elements of the second matrix is represented

(- i-e) ('} 11)

with primes,

My M3 = (1-c) (1-e) (1=¢') (1-e*) ("a a){(“a' a’>+ [ b HJ')} |
b i-b/[\b' 1-b)} \1-a' a!
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(l-a)e 0\/1-c ¢ (1-c*')f* o + [/d'f' 0 1-a' a!
MIZO‘é}—( 0 b)(- ) ( 161 < - 1 -al 1
e/\1-c ¢ 0 di f N0 (1-c)f 1-a' a
' (Z(l-a)e :>(:T c c <L :>
= ((1-c')f'x d'f1)
0 1-a’
o (e (i-e) <1-a a ) ae 0 \(l-c c :
M .= 1-e} | . ,
137310 L o <o (l-b)e)\l-c c)
<1-a' a'> <d'(1-e') 0 ><b' 1-b'>
d! (1-e') .
b' 1-b! o (1-c')f} b! 1-b!
+
(1-c') ! 0><b' 1-b" (d"f' 0 <b' 1-b')
-0 dtf! b' 1-b' 0 d'(1-e') 1-a' a'/

A(?"C')f' 0 B! 1-:\ R 0 / Khto1- b‘

Ko d' f! ) \b' ')\ (o' d' (1-¢ )} \1 -a a*/

<1'(1-e') 0 < ) <d'(1-e') 0 <
0 d'(l e ) 1-b! 0 (1-c¢*)fY \ b* 1-

‘These computations are carried out using the results of (4.83) and Chapter Il1.
Most properties in Chapter 1! are valid, if u = r/s, where r and s are the

elements of a coefficient matrix, is closer to one.
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CHAPTER V
N-STATE INPUT-TRACEABLE PROBABILISTIC SEQUENTIAL MACHINE

5. Jntroduction

The two-state, input-traceable machine and the decomposition of an
n-state PSM by two-state machines havé been studied in Section 3.6 and Chapter
IV, respectively. From these results, we shall-discuss - a logical system class
which traces all p;st system~be;f0rmances by knowing only thé pfesent state
distribution. In this case, all past behaviors of a system can be played
backwards like the playing back of a movie film. Most aspects of system
evaluation (past state transition history, input sequence supplied, correctness
of produced outputs, the most active subsystem, the most likely subsysteﬁ
where errors occur, etc.) can be accomplished-és straight backward tasks by
using the playback of the system.

Balser [ 5] has shown that a playback technique is a very powerful
tool for error detection/error cérréction. thé fechnique is, however, only
applicable to a precisely deterministic machine, whenever errors occur in the
course of executién. We shall show that a playback technique for a system
consisting of PSM's may be applfcable, when certain conditions are satisfied,
for determining the most likely subsystem in which errors occurred in the
past.

Suppose a large system is decomposable by two-state absolutely isolated
machines. These two-state machines have the input traceable property in the
past as shown in Corallary 3.8. Since the set of decomposed component ma-
chines is isomofphic to the original system, we can determine most past system
performances from the present state distribution. The input traceable pro-
perty is a useful and key property of the (absolutely) isolated machines which

shall be presented later. The past inputs supplied to the whole system are
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the same as the inputs traced by absolutely isolated component machines; there-
fore, visiting frequencies of individual states can be determined. The state
(or subsystem) which has the highest visiting frequency is the most-likely

state in which errors occurred in the past machine operation. Thus, we call
it“an input traceable machine as well as a diagnoseable machine (or in more
general terms, a performance traceable machine), if the machine is absolutely

.

isolated after an error occurs.

5.1 Decomposable PSM by Kronecker Product Matrices

When a PSM is decomposable by interconnecting component PSM's with
Kronecker product matrices, the PSM may be a past-input-traceable machine.
Conditions for an input-traceable machine of a PSM are presented in this sec-

tion.

Definition 5.1.

A and A' in a Kronecker product matrix AGA' are called the left (fhe

first) and the right (the second) machine, respectively.

Definition 5.2:

Two or more PSM's which have the same number of states may be consider-
"ed as a single PSM by introducing combined input symbols of the original ma-

chines (see Chapter [11). The single machine is called a combined machine.

Example 5.1:

Let Ml and M2 be two-state PSM's. The state transition matrices of

the PSM's are as follows:

1-a a\ . l-c ¢ l-e e
- M (X )= ’ M (Y ) = ’ and M (Y )'= .
U b }-b) 27 d 1-d 272 foo-f
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The combined machine MC is defined by introducing new input symbols 'x]y]' and
'x]yz'. The corresponding state transition matrices are found as follows:

i-g g 1-i i
M (x,y,) = and M (x,y,) =
c 171 h o 1-h ; c 172 i1

where g = atc-a(c+d), h = b+d-b(c+d), i = ate-a(e+f), and j = b+h-b(g+h).
Note: g,h,i and j are found by matrix multiplication, M](x])'MZ(yl) and
My (%) M, ()

A matrix product of two Kronecker product matrices is another Kronecker
product matrix. Each element of the Kronecker product is a matrix product of

two left machines or two right machines. This is described in the following

lemma.
temma £.1: »
Let A = (aij)’ B = (bij),-A' ='(a;j5,Aand B! = (b;j) be matrices, thén,
(A@A')."(.BQB') = (AB‘)Q(A'l.B').A (5.1)
Proof: ’ '

Let A,B and A',B' be mxn and pxq order matrices, respectively.

AGA' = (aijaLQ) = (cp i) = C

L

where the double indices ik,j2 of the element of C are ordered lexicographi-

cally,

=~
4

11,12,...,1p,21,22,...,2p,...,ml,m2,...,mp;

je = 11,12,...,1q,21,22,...,2q,...,n1,n2,...,nq.

0 - l ° ' 3 . ! 3 ‘
The ik, mn entry in AQA' is a0 Ao and the mn,j% entry in B®B' is bmj b2
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in the left side of (5.1). In the right side, the ij entry in AB is Xt ait btj’
1

and the k& entry in A'B' is Xr aér brz' Therefore, the ik,j% entry in

] ¥ H
(AB)®(A B ) is Zt CI btj zr 3, brk

a. b (5.2)

E g im® kn mJ nl é z immj kn ng

Since the summation of n is separable from the summation of m,.(5.2) is rewrit-

ten as
] ] ’
) z"almbmJ Kn nz =la im mJ ) aknbnz (5.3)
m n ) m n
The right side of (5.3) is the same as the right side of (5.1). The
reverse proof is simiiar to this proof, so the reverse proof is omitted. 2 |

Suppose an N-state machine is decomposed by a Kronecker product. From
Lemma 5.1, a state transition, represented by the multiplication of Kronecker
product terms in the left side 6f.(5.]5, can be.computed in another way.
Namely, the iﬁdividual terms in ;he right side of (5.1), AB and A'B', are ma-
trix products of the component machines. A.Kronecker product operation on
these products represents the state transition. Therefore, the decomposable

PSM by Kronecker product component machines may be an input traceable machine.

Theorem 5.1:

1f a PSM which consists of four states is decomposable by K}onecker
product component machines and if each combined machine of all the left com-
ponent machines/all the right component machines is an absolutely isolated
machine with respect to the (1,2) or (2,1) elements, then the PSM is an input

traceable machine.



Proof:

In reference to Figure 4.3, th

tor form consisting of input symbols of

\

the transition of the PSM is determined

bined left and right component machines.
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e input symbols to the PSM are in a vec-

component machines. From Lemma 5.1,
by the Kronecker product of the com-

From the imposed assumption, each

céhbined component machine is an absolutely.isolated machine. Thus, all past

input symbols (string) to each component machine can be determined uniquely

using Corallary 3.8, and the past inputs to the PSM can also be determined,

since each original ~symbol to the PSM is a vector of input symbols of each

component machine.

Example 5.2:

A PSM which has four states/four symbols is given as follows:

—
wi

i1 11

T 2 T 2
'L71_3_.

Mly,) = I 7o 10
1 1 1 1

162 16 2
17 1 3

16 10 16 10

21 24
./35 35
21 2 9
M(y2)= 3 10 3 10
lnr s

15 5 5
nmi-1.9

15 10 15 10

— le= Bl w

l\.n O\IU'l l 1

|\| = —-'I\l N —
(=

(o))
o

| Wi i
Ry \_nl—n
(=]

._..-l_;:- —
\Sa} (%2
it | et \nl-—-
=

=

-

301\
L 2 \
3 3
voT0 ) (5.4)
51
6 2
153
6 10
(5.5)

--I.Jr wi— W=
U
I\o v —-lLo v
o
\\\__,_‘/‘

i
o
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e

(5.6)

_0
r~]—

—jun
_0
Nl -
_0
[ s o 7,
_0
o~ ~N—
_0
~i—  ~ln
=3
Nl =
_0
o=
o
o~ 3_1
il
——
o
>
N’
= -

o

_0
71|

o
N\ r—
_O
| s o
_0
] r—
_0
3]

o
31.

and

2 [T

—t

~Hn

- enjin

N

~Huin

onjr

(5.7)

N =T

on|r

—_—0
i =

) [7a)

~— oo

~in

— oo

"

r~}oo

~Hunn

~|co

O
N

— o

.I_O
-l -

\/’l\\

Mly,) =

By inspection, we find

- Mly,) = M](xl)@MZ(x2>

(5.8)

M(yz) ='M](x2)eMz(x3)

M(y3) = M](x3)®M2(xh)

Miy,) = M, (x,)0M, (x)

»

), - and M](Xl*) =<

where M](x]) =(

(5.9)

~lr —loo

o3 ~[oo

_0
Nt -

o
o~ 3_1.

M](x3) ==<

(5.10)

TN
«
e G G
_0
1_2 e
/lll\.\\

[

—

(3]

X

b

[o)]

=
S
9_0
onfun o~
.I—lm
i~
~——

]

—~~

X

S

o~

x
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() 5 5 (x) 5 5
M., (x s and M,(x,) =
2 9 27 \s 7
10 10 10 10
Therefore,

X X, x3 ' [ %y
y] = N s y2 = s y3 = ) and yh = A
2/ A x3 Xy, ) X

Consider a product of M(yi)M(yj) for i,j = 1,2,3,4,

)}

MOy ) My;) = Ot (x D8y (g ) T, Cx Dt (x

j+l

M (x;) M, (x ) JeiM (x|+l) Z(Xj+])1
where i+l, j+1 and k+l are found Eyﬁmod(h) operation, residues of the power 4.

= oy NV s 1

].,

M (Axk)»@” (Xk+|

{Ml(xi)M[(xj)Ml(xk)}®{M2(xi+l)-MZ(X )Mo (x )3
) ‘ (5.11)
Thus the behavior of the PSM for any input string y*sY = {y],yz,y3,yh}

is determined by the behaviors of the combined left and the combined right ma-

chines, M] and MZ’ by corresponding input strings x*ex, where X = {x],xz,x3,x4},

to y*.
We shall investigate the combined left and the combined right machines
using theorems developed in Chapter b,

The Left Machine

Consider the combined left machine described in (5.9). By using nota-

tions in Chapter 111 and applying Lemma 3.3
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>
i

max{l-ai-Bi} =
i

>
]

min{l-ai-Bi} ==
i 1

The combined left machine is classified in Case 2 of Lemma 3.3 so that

and Rmin = 0 by Definition 3.2.

From Theorem 3.3, we have four e, %3 %3 l; and %& Considering a pair

3

of adiacent o and each eigenvaiue of each metrix of the machine, we have

i | 2" 3 y
3 2 1 ]
% 4 4 3. )
3 ! S
A 16 T 15 8
8 1 3 11 7
i 16 10 15 8

Since A and 1, are positive, the case for the pair (1,2) belongs in Case 1 of

Theorem 3.3 where a;-a,>X must be satisfied.

2—2 smax

Iw

is true.

(&)

_____ > 115
b 4 4 5 16 1
For the pair (2,3), the case is classified as Case 2 of Theorem 3.3, since

A,>0 and A,<0. No ccnstraint is applied.

2 3
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The case for the pair (3,4) is determined as Case 4, since A, and Ah are nega-

3

tive a3-ahzjx3 Smax should be held

—_— - i l—-> %n-%g:= %g-is true.

Similarly, adjacent pairs of Bi are satisfied with the conditions of Theorem
3.3 using a = max{Bi} = %z _ Hence, the combined left machine is an absolutely

i
isolated machine.

The Right Machine

Consider the combined right machine, (5.10), and apply Lemma 3.3 and

Theorem 3.3.

i 1 2 3 b
3 3 L 1
% 5 5 2 5
\ i 1 L2 L
i 10 8 10 10
A L 11 7. 3
i 10 Lo 10 10
_ _ 4 _ _ 1 o] =1
a= m?x{ai} =%, €= m;n{ai} =5 A, = g-.and AC =5
This case is classified as Case 3 in Lemma 3.3,
[
s o e wltE _hps_ 115 15
max  ° 192 5. L 5 (1] 16~ 16’
c -25
and
S =C+a>\(l+>\)=i_-.]_]_2..2_§.=.]_.-9_._.li.8£,__3—>0
min ]_XZ 5 55224 5 48 240 240 ?
c
so R =0
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Since l] and AZ are positive, the case for the pair (1,2) is Case 1 of Theorem

3.3.

;_

3 c 5 %— is satisfied.

L
I3

Since k2>0 and l3<0, the case for the pair (2,3) is Case 2 of Theorem 3.3 and

no constraint is imposed. .
1 ]

The case for the pair (3,4) is Case 4, o -0,>~A, S should be satisfied since

3 3
A3 and Ah are negative
yo1_3 ,2.15
3 5> 1016 'S held

Similarly, adjacent pairs of Bi are satisfied with the conditions of Theorem
3.3 using a = qu{S } = e Therefcore, the ecmbined right machine is al<o 2n
" C
absolutely isolated machine.
Lemma 5.2:
(A]&Aze. . .aAn) . (BlQBZQ. . .QBn)

= (A]BI)Q(AZBZ)Q...&(Aan). - ’ (5.12)

Proof:
By the mathematical induction, n=2, the lemma holds as shown in Lewmma

5.1. Suppose we have the following equation at n = m-1-

(A]eAze’. . .eAm_]) -(8,08,9...68 )

m~1 m-l

The above equation is rewritten as
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where

»
]

AJOA,B. . .BA

B,€8,8...88 .,

C= (AIB])Q(AZBZ)Q...@(Am_]Bm_]).

1’

w
"

By multiplying (AmBm) on C from the right fn the sense of a Kronecker product

and applying Lemma 5.1,
C®(AmBm) = (A@Am) . (B@Bm)

is held at n=m. This case is the Equation (5.12). ' e
Theorem 5.1 can be extended to the PSM which consists of 2" states,

n>2.

.Theorem £.2:

If a PSM which consists of 2" states, m>2, is decomposable by.Krdnecker
product {two-state) component machines and if each combined machine of the
first, the second,...the mth component machines (in Kronecker product) is an
absolutely isolated machine with respect to the (1,2) or the (2,1) element,

then the PSM is an input traceable machine.

Proof :
The proof is similar to that of Theorem 5.1 by using Lemma 5.2 and

Corallary 3.8, so it is omitted. i}

When interconnecting component machines in a Kronecker product struc-
ture are the kth absolutely isolated machines, the composed PSM is the last k+i

input symbol traceable machine.
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Corallary 5.3:

If a PSM which consists of 2" states, m>2, is decomposable by Kronecker
product Etwo-state) éompongnt machines and if each combined machine of the
first, the second,...the mth component machines (in Kronecker product) is at
least the kth absolutely isolated machine with respect to the (1,2) or the

(2,1) elements, then the PSM is the last k+l input symbol traceable machine.

-

3

Proof:
This is a finite case of an infinite length input string in Theorems
5.1 and 5.2. This proof is similar to those theorems by using Lemma 5.2 and

Corallary 3.9, so the proof is omitted. &

5.2 Decomposable PSM by N(N-1)/2 Two-State PSM's

A decomposable PSM by interconnecting component PSM's of a Kronecker
product structure is presented in the previous seclion as an input traceable
machine, if each combined component machine in a Kronecker product interconnec-
tion is an absolutely isolated machine.

The decomposition presented in Chapter 1V, Theorems 4.4 and 4.5, is a
parallel interconnection of cohponent machines. From the parallel interconnec-
tion and the property of the isolated machine, a decomposable PSM by Theorem

L.5 may be an input traceable machine.

Theorem 5.4:
If a PSM is decomposable by Th=zorem 4.5 and if each component machine
determined by the theorem is an absolutely isolated machine, then the PSM is

an input traceable machine.

Proof:

Since the PSM is decomposable, there are three two-state PSM's and
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each two-state PSM is an absolutely isolated machine. By Corallary 3.8, all
past input strings to each component machine can be traceable. The past input
strings (each component machine and the interconnection of component machine)

Ay

are known. Therefore, the PSM is an input traceable machine. 5.1
Similarly, with Corallary 5.3, we have the following corallary.

Corallary 5.5:

If-a PSM is decomposable by Theorem 4.5 and if each component machine
determined by the theorem is at least the kth absolutely isolated machine,

then the PSM is an input traceable machine to the last k+l symbol process.

Proof:
This is an finite case of an infinite length input string in Theorem
5.4, This proof is similar to that of Theorem 5.4 by using Corallary 3.9

instead of Corallary 3.8. Therefore, this proof is omitted. &

Remark: The original input traceable machine may be affected by an error occur-
rence during machine operation. In other words, after an error occurs the
character of the machine changés.' Therefore, the eigenvalue of the state
transition matrix of the machine may be increased in the magnitude , hence,

the property of tﬁe absolutely isolated machine may be lost. However, as long
as the absolutely isolated property is held, the machine is an input traceable

machine and is a diagnosable machine by the playback process.

Generally speaking, necessary conditions of the input traceable pro-
perty; (1) an N-state PSM is decomposable by two-state component machines and
further more (2) all the decomposed comporent machines are absolutely isolated

machines, are fulfilled by a class of N-state PSM's. In other words, appli-



cabilify of the input traceable property is limited within the ciass. More
powerful technique for estimating the past performance of an N-state PSM is

presented’ in the following chapter.

152
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Chapter VI

ERROR DETECTION IN A LARGE COMPUTER SYSTEM

\
é. Introduction

When correcting an error in hardware or software, systematic and
immediate detection of the subsystem which possibly contains the error is
very helpful. We shall present a statistical estimation technique to

economically find an erroring subsystem?,

The statistical technique has advantages when compared with the
trial and error procedure; the advantages can be demonstrated by the
following example. Suppose that a system has ten subsystems and that one
subsystem contains an error. A maintenance engineer has ten checkboards
to detect the error for each individual subsystem. He picks a subsystem
to check. |If this subsystem is error free,'then he picks another sub-
system and so on. He continues to check subs?sfems until the subsystem
which contains the error is found. The order of choos{ng subsystem is
random, and no prior knowledge of error occurrences exists. Neither the
frequency of the past error occurrences nor a diagnostic table for error
_symptoms is used.' Thus the engineer assumes the edual probability of
error occurrence in each subsystem, namely 1/10, and therefore the

expected value to find the subsystem which contains the error is:

. 0 ,
Elnl] = ¢ i = 5.5,

Lo
1 10
Over a long maintenance time span, the average time to find the erroring

subsystem is 5.5 by the trial and error me thod .

t1t is assumed that error occurrence may be proportional to subsystem activity
in hardware. In software, it should be said performance measurement of sub-
system activity.
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The proposed statistical technique provides a probability distri-
bution of each subsystem's activity. Suppose the engineer has the proba-.
bility distribution (0.08,0.03,0.21,0.05,0.04,0.02,0.19,0.07,0.3,0.01) for
activities of subsystems 1,2,...,10. He checks the ninth subsystem first
because of its largest probability 0.3; If the ninth subsystem is error
free then he must pick the third subsystem, because if has.the,seépnd

L]

largest probability 0.21 and so on. The expected value is found as follows:

Eln] = 0.3+0.21x2+0.15x3+0.08x4+0.07x5+0.05x6

+0.04x7+0.03x8+0.02x3+0.01x10 = 3.04

using the statistical technique, the average time to find the subsystem

which contains the error is 3.04 in a long maintenance time span.

Since the woirking cost of a large computer system is very expen-
sive, a reduction in computer downtime (in the example downtime reduction
from 5.5 to 3(04 in ratio) not only improves computer efficiency but alsc

decreases the loss of manpower due to .computer dcwntime.

In Section 6.1, an iterative process of model building (analysis
.of a computer system, design of a model, testing of the model; reanalysis,
redesign, and retesting to improve the model) i; emphasizea. ‘Techniques
to estimate the most active subsystem (in which error occurrence ma? be
proportional to activity) are presented. An optimization to estimate
the most likely active subsystem is mathematically formulated; the optimi-
zation becomes a nonlinear mathematical programming problem which is

described in Section 6.2.



An application of the estimation techniques developed in this
research to a real computer system is presented in Sections 6.3 and 6.4.
.In Section 6.3, a model of a computer system is built. In the last Section,
daily computer operation is simulated. The optimization of the nonlinear
mathematical programming is applied on the simulated result in order to

find an order of subsystem activities.

- »

.

6.1 Model Building

Modeling a computer system with a Moore type generalized proba-
bilistic seduential machine is discussed in Chapter Il from a viewpoint
of multi-levels and hierarchey structures of the system. Scme difficulties
in modeling are emphasized in Section 2.7. In this Section, modeling is

discussed from another viewpoint how the difficulties can be overcome.

Large scale,'complex system analysis and modeling do not lend them-
selves to a conventional approach. There are no overall methods to be used.
There is no clear place from which to start or end. A system behaves, how-
ever, according to a set of re]ations. This is the precise point of attack.
Even though initially the rules for interrelationships may not be consis-

“tent, they form the basis for model structure.

A model must start somewhere. Since there are numerous choices,
it is difficult to develop a model without going through & process of set-
ting down hypotheses and abstractions. A representation of the system -
the rules and relationships that describe it - is defined as the model.
In a sense, the model becomes an algorithm, a procedure statement of the
problem, or a set of numerical equations. Once a coarse model of the over-
all system concept is established, the model becomes a definition of the

system problem and a working tool.



‘Adequate data for a model are usually not available but a model
under investigation needs (1) data, (2) system constraints, and (3) valida-
tion. While the GIGO principle (garbage in, garbage out) is well accepted,
something can be learned from “garbag¢ in''. The input data, while not veri-
fied, can be made to represent the range of possible values. Insight is
gained in spite of the lack of qdequate input data. The results can be fed

back to the system analysis and modeling. This process is definitely cyclic,

and the series of steps overlap each other.

In a formulation of the system problem, there must be a statement
of objectives involved, since formulating the problem without formulating
the objectives may mean solving for system symptoms only. It should be
emphasized that the objectives can nét be treated separately from the
model formulation. in some cases;'nbreover, the idea ol a nodel and the
idea of an objective are comp?ete]y.confoundea,_and the form by which the
model is stated is in fact that of the objective itself. The interrala-
tionship of the objective and of the model is subtle and intricate, bﬁt
we have to be quite clear about the way in which they differ and té under;

stand the way in which they Interact with each other.

We are concérned, in model building with-some understanding of
reality. Reality is observable, measurab]e; and systematic. Observable
means the ability to see some aspects of what is happening, to try and
understand the characteristics of these aspects, and to-be able to build
some form of prediction not only of behavior but also to compare the
results of this hypothesis by making further observations with actual

performances of the subject.



Another criterion of reality is that certain aspects should be
measurable. In some cases, measurabiiity is not possible; however, measura-

bility sbould be able to estimate some events in common terms.

The third.aspect of reality is a set of causes and effects inter-
acting simultaneously in a complex manner. The sets of causes and effects
which can be allowed to operate on actual systems can be numerous and in
general more than we can conveniently handle or would 1ike to handle. We
have to have a meaningful way of classifying these causes and effects in

groups.

The system operation is continuous in time with discrete states
of the system, and we are able to describe the>present state of the system
at any time. The richness involved is such that we cannot hcpe to consider
and tabulate every bit of the system's information, and hence, the system
may be classified rather than described. -The'sets of causes, states, and
objectives are linked together by means of basic assumﬁtions, conclusions,

and a rodel.

The objectives are admitted in order that we can devise-a useful

" and meaningful hypothesis which can often be formulated as a qualitative
statement of the system problem. The qualitative statement gives an out-
line of what is termed a model. A set of.states of the'model can be derived
from the set oflcauses (or from reality) by prediction. Then the behavior
of the model is compared with reality. Clearly there is never an exact
correspondence between them. Discrepancies can be determined by direct

experimentation on a small scale or by observation on a large scale. There
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are three ways to judge a discrepancy: (1) it is within an acceptable
level, (2) it may be explained by chance causes depending on the criterion
- for acceptance, and (3) it is too large to be acceptable. The last case

must return to the previous stage in order to improve the model.

In early stages of model building, we may often neglect to consider
what the objectives are. Frequently, objectives are not realized until the

~

end of the process of model building; ”}f this is the case, then looping

back of the process has to take place so that objectives can be reformulated.

We shall build a GPSM model of computer system with the remaining
of the process on how to overcome difficulties of medel building. From the
reality of observable and measurable system behavior, input job types and
output activities of the model are determined. Internal states of the

model are defined by considering causes and effects of the system.

The next phase is to determine the steady state distribution and
output activity distribution for each individual input job'type. Typical
benchmark computer programs which belong in each job type are selected as
real input symbols of the model or the GPSM. Each set of benchmark programs
.which represent a job type is executed in the computer. During execution,
the performance of the computer system is monitored by the software package
or hardware instrument in order to decide patterns of these two distribu-
tions. Execution of sets of-all job type benchmark programs produces a
set of steady states and output activity distributicns, which is the result

of a calibration of the system performance. This phaée is called the cali-

bration phase. The calibration data is used in an optimization process

described in Section 6.2.
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Assume that output activity distribution during normal computer
operation is available. When an error (or a default) has occurred in the
computer operation, estimation of the most likely active subsystem (to
which the probability of error occurrences may be proportional) could help
maintenance personnel quickly to fina the error. The gstimation is an
optimization process using the output activity-distributions in normal opera-
tion and in the célibration‘ph;se. The result of the optimization is the
most-]ike]y mixing ratio of the input job types; Next, the summation of
the steady states weighted by the most-likely mix}ng ratio for each inpﬁt
job type indicates the past activity of each subsystem. The estimation can
be improved by combining prior knowledge of error frequency and the other
estimation techniques; for example, maximum likelihood estimation and Bayes

estimation, etc. The calibration phase and the estimation phase of sub-

system activity distributions are shown in Figures 6.1 and 6.2, respectively.

Determination of the state transition probabilistic matrix for each
input job type and of the transfer matrix of‘states versus output activity
are not necessary to detect the most-likely active subsystems; however,
this determination may be useful in GPSM model simulation of the behavior

of the computer system.

Given the matrices in the terms of GPSM, S is the internal states
and, X is the input joﬁ types, Y.is the output activitx, M{x) where xeX are
the state transition probabilistic matriﬁes, and T is the transfer matrix
'of.state versus.output activity. There are several ways to determine the
matrices. For example, tﬁe matrices could be estimated directly by analysis

of the operating system by guessing required services from individual input
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job types, and by collecting statistics of the svstem behavior from
system monitoring (software or hardware monitor) during the calibration
-phase. Also, normal system operation can be used to form the matrices.
When statistics are available, the problem is to determine the unknown
entries of the matrices using several observed operational points of

system behavior; the least mean square method (or other curve fitting

techniques) can ge applicable to establish the matrix entries.

in general,.the hardware measurement technique easily provides
information as to what happened in a system, and the software measurement
technique easily provides information as to why something happened in a
system. Most of the software techniques have the attribute of inserting
themselves into the normal flow of programming execution courses to obtain

L]
H
H

the required infcrmation, but aimost ail data scquisition may be performed
with software techniﬁues. Due to the insertion, software measurement tech-
niques do use facilities of the host system. They téke'ﬁot only Central
Processing Unit (CPU) time to execute, but also space in processor storage,
space in auxiliary storage, and time to read out the results of the measure-
ment. These system facility requirements are the principle disadvantage of

software measurement, which causes a disproportionate interference with

normal system operation.

Principal reasons for utilizing hardware measurement techniques are
ease of use, removal of system overhead.by measurement, and the ability to
obtain data in a way which does not interfere with the workload in process
by the host system. However, one of the most critical considerations in

the application'of hardware téchniques is a design of the interfacs



connection between the host system and measurement devices. The
functional capability of hardware techniques is based.on types of
'informatibn that could be obtained from the host'system. A general
characteristic of the interface is that signals in the host system

are either sensed or derived by combinational logic within the system
itself and then d:iven through,an appropriate signal cable connecting

to a measurement device. This kind of circuitry is necessary to sense
as well as amplify fpr transmission is quite time consuming and costly
to construcf in circuit locations of the host system. Furthermore,

when considering various fuqctions that the hardware techniques can per-
form, it would not be unusual to find interface requirements of over 200
signal lines. This is the case if memory address generation is distri-
buted over several functional areas. Complex and lcong wiring reguire-
ments in th}s situation may cause signal interferences wfth the normal

circuit operation.

A data reduction process is usually needed on.collected raw data
in order to produce essential and required sets of measurement data in

both software and hardware techniques.

The following basic assumptions for the model building are imposed

from the proceeding discussion:
1. Estimation or collection of data in output channel activity
is easily accomplished by observation or by monitoring output

channels in the calibration phase and the estimation phase.

2. Estimation or collection of steady state distribution could

]
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be accomplished in the calibration phase because of: (a)

relatively short time executions and (b) known predefined

services required by benchmark programs.

W
»

Collection of steady state distribution is almost a prohibitive
process in regular system operatibn due to the time consuming
and very expensive interface in hardware measurement techniques
and due to large interferences (unacceptable system overhead
and heavy influences to computer workload) in software measure-

ment techniques during long term system operation.

The following special case (in which a system holds the input trace-
able property) does not need to assume the restrictions described in the above:

Application of Input Traceable Property

If the modeled GPSM or all state transition probabilistic matrices
are decomposable into a set ofltwo-state component machines as described in
Chépter V and if the two-state component machines are absolutely isolated
machines, then the GPSM is an input traceable machine. Thus the sequence of
the past input job types supplied to the system can be determined as well as
the histories of state distributions of component machines so that the history
of the state distribution of the GPSM is revealed. From the history, the past
subsystem activity distribution of the GPSM can be computed; the computed dis-
tribution could be the same as the estimation derived from the optimization.
There may be some discrebéncy_between the results of the two calibrations of
the computer system with the set of the Benchmark programs taken befors and
after an error occurred. This discrepancy of the two calibrations may be
caused by the error. Therefore, the discrepancy is a clue to determining the

state or subsystem which contains the error.



6.2 An Estimation of the Most-Likely Active Subsystem

When a computer system is calibrated with n job types, the results
of the calibration are (1) n steady state distributions and (2) n m-output
activity distributions for each input job type. Let the steady state distri-
butions and the m-output activity disfributions be:

S 435 35S 4...35 ande ,e ,e ,...,e for-i=1,2,...n, respectively, where
it 12 i3 ig il -i2. 13 im : ‘

2 is the number of internal states (or subsystems) of the computer system, m
is the number of output activities (or output channels) and n is the number of

input job types. The output activities as denoted by: P (E |x ) =e are
| ij

normalized by numerical quantities A , where x- and E are the ith input and
the jth output activity, respectively. The probability e can be tabulated

m
as input x versus output activity E . Note £ e =1 for all i's.
i S j=1 . ij

Given an output activity distribution, denoted as a ,a ,...,a
: I 2 m

and measured during a normal computer operation, an optimum job type distri-

bution I ,I ,..,I produces the closest job type mixing ratio with the minimum

1 2 n
difference between a ,a ,...,a and BP (E ),B P (E),...,B P (E) where
’ : -1 2 m T r 1 2 r 2 mr m
_ n
P(E)= I Te , ‘ (6.1)
Foj d=l i A

and B for j=1,2,...,m is a factor defined in (6.7).
]

The probability P (x |E ) is found as:

roi j
Hie._ (6 )
P ( E) = 1] ’ .2
r xil j P (E.)

r
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We introduce an unknown probability rij which constitutes

m
n,= 3 r,, fori=1,2,...,n, (6.3)
N N
j=1
n
pr(Ej) = ) r, for j=1,2,...,m (6.4)
i=l
n nom :
and } m,= 737 ) ro= 1 (6.5)

| L P8 I = B

A mathematical formulation of the optimization becomes a nonlinear

mathematical programming problem to find the most likely input job type, mix-

ing ratio of a set HI’HZ""’Hn'

. m .
Hin y {aj-aj(ﬁ H.eij)}z (6.6)

2
{a.-B.P (E, =
aJ J r( J)} i=] =1 l

.. .
ij j=1 J

N3

subject to (6.5), where Bj for j=1,2,...,m is defined in (6.7).

Note rijzp for all i's and j's since rij is a probability. In order to find
the optimum mixing ratio Hi’ i=1,2,...,n, the Lagrange multiplier method is

used to solve the nonlinear mathematical programming probiem easily.

n n
B, )} e,. .= ) A e,,. I, for j=1,2,...,m (6.7)

where Ai is the normalized factor of the output activity distribution of the
ith job type.
The nonlinear mathematical programming problem described in (6.5)
and (6.6) is optimized by the Lagrange multiplier method which is shown here:
. m
Min = Z {a ) 2

I,

i j=1 J



subject to
n
h= 3 I -1landl >0 for i=1,2,...,n. .
i=1 i i

where m and n are numbers of output activity channels and of job types in
computer system modeling, respectively. Define a function g =f + Ah.

Calculate Jocobian of g with respect to I ,I ,..., I and A. The minimum of
1 2 n

-

g exists at the po}nt which is the solution of the following equations:

m n
=232 {a- T A e TI}I-A e )
C 5=l ) k=l ok K k00
n m
11 i) k=l k kj k J=1 50 ij

ﬁ:h:o
oA

Thus we have n + 1 unknown variables, T ,I ,...,I and XA and n + 1 equations
1 2 n
in Jacobian of g. The unigue solution of the simultaneous equations can be

found by the Gauss-Jordan method. The unique solution may not satisfy the
other constraint, H. 20 fo} all i's.

The funct;on g is a linear combination of the functions f and h,
and the functions f and h are quadratic and linear, respectively. Therefore,
the surface of g is unimodal. When a Hk among the solution of the simuftan-

eoiis equations is negative, the optimum value of the minimization along with

the T axis is zero because of the unimodal characteristic. The rest of I

k . i
is needed to compute again the simultaneous equations without the I term (or
k
by forcing T = 0). Computing examples of the optimization shall be shown in

k
Section 6.4.

An illustrated exampfe of‘én optimization is in Figure 6.3. Three

job types and five output activities are assumed in the example. The input

167
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job type mixing ratio is given as: @ ,I , for job types x ,x ,x and the
1 2 3 1 2 3

optimum solution is indicated with "X's" in the figure.

After the optimum solution, which is the optimum mixing distribu-
tion I ,I ,...,0I of the job type is .found, the most likely active state (or
subsyslem? in th2 past normal computer operation can be.detérminéd by cal-
culating the state, sum distribution s *,s *,,..,s * of ‘the calibratéd steady

1 2 2
states weighted by the optimum mixing distribution:

(s %, *,...,s *) = (I ,01 ,...,1)/s s ... s

1 2 L 1 2 n 11 12 14
s 3 S
21 22 22
. 4 L] tToe . (6.8)
S s s
nl n2 ng

L.

The maximum s %
i

among i = 1,2,..., & is the most likely active state in the
past computer operation based on the past output activity distribution a -,

a ,...,a and the calibration results, s ,s _,..

2 m , %2 S 3N e

-
i2’ “im

for i = 1,2,...,n. The second largest s * among i =1, 2, ..., & is the
i
second most likely active state and so on.

169
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6.3 An Example of Computer System Modeling

.

In Section 2.7, the computef model used is a generalized probabilistic
.sequential machine. The computer system in Figure 2.6 is a block diagram of
the UNIVAC 1110 EXEC8, and we shall continue to use this system as a discussion
example. Another block diagram of the system is depicted in Figure 6.4 and
tée connectivity matrix of the figure indicating the logical execution course
of the computer gystem is ;th; in Table 6.1. As emphas%zed in Section 2.1,
the probabilistic property of a computer system can be due to unknown job se-
quence, unknown job‘characteristics of required services, asynchronous inter-
ruption, Interlocks of hardware resources, and exhaustion of a given time
slice for a task. Random state transition from one state to another in thch
both states are not connected directly in the cbnnectivity matrix may happen
due to characteristics of the computer system operation.

For simplicity, we shall reduce the number of the states of the com-
puter system from 34 to 16 by reasonable combination of a few states. The re-
duced states in a graph is shown in Figure 6.5. User activity in Figure 6.4
is split into two sections, the user's area and the user's ER (Exec Request)
[72], in the new Figure 6.5. :

We shall use system monitoring data of EXEC 8 computer systems pro-
vided by UNIVAC [74], [75]. The data are collected from two computer systems,
designated the "A" and the ''B''. The two computer systems are differentiated
by the applications they support. The "A" system.processes most of the
scientific programs in batch mode on]yf The "B" system processes most of the
commercial (business) workload and three time-sharing/online programming real-
time mode. Figures 6.6, 6.7, 6.8, and $.9 were obtained by continuously mon-

itoring 24-hour periods arbitrarily defined to start at or before 1200 hours

daily. The explanations for the figures are quoted from the UNIVAC reports.
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Figure [6.6] is representative of CP (Central Processor) behavior
on the "A'" system. It is an hourly plot of CP utilization from
1000 hours on October 19 until 1000 hours on_the 20th. The upper
curve traces the percent of wall time that the CP is executing
any code except the idle loop in the exec. The lower curve
‘traces the percent of wall time that the CP is executing EXEC 8
code. The difference between the two curves, then, is the per-
cent of wall time that the CP is executing applications program
code commonly known as guard mode time. Note that the hourly

CP idle value is the difference between a hypothetical horizontal
line drawn through the ''100%' value on the left and the top curve.
For example, the hour between 1000 and 1100 can be accounted for
as follows: 20% of the time the CP was executing EXEC 8 instruc-
tions; about 67% of the time it was executing applications pro-
gram instructions; therefore, the CP remains about 90% utilized--
save the valley at 1930 hours. The Dynaprobe data (which is a
UNIVAC hardware monitoring system) for that interval indicated
operator intervention; but, the major cause of the dip was most
likely forced processor idle due to FASTRAND 1/0 (file system
loading).

While Figure [6.6] establishes -an ideal processor profile for a
batch system, Figure [6.7] depicts something less desirable.

The data presented in this plot was collected during October 5
and 6 when turnaround for the large FORTRAN application mentioned
earlier was waning, Like the previnus time series, it is an
hourly summary of CP activity. in the first i0 hours, it appioxi-
mates the series in Figure [6.6]. However, after 2200 hours, the
two series have little in common. Ffor 12 hours or so the ''A'
system exhibits extremely cyclical behavior. What is captured
here are extreme periods of forced processor idle due to the

8460 Disc subsystem which (is hardware of file systems.)

Both the business computation in batch mode and the time sharing/on-
line of user real-time applications co-exist on the ''B" system. During normal
working hours, however, the batch processing which comes from a card reader is
superseded due to the requirement of fast response time of the time sharing/
online application to remote terminals. A small rnumber of remote batch joos
can be executed in the working hours by issuing a "@START'" EXEC 8 command [76].

{Figures 6.8 and 6.9) supply sufficient evidence to the contrary.

In both figures, the CP utilization is plotted on an hourly basis

from 0600 hcurs one day to 0600 hours the next. The lower curve

traces the percent of elapse time that the CP is executing EXEC 8

code. The upper curve traces the percent of elapsed time that

the CP is executing any code except the idle loop in the Exec.

The difference between the two curves, then, is the percent of
time that the CP is executing instructions from applications pro-



s

grams. MNote that the hourly CP idle value is the difference be-
tween a hypothetical line drawn through the "100% busy'" level
and the top curve. In Figure [6.8] for instance, the hour be-
tween 0660 and 0700 can be accounted for as follows: 15% of the
time the CP was executing EXEC 8 instructions; about 20% of

the time it was executing applications program instructions;
therefore, the CP was busy about 35% of the hours.

The CP shows some very definite trends in Figure [6.8] that have
not been discussed previously. Starting from a reasonably idle
state in the morning, the CP utilization c¢limbs steadily from
0730 hours to 1400 hours. |t begins to trail off until about
1630 hours. At that point, a rather significant change takes
place and the CP climbs to a totally saturated state in three
hours. It reacts slightly at about 2400 hours. A surge is made
again, but soon the CP activity is trailing off in the morning
hours.

Such behavior can be explained quite readily. First, the time-
frame of 0300 hours to 0700 hours is a period in which the sys-
tem is often idle. At about 0700 hours, a spike in the utili-
zation could have been caused by the initialization of real
time files and programs and/or to the commencement of ESI
(communication iine) network management functiors (time shar-
ing.) More likely than not, this transient was due to some
continyency since a8 simiiar Spike dues not appear it Figure
[6.9] at that time. The steady rise in CP activity during the
morning and early afternoon hours is closely correlated to the
real time transaction load. It increases as more terminal users
come on line. Similarly, it traild off toward 1630 hours as
users finish making their daily inquiries and sign off. How-
ever, a more substantial reason for this particular trail off
can be identified. Figure [6.8] is drawn from data collected
on a Friday/Saturday boundary. In the initial description of
the shop schedule, it was stated that all real time applications
are removed at 1630 hours on Friday. Since a critical check-
point of the master real time files is taken immediately there-
after, batch runs are constrained from entering the system at
that time. At the completion of the checkpoint, there is an
additional 123,000 words of allocatable program space for batch
work. Eventually the system becomes totally CP bound three
hours into the batch production period. The drop at 2400

hours is probably due to a shift change. Finally, the drop
after 0100 implies the machine is running out of work to do.

The time series in Figure [6.8] is somewhat different from that .
of Figure [6.9]. In the latter, the total CP utilization ,upper
curve, shows no tendency to decline in the late afternoon. Thus,
neither the 1ull at 1630 hours nor the fantastic differential
between the real time and batch only processing periods is evi-
dent. In both sets of curves. however, the EXEC busy line, the
lower plot, shows the characteristic day time rise/fall.

The explanation for this observation lies again with the oper-
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ations schedule. Since Figure [6.9] is based on data collected
across a Wednesday/Thursday-boundary, the time series reflects
the fact that IMPACT (a time-sharing program) is still in the
system past 1630 hours. No checkpoint is being taken on Wednes-
day, therefore batch runs are allowed in and quickly use the
‘available CP capacity. One observation that can be made from
either of these figures is that the time spent processing appli-
cations programs, referred to as guard mode time, is always less
during periods of real time activity. This phenomenon is caused
by two factors: the overall CP utilization is actually lower
during periods of real time processing; and the EXEC 8 activity
is higher in the same timeframe. '

From the monitoring data, we can determine the five typical input job

types. -

1. Time sharing with the background of a small number of batch
jobs indicated by the time period 1400 to 1800 in Figure 6.9.

2. File manipulation sﬁcﬁ-as FASTRAND (mass storage term in

< EXEC 8) 1/0 and the checkpoint of the computer operation‘in-

dicated by the time periods 1900 to 2020, 2240 to 2440, and
1630 to 1800 iﬁ Figures 6.6, 6.7, and 6.8, respectively.

3. Scientific computation indicated by the time periods 1500 to
1820 and 1630 to 2130 in”Figures 6.6 and 6.7, respectively.’

L, Business computatfon with the normal 1/0 lcad indicated by
the time periods 2020 to 2400 and 1930 to 2240 in Figures
6.9 and 6.8, respectively. ‘ A

. Business computation with the heavy 1/0 load indicated'by

the time period-2240 to 0330 in Figure 6.8.

The CP utilizations by activities, EXEC, user, and idle loop in esch
job type are tabulated in Table 6.2.
By analyzing the operating system EXEC 8, we have estimated state

transition matrices for each input job type to realize the Central Processor
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(CP) utilizations in the above five time ranges, which are defined from the

monitoring data.

Reading from the Computed Steady State from each
Job Type | Monitoring Data Job Type Transition Matrix
Exec User ldle’ Exec »  User Idle
1 |70 23 7 87.2 .E 1.4
2 33 33 34 36.7 29.0 - 34.3
3 24 74 2 25.1 73.4 1.5
b Lo 57 3 38.8 56.9 L, 2
5 38 L8 14 L6.3 Lo.6 12.8

Table 6.2 The CP Utilization in Percentage for Each Job Type

The state tragsition'matrices for each job type are in Tables 6.3 through 6.7.
Computed steady states from the state transition matriceg of each job type are
tabulated in the right frame of Tagie 6.2. Both quantities in Tabie 6.2 from
the monitqring data and from the cbmpufed steady states for each job type are
very similar tb.each other. ‘

The computer system configufations bf the "A" and '"'B'" systems are very
similar. Each input/output data channel is described as follows. Channel O
leads high speed drums as used Swap$ file for multiprogramming/time-sharing
-purposes. Channeis 1 and 2 are a dual channel system to connect high speed/
medium speed drums or disks as auxiliary memories holding the nonresident
elements of the operating system and using temporary files of user's programs.
Channel 3 is utilized as mass storage or as principle.hardware of the computer
file system which is stored in a slow speed drum. Channel 4 is a magnetic
tape data channel. Channel 5 is used as a line printer. Channel 6 is con-
nected to the communication terminal modular control unit as access to communi-

cation lines. Channel 7 is a complex subsystem used as a card reader, a card
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Utilization Percentages of Data Channels

‘*~Eﬂiﬂffl o 1 2 3 4 5 7
gob Type

1 70 20 65 30 5 15 35 10

2 7 35 8 5 30 20 5 15

3 16 25 .35 35 25 75 0 35

4 20 4o 60 30 35 80 0 35

5 w115 15 30 10 15 55 0 20
Table 6.8a Collected and Expected Channel Activities

‘\~Eﬂiﬂffj 0 i 2 3 4 5 6 7
Job Type™
1 75.6  27.2  86.6 37.8 13.1 25.4 A4l.h 13.2
2 3.0 22.h 73.9 5.3 21.h  32.5 6.1 18.5
3 18.1 32,9 10.b 32,0 Lho 81.7 3.6 L49.1
4 16.9 17.2 5.0 30.7 33.8 72.6 3.3 38.7
5 10.5 12.1 24.6 37.0 '26.0 .58.8 3.6 28.5

Table 6.8b The Computed Channel Activities
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Channel o | R 3 s o 7
State

1 2 2 20 3 5 25 2 3
2 1 | 20 30 4 3% 2 2
3 2 2 ko ko 3 kO 3 2
2 2 ko kO 5 30 1 !

5 3 1 50 5 6 30 2 3
6 170 "8° 15 26 1 -12. 95 2
7 179 10 180 26 2 15 90 1
8 1729 15 15 1 -0 8 2
9 182 8 16 25 2 -4 90 2
10 5 b 10 3 10 9 5 10
1 8 5 12 3 8 70 3 9
12 7 3 18 4 20 8 2 6
13 6 5 250 3% 12 £0 3 59
14 38 L 64 10 -5 10 4 65
15 -100 380 280 200 110 35 310
16 20 -130  -lo 20 -20 -0 2 5

Table 6.9 The Transfer Matrix State versus

Channel Activities

L¥I
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éunch, and a [ine printer. These channels are displayed in Figure 6.10.

Utilization percentages of output data channel activities of channels
0 through‘h are reported in the Univac documents. These utilization percentages
are also used in the model. Utilization percentages of the other channels-
are estImated from characteristic job categories and the internal executive
functions of the EXEC 8 operating system. These utilization percentages are
tabulated in Table 6.8a.

The next step is to build the transfer matrix between steady state
versus output data channel activity. We determine the transfer matrix of the
model by trial and error as described in Table 6.9. Negative values in entries
of the matrix indicate interference with the normal operation of the channel
by the state activity, for example, priority schemes used in the operating
system.

The computed utilization percentages from the steady states of each
job type and the determined tfansfer matrix are tabulated in Table 6.8b. The

discrepancy between the two tables in Table 6.8 looks large, but it is an

acceptable range for the first model.

6.4 Computer Simulation of the Example

In the preceding sectfon, the model of a computer system is built us-
ing a generalized probabilistic sequential machine (GPSM). Five input job
t*pes (input symbols), sixteen states, eight output items, five stafe transi-
tion matrices for each job type, and a transfer matrix from state distribution
to the output items have been determined from the computer configuration and
from the monitored computer performance data given in the UNIVAC report. As
defined in the preceding section, the calibration phase and the estimation

phase are involved in an application of the statistic technique. The cali-
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sration phase Is finished by model building. In order to present the estima-
tion phase, daily operation of the computer system is gimulated in a computer
based on\the model which has been built. Then the optimization process is ap-
plied on a simulated result of the daily computer operation. The estimated
error location in a subsystem is compared with the computed simulation result
of"the subsystem activities.

The essentials of.fhe‘simulation are mixing of input job types in
accordance with pseudorandom numbers generated in a computer. A mixing ratio
of job types (input ‘symbol distribution) is predetermined; therefore, the next
state distribution is computered using the state transition matrix chosen by
a generated random number. When a state distribution is reached in a steady
state, the simulation process is terminated. The steps of the simulation are

described in the following paragraphs.

1. Read

State transition matrix and
the transfer matrix, state versus output.’

2. Generate
A random number vector.
3. Print

The matrices and the distribution of the generated random
numbers.

L, Read

The initial state distribution and a mixing ratio of input
job types. '

5. Print
The initial state distribution and the mixing ratio.
6. Loop Entry

Get a2 job type index from the randem number vector.
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7. Compute

The next state distribution.
8. Petermine

Is the present state distribution a steady state?
9. Branch

If it is not a steady state, then compute the present out-
put activity.. Go to the loop entry. :

10. Terminate

If it is a steady state then terminate.

A definition of the steady state for computational convenient is in-

troduced as follows;
Define ej such as

EJ-_>_| 5 (t) WS (e ) -HyS (e ) =W, (tpag) =+

for j = 1,2,3,...,16,

where Sj(tm) is the jth state probability at a time t and W is the weighting

factor at the time tm-k' The weighting is assumed geometric, namely Wl=r,

w2=r2,...,wk=rk,... so that thg sum of wk for k = 1,2,3,... must be one
T L 7= 1 as ko,

thus r = 1
2 L)

Only when the maxim&m ej for j=1,2,3,...,16 becomes less than a given
criterion g, the present state distribution Sj(tm) for j=1,2,3,...,16, is re-
garded as a steady state.

An example of a computer simulation is presented here. A job type

mixing ratio is given in Table 6.10a. Computed steady state distribution 3nd



output channel activities are tabulated in Tables 6.10b and 6.10¢c, respectively.
Since the probabilities of the state distriSution and the utilization of out-
put channels are in a steady state, this situation éf the computer system shall
be continued in a certain time period until the system moves into a transient
period to settle down in another steady state. Suppose an error occurred dur-
iﬁé the steady state. An estimation of the -subsystem's activity is performed

by optimizing the nonlinea£~ma;hematical programming problem described in Sec-
tion 6.2,

The Lagrange multiplier method is used to solve the nonlinear mathe-
matical programming problem. The optimum solution of the problem {the estima-
tion of the job type mixing ratio) is presented in Table 6.10d. The estimated
steady state and the difference between the estimated steady state and the

computed steady state are tabulated in Table 6.10e. Activity orders of the

estimated steady state and the computed steady state are presented in Table

6.10f.

Job Type MNo. | ] 2 3 b 5
Probability I .025 .025 .025 .024 .91

Table 6.10a Mixing Ratio of Job Type Used in a Computer
Simulation

State No. , 1 2 3 4 5 6
Probability .003185 .02859 L07437 .05L15 .05923 .020C

State No. 7 8 9 10 n 12
Probability | 03210  .0323h .03b5h  .03871 .0h1Z3 05339

State No. 13 14 15 16
Frobability .05775 .29751  .06009  .11195

Table 6.10b Computed Steady State
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Channel No. 1 2 3 b 5 o
Percentage Utilization | 30.36 11.69 28.81 35.28 22.89 51.16

Channel No. 7 8
Percentage Utilization | 13.36 25.28

Table 6.10¢c Output Channel Activity in the Computed Steady State

Job Type No. | 1 2 3 -4 5
Probability | .254 .1i0 .0 .636 .0

Table 6.10d The Optimal Job Type Mixing Ratio (The Estimated Ratio)

State No. i 2 3 h 5 6

Estimated .002463  .04395  .07359  .04990  .03584 .02576
Computed .003185 .02859 .07437  .05415  ,05923 .02008

Difference | -.000722 .01536 -.00078 -.00415 -.02339 .00568

State No. 7 8 q “10 1) 12
Estimated | .03381  .02890 .02840  .03283  .0346h .03337
Computed .03210  .03294 03454 .03871  .04123 .05359

Uifference y 00177 -.0CHTh 00514 -.00588  -,00652 -, 02021
State Mo. 13 14 15 16

Estimated .08624 .35539 .06718 L06774

Computed .05775 .29751 .06009 .11195

Difference | .02839 .05788 .00709  .0kh421

Table 6.10e Most-Likely Steady State (Estimated Probability)
and the Difference of the Probability-from the
Computed Steady State Probability (6.10b).

Activity Order 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16
Estimated State ] 14 13 31615 4 2 511 7 12 10 8 g 6
Computed State 416 315 513 41211 10 9 8 7 2 6

Table 6.10f The Activity Orders of the Computed Steady State and
of the Estimated Steady State.
Although the estimated job type mixing ratio by the optimization de-
viates wildly from the imposed mixing ratio in the simulation (as shown in

Tables €.10a and 6.10d), the estimation of subsystem activities indicated in

Table 6.10e is very good. The estimated result is nearly consistent with the
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computed activity order (see Table 6.10f) except states 2,13 and 12,i6. Tre
estimated activities of states 2,13 and 12,16 become higher and lower than the
.computed activities, respectively. The higher estimated probabilities of job
types | and 2 compared with the forced job mixing probabilities in the simula-
tion may cause higher activity in states 2,13 and lower activity in states
12,16. A deviation from the uniform distributed random nuhber thch is used
in the switching of job type mixing could result in the higher estimated proba-
bilities. Nevertheless, the estimated state activities are close enough to
%2e compufed state activities in the example. The expected values,

'Z] i Pr(s{) where Pr(si) is the probability of the ith steady state shown in
;;ble 6.10e, are about 4.80 and 5.12 in the estimated steady state and the
computed steady state, respectively.

Another application results of the statistical éstimation technique
are given in Table 6.11. Probabiiéties of job type mixing ratics in the simula-
tion and the optimization are shown in Table 6.11a and activity orders of the
computed (simu]éted) steady state and of thé estimated steady state are pre-
sented in Table 6.11b. The expected.va]ues'fn the simulated steady statg and
the estimated steady state are about 3.1 and 3.12, respectively.

The optimization provides a good solution consisting with the sim-
ulated result where the probability of a state .is clearly distinguishabie
(larger or smaller) but the optimized solutions of states, where‘prpbability
'differénces between the states in a set aré not large, do not match exactly
to the simulated results. Névertheless, the expected values in the simulation
and the estimation are close enough to each other, so that this technique is
very useful to find a subsystem which contains an error over a lcng mainte-

nance time period.

The detailed results of these computing examples and the computer
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program listings are attached in Appendix A.

Job Type No. | 1 2 3 L 5
Estimated .178 .0 .726 .096 .0
‘Computed .10 .10 .60 .16 .10

Table 6.11a Probabilities of Job Type Mixing Ratio

L 5 6 7 8 9 10 11 12 13 14 15 16
312 2 4 710 11 8 9 6 16 5 1
2 8 9 7 3 6 11 10 16 4 5 2 1

Activity Order |
Estimated State
Computed State

1 2 3
1413 15
k1315

1

Table 6.11b The Activity Orders of the Computed Steady State and

of the Estimated Steady State.

This statistical technique can be applied iteratively on a subsystem,
which is handled as a whole system in order to examine its relative subsystems.
After a determination 6f the subsystem activity order in a system, any deter-
ministic error (fault) detection methods [69], [65] shalf be applicd on each

subsystem to locate an error,
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CHAPTER VI

CONCLUDING REMARKS AND SUGGESTED FUTURE RESEARCH

The probabilistic sequential machine has been broadened into a
more general form. This genefa]izatjon includes uncertainty of incoming
input symbols and a vector form of the outputs. Based on this Qenerafized
probabilistic squential machine (GPSM) theory; a new épproach to the
computer system modeling and error detection problem (regardless of the
computer structure lgvel under consideration) has been presented. The
representation of computer systems by generalized probabilistic sequential
machines and the subsequent analysis are shown to be a useful tocol in

error detection as well as in system performance measurement.

The two-state absolutely isp}ated probabilistic sequential machine
(PSM), which is obtained from newly defined state transferable ranges of
the PSM, has been constructed, These rénges are defined by considering
the signs of efgénvalues of each ;tate transition matrix and are generally
narrower than those of the well known complefély isolated machine; therefore,
the absolutely isolated machine includes the completely isolated machine as
a subclass. It is pointed out that the absclutely isolated properties
(such as the past lnput traceability and the past state or subsystem
activities, etc.) are applicable to error detection. in addition, both
the kth term approximation of the infinite series that represents the
isolated properties and error bounds of the appreximation have been dis-
cussed. Based on this study, an input string cutpoint to a probabilistic
automaton {PA) is determined using the error bounds. The set of input

strings recognized by the PA is much larger than the set recognized by the

well known completely isolated PA.
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In general, the initial state distribution of a PSM plays an important
role in the probabilistic sequential machine theory. However, it has been
proven that the influence of the initial state distribution diminishes as
the length of an input string approaches infinity. This initial state
inquendence property, one of the absolutely isolated properties, is dis-
cussed in detail in Chapter Ill. This property may be used in estimating
the upper bound i;fluenced by the deviation of the initia& state distribu-
tion from (1,0) or the first state SI = 1 and the second state 52 = 0.
Furthermere, when st;te transferable ranges of an absolutely isolated
-machine are spaced with more marginal distance than the upper bound of

the initial state distribution influence, it is shown that the absolutely

isolated machine is initial state independent.

&

A method for dccompesing a three-state PSM into three two-state PSM's
has been presented. The method can be extended to the decomposition of a.
general n-state PSM with n > 3, that is, an n-state PSM may be composed of
two-state isolated machines, so the PSM has the absolutely isolated pro-
perties. The past input traceability of an n-state PSM can be applied to
system performance analysis as well as error detection, if it is isolated
.and decomposable. A method for computing a state transition along with

a particular path from the ith state to thg jth state in a three-state

(or an n-state) PSM has been discussed with decomposed two-state transiticn
matrices which consist of coﬁﬁonent PSM's. The method provides a state
transition allotment among substates of a state in the decomposed machine.
The substate transition allotment computed with this method is a loading

distribution of substate activities which may be useful for component re-

liability analysis in the realized PSM.



As discussed, a GPSM is suitable for modeling large computer systems.

In order to determine the past subsystem activities of. a GPSM model which
may or may not have the input-traceable property, a statistical technique
which is a nonlinear mathematical programming problem has been formulated.
The optimization of the programming problem provides the most-likely past
subsystem activities based on collected data in two phases. These data |
can be gathered in a relati&el; simp}e way so that the technique is easily
applicable to a real situation. A GPSM model of a UNIVAC EXEC 8 computer
system has been built, and daily computer operation of the model is simu-
lated in a computer. Incoming inputs to the model are determined from
pseudo random numbers. It is demonstrated that the most-likely state dis-
tribution obtained by this technique closely agrees with the éteady state

distribution computed from state transition matrix multiplication in

examples of the simulation.

The theory and techniques presented here do ﬁof pretend to solve
all problems with which a ;omphter system is faced today, but its value
rests on the new insight it provides to the hardware Aesigner and the
maintenance engineer as well as the software engineer. The result is a
preliminary report on the subje?t of computer system modeling and error
detection. Much fruitful work remains in many aspects. Some possible

research areas are described in the following paragraphs.

Future research topics evolving from Chapter Il include improve-
ments in model building techniques. A technique to determine better con-
stants (parameters), methods to insert measuring probes in the computer

system, and a systematic separation of subsystems are Qoss!ble subjects.

199



200

.Chapter 11! suggests a relationship study of the isclation of (1,2)
elements with (a) eigenvalues, (b) the (2,1) elements of the matrices, or
(c) a number of input symbols. The (1,2) elements are elements of state

transition matrices of a two-state multisymbol PSM.

From Chapter |V, a decomposition using weighted state transitions
among substates of a state,-instead of assuminé equal weighting-of.the
substates, may expand the decomposable class of PSM's. Serial decomposi-
tion with n(n-1)/2 component machines, where n s a number of states, may
bring to reséarch a new area of PSM decomposition. A review of the dot-
circle multiplication from the matrix theory would be another interesting

topic.

Studies of a relationship between decomposability and isolation in
an n-state PSM and of the input traceability as opposed to other charac-
teristics such as eigenvalues ana §teady stateAdf the PSH may be interest-
ing topics in Ch;pter V. Applications of the input traceability to other

fields are also worthwhile.

Combinations of the technique presented in this paper with other
statistical estimation techniques in order to improve accuracy and optimi-
zation development for ergodic states are immediate research topics.
Direct application of stochastic programming method [77] to the estimation
of past performance of a comphter system is an excitindg subject in place
of nonlinear mathematical programming. Applications of the GPSM modeling
and the statistic estimation technique to other fields such as eccnomics

and social science are expandabie,
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" APPENDIX A
Simulation Program of Computer System Operation Mocdeled
by Ceneralized Probabilistic Sequential Machine.

Simulation Examples; Example 1 and Example 2.

Technique.
Optimization Examples of the Simulation Examples.

Block Diagrams of Computations.
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(DO 1u I=1eIXS

222

Rc£a 3 {53001 {PlIedled=ledX )
WRITELEwS5UC) (PUIsd)edzledX)

CONTINUE
FORMAT(BF10,.5)

FORMATI/13Xs03H THE FIRST FIVE SETS AND THE LAST SIT ARE CHANNCL

AICTIVITIES INe/17Xs

GOHSTEADY STATE FOR EACH JOB TYPE AND IN REG.

¢PIRATIONe RISPECTIVCZLY )
FORMAT(18XelXsE1Z2.601XeE12:6921X1E12¢601XeE12.601XevE12461)

DO 20 IZ1eIXS
DC 18 Jz1sIX
SuUMzO.

O 18 K=1sJX

SUNZSUM+PLT e KPP Je K)

~OtIvJdDZSUM
CONTINUE

WRITE(BeSUZ) (D(IeK)eXKZ1sIX)

DO 33 I=leIX
Di{Is+IXS)IZ1.
BIT)=C(IXSsI)
DI(IXSeT)=1.
BLIXSeIXS)=O0.
BIIXS)IT1.
Vil)=5.
WRITE(6+505)

FORMAT(1HI»13X» 334 THT SIMULTANEOJUS E2. TO SOLVE )

DC 32 I=1.IXS
BC 31 J=ZLlsIXS
GL{IeSD{Ivd)
QUEI«IXS3)=ZBILI)

- amm .

wnlici6ebGZ: ICIIedieuTivin=32

CAZL GJURUZeIDsIDHIXS+IXSSe$200eJdeV)

CONTINUE
WRITE(S5.509)
DC &40 IZ1leIXS

WRITE(Ge502) (Bl(TIe Yo J=1eIXSS)

KRITE(S«5UE)

FORMAT (1HD»138Xe23H UNIT MATRIX FOR CHECK )

DO 48 IZ1vIXS
00 46 J=leIXS
SUMZO0.

20 4% K<TleIXS

SUFMZSUM+0( I oKI*Q (K eJ)

PiIeJ)=SUM

KRITE(GE»50Z) (P(IeJ)sd=1eIXS)

00 430 IzZ1eI0
DO 4EU  JZ1s.I0
P{IsJ}=0.

D6 482 IZ1eIXS
0O 482 JIleIXS
PETeJN=R(I I}
J=3

BC 464 I=1sIX

IFIBII)e3E.Ue«) €0 TO 434

J=J+1

KZIXS+J
PlKeINZ~1.
PliIeK)=-1.
BtK)=(.
CONTINUE

Tyu=0

C0 385 I:-leX

A
0
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LES
kar

£09

(D0 485 JtleX
D(I¢JIZP(IJ)
CONTINUE
KK=K+1
D0 485 I-leK
PtIeKK)I=Q(TeIXSS
WRITE(5¢503)
FORMAT(1HO«18Xs4SHIMPCSED NEG.
DO 488 I-leK
WRITE(Ew507)
vil)=h,

CALL
WRITE(5¢509)
FORMAT(1HO»168Xs56HTHE INV.

(P{Ied) sJT1eKK)

«CILMN. ) )

489

431

493
432

430

511

ad

52
54

58
60
504

DC 8483 Ic1eK
WRITE(G¢532)
IFtIVU.E2.1)° CO TC
Iv=2

Tu=1

D0 %431 I-1leX

DU 451 J-leK
PileJ)=n(IeJ)

DS 452 I=1.IX
IFIP(Ts4K)eaBEa-1a0Z-5)
IVoIvV+1l
K=K+l

DO 493
P‘K'N):D-
PI{NsKI=U.

AT Tavni O
AW NV -

P{KeIlll=-1.
PlleKlz-1le
CCNTINUE
IFIIV.EQ.D)
€0 7C 487
CONTINUE
HRITE{G6+511)

(20 Te J)e JZ1 ¢ KX)
4

GO 710

NZ1leID

G3 TG 430

FORMAT(1HI»18Xe 35ASTEADY STATE DIST.

D0 &S I=Z1sK
BIYLI=P{TeX1)
CONTINUL
JMaX=1s :
0C &80 1I=1.IXS
READB(5+500)
KRITE{GE«502)
00 5% I=1leIXS
SuM=C.

D3 52 Jz=lL.JHAX
SUMZSUM+PL T +J)
Pt7«T)=35U¥

D0 BU J=leJMEX
SUM=0.

D0 58 TIz-1eIX
SUMZSUM+BIT )*P( I+ )
PEUXoJIZPUIXSed)-SUM
ViJ)zSuM
WRITECGsS04)

FORMAT(14HD¢13%Xwe 35HMIST LIKELY STATE

FHHCHECK SUM CF
HRITZ(6:.302)
WRITE( G

STATE CIST.
(VIJ) e JdZ1+JMAK)

™ Ty

L s

(P{IeJ)ed=1e IMAX)
(PlIed}edTleJ¥AX)

223

FHIZZERC CONDe. MATRIX TO SCLVE

CIRIPrZU»Z2UsX s KKe34S0sJJe V)

MATPIX AND SOLUTION(IN THE RIGHT MOCST

492

OF EACH J03 TYPE )

DISTRIB.vlIFFe AND/13Xo

)

(PSR JodlasdMAY ]

}



WRITE(BebHOE) tP(7edted=1eIXS) 224
‘viliz=v7.
C RE~INVERSE
catL GJRIDe I20e T2 IXSeIXSSes71leddeV)
WRITE(G»507)
507 FORMATU1HJI»13Xel11HRE-TINVERSE )

DG 70 Iz=1.1IXS

713 WRITE(3502) {C{TIv J)s J=1 s IXSS)

71 CONTINUE
WRITE(G.502) VI2)
DO 80 K=2s+IXS
KK-K+1
DG 7& I-1eK
DO 720 J=LsK

72 Diled)z=Q(Ied)
DITeKKI=B(L)

T4 CNTINUE
Vill)=7. *
CALL GJRIDs+IDoIDsKeKKe37B8eJdJeV ]

75 CONTINUE
DO 76 I=1+XK

76 WRITE(S5+502) {D00IvJ)sJz1leKK)
WRITE(EBs502) V(2)

- .

T e o ¥ g T AT 4T HET T ReTE T T T T % T " e " "

GO0 TO0 &0
78 WRITE(Bs503)
GC T80 15
8C CONTINUE
60 TO 150
200 WRITE(6s503)
80 TO 34
IR0 CONTTANE
SYOP _
E02 FOSGMAT(1HDe18Xs1CHOVERFLOW -
END o
= JOMPILATIONZ N2 DIASNOSTICS.

ps-u2:13
e PROG SIZItI/D)=5355731517

LEVEL 73-1
CTION = TIVME l.2847 SECGOGMNDS
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Example 1

THE FIRST FIVE STTS AND THE LAST SET ARE CHANNEL ACTIVITIES IN

STZA0Y STATIZ FOR EACH JO03 TYPI AND IN REG. OPERATIONe RESFECTIVELY
« 786134+02 «2724803+0112 »866407+012 «278083+02 «120841+02
«25415%+02 «h13312+u2 «131621+02
« 20DGUS1+01 s 223587+U2 « 738E5E+02 +542060+02 «213845+402
«324617+02 «603343+91 «185176+02
+181081+02 e J2BEE1HUZ «104135+02Z «319533+02 «438875+02
«817112+D2 «357773+U1 «43811039+02
« 1E5435+07 «172420+U2 «483045+01 «307012+02 «337858+02
«712602%33+07 «331725+01, «387337+D2
«105067+02 ' .120804+02 «24634E+02 «368882+02 «25794E402
«53707%3+02 «331147+01 «234340+02
« 3U3E06+0UT «126883+U2 «288126+02 «352706+02 +<28386+02
«211623+02 «13355U+U2 «2523829+32
«150834+0E « 10E8528+U5% «7822012+04 «£27883+04 +6EBT725+34
«108323+05 «1U3155+05 «781891+04 «528338+04 « 7135456 +04
el 822U2+UK « TB1E21+UY el 3574E+05% +112800+0U5 «S37220+014
«627887¢04% «523338+04 «112400+05 «347573+04 «73956c+04
«6395725+04 e 713546+UG »337220+08 «78C%08E+0G «717068+04
«392933+04 «7U3753+04 «883347+404 «745u830+04 «6H82285+0%
THE SIMULTANEZCUS EG. TS SCLVE
«1803%384%+05 «103928+uU5 «782202+0% «627383+04 «633725+04
+1T0T0L02 . 89z2ze+0y
«108923+05 «108055+05 « 1313391 +y4 «b28388+04% « 713540 rud
L 10L0UL+01 e TLUBTES+US
« 7182202404 «7813391+uUk «1357T45+05 «112400+05 «337220+04
+1ULLLO+UL « 8832487 +UL ’ ’

«627833+0% «523383+Uu4 «112300+05 «347673+0% «733565+04%
100000401 o IS4 BUDY
«59B725+04 «713545+U4 «337220+0% . «785560+0% « 717063404
«lULBLU+LL « B83245+u5t
«1000U3s+0 L <1Uludu+ul «100000+01 «1000200+01 «1000u0+D1
« LopoLu «J00OUDO+UL

-T4E INV., MATRIX AND SOLUYTICNUIN THE RIGHTY MOST COLMN.G)

«22E832-03 ~-,152084-0U2 «158450-02 -.453202-02 422294-02
-e228a57+03 «2H0471+0UD
~e152085-02 «» c0UB14-U1 -.228120-01 «£50287-01 -.606762-01
«366271+01 «303368+00
«15345U~-02 ~-.TC9%13U-U1 +284156-01 --7787128-01 220375701
-+6829365+01 -.77274%7¢00
-« 453203-02 » £50287-U1 -.774718-01 «216785+00 -.28880S+00
18638440132 «187472+Ul
e 822284~-02 -.B06762-U1 »703767-01 -.13°9803+400 «185887+3G0
~«132378+02 -.846307+00
-e 2 2SESB+LL e 366272401 -.65828E6+01 «16463484+02 -.102378+02

UNIT MATRI¥
<10ulU+ 8L
-« 116415-0¢
«163913~-0%
218€265-0¢
-« 77%4861~05

FCR CRHECK

~-2286847-U6 «133320-05 -.7635353~U6 -763635~06

«1Uuulleul «153913-05 «545352-09 «326852-05

33331~05 -.1132809-06

7]

~«393331-U5 «3349336+20 -~



«123320-02
«592845-01
«163037-01
¢13q574-ul
«1213%3-N2
«H485619-Lic
«381537-01
« 3G3Z0LS+LD
«708103-03
«GLuBpoo

«2133933-01
+153885~01
«3L7030-12
Ltugun

«396153-01
416502~
«36178L-02

«836333-01
« 130073 +u0D
«115376~01

«166783-U1
« TUSHLGU~UZ
«h30585~01

«115243-0U1
« LLGLTU
«336%41~-u1

~3J433%ul
« GOGLLLU
«335386-U1

«325768~ul

«78895%-01
«1038387+00
«146032+00

«288550-01
«102042-01
«121347+00

«28850S8-01
«uLaBoo
«1U1274+00

«739132-01
gouoon
«5082302~-01

« 8k 4750-01

«527524~01
2108376+00
«518521-01

«245323-01
«172521-01
2+119382+00

«148753-01
- 0000600
«651501+00

«531532-01
« Ouoens
« 517653400

18023-01

m

<

«431910-~-02
«282177-01
«56193543-01

«193151-01
«228837-01
«170350+40

«1831407-01
«187170-01
«328743~U1

«9512853~-41
«358877-01
+512886-01

67284401

- +186265-08 226
«17681u-UYy e 331402-04 4 83980-04% .100005+01 »331802-04
.745058-038

-e 104804~k =-.574G2~-U8 -,5026b68-04% -.410080-04 »3985975+N0

-743033-08

-+ 303176-04 -.100G708-02 -.296021-0Z2 -.158364~02 -.205176-J4
«103000+01

I¥PCSED NEG. FHIZZERG CCNDe MATRIX TO SCLVE
«180334+05 «118328+015 «7322024+0% «627389+0% «533725+04
L1uuobosvl . Gpoucy .ounooe «8925838+04 '
«108923+05 «1U30U35+U5 «781891+04 «528938+04 «7135456+04
«2C0O00L+U « GLuGuo 0000 « 7097538404
«782202+ 04 «731891+04% «135746+05 «112400+05 «337220+C4
L1ULOLU+0U1  -.10000U+01 000000 «883847+04
.527833+04 «6232388+U4 «112500+05 e 347573404 «789566+04
Jlutouu+nl » FOOGLL . L000000 s745080+04
e693725+¢04% " L713546+04 «337220+0% « 75896566 +04 «7170634+04
«L1LUULO+0L . LODOUU -.100000401 «683245404
«13000U+01 <1UULUO+UL .100000+01 »100000+01 100000401
LOuLguL « CLOLOU .unconn 100000401
«J30303 .00UVoU - <10U0M+01 .0000o0 .000000
LULLOCO . Gputitu .ouenao LO00000
«J300UY «0uUlLYY -UBNoo .000000 -.1000U0+01
. Cougto « LUOOLU Lonnnono 000000

T4E INV. MATRIX AND SOLUTIZSNUIN THE RIGHT MOST COLMNG)
.180888-0% -.1422BU-UZ ~ .OOLOGO «178278-05 000060

-e%163973-02 «2400S8-U2 -.236267-01 «253335+00

- 142280-02 «273S25-U3 .onunon -e131684~03 L000CLD
J417969:08 -.322442-01 .338818-00 110244400

-.181018-1L « 75042410 LULuuuy 612488 -149 SULLUULD
«268110-05 =-10U00U+DL «327059-07 2471727-07
«179284-05 -.131644-02 LOougoon «1238852-0U3 LOG0000
«583200+00 «103344+01 e534T779+0D «5635270+00
e164356-10U -4 220757~U9 L060000 -+148012-08 .gngooo
«4734815-05 =-«1273577-05 - .100000+01 «563941-07

-« 416865-02 e B17G67+LL i eely «586189+0LIU LOn0000

~+8153803¢04  +166523+U4 =-+575763+03 -.858713+03
¢ 26L0S3-02 -.328435-U1 -.100000+01 «103084+01 000000
«166622+404% -.554125+U3 «213572+03 «237335+03

-« 2262817-01 « 238843+UD LoLuonn «638779+00 -.1006000+01

© ~«575753+403  4213572+#U3 -4362353+02 -.109303+03

STEADY STATE OIST. CF EACH J0B TYPE
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«33304J «JuUUUIy «BUUUUD «4Jaouaoon
‘. 468289-01 «5087L2z-U1 «655945-01 « 337852400 «6582630~U1
«127161¢0X
«3188383-12 «285907-U1 »753678-01 «541466-01 »592321-01
»200731-01 «320993-01 «323372-01 «345414-01 «387077-31
«412254-011 «5255€E6-U1 +577456-01 «2875132+00 «600%48-J1
«l1134%5+07
MEST LIKELY STATE DISTRIB.#CIFF. AND
SHECK SUM OF STAT:Z DIST.
. .286276-02 « 833463 -U1 »735862-01 «438052-01 «35B421-U1
«257573-01 «238372-01 «283358-01 «284004~01 «3283313-01
» 346400-01 «32370U-U1 «86240(-01 +«355391+00 «6718484-01
«677373-01
e 722169-0U3 -o.153563-01 «T7T81587-Q3 eB24238-02 »2339L0-01
-¢567853-02 -.170746-0U2 «404032-02 «614106-02 «5873547-02
«853543-02 «c021E6-01, -.284944-01 «578774-0L1  -.7088e0-02
«342071-01 °
o« 1ILCGU+01 « 1L0LGU+0 «383299+0U «10G0000C+01 +100000+01
«393933+00

RE-INVERSE
«e236433-03
~e 228657400

-«l32U34-02
»137207+03

«1538450-02 -.453302-02 «422294-0D2

-+152035-02 «2UU314-Ul -.223130-01 «650287-01 -4536762-31
« 366271401 -.314518+04
«153430-02 -.22313u-01 «2834156-01 -.774713-01 «703747-31
-.682965+01 «586465+UY A
- «3533U3-02 «6550287-U1 -.7747138-01 «216735+00 —.129203+00
«1G638U+[12 ~-+125566+05 ,
J422291-02 -.606762-111 -+ 703707-N1 -.193809+0N «18RRA7+NN
~e 1l12378+0% «B87S1lzU+UNY _
- ¢229653+00 «366272+U1 - 463823566+01 «1863%84+02 -.102373+02
-~e 2ET24U+TH e22568240L7 '
+253376+02 . . .
¢ G99EEL403 -~ 1007T76+004 «336672+07
-+308728-02 +3204877-0U2 -~106834+02
«233037+01
e6735314003 -.688353+U3 «515602+01 «233083+07
«175832-02 ~.182350-0U2 ~.780621-04 «489512+01
~+533051-02 «531184-02 «853741~04 ~4172530+402
117420402
o 486377402 -.432222+U2 -42339757+01 «327474+01 «109135+95
-+ 232849-02 e251939-U2 -41256887-0D3 . .212104-04 =-.8929583S+01
«705115-01 -.715714-U1 «393308-03 -4393613-03 »243785+03
-« 835106-01 « E506ZU~-01 ~L1L0G452-02 w8354948-03 -.25584E+03
«195482U+12
-+ 162158+0U0 »116224+01 -.128119+01 o3EE6H2+01 =e327086+01
".352552#[]5 N N
«192904-02 ~-.187458-032 -.215628-03 -.128472-04 «231760-03
.755145-&01'
" -e290857-02 «HMZU218-02 «252236-012 e185483E~-03 -—-<4B85881-u2
-<341590+02
e 135784~-02 -.913143-02 -.280865~-02 ~.2S867%7-03 «6048008-02
«593549+02
-+ 52188 u4~-07Z «BU15613-U2 «129470-03 «%98340-08 -.4511558-02
- «248933¢012
«e272776+U2
-e140335-01 «905334-401 - .943757-01 «270009+00 =-.25153%9+94
«1267391+0% ~a3138439+40DE
«222287-02 -.3393475-02 -4673250-02 «617613-32

«232905-02

« c70B32~01 «0eZ71L+05



=e$21721-02 .20°029-U1 -.175222-01  «531258-01 <~512832-u1 228
-.213178+00 -.430435+0U5
«102575-01 =~.701104-01  .222747-01 -.667863-01  «65483645-01
«267788+U0  4615162+U5 ,
-« B3U84U-01Z L T706L12-U2 -.648258-03  +210358~-02 =-.221305-02
-e827132-02 -.19U344+5
~e27221140U1  +1SESE2+(i2 -.236386+02 624206402 ~.547554+02
-¢251401403 -.5738331+09 .
¢ 217505402

\
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«180854+U5

-« 11i8SZ8+US5S

s 782202+014

«627885+04

Example 2
THE FIRST FIVE SETS &AND THE LAST SET ARE CHANNEL ACTIVITICES IN

STEADY STATE FOR EACH JCE TYPE AND IN REC. OPERATION. RESPECTIVELY
.7661}4402 «2724323+D2 «8564071+02 «373083+1)2 «130341+(2
e 2541544012 e 512912+02 «121621+02
«30%031+01 «223537+02 « 733658+ «543050+012 «213845+02
« 2286174012 s E(IB2LB3+UL +»18517€+02
«181051+02 «323351+02 «104133+N2 «3138533+02 «1433975+02
« 817112402 «257778+U1 «49110¢+02 ‘
«163u433+02 «17242U+02 «4390u45+111. «307012+02 «337853+02
e 125083402 « 3317264001, +387237+02 .
«105057+020 ".120304+02 « 246385402 «3639333+02 «2573423+02
« DETET 3402 « 3ULILT+U1 « 2EHBHLEDC
«3730U16+02 «2938303+02 «1565559+02 «3082138+02 «3885034+02
«712555+02 »12S8E0+U2 #B23638+402
«180934+05 «108323+y5 « 782202 +04% «527385+04 «6928725+N4
« 10B88286+0% « 1LBUBE+US »781831+04 «628985+Us e 7125L5+04
«I82202+¢0% 27818391+04 «135745+05 «112400+05 «337220+04
«E27E82+04 «+628%8B8+USH «112400+05 #OUTETZI+0Y »7886a6+iL
«598725+0% «713545+04 «937220+0% «78%0cbao+0k « 717063 +13
« 37054k 4+UY e 771183+uUG +125284+05 «1(38398+05 « 276855+ 0 4

THE SIMULTANZOUS EQ. TO SOLVE

«69387254014

«ibhGOn+0L «370534: U4
«1018828+05 »108055+U5 «7£1831+04 «5283E8+0Y « 71358E%u4
«100000+0L «771183+0K .
JSTEZ2UZ405 » 781851+04 «12574€+05 «11240G+05 «S37220+05%
«10000U+UL - <125234+4U5 - .
«527889+U4 «6528S588+U4 «112800+05 «947673+04 e 7886LE+0 Y
«100000+01 «103383+uU5 :
«693372L+UR « 713 4B+ULY «837220+04 «788B666+0U4 « 717053404
«1000VU+D1 «376355+U4
slbunub+01 «10UULU+LL «100000+01 «+100000+01 »10060L0+01
0133003 «10808300+U1
-THE INV. MAJRIX AND SCLUTICN(IN THE RICHT MOST CCLMN.)
«236433~-03 -.152084-02 «153450-02 - -.453302-02  -422234-32
-e 22965 7+UD e 2H5LUS+UL
-e1%2035-02 «290314-U1 -.229130-01 «650287~001 -.5D56762-31
« 260271401 «+2S3oE1+uU
«156450-02 -.223130-01 «234155-01 -.774718-01 -« IN3747-31
-« b82865+01 «116018+U0 .
~453303-02 «650287-0U1 ~4774718-01 «216785+D00 -.1993803+00
» 18638440 e 1EGENL+DL
«%22294-020 -.606752-01 «703747-01 -.13898039+00 «135837+32
-«IL227€402 -.148S21+U1
~+229653+00. «366272+U1 -.682355+4N01 «1UB344+02 ~-.102378+02

~e c®7240+0k «576S22+U2

UNIT MATRIX
0LOLL+01
-.116%1%5-09
«1EZS13-0%
«1362865-13

-e {74558 0-UL

“0R CHECK

-0 2E86BHT -ULE «189890-06 ~e7E63685-Ub -«7C7685-16

« 160001 #ul «163912-05 «5653282-05 «328852-015

~e393231-05 «3S5556+ 00 -213920U8-Gco
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«178818~-04 «331432-04 «433330-04 «100035+01 «331402-~04
« 7USUBE-UE
~«104303%-0% -<257492-U% - .562568-08 -.410080-0% «993374 +10
~-s 78L058-08
~e303176-U4 <~.1007{13-U2 -280021-02 ~.138364-02 -.305176-04
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