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ABSTRACT

Predictive data-driven analytics has the potential to successfully predict the downhole
environment in Drilling Engineering. In general, rate of penetration (ROP) optimization involves
adjustment of the weight on bit (WOB) and rotary speed (RPM) for efficient drilling. ROP has a
complex relationship with several other parameters, such as formation properties, mud
properties, mud hydraulics, borehole deviation, as well as the size/type of bit. In this study, a new
workflow based on statistical regression and artificial intelligence (Al) techniques was designed to
forward predict ROP using field data gathered from the North Sea horizontal wells. Several
machine-learning models such as such as step-wise regression, neural networks, support vector
regression, classification-regression trees, random forests, and boosting, were applied for
prediction. A web based prediction app was developed that could perform predictive analytics
and uncertainty analysis on any data. The app was further tested on other wells and was shown

to predict with significant accuracy.
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1. INTRODUCTION

1.1 Problem Statement

Wellbore complexities can result in increased well costs. Consequently, it is now more
important than ever to optimize and achieve the best drilling rate of penetration (ROP). While
several techniques exist to accomplish this, each has its own merits and limitations, and there is
no acceptable universal model for all conditions, as the nature of the relationships among these
parameters can be complex. Usually, conventional methods fail to predict ROP accurately owing
to additional complexities of the downhole conditions. In general, ROP optimization involves the
adjustment of weight on bit (WOB), mud flow rate (Flow) and rotary speed (RPM) for efficient
drilling. However, ROP has a complex relationship with several other parameters, such as
formation properties, compressive strength, pressure gradient, mud properties, mud hydraulics,
borehole deviation, and size and type of bit used. In several instances, increasing WOB and RPM
results in a decreased ROP, as there is an interaction of these inputs with the formation properties
and flow, clearly highlighting the underlying complex relationships among these parameters. To
account for these uncertainties, data —driven analytics can be used effectively to better
understand ROP optimization. Traditional regression analysis models have limitations and failed
to describe the dependence of one observed quantity on another observed quantity. On the other
hand, the artificial intelligence methods failed to understand the physics behind the operations.
To ensure the physical and technical feasibility of the prediction a coupling condition between the
two have been developed for the ROP optimization. Therefore, we attempt to leverage the
computational advances in predictive modeling and couple it with traditional approaches to help

decipher the complex relationship ROP follows.



1.2 Background and Literature Review

The following literature review was performed before undertaking data analysis. Virtual
Intelligence techniques in general and artificial neural networks (ANN) in particular have been
used to solve problems in the various branches of petroleum engineering as shown in Table 1.

Table 1 - Summary of literature review.

Summary Paper Discipline

An Analytical Model coupled with Data Analytics to | Z. Liu et al. (2014) Drilling
estimate PDC Bit wear- It discusses Warren drilling
model to correlate rock strength from gamma ray,

Abrasiveness from rock strength and Bit wear using

above parameters.

Analysis of Data from the Barnett Shale with Awoleke O. and Lane | Water

production
conventional Statistical and Virtual Intelligence R. (2011)
Techniques-This paper describes the application of

ANN, both supervised and unsupervised and SOMs

to predict water production.

Real Time Rate of Penetration Optimization using Ping Yi et al. (2014) Drilling
the Shuffled Frog Leaping algorithm- It provides
details about ROP optimization using a heuristic
function to seek a solution of optimization. This

method is particularly useful for computing

optimum drilling parameters in real time.




Table 1 (continued)

Unconventional Reservoirs

(2015)

Investigation of Various ROP Models and Mahmood, B. et al. Drilling
Optimization of Drilling Parameters for PDC and (2010)

Roller-cone Bits in Shadegan Qil Field

Data Analytics for Production Optimization in Schuetter, J et al. Production

optimization

and Predictive Analytics

(2014)

Drilling Optimization Based on the ROP Model in Masood Mostofi et Drilling
One of the Iranian Oil Fields al. (2010)
Enhancing Wellwork Efficiency with Data Mining Mohamed Sidahmed | Production

optimization

Real-time Optimization of Rate of Penetration
during Drilling Operation- This paper discusses the
Bourgoyne and Young ROP model and introduces
the moving-window method coupled with multiple
regression, that computes coefficients from real

time data for ROP calculation

Dan Sui et al. (2013)

Drilling

Data Mining and Predictive Analytics Transforms

Data to Barrels

Richard Bailey et al.

(2013)

Water

flooding

Using Data-Driven Predictive Analytics to Estimate
Downhole Temperatures while Drilling. — This
paper discusses the usage of a machine learning
technique called Support Vector Regression to

estimate downhole temperatures.

Serkan Dursun et al.

(2014)

Drilling




Table 1 (continued)

Improve Production Surveillance

Real-Time Drilling Parameter Optimization System | Yashodhan K. Gidh et | Drilling

Increases ROP by Predicting/Managing Bit Wear al. (2011)

Data Driven Analytics in Powder River Basin, WY Mohammad Reservoir
Maysami et al. (2013) | Management

Drilling Hydraulics Optimization Using Neural Yanfang Wang et al. Drilling

Networks (2015)

Application of Neural Networks for Predictive Dashevskiy D. et al. Drilling

Control in Drilling Dynamics (1999)

Predictive Analytics: Development and Deployment | Keith Richard Completion

of Upstream Data Driven Models Holdaway (2012)

Big Data Every Day: Predictive Analytics Used to Scott Raphael (2015) | Production

optimization

ListenData.
http://www.listendata.com/2015/03/ensemble-
learning-boosting-and-bagging.html (accessed 24

May 2016).

Efficient Use of Data Analytics in Optimization of C. Temizel (2015) Hydraulic
Hydraulic Fracturing in Unconventional Reservoirs fracturing
Ensemble Learning - Boosting and Bagging. Bhalla, D. (2015) Data

analytics/ ML

Introduction to Data Mining. Boston: Addison-
Wesley.

Applications of SVR.

Tan, P-N, Steinbach,
M., and Kumar, V.

(2006)

Data

analytics/ ML




Table 1 (continued)

How to Evaluate Machine Learning Algorithms.
http://machinelearningmastery.com/how-to-

evaluate-machine-learning-algorithms.

Brownlee, J. (2013)

Data

analytics/ ML

Application of Neural Networks for Predictive Dashevskiy, D. et al. Drilling
Control in Drilling Dynamics (1999)

Stuck Pipe Prediction and Avoidance: A Siruvuri, C. et al. Drilling
Convolutional Neural Network Approach (2006)

Pipe Sticking Prediction and Avoidance Using Murillo, A. et al. Production
Adaptive Fuzzy Logic Modeling (2009) optimization

Robust Well Cost Estimation Using Support Vector

Machine Model

Buddharaju, P. et al.

(2007)

Data

analytics/ ML

Machine Learning in R for beginners. Datacamp.
https://www.datacamp.com/community/tutorials/

machine-learning-in-r

Datacamp (2015)

Data

analytics/ ML

Modeling — Predicting the amount of rain.
http://theanalyticalminds.blogspot.com/2015/04/pa

rt-4a-modelling-predicting-amount-of.html

Pedro M. (2015)

Data

analytics/ ML

Model Selection for Support Vector Machines

Chapelle, O. and

Vapnik, V. (1999)

Data

analytics/ ML




1.3 Objectives

The objectives of this research work are as follows:

1. Analyze drilling data from the North Sea horizontal wells using statistical regression and
machine learning techniques to understand intricate relationships among several variables
(ROP, RPM, WOB, Flow, GR etc.)

2. Apply predictive modeling to build several models for ROP forward prediction using
multivariate data and choose the best performing models.

3. Perform sensitivity and uncertainty analysis on the best models using Monte Carlo simulation
to compute a range of ROP values (P10, P50 and P90). Calculate the most contributing
parameters and their variation on ROP in order to maximize ROP for all the models.

4. Develop aweb-based prediction application for drilling engineering ROP prediction, which can

be later extended to production and reservoir engineering.
1.4Thesis Outline

In this study, data from the North Sea horizontal wells was used and analyzed for the
development of a model, based on statistical regression and machine learning methods. Figure 1
presents the workflow of the thesis project.

Chapter 2 of this study discusses the preliminary work completed pertaining to data
preparation and performance of preprocessing operations such as extracting the relevant
parameters for our analysis, and taking care of missing data and outliers. It also includes
exploratory data analysis such as analyzing correlations between data sets, and outlier extraction.
Several methods of data splitting were studied and tested to prepare test, validation and train
datasets. Cross-validation was employed to prevent overtraining of the models. Error metrics that

were used to differentiate our algorithms are also defined and explained in Chapter 2.



In chapter 3, various techniques of regression and machine learning were introduced.
Influence of interactivity within parameters and relative importance of predictors was
ascertained. A test harness of formations from Well 12a was used on several algorithms from
different categories such as regression (linear, stepwise), neural networks (NN, SVR), and
instance-based methods (KNN), trees and ensemble methods such as random forests (RF) and
boosting. Tuning was performed to further enhance the performance of these models.

In chapter 4, the best algorithm was determined and then applied on the remaining five wells.
These were further treated to Monte Carlo simulation using a pre-defined test set to check
robustness and perform uncertainty analysis. Results and conclusions are presented within this
chapter.

In chapter 5, the web-based prediction application designed using Shiny R was introduced and
its applicability explained. The app enables any user to perform predictive analytics on ROP

prediction, or other applications such as fracture design in production engineering.
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2. DATA PREPARATION

2.1Data Acquisition and Description

Data preparation workflow is presented in Figure 2. Client drilling data from several wells in
the North Sea was acquired (courtesy of Halliburton). All the wells have been code named to
preserve the confidentiality of the data. All the data was recorded in real-time and was comprised
of several parameters such as rate of penetration (ROP), weight on bit (WOB), rotary speed (RPM),
flow rates (Flow), pressure, torque etc. Information about the formations, gamma ray logs (GR),
and survey data were provided in separate files. Averaged values of RPM, WOB, Flow, GR, etc.
were provided in Parameter- Averaged files, while real time values of the entire drilling operation
were in Time- Series files. The time series fields include the NPT recordings as well. In general,
ROP optimization involves the adjustment of WOB and RPM for efficient drilling. But ROP follows
a complex relationship with several other parameters such as formation properties, mud
properties, mud hydraulics, borehole deviation and size/type of bit. Hence, the presence of
additional data such as GR is very helpful in optimizing the ROP and is an intrinsic part of the
models built in the exercise. Survey data along with specific formation depths were also provided
in separate files. This data is also extremely useful as separate models were built for each
formation and this approach led to a better estimation of the ROP rather than the case when a
single model was built for the entire dataset. More information about log data, and formation
properties could have increased the accuracy of the models as it plays a vital role in influencing

ROP.
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Figure 2- Data preparation workflow.
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2.2 Data Preprocessing and Summary

The entire data set consisted of Time- Series data, Parameter- Averaged data, and Survey data
for 7 wells in the North Sea. All the wells are horizontal in nature and are spread across about 13-
14 formations. Table 2 lists the size of the data points of the above three data-frames for each
well. Survey data included information about formation intervals, bit size and bit type while
Parameter- Averaged data had values of GR.

Table 2-Time-series and Parameter-Averaged data of the wells.

Well ID Parameter- Averaged Time-Series
10 7005 510910
12a 11021 694762
B2a 8412 666918
B30y 5103 538476
13 9402 481921
ES 10333 941447

Since a comprehensive analysis for ROP prediction was being performed, effort was made to
use as much information as possible. Drilling data such as ROP, WOB, Flow, mud details, and
pressure was extracted from the Time-Series files; data containing formation depts., bit size and
bit type was extracted from Survey files and GR values were extracted from the Parameter-
Averaged files. All this data was then used to create a comprehensive master file containing all
the relevant information for our analysis. This process was repeated for all the wells. As this data
was recorded in real time, it also contained the NPT periods of tripping in/out, rotation, and
sliding. Several parameters were then analyzed to segregate the NPT activities from drilling (as

discussed in subsequent sections) and an additional “activity” column was annexed to this master
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file. All the data taken from the master file was loaded into R (Statistical Programming Language)
and then separate files (data frames) for each well were created. Figure 3 lists all the attributes

of the master data-frame for Well 12a.

(1] "Time3tring" "ROPA" "MWin"

[4] "MWout™ "TempMudin" "ROP1"

[7] "ROPI" "BlockPos" "TFAC"
[10] "DepthHole" "HookLoadA" "WOBA"
[13] "HPMA" "TorgqueRel" "Torquedbs"
[16] "Flowout" "Pressure" "Flowin™
[18] "ECDBottom" "ECDBit" "Ovarpull”
[22] "HookLoad" "UnbtmStatus” "Inslips3tatus"
[25] "Depth”™ "Datelima"” "Date"
[28] "Time" "Wellid" "Formation"
[31] Activity” "BitSize" "HoleDepthHounded®™
[(34] "GR"

Figure 3-Attributes of the master data-frame for Well 12a.

The master data-frames of Wells 12a and E8 had about 1% of missing values (NAs) while those
of wells B30y, B2a and 10 had about 5%, 9% and 14% NAs respectively. NAs were removed since
there was a sizeable amount of data present without the risk of alienating important features.
Well 13 had about 90% of NAs that belonged to the annexed GR column. Due to the presence of
such a high number of NAs in GR, GR for Well 13 was not extracted and annexed. Well 12a was
used for the entire course of the project, from model testing, algorithm tuning, and sensitivity and
uncertainty analysis, while the remaining data of 5 wells was used at the end for the work flow

validation purposes.
2.3 Exploratory Data Analysis
Exploratory analysis was performed on individual wells as well as on data clusters that were

created using several approaches: grouping of several wells by a specific formation, grouping of

several wells by proximity to each other (from survey data) and grouping of data by ranges for a
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particular parameter (ROP, WOB etc.). This process gave several insights as to how data behaves.
Grouping was followed by computing predictor importance to infer relative contributions and
weights of input variables to these clusters.
2.3.1 Histograms and Box Plots

To undertake any model building, it is essential to perform a preliminary analysis of each
parameter involved. Histograms and box plots were constructed for parameters ROP, WOB, RPM,
Flow and GR, as shown in Figures 4 and 5. Histograms and boxplots are very essential to identify
the distributions of existing data. They help understand what specific ranges of values are
prevalent in a particular parameter, and indicate any physical phenomenon behind the

occurrence.

Count
=
ROPA (ft'h)

L . |

=

ROPA (ft/h) Depth (ft)

Figure 4-Histogram and boxplot of ROP for Well 10.
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Figure 5-Histograms and boxplots of GR and RPM for Well 10.

The presence of outliers in the distributions made it clear that outliers could be detrimental
to model performance. Domain expert advice was included in the isolation of such outliers, as

explained in further chapters.



2.3.2 Correlations
Correlation matrices have been computed for different sets of parameters to identify if there
is any high degree of correlation as this would influence the models later. Correlations were run

on entire data initially for Well 12a as shown in Figure 6.
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Figure 6- Correlation matrix with scatter plots for Well 12a.

There was no noticeable trend between various parameters with the ROP. More analysis was
done later to see if grouping wells led to better correlations. Several wells were grouped by
proximity to each other (using information on the location from the survey data), by formations

and by trisecting the data into high, medium and low for a given parameter respectively.
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2.3.2.1 Grouping by parameter ranges

Initially, a particular parameter (such as ROP) was chosen and the entire data for a well was
segregated on the basis of a prefixed high, medium and low range for that parameter. Then, the
correlation matrix was computed for these 3 groups of data branches as shown in Table 3, which
shows the segregation by ranges (high and medium) for ROP in the Well 10.

Table 3- Correlation matrix of ROP vs. other variables for grouping by ranges of ROP.

ROP

e
ROP- High ROP- Medium
L ROPA WOBA RPMA Flowin
#4 ROPA  1.00000000 0.1335727 -0.05450765 -0. 16716667
## WOBA 0.13357269 1.0000000 O.60B29706 -0.258T71104
#4 RPMA  -0.05450766 0.6082071 1.00000000 0.02201333
## Flowin -0.16716567 -0.2587110 0.02291333 1.00000000

## ROPA WOBA RPMA Flowin
#4 ROPA 1.00000000 -0.2020078 -0.26485858 0.00190481
#6 WOBA  -0.20290777 1.0000000 0.5653154 -0.48704140
## RPMA  -0.26485847 0.565315¢ 1.0000000 -0.36100742
## Flowin 0.09190481 -0.4870414 -0.3610074 1.00000000

(=1

a8 ROPA GR Pressure Temp i ROPA GR  Pressure Temp
## ROPA 1.00000000 -0.01373709 -0.12586529 0.03551352 ## ROPA 1.00000000 -0.03637899 -0.2565180 -0.40530824
## GR -0.01373709 1.00000000 0.04120238 0.31435978 2% CR 003637899 1.00000000 -0. 1990630 001442185
## Pressure -0.12586526 0.04120238 1.00000000 0.71563163 ## Pressure -0.25651799 -0.19006300 1.0000000 0.B84223850
## Temp 0.03551352 0.31435978 0.71563163 1.00000000 ## Temp -0.40530824 0.01442185 0.8422385 1.00000000
e ROPA HockLoadA TorqueAbs ECDA e ROPA  HookLoadd Torqueibs ECDA
## ROPA 1.00000000 0.04764883 0.02287414 0.16374309 ## ROPA 1.0000000 -0.33127763 -0.2785656 -0.199682154
## HookLoadA 0.04764983 1.00000000 0.76475295 0.13088562 ## HookLoadA -0.3312776 1.00000000 O©.7882023 0.01885503
## TorqueAbs 0.02287414 0.76475295 1.00000000 0.01909608 ## TorqueAbs -0.2785656 0.78820231 1.0000000 O0.17569040
## ECDA 0.16374399 0.13068562 0.01909608 1.00000000 ##% ECDA 0.1998215 0.01895503 0.1756904 1.00000000

Trends (correlation values of greater than 0.7 or lesser than -0.7) have been noticed but there
has been no consistency when the same process was applied to a different well. Similarly,
correlations were computed by taking WOB, RPM and GR ranges to find any meaningful
relationships between the variables.
2.3.2.2 Grouping by proximity

Several wells were grouped by proximity (using latitude and longitude values, pad details etc.)
from the given survey information and then the correlations were computed. Wells B28 and B30y,
and B2a and E8 are two such groups which have been used in the analysis. Table 4 shows the
results of both the groups. Better correlations were noticed even though the entire well data was
utilized for the correlation computation, unlike segregation by ranges as done in the previous

section.
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Table 4-Correlation matrix of ROP vs. other variables using grouping by proximity.

##Wells B2a, E8

#a
#a
#z
##

ROP_avg
1.0000000
0.8062987
0.9191268

ROP_avg
WOB_avg
RPM_avg

WOB_avg
0.8062987
1.0000000
0.9544458

RPM_avg Flow_in
0.9191268 -0.6818877
0.9544458 -0.7146659
1.0000000 -0.7435934

#a

##
#
##
##
##

#a
##
##
##
#e

Flow_in -0.6818877 -0.7146659 -0.7435934

ROP_avg GR Pressure
ROP_avg
GR 0.16858261
Pressure 0.17185216 -0.5487716

Temp_Mud -0.09433698 0.6848726 -0.4032765

ROP_avg HookLoad_avg Torque_avg
ROP_avg 1.0000000 0.5432922 -0.19470866
HookLoad_avg 0.5432922 1.0000000 0.27467666
Torque_avg -0.1947087 0.2746767 1.00000000
ECD_avg 0.2844670 0.2278106 -0.05980717

2.3.2.3 Grouping by formation

1.0000000

Temp_Mud
1.00000000 0.1685826 0.1718521 -0.09433698
1.0000000 -0.5487716 0.68487262
1.0000000 -0.40327649
1.00000000

ECD_avg
0.28446704
0.22781062

-0.06980717

1.00000000

s

##
Ll
W
a®
as

L]
LL]
Lid
a8
L1}

Lo
L
##
##
Lid

#Wells B28, B30y

ROP_avg
ROP_avg 1.0000000
WOB_avg 0.9339527
RPM_avg 0.9617455
Flow_in -0.7282659

0.
1.
0.

ROP_avg
1. 0000000
GR -0.1676414
Pressure 0.3058432
Temp_Mud 0.3068672

ROP_avg

WOB_avg
9339627
OOG0O00
9830082

-0.7351787 -0.7420190

RPM_avg Flow_in
0.9617466 -0.7282660
0.9830082 -0.73651787
1.0000000 -0.7429100
1. 0000000

GR Pressure

ROP_avg HookLoad_avg Torque_avg

ROP_avg 1.00000000
HookLoad_avg 0.52019220
Torque_avg -0.04305B68
ECD_avg 0.44218115

Temp_Muod
-0.16764140 0.30668432 0.30686716
1.00000000 0.2200771 -0.02644867
0.22007713 1.0000000 0.66204800

-0.02644867 0.6620480 1.00000000

ECD_avg

0.5291922 -0.04306868 0.4421812
1.0000000 0.36376873 0.6833833
0.3637687 1.00000000 0.5592684
0.6833833 0.55526843 1.0000000

The groups of wells in the previous section were further analyzed by computing the

correlation matrix for each formation separately. Table 5 shows the results for formations Valhall

and Plenus of B28-B30y. The correlations were stronger and consistent when segregated by

formation. This exercise highlighted the need to isolate each formation for model building while

computing the ROP as it follows a complex relationship with changing formation characteristics.

Table 5-Correlation matrix of ROP vs. other variables for grouping by formation.

ECD_avg

Valhall

44 ROP_avg  WOB_avg RPM_avg  Flov_in

## ROP_avg 1.0000000 0.9851322 0.9843039 -0.9826936

## WOB_avg 0.9851322 1.0000000 0.9972796 -0.9974219

## RPM_avg 0.9843039 0.9972796 1.0000000 -0.9988267

## Flow_in -0.9826936 -0.9974219 -0.9988267 1.0000000

## ROP_avg GR Pressure Temp_Mud

## ROP_avg  1.00000000 -0.09376293 0.02874902 -0.1825401

## CGR -0.09376203 1.00000000 0.38650817 0.4226487

## Pressure 0.02874902 0.38650817 1.00000000 0.7534640

## Temp_Mud -0.18254008 0.42264874 0.75346404 1.0000000

## ROP_avg HookLoad_avg Torque_avg

## ROP_avg 1.00000000  0.9327051 -0.08885869 0.9765132
## HookLoad_avg 0.93270507 1.0000000 -0.18150366 0.9706150
## Torque_avg -0.08885869 -0.1815037 1.00000000 -0.1874699
## ECD_avg 0.97651319  0.9706150 -0.18746994 1.0000000

2.3.3 Segregation by Activity

##

Plenus

ROP_avg

WOB_avg
## ROP_avg 1.0000000 0.9966539
## WOB_avg 0.9966530 1.0000000
## RPM_avg 0.997095¢ 0.9996823

RPM_avg

Flow_in
0.9970954 -0.9943472
0.9996823 -0.9969033
1.0000000 -0.9974709

## Flow_in -0.9943472 -0.9969033 -0.9974709 1.0000000

##

## CR

##

## ROP_avg

ROP_avg
1.00000000 -0.01603629 0.2568598 0.06071687
-0.01603629 1.00000000 -0.2696636 -0.41499524

GR  Pressure

Temp_Mud

## Pressure 0.25685076 -0.26966356 1.0000000 0.78657548
## Temp_Mud 0.06071687 -0.41499524 0.78657565 1.00000000

## ROP_avg

## HookLoad avg -0.5290974

## Torque_avg
## ECD_avg

0.8340736
0.1104671

ROP_avg HookLoad_avg Torque_avg
1.0000000

ECD_avg

-0.52909738 0.8340736 0.11046706

1.00000000 -0.6950546 -0.01085822
-0.695056457 1.0000000 0.18219407
-0.01085822 0.1821941 1.00000000

As the given data consisted of all the activities such as tripping in/out, sliding, and rotation on

bottom, there was a need to isolate the data for all these NPT activities from the actual drilling
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data in order to effectively construct models. As shown in the Table 6, the following parameter

ranges were used to isolate drilling data, which would later be further preprocessed before

initiating model construction.

Table 6- Ranges for parameters applied for segregating data by activity.

Drilling Trip in Trip out

ROP >0 0 0

RPM #0 ~0 ~0

WOB #0 0 0

Flow #0 0 0

Bit Depth Increasing decreasing
same range and increasing

Hole Depth no change no change
Rotation Off Bottom Sliding Back reaming

ROP 0 >0 0

RPM #0 bit # 0, pipe =0 #0

WOB 0 #0 <0

Flow #0 #0 #0

Bit Depth no change decreasing

same range and increasing
Hole Depth | no change no change

2.3.4 Outlier Identification
After the NPT activities were isolated, there was still a need for further preprocessing as the
data contained a considerable number of outliers for each parameter. Therefore, outlier analysis

was performed and the first layer of outliers were removed after deliberations with domain
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experts about the noticed field ranges for the parameters involved in model construction such as
WOB, ROP, GR, RPM and GR. This data is stored in separate data-frames for outlier analysis (as
discussed in further chapters).

Figure 7 shows the boxplots by formation for ROP in Well 12a where the dots represent
outliers. Figure 8 represents boxplots of ROP after the removal of outliers. Box plots present the
distribution of data by quartiles. Outliers are those values beyond 1.5 times the interquartile
range (Q3-Q1). The extremes in ROP values could be due to various reason: recording errors, bit
wear, impending bit failure or due to change in formations. It is clearly evident that such high
values of ROP need to be isolated for a better model performance. Separate analysis was

conducted on the outliers file to see if they offer any meaningful insight as to what caused such

spikes.
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Figure 7-Boxplots by formation for ROP in Well 12a.
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Figure 8-Boxplots by formation for ROP without outliers for Well 12a.

A similar process was followed to extract outliers from the other important parameters and
the data was further cleaned. Therefore, after a series of operations such as data extraction,
inclusion of data from formation and survey files, merging of relevant attributes, preprocessing,
omission of irrelevant parameters, drilling data segregation, and outlier isolation, the processed
data sets were finally ready for model building. Figure 9 lists the processed data by formation for
Well 12a. This well has 15 formations. Data with missing formation depths are categorized as a
“NA” formation. This data was also used as part of model building as it gives us an idea about the

model performance in absence of formation intervals data.
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Processed data by formation for Well 12a
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Figure 9-Processed data by formation for Well 12a.

As shown below, Figure 10 represents the ROP versus RPM and WOB while Figure 11

represents ROP versus GR and Flow during a specific time interval using the processed dataset. As

the ROP follows a complex relationship with each of these parameters wherein there could also

be interaction between the parameters themselves, all these are used in model building. Their

relative weights and contributions are discussed in Chapter 3. These processed datasets were

then used for cross validation, model building, refining and ultimately validation purposes. The

Table 7 represents the notation used for final parameters in the subsequent analysis.

Table 7- Parameters used in analysis and their respective notations.

Parameter Notation
Rate of penetration (ft/h) ROPA
Weight on Bit (klb) WOBA
String rotary speed (rev/min) RPMA
Gamma Ray GR

Mud Flow in (gpm) Flowin
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Figure 10-ROP versus RPM and WOB for Ekofisk formation in Well 12a.
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Figure 11-ROP versus GR and Flow for Ekofisk formation in Well 12a.
2.4 Data Splitting
Data splitting was performed to create train, validation and test data sets against which the

algorithm is trained, modified and tested. Several error metrics such as root mean square error
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(RMSE) and mean absolute error (MAE) were used in order to judge the performance of several
algorithms. Therefore, it is extremely important to split data preserving integrity and similarity in
all the three datasets so that there is no bias in evaluating different algorithms while choosing the
best performing ones. Four methods were applied to see if there is an inherent advantage of using
one over the other such as holdout, k-fold cross validation (CV), repeated k-fold cross validation
and bootstrapping (Brownlee, J. 2013). The outcome of testing multiple algorithms against a
sample dataset such as a single well data in this case is an estimation of how different algorithms
perform on the problem against a chose performance measure. If all these varied algorithms fail
to perform, it may be an indication of a lack of structure available for these algorithms to learn.
Although this may occur due to an actual lack of learnable structure in the selected date, it also
provides an opportunity to try different data transformations to interpret the structure to the
learning algorithms.

2.4.1 Hold Out Method

The hold out method involves the concept of slicing the data into a training data that is usually
used to prepare the model and an unseen test data that is then employed to evaluate the model’s
performance on unseen data. Usually 75% of the data is used for training purposes. In the case,
where training, testing and validation sets are created, 60% is used for training, 25% for validation
and the remaining for testing purposes. In this case study, 75% of the data in each formation was
used for training and 25% for testing purposes directly. Well 12a was used for all the data analysis,
model selection, and development of a unique algorithm. The other 5 wells are tested against the
developed algorithm.

Figure 12 shows the histograms of train and test data sets for Ekofisk formation in Well 12a
for RPM and WOB. Care should be taken that the distributions of test and train look similar or else

it would lead to incoherency in model building and inaccurate results.
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Histograms of Predictor variables
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Figure 12-Histograms of train and test data for Ekofisk formation in Well 12a for RPM and WOB.
Table 8 shows the summary of the above mentioned datasets. The presence of outliers can
greatly distort the distributions and hence their isolation can lead to better model building as long

as relevant values are not discarded, even if they exceed ranges.
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Table 8- Summary of test and train datasets for Ekofisk formation in Well 12a.

Summary of Test Data Summary of Train Data
ROP1 RPMA WOBA ROP1 RPMA WOEA

1 Min. 22031 Min. :79.26 Min. : 9.46 1 Min. :21.43 Min. ;7927 Min. - 9.159

2 1st Qui30.37  1stQu.s81.12 1st Qu.i19.07 2 15t Qu:30.36 15t Qu.oB1.07  1st Qu.i19.206
3 Median :33.76 Median :81.47 Median :20.61 3 Median :33.75 Median :81.43 Median :20.584
4 Mean 3443 Mean:81.42  Mean :20.41 4 Mean 3453 Mean:81.39 Mean :20.498
5 3rd Qu.o37.60 3rd Qu.81.78 3rd Qu.:21.84 5 3rd Qu.:i37.61  3rd Qu.281.75  3rd Qu.221.921
6 | Max. (64.06 Max. -83.06 Max. :27.08 6 Max. '61.49 Max. -83.30 Max. (26145

2.4.2  Cross Validation (CV)

CV and repeated CV involve isolating the dataset into a

number of equally sized groups of

instances (also referred to as folds). Every model is then trained on all folds except one that was

left out. This model is then tested against the untouched fold. By repeating this procedure, every

fold of data gets selected to be either a part of the training data set or an opportunity at being

left out of the training data, and therefore acting as the test dataset. Finally, the performance

measures are computed and averaged across all folds to estimate the capability of algorithms.

For example, a 3-fold CV would involve training and testing a model 3 times:

#1: Training on folds 1 and 2 while testing on fold 3

#2: Training on folds 1 and 3, while testing on fold 2

#3: Training on folds 2 and 3, while testing on fold 1

Figure 13 shows the workflow for a 10-fold CV. There are 10 runs for the same set of data,

with the test folds being varied 10 times during the entire process. But the usual concern with CV

is that it uses randomness to decide how to split the dataset into k folds.
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Figure 13- Ten-fold cross validation (CV) example.
2.4.3 Repeated K-fold Cross Validation

Repeated k-fold CV runs CV several times and computes mean of the accuracy. For example,
six repeats of 10-fold CV would give 60 total iterations. Usually, if there is a smaller number of
folds, error estimates are more biased (indicating higher error than there is in reality) and if there
is a smaller number of folds, the variance decreases. On the extreme end, when using the Leave-
One-Out-Cross-Validation technique (LOOCV), the error estimate is essentially unbiased but it
could potentially have a high variance.
2.4.4 LOOCV

LOOCV is a special case of k-fold CV where k equals the number of instances in the data. So a
model is constructed on other data points except one. This process is repeated for all data points.
However, this method can be very time consuming and is only advisable when there are few data
rows.
2.45 Boot Strapping

In bootstrapping, random samples are extracted from the dataset (with re-selection after
replacement) and the model is applied to evaluate these samples. The model is first trained on
the bootstrap sample and the data points not belonging to this boot strap sample are then
predicted. These methods are very important when the number of data points is very low. All the

above methods were applied using the linear regression model. Across all the methods, there has
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not been much of difference when using a specific method, although the computation time in
LOOCV is quite high. As all the methods discussed above delivered similar results, the holdout
technigue was used in regression methods for all subsequent analysis, as computation time was
the least for holdout technique. CV was used in RF and Boosting and in some of the other machine
learning algorithms where it is applied by default. In cases where there is no constraint on
computation capabilities, it is advisable to apply CV or k-fold CV as it helps build the best models
by splitting data accurately (preserving inherent data patterns) across test, train and validation
data sets.

2.5Error Metrics

When undertaking any model building exercises for prediction purposes, the primary goal
should be to construct a model that accurately predicts an output for new data. To compute the
accuracy, several error metrics can be analyzed. In this study, two error metrics: root mean
squared error (RMSE) and mean absolute error(MAE) were used. Both the RMSE and MAE are
used in predictive modeling quite often along with R-square and adjusted R-square. MAE is an
average of the absolute errors, which is the difference between prediction and the true value.
MSE computes the average of the squares of the deviations and RMSE is the square root of MSE.

Because of the square, large errors have relatively greater influence on RMSE than do the
smaller errors. Therefore, MAE is more robust to outliers since it does not make use of squares
of values. On the other hand, RMSE is more useful if we are concerned about large errors in
which consequences are much bigger than equivalent smaller ones. So, the error metric chosen
depends on the kind of target analysis that we are dealing with while considering these criteria.
In the prediction app that was designed as a part of this project, the user can choose either of
the two metrics (RMSE or MAE) to filter out the best models for each formation. This shall be

discussed later in Chapter 5.
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3. BUILDING MODELS

The different algorithms applied over the course of building models is mentioned in Figure

14. Using the master data-frames that included all the relevant parameters, several algorithms
were applied including regression methods such as multivariate linear regression and stepwise
regression, machine learning methods such as neural networks (NN), instance-based methods
such as k-nearest neighbor (KNN) and support vector regression (SVR), classification and
regression trees (CART). The model performance was further improved using ensemble methods
such as random forest (RF) and boosting (GBM). The following chapter discusses the methodology
employed in every algorithm using a train data set, its performance on a test dataset and tuning
methods employed to further improve a particular model.
Preliminary analysis was performed using the regression methods to ascertain several variations
in model building as shown in Figure 14. The findings of the preliminary analysis were then utilized
in advanced machine learning models.

a. Effect of using the entire dataset for model building

b. Effect of clustering by formation and building models separately for each

formation
c. Effect of variable interaction versus no-interaction

d. Variable importance
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Figure 14- Workflow of the algorithm modeling analysis.
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3.1Regression Methods

3.1.1. Multivariate Linear Model (LM)

LM computes a relationship between the dependent variable (Y) and an independent variable
(X) using a regression line, as shown in Figure 15. If there is more than one independent variable,

it is referred to as multivariate regression.
80 -
70 4
60 4
50 4
40 4

304

Outcome Variable

20
104

0+ '
0 20 40 60 80 100
Predictor Variable

Figure 15- Example of Linear Regression
LM is usually denoted by an equation Y=a+b*X + e, where ‘e’ represents the error, ‘a’ is the
intercept, ‘b’ is the slope. This equation can be applied to predict the value of the target variable
based on the given predictors datasets.
There are some assumptions that must be considered for this model to be valid:
a. There must be linear relationship between independent and dependent variables.
b. Multiple regression suffers from multicollinearity, where there is a high degree of
correlation between the predictors and from heteroscedasticity, in which the
variability of a variable is unequal across the range of values of a second variable

that predicts it.
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c. Residuals have a mean of zero. All predictors are uncorrelated with the residuals
and the residuals are not correlated with each other.
d. Residuals have a constant variance and are normally distributed.
Multivariate regression is linear regression considering multiple predictors. As mentioned in

the chapter introduction, this section investigates several variations in model building.

3.1.1.1. Effect of using complete dataset

With ROP as the response variable, and RPM, WOB, and Flow as the input variables,
regression was performed by considering the entire well data for 12a. This is important in order
to analyze the significance of sub -setting the data set by formation versus using the entire data.
The complete data set model was compared to models built after segregating by formation. Figure
16 show the linear model with all the coefficients for each predictor parameter in the full data set

model.

Call:
Im(formula = ROP1 ~ RPMA + WOBA + Flowin, data = training)

Residuals:
Min 1Q Median 3Q Max
-104.252 -32.784 -7.441 25,781 252.373

Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) 33.2666806 0.9542999 34.860 < 2e-16 ===

RPMA -0.2760878 0.0060375 -45.7289 < 2e-16 ===
WOEA -0.2470047 0.0323988 -7.624 2.5e-14 ===x
Flowin 0.0982381 0.0008052 122.010 < 2e-16 ===
Signif. codes: O '#++' 0,001 '#+%' 0.01 '%' 0.05 "." 0.1 ' " 1

Residual standard error: 50.01 on 63856 degrees of freedom
Multiple R-squared: 0.2067, Adjusted R-squared: 0.2067
F-statistic: 56556 on 3 and 63956 DF, p-value: < 2.2e-16

Figure 16- Linear model parameters using the complete dataset of Well 12a.
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a. Building Model using Train Dataset

b. Interpreting Model Performance

c. Prediction using Test Dataset

The model results give information about the direction (by the sign of coefficient), magnitude

(by the value of coefficient) and statistical significance (p-values) of the relationship between a
predictor and response. Low p-values imply strong relationship while higher p-values negate the
same. Usually the cut-off (alpha) is around 5%. The regression results show that all the three
predictors are significant because of their low p-values. But the R-squared and adjusted R-squared
values are low, around 0.2, which means that the predictors explain about only 20% of the

variance in the predicted values.

Residuals vs Fitted

Residuals

-100

T
40 60 B0 100 120
Fitted Values

Figure 17- Residuals vs. Fitted plot using linear model on complete data of Well 12a.

Figure 17 is a standard residuals plot with which linearity and homoscedasticity can be
evaluated. There should be a completely random, and equal distribution of points throughout the
X axis and a flat red line failing which would result in heteroscedasticity. But there is no presence
of equally spread residuals without distinct patterns, implying a non-linear relationship between
the predictors and the response variable. As the fitted value increases, so does the spread which
confirms the presence of heteroscedasticity and hence non-linearity.
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Figure 18- Quantile plot of complete data using the linear model on Well 12a.

Figure 18 is a normal quantile plot of the residuals, and ideally the residuals should be
normally distributed. The residuals have to follow a normal distribution but in this figure, a lot of
variation from the base line can be seen, which indicates the presence of non-linearity between

predictors and response.

Scale-Location
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Figure 19-Spread -Location plot of complete data using the linear model on Well 12a.
Figure 19 is called Spread-Location plot. This plot illustrates whether residuals are spread
equally along the ranges of predictors or not. It again confirms the presence of heteroscedasticity

as the spread is increasing with fitted values.
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Residuals vs Leverage
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Figure 20- Residuals vs. Leverage plot of complete data using the linear model on Well 12a.

Figure 20 is called the Residuals vs. Leverage plot. This plot helps us to find influential data
cases. The data can have extreme values and still not be influential to determine a regression line
or can have reasonable value and still dominate.

The model above follows the typical scenario when there is no influential case, or cases.
Cook’s distance lines (represented by red dashed lines) are barely visible and all cases are inside
of the Cook’s distance lines. So there are not any specific cases influencing the model in a
significant way.

The above four diagnostic plots show potential problematic cases with the row numbers in
the data. These provide information about the model and data. Patterns in these plots tell that
the current model might not be the best way to understand the data and perform predictive
modeling. This would indicate perhaps there is a non-linear relationship between the predictors
and the outcome. Polynomial regression or log transformations might better the model
performance. And further employing machine learning methods such as SVR, KNN, trees, and RF

is necessary to build better models.
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[1] "All Data_ 3 Predictors_ LM MODEL "

County RMSE MAE MedAE Med % Mean % Adj. Rsqr
1 1 50.06 37.93 29.96 42.89 78.72 0.21

Figure 21- Prediction results of complete data using the linear model on Well 12a.

Figure 21 represents the RMSE and MAE after performing prediction on the entire data set.
The RMSE and MAE errors were high, evident from the Percentage MAE and the percentage
median of absolute errors as well. In order to improve the model and reduce the error metrics,
investigation was done to see if clustering by formation would reveal any insight. Several models

were built for each formation respectively as mentioned in the following sections.

3.1.1.2. Effect of Clustering by Formations

Data was segregated by formation and linear regression models were fitted for each
formation separately. These models were then applied on the test datasets of each formation
respectively and the error metrics were computed. Table 9 shows the summary of error metrics
after prediction was performed. The overall adjusted R-squared has increased for most of the
formations and is low for some bad performing formations. Combining the data as a whole
prevented the capturing of such local formation specific trends which is essential for any good
model. RMSE and MAE reduced from a global high of 50 and 38 in the previous case. The best
formations defined by formations with RMSE < 10 are presented as well. For all the modeling
techniques employed, clustering by formation was performed and individual models were built in

order to achieve the best performance.
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Table 9-Prediction results of clustering by formation using the linear model on Well 12a.

"TOTAL SUMMARY- LM MODEL "

County RMSE MAE MedAE Med 7 Mean % Adj. Rsqr Algo

NA 64.597 51.475 43.8 33.2 60.5 0.18 4

Ekofisk 5.323 4.105 3.5 10.2 12.1 0.09 4
Tor 12.508 9.987 8.8 18.2 25.6 0.22 4

Hod 30.046 23.902 20.7 29.7 40.8 0.19 4
Herring 22.398 17.528 15.0 34.2 53.7 0.29 4
Plenus 56.001 42.650 35.9 32.2 33.8 0.29 4
Hidra 42.818 34.769 29.2 26.0 35.7 0.04 4

Sola 35.770 28.677 24.8 29.2 46.0 0.02 4
Valhall 33.676 26.722 22.5 23.6 34.1 0.31 -
Valhall Limestone 18.009 14.183 12.2 33.5 46.1 0.01 -
Kimmeridge 8.047 6.209 5.2 15.6 20.3 0.44 -
Top 11.063 8.647 7.0 24.7 53.5 0.01 -

UB4 11.431 8.974 7.3 13.5 17.2 0.24 4
Heather 22.166 16.229 11.5 17.2 39.3 0.19 4
Sgiath 10.434 8.627 8.1 29.9 43.2 0.26 4
Smith 6.817 5.237 4.0 20.2 34.1 0.22 -

"BEST Formations - LM MODEL "

County RMSE MAE MedAE Med % Mean % Adj. Rsqr Algo

Ekofisk 5.323 4.105 3.5 10.2 12.1 0.09 -
Tor 12.508 9.987 8.8 18.2 25.6 0.22 -
Kimmeridge 8.047 6.209 5.2 15.6 20.3 0.44 4
Top 11.063 8.647 7.0 24.7 53.5 0.01 4

UB4 11.431 8.974 7.3 13.5 17.2 0.24 4

Sgiath 10.434 8.627 8.1 29.9 43.2 0.26 4
Smith 6.817 5.237 4.0 20.2 34.1 0.22 4

3.1.1.3. Effect of Variable Interaction vs. No-interaction
Initially, two regression models were computed using ROP as the output and RPM, WOB and
Flow as the inputs to check if there is an interactivity within predictors. Results of the Valhall

formation are presented in Figure 22.
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a. Interpreting Model Performance- No interactivity case

(1] "Valhall"

Call:
Im(formula = ROP1 - RPMA + WOBA + Flowin + GR, data = training)

Residuals:
Min 1Q Median 3Q Max
-129.094 -23.4186 -2.719 20.6858 145.087

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -744.44695 32.23075 -23.097 < 2e-16 **=x

RPMA 2.14127 0.11914 17.973 < 2e-16 **=*
WOBA 3.72047 0.08230 45.208 < 2e-16 =*x
Flowin 0.52124 0.03186 16.359 < 2e-16 #**%
GR 0.25411 0.04446 5.716 1.13e-08 *=x*
Signif. codes: O '#»*»' 0.001 '+»' 0.01 '»' 0.06 '."' 0.1 ' ' 1

Residual standard error: 33.61 on 7759 degrees of freedom
Multiple R-squared: 0.3133, Adjusted R-squared: 0.3129
F-statistic: 884.9 on 4 and 7759 DF, p-value: < 2.2e-16

Figure 22-Linear model parameters considering no interactivity among predictors for Valhall
formation in Well 12a.

The t-value is the ratio between the coefficient and its standard error. A large t-value suggests
that the coefficient estimate is large and different from zero while a smaller t-value fails to show
that the predictor has any influence on the response. The t-value is used in the computation of p-

values. The p-values indicate that all the 3 predictors are very important.
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b. Interpreting Model Performance- interactivity case

[1] "Valhall"
Call:
Im(formula = ROP1 - RPMA * WOBA * Flowin * GR, data = training)
Residuals:
Min 1Q Median 3Q Max

-116.711 -23.308 -3.187 20.228 142.401

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.814e+04 2.927e+04 2.670 0.00761 =*=
RPMA -5.376e+02 1.940e+02 -2.771 0.00560 =*=*
WwOBA -9.734e+03 2.420e+03 -4.021 5.84e-05 #*#*x
Flowin -8.997e+01 3.343e+01 -2.691 0.00713 ==
GR -9.962e+02 3.371e+02 -2.955 0.00314 #*x
RPMA:WOBA 6.572e+01 1.597e+01 4.115 3.92e-05 #*=*
RPMA:Flowin 6.191e-01 2.216e-01 2.794 0.00521 =*=
WOBA:Flowin 1.107e+01 2.769e+00 3.008 6.43e-05 #%=*
RPMA:GR 6.798e+00 2.235e+00 3.041 0.00237 #*=*
WOBA:GR 1.228e+02 2.738e+01 4.487 T7.34e-06 #*=%=*
Flowin:GR 1.143e+00 3.850e-01 2.969 0.00300 ==
RPMA:WOBA:Flowin -7.474e-02 1.827e-02 -4.090 4.35e-05 #*x
RPMA:WOBA:GR -8.273e-01 1.807e-01 -4.577 4.78e-06 #*%x*
RPMA:Flowin:GR -7.796e-03 2.553e-03 -3.054 0.00226 =*=
WOBA:Flowin:GR -1.397e-01 3.132e-02 -4.461 8.27e-06 =#*x#

2.068e-04 4.552 5.40e-06 #**x

RPMA:WOBA:Flowin:GR 9.413e-04
Signif. codes: 0 "#**' 0.001 '"+*' 0.01 '"+' 0.05 '.' 0.1 ' ' 1

Residual standard error: 33.32 on 7748 degrees of freedom
Multiple R-squared: 0.318, Adjusted R-squared: 0.3167
F-statistic: 240.8 on 15 and 7748 DF, p-value: < 2.2e-16

Figure 23-Linear Model parameters considering interactivity among predictors for Valhall
formation in Well 12a.

Figure 23 shows the regression model considering interactivity. Here, the t-values and p-
values for a combination of predictors give an insight about their relative contribution. The
asterisk sign besides each variable represents the significance codes, therefore indicating the
relative contribution of that particular predictor to the model, making it simple to interpret the
model. So for Valhall formation, considering interactivity helped explain the model better, as
there is considerable interaction between all the factors. In Valhall, both R square and adjusted

R square went up in the case of the interactivity model but not by a large factor, indicating that
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the models perform better when interaction between predicitors is considered. The p-values also
indicate that the interactivity is better.

c. Investigation using ANOVA
ANOVA (Analysis of Variance) was performed to see if there truly is a statistical difference

between both the models for all formations, as claimed in the previous sections.

[1] "HOd"
Analysis of Variance Table

Model 1: ROP1 ~ RPMA + WOBA + Flowin
Model 2: ROP1 ~ RPMA * WOBA * Flowin
Res.Df RSS Df Sum of Sq F Pr(>F)
1 4966 4474235
2 4962 4468792 4 5442.2 1.5107 0.1962

(1] "valhall"
Analysis of Variance Table

Model 1: ROP1 - RPMA + WOBA + Flowin
Model 2: ROP1 ~ RPMA = WOBA * Flowin

Res.Df RSS Df Sum of Sq F Pr(>F)
1 7760 8720079
2 7756 8674414 4 45666 10.208 3.059e-08 *x*=*

Figure 24- ANOVA results for Hod (above) and Valhall formations (below) in Well 12a.

Figure 24 lists the results of ANOVA for 2 formations HOD and Valhall. The F statistic is a ratio
of 2 different measures of variance for the data. F statistic is 1 when null hypothesis is true
implying that above models are both estimates of the same thing.

Valhall has a good F value and a low p-value suggesting that it rejects the null hypothesis and
considering Interactivity is statistically relevant. But HOD formation has a high p-value with an F-

value close to 1, suggesting that it accepts the null hypothesis and hence, interactivity did not
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improve the model by a considerable degree. Therefore, whether interactivity exists and is
statistically relevant varies from formation to formation as explained.
d. Prediction using Test Datasets
Finally, prediction was perfomed using the 2 models on test datasets and the results are
summarized in Tables 10 and 11.

Table 10-Prediction results without considering interactivity among predictors in Well 12a.

"TOTAL SUMMARY- LM MODEL "

County RMSE MAE MedAE Med % Mean % Adj. Rsqr Algo

NA 66.384 52.736 44.9 34.6 62.2 0.19 1Im

Ekofisk 5.509 4.200 3.4 10.2 12.1 0.09 1m

Tor 12.752 10.175 8.4 17.9 25.9 0.23 1Im

Hod 29.493 22.963 19.0 27.5 40.4 0.21 1m

Herring 21.601 16.904 13.5 33.2 50.9 0.286 1m

Plenus 43.676 35.600 30.2 24.7 31.4 0.29 1m

Hidra 39.814 32.112 27.7 23.7 33.4 0.07 1m

Sola 34.850 27.858 23.8 28.9 43.6 0.05 1m

Valhall 33.146 26.435 22.8 23.6 33.8 0.31 1m

Valhall Limestone 17.122 13.269 10.8 29.8 42.4 0.11 1Im

Kimmeridge 8.500 6.546 5.2 16.1 21.4 0.46 1m

Top 10.664 8.354 6.9 24.4 48.1 0.03 1m

UB4 11.711 9.108 7.2 14.0 17.3 0.25 1m

Heather 22.456 16.452 12.3 17.5 40.3 0.20 1m

Sgiath 9.948 8.059 6.4 23.9 38.5 0.27 1m
Smith 7.068 5.517 4.2 22.1 35.5 0.22 1m

Table 11- Prediction results considering interactivity among predictors in Well 12a.

| "TOTAL SUMMARY- LM MODEL "

County  RMSE MAE MedAE Med % Mean % Adj. Rsqr Algo

NA 64.971 51.239 42.3 33.3 60.3 0.21 Im

Ekofisk 5.513 4.173 3.3 10.0 12.1 0.13 1Im
Tor 12.379 9.843 8.3 17.9 25.6 0.25 1Im

Hod 29.006 23.470 19.8 28.9 40.6 0.21 Im
Herring 22.452 16.995 13.4 32.8 ©51.4 0.32 Im
Plenus 40.455 31.199 22.6 21.5 26.3 0.51 Im
Hidra 38.193 29.791 24.6 21.3 30.8 0.19 Im

Sola 33.923 26.765 22.6 26.8 42.4 0.13 1Im
Valhall 33.288 26.071 22.0 22.6 33.6 0.32 1m
Valhall Limestone 16.870 13.212 10.9 30.1 42.6 0.12 Im
Kimmeridge 7.915 6.170 5.0 15.9 19.8 0.48 Im
Top ©9.743 7.493 5.9 21.3 415 0.19 Im

UB4 11.203 8.703 7.1 12.8 16.7 0.28 Im
Heather 21.557 15.6566 11.0 16.1 35.3 0.26 1m
Sgiath 15.017 10.489 7.6 28.1 43.2 0.31 1Im
Smith 6.883 5.320 4.0 22.0 31.8 0.25 1m
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The error rates as shown indicate that interactivity improved the error rates in some
formations while it did not in others, supporting the results of ANOVA analysis performed above.
In conclusion, the exercise implies that the ROP follows a complex relationship with the predictors
that also varied with each formation.

One drawback considering interactivity is the computation time involved when considering
interactivity. Another factor is that there was no considerable difference noticed when
interactivity was considered. Since the inclusion of interactivity yielded mixed results, models
without interaction were considered for further usage in algorithm construction.

3.1.2. Stepwise Regression

Stepwise regression is used to determine the variable significance, the last step of the
investigation process as described in the beginning of this chapter. In this technique, the selection
of independent variables is achieved by automatically observing statistical values like R-square, t-
stats etc. to discern significant variables. Stepwise regression fits the regression model by
adding/dropping predictors one at a time based on a specified criterion. The aim of this modeling
technique is to maximize the prediction power with a minimum number of predictor variables.
3.1.2.1. Interpreting Model Performance

Predictors RPM, WOB, Flow and GR are considered in stepwise regression. The technique was
applied on all formations and the model details are presented for two formations — Ekofisk and
Kimmeridge in Table 12. Figure 25 illustrates the relative contribution of each predictor for

formations, Ekofisk and Kimmeridge, respectively.
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Table 12- Stepwise model parameters for Ekofisk (left) and Kimmeridge (right) formations.

[1] "Kimmeridge"
Start: AIC=21026.95
[1] "Ekofisk" ROP1 - RPMA + WOBA + Flowin + GR

Start: AIC=9533.12

Df Sum of Sq RSS  AIC
ROP1 -~ RPMA + WOBA + Flowin + GR B T 0 333708 21025
- RPMa 1 14 333722 21025
<none> 333708 21027
Uk Hum Gl ey - ey - cr 1 1073 334781 21041
- GR 1 1.5 85163 9531.2 — WOBA 1 101977 435685 22359
<none> 85162 9533.1
- WOBA 1 108.7 85270 9534.7 ig:l;:_ 33:210331'3254_ s
- RPMA 1 516.7 B5678 9548.0
- Flowin 1 4004 .6 89166 9659.0 Df Sum of Sq RSS AIC
- RPMA 1 16 333722 21023
<none> 333708 21025
Step: AIC=9531.17 - GR 1 1149 334858 21040
ROP1 - RPMA + WOBA + Flowin - WOoBA 1 227519 561227 23624
Df Sum of Sq RSS AIC e e
<none> 85163 9531.2
- WOBA 1 119.5 85283 9533.1 Df Sum of Sq RSS AIC
- RPMA 1 648.9 85812 9550.3 snone: 33724 21023
- GR 1 1251 334975 21040
- Flowin 1 4309.0 89472 9B66.6 _ WOBA 1 230131 SE3855 23626
Relative importances for ROP1 Relative importances for ROP1
Method LMG Method Last Method LMG Method Last
. 8 . 8 - -
[ 4 [+ 4
RE m_ 7] B - m e
® o - E=m = ® o - D e ____ ® P [0 [— # P I,
RPMA WOBA Flow GR RPMA WOBA Flow GR RPMA WOBA Flow GR RPMA WOBA Flow GR
Mathod First Method Prat Method First Method Pratt
5 g s g 5. : .
*® *® - -
° I:IIZIIZ'I:I o 1R == * - DI:I=. L -
RPMA WOBA - Flow  GR RPMA WOBA - Flow  GR RPMA WOBA Flow GOR RPMA WOBA Fiow GR
R?=5.11%, metrics are normalized to sum 100%. R? = 44.2%. melrics are normalized to sum 100%.

Figure 25-Relative importance plots for Ekofisk (left) and Kimmeridge (right) formations.

For Kimmeridge, the stepwise regression chosen predictors are GR and WOB while for Ekofisk,
WOB, Flow and RPM were chosen. The process suggested that the chosen predictors were
different for each formation. Next, prediction was done using both models to see if there was a

change in error metrics.
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3.1.2.2. Prediction using Test data
Both the models — one with inclusion of important predictors only (Stepwise regression) and
the other with all predictors (linear regression) were computed. Figure 26 summarizes the results

of linear vs. stepwise regression RMSE metric for all formations.

Linear vs. Stepwise Regression for well 12a
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Figure 26-Linear vs. stepwise regression results of all the formations in Well 12a.

There is no significant variation in using only the important variables as stepwise performed
almost the same or worse than linear regression models. These results also varied for each
formation and hence, it once again emphasizes the importance of building separate models for
each formation. Although error rates remained the same, knowledge of the important predictors
would help optimize ROP on a real time basis if the driller can get knowledge of the most relevant
factors affecting ROP.
3.1.2.3. Investigation using ANOVA

Another analysis was performed with and without considering GR data. GR was chosen for
this purpose because usually when drilling data is avaliable it includes RPM, WOB and Flow while
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GR data is available only with formation data. Another reason is that most of the numerical
models use only WOB, RPM and Flow. So this process would determine if the presence of GR
would help to create a better model. ANOVA was performed to see if there truly is a statistical

difference between changing predictors — including and excluding GR.

(1] "Ekofisk" (1] "Kimmeridge"
Analysis of Variance Table Analysis of Variance Table
Model 1: ROP1 - RPMA + WOBA + Flowin Model 1: ROP1 - RPMA + WOBA + Flowin

Hodel 2: ROP1 - RPHA + WOBA + Flowin + GR yode] 2: ROPY - RPMA + WOBA + Flowin + GR
Res.Df RSBDfBwmof3q  FPrOR Res.Df RSSDfSumof Sq F  PrOF)

1 2780 85163
2 2779 85162 1 1.4638 0.0478 0.827 1 bO00 34781
2 4999 333708 1 1073.1 16.075 6.176e-05 #xs

Figure 27- ANOVA results for Ekofisk and Kimmeridge formations with and without GR

Figure 27 presents the ANOVA details with and without GR. For Ekofisk, the F- value is low
and P- value high suggesting that there was no change when GR was included while for
Kimmeridge, the opposite results was observed. Upon repeating the process for all other
formations, it was determined that about 50% of the time GR had influence on making the model
better.

Hence, GR was considered because the given data already had formation values and in case
where it’s missing, the other 3 parameters were used for modeling.

3.1.3. Conclusions of regression methods and preliminary analysis

1. Sub-setting by formation from entire dataset helped build better predictive models and
explain variation in the data compared to using complete well data for a single model
construction.

2. The analysis of diagnostic plots has revealed that following a linear approach modeling would
be error prone with the case study data. Hence, there emerged a need to employ machine
learning models and other advanced ensemble methods.
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3. Models built with and without interaction within the variables revealed mixed results as far
as reducing error rates were concerned. There was little variation in RMSE/ MAE between
both the methods and this also varied across formations. So for the sake of achieving better
computation speeds, non-interactivity would be employed across further modeling.

4. Relative importance revealed that among ROP, RPM, Flow and GR would be relevant in model
building in some formations and not so much in others as they had varied results for each
formation. The reduction in error metrics was not very significant as well. So all the predictors
will be considered if GR data is available for a given formation/well.

The following chapters discuss the application of advanced modeling algorithms such as
Neural Networks, Decision trees, Instance based methods and Ensemble Models. As concluded
from above, non-interactivity would be followed across all models. WOB, RPM and flow shall be
used as default predictors in all cases as they are input at the surface real time. It is therefore
logical to include these parameters even though relative importance gave weightage to one or

more among these. GR shall be used if available for a particular well/formation.

3.2 Machine Learning Methods

3.2.1. Support Vector Regression (SVR)
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Figure 28- Hyper planes of SVM
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SVR is used to construct a hyperplanes or a set of hyperplanes in a high-dimensional or infinite
dimensional space, which can be used for regression, classification etc. In a sample space as
shown in Figure 28, there are infinitely many possible hyperplanes and to find the best
combination, SVM relates the margin of each possible hyperplane to its generalization error using
a statistical principle called structural risk minimization (SRM). SRM defines an upper boundary to
the generalization error and hence the maximum margin for the hyperplane in terms of its training
error, number of training samples and the model complexity. (Tan et al. 2006).

To be able to use SVM, the package e1071 needs to be installed in R. In this section, a support
vector machine algorithm was applied to the Well 12a. The Holdout method was used for splitting
data into training and testing. Later, how to better the algorithm through tuning will be discussed.

Since the process of extraction, processing, data splitting and model building has already been
described in the preceding chapters, the prediction results for all models will be directly
presented.
3.2.1.1. Base Model

The four predictors: RPM, Flow, WOB, and GR were used to predict ROP. Table 13 lists the
results of the base model (using default values for all parameters without tuning). SVR was more
efficient with lesser error metric values and a better prediction. Tuning was then performed to

see if the models for formation can further be improved.
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Table 13-Prediction results of SVR by formation for Well 12a.

County RMSE MAE H=adAE Med % Mean ¥

NA B6.61 42.1T7 32.45 26.62 42.71
Ekofisk 5£.39 3.8 3.06 9.2 11.31
Tor 12.22 .44 T.58 17.20 22.76

Hod 28.47 21.46 16.87 26.00 35.08
Herring 21.71 15.60 11.71 28.72 39.70
Plenus 42.63 30.92 23.10 17v.10 23.50
Hidra 37 .54 20,459 23.92 22 .24 28H.61

Sola 30.32

Id
L

15 18.22 23.35 34.24

Valhall 30.97 23.78 18.82 20.41 29.26

Valhall Limestone 16.53 12.25 9 .00 26.38 36.19
Kimmeridge 7.84 5.81 4.26 13.83 17.84

Top 8.55 6.21 4.58 18.04 31.34

g4 i0.91 =2.50 7T.13 1Z.65% 15.90

Heather 20.55 14.17 9.74 14.53 34.65

Sgiath 8.59 5.8 4.31 17.77 21.82

Smith 6.48 4.75 3.54 195.98 25.56

3.2.1.2. Tuned Model

The performance of the support vector regression can be further improved by a process
called hyper parameter optimization, or model selection. Through this process, the best
parameters for the model can be selected- epsilon (€€) and a cost parameter to avoid overfitting.
Usually grid search is used for this purpose. The four predictors- RPM, Flow, WOB, and GR were
used to predict ROP using SVR. The darkest area in Figure 29 (right) represents the best
combination. The results improved for most of the formations over the linear regression models
as SVR captures non-linearity better for most of the formations in well 1. The drawback with SVR

was mainly computation time.
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Figure 29- Tuning Parameters: cost and epsilon of SVR for Sgiath Formation in Well 12a.

Since the process of tuning was time consuming (close to 4-5 hours for a couple of
formations), this process was repeated on a select group of formations. Figure 30 provides a

comparison between SVR (tuned models) and Linear Regression.

Linear Regression vs. SVR for Well 12a
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Figure 30-Linear Regression vs. SVR for all the formations in Well 12a.
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The results improved for most of the formations over the linear model as SVR captures non-
linearity better. For most of the formations, SVR seemed to perform better although the
improvement in error rates was minimal.
3.2.1.3. Prediction Plot

Figure 31 shows the plot between actual and predicted ROP for SVR model for the formation

Sgiath while Figure 32 shows the same for a linear model.
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Figure 31- Actual vs. Predicted ROP for Sgiath formation using SVR in Well 12a.
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Figure 32- Actual vs. Predicted ROP for Sgiath formation using Linear Model in Well 12a.

As seen from the above figures, SVR captures non-linearity in the data better than the linear
regression model. The next section discusses the application of Neural Network and KNN
algorithms.

3.2.2. K-Nearest Neighbor (KNN)

One of the simplest machine learning algorithms is the KNN algorithm. It is one of the
methods of instance-based learning, wherein new data points are classified on the basis of stored,
labeled instances. Some kind of similarity measure, typically expressed by a distance measure
such as Euclidean distance, cosine similarity or the Manhattan distance, is used to compute the
distance between the store data and the new instance (data point). The KNN algorithm calculates
and adds the distance of a new point to all stored data points, and then the distance values are
sorted and the k-nearest neighbors are computed. After gathering the labels of these neighbors,
a vote is taken. For regression, mean of k-nearest neighbors is assigned to new data point. One

of the uses of KNN is when outliers are involved. It is insensitive to outliers that makes it resilient
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to errors in the classification process. The efficacy of the model is greatly dependent on the
number of nearest neighbors chosen i.e. determining the value of k.
3.2.2.1. Base Model

The four predictors- RPM, Flow, WOB, and GR were used to predict ROP. Table 14 lists
the results of the base model (using default values for all parameters without tuning). The package
caret is used to undertake the KNN model building and the function knnreg () is applied. KNN also
performed better than the linear model and its results are closer to SVM.

Table 14-Prediction results of KNN for all formations in Well 12a.

County  RMSE MAE MedAE Med % Mean %

NA 49.042 35.765 25.8 21.4 37.1

Ekofisk 5.807 4.396 3.5 10.2 12.8
Tor 11.708 85.144 7.4 17.1 22.0

Hod 30.900 23.961 19.1 29.0 40 .2
Herring 22.941 16.749 12.0 231.1 46.1
Plenus 45.852 32.015 19.6 18.5b 2b.8
Hidra 41.660 32.064 25.4 22.2 33.3

Sola 30.8b6 23.448 18.1 22.7 3b.6
Valhall 32.518 25.012 19.7 20.7 31.7
Valhall Limestone 17.943 13.945 11.4 31.3 44.1
Kimmeridge 7.545 5.697 4.5 13.9 18.1
Top 8.941 6.559 4.9 18.5 32.2

UB4 10.444 8.203 6.8 12.7 15.5
Heather 21.062 15.615 12.0 18.0 32.9
Sgiath 11.1556 8.161 5.9 22.8 36.0
Ssmith 6.849 5.279 4.2 22.0 31.5

3.2.2.2. Tuned Model

The efficacy of the model is determined by ki.e. number of nearest neighbors. A large k value
helps reduce the variance due to the noisy data. However, the side effect of a large k value
includes the development of a bias due to which model might ignore smaller patterns in data

containing useful information. Tuning was performed by iterating over several values of k to see
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improve the efficacy of the KNN algorithm. So in the cases where there are constraints on time
and computational power, a value of k equal to square root of the observations can be used
directly. RMSE vs. k values are presented in Figure 33 for formation Ekofisk, where the tuning was

done upon k values from 1 to 300.

RMSE (ft/h)
(=]

5 NG

0 150 - 300
K ({tuning parameter)

Figure 33- RMSE vs. k-min (tuning parameter) for KNN formation Ekofisk in Well 12a.

The error rate approaches a minimum at around 50 k, which is almost equal to square root of
the number of observations in Ekofisk. So in the cases where there could be constraints on time
and computational power, a value equal to the square root of the observations for k could be
used directly.

Table 15 includes the final output using the KNN algorithm in which tuning was applied on
each formation separately. The last column gives the values of the most optimum value for k. As

compared with the previous section, the RMSE and MAE metrics have decreased for most of the

formations.
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Table 15-Prediction results of KNN by formation after applying tuning in Well 12a.

Valhall Limestone 17.
Kimmeridge 7.

Top 8.

UB4 10.
Heather 20.
Sgiath 9.
Smith 5.

3.2.2.3. Prediction Plot
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NA 47.
Ekofisk 5.
Tor 11.

Hod 29.
Herring 20.

Plenus 51

Hidra 40.
Sola 30.

Valhall 31
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662 35.092 26.0 21.5 36.4 16
201 4.030 3.4 9.9 i1.8 a8
197 B.790 7.2 16.3 21.6 23
489 23.029 19.5 28.2 38.3 100
376 15.462 12.2 32.1 44 .5 76
026 38.381 27.2 22.2 30.2 2
635 32.286 27.5 24.7 32.8 21
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744 24 6685 19.5 20.9 31.4 38
623 13.718 11.3 30.9 a4 .3 as
209 5.491 4.4 13.5 17.4 15
421 6.159 4.7 17.4 33.3 17
984 8.651 7.2 13.5 16.5 ar
083 14.816 11.2 17.2 33.56 11
245 6.938 4.7 20.9 32.7 7
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Figure 34-Actual vs. Predicted ROP for Smith formation using KNN in Well 12a.
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Figure 34 shows the plot between actual and predicted ROP for the KNN model for the
Smith formation. The plot captures the non-linear trend better than the linear model and similar
to SVR. The main advantage of KNN over SVR is that KNN is simpler and faster.

3.2.3. Neural Networks

Neural networks are quite popular because of their hidden complexity and resemblance to
the working of neurons and human brain structure. A neural network (Bayesian Regularized
Neural Network or BRNN) is a graph of computational units that receive inputs and transfer the
result into an output that is passed. The features of an input vector are connected to the features
of an output vector by ordering the units into layers, as shown in Figure 35. It is possible to design
and train neural networks to the model the primary relationship in the data with training such as
the Back-Propagation algorithm. Neural networks were also applied on the training dataset. The
following packages nnet and brnn in R were used to undertake neural network model building
and prediction. Initially base models with the default number of neutrons were run and then

tuning was incorporated into model performance.
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Figure 35- Pictorial description of a simple neural network.
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3.2.3.1. Tuned Model

Tuning is usually done either by employing a tune grid search or manually altering the value
of neurons. In this study, a loop for different values of neurons was run and then the best neurons
with the least RMSE, as shown in Figure 36. As compared with KNN and SVR, NN did not perform
better in either the prediction results or in the actual vs. predicted ROP plots. However, NN

performed better compared to regression models: linear and stepwise.
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Figure 36-RMSE vs. Neurons (tuning parameter) using NN for Smith formation in Well 12a.

Table 16 shows the results of prediction and Figure 37 shows the predicted vs. actual ROP
plot. As compared with KNN and SVR, NN did not perform better in either the prediction results

or in the actual vs. predicted ROP plots. However, NN performed better compared to regression

models.
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Table 16-Prediction results of NN for all formations in Well 12a

“TOTAL SUMMARY™

County

NA

Ekofisk
Tor

Hod
Herring
Flenusz
Hidra

Sola
Valhall
Valhall Limestone
Kimmeridge
Top

UE4
Heather
Egiath
Smith

3.2.3.2. Prediction Plot
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Figure 37-Actual vs. predicted ROP for Smith formation using NN model in Well 12a.
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3.2.4. Classification and Regression Tree (CART)

A decision tree or regression tree is a simple yet popular machine learning algorithm. To build
the tree, a root node containing all the training data is taken and split into two new nodes on the
basis on the most important variable which separates the outcomes into two categories in the
best possible manner. Each new node is again split based on the variable that provides the better
splits for that particular node (which is not necessarily the same variable as the one that the
analysis was started with). This process of nodes splitting is continued until stop criteria is
achieved. Decision trees are popular for certain reasons. They do not make any assumptions
about linearity and consider both linear and non-linear models. Their interpretability is quite
straight forward. But the downside is they tend to over fit. Usually fitting is done through cross
validation technique.
3.2.4.1. Tuned Model

Since testing was completed at the same time the tree was grown, an error measurement was
used to find the optimal number of splits. The original tree was then pruned, and only the optimal
number of splits were retained. This helped optimize the computational time, especially when
large datasets with a number of predictors were involved. Figures 38 and 39 shows the tree

construction of the formation Sgiath before pruning and after pruning respectively.
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1 T L

Figure 38- Decision tree representation for formation Sgiath before applying tuning in Well 12a.
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Figure 39-Decision tree representation for formation Sgiath after applying tuning in Well 12a.
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Tuning is extremely important as it helps bring down the computation time, as the number of
nodes decreases without compromising the error metrics and model performance.

Table 17 lists the summary of prediction results applied using the tuned tree models for each
formation and Figure 40 presents the actual vs. predicted ROP plot.

Table 17-Prediction results of CART for all formations in Well 12a.

"TOTAL SUMMARY"

County RMSE MAE MedAE Med % Mean

NA 55.199 42.418 33.3 26.9 47.7

Ekofisk 5.543 4.175 3.4 10.1 12.1
Tor 11.673 9.281 8.0 17.4 24.1

Hod 29.349 23.306 20.1 28.1 41.3
Herring 21.842 16.374 12.8 33.1 46.9
Plenus 48.446 34.666 24.5 19.7 26.0
Hidra 40.892 32.466 27.6 23.8 33.7

Sola 33.661 26.306 21.7 26.9 40.9
Valhall 34.439 27.1356 22.4 24.5 34.9
Valhall Limestone 17.807 14.082 12.1 33.2 46.8
Kimmeridge 8.200 6.357 b.1 15.06 21.2
Top 9.954 7.494 5.5 20.5 45.7

UB4 10.800 8.636 7.6 13.6 16.5
Heather 21.740 15.828 11.5 16.8 39.1
Sgiath 11.692 8.783 5.3 30.3 41.3
Smith 7.144 5.492 4,3 22.1 33.6

3.2.4.2. Prediction Plot

As compared with KNN and SVR, RPART also did not perform better in either the Prediction
results or in the Actual ROP vs. Predicted plots. However, it performed better compared to the
regression models. Finally, ensemble methods were employed to achieve the best possible
modeling algorithms for the given data, results and procedures of which are discussed in the

following sections.
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Figure 40-Actual vs. predicted ROP for Smith formation using CART in Well 12a.
3.3Ensemble Methods

Ensemble learning is an advanced concept that trains multiple models simultaneously. It has
several advantages such as reduced variance (due to the presence of multiple models) and
reduced bias.

3.3.1. Random Forests (RF)

RF is an advanced ensemble method when compared to decision trees. RF grows several trees
instead of one single tree and infuses randomness into each tree so that a ‘forest’ of such
individual tree models is created. In regression, such as in ROP prediction, the predicted value
(ROP in this case) is a weighted average of the value predicted by each individual tree. One of the
most significant bagging ensemble learning algorithm is RF. Bagging algorithm (or Bootstrap
Aggregating) generates ‘x’ new training data sets. Each new training data set picks of a sample of

observations with replacement (also referred to as bootstrap sample) from the original data set.
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Repetitive observations may occur in each new training dataset by sampling with replacement.
The x models are put together using x bootstrap samples generate above and then combining
them by averaging the output for regression. RF employs approximately two-third of the total
training data used for growing each tree. The remaining data cases are not applied in tree
construction. RF models have advantages over decision trees. They do not over fit (due to the
presence of several trees which average out errors and minimize overfitting). There is no necessity
for CV as the out-of-bag data are used for error estimation. The disadvantages of RF are in its
interpretability. Random Forest applied to the Ekofisk formation is discussed here. Later the most
relevant variables for each formation are ascertained. Relative parameter ranking is similar to the
variable selector process that was discussed earlier in relation to Stepwise regression. This process
is quite important as it helps physically control (or not control!) the most relevant variables in
order to achieve the best ROP. The number of optimum trees required can be tuned. Figure 41
shows the error rate versus trees. The optimum trees are around 100 for Ekofisk. Model building
is continued using the optimum number of trees required and feature selection using the RFE

function will be discussed.
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Figure 41- Error Rate vs. number of trees for Smith formation using RF in Well 12a.

3.3.1.1. Variable Importance (Recursive Feature Elimination)
RF is useful in finding the relative importance of the variables indicated by the %IncMSE.
Higher the %Inc. MSE values, greater is the relative importance of that particular variable as

shown in Table 18. Figure 42 is an illustrative way of looking at the most relevant parameters.

Table 18-%Inc MISE and IncNodePurity and RMSE values in RF for Smith in Well 12a.

%INCMSE InCNOdePur'ity Variables RMSE Rsquared RMSESD RaquaredSD Selected
RPMA  45.75628 18786.71 1 6.407 0.02379 0.4002  0.01602
WOBA  43.29991 20053.56 2 5.504 0.13318 0.4364  0.12390
Flowin 58.30745 21597.40 3 5.041 0.25295 0.3411  0.09434
GR 41.02100 23133.07 4 4.760 0.34046 0.3756  0.05404 *

The top 4 variables (out of 4):
Flowin, WOBA, GR, RPMA
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Figure 42- Parameter selection using RFE for Smith formation using RF in Well 12a.

3.3.1.2. Tuned Model
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The summary of prediction results for all formations is shown in Table 19.

Table 19-Prediction results of RF for all formations in Well 12a.

## [1] "TOTAL SUMMARY"

County RMSE
NA 45.814 33.165

Ekofisk 5.282 4.081
Tor 11.488 0.055

Hod 30.026 23.6956
Herring 21.733 15.857
Plenus 43.104 32.T0D4
Hidra 37.963 30.255
Sola 29.639 22.761
Valhall 32.000 24.932
Valhall Limestone 15.556 12.363
Kimmeridge 7.272 b5.527
Top B8.565 6.421

UB4 10.749 B.5T2
Heather 21.153 15.388
Sgiath 10.628 7.664
Smith 6.340 4.844
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RF performs better than regression and NN while it is on par with SVR and KNN as far as
prediction results are concerned. The actual vs. predicted ROP plot in Figure 43 indicates that it
performed decently. Due to inherent cross-validation and testing, the tree building exercise
contributed to the success of RF. The error metrics are also significantly low in RF and it does a
good job in mapping the actual ROP.
3.3.1.3. Prediction plot
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Figure 43-Actual vs. predicted ROP for Smith formation using RF in Well 12a.
3.3.2. Gradient Boosting Machine (GBM)

The last method employed in the study was gradient boosting machine (GBM). In GBM, many
simple decision trees are created, where each tree is built for the prediction errors of the previous
trees (Bhalla, D. 2015). Once the first tree is created, weighted trees are created following weight
determination and subsequent iterations. The final prediction is the weighted sum of the
decisions made by trees as a whole. So the main idea here is to combine several simple decision

trees such that each tree complements the previous ones and keeps track of the errors of the
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previous trees. For example, from the Figure 44, we start with the first box. The one vertical line
which is seen becomes the first week learner. Now in total there are 3/10 misclassified
observations. Now higher weights are given to three plus misclassified observations. Hence, the
vertical line towards right edge. The process is repeated and then each of the learner are
combined in appropriate weights. Models are built independently in bagging, whereas in
boosting, models are improved and built upon previous ones. This helps reduce variance and bias

but also leads to overfitting.

Figure 44- Boosting model explained through learners.

3.3.2.1. Tuned Model

GBM has a large number of hyper-parameters to tune, out of which the most important are
the following: Number of trees or GBM iterations, Interaction depth or number of splits to be
performed starting from a single node, as shown in Figure 45, and shrinkage used for lessening
the impact of each additional fitted base-learner. With the tuning parameter shrinkage held at a
constant value of 0.1 and a minobsinnode (minimum observations) of 20, the best model (least

RMSE) for n.trees (number of trees) = 950 and interaction.depth = 5 is obtained.
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Figure 45- Tuning parameters vs. RMSE of GBM for Ekofisk formation in Well 12a.

3.3.2.2. Variable Importance

Similar to the linear models and RF, variable importance can be calculated in GBM. In Linear
Models: the t-statistic for each parameter is used to find relative variable ranking. And in random
forests, only the out-of-bag observations are used but GBM computes using the entire training
dataset (not the out-of-bag observations). At GBM, relative variable ranking for parameters is

normalized to sum upto 100, as shown in Figure 46.
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Flowin
(gpm)
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Relative Influence

Figure 46-Parameter selection in GBM for Ekofisk formation in Well 12a.
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Table 20 provides the results of prediction after tuning is performed. Figure 47 shows the
predicted vs actual ROP values for the Smith formation in well 12a. GBM does a good job of
prediction. As shown in Figure 45, errors have considerably reduced and it is the best modeling
technique for almost all formations. Visual inspection of the attached actual vs. predicted ROP
plots revealed that GBM, RF, KNN and SVR performed decently.

Table 20-Prediction results of GBM for all formations in Well 12a.

County RMSE  MAE MedAE Med % Mean
NA 39.544 28.711 21.1 18.2 27.8
Exofisk 4.689 3.527 2.8 B.3 10.1

Tor 9.270 7.211 5.9 13.6 17.2

Hod 27.389 20.866 16.3 24.B 34.9
Herring 19.995 14.796 11.7 28.5 40.8
Plenus 42.494 30.417 19.7 1B.2 23.4
Hidra 34.550 27.151 23.5 20.5 27.5
Bola 25.027 19.105 15.1 19.7 26.4
Valhall 27.714 21.144 16.6 1B.6 24.6
Valhall Limestone 11.891 B8.6290 6.5 1B.1 25.1
Kimmeridge 5.422 4.141 3.3 10.6 13.0
Top 6.032 4.482 3.5 13.0 22.0

UB4 9.546 7.296 6.0 11.3 14.2
Heather 16.113 12.084 9.2 13.9 22.0
Sgiath 9.1656 6.931 6.0 22.1 30.8
Smith 4.483 3.389 2.6 14.1 17.%
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3.3.2.3. Prediction plot

Actual vs Predicted ROP (ft/h)

100-

15.

50 .
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Depth Hole (ft)

Figure 47-Actual vs. predicted ROP for Smith formation using GBM in Well 12a.

3.4 Comparison of all algorithms

Table 21- Advantages and disadvantages of all algorithms

Algorithm | Advantages Disadvantages
Linear Fast and Interpretable. Less prone | Assumes linear relationship.
to overfitting. Difficulty modeling nonlinear relationships
Stepwise | Computes most important Assumes linear relationship.
predictors. Not computation
intensive.
SVR Can model complex relationships. Large computation time and processing
Robust to noisy data. power required.
KNN Simple, powerful and fast.

Fails on high dimensional data.
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Table 21 (continued)

NN Powerful. Can model complex Overfitting, computation time and
relationships. processing power. Black box model.
CART Treats both linear and non-linear Overfitting.
data without assumptions.
Accurate and easier to interpret.
RF Data splitting not required as Interpretation is tricky. Many hyper-
algorithm has CV inbuilt. One of the | parameters to tune.
best performing algorithms.
Reduced variance.
GBM Reduced variance and bias. One of | Tuning requires many hyper-parameters.
the best performing algorithms. Overfitting.

Table 21 lists the advantages and disadvantages of all algorithms. The prediction errors for

all models are discussed in the follow chapter for all algorithms in Well 12a and the remaining

five wells.

The next chapter summarizes the results of all the algorithms by comparing the RMSE and

MAE for the remaining wells. A selection of best modeling techniques is prepared which was then

applied to these wells.
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4. RESULTS AND CONCLUSION

4.1 Model Evaluation on Test Wells

Different types of algorithms belonging to regression, instance—based, trees, neural networks
and ensemble methods were run on Well 12a in order to determine a bag of best performing
models for each formation. Results of all models for the Smith formation are presented in Figure

46 and the results for missing formation data, represented as “NA” are presented in Figure 48.

Comparison of all models on Formation- Smith in

Well 12a
KMM MM GBM

Linear SVR RPART RF

Errar Metric [Ftfh)
= [ (=5 = L n | [==]

Stepwise
Algorithm

ERMSE B MAE

Figure 48-Comparison of all models on Smith formation in Well 12a.
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Comparison of all models "NA" Formation

data- in Well 123
KNN NN RF GEM
Figure 49-Comparison of all models for missing formation data (NA) in Well 12a.
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GBM gave the best results for most of the formations, followed by KNN. But the other
algorithms such as SVR and RF also performed very well. Significant differences can be noticed
when models were run on data with missing formation (NA) information as shown in Figure 49.
RF, SVR and GBM did particularly well. Hence, the same analysis was run on all the formations.

Results of the best models and the second best models by formation for Well 12a are shown in

Figure 49.
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Figure 50-Comparison of all formations using the best algorithm for Well 12a.
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Figure 51-Comparison of all formations using the second best algorithm for Well 12a.
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Figures 50 and 51 indicate that there are four algorithms which delivered good results across
all formations. Although, SVR was performing well on few formations, KNN, RF, and GBM were
applied due to less computation time taken. The developed workflow consisting of the top three-
Boosting, RF, SVR and KNN are chosen to be used for testing on the other Wells-B2a, ES8, 10, 13,
and B30y to see how they performed.

Well B30y: There were about 36000 rows of data for Well B30y. The best modeling algorithm was

found to be RF followed by KNN, as shown in Figure 52.

Comparison of all formations using top 3
algorithms for Well B30y
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Figure 52-Comparison of all formations using the top 3 algorithms for Well B30y.
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Well E8: There were about 121,000 rows of data for Well E8. The best modeling algorithm was

found to be RF followed by KNN, as shown in Figure 53.

Comparison of all formations using top 3
algorithms for Well E8
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Figure 53-Comparison of all formations using the top 3 algorithms for Well ES.
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Well 10: There were about 50,000 rows of data for Well E8. GBM and RF performed well in

some formations and not as good in others as shown in Figure 54.

Comparison of all formations using top 3
algorithms for Well 10
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Figure 54-Comparison of all formations using the top 3 algorithms for Well 10.

75



Well B2a: There were about 67,000 rows of data for Well E8. The best modeling algorithm was

found to be GBM followed by RF as shown in Figure 55.

Comparison of all formations using top 3
algorithms for Well B2a
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Figure 55-Comparison of all formations using the top 3 algorithms for Well B2a.
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Well 13: There were about 59,000 rows of data for Well E8. Boosting and Random Forest

performed good in some formations and failed in others as shown in Figure 56.

Comparison of all formations using top 3
algorithms for Well 13
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Figure 56-Comparison of all formations using the top 3 algorithms for Well 13.
4.2 Uncertainty Analysis
The usefulness of any workflow depends on the accuracy of the output it generates. Input
data are rarely captured accurately. Consequently, this imperfection gets transferred to the
output parameters leading to inconsistent, inaccurate and sometimes irrelevant answers.
Drilling engineering data is also subject to errors as there could be several errors while
capturing data. The RPM values that are noticed at the surface are usually different from those

that are present underground. Same is the issue with WOB.
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In uncertainty analysis, attempts were made to understand and predict a range of outputs while
taking errors in the predictors into consideration. To be able to predict outputs more accurately,

a range of ROP predictions are needed.
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Figure 57-Model input distributions resulting in a range of Output distributions

Monte Carlo simulation was used to undertake uncertainty analysis. The predictors were
assumed to follow normal distribution (which usually is the case with Petroleum data). New
predictor data, which incorporated errors for each of the parameters, was simulated. Initially, the

best model from all the algorithms applied was chosen (on the basis of RMSE and/or MAE).

78



Random sampling was used to create normal distributions for the predictors, by fixing a mean and
standard deviation (usually averaged from the test data). After choosing 1000 generated data
sets (ranges similar to the actual field data), ROP for each of the data points was predicted for a
chosen number of simulation runs (usually 10000) and the distributions of the ROP along with
P10, P50 and P90 values were captured, as shown in Figure 57.

Using the mean and standard deviation of Ekofisk formation test data, normal distributions
of three predictors (WOB, ROM and Flow) containing 1000 rows of data was simulated. Figure 58
represents the distributions of one such simulation run. Using this data, and the best performing
model (linear model is used as an example), ROP values (vector of 1000 values) were predicted.
The same process was repeated with a different set of randomly sampled data for 10 runs (usually

1000 preferred) and generated P10, P50 and P90 values.

WOBA RPMA ] Flowin
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Figure 58- Simulated distributions (normal) of predictors for Ekofisk Formation in Well 12a
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Table 22 represents the range of predicted values for the Ekofisk formation. Ten simulation
runs were performed on 1000 simulated data points and the distributions were plotted at the end
of each run. Then, the mean (median can also be considered) of P10s P50s and P90s values were
taken to determine a range for each formation and to develop a probabilistic estimate rather than
a single pinpointed value.

Table 22-P10, P50 and P90 values of predicted ROP distribution using Regression model for
Ekofisk Formation in Well 12a

e Run P90 P50 P10
## 1 1 32.51 34.42 36.32
## 2 2 32.63 34.47 36.30
## 3 3 32.54 34.45 36.37
## 4 4 32.60 34.53 36.46
## 5 5 32.49 34.43 36.38
## 6 6 32.54 34.49 36.44
## 7 7 32.47 34.44 36.41
## 8 8 32.53 34.47 36.41
## 9 9 32.44 34.41 36.38
## 10 10 32.58 34.50 36.42

Table 23 gives the summary of averaged P10, P50 and P90 values after the Monte Carlo
simulation (10 runs- 1000 data points) was conducted for each formation of Well 12a. Hence, this
approach helps to better understand the range of ROP predictions for each formation and once
again emphasizes the importance of sub setting data by formations for model building and

analysis.
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Table 23- Summary of P10, P50, P90 distributions using regression for all formations in Well 12a.

Formation P90 P50 P10

1 NA 84.140 133.519 182.898
2 Ekofisk 32.533 34.461 36.389
3 Tor 37.077 46.140 55.202
4 Hod 52.693 72.875 93.063
5 Herring 27.958 45.691 63.429
6 Plenus 104.517 136.558 168.597
7 Hidra 106.037 117.022 128.008
8 Sola 76.189 83.975 91.762
9 Valhall 72.121 98.140 124.159
10 Valhall Limestone 35.689 38.310 40.931
11 Kimmeridge 25.075 34.067 43.058
12 Top 25.433 27.403 29.376

4.3 Sensitivity Analysis

Sensitivity analysis was performed using models built from the best performing algorithms.
Four predictors- GR, RPM, WOB and Flow were used to create simulated data. The simulated data
was constructed using normal distributions for each of the predictors. Three of the predictors
were fixed at their mean values, while the fourth predictor had simulated data values that
followed a normal distribution (with a pre specified mean and standard deviation- which
represented the errors in capturing data). This data was then tested against the best performing
models to capture a range of ROP values. By repeating this process for each predictor, ranges of
ROP were obtained and compared. The main feature that was noticed was that the most sensitive
parameter varied for each formation, highlighting the importance of segregating data by
formation for building models. This process of identifying the most relevant parameter was also
done using algorithms directly. RF and GBM have good inbuilt techniques for achieving the same

(as discussed in the previous sections). Figure 59 presents the most important parameter using

81



Recursive feature elimination in the RF algorithm. As stated earlier, the relative ranking of each
predictor provided an idea as to what parameters to focus on while optimizing ROP. For example,
in Figure 59, the emphasis was to alter Flow and WOB as they were the most sensitive parameters
for Smith formation. The other important insight revealed was direction of dependency of the

output on a particular predictor.

Flowin © Flowin o
WOBA © WOBA 0
RPMA |o RPMA o
1 T 1 1 T T 1 1 | 1 1 1
20 30 40 20 0 10000 20000 30000
%INncMSE IncNodePurity

Figure 59- Recursive feature elimination using RF for relative predictor ranking in Smith
formation of Well 12a.

RF also helps to understand the direction of influence of each parameter on the output.
Figure 60 lists the influence for each of the four parameters versus ROP. Flow has a well-
defined negative trend with ROP and it is also the highest contributor from the previous

graphs.
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Figure 60-Partial dependency plots of WOB, RPM, Flow, and GR on ROP for Smith in Well
12a.

Figure 61 shows the partial dependency plots for each predictor. WOB was found to decrease
around 15 klbs, Flow followed a negative pattern with ROP while RPM was highest around 80
rev/min. By following the pattern of ranges of each predictor as illustrated above, simulated data
was recreated and tested against the best algorithms. ROP was found to increase when predictor
values as determined from the partial dependency were used as art of the simulated data. This

exercise confirmed the importance of undertaking sensitivity analysis in order to optimize the
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ROP. The analysis not only helped identify the most relevant parameters, but also suggested a
possible range of values for each predictor in order to achieve the best possible values for ROP.
In the prediction application developed as part of this project (that will be discussed in
chapter 5), there is an option for the user to assign a distribution or to provide a test dataset.
Within the app, a single row of predictors can be used to generate data points using a pre-
specified mean and standard deviation (or the error in measurement). This data set would then
be used against the best model(s) computed from chapter 4 to predict a range of outputs and also

perform sensitivity analysis.

4.4 Conclusions

Extensive simulations were performed to test the robustness of the best models developed.
The study presents several case studies (wells) in which the hybrid models are successfully used
to estimate and optimize the drilling parameters using the prediction app. The accuracy of the
models was increased with a hybrid intelligent system based on the evolutionary computation
system that combines the statistical regression models. The new system provides better
predictive accuracy and performance as compared to the traditional models.

The following conclusions were reached from this study:

1. ROP follows a complex relationship which cannot be comprehensively explained by
traditional models alone. Application of data-driven analytics using several machine
learning algorithms coupled with regression analysis can better predict ROP, irrespective
of the formation/location/region.

2. A multivariate analysis comprising of data from drilling, formation and survey data can
better model the complex relationship and uncover innate relationships among

predictors, rather than using only drilling data such as RPM, WOB and Flow for modeling.
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3. Sub-setting the data by formation or bit size yielded better prediction results than using
the entire data for a single model. This finding highlights the importance of additional
data other than just drilling while predicting ROP and model construction.

4. An ensemble of methods: GBM and RF helped achieve the best prediction with the least
error metrics for most of the formations across all the five wells of data. Algorithms such
as KNN and SVR also performed better and can be used if there is a constraint on
computing capabilities.

5. Outliers should not be discarded but analyzed carefully to uncover any trend/ anomaly.
They can give a picture as to what caused the extreme values to be present. And may help
predict tool failure or stuck pipe etc.

6. Uncertainty analysis account for the inclusion of errors in predictor data and provides a
realistic range of predictions (P10, P50 and P90) using Monte Carlo simulation. This
analysis presents a holistic picture to the driller when compared to models that predict
only one value.

7. Sensitivity analysis helped determine the most contributing predictor for each model built
as well as its trend with the response variable (ROP). This analysis helps the driller to
optimize and achieve the best possible ROP by varying only the most contributing

parameters according to the trend they follow with ROP.

4.5 Limitations

1. Artificial intelligence and statistical regression techniques require very good quality data
for model building purposes. Bad data can severely hamper the model performance while

the presence of missing values can be detrimental as difficulties in learning patterns arise.
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2. ROP optimization can sometimes provide irrelevant/ impossible values for predictors, and
hence it is extremely important to crosscheck these results against domain knowledge
and field-reported values.

3. Lack of multivariate data (drilling, formation, survey, logs etc.) can handicap the predictive
capabilities of the model as a good ROP optimization model utilizes as many parameters
as possible to account for intricate relationships among the variables.

4. The usage of advanced machine learning ensemble methods such as random forests and
boosting requires good computation capabilities and hardware support.

5. The data used in the analysis consisted only of horizontal wells. So the best performing
algorithms might vary if vertical wells are analyzed. The range of ROP predictions can also
be different from the results observed in this project, so caution should be exercised while
any comparison of the observed trends is done.

A web-based prediction Application has been developed that directly enables a user to apply
the above methodology and use it to predict ROP. The app has several steps ranging from
exploratory analysis to applying inbuilt algorithms featuring regression, neural networks, trees,
instance-based methods and ensemble techniques. It also allows the user to perform Monte Carlo
simulation to test the robustness of the best models built. The app also can be used to apply
predictive analytics in production and reservoir engineering and can be easily modified for use in
the other industries as well. Most importantly, the any software knowledge is not required to use

the app.
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5. DATA PRODUCTS: Prediction_APP

5.1About

A predictive analytics app has been developed as part of this thesis project. Coding was done
using R and the app is deployed using Shiny R. The user does not need any prior knowledge of
coding in R or how each algorithm functions to access the app. The app has a wide range of
features and runs an automated process by which the user can upload a dataset, perform data
splitting, build model using several algorithms such as regression, CART, ensemble methods and
then proceed to testing the models against test dataset. There is also an option to choose the best
model by all the existing algorithms and the app returns the best performing model for each
formation. The app can be accessed using a mobile phone/ tablet or a PC and does not require

the installation of any software. The details are discussed in the following section.

5.2 Description

Data Selection Data Preparation Model Selection Uncertainity Analysis

Predictive Analytics

Taking Petroleum Engineering to the next level....

ROP Prediction Production Forecast Fracture Prediction

Failure Prediction Decline Curve Work Over

Production

B0
£
=
()]

NPT Deconvolution Visual Analytics

NOPT Deconvolutio

ILT Tuned Analysis

Figure 61- Homepage of the web-based prediction app developed.

Design and usability were one of the most important factors considered while designing

the app. This software can accommodate several analyses pertaining to other operations in
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petroleum engineering. Figure 61 shows the introduction page. The following tabs explain how to
use the software for prediction purposes.
5.2.1. Data Selection
Predictive Analytics  Home  Data Selection  Data Preparation ~ Model Selection  Uncertainity Analysis
About file View Data Data Summary

STEP 1

Displaying the first 6 rows only
Upload your Dataset

X TimeString ROPA MWin MWout TempMudin ROP1

~ 1 45522 1338244449 66.39 8.60 6.19 63.94 49.78
In Step 1, the user can upload the dataset and have a look at the
summary of your parameters. Summary displays the Mean, Median
and Quantiles of each parameter 2 45523 1338244445 66.39 8.60 6.19 63.94 47.97
| Choose File | eko_smith.csv 3 45524 1338244450 50.58 B8.60 6.20 63.94 52.77

Upload complete
= o ) 4 45578 1338244720 28.31 8.60 6.22 63.93 29.31
Format .csv only. Please save your data as.csv and upload if it is in
Xls or .ixt format. Max size is SMB
5 45585 1338244755 28.31 8.60 6.22 63.93 23.62

Select Separator
& Comma Semicolon Tab Space 6 45586 1338244760 28.31 8.68  6.22 63.93 23.49

Upload Data

Figure 62- Data Selection of the Prediction app displaying uploaded data in Step 1.

In Step 1, Data can be uploaded (using a .csv format) to the App. Once the data is uploaded,
About File, View Data and Data Summary tabs can be used in the main panel to view the data and
summary of each variable present in the uploaded data. The Data Summary tab displays mean,
median, and quantiles information as shown in Figure 62. The code uses a reactive format, so any
changes in the file would automatically change the displayed data and its summary, as in Figure

63.
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About file Data Summary

X Time String ROPA MWin MWout TempMudin ROP1 ROPI
1 Min Min. Min Min Min. : Min. :63.90 Min.: Min.
45522 :1.338e+09 437 8.60 6.192 4.375 0.1023
2 1stQu.: 1st 1st 1stQu.: 1st Qu.: 1stQu.: 1st 1st Qu.:
47524 Qu.:1.338e+09 Qu.:19.70 8.60 6.896 64.75 Qu.:20.711 13.0406
3 Median : Median Median Median : Median : Median : Median Median :
49507 11.338e+09 29.73 8.60 7.475 65.62 129.938 26.0286
4 Mean Mean Mean Mean Mean : Mean Mean Mean
1225217 :1.33%9e+09 27.92 10.07 9.128 84.26 128.290 30.4355
5 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd Qu.:

Qu.-461090 Qu.:1.340e+09 Qu.:34.45 Qu.:11.99 Qu.:111.997 Qu.i109.61 Qu.:35.139 416175

6 Max. Max. Max. Max. Max. Max. Max. Max.
464116 11.340e+09 68.16 12.32 112.050 M 64.058 136.6170

Figure 63- Summary tab displaying mean, median, and quantiles of the uploaded data.

5.2.2. Data Preparation

Predictive Analytics ~ Home

STEP 2

Train, Validation and Test Data
In Step 2, the user can perform split data into Train, Validation and Test data and check for similarity

in their distributions before proceeding to Algorithm Modeling
Select percentage of Train Data
70

Select percentage of Validation Data
20

The remaining data is allocated to Test Data.

STEP 3

Predictors and Response Variables

In Step 3, predictor and response variables can be selected. These attributes are extracted from the
data uploaded in Step 1

Choose Predictor Variables

RPMA

Choose Response Variable
ROP1 -

Please select continous variables only for Regression
Your Regression formula
ROP1 ~ RPMA

Figure 64- Step 2 of the prediction app showing data splitting options.
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Data Preparation consists of two steps. Step 2 presents options to perform data splitting by
selecting a percentage of train, test and validation data. The distributions and summaries of train,
test and validation data can also be analyzed as shown in Figure 64. The Train Data, Validation
and Test Data display the split data and the Summary tab displays their summaries respectively.
It is important to ensure that both train and test data follow similar distributions for an accurate
model building and Histograms tab provides the means to ensure accurate modeling as shown in
Figure 65. The tab also shows the same for the response variable.

In Step 3, predictors and response variables can be chosen from the list which is populated by
automatically selecting column names from the uploaded data. This feature is important as it lets
the user decide the parameters depending on whether he is doing a drilling analysis such as ROP

optimization or production analysis such as fracture geometry prediction.
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Figure 65- Histograms of train, test and validation data for predictors in Step 2.

91



5.2.3. Model Selection

Model Selection also included two steps. In this Step 4, the user can perform model building
using various combinations of algorithms and grouping parameters, as shown in Figure 66.

1. Algorithms: Regression methods, trees, RF, GBM, KNN, and SVR.

2. Grouping parameters: Formation, Bit size, K-means clusters and Entire data.

The user can select the algorithms from a drop-down list present in the sidebar panel and
compute to view several results. Train data can be selected to compute the model by looping over
a grouping parameter selected (e.g. when formation/bit size is selected, the app builds one model
for every formation/bit size level present in the data) and building separate models for each
formation. If none of these attributes (formation, bit size) are present, the user can perform
artificial clustering using the k-Means Algorithm on Train data. Or, the user can simply select the
entire data and the app will build one model for validation and testing purposes.

The models are initially tested against the validation data (train, validation and test data are
created from Step 2) and the prediction results, model details and prediction plots are then
displayed. The Validation Data Results tab displays the summary of RMSE and MAE error metrics
for each formation. As shown in Figure 67, the tab also has additional data such as mean and
median of absolute errors and their percentage variation with respect to actual values (Med %

and Mean %).
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STEP 4
Algorithm Modeling

In Step 3, the user can perform Algorithm Modeling using Train data. The Models are
tested using Validation Data and their performance can be analysed using Error Metrics
generated. The user can perform tuning operations and improve the model against the
Validation data. Different combinations of Grouping Parameter and Algorithm can be
used to build models and analyze results. Once the best performing Grouping Parameter
and Algorithm are finalized, the user can test it against Testing data.

Select Algorithm

Linear b

Select an Algorithm from the drop-down list below. Selecting 'Best Fit Model' uses all
algorithms for modeling and displays the best algorithm based on the Error Metric
choosen below. This information can then be used in choosing the best algorithm for
Testing Purposes.

Select Grouping parameter

() Formation @ BitSize () Complete Data (' KMeans_Cluster

Grouping parameter builds models for each level present in the selected paramater.
Select Complete  Data to build one model using entire data. Select KMeans_Cluster to
segregate data using K-Means clustering and build models for each cluster. Select
Formation or Bitsize to build each model for every Formation/ Bitsize level, but
Formation/ BitSize data must be present in the data uploaded.

Check all parameters and hit Compute

Compute

Figure 66- Details of Step 4 in the prediction app showing algorithm selection.

93



Data Selection Data Preparation Model Selection Uncertainity Analysis

Validation Data Results Validation Data Plots Validation Data Models
Please donot refresh web page during Model building or Simulations. The results will be automatically displayed upon completion.

BitSize RMSE MAE MedAE Med % Mean % Adj. Rsqr Data Algorithm
1175 5.67 4.31 3.68 10.78  12.48 8.83 3332 Linear

2 85 7.75 6.13 t.1e 28.88  39.80 8.85 2519 Linear

Figure 67- Summary of results computed using linear regression applied on grouping parameter-
Bit size.

The Validation Data Plots tab presents the actual vs. predicted ROP plot and the Validation
Data Model displays the details of the selected modeling technique as shown in Figure 68. Figure
69 shows the actual vs. predicted ROP plot for models built using linear regression and looped

over the Bit Size Grouping parameter.

Validation Data Resulls Validation Data Plots Validation Data Models

Legend: Green = Actual ROP & Blue =
Predicted ROP

= Ekofisk
Smith

100

Actual ROP
s | Predicted ROP

~
wu

| | |
g | ' | 1 '|.J. |

93}
Q

Actual vs Predicted ROP (ft/h)
(=]
1

3500 3550 3600 3650
Depth Hole (ft)

Figure 68-Prediction plot of actual vs. predicted ROP for Ekofisk formation using linear regression
applied on grouping parameter-Formation.
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Validation Data Result Validation Data Plols Validation Data Models

Legend: Green = Actual ROP & Blue =
Predicted ROP
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Figure 69-Prediction plot of actual vs. predicted ROP for 17.5 inch Bit size using linear regression
applied on grouping parameter-Bit size.

Similar results can be achieved using the other modeling techniques such as linear, CART and
GBM. Additionally, there is another option in the dropdown menu called the Best_Fit_Model. This
option automatically uses all the algorithms present to build models, use them against test data
and then chooses the best performing model (or the one with least error metric) for each
formation as shown in Figures 70 (all models) and 71 (best models) respectively. The error metrics

are visible in the sidebar panel.
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All Algorithms Best Algorithms

Total summary of all algorithms applied on each Clustering Parameter Level

Formation RMSE MAE MedAE Med % Mean % Algorithm Data
1 Ekofisk 5.674.31 3.60 10.70  12.40 Linear 3332
2 Smith 7.75)|6.13 5.16 28.00 39.80 Linear 2519
3 Ekofisk 5.60 4.26 3.50 1@.e@ 12.38 CART 3332
4 Smith 7.29|5.75 4.80 24.40 37.10 CART 2519
5 Ekofisk 6.61 5.05 4.20 12.30 14.7@ Random_Forest 3332
6 3mith 8.46 6.55 5.00 26.40 41.20 Random Forest 2519
7 Ekofisk 5.60 4.25 3.406 16.206 12.20 GBM 3332
8 Smith 7.21 5.70  4.90 24.18 36.608 GBM 2519

Figure 70-Summary of all algorithms computed for Ekofisk and Smith formations in Well 12a.

All Algorithms Best Algorithms
The following Algorithms have the least chosen error metric and are the best for

Formation RMSE MAE MedAE Med % Mean % Algorithm Data
7 Ekofisk 5.60 4.25 3.40 10.20 12.20 GBM 3332

8 Smith 7.21 5.7@ 4.990 24.10 36.60 GBM 2519

Figure 71-Summary of best algorithms for Ekofisk and Smith formations in Well 12a.

The user can also tune the models using validation data and can try several combinations of
algorithms and grouping parameters. After trying several combinations and achieving the best
possible Grouping Parameter and Formation, the user can test these models against test data, as
shown in Figure 72 in Step 5. The results will automatically be displayed in the main panel upon

choosing test data for testing purposes.
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STEP 5
Test Best Models

Try Different combinations of Grouping Parameters and Algorithms.
Generate models using Train data and check their performance using
Validation data. Perform a visual inspection of the plots and compare
the Error Metrics generated. Once a good match is obtained on the
Validation Data, proceed to applying these Best models against the
Test data created in Step 2.

Best options selected for Testing Purpose
Best Grouping Parameter selected: Formation

Best Algorithm selected: Random_Forest

Do you want to continue with the above choices for Validation
Data ? Click Yes and hit Compute to view Validation Data Results.
If not, select No and repeat Step 4 till the best parameters are
obtained.

Yes @® No

Figure 72- Description of Step 5 in the prediction app explaining the testing phase.

5.2.4. Uncertainty Analysis

In Step 6, the best models, based on the Grouping Parameter and Algorithm chosen in Step 5,
will be used to perform both uncertainty and sensitivity analysis. The user can check model
robustness and generate a range of outputs: P10, P50 and P90 on the Best Models selected in
Step 5 by using simulated data, as shown in Figure 73. The input data is simulated by adjusting
means and standard deviations (SDs) for predictor variables that can then be selected from the

input bars in the sidebar panel.
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Adjust values for Means and SDs for each Predictor

STEP 6 wosB
Monte Carlo Simulation Mean -

Uncertainity Analysis: In Step 6, the user can check model robustness  e— ———

and generate a range of outputs: P10, P50 ,and P90 on the Best

Models selected in Step 5 by using simulated data. The input data is

simulated by adjusting Means and SDs for predictor variables. The sD

best models, based on the Grouping Parameter and Algorithm chosen o B 10
in Step 5, will be used to perform Uncertainity and Sensivity Analysis —

Sensitivity Analysis: The user can also view relative contribution of
Predictors for each model.Check the Sensitivity tab to view Relative
importance of each predictor to the response. Change simulated data

RPM
and rerun simulation to see the effect of each predictor on the
response variable. Mean
0 @ 200
N
Enter number of Data values to be simulated
sD
100 0 [12] 2
I
Enter number of Simulations.
10
Flow
Mean
0 1,500

Run Simulation

Figure 73-Description of Step 6 in the Prediction app demonstrating Monte Carlo simulation.

The SD represents the errors noticed while recording real time values in the field and the user
can select a value for each predictor after consulting with domain experts. Using the simulated
test data (explained above) and the best performing model from Step 3, Monte Carlo simulation
can be performed. The user can specify the number of simulations and number of data points for
each simulation. This is then used to predict a distribution of outputs for which the P10, P50 and

P90 values are captured, as shown in Figure 74.

Formation P10 P50 P90
1 Ekofisk 36.93 36.93 36.93

2 Smith 24.39 24.39 24.39

Figure 74- Results of Monte Carlo simulation- P10, P50, P90 values for formations Ekofisk and
Smith in Well 12a.
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For sensitivity analysis, the user can also view the relative contribution of predictors for each
model, as shown in Figures 75 and 76. Further, the user can change simulated data and rerun
simulations to see the effect of each predictor on the response variable. Therefore, Step 6 enables
forward prediction and displays the observed ranges for a response variable instead of a single
output value.

Home Data Selection Data Preparation Medel Selection Uncertainity Analysis

Influencing Parameters Prediction Ranges Best Models

Please donot refresh web page during Model building or Simulations. The results will be automatically displayed upon completion.

# Ekofisk
Smith
impplots[finp
Flowin @
WOBA °
RPMA “

FIncMSE

Figure 75- Sensitivity analysis indicating the relative ranking of predictors using Step 6.
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Figure 76- Partial dependency plots of Flow and RPM for Ekofisk formation in Well 12a.

Due to the vast range of features available and an easily navigable design, the predictive
analytics app enables a user to apply the above methodology and use it to accurately and quickly
predict ROP. The user is not expected to be proficient in R, predictive modeling or machine
learning. The app also has the potential to be extended to other applications in petroleum
engineering such as in production and reservoir engineering, and can be extended to other
industries as well. More algorithms can be easily added to the app to assist in better and faster

modeling. Also, the app can be accessed anywhere using a smart device.
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6. NOMENCLATURE

ANOVA = analysis of variance

BRNN = Bayesian regularized neural network
CART = classification and regression tree

CV = cross validation

Flow = rate of flow [gpm]

GBM = gradient boosting machine

GR =gamma ray

k = tuning parameter

KNN = K-nearest neighbor

LM = multivariate linear model

LOOCV = leave-one-out cross validation technique
MAE = mean absolute error

NN = neural networks

RF = random forests

RMSE = root mean square error

ROP = rate of penetration [ft/h]

RPM = string rotary speed/revolutions per minute [rev/m]
SRM = structural risk minimization

SVR = support vector regression

WOB = weight on bit [kib]
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