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ABSTRACT The gammaproteobacterium Marinobacter vinifirmus is associated with
moderately saline environments and is often found in marine ecosystems. Here, we
report the draft genome sequence of M. vinifirmus type strain FB1 (3.8 Mbp, 3,588
predicted genes). The presented sequence will improve our understanding of the
taxonomy and evolution of the genus Marinobacter.

Marinobacter vinifirmus is a Gram-negative, aerobic, moderately halophilic gamma-
proteobacterium. It was first isolated from a wine factory wastewater evaporation

pond containing tartrate-laden effluents (1). The isolate became the type strain of
Marinobacter vinifirmus species under the strain name FB1. Since its description by
Liebgott et al. in 2006 (1), the species has been detected in various parts of the world’s
oceans, which points to its wide distribution around the globe (2–7). However, reliable
identification of M. vinifirmus strains is hampered by a scarcity of genomic sequence
data. The type strain is represented by a single incomplete 16S rRNA gene sequence
(GenBank accession number DQ235263), which makes it difficult to unambiguously
relate new isolates to the M. vinifirmus species. All known M. vinifirmus strains are
characterized only by their physiological traits and partial 16S rRNA sequences.

Here, we report the draft genome sequence of M. vinifirmus type strain FB1. The
strain was acquired from DSMZ (Braunschweig, Germany) as “Marinobacter vinifirmus
DSM 17747.” The cells were cultured in marine broth 2216 (8) at 25°C. Genomic DNA
was isolated using the Joint Genome Institute (JGI) cetyltrimethylammonium bromide
(CTAB) protocol (http://jgi.doe.gov/user-program-info/pmo-overview/protocols-sample
-preparation-information/) and converted to two shotgun libraries with mean insert
sizes of 300 bp and 850 bp, respectively, using the Illumina TruSeq DNA PCR-free
sample preparation kit LT (Illumina, San Diego, CA). Paired-end sequencing (2 � 150
cycles) was performed on the Illumina NextSeq 500 platform at the University of
Houston Seq-N-Edit Core (Houston, TX). The collected sequencing reads were quality
filtered and trimmed using Trimmomatic 0.36 (9). Contaminating sequences were
removed using DeconSeq 0.4.3 (10). The processed data set was composed of 595,018
read pairs with 311 � 152-bp inserts, 230,716 read pairs with 841 � 63-bp inserts, and
267,059 singletons, with a total number of bases in all reads of 239,929,351. The reads
were assembled using ABySS 2.0.2 (11), SPAdes 3.9.0 (12), and Ray 2.3.1 (13), and
consensus polishing was performed using Mugsy 1.2.3 (14). The assembly yielded 60
contigs of 201 to 520,919 bp in length, with a total length of 3,836,576 bp at 62�

coverage and with an N50 value of 285,212 bp. The average genomic G�C content is
57.99%.

The contigs were annotated using the NCBI Prokaryotic Genome Annotation Pipe-
line (15). The genome is predicted to contain 3,475 protein-coding genes, 61 RNA-
coding genes (of those, 12 rRNA genes in 4 rRNA operons and 45 tRNA genes), and 52
pseudogenes. All four recovered 16S rRNA gene sequences are identical and have four
mismatches each with the partial M. vinifirmus FB1 16S rRNA gene sequence deposited
in 2006 at GenBank (accession number DQ235263) and used since then for taxonomic
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assignments. A reevaluation of M. vinifirmus FB1 taxonomic relationships with other
members of the genus Marinobacter using the corrected full-length 16S rRNA sequence
pointed to two unassigned strains with sequenced genomes, a perchlorate reducer
P4B1 (16) and an oil degrader ES-1 (17), as likely belonging to the M. vinifirmus species.
This finding corroborates with in silico DNA-DNA hybridization simulations (18), which
showed 74.4% similarity between the FB1 and P4B1 genomes and 70.7% similarity
between the FB1 and ES-1 genomes.

Accession number(s). The whole-genome shotgun project has been deposited in

DDBJ/EMBL/GenBank under accession number NEFY00000000. The version described in
this paper is the first version, NEFY01000000.
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