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Abstract

This dissertation develops and improves methods to detect the modular structure

of complex unipartite and bipartite networks using the method of modularity maxi-

mization, in which one seeks to find the partition of nodes that maximizes a quality

function known as the modularity. Finding partitions that maximize modularity has

been proven to be NP-hard and therefore, fast, approximate algorithms are developed

to find high quality partitions.

First, novel methods are developed using an ensemble approach to detect and

analyze multiple high quality modularity partitions to identify modular and hierar-

chical structure in networks. These methods are applied to the genetic regulatory

network of Escherichia coli and a set of functional communities are identified and

used to predict candidate regulatory interactions.

The problem of community detection in bipartite networks is then studied and a

new bipartite modularity, the Information Preserving (IP) modularity, is introduced.

The IP modularity detects communities in bipartite networks using a unimode pro-

jection that includes more information about the structure of the bipartite network

in the projection than previous methods, and is applicable when the links in the

bipartite network are weighted. The IP modularity is shown to detect meaningful

structure in both a model network and the real-world metabolic network of E. coli .

Finally, the leading-eigenvalue method with final tuning is adapted to find the

partition that maximizes bipartite modularity and an agglomerative step that merges

communities is added to the algorithm. This step extends the effective applicability

of the leading-eigenvalue method of modularity maximization to networks of tens of

thousands of nodes in size. The methods developed in this dissertation significantly

enhance the science of uncovering the structure in complex networks and are appli-

cable to study a wide range of biological, medical, social and physical networks.
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in which there are two types of nodes and each weighted link in the
network only connects a node from each type. The weight of a link is
indicated by the line thickness. . . . . . . . . . . . . . . . . . . . . . 11

1.3 Dendrogram. Hierarchical methods produce a partitional structure
called a dendrogram. Each node in the network begins at the bottom
level of the dendrogram in its own community called a singleton clus-
ter. Pairs of nodes are merged at each level and a partition is chosen
by making a horizontal cut in the dendrogram indicated here by the
red dotted line. The vertical axis corresponds to the similarity value
at which the pair of nodes were merged with lower values on the axis
representing stronger similarity. Figure from Ref. [2] . . . . . . . . . . 13

1.4 The central dogma of microbiology. The central dogma of micro-
biology describes the flow of genetic information in a cell. The DNA
is transcribed into RNA by an RNA polymerase which is translated
into a protein by the ribosome. The transcription rate of the RNA
polymerase can be affected when proteins bind to a site on the DNA
called the promoter. In this figure the promoter is labeled yellow,
the segment of DNA translated is labeled blue, and the start site of
translation is labeled by the black arrow. . . . . . . . . . . . . . . . 16
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1.5 Bipartite representation of a metabolic reaction. A bipartite
network representation of Eqn. 1.5 with metabolites represented as
circle shaped nodes and enzymes represented as square shaped nodes.
A link connects an enzyme to a metabolite if the enzyme catalyzes a
reaction the metabolite is involved in. . . . . . . . . . . . . . . . . . . 20

1.6 An information network. A network of hyperlinks between polit-
ical web blogs in 2005. The two large communities can be classified
by political orientation as liberal (blue) for the cluster on the left and
conservative (red) on the right. Yellow links indicate a hyperlink be-
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node corresponds to the number of web-pages that link to it. Figure
from Ref. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Zachary’s karate club network. The nodes represent 34 members
of a university karate club group and a link is placed between a pair
of nodes if they were observed to interact outside of the club. A dis-
pute within the club caused it to split represented by the dotted line
forming two separate communities. Community membership is indi-
cated by the shape of the node and the gray scale represents strength
of membership with the black(white) corresponding to the strongest
membership of the group on the right(left). This figure is from Ref. [4]. 24

1.8 Overlapping communities.An example network partitioned using
the k-clique percolation method where k = 4. Communities are shaded
by color and nodes belonging to more than one community are labeled
red. From Ref. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.9 Unipartite projection from a bipartite network. In figure (a) an
example bipartite graph is given consisting of 5 nodes of type X and 4
nodes of type Y . A method to analyze bipartite networks is to project
one side of the network onto a unipartite graph. The simplest example
of a projection of the type X side of the network is shown in (b) where
a link indicates the pair of nodes share at least one neighbor. A multi-
graph projection is shown in projection (c) with each link representing
a common neighbor between the pair of nodes. A weighted projection
is shown in projection (d) where the link weight between a pair of
nodes is given by Eqn. 1.22. . . . . . . . . . . . . . . . . . . . . . . . 41

1.10 A weighted bipartite example In this example bipartite network
the links in the bipartite network are weighted. A multi-graph pro-
jection is not readily applicable as the number of neighbors between
nodes 1 and 2 is not clearly defined with weighted links. . . . . . . . 43
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1.11 The modularity landscape. The modularity landscape for the
metabolic network of the spirochaete Treponema pallidum found by
[6]. Multiple partitions were found using a Simulated Annealing tech-
nique to maximize modularity Q and either stopped randomly or at
a local maximum. Each of the found partitions is embedded in a
2-dimensional x-y coordinate system with the corresponding modu-
larity score given by the z-coordinate. The inset shows the peak of
the modularity landscape which displays a large number of partitions
with similar modularity values. . . . . . . . . . . . . . . . . . . . . . 47

2.1 Distribution of gene relatedness and network size in the E.

coli CLR network. (A) Probability distribution of relatedness val-
ues, f , between pairs of genes in E. coli calculated using the CLR
algorithm and the full M3D dataset. (B) Size of the largest con-
nected component for relatedness value, f . At small values of fmin

the network is fully connected but begins to break up into multiple
disconnected components at a critical value of approximately fmin = 4. 78

2.2 Correlation matrix. Correlation matrix showing community struc-
ture found in the E. coli network with relatedness threshold values
fmin = 2, 4 and 6. Genes are ordered in the same sequence along the
x and y axes beginning in the upper left corner, and this ordering is the
same for all three relatedness values (gene order is given in SI). The
matrix element in the position (X, Y ) is colored blue, red, or green if
genes X and Y are in the same community at threshold values 2, 4
or 6, respectively. The density of the color indicates the strength of
the correlation in the partitionings of the pair of genes. For example,
considering the correlation between a pair of genes in the 10 replicate
partitionings performed on the fmin = 4 network, dark and light red
indicates that the pair of genes are always and rarely found to be in
the same community, respectively. The red, green and blue colors cor-
responding to fmin = 2, 4 and 6 thresholds, respectively, are combined
to indicate the correlations of each pair of genes at all three threshold
values. Thus, the color of the matrix element in the position (X, Y )
is white if genes X and Y are in the same community at all three
threshold values. It is purple (yellow) if the two genes are in the same
community at thresholds 2 and 4 (4 and 6), but not at threshold 6 (2)
and it is black if the two genes are not in the same community at any
of the three threshold values. . . . . . . . . . . . . . . . . . . . . . . 83
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2.3 Change in core community structure as noise is increased
from c = 0 to c = 4. The gray scale value of each element indicates
the fraction of times the two genes occurred in the same community
over replicate community partitionings. If the element is white (black)
the two genes were always (never) found in the same community. At
each noise value there are clearly white diagonal blocks indicating sets
of genes that are always found in the same community, which we refer
to as core communities. Note that, the five core communities at c = 0
(Figure 2.3A ) are in the same order in Figure 2.3:B, C, D, and E.
Within each of the five core communities of Figure 2.3A , the node
order is allowed to change in Figure 2.3:B, C, D, and E in order to
display the largest subcommunity first. . . . . . . . . . . . . . . . . 86

2.4 The effect of noise on core community structure and GO
term enrichment. (A) Proportion of c = 0 core community nodes
that remain in a core community. (B) The number of significant GO
term enrichments as a function of noise level c for networks constructed
with fmin = 2. If a GO term is enriched by more than one community,
each enrichment is counted separately. . . . . . . . . . . . . . . . . . 87

2.5 Operon retention. The fraction of 544 operons (comprising 2172
genes) identified in the E. coli genome where all genes in the operon
were assigned to the same final tuning community was determined at
fmin = 2, 4 and 6 (indicated by arrows). These actual values were
compared to 1000 random distributions of the same set of genes to
empty community sets of the same size and number as were present
in the final tuning partitionings (histograms). In all cases, actual
operon retention proportions were much greater than in any of the
1000 randomly distributed sets, indicating that they were very unlikely
to occur by chance and therefore that the final tuning community
partitionings effectively group genes in the same operon to the same
community. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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2.6 Regulatory links from flhDC and fliA in the fmin = 4 commu-
nity that significantly enriches for flagellum associated genes.
Genes are organized into operons as annotated by RegulonDB. Black,
blue and red lines indicate regulatory interactions that are annotated
in RegulonDB, inferred in the CLR network or both, respectively. For
simplicity, only links from FlhDC and to targets of these links from
fliA are shown. Many of the interactions that are found in the CLR
network are not present in RegulonDB (blue lines). These interac-
tions are candidates for indicating unrecognized regulatory interac-
tions between FlhDC and the target genes. However, in most cases
these interactions can be explained through the action of FlhDC on
the sigma factor encoded by fliA (thick red line), which does directly
affect all but one of the target genes. This point underlines the dif-
ference between the CLR network, which includes direct and indirect
regulatory interactions, and the direct transcriptional network as an-
notated in RegulonDB. Note the CLR connection between FlhDC and
the target gene ymdA cannot be explained through any known indi-
rect interaction and is, therefore, a candidate for representing a new
direct interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.7 Links connecting operons in the fmin = 6 community that en-
riches for genes involved in ribosome structure. CLR links are
in light blue, RegulonDB links are in black. Small symbols are genes
that are not in the community, but are regulators of genes that are
in the community and are therefore candidates for mediating indirect
interactions between community genes. Symbol shape and color indi-
cate attributes as follows: red, transcription factors; dark blue, ppGpp
regulated promoter by direct assay [7]; light blue, ppGpp regulated
translation related promoter by microarray [8]; pink, other; hexagon,
σ70 promoter; diamond, σ24 promoter; square, σ32 promoter; circle,
unknown sigma factor. Note that very few interactions observed in the
CLR network can be explained by the direct interactions annotated in
RegulonDB. The high proportion of ppGpp sensitive promoters among
operons contained in the community suggests this molecule as a good
candidate for regulating the remaining interactions. The network lay-
out was determined by the circular layout option in Cytoscape 2.8.1,
no particular significance should be attached to operons being outside
the main circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.1 An example bipartite network. The network contains two (blue
square) team nodes and X +Y +Z (red circle) actor nodes. There are
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to both teams and Z nodes only connected to the team on the right. 112
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3.2 The QG singleton conditions. A portion of the surface Y =
1
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Chapter 1

Introduction

Complex networks and graphs have increasingly become an important area of re-

search as well as a tool for analysis in a wide range of disciplines [10, 11, 12]. A

graph or network is simply a set of nodes and a set of the links that connect them.

The study of graphs is said to have begun in 1736 when Leonard Euler analyzed the

Königsberg bridge problem [13].

The Prussian city of Königsberg was built on opposite banks of the river Pregal

which runs through the city where it splits and forms an island named Kneiphof [14].

There are seven bridges that connect each side of the river and the island. A question

was posed whether an individual beginning at any point in the city is able to cross

each bridge once and only once. Euler showed such a walk is not possible by reducing

the problem to a list of the land masses and the bridges that connect them. Graph

theory initially focused on small networks such as this one and has grown into a

rich subject involving primarily the study of simple graphs such as regular graphs,

latices, and random networks [15, 16].
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(a)

A

B

C

D

(b)

Figure 1.1: The Königsberg bridge. This figure gives (a) a geographic repre-
sentation of the city of Königsberg with each land mass labeled with an uppercase
letter and the seven bridges connecting them whose ends are labeled with lowercase
letters. This figure is from Ref. [1]. (b) a graph representation with each landmass
represented by a node and each bridge represented by a link that connects two nodes.
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Erdös and Rényi introduced and extensively studied the properties of a random

graph model in which each pair of N nodes in a network are connected with probabil-

ity p [17, 18, 19]. One of the most prominent features of the model is the emergence

of a “giant component” in the network. It was found that when pN < 1 most of

the nodes in the network are found in a collection of small clusters (whose size is of

order ln(N)). However, as pN is increased, an abrupt change in the structure of the

network occurs at pN = 1, at which value most (approximately N2/3) of the nodes in

the network are found in a single connected component. Additionally, it was found

that, for all values of p and N , the number of connections adjacent to a node is

Poisson distributed. This implies there exists a “typical” node in the network that

is, on average, connected to pN other nodes.

Erdös and Rényi initially studied a random graph with the assumption that

real-world graphs would behave similarly [20]. It was not until the 20th century,

with the availability of and ability to obtain large network data sets, that real-world

networks were found to have properties and topologies that are neither random nor

regular but that can be described as complex [21]. Barabási and Albert found that

in networks as diverse as the World Wide Web, actor collaboration networks, and

the electrical power-grid of the western United States there is not a “typical” node

in the network [22]. Unlike the the network of Erdös and Rényi they found that

the distribution of the number of nodes a single node interacts with is power-law

distributed. There exists in the same network many nodes with a few connections

and a few nodes with a very large number of connections, but no connectivity is

typical. Graphs exhibiting this power-law connection distribution are thus termed

“scale free.”

The Barabási Albert (BA) model was introduced at the same time to explain the
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power-law degree distribution seen in real-world networks [20]. The two properties

of the model, necessary to exhibit a scale-free topology, are growth and preferential

attachment [20, 12]. The model begins withmo nodes in the network and the network

is grown by adding one node at each time step. Each time a node is added to the

network it connects to the existing nodes with m ≤ mo links. The probability of it

connecting to a node i, that is currently in the network, is given by ki/
∑

j kj where ki

is the total number of links connected to node i and
∑

j sums over all current nodes

in the network. Thus, a node added to the network is more likely (or prefers) to

connect to a node with a large number of connections. The resulting graph exhibits

a scale-free topology with a degree exponent of three [20].

The discovery that real-world networks exhibit behavior markedly different than

random graphs fueled a renewed interest in the field of complex networks, particularly

among physicists [23, 24, 25, 26]. It is now known that common properties a complex

network may exhibit include a power-law degree distribution [27, 28, 29], sparsity [30],

and community structure [31, 32, 33]. Community structure, the propensity of nodes

in a network to form highly connected groups, is an area of extensive research [34].

Modular, or community, structure has been found in networks as diverse as the

World-Wide Web (WWW) [35], the Internet [36], social networks [37, 38], food

webs [39, 40], metabolic networks [41], and sexual contacts [42]. The fact that

nodes in a network are found to be organized into modules is important, not only

in its ability to reveal the large-scale structure of a network, but because these

modules often correspond to functional units. For example, communities in the

WWW have been found to be web pages organized by topic [35] and metabolic

network communities have been found to relate to pathways and cycles [41, 43, 5].

In experimental science and exploratory research, detecting communities can aid in
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uncovering an initial structure for the nodes of a network. These modules can then

be used in making hypotheses about the properties and function of unclassified nodes

in the network [5]. Additionally, the role a node plays is sometimes affected by its

position within a community, with nodes at the boundary of communities both acting

as “gate keepers” of information flow in social networks [44, 45, 46] and having a high

conservation rate across species in metabolic networks [41]. Modular structure has

even been found to affect dynamical processes on networks such as synchronization,

percolation, and the spreading of epidemics [47, 48]. For all these reasons, detecting

communities continues to be an area of extensive research.

Detecting modular structure is a non-trivial problem because a complex network

is not simply a single homogeneous structure. A number of techniques, discussed later

in this chapter, have been developed in the science community to detect modules in

networks [34, 49, 33]. These techniques include hierarchical clustering [50, 51, 52,

53], partitional clustering [54, 55, 56], and spectral methods [57, 58]. The type of

method this work focuses on is to define a quality function called the modularity that

quantifies how ”modular” a particular grouping of nodes is for a particular network.

Modularity functions may be defined for a network depending on distinct features of

the network. For example, a modularity function defined for networks where only one

type of node exists, a unipartite network, is known as modularity “Q” [2]. Detecting

communities then reduces to finding the grouping of nodes, called a partition, that

maximizes the modularity function chosen.

Maximizing (or minimizing) a modularity function is related to a broad group of

problems known as optimization problems [59]. For example, in physics, a well stud-

ied optimization problem is to find the ground state of a spin glass by minimizing it’s

Hamiltonian. A model was introduced by Edwards and Anderson that describes the
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spin glass using an Ising model with a randomly distributed magnetic coupling [60].

The Hamiltonian of the EA model is written as,

H = −
∑

<i,j>

Jijσiσj −B
∑

i

σi, (1.1)

where σi is value of the spin at lattice i, Jij is the strength of the magnetic cou-

pling between spins, B is the value of the magnetic field, and < i, j > indicates the

sum runs over nearest neighbor spins. The value of Jij is selected randomly from

a probability distribution, for example, it can be selected randomly to be either 1

or -1. Finding the ground state of this spin glass is difficult due to the combina-

tion of competing ferromagnetic and anti-ferromagnetic Ising spins which results in

many metastable states. For example, a spin may have a nearest neighbor whose

coupling strength is equal to 1 and, at the same time, a nearest neighbor whose

coupling strength is equal to -1. Therefore, it is impossible to choose a spin state

that satisfies each neighbor’s preference simultaneously. As will be discussed below

in section 1.7.3, finding the partition that maximizes modularity Q has been shown

to be equivalent to minimizing the Hamiltonian of a generalized Ising model, the

Potts model [61]. Therefore results and optimization techniques in community de-

tection may have broad application in understanding optimization problems from

other areas of science.

Finding the grouping of nodes that maximizes modularity is a particularly hard

problem to solve. A way to classify how difficult a problem is is by determining

the time complexity of the algorithm that finds its solution. The time complexity

of an algorithm is the worst-case estimate of how the time required to complete the

algorithm scales with the size of the system. For example, one solution is to simply

survey all the possible combinations of nodes in the network and choose the grouping
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giving the largest modularity. The number of different possible groupings of N nodes

is given by the Bell number [62], which grows faster than exponentially with N. Thus

as the size of the network grows it quickly becomes impossible to computationally

survey all the possible groupings of nodes in the network.

Problems whose solution runs in polynomial time using a deterministic Turing

machine are said to belong to the class P [63, 64]. Similarly, if a problem can be

solved by an algorithm that runs in polynomial time on a non-deterministic Turing

machine the problem belongs to the class NP [63]. Unfortunately, finding the parti-

tion that maximizes modularity Q has been proven to be NP-hard which means it is

at least as difficult as the hardest problems in NP [65]. Therefore, finding the exact

solution that maximizes a modularity function for a particular network may be an

effectively impossible computational task, and approximate algorithms must be used

that balance finding high quality partitions with their computational complexity.

This dissertation develops and improves fast, approximate methods to study and

detect communities in complex unipartite and bipartite networks. The remainder of

the chapter begins with a mathematical description of the terms and concepts that

will be used throughout this dissertation. Properties of the community structure in

real-world networks are then discussed with example networks from the literature.

An overview of the current methods used in network science to detect communities

are discussed ending with a description of modularity Q. Modularity Q, its properties,

and methods to maximize the modularity are reviewed. This includes a discussion

of current methods to extend modularity definitions to bipartite networks. Finally,

an outline of the remainder of the dissertation is given at the end of this chapter.
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1.1 Network definitions

A graph G(V,E) or network is simply the set V of N nodes or vertices and the list

E of m edges or links that connect them [66, 67]. An example network of 6 nodes

connected by 8 links is represented in Fig. 1.2a. This is an example of a simple

graph, a graph where each pair of nodes is connected by at most one link and that

contains no self-loops, links connecting a node to itself. A matrix representation of

the connections in a network is called the adjacency matrix A, where the element of

the matrix Ai,j is equal to the value of the link or links in the graph between node i

and node j. The adjacency matrix for the network in Fig. 1.2a is

A =



















0 0 1 0 0 0

0 0 1 1 0 1

1 1 0 1 1 1

0 1 1 0 0 0

0 0 1 0 0 1

0 1 1 0 1 0



















. (1.2)

The degree di of node i is defined as the number of edges adjacent to it [66]. In

terms of the adjacency matrix the degree of node i is given by di =
∑

j Aij . The

vector d, whose element di represents the degree of node i in the network of Fig. 1.2a
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is

d =



















1

3

5

2

2

3



















. (1.3)

As discussed thus far, the only information a link represents is if a pair of nodes

are connected. However, links may carry additional information [68]. A multi-graph

is a graph where each pair of nodes may be connected by more than one link. Such

node connections are called multi-links with additional links indicating a stronger

connection. An example of a multi-graph is shown in Figure 1.2b, with three links

connecting node 5 to 6, and two links connecting both node 1 to 3 and node 2 to

6. A multi-link between nodes i and j in the adjacency matrix is represented by an

integer value equal to the number of links. A generalization of this idea is a weighted

graph whose links take on any real value. Negative links in this case could represent,

in the context of a social graph, animosity [68]. Finally, links in a directed graph

point from node i to node j to represent interaction in one direction. For example,

hyper-links, the word, phrase, or image that allow users to click on and jump to a

web page in the WWW, point from web page A to web page B. However, there is not

necessarily a hyper-link from web page B back to web page A. In a directed graph a

link from node i to node j is again represented by the element Aij in the adjacency

matrix. In this case, the adjacency matrix is not symmetric and two different types

of degrees can be defined for a node. The number of out going links adjacent to node

i is defined as the out-degree and the number of incoming links adjacent to node i is
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defined as the in-degree.

A graph can also be classified by the number of node types that it contains [66].

Two common types are unipartite graphs, in which there is only one type of node

such as in Figures 1.2a and 1.2b, and bipartite graphs in which there are two types of

nodes. A bipartite network has an additional property where each link in the network

only connects a node from each type. For example, Fig. 1.2c is a weighted bipartite

graph where the two types of nodes are represented by the shape of the node with

circles representing type one and squares representing type two. Additionally, the

links in this graph are weighted with the increasing width representing increasing

weight. Thus, the strongest connection represented in this graph is between node 4

and 6. A generalization of a bipartite graph is a multipartite graph which contains

many type of nodes where links connect nodes of different type and a link never

exists between two nodes of the same type.

1.1.1 Network partitions

The objective of community detection methods is to assign each of the N nodes

of the network to one or in some cases a number of k communities that defines a

network partition P (G). For a set of k communities C = {C1, C2, .., Ck} a community

detection method that assigns each node into multiple communities is known as

an over-lapping community detection method [5]. The partition P (G) can then be

represented by an N×k matrix with element Pij equal to the amount of membership

node i is assigned to community Cj. Often, Pij is normalized so that
∑k

j=1 Pij = 1

for each node i [69]. Alternatively, in other community detection methods each node

is only assigned to one community in which case P (G) is a vector of length N with
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Figure 1.2: Network Examples. This figure gives examples of (a) a simple graph;
a graph whose link values are binary and that contains no self-loops, (b) a multi-
graph; a graph that may contain any integer number of links between nodes , and
(c) a weighted bipartite graph; a graph in which there are two types of nodes and
each weighted link in the network only connects a node from each type. The weight
of a link is indicated by the line thickness.
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Pi equal to an integer, 1 through k, representing the community number that node

i is assigned to.

Additionally, a community detection method may not output one community

partitioning but a set of nested partitions organized into a dendrogram [50, 51, 52, 53].

A dendrogram is a graph showing the clusters of a set of objects, with the following

classes of vertices [70]:

1. vertices of degree 1, corresponding to objects;

2. vertices of degree greater than 2, called intermediate objects;

3. only one vertex of degree 2, called the root object.

Figure 1.3 gives an example of such a dendrogram in which there are 12 nodes.

At the bottom level of the dendrogram are the N nodes (objects) of the network

each beginning in a single community. Pairs of nodes are merged together into

the same community at each horizontal level beginning from the bottom up where

each merge is represented by an intermediate object. The vertical axis corresponds

to the similarity value at which the corresponding pair of nodes are merged with

lower values on the axis representing stronger similarity. Similarity measures are

further discussed in section 1.4.1. The horizontal line at the top of the dendrogram

represents the root object (imagine a vertex at the center of the line) and corresponds

to all of the nodes in the network partitioned into one community. Then, each level

of the dendrogram represents a particular community partition that is chosen by

making a horizontal cut in the dendrogram. For example, if the cut represented

by the horizontal red line in Fig 1.3 is chosen the resulting partition will contain

4 communities. Numbering the nodes in order from left to right the community
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Figure 1.3: Dendrogram. Hierarchical methods produce a partitional structure
called a dendrogram. Each node in the network begins at the bottom level of the
dendrogram in its own community called a singleton cluster. Pairs of nodes are
merged at each level and a partition is chosen by making a horizontal cut in the
dendrogram indicated here by the red dotted line. The vertical axis corresponds to
the similarity value at which the pair of nodes were merged with lower values on the
axis representing stronger similarity. Figure from Ref. [2]
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partition is then P = {1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 4}.

1.2 Biological networks

Biological functions and processes often result from the interactions between molecules.

Broadly speaking there are two approaches involving network biology currently in

the literature [71, 72, 73]. A “bottoms up” approach involves building small net-

works of molecules in an attempt to model small biological circuits [74, 75]. This

may involve for example, the modeling of small genetic circuits using differential

equations to determine decay rates, production rates, and interaction strengths. A

“top down” approach, on the other hand, focuses on using high-throughput “omics”

data to create and study the overall structure of a biological network [76]. A top

down network representation focuses on the large-scale interactions within a biologi-

cal system and can give novel insight into its processes and functions. The following

discussion will focus on this top down approach in which a network representation

is regularly used. Commonly studied networks include protein-protein interaction

networks, genetic regulatory networks, and metabolic networks [77]. The following

focuses on the description of the interactions of a biological system at the gene level

and separately at the metabolic level. General properties of cellular networks is then

discussed.

1.2.1 Genetic networks

In a genetic network the nodes of the network represent genes and links represent

the direct or indirect regulatory interactions between them. A simplified description
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of the gene regulatory process is given in the, so called, central dogma of molecular

biology [78, 79]. According to the dogma, all of the genetic information in a cell is

stored in the cell’s DNA and is encoded using four nucleotides which contain the

bases adenine, guanine, cytosine, and thymine. Although the DNA carries all of

the information in the cell, the majority of its structure, functions, and processes

are carried out by proteins. A protein is synthesized by the cell in a two step

process (Fig. 1.4). First, the double stranded DNA is transcribed into a single

stranded messenger RNA (mRNA) molecule by an RNA polymerase. The mRNA

is composed of the same nucleotide bases as in DNA except thymine is replaced by

the nucleotide uracil. The mRNA is then translated into a protein by a ribosome.

Regulation can occur when one or more regulatory proteins bind to the DNA and

affect the transcription rate of the RNA polymerase and thus the amount of gene

“expressed.” The amount of a gene expressed for a specific experimental condition

can be measured using DNA microarrays.

DNA microarrays are able to measure the expression of tens of thousands of genes

in a single experiment [80, 81]. The principle behind DNA microarray experiments

is DNA hybridization where nucleotide sequences in DNA specifically pair with one

another through hydrogen bonds between nucleotide base pairs so that adenine pairs

with thymine and guanine pairs with cytosine [82]. DNA microarrays consist of

ordered spots each filled with multiple copies of complementary DNA(cDNA) whose

nucleotide sequence is specific to one gene called the probe. RNA from a sample

is fluorescently labeled by reverse transcription and these fluorescent targets are

allowed to hybridize to the probes on the array. The amount of transcript present

is found by measuring the intensity of the fluorescent signal generated using laser

excitation. Additionally, a “reference” sample labeled with a different fluorophore
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Figure 1.4: The central dogma of microbiology. The central dogma of micro-
biology describes the flow of genetic information in a cell. The DNA is transcribed
into RNA by an RNA polymerase which is translated into a protein by the ribosome.
The transcription rate of the RNA polymerase can be affected when proteins bind to
a site on the DNA called the promoter. In this figure the promoter is labeled yellow,
the segment of DNA translated is labeled blue, and the start site of translation is
labeled by the black arrow.
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may be incorporated into the array [83, 84]. This acts as an internal control by

granting the ability to compare relative abundance between the test and reference

sample.

The increasing availability of gene expression data has spurred development of a

number of approaches that aim to determine the underlying structure of the tran-

scriptional regulatory network [85, 86, 87, 88, 89, 90, 91, 92]. Most of these techniques

fall into the broad categories of correlation-based methods, information-theoretic

methods, Bayesian network predictions, or methods based on dynamical models.

These approaches generally infer regulatory links between the nodes (genes) of the

network on the basis of the level of correlation in their transcriptional response to a

series of environmental and genetic perturbations. The strength of the links is either

weighted by the correlation value, or is unweighted and the links are assumed to exist

only if the correlation exceeds a threshold value. Once the links are assigned, the

network becomes well defined. However, variation in the application of each method

can produce differences in the link weight between pairs of nodes. Additionally, if the

threshold for placing links is varied even slightly there can be significant differences

in the network structure inferred from a given data set [93]. In Chapter 3, novel

methods to infer regulatory interactions between genes that address these problems

are introduced.

1.2.2 Metabolic networks

A metabolic network represents the chemical reactions in an organism by a set of

nodes representing an enzyme or metabolite and a set of links that connect an enzyme

to a metabolite if that enzyme catalyzes a reaction the metabolite is involved in [94,
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95]. Metabolic chemical reactions involve the management of energy and materials

within the cell and in general involve the breaking down or building up of complicated

molecules. The set of chemical reactions that breakdown (build up) molecules are

referred to as catabolic (anabolic) pathways. A chemical reaction can be represented

in equation form by

Substrate(s)
Enzyme−−−−→ Product(s), (1.4)

whose constituents are the substrate(s), product(s), and enzymes. The chemical

substrate(s) and product(s) are known as metabolites and are the input and outputs

of the reaction. Also involved in metabolic reactions are enzymes which catalyze the

reaction by binding to specific metabolites called the substrate(s). The formation

of this enzyme-substrate complex provides a means to lower the activation energy

and effect the speed of the reaction through various mechanisms such as providing

a conducive micro-environment for the reaction as well as providing a template for

orientation of the substrate [95]. The majority of metabolic reactions are reversible

with an enzyme able to the catalyze the reaction in either direction.

An example of a metabolic reaction involving the hydrolysis of sucrose to glucose

and fructose is given by the equation

Sucrose + H2O
Sucrase−−−−→ Glucose + Fructose. (1.5)

The enzyme that catalyzes this reaction is called Sucrase. Sucrose binds to the

Sucrase protein at a specific site on the enzyme called an active site. The enzyme-

substrate complex facilitates the reaction until the substrate is converted to products

and Glucose and Fructose are released. Metabolic networks are examples of bipar-

tite networks with one set of nodes representing the metabolites and the other the

enzymes. An example of Eqn. 1.5 represented as a bipartite network is given in
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Fig. 1.5 where a link connects an enzyme to a metabolite if that enzyme catalyzes a

reaction in which the metabolite is involved. Other representations exist, which will

be discussed below, that project the bipartite network on to a unipartite network

with only one set of nodes represented in the projection. For example, nodes may

represent only metabolites with links connecting substrates to products.

Constructing a metabolic network involves a multi-step process to determine the

chemical components and transformations in an organism [96, 97]. Initially, an-

notated genomes are used to identify metabolic enzymes and how these enzymes

interact to catalyze reactions. Annotated genomes are found in databases such as

EcoCyc [98], SYG (Saccharomyces Genome Database) [99], and CyGD (Compre-

hensive Yeast Genome Database) [100]. Next, those reactions catalyzed by enzymes

are automatically and manually curated from databases such as KEGG [101], Meta-

cyc [102], and Transport DB [103] as well as other sources such as research literature

and comparative genomics. This is followed by the network’s conversion to a compu-

tational model, such as a stoichiometric representation [104], which facilitates further

evaluation of the model such as its ability to support growth and the known synthesis

of amino-acids. Throughout this process metabolic pathways that are incomplete or

missing are filled in or added to the network. In Chapter 4, the metabolic network

of Escherichia coli is studied to compare, test, and validate bipartite modularities.

1.2.3 Biological network properties

A general feature of biological networks is a scale-free topology. Studies involv-

ing metabolic networks [105, 106], gene networks [107, 108], and protein-protein

networks [109] have all found scale-free topologies. As discussed, the BA model
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GlucoseSucrose

Sucrase

H2O Fructose

Figure 1.5: Bipartite representation of a metabolic reaction. A bipartite
network representation of Eqn. 1.5 with metabolites represented as circle shaped
nodes and enzymes represented as square shaped nodes. A link connects an enzyme
to a metabolite if the enzyme catalyzes a reaction the metabolite is involved in.
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indicates that a scale-free topology stems from two basic mechanisms; growth and

preferential attachment. This suggests that the hubs in cellular networks may be

some of the oldest constituents of the network from an evolutionary standpoint. For

example, in metabolic networks coenzyme A, NAD and GTP are among the hub

metabolites [106] which are remnants of the RNA world [110]. Other mechanisms

have been suggested to produce scale-free topology in networks such as the biological

mechanism of gene duplication [111, 112, 113, 114, 115, 116, 117, 118], when one or

several genes are randomly copied twice in the genome during cell division. Addi-

tionally, the efficiency of transport and flow processes across networks has been tied

to the emergence of a scale-free topology [119, 120].

Cellular systems are intrinsically modular. Groups of molecules can interact

depending on their spatial location in the cell, temporally depending on the cur-

rent stage of a cell cycle, as well as chemically for example during signal transduc-

tion [121]. There have been many analyses of the modular structure in cellular net-

works [121, 122, 75]. Modules have been found to correspond to discrete functional

units in protein-protein networks [123, 124], gene-regulatory networks [125, 126], as

well as metabolic networks [127]. These modules can be conserved during evolu-

tion [128, 129]. Additionally, biological networks have been found to be arranged

hierarchically [130, 131, 127]. This suggests there is not a set of unique modules that

define a biological network but modules that work in both isolation and combina-

tion at various levels of the hierarchy. A significant portion of this work focuses on

developing and improving methods to infer the modular organization of genetic and

metabolic networks. Methods that take into account the variability in microarray

data, genetic network reconstruction, and modular hierarchical network properties

will be studied in Chapter 2. In Chapter 4, the problem of community detection
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in metabolic networks will be studied specifically addressing the bipartite nature of

the network. However, a discussion of real-world networks is not complete with out

examples of the application of network theory in other areas of science.

1.3 Other real-world networks

1.3.1 Social networks

Networks representing the social interactions between people are also of interest [132,

133]. Community detection has its roots in the social sciences. Each of us is a member

of a social community with, for example, family members, co-workers, and friends.

A widely used and studied example of a social network that exhibits community

structure is Zachary’s karate club [134]. Zachary studied the social interactions of

members of a university karate club over three years. These interactions are repre-

sented as a network shown in Fig. 1.7. Each of the 34 nodes in the network represent

a member of the group. A link is drawn between two nodes if the corresponding

members were observed to interact outside of the club activities. This graph exhibits

clear community structure with two groups each centered around nodes with a large

number of links. A dispute between the club president and instructor caused the

karate club to split, represented by the dotted line, into two separate organizations.

The ability to predict the club fissure based solely on the knowledge of the links in

the network is a standard test for community detection algorithms.
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Figure 1.6: An information network. A network of hyperlinks between political
web blogs in 2005. The two large communities can be classified by political orienta-
tion as liberal (blue) for the cluster on the left and conservative (red) on the right.
Yellow links indicate a hyperlink between a conservative and liberal web blog. Ad-
ditionally, the size of the node corresponds to the number of web-pages that link to
it. Figure from Ref. [3]
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Figure 1.7: Zachary’s karate club network. The nodes represent 34 members of a
university karate club group and a link is placed between a pair of nodes if they were
observed to interact outside of the club. A dispute within the club caused it to split
represented by the dotted line forming two separate communities. Community mem-
bership is indicated by the shape of the node and the gray scale represents strength
of membership with the black(white) corresponding to the strongest membership of
the group on the right(left). This figure is from Ref. [4].
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1.3.2 Information networks

The World Wide Web (WWW) is an example of an information network in which

the nodes represent a web page and a directed link points from page A to page B if

there exists a hyperlink from page A to page B. Alternatively, one may study the

structure of the Internet with the nodes representing routers and computers and links

the physical interactions (cables) between them. [135, 136, 137]. Fig. 1.6 represents

a WWW network of hyperlinks between 1,224 political web blogs in 2005 [3]. From

the figure, it is clear there are two large communities whose political orientation was

classified as liberal for the blue cluster on the left and conservative for the red on the

right. Often a link between two web pages is assumed to represent subject similarity

and the link direction is ignored. The topology of the world wide web has been well

studied [138, 139, 140, 141] with one of the most obvious features being the immense

size of the network.

1.4 Methods to detect communities

While there are many methods to detect communities [34, 33, 142], the objective

of a community or clustering algorithm is generally the same. Given a list of the N

nodes and m connections between these nodes, community detection methods seek to

assign each node of the network into a set of communities. Methods then fall under

one of two broad categories, hierarchical clustering or partitional clustering, based

on the number and structure of the partition output. Hierarchical clustering results

in a tree of nested partitions while partitional clustering results in a single partition

of the network that seeks to maximize or minimize a quality function. Additionally,
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methods exist that assign a node to multiple communities which is known as “fuzzy

clustering” [143, 144, 145, 69] or overlap methods [5].

In general, there is always a trade off between the quality of the partitions an

algorithm is able to find and the length of time required to complete the algorithm.

The time complexity of an algorithm, represented as O(Nα mβ), is the worst-case

estimate of how the time required to complete the algorithm scales with the number

of nodes in the network, N , as well as the number of links, m. One would like an

algorithm to scale with the lowest exponents of α and β possible. For example, very

large networks, with nodes on the order of millions and links on the order of billions,

are only possible to analyze with algorithms that scale as O(N) or O(m). Due to the

difficulty of the problem one often seeks a fast, accurate approximate method.

1.4.1 Hierarchical clustering

Hierarchical clustering [50, 51, 52, 53] begins by assigning a distance value between

each pair of N nodes in the network based on a “similarity” value [146]. For example,

if the nodes in a network are each attributed n properties then two nodes, X and

Y , can be treated as data-points in n-space. Then given X = (x1, x2, ..., xn) and

Y = (y1, y2, ..., yn) one could use a norm such as the Euclidean distance,

dAB =

√
√
√
√

n∑

k=1

(xk − yk)2. (1.6)

Alternatively, similarity measures exist based on structural equivalence such as the

similarity of adjacency values between vertices [132, 45]. The resulting N ×N simi-

larity matrix is then used to create a tree of nested partitions (Fig. 1.3). The most

common method to create this dendrogram is agglomerative hierarchical clustering
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where each node in the network begins as its own community, called a singleton clus-

ter, placed at the bottom of the dendrogram. Each pair or group of clusters with the

smallest similarity value are merged into a community. This merger is represented

as a branch on the dendrogram with a height corresponding to the similarity value.

The similarity matrix is then reduced in dimension and a new similarity value be-

tween the new merged cluster and all other existing clusters is calculated. There are

many ways to assign this new distance value, however the most common methods

are are called single linkage, average linkage, and complete linkage clustering. This

process is repeated iteratively until all nodes are merged into a single community

at the top of the dendrogram. Alternatively, in divisive hierarchical clustering the

nodes begin in one community and are iteratively divided. In either case the result is

a hierarchical tree of nested partitions that must be cut to obtain a specific partition

of the network. This cut is often chosen when there is a large jump in the height of

cluster mergings.

Hierarchical clustering is advantageous for the fact that a prior knowledge of the

number and size of the communities in the network is not needed. In general the time

complexity of hierarchical clustering algorithms run in O(N3) but there are efficient

agglomerative algorithms that run in O(N2) [147, 148]. However, the output of the

algorithm is always a hierarchically nested set of partitions which does not depend on

whether the network is itself hierarchically structured. It is not necessarily obvious

which cut gives the best partition of the network. Furthermore, traditional similarity

measures such as the Euclidean distance require the network to be embedded in an

n-dimensional space which is not necessarily straight-forward when the only node

properties are its connections.
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1.4.2 Partitional clustering

Partitional clustering is based on maximizing or minimizing a quality function and

results in a single partition of the network. These include clustering methods such

as graph partitioning [54, 55] and k-means clustering [56]. In graph partitioning one

seeks to divide the nodes in a network into g groups of predefined size by minimizing

the number of links between the g groups, called the cut size. A commonly used

method to minimize the cut size is to initially bisect the graph using the Kernighan-

Lin algorithm [149]. Each community is then iteratively bisected. K-means cluster-

ing requires the network to be embedded in n-dimensional space. To partition the

network into k groups, k “centroids” are distributed in the n space and nodes are

assigned to the centroids so as to minimize the total intra-cluster distance defined as

k∑

i=1

∑

xj∈Si

||xj − ci||2, (1.7)

where Si is the subset of points of the i
th cluster, xi is the position vector of node i, and

cj is the position vector of centroid j. To minimize intra-cluster distance a commonly

used algorithm is Lloyd’s algorithm [150]. Lloyd’s algorithm begins by distributing

the k centroids as far as possible from each other within the n-dimensional space

and assigning each node to the nearest centroid which defines k clusters. Next, the

center of mass for each cluster is calculated and this becomes the new position of

its centroid. The nodes are then reassigned to the nearest centroid. This procedure

is iterated until the position of each centroid is stable and the cluster assignments

do not change. The k-means algorithm has a time complexity of O(N) however the

solution depends on the initial positions of the centroids [142]. Therefore, often one

runs the algorithms many times with varying initial conditions choosing the solution

with the smallest intra-cluster distance [34].

28



Partitional clustering is advantageous because algorithms typically have lower

time complexities than hierarchical clustering algorithms. Additionally, this method

defines a quality function that quantifies the quality of a partition and allows for

the comparison of multiple partitions. A search for the partition that optimizes a

quality function can be computationally prohibitive and often multiple runs of an

algorithm are necessary to find a solution. Additionally, some partitioning methods

such as k-means and graph partitioning are not ideal for community detection in

networks due to the requirement that the number of communities must be an input

of the algorithm. However, with its ability to quantify and explicitly incorporate a

community definition into its quality function, partitional clustering has the advan-

tage of being able to specifically tailor a quality function for community detection

in complex networks. A quality function that has been introduced for this purpose

will be discussed in section 1.4.5.

1.4.3 Spectral clustering

Spectral clustering methods include any method or technique that uses the eigen-

vectors of a matrix, such as a similarity matrix, to partition nodes. Historically,

spectral clustering was developed in graph partitioning algorithms for parallel com-

puting in which a computation involved N tasks with M communications between

the tasks [57, 58]. For computations involving two processors, one would like divide

the N tasks (nodes) between the two processors so as to minimize the number of

communications (links) between processors called the cut size, R. One can represent

R in equation form as

R =
1

2

∑

i,j

AijδP (i)P (j), (1.8)
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where Aij is the adjacency matrix, P(i) is processor node i is assigned to, and δP (i)P (j)

is the Kronecker delta function equal to 1 if P (i) is equal to P (j) and 0 otherwise.

Then, by defining a vector s of length N whose element si is 1 if task i belongs to

processor one or -1 if task i belongs to processor two, the Kronecker delta function

can be written as δP (i)P (j) =
1
2
(1− sisj) . This can be used to write R as

R =
1

4

∑

ij

(1− sisj)Aij =
1

4

∑

ij

sisj(kiδij −Aij), (1.9)

where the relation,
∑

ij Aij =
∑

i ki =
∑

i s
2
iki =

∑

ij sisjkiδij , was used and ki is

the degree of node i. Equation 1.9 can be written in matrix form as

R =
1

4
sTLs, (1.10)

where L = kiδij−Aij is known as the Laplacian matrix. One can use the eigenvectors

of the Laplacian matrix vi to minimize R by writing s as a linear combination of

these eigenvectors, s =
∑N

i=1 aivi so that Eqn. 1.10 becomes

R =
∑

i

a2iλi, (1.11)

where λi is the eigenvalue of L corresponding to vi. Then, to minimize R one can

make s as close to parallel to the eigenvalue v1 of L as possible corresponding to the

smallest eigenvalue λ1. Because si ∈ {−1, 1} one can make the assignment

si =







1 if ui ≥ 0

−1 if ui < 0
. (1.12)

Unfortunately, the smallest eigenvalue of the Laplacian is 0 with corresponding

eigenvector v1 = {1, 1, 1, ...., 1}. This places all tasks into one processor which is

trivial. A solution to this problem is to fix the number of tasks allocated to each

processor and use the next lowest eigenvalue of the Laplacian [151]. For applications
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requiring further division of tasks or nodes, one can then recursively bisect each of

the two components to further divide the network. However, minimizing the cut

size based on the Laplacian is not suited to community detection in networks due

to the requirement that the number of communities and group sizes be an input of

the method. Fortunately, as will be discussed, spectral methods can be adapted to

modularity matrices whose properties are better suited for community detection.

1.4.4 Other methods

As discussed, methods exist that assign nodes into multiple communities. A well

known method to find overlapping communities is the k-clique percolation method

by Palla et al. [5]. To find communities a k-clique is defined as a set of k nodes that

are completely connected. Two k-cliques are defined as being adjacent if they share

k − 1 nodes. Then a k-clique community is the union of all k-cliques that can be

reached through adjacent k-cliques. For example, in Fig. 1.8 an example network with

k-clique communities when k = 4 is shown with a number of nodes belonging to more

than one community. One of the fastest algorithms to find k-clique communities is

the Sequential Clique Percolation algorithm [152] whose time complexity is network

dependent scaling linearly with the number of k-cliques. A k-clique can sometimes

be a rather strict criterion for community detection with many nodes that only have

single connections not belonging to any k-clique communities. Additionally, there

is no criterion that requires connections between nonadjacent k-cliques in a k-clique

community. This may not necessarily conform to the notion of a community as a

group of densely connected nodes. Nevertheless, k-clique percolation continues to be

a standard method when considering overlapping communities.
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A novel method by Raghaven et al. [153] finds communities in a network by

propagating “labels” through the network. The method begins by assigning each of

the N nodes in the network a unique label representing a community. At each time

step a node is chosen randomly and it is assigned the label currently possessed by

the majority of its neighbors. If there is not a majority, a label is assigned to the

node randomly from the labels constituting the tie. This is repeated until the label

assignments are stable, defined as the point where each node in the network has the

same label as the majority of its neighbors. The communities are then defined by

grouping nodes together with the same label. The algorithm’s time complexity is very

fast scaling as O(m). Initially, the authors sought a community method that required

no optimization or defined quality function but only required the structure of the

network. It has since been shown that the label propagation method is equivalent to

finding the local energy minima for the Hamiltonian of a q-state Potts model given

by

H = −
∑

ij

Aijδσiσj
, (1.13)

where Aij is the adjacency matrix and σi is the label of node i. The number of

such minima is larger than the number of nodes in the network [154]. The global

minima is in fact the trivial solution of all nodes carrying the same label [155] and

therefore is not an ideal objective function. There have been modifications to the

label propagation algorithm [155]. For example, by assigning a strength to each label

at its origin node which decreases as the label propagates [156].

A number of methods focus on statistical inference-based models that fit a set

of parameters to observed network data [157, 158, 159, 160]. For example Ball et

al. [161] have develop a method to detect overlapping modules that seeks to partition
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the links of a network into K communities called “colors”. Given K colors, Θiz is

defined as the tendency of vertex i to have edges of color z. ΘizΘjz is then the

expected number of edges of color z that connect node i to node j which is expected

to be Poisson distributed. To partition the links into colors, the method seeks to

find the parameters Θ that maximize the probability of generating a graph G with

adjacency elements Aij where the probability of generation such a graph is given by

P (G|Θ) =
∏

i<j

(
∑

z ΘizΘjz)
Aij

Aij!
×
∏

i

(1
2

∑

z ΘizΘiz)
Aii/2

Aii/2!
, (1.14)

where
∑

z ΘizΘjz is the expected number of links between node i and j of any color

and the factor of 1/2 occurs in the last product of the equation to account for over-

counting when considering self-loops. The authors show that maximizing Eqn. 1.14

is equivalent to simultaneously solving the two equations,

qij(z) =
ΘizΘjz

∑

z ΘizΘjz
(1.15)

and

Θiz =

∑

j Aijqij(z)
√∑

ij Aijqij(z)
, (1.16)

which can be done beginning with random initial conditions using iteration. qij(z)

is the probability that an edge between node i and j has color z and satisfies the

normalization condition
∑

z qij(z) = 1. When these parameters are determined,

node i is then assigned to community z by the fraction of its adjacent links assigned

to community z. In this way a node can be assigned to more than one community

based on the community assignment of the links adjacent to it. The complexity of

the algorithm is O(mK) and typically converges quickly able to partition networks of

up to 106 nodes. Additionally, the algorithm performs well on computer generated
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Figure 1.8: Overlapping communities.An example network partitioned using the
k-clique percolation method where k = 4. Communities are shaded by color and
nodes belonging to more than one community are labeled red. From Ref. [5]
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networks in which the number of communities is known. Unfortunately, for real-

world networks the number of communities is not known beforehand and this limits

the applicability of these types of methods.

A recent hierarchical clustering algorithm by Seemann et al. [162] has been intro-

duced to classify cancer subtypes based on high-throughput genomics using persistent

homology [163]. The algorithm begins by selecting a subset of genes to be used to

bisect a set of patients. First, the genes with the smallest “non-dimensionalized

standard deviation”, indicating a higher likelihood of membership in a distinct dis-

tribution, are selected for a patient clustering criterion. The non-dimensionalized

standard deviation σ is given by

σ =

√

V ar(X)

〈|X − 〈X〉|〉 , (1.17)

where 〈X〉 represents the expectation value of a random variable X and V ar(X) =

〈X2〉 − 〈X〉2. To further refine this subset each gene is then represented by an N

dimensional point cloud using its expression level for each of the N patients. Then

the proximity, d(Xn, Xm) between genes Xn and Xm is defined as, d(Xn, Xm) =

1 − C(Xn, Xm), where C(Xn, Xm) is the Pearson correlation coefficient. A “simpli-

cial complex” [163] is defined by defining a radius rc and connecting any two points

Xn and Xm for which d(Xn, Xm) < rc. Then, genes that are members of the dis-

joint simplicial complexes that are stable for a wide range of rc are chosen as the

final clustering criterion. Once these M genes are selected the patients are repre-

sented as an M dimensional cloud and stable simplicial complexes are again used

to bisect the patient set. These two steps can be repeated to further divide the

network. Additionally, it is possible to profile new patients into the current patient

subclasses (partitions) by defining the boundary of a patient subclass as the largest
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mean proximity between current members of a subclass. Then, if a new patients

mean proximity to members of a subclass is smaller than the boundary a patient is

assigned to that subclass. This method presents novel techniques for both reduc-

ing the dimensionality of bi-sectioning criterion and combining persistent homology

with hierarchical clustering and has the same advantages and disadvantages of other

hierarchical clustering methods.

1.4.5 Modularity maximization

In 2002, Newman and Girven introduced a new community detection method based

on the idea of link “betweenness [37].” The original method can be classified as a di-

visive hierarchical method which seeks to identify the links in a network that connect

communities and remove them. Edge betweenness is the number of shortest paths

between all vertices that run along the edge. The idea is that if two communities

are only separated by a few edges then those edges should contain a high number

of shortest paths between pairs of nodes from the two communities. The algorithm

begins by calculating the betweenness of all edges and the edge with the largest be-

tweenness is removed. This is done using the algorithm of Newman [164]. A new

edge betweenness for all remaining edges is recalculated and the process continues

until all links have been removed. The result is a dendrogram from which a partition

is selected. The algorithm has a running time of O(m2N) and is shown to work

well on generated networks with known community structure as well as real world

networks. However, it still suffers from the fact that one must choose a cut in the

dendrogram from the N set of nested partitions.

Newman and Girven then introduced a quality function known as“modularity
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Q [2] to choose a cut. The modularity quality function explicitly contains the def-

inition of a community, compares each community in a partition to a null model,

does not require as an input the number of communities in a network, and measures

quantitatively the strength of a partition. It is for the these reasons this work focuses

on maximizing the quality function known as the modularity.

1.5 Modularity

To detect communities in unipartite networks, a quality function is needed that

takes into account properties of the network being studied as well as incorporates

a community definition. If a community is a highly connected group of nodes, one

would expect there to be more links within a community than between communities.

Girvin and Newman introduced modularity “Q” to quantify this idea [4] adding

the constraint that there should be more links within a community than one would

expect for a network with the same degree sequence and randomly distributed links.

The modularity is defined as

Q =
1

2m

∑

ij

[

Aij −
kikj
2m

]

δ(ci, cj), (1.18)

where Aij is the element of the Adjacency matrix, m is the total number of links

in the network and is given by m =
∑

ij Aij/2, ki is the degree of node i, ci is the

community to which node i is assigned, and δ(ci, cj) is the Kronecker delta function.

The more modular a network is, the larger Q will be with a maximum Q equal to 1

and minimum equal to −1
2
[65].

One can gain more insight into this definition by rewriting Q in a different yet

37



equivalent form. Consider each contribution to the modularity by community c,

∑

ij∈cAij

2m
−
∑

ij∈c kikj

(2m)2
. (1.19)

Let lc represent the number of links in community c and dc represent the total

degree of the nodes in community c. Then
∑

ij∈cAij = 2lc and
∑

ij∈c kikj = d2c so

the modularity may be written as

Q =
C∑

c=1

[

lc
m

−
(

dc
2m

)2
]

, (1.20)

where C is the total number of communities in the network. In this form, it is clear

the modularity is a measure of the fraction of links in each community, lc/m, above

its expected fraction of links, (dc/2m)2.

If a network contains weighted edges, Eq. 1.18 is easily generalized [68]. The

element Aij represents the weight of the link between node i and j. Then the degree of

the node k is defined as the total weight adjacent to node i and is given by k =
∑

j Aij .

The total amount of weight in the graph is given by m = 1
2

∑

ij Aij . With these new

definitions the form of modularity Q for weighted networks remains unchanged and is

given by Eqn. 1.18. However, it is non-trivial to generalize modularity Q to bipartite

networks where two types of nodes exist.

1.6 Bipartite modularity

A bipartite network is a network composed of two types of nodes, X and Y , and

links that are only found to connect a member of each type. Bipartite networks

include some social [165, 166], collaboriation [167, 168, 169, 170], and biological

networks [171, 172, 173]. In the definition of modularity Q given in the previous
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section, there is a random expectation that links will exist between any two nodes

in a network even if the network is bipartite. A consequence of this expectation is

easily seen if one considers a particular partition of a bipartite network. Consider an

unweighted bipartite network with p nodes of type one, q nodes of type two, and m

total links with modularity Q written in the form given by Eqn 1.20. If one chooses

to partition a bipartite network into two communities with all of the nodes of type X

in community 1 and all of the nodes of type Y in community 2 for each community,

lc = 0 and dc = m. Therefore, the modularity Q for any bipartite network partitioned

in this way gives

Q =

[
0

m
−
( m

2m

)2
]

+

[
0

m
−
( m

2m

)2
]

= − m2

4m2
− m2

4m2

= −1

2
, (1.21)

the absolute minimum value of modularity Q. Modularity Q expects each of the

communities to contain 1/4 of the total links in the network which will never occur

due to the bipartivity. Therefore, one cannot simply maximize the modularity Q of a

bipartite network as nodes of the same type partitioned in a community together will

appear to have a smaller number of connections than expected effecting the result.

An additional issue exists when detecting communities as there are two different

methodologies that can be used for partitioning bipartite networks. The first method

is to study each side of the bipartite network separately by creating a projection of

one side of the network. This has the advantage of showing directly the relationships

between nodes of one type. For example, consider the bipartite network in Fig 1.9a,

where there are 5 nodes of type X , 4 nodes of type Y , and 10 links. A simple

projection of the network is illustrated in Fig 1.9b, where each pair of projected
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nodes are connected by a link if they have at least one common neighbor of the

opposite type. It is immediately clear that node 1 has a relationship solely with

node 2 in the network. It is also clear that information in the bipartite network has

been lost as all connected nodes in the projection share one link while, for example, in

the bipartite network node 1 and 2 share two neighbors of type Y while node 2 and 5

share only one neighbor of type Y . An alternative projection keeps this information

and connects neighbors with more than one link according to the number of neighbors

of the opposite type they have in common. A multi-link projection of this type is

shown in Fig 1.9c.

Additional projections have been used to preserve additional bipartite informa-

tion. Newman considered this problem in the context of a bipartite co-authorship

network where one type of nodes are scientists and the other type of nodes are

scientific papers with a link between each scientist and the papers he or she co-

authored [164]. Newman created a projection of the scientist side of the network by

assigning a weight between scientist i and j using the formula

wij =
∑

k

δki δ
k
i

nk − 1
, (1.22)

where k runs over all papers, δki is 1 if scientist i is a coauthor of paper k and 0

otherwise, and nk is the degree of paper k. Thus, Newman considered two scientists

co-authorship in a paper as stronger if they were the sole co-authors weighting each

term in the sum by nk − 1. Consider the application of this projection in Fig. 1.9c

where two links connect both pairs of nodes (1,2) and (2,3) indicating they each

share two Y type neighbors. The two neighbors of pair (1,2), nodes 6 and 7, are

solely connected to nodes 1 and 2. Pair (2,3) also share two neighbors however one

of their neighbors, node 4, is connected to a total of four nodes. Using Newman’s
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Figure 1.9: Unipartite projection from a bipartite network. In figure (a) an
example bipartite graph is given consisting of 5 nodes of type X and 4 nodes of type
Y . A method to analyze bipartite networks is to project one side of the network
onto a unipartite graph. The simplest example of a projection of the type X side of
the network is shown in (b) where a link indicates the pair of nodes share at least
one neighbor. A multi-graph projection is shown in projection (c) with each link
representing a common neighbor between the pair of nodes. A weighted projection
is shown in projection (d) where the link weight between a pair of nodes is given by
Eqn. 1.22.
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projection, as shown in Fig. 1.9d, preserves this information and the strength of

node pair (1,2) is distinguished from (2,3). Although, this projection has been used

to study the community structure of collaboration networks [164, 174] it has not

been widely adapted to other bipartite networks. A projection similar to this one is

studied in Chapter 3.

A modularity method has been applied to multi-link projected networks by

Guimera et al. [175] where each side of the bipartite networks community struc-

ture is analyzed separately. For each projection a link is placed between two nodes

of the same type for every neighbor of the opposite type they are both connected

to. Communities are then detected by maximizing modularity in the multi-link pro-

jection. This solves the problem of applying modularity Q to bipartite networks

as in the multi-link projection only nodes of one type exist and are expected to be

connected. Although this method is shown to find significant community structure

in unweighted networks, the multi-link projection is not easily extended when the

bipartite network is weighted. For example, in Fig. 1.10 node 1 and 2 are both con-

nected to the same 2 neighbors (3 and 4), yet each is connected to 3 and 4 with a

different weight. Thus, the number of “shared” neighbors between node 1 and 2 is

not clear. The problem of extending the method of bipartite community detection

using unipartite projections from a bipartite network when the links of the bipartite

network are weighted is addressed in Chapter 3.

The second methodology analyzes a bipartite network directly resulting in a bi-

clustered partition in which the two types of nodes are partitioned together in com-

munities. This has the advantage that all of the information from the bipartite

network is incorporated into the community structure. However, the bi-clustered

partitioning is constrained to have the same number of communities on both sides.
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Figure 1.10: A weighted bipartite example In this example bipartite network the
links in the bipartite network are weighted. A multi-graph projection is not readily
applicable as the number of neighbors between nodes 1 and 2 is not clearly defined
with weighted links.

.
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Barber [176] has adapted the modularity Q definition to this type of bipartite clus-

tering by defining all modularity elements between nodes of the same type equal to

zero. This solves the problem in the modularity Q definition in which there is a

random expectation that links exist between any two nodes in the network without

sacrificing any loss of information as in a method involving a unipartite projection

from a bipartite network. Barber’s modularity also generalizes easily when consider-

ing a bipartite network with weighted links. In Chapter 3, the problem of community

detection in weighted bipartite networks is addressed. Returning now to modularity

Q, its properties and modularity maximizing methods are further discussed.

1.7 Criticisms of modularity

Thus far the advantages of using modularity Q to detect communities in complex

networks have been discussed. This section analyzes the challenges of applying mod-

ularity maximization to community detection in networks. First, the topology of

modularity Q is analyzed which has a direct impact on the ability to find the maxi-

mum modularity partition. Next, the inability of modularity Q to find overlapping

communities is discussed. This is followed by a discussion of the ability to solely rely

on the value of the modularity as a measure of modular significance. Finally, the

so-called resolution limit in modularity Q is analyzed that may effect its ability to

partition nodes into communities with a large variation in link density. These criti-

cisms are important as they serve to illuminate the scope of modularity maximization

in real-world applications.
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1.7.1 The modularity landscape

Finding the partition to maximize modularity Q has been shown to be NP-hard [65,

177]. In the next section, a number of heuristic techniques are discussed that attempt

to find high modularity partitions. Of interest then, is the topological landscape of

high modularity partitions. Good et al. [6] have found that networks with modular

structure exhibit a global peak around the optimal partition. However, they found

this “peak” may be more similar in shape to a plateau. As a quantitative example

they consider the case of k sparsely interconnected groups of nodes with equal densi-

ties di ≈ 2m/k. Consider the change in modularity from merging two communities.

Let us assume there are two modules i and j and that each contain li and lj links and

have degree di and dj, respectively. Then the change in modularity from merging

the two modules is given by

∆Q = Qmerged −Qseparate

=
li + lij + lj

m
−
(
di + dj
2m

)2

−
[

li
m

+
lj
m

−
(

di
2m

)2

−
(

dj
2m

)2
]

=
lij
m

+
1

(2m)2
(
d2i + d2j − (di + dj)

2)

∆Q =
lij
m

− 2didj
(2m)2

, (1.23)

where lij is the number of links connecting module i and module j. Then the lower

bound of the change in modularity when merging two communities in the above

example is given when there are no links connecting module i and j (lij = 0). Then,

∆Q = − 8m2

(2mk)2
=

2

k2
, (1.24)

which for example, is −0.005 for k = 20 and tends to zero as for larger k. Therefore,

there can exist many partitions with modularity close to Qmax. Additionally, Good
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et al. surveyed the modularity landscape of a number of synthetic and real world net-

works using a Simulated Annealing (SA) technique (described in Section 1.8.1). An

example of such a modularity landscape for the metabolic network of the spirochaete

Treponema pallidum is shown in Fig. 1.11. Here, the amount of difference in the com-

munity assignment between partitions was quantified using an information theoretic

measure called the variation of information (VI) [178]. To visualize this difference

between all partitions, the VI was was embedded in a 2-dimensional x-y coordinate

system using a curvilinear component analysis algorithm [179] with the correspond-

ing modularity score given by the z-coordinate. The inset shows the peak of the

modularity landscape which displays a large number of partitions with similar mod-

ularity values yet structurally different community assignment. In Chapter 2, novel

methods are introduced that take advantage of this property by obtaining the com-

munity structure from the ensemble of high modularity partitions.

1.7.2 Overlapping communities

As modularity Q is defined, each node is partitioned into a single unique community.

However, in many real-world applications a node may have multiple roles in the net-

work. As previously discussed, in social networks an individual could be, at the same

time, a member of a family community, a work community, and a community for

a particular hobby. Additionally, in biological networks such as genetic regulatory

networks genes may participate in multiple functional communities. As maximizing

modularity Q is strictly a partitional method many of the overlapping community

methods previously discussed were motivated by modularity Q’s inability to detect
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Figure 1.11: The modularity landscape. The modularity landscape for the
metabolic network of the spirochaete Treponema pallidum found by [6]. Multiple
partitions were found using a Simulated Annealing technique to maximize modularity
Q and either stopped randomly or at a local maximum. Each of the found partitions
is embedded in a 2-dimensional x-y coordinate system with the corresponding mod-
ularity score given by the z-coordinate. The inset shows the peak of the modularity
landscape which displays a large number of partitions with similar modularity values.
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this type of structure [161, 5]. In Chapter 2, the analysis of the community struc-

ture from the ensemble of high modularity partitions, which as discussed addresses

the topology of the modularity landscape, additionally allows a construction of an

overlapping community partition.

1.7.3 The significance of a partition

One of the criticisms of some community detection methods is that for a given dataset

a partition is always found. How then does one determine if the found partition is

significant or merely an artifact of the method? In the same manner, how does one

evaluate a method that finds communities?

If the communities in a dataset are known a priori, a method can be evaluated

based on its ability to recover the structure. One such computer-generated standard

for unipartite networks is the planted l-partition model [180]. This model begins

with l communities each containing n nodes. Nodes in the same community are

connected with probability pin and nodes in different communities are connected

with probability pout. The average degree, 〈k〉, of a node is therefore, 〈k〉 = (n −

1)pin + n(l − 1)pout = kintra + kinter where kintra ≡ (n− 1)pin is defined as the intra-

community degree and kinter ≡ n(l−1)pout is defined as the inter-community degree.

For a given n, l and 〈k〉 the model begins with kinter = 0 and the l communities are

disconnected and therefore well defined. As kinter is increased the number of inter-

community links increases until pin = pout = 〈k〉 /(nl−1) at which point the network

is completely random. Then, the quality of a community detection method can be

evaluated by how well it recovers the l communities as a function of kinter. Girven

and Newman considered a special case of the l-partition model with l = 4, n = 32
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and 〈k〉 = 16 which has become a standard benchmark [37]. In Chapter 4, a bipartite

l-partition model is constructed and used to compare bipartite modularities.

A completely random graph is not expected to contain significant community

structure. Strikingly, it is exactly this type of random graph, an Erdös-Rényi graph,

that can give large values of modularity Q. This is due to fluctuations in the distribu-

tion of links in the network [181, 61, 182]. The modularity Q values of Erdös-Rényi

networks have been well studied by Reichardt and Bornholdt [61, 182]. They express

the community detection problem as a Hamiltonian for a q-state Potts spin glass

given by

H(σ) = −
∑

i<j

(Aij − γpij) δ(σi, σj), (1.25)

where σi represents the spin or community of node i, q is the number of possible

spin indices, Aij is the element of the adjacency matrix between node i and j, pij

is the probability that a link exists between node i and node j, normalized, so that

∑

i 6=j pij = 2M , and γ a parameter that controls the amount of energy that a link

contributes compared to a non-link. This Hamiltonian therefore represents a spin

glass with couplings Jij = Aij−γpij that are ferromagnetic between connected nodes

and antiferromagnetic between unconnected nodes.

When γ = 1 and pij =
kikj
2m

, the Newman Modularity can be written as Q =

− 1
M
H(σ). Additionally, for γ = 1 the mean of the coupling is 0, and therefore, one

expects zero magnetization in the ground state and an equipartition of the network.

Equipartitions of random graphs have been previously studied by Fu and Ander-

son [183] and by Kanter and Sompolinsky [184] who use the replica method [185] to

derive an analytic expression for the ground state of the spin glass Hamiltonian in the

large N limit and assuming p ∼ O(1). For a network of q equipartitions the ground

49



state Hamiltonian H(σ) = −N
3

2J U(q)
q

where U(q) is the ground state energy and J

is the variance of the coupling constant which, assuming pij = p for an Erdös-Rényi

network and γ = 1, is given by J2 = p(1 − p) [184, 61]. The maximum of U(q)
q

is

equal to 0.485 when q = 5 [61] and with M = pN2/2 Reichardt and Bornholdt give

the expected modularity Q for an ER graph as

〈QER〉 = 0.97

√
1− p

pN
. (1.26)

Additionally, Reichardt and Bornholdt derive similar results by successive recur-

sive bi-partitioning until Q no longer increases [61] using similar results from Fu and

Anderson [183]. In this case, after b successive recursive bipartition the modularity

is given by

Q(b) =
2b − 1

2b
− 1

〈k〉

b∑

t=1

〈kout, t〉, (1.27)

where 〈k〉 is the average degree of the entire network and 〈kout,t〉 is the average

number of external links gained by a node after partition t. 〈kout〉 is calculated using

pN−U(2)
√

pN(1−p)

2
[61]. Improvement of these methods, including empirical finite size

corrections, is discussed in Chapter 3.

If Erdös-Rényi networks are able to be partitioned with high modularity Q then

for a network partition to truly be modular one would expect it have a modularity Q

larger than expected for an Erdös-Rényi network. For a network with N nodes and

m links, the modularity value can be compared to the modularity distribution of an

ensemble of Erdös-Rényi networks with N nodes that are connected with probability

p = 2m/(N(N − 1)). For such an ensemble of Erdös-Rényi networks with average

modularity 〈QER〉 and standard deviation σER, the z-score of Q can be measured

50



by [34]

z =
Q− 〈QER〉

σER
. (1.28)

The z-score measures the effect size of the network’s modularity Q value which is

simply a standardized measure of the difference between it and the average modu-

larity value of the ensemble of Erdös-Rényi networks. Typically, z-scores larger than

0.5 indicate a strong effect size [186]. In Chapter 3, bipartite modularity is similar

studied and an analytic derivation of the expected bipartite modularity and standard

deviation is derived for random bipartite networks. This allows a better measure of

a partitions modular strength using the z-score.

1.7.4 The resolution limit

As discussed above, the modularity function measures the fraction of links in a com-

munity above its expectation for each community in the partition. The expectation

assumes that it is possible for each node in the network to be connected to any other

node. As a consequence, two modules in a network may be merged in the maxi-

mum modularity partition if the number of links which connect them is larger than

expected which in some cases occurs via a single link. Fortunato et al. [187] was

the first to describe this phenomenon and show that a community is more likely to

consist of a substructure of modules if the community’s number of links, lc, satisfies

the inequality, lc <
√
2m. A more intuitive explanation was given by Good et al. [6]

as follows. As shown in the last section (Eqn. 1.23) the change in modularity from

merging two communities is given by

∆Q =
lij
m

− 2didj
(2m)2

. (1.29)
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These two modules will be merged in the maximum modularity partition when ∆Q >

0 which is given when

lij > didj/2m ≡ 〈lij〉. (1.30)

This shows two modules are merged when the number of links between them, lij ,

is greater than the expected number 〈lij〉. As the number of links in the network,

m, grows, the expected number of links between the two modules decreases and can

eventually equal less than 1. Thus, the resolution limit can pose a greater problem

for unweighted networks in which the smallest link value is 1 [6]. For example, if

there is a single link between the two modules and the rest of the network, and it

is assumed that the two modules contain the same number of links, l ,a merge will

occur, according to Eqn. 1.30 when

1 >
(2l + 2)2

2m√
2m > 2(l + 1)

l <
√

m/2− 1. (1.31)

Then, the merged module will contain 2l + 1 ≡ lm links and will contain this sub-

structure when

2l + 1 < 2(
√

m/2− 1) + 1

lm <
√
2m− 1 ≈

√
2m, (1.32)

recovering the results of Fortunato et al. Thus, the modularity function looks for

communities with a typical density of links,
√
2m, whose size grows with the number

of links in the network.

Solutions to the resolution problem have been proposed most notably by Arenas

et al. [188] and Berry et al. [189] . The solution of Arenas et al. involves adding
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self-loops to all nodes in the network with weight r. This changes the inequality in

Eqn. 1.31 to

l <

√

m

2
+

Nr

4
− nr

2
− 1, (1.33)

where n is the number of nodes in the module. Thus the network can be surveyed

at different resolution levels by tuning the parameter r. However the best choice of

r is not clear for a particular network without a priori knowledge of its structure.

Nevertheless, this method has still been used to explore interesting features of a

network such as the stability of partitions with respect to r. Berry et al. has shown

for a weighted network a community may not be resolved if

l <

√

Wǫ

2
− ǫ, (1.34)

where l is the sum of all link weights in the module, W is the sum of all link weights

in the network and ǫ is the largest inter-community link. Berry et al. then proposed

a re-weighting scheme that locally increases the link weight of intra-community edges

and decreases the link weight of inter-community edges, ǫ. Thus, ǫ changes locally

alleviating the problem of choosing a particular resolution parameter as in the case

of Arenas et al.

1.8 Algorithms to maximize the modularity

A partitional community detection algorithm seeks to find the partition that maxi-

mizes or minimizes a quality function. If modularity Q helps one choose a good par-

tition in a dendrogram, then it is thought that finding the partition that maximizes

modularity Q should give the “best” partition. Unfortunately, finding the partition

that maximizes modularity Q has been proven to be an NP-hard problem [65, 177].
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However, there exist approximate algorithms that have been developed to find high

modularity partitions.

1.8.1 Simulated annealing

Perhaps the algorithm with the ability to find a partition closest to the “true” mod-

ularity maximum is simulated annealing [181]. Simulated annealing is a Metropolis

Monte-Carlo algorithm that begins by placing nodes in a random partition at an

initial temperature T. There is a list of moves, which can be either global or local,

that are chosen at random. Global moves include merging two communities while

local moves include moving a node into a random community. If a move gives a

positive increase ∆Q it is always accepted. However, if it decreases the modularity

it is accepted with a probability exp(β∆Q) where β ∝ 1/T . After a number of

moves the temperature is lowered by ∆T , called the cooling schedule, set by the

user. This process is iterated until the partition reaches a stable state which can

give a good approximation of the maximum of modularity Q. Simulated annealing

is similarly used by Reichardt and Bornholdt [61] to minimize the Modularity Q

equivalent Hamiltonian in the q-state Potts spin glass of Eqn. 1.25.

In principle, as the length of the simulated annealing cooling schedule increases

the probability of finding the global Q maximum goes to one [190]. However, this

can greatly increase the computational time of the algorithm the complexity of which

cannot be estimated due to the dependence on the various parameters chosen. Sim-

ulated annealing’s applicability is therefore ideal for smaller networks.
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1.8.2 Greedy algorithms

Newman was the first to devise an algorithm to maximize the modularity [191]. He

used an agglomerative hierarchical technique where each node in the network begins

in one ofN singleton cluster represented by the lowest level in a dendrogram. At each

step in the algorithm, the two clusters that give the largest increase in modularity

∆Q when merged are joined together in a single cluster constituting a new level in

the dendrogram. This continues until all nodes are in a single community. Thus,

the total number of partitions in the dendrogram is N and one chooses the partition

giving the largest modularity. By using structures for sparse matrices the algorithm

can be used on very large graphs [192] with a complexity of O((m+N)N) or O(N2)

for a sparse graph. Modifications to the algorithm have been proposed that can

increase the quality of the partition by normalizing ∆Q to favor smaller [193] or equal

community sizes [194]. Additionally improvements have been found by beginning

with a different initial configuration of nodes into clusters [195, 196, 197] as well as

adding tuning steps to the algorithm [198] that perform a local search for modularity

improvement. For example, a complete greedy tuning algorithm considers moving

all vertices into any cluster (and a newly created one) and makes the move with the

largest modularity increase [198]. This is repeated until there are no longer any moves

that give an increase in modularity. Additionally, Noack and Rotta[198] considered

moving groups of nodes rather than individual ones into other clusters which again

improved performance. Although greedy algorithms are fast, other methods that

will be discussed below find higher quality solutions.
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1.8.3 Extremal optimization

Extremal Optimization (EO) was first used by Duch and Arenas [199] to maximize

the modularity and involves assigning a fitness value to each node representing its

contribution to the modularity for a given partition. The fitness value represents the

contribution to the modularity of node i normalized by its degree, and is defined as

λi =
1

ki

∑

j

(

Aij −
kj
2m

)

δ(ci, cj), (1.35)

where Aij is the element of the Adjacency matrix, m is the total number of links

in the network, ki is the degree of node i, ci is the community to which node i

is assigned, and δ(ci, cj) is the Kronecker delta function. The nodes are initially

assigned into two communities of equal size. The nodes are ordered beginning with

smallest fitness value and a node with rank r is selected with probablilty r−τ and

moved to the opposite community. τ is a variable that must be tuned. The fitness is

recalculated for the resulting partition and the process continues until Q cannot be

improved. At this point, the two communities become disconnected components and

the algorithm is repeated for each component. EO was an attempt to find quality

partitions such as in simulated annealing while reducing the time requirement of

the algorithm. EO has a complexity of O(N2 log(N)). However, algorithms that

iteratively bisect the network are known to introduce bias [9].

1.8.4 The leading eigenvalue method

A spectral algorithm to maximize the modularity was developed by Newman that

uses the eigenspectrum of the modularity matrix to iteratively divide the network

into communities [151, 4]. This is similar to the spectral partitioning method of
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section 1.4.3. One begins with the definition of modularity Q,

Q =
1

2m

∑

ij

[

Aij −
kikj
2m

]

δ(ci, cj), (1.36)

where Aij is the element of the Adjacency matrix, m is the total number of links

in the network and is given by m =
∑

ij Aij/2, ki is the degree of node i, ci is the

community to which node i is assigned, and δ(ci, cj) is the Kronecker delta function.

1.8.4.1 Initial Division

To initially divide the network into two groups, one creates a vector s whose element

si is 1 if node i is assigned to the first community or -1 if node i is assigned to the

second. Then, δ(ci, cj) can be written as δ(ci, cj) =
1
2
(sisj + 1) which is substituted

into Eqn. 1.36 giving

Q =
1

2m

∑

ij

[

Aij −
kikj
2m

]
1

2
(sisj + 1)

=
1

4m

[
∑

ij

(

Aij −
kikj
2m

)

sisj +
∑

ij

Aij −
∑

ij

kikj
2m

]

=
1

4m

[
∑

ij

(

Aij −
kikj
2m

)

sisj + 2m− 4m2

2m

]

=
1

4m

∑

ij

(

Aij −
kikj
2m

)

sisj

Q =
1

4m
sTBs, (1.37)

where B is the modularity matrix with elements Bij = Aij − kikj/2m. Writing s as

a linear combination of the eigenvectors u of B, s =
∑N

i=1 aiui, the modularity may

be written
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Q =
1

4m

N∑

i=1

aiu
T
i B

N∑

j=1

ajuj

=
1

4m

N∑

i=1

N∑

j=1

aiaju
T
i Buj

=
1

4m

N∑

i=1

N∑

j=1

aiaju
T
i ujβj

=
1

4m

N∑

i=1

N∑

j=1

aiajδijβj

Q =
1

4m

N∑

i=1

a2iβi, (1.38)

where βi is the eigenvalue of B with eigenvector ui. Then the division of the

network corresponding to the largest value of Q is that which places the most weight

ai in the terms corresponding to the largest positive eigenvalues. Therefore, the

nodes are assigned to the two groups using the eigenvector u1
i corresponding to the

largest positive eigenvalue β1
i . Because si ∈ {−1, 1}, one can make the assignment

si =







1 if u1
i ≥ 0

−1 if u1
i < 0

. (1.39)

Note that there still exists for the modularity Q matrix a zero eigenvalue corre-

sponding to the eigenvector u = {1, 1, 1, ...., 1}. In the spectral clustering example

of section 1.4.3 this lead to problems as one sought to minimize the cut size using

the smallest eigenvalue of the Laplacian. The smallest eigenvalue of the Laplacian is

always zero which lead to the trivial partition of all nodes in one community. How-

ever, the largest eigenvalue of the modularity Q matrix is only zero when the largest

possible change in modularity Q is zero with all nodes assigned one community. This

is advantageous as it can serve as a criterion to stop division.
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The eigenvector corresponding to the largest eigenvalue can be found using the

power method. However, issues can exist as the power method finds the eigenvector

corresponding to the largest absolute eigenvalue so one must make sure the eigenvalue

found is positive. Additionally, the power method may fail to converge if there exists

for the largest eigenvalue, β1, an equal in magnitude but opposite in sign eigenvalue,

β2, where β2 = −β1. In this case, one may shift the matrix by a small value α and

find the eigenvector corresponding to the largest eigenvalue of B + αI [200]. This

will shift all eigenvalues by α allowing convergence.

1.8.4.2 A Kernighan-Lin tuning step

The assignment using the eigenvalue u1
i serves as the initial guess for the bisection

and a variant of the Kernighan-Lin (K-L) algorithm [149] is used to improve the

assignment. The K-L algorithm is a tuning algorithm that, as discussed, began

as a method for graph partitioning. The variant of the K-L algorithm begins by

moving each node from it’s current community into the other to see if there is an

improvement in modularity.

To find this improvement, begin by assuming the initial guess for the split is

contained in vector s. si is assigned a value of 1 or −1 whether the node i is in the

first or second community, respectfully. Then the modularity for this guess can be

written

Q =
∑

i,j

Bijsisj, (1.40)

where for the moment, the factor of 1/4m is ignored. Consider moving node k then
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one can rewrite this equation as

Q =
∑

i,j 6=k

Bijsisj + sk
∑

i

Biksi + sk
∑

i

Bkisi − Bkks
2
k. (1.41)

Now, let Bik = Bki, and because s2k = 1,

Q =
∑

i,j 6=k

Bijsisj + 2sk
∑

i

Biksi −Bkk. (1.42)

If node k moved then sk becomes s′k, and the new modularity is

Q′ =
∑

i,j 6=k

Bijsisj + 2s′k
∑

i

Bkisi − Bkk. (1.43)

Then, the change in modularity is given by

δQ = 2(s′k − sk)
∑

i 6=k

Bkisi. (1.44)

Now consider both cases where k is initially assigned into either the first or second

community. If sk = 1 then sk′ − sk = −1 − 1 = −2. If sk = −1 then sk′ − sk =

1− (−1) = 2. Then, for both cases (sk′ − sk) = −2sk, and adding back in the factor

of 1/4m,

δQ = − 1

m
sk
∑

i 6=k

Bkisi. (1.45)

Then, the K-L tuning step is as follows:

1. Initialize Qtotal, defined as the improvement using the K-L tuning step, to zero.

2. Set the initial configuration of vector s to sinitial.

3. consider moving all nodes by computing, δQ using Eqn. 1.45 for all k.

4. Pick the node giving the largest δQ ≡ node K. If there is more then one node

with the largest δQ choose one of these randomly.
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5. Add δQ to Qtotal.

6. Set sK = −sK for node K

7. If Qtotal is the largest or equal to the largest found so far store s.

8. Repeat steps 3. through 7. only considering nodes which have not been moved

until all nodes have been moved once.

9. If the largest intermediate Qtotal is positive, then repeat from step 1 using s as

the initial guess or if there is more than one intermediate s stored with this

Qtotal randomly choose between them. If Qtotal is negative end the algorithm

returning the initial configuration vector sinitial.

If the largest eigenvalue is zero or, alternatively, the Kernighan-Lin algorithm

fails to find an assignment that produces an increase in modularity when splitting

the community, the algorithm stops.

1.8.4.3 Subsequent divisions

To divide the network into more than 2 communities one can iteratively bisect each

community as long as the modularity increases. However, each community cannot

simply be treated as a separate graph using Eqn. 1.37. There is a correction term to

the modularity matrix after the initial splitting. Consider writing the definition of

modularity Q as

Q =
1

2m

Nc∑

k

∑

i,j∈Ck

Bij, (1.46)
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where Nc is the number of communities C. If community Cko is split into 2 commu-

nities, Cko,1 and Cko,2, the new modularity Q′ can be written as

Q′ =
1

2m






Nc∑

k=1

k 6=ko

∑

i,j∈Ck

Bij +
∑

i,j∈Cko,1

Bij +
∑

i,j∈Cko,2

Bij






Q′ =
1

2m






Nc∑

k=1

k 6=ko

∑

i,j∈Ck

Bij +
∑

i,j∈Cko,1

Bij +
∑

i,j∈Cko,2

Bij +
∑

i,j∈Cko

Bij −
∑

i,j∈Cko

Bij




 ,

where zero has been added into the equation in the last two terms. This allows one

to write

Q′ =
1

2m





Nc∑

k=1

∑

i,j∈Ck

Bij +
∑

i,j∈Cko,1

Bij +
∑

i,j∈Cko,2

Bij −
∑

i,j∈Cko

Bij





Q′ = Q+
1

2m




∑

i,j∈Cko,1

Bij +
∑

i,j∈Cko,2

Bij −
∑

i,j∈Cko

Bij



 (1.47)

∆Q =
1

2m




∑

i,j∈Cko,1

Bij +
∑

i,j∈Cko,2

Bij −
∑

i,j∈Cko

Bij



 , (1.48)

where Q was substituted into Eqn. 1.47 using Eqn. 1.46. Now the same method is

used as during the initial division creating a vector s whose element si is 1 if node

i is assigned to the first community, Cko,1, or -1 if node i is assigned to the second

community, Cko,2. This allows the first two terms in Eqn. 1.48 to be combined giving

∆Q =
1

2m




1

2

∑

i,j∈Cko

Bij(sisj + 1)−
∑

i,j∈Cko

Bij





=
1

2m




1

2

∑

i,j∈Cko

Bijsisj −
1

2

∑

i,j∈Cko

Bij





∆Q =
1

4m




∑

i,j∈Cko

Bijsisj −
∑

i,j∈Cko

Bij



 . (1.49)
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Finally, one uses the relation,

∑

i,j∈Cko

δijsisj
∑

l∈Cko

Bil =
∑

i∈Cko

s2i
∑

l∈Cko

Bil =
∑

i,l∈Cko

Bil, (1.50)

to write,

∆Q =
1

4m




∑

i,j∈Cko

Bijsisj −
∑

i,j∈Cko

Bij





=
1

4m




∑

i,j∈Cko

Bijsisj −
∑

i,j∈Cko

δijsisj
∑

l∈Cko

Bil





=
1

4m

∑

i,j∈Cko



Bij − δij
∑

l∈Cko

Bil



 sisj

∆Q =
1

4m
sTB(ko)s, (1.51)

where B(ko) has elements B
(ko)
ij = Bij − δij

∑

l∈Cko
Bil. To maximize the change in

modularity, ∆Q, when bisecting a community ko after the initial division one can

assign elements of si using the eigenvalue corresponding to the largest eigenvalue of

B(ko). The Kernighan-Lin algorithm can again be combined to improve the division.

Communities are then iteratively bisectioned as long as the modularity increases.

Additionally, note that Eqn. 1.51 is the generalized form of Eqn. 1.37 and can be

used to make the initial split as the term
∑

l∈Cko
Bil = 0 when all nodes are in a

single community.

1.8.4.4 Final tuning

Recently, Sun et al. [9] have shown that iteratively bisecting a network creates a

bias in the resulting community structure found. Consider, after the initial bisection

of the network each community forms two disjoint subsets. Each subset of nodes

will only be divided in the subsequent iterations of the algorithm so that once two
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nodes are separated into different communities they are never again found together

in the same community. Dividing the network in this way creates “hard partitions”

in the algorithm. Sun et al. found a manifestation of these hard partitions in

the distribution of the community sizes in an ensemble of Erdös-Rényi networks.

Peaks in the community size distributions exist of size N/2x for certain values of

integer x which depends on the number of nodes in the network and the connection

probability. Furthermore, if instead the network is trisected at each step of the

spectral partitioning process peaks exist of size N/3x for values of integer x. To

amend this bias Sun et al. added an additional tuning step called Final Tuning in

the spectral partitioning algorithm of Newman and Girven in which one considers

the change in modularity from moving each node from its current community to all

existing communities or forming its own community.

To find the change in modularity Q when node l begins in community Cx and is

moved to community Cy begin with modularity Q written as

Q =
1

2m

Nc∑

k

∑

i,j∈Ck

Bij, (1.52)

where Nc is the number of communities C. Initially, Q can be written as

Q =

Nc∑

k=1

k 6=x,y

∑

i,j∈Ck

Bij +
∑

i,j∈Cx

Bij

︸ ︷︷ ︸

(I)

+
∑

i,j∈Cy

Bij

︸ ︷︷ ︸

(II)

. (1.53)

With l moved from Cx to Cy the modularity becomes

Q′ =
Nc∑

k=1

k 6=x,y

∑

i,j∈Ck

Bij +
∑

i,j∈Cx\ l

Bij

︸ ︷︷ ︸

(III)

+
∑

i,j∈Cy∪ l

Bij

︸ ︷︷ ︸

(IV )

, (1.54)

then

δQl = [(III)− (I) + (IV )− (II)]. (1.55)
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Note that

(III) = (I)−
∑

j∈Cx

Blj −
∑

i∈Cx

Bil +Bll

(IV ) = (II) +
∑

j∈Cy

Blj +
∑

i∈Cy

Bil +Bll.

Therefore, the change in modularity is given by

δQl =
∑

i∈Cy

Bil +
∑

j∈Cy

Blj −
∑

i∈Cx

Bil −
∑

j∈Cx

Blj + 2Bll. (1.56)

For a symmetric matrix,

δQl = 2




∑

i∈Cy

Bil −
∑

i∈Cx

Bil +Bll



 . (1.57)

For each iteration of the algorithm after the initial division, after all existing

communities have been split with the Kernighan-Lin step, final tuning is performed.

Then, the final tuning step is as follows:

1. Initialize Qtotal, defined as the improvement using the final tuning step, to zero.

2. Set the initial partition of the network vector P (G) to P (G)initial.

3. Consider moving all nodes from its current community to all other existing

communities or into a community of its own by computing δQ using Eqn. 1.57.

4. Pick the move giving the largest δQ. If there is more then one move with the

largest δQ choose one of these randomly.

5. Add δQ to Qtotal.

6. Fix the community assignment for the node moved updating P (G).
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7. If Qtotal is the largest or equal to the largest found so far, store P (G).

8. Repeat steps 3. through 7. only considering nodes which have not been moved

until all nodes have been moved once.

9. If the largest intermediate Qtotal is positive, then repeat from step 1 using

P (G) as the initial guess or if there is more than one intermediate P (G)

stored with this Qtotal randomly choose between them. If Qtotal is negative end

the algorithm returning the initial partition P (G).

Adding this tuning step after each round of bisections, when combined with

spectral partitioning, finds the largest value of Q for any algorithm for networks up

to a few thousand nodes in size [9]. The algorithm has a complexity of O(N2 logN)

with an ideal trade off between quality and complexity.

Recently, a K-L variant algorithm similar to final tuning has been applied to

modularity maximization. Sobolevsky et al. [201] consider moving nodes between

two communities in the network with the destination community possibly empty.

Then every pair of communities in the network is updated in this fashion until the

modularity is no longer improved. This is also an improvement over the Newman’s

spectral partitioning algorithm with K-L tuning.

Adapting the spectral partitioning algorithm with final tuning to maximize bi-

partite modularities is a non-trivial problem that is addressed in Chapter 3. Addi-

tionally, a new tuning step is introduced that improves the modularity maximizing

performance of this algorithm without increasing its complexity.

66



1.9 Dissertation organization

In the previous sections, the problem of community detection in networks was in-

troduced, focusing on the properties and methods of modularity maximization. The

remainder of this dissertation focuses on both the application of modularity maxi-

mization methods in biological networks and the development of methods and ap-

plications of bipartite modularity maximization in both weighted and unweighted

bipartite networks.

In Chapter 2, methods for exploring the hierarchical organization of genetic regu-

latory networks that robustly detect core functional communities are presented. The

methods are tested and their validity demonstrated, by applying them to Escherichia

coli genetic expression data, finding a hierarchy of functionally relevant communi-

ties and then comparing those communities to the known E. coli functional groups.

Examples are then given of how these methods can be used to infer regulatory inter-

actions between genes.

Chapter 3 introduces a new definition of bipartite modularity, defined as the

Information Preserving (IP) modularity, that extends the ability to partition each

side of bipartite networks separately when the links in the bipartite network are

weighted. The method is meant to preserve more information about the bipartite

network in its unipartite projection. Additionally the spectral method of modularity

maximization is adapted to bipartite modularities and a new tuning step is added

that merges communities. Adding this tuning step to the spectral method described

in section 1.8.4 for unipartite networks extends the current algorithms ability to find

the partition with the largest value of Q for any algorithm in networks of up to tens

of thousands of nodes in size. Finally, the expected value and standard deviation
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of IP modularity for random Erdös-Rényi networks is then analytically derived so

that a Z-score comparison of the modularity values of real-world networks can be

computed.

In Chapter 4, the ability of the bipartite modularities described in Chapter 3

to recover the known structure of a bipartite model with unweighted and weighted

links is studied. When compared to the Guimera et al. bipartite modularity the IP

modularity performs better at recovering the known structure. Furthermore, a real

world bipartite network, the metabolic network of E. coli, is used as both an example

and a benchmark of the applicability of the method.

The final chapter is a summary of this dissertation.
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Chapter 2

Robust Detection of Hierarchical

Communities from Escherichia

coli Gene Expression Data

2.1 Introduction

The following chapter is an edited version of a work published in PloS Computational

Biology [202]. Gene regulation networks represent the set of regulatory interactions

between all genes of an organism. These networks can contribute to our understand-

ing of the development of organisms and how they integrate internal and external

signals to coordinate gene expression responses [203, 85]. Moreover, knowledge of

gene regulation networks allows communities of closely interacting genes to be iden-

tified. Once identified, such communities are an important resource for developing

hypotheses for the function of uncharacterized genes and can provide insight into
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patterns of regulatory network evolution and function [88, 204, 205, 206, 86, 207].

Examining the relationships between communities can also reveal a hierarchical set

of interactions, which is thought to be a fundamental organizing principle in many

biological systems [208, 209, 171]. For all these reasons, determining gene regulation

networks and their functional organization remains a major goal of systems biology.

As mentioned in Chapter 1, approaches to determine the underlying structure

of the transcriptional regulatory network generally infer links between genes of the

network based on correlation in their transcriptional response to a series of envi-

ronmental and genetic perturbations. [85, 86, 87, 88, 89, 90, 91, 92]. Identifica-

tion of groups of interacting node (gene) communities poses an additional challenge.

Communities can be identified using computational methods developed in network

science [210]. These methods include hierarchical clustering [211, 212, 213], clique

based clustering [214, 215, 216, 217], core-pheriphery [218, 219, 220], K means clus-

tering [221], principal component analysis [222, 223], label propagation [153, 224],

statistical mechanical approaches [225, 145] , and modularity maximization meth-

ods [2, 4, 226, 227, 9]. Often these algorithms agglomerate or divide the nodes of a

network into groups based on either the links of the network or the strength of the

correlation value between pairs of nodes. However, certain algorithm parameters,

such as the number of groups, are often required as user inputs and can become

increasingly difficult to predict as the size and complexity of the network grows. In

addition, there can be considerable variability in the community detection process

due to approximations and stochastic elements of the computational algorithms.

In this chapter, methods are presented for determining the hierarchical organiza-

tion of genetic regulatory networks and for detecting functional communities of genes

that are robust to variability in both gene expression data and community detection
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parameters. A recently developed community detection method [9] is applied to

regulation networks inferred from a compendium of E. coli expression profiles using

the context likelihood of relatedness (CLR) algorithm [88]. This method uses the

mutual information in the data sequence for pairs of genes to construct a weighted

“Z-score matrix” that describes the relatedness of each gene pair. This weighted Z-

score matrix is converted to a network by choosing a threshold value. Any element of

the Z-score matrix above the chosen threshold value is converted to an unweighted

link and any element of the matrix below the chosen threshold value is removed.

We choose threshold values of 2.0, 4.0, and 6.0 which is below, at, and above the

critical threshold value for the which the network is no longer fully connected. Then,

to identify communities in each network, a recently developed community detection

algorithm [9] that partitions the network so as to maximize its modularity, is run

multiple times. The modularity maximizing algorithm used by this method, when

applied to a series of widely studied networks, produces the partitioning with the

largest modularity of any known fast algorithm for networks up to a few thousand

nodes in size [9].

As mentioned above, there is variability in the community detection process.

Indeed, numerous network partitions can give modularities close to the maximum and

these partitions can be structurally diverse [6]. Rather than treat this property as a

disadvantage, the following methods use the stochasticity to find correlations between

the ensemble of runs of the community detection algorithm. A core community is

then defined, as those nodes that are consistently assigned to the same community

over multiple partitions of the network. This ensemble analysis of partitionings to

find correlations between different sets of network partitions, combined with varying

the threshold value used to create a network, enables the investigation of relationships
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between communities at different threshold values. Community relationships are

defined as hierarchical if communities at a higher threshold value are contained within

communities at a lower threshold value. These methods not only allow one to find the

hierarchical organization of communities within the network, but also to determine

if a network is, in fact, hierarchical – a feature that is not forced upon the network

by the method.

Comparisons of independent gene expression experiments often find considerable

inter- and even intra-experiment variation, which can amplify stochastic aspects of

the community detection process [228, 229, 230]. While variation can be minimized

by standardizing the platform and analysis pipeline used, the low-replication com-

mon to many gene expression studies, means that the variance of each individual

gene expression estimate is typically quite high. To investigate the effects of experi-

mental noise on the ability to assign genes to core communities, artificial data sets are

constructed with various levels of experimental noise. At each noise value, multiple

runs of the community detection process are performed, allowing the determination

of the sensitivity of core community structure to realistic levels of expression varia-

tion. It is found that increasing the value of expression noise had a similar effect to

increasing the relatedness cutoff value used to create the network. Noise decreases

the size of the core communities, leaving only the most strongly related genes as

consistent members, but does not tend to assign genes into new core communities.

Biological relevance in the communities found by these methods is tested by deter-

mining whether they significantly enrich for gene ontology (GO) terms identified in

E. coli. It is found that, in many cases, there are statistically significant matches

between a core community and GO term, indicating that communities are likely to
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be biologically relevant. Thus, the methods presented to investigate genetic regula-

tory networks and to determine the hierarchy of their functional communities appear

robust to the variability in the community detection process and to the existence of

experimental noise.

2.2 Inferring gene interactions from expression data

In the following work, E. coli expression data downloaded from the Many Microbe

Microarrays Database (M3D) version 4, build 5 [231] is analyzed. This build consists

of a compendium of expression profiles from 730 different experiments reporting ex-

pression of 4,298 E. coli MG1655 genes. These experiments report the effect on

gene expression of 380 different perturbations, of which 152 were repeated at least

three times. Experiments include environmental perturbations such as pH levels,

growth phase, presence of antibiotics, temperature, growth media, and oxygen con-

centration, as well as genetic perturbations. For each gene the data from the various

experiments were normalized to account for varying detection efficiencies and differ-

ences in labeling. The values then reported are the log2 of the normalized expression

intensity.

2.2.1 The context likelihood of relatedness method

To identify interactions between genes the context likelihood of relatedness (CLR) al-

gorithm [88] is applied. Generally, network inference is difficult because of bias from

uneven condition sampling, upstream regulation, and inter-laboratory variations in
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microarray results. The CLR algorithm attempts to mitigate these difficulties by in-

creasing the contrast between the physical interactions and the indirect relationships

by taking the context of each interaction and relationship into account. Links are

assigned based on the mutual information in gene expression patterns, which, unlike

simple correlation methods, can accommodate non-linear relationships between pair-

wise gene expression patterns. Although some other algorithms offer higher precision

in terms of recovering known regulatory links [232], CLR is attractive for allowing

identification of indirect links that might serve to strengthen relationships between

genes within co-regulated communities. Note, however, two limitations of networks

derived from the underlying data set and CLR approach. First, the expression ex-

periments are not considered as time series, which could give information as to the

direction of regulatory interactions [233]. Second, combinatorial regulatory interac-

tions, for example, in which two or more regulator genes must be active to regulate

a target gene is not considered.

Implementation of the CLR algorithm begins by calculating the mutual informa-

tion in the expression data for each pair of genes. This is done by treating the data

for each gene as a discrete random variable, so that every pair of genes X and Y is

assumed to have expression levels xi and yi for each experiment i = 1, 2, 3, . . . . The

mutual information I(X, Y ) in the expression of X and Y is

I(X, Y ) =
∑

i,j

p(xi, yj) log
p(xi, yj)

p(xi) p(xj)
, (2.1)

where p(xi) and p(yj) are the marginal probability distributions that the expression

level of X is xi and of Y is yj, respectively, and p(xi, yj) is the joint probability

distribution that, simultaneously, the expression levels of X and Y are xi and yj,
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respectively. These discrete probability distributions are calculated from the con-

tinuous expression data using B-spline smoothing and discretization. Rather than

assign an expression value to one bin, as in classical binning, the B-spline functions

allow an expression value to be assigned to multiple bins to account for fluctua-

tions in biological and measurement noise. This is sometimes referred to as “fuzzy

binning” [234]. For N genes, this calculation results in an N × N symmetric ma-

trix of mutual information values. Here, to calculate the probability distributions

for E. coli we use 10 discrete bins and a third-order B-spline function. The results

do vary slightly if the number of bins used or the order of the B-spline function is

changed. However, the results vary slowly with these parameters and do not change

any principle conclusions.

Mutual information between a gene pair can be due to random background effects,

or a regulatory relationship. To distinguish the relevant mutual information from its

background, the CLR algorithm compares each mutual information value I(X, Y ),

to the distribution of the mutual information values between gene X and all other

genes {I(X, Y ); ∀Y }, and separately, to the distribution of the mutual information

values between gene Y and all other genes {I(X, Y ); ∀X}. The distributions are

assumed to be normal and a Z-score value, Zx and Zy, is assigned to I(X, Y ) for

distribution X and Y , respectively. The Z-score value of I(X, Y ) compared to a

normal distribution i, with a mean µi and standard deviation σi, is given by

Zi =
I(X, Y )− µi

σi
. (2.2)

Any value of Zx or Zy less than zero is set to zero as negative Z-score values represent

a mutual information value below the mean and thus below the background. Finally,
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the relatedness value between gene X and gene Y is defined as

f(X, Y ) =
√

Z2
X + Z2

Y . (2.3)

For N genes, this calculation results in an N × N symmetric matrix of relatedness

values.

The resulting CLR relatedness matrix can be used to define a network with

weighted links between genes. In principle this network can be analyzed to find its

community structure. However, doing so would not allow an exploration of hierar-

chical community organization. Instead, we apply a threshold value of relatedness,

fmin, above which a regulatory interaction is inferred.

2.2.2 Defining a network

Once the matrix of relatedness values is calculated, a network of regulatory inter-

actions is inferred by placing links between every pair of genes whose relatedness

value exceeds some threshold, fmin. For a given fmin value, this procedure results in

a defined interaction network. The threshold value fmin that is chosen has consid-

erable effect on the network that is created and on its community structure. The

distribution of relatedness value, f , of pairs of genes is shown in Fig. 2.1A. Clearly,

increasing the cutoff value significantly reduces the number of links in the network.

At fmin = 2 all 4,297 genes are in the largest connected component and therefore the

network is fully connected (Fig. 2.1B). At approximately fmin = 4, the inferred net-

work begins to break up and at fmin = 6, the size of the largest connected component

is substantially reduced and a number of isolated components exist. Thus, fmin = 4

is approximately the critical value at which the network remains largely intact as

one connected network. In the work below networks inferred from fmin values of 2,
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4 and 6 are considered. These values correspond to points on, and at either side of

the critical threshold value.

2.3 Identifying communities and their hierarchi-

cal organization

A recently developed extension of the leading eigenvalue method is used to determine

the community structure of the inferred E. coli regulatory network [4]. This method

aims to identify a partitioning of nodes into a disjoint set that maximizes network

modularity. In order to solve this problem, the leading eigenvalue method combined

with final tuning [9] is used. Final tuning improves the approximate solution given

by the leading eigenvalue method by removing constraints that bias the results. For

widely studied example networks with up to a few thousand nodes, the size of the

genetic network of E. coli used in this analysis, combining final tuning with the

leading eigenvalue method has been demonstrated to produce network partitionings

with the largest Qmax of any known method [9].

Community detection algorithms contain stochastic elements that can cause dif-

ferent runs to give different partitionings. Indeed, partitionings of the same net-

work can be structurally diverse, despite having similar modularity scores [6]. This

property is exploited by analyzing an ensemble of partitionings and measuring their

correlations. This allows one to both find the pairs of genes that are most often

grouped together and examine the family of community structures that can result

from a modularity maximization.
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Figure 2.1: Distribution of gene relatedness and network size in the E. coli

CLR network. (A) Probability distribution of relatedness values, f , between pairs
of genes in E. coli calculated using the CLR algorithm and the full M3D dataset. (B)
Size of the largest connected component for relatedness value, f . At small values of
fmin the network is fully connected but begins to break up into multiple disconnected
components at a critical value of approximately fmin = 4.
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At a particular fmin value, which defines a unique network, the community detec-

tion algorithm is run 10 times, generating a correlation matrix where each element

represents the proportion of times gene X and gene Y are found in the same commu-

nity. We define sets of genes that are always found in the same community as a “core

community”. We performed this procedure for fmin = 2, 4 and 6, which, as discussed

above, give networks that are supercritical, critical, and subcritical, respectively.

2.3.1 Modularity results

At fmin = 2 there are only six communities, while at fmin = 6 there is a mode of

965 communities with the largest consisting of 417 genes. This is consistent with

the finding that at small values of fmin the network is fully connected, while at large

values the network breaks up into a large number of small disconnected parts. At

intermediate values of the threshold, where the network begins to break up, the

community structure is complex, consisting of a broad distribution of different sized

communities. Interestingly, as fmin increases so does the value of the maximum

modularity found, Qmax. At fmin = 2, Qmax ≈ 0.37 indicating that the network

structure is not particularly modular, while at fmin = 6, Qmax ≈ 0.85 indicating that

the network structure is highly modular.

Additionally, it important to note the community detection algorithm is run on

the entire network of 4297 nodes at all three threshold values, regardless of whether

the resulting network is fully connected. At fmin = 2, this is not particularly impor-

tant as the graph is fully connected. However, at fmin = 4, the network is composed

of 11 disconnected components the largest of which contains 4285 nodes and 9 of

which are isolated nodes. Similarly, at fmin = 6, the network is composed of 904
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isolated components the largest of which contains 3201 nodes and 783 which are

isolated nodes. In all cases, community detection results in all isolated nodes par-

titioned into singleton communities. Similarly, nodes are never partitioned together

in the same community if they are members of different isolated components.

2.3.2 Statistical analysis of ensembles of network partitions

The multicolor matrix correlation plot of Fig. 2.2 simultaneously shows the statisti-

cal correlations in the modular relationships between pairs of genes at supercritical,

critical, and subcritical threshold values. First, single color, blue red and green,

matrix correlation plots corresponding to fmin values of 2, 4, and 6, respectively,

are created. Note that the order of genes used in a matrix correlation plot is arbi-

trary. However, by judiciously choosing an ordering, modular relationships become

more apparent. The genes in each of these single color correlation plots are then

simultaneously reordered as follows. First, the genes were ordered so that all of the

genes in the same community at fmin = 2 are listed together, according to the size of

the community, beginning with the largest and ending with the smallest. Next, the

genes in each of those communities are reordered such that the subset of those genes

that comprise the largest community at fmin = 4 are listed first, followed by those

in the next largest such community, etc., until all genes within the fmin = 2 com-

munity have been listed. Then each of the genes within a fmin = 4 core community

that are within an fmin = 2 community are again reordered. The genes in each of

those communities are reordered such that the subset of those genes that comprise

the largest core community at fmin = 6 are listed first, followed by those in the next

largest such community, etc., until all genes within the fmin = 4 core community that
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are within an fmin = 2 community have been listed. Finally, the three single color

correlation plots are combined into the multicolor plot shown in Fig. 2.2, where each

matrix element of the resulting plot has an RGB color that simultaneously indicates

its correlations in the modular structure at each of the three fmin values.

2.3.3 The hierarchical structure of the network

As shown in Fig. 2.2, substantial differences in the community structure of the net-

works inferred at different fmin values are found. As fmin is increased, links that con-

nect weakly related genes are removed from the network, which can cause genes to

switch communities, and communities to merge or divide. Analysis of these changes

lead to two conclusions. First, there is a basic community structure that is robustly

determined such that many pairs of genes remain in the same community at all three

fmin values, indicated by the block diagonal white elements. That is, there is a basic

community structure that is invariant with respect to adding or subtracting links

between weakly related genes. Second, community structure is hierarchical. To see

this, note that at fmin = 2 the community structure consists of six large communities,

indicated by the blue blocks, while at higher values it begins to break up into smaller

communities. More importantly, the relationship between communities at different

fmin values indicates that the structure of the network is largely hierarchical. A hi-

erarchical structure is revealed when a community breaks up into subcommunities

as fmin increases. If the E. coli regulatory network was completely hierarchical, one

would see only block diagonal elements consisting of large blue blocks that break up

into purple then white sub-blocks as fmin is increased. Communities at one value

of fmin that are subcommunities of the same community at a smaller fmin value
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are therefore hierarchically closer to each other than ones that remain in different

communities at the smaller fmin value. Fig. 2.2 indicates that the inferred E. coli

regulatory network has a largely but not completely hierarchical structure. This is

apparent from the large fraction of the blue blocks (fmin = 2 communities) that con-

tain on diagonal purple and white blocks (fmin = 4 and 6, respectively). However,

there are some red off diagonal blocks that indicate a non-hierarchical ordering as

fmin is increased from 2 to 4. Furthermore, although the purple fmin = 4 blocks

largely break up into white blocks as fmin is increased to 6, there are some off diago-

nal cyan and green blocks that indicate non-hierarchical ordering. About 68% of the

core community matrix elements at fmin = 4 were hierarchically in core communities

at fmin = 2, and about 80% of the core community matrix elements at fmin = 6 were

hierarchically in core communities at fmin = 4.

2.4 Community structure is robust to experimen-

tal noise

Given the relatively high experimental variation and low replication typical of gene

expression measurements, it is of practical interest to determine whether inferred

community structure is robust to this source of noise. To explore the effects of

experimental noise, the community structure is found in artificial datasets created

to mimic the actual data with various levels of experimental noise. To generate

these datasets, a restricted set of the actual data is considered consisting of the 152

experiments that were repeated at least three times in the M3D database. For each

of the 152 experiments, the mean m(X) and standard error σ(X) of the expression
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Figure 2.2: Correlation matrix. Correlation matrix showing community structure
found in the E. coli network with relatedness threshold values fmin = 2, 4 and 6.
Genes are ordered in the same sequence along the x and y axes beginning in the
upper left corner, and this ordering is the same for all three relatedness values (gene
order is given in SI). The matrix element in the position (X, Y ) is colored blue, red,
or green if genes X and Y are in the same community at threshold values 2, 4 or
6, respectively. The density of the color indicates the strength of the correlation
in the partitionings of the pair of genes. For example, considering the correlation
between a pair of genes in the 10 replicate partitionings performed on the fmin = 4
network, dark and light red indicates that the pair of genes are always and rarely
found to be in the same community, respectively. The red, green and blue colors
corresponding to fmin = 2, 4 and 6 thresholds, respectively, are combined to indicate
the correlations of each pair of genes at all three threshold values. Thus, the color of
the matrix element in the position (X, Y ) is white if genes X and Y are in the same
community at all three threshold values. It is purple (yellow) if the two genes are
in the same community at thresholds 2 and 4 (4 and 6), but not at threshold 6 (2)
and it is black if the two genes are not in the same community at any of the three
threshold values.
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level of each gene X is calculated. Assuming a normal distribution of error, artificial

data is then generated for an artificial experiment by randomly choosing a value for

the expression of each gene X from a Gaussian distribution with mean m(X) and

standard deviation cσ(X), where c is a positive constant. The amount of noise in

the artificial data can be adjusted by varying c with c = 0 recreating the original

data set. Artificial data sets were generated at values of c ranging from 0 to 4.

For each value of c, ensembles of 20 different artificial data sets were constructed

and then analyzed. Crucially, these data sets considered each gene and experiment

independently, thereby preserving any inherent differences between different gene’s

expression variability.

2.4.1 Statistical analysis of ensembles of noisy network par-

titions

For each noisy data set, the CLR algorithm is used to infer a regulation network at

an fmin value of 2, and the community structure was determined with the methods

described above. For each dataset, 10 different community partitionings were ob-

tained, giving a total of 200 partitionings for each value of c. Fig. 2.3 shows a series

of correlation matrix plots for the community structure found for the partitioning

ensembles for c = 0, 0.5, 1, 2 and 4

The gray scale plots of Fig. 2.3 are the matrix correlation plots for the statistical

ensemble analysis of the 200 partitionings constructed from the artificial noisy data

for each noise value c. The gray scale of each matrix element in the plots corresponds

to the fraction of pairs of partitionings in which the corresponding pairs of genes are

found to be in the same community. The order of genes in Fig. 2.3A is such that

84



all of the genes in the largest core community are arbitrarily listed first, followed

by a similar list of the genes in the second, third, fourth, and fifth largest core

communities. Note that when c = 0 all genes are in one of the five core communities

and therefore this list contains all genes. In Fig. 2.3:B, C, D, and E, the genes in

each of the 5 core communities at c = 0 have been reordered, but the order of the

genes with respect to these core communities has been preserved. That is, in each

of these subfigures, all genes that are in the ith largest core community at c = 0 are

always listed before any genes in the jth largest core community at c = 0 if i < j. In

each subfigure, the genes within a c = 0 core community have been reordered such

that the subset of those genes that comprise the largest core community at the c

value corresponding to the subgraph are listed first, followed by those in the next

largest such core community, etc., until all genes within the c = 0 core community

has been listed. Note that, some genes may be isolated in their own core community

with this method.

The degree of noise clearly has a major impact on community structure. Nev-

ertheless, except at c = 4, there exist robustly determined core communities. In

addition this analysis revealed two important results. First, as the noise level c in-

creased, a large proportion of the genes in a core community are partitioned into sub

communities but genes rarely switch out of their c = 0 core communities. This is

similar to what happens when the threshold value for creating the network was in-

creased (Fig. 2.2). Second, with one exception, the number of nodes included in each

core community decreased as c was increased (Fig. 2.4A). Noise acts mainly conser-

vatively, decreasing the size of core communities, rather than causing association of

genes into new communities.
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Figure 2.3: Change in core community structure as noise is increased from
c = 0 to c = 4. The gray scale value of each element indicates the fraction of times
the two genes occurred in the same community over replicate community partition-
ings. If the element is white (black) the two genes were always (never) found in
the same community. At each noise value there are clearly white diagonal blocks
indicating sets of genes that are always found in the same community, which we refer
to as core communities. Note that, the five core communities at c = 0 (Figure 2.3A
) are in the same order in Figure 2.3:B, C, D, and E. Within each of the five core
communities of Figure 2.3A , the node order is allowed to change in Figure 2.3:B, C,
D, and E in order to display the largest subcommunity first.
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Figure 2.4: The effect of noise on core community structure and GO term
enrichment. (A) Proportion of c = 0 core community nodes that remain in a core
community. (B) The number of significant GO term enrichments as a function of
noise level c for networks constructed with fmin = 2. If a GO term is enriched by
more than one community, each enrichment is counted separately.
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2.5 Communities enrich for functionally related

genes

It have thus far been demonstrated that the computational methods presented can

robustly identify a community structure in the E. coli regulatory network. An im-

portant remaining question is whether this structure is biologically relevant. To test

this, the simple expectation is examined that genes in the same operon, and that

therefore share at least one promoter control region, will tend to group together in the

same community. Even using the very stringent requirement that all genes within an

operon be in the same community and not accounting for the presence of secondary

promoters that are internal to the operon and might act to decouple operon regula-

tion, it is found that genes within an operon are much more likely to group together

that expected by chance (Permutation test, p < 0.001)(Figure 2.5). For example,

given the number and size of communities found at fmin = 6, approximately 1% of

operons remain together if individual genes are assigned to communities randomly,

compared to > 45% in the community assignments determined by the final tuning

algorithm.

2.5.1 Hypergeometric tests

Next a test was performed to determine whether the community structure inferred

by our method groups genes with similar biological functions. To account for the

resolution limit [187], only core communities larger than 10 genes were considered.

Then, these core communities are compared to terms of the gene ontology identified

in E. coli [235, 236, 237], using a hypergeometric test with Benjamini-Hochberg
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Figure 2.5: Operon retention. The fraction of 544 operons (comprising 2172
genes) identified in the E. coli genome where all genes in the operon were assigned to
the same final tuning community was determined at fmin = 2, 4 and 6 (indicated by
arrows). These actual values were compared to 1000 random distributions of the same
set of genes to empty community sets of the same size and number as were present
in the final tuning partitionings (histograms). In all cases, actual operon retention
proportions were much greater than in any of the 1000 randomly distributed sets,
indicating that they were very unlikely to occur by chance and therefore that the
final tuning community partitionings effectively group genes in the same operon to
the same community.
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correction. The hypergeometric test calculates the probability that a community of

size n has k genes in common with a GO term of size m in a network with N total

genes. For random groupings this probability is

P =






m

k











N −m

n− k











N

n






. (2.4)

If a community and a GO term are found to have an overlap that is unlikely to occur

by chance (a low P value) then their relationship is likely to be relevant. Note that

a low P value can occur if the number of genes in common, k, is either greater than

or less than expected by chance. For a hypergeometric distribution the expected

number of matches is given by mn/N . Only the “positive” enrichments for which

k > mn/N are classified as relevant.

To control for false discoveries due to multiple comparisons, the P values obtained

are corrected using Eq. 2.4 with the Benjamini-Hochberg (BH) procedure [238]. The

BH procedure is implemented as follows. For a given core community, the P values

obtained by comparing it to the M GO terms are ordered in a list such that they

are increasing, P1 ≤ P2 ≤ . . . ≤ PM . The corrected P values are then taken to be

MPr/r, where r is the rank, or position on the ordered list, of the P value. Then,

as is commonly accepted, the relationship between a community and a GO term is

judged to be relevant if their corrected P value is less than 0.05.

147, 239 and 288 statistically significant matches are found between core com-

munities and GO terms for communities identified at fmin values of 2, 4 and 6,

respectively. Tables 2.1 and 2.2 detail these results for the 25 most enriched re-

lationships found at fmin = 4 and fmin = 6, respectively. Note that many genes
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are described by multiple GO terms; e.g., the gene flgM is a member of all terms

in the GO hierarchy: ’flagellin-based flagellum basal body, rod’ → ’flagellin-based

flagellum’ → ’flagellum’ so not all enrichments are independent. Nevertheless, the

network partitioning results in communities that significantly enrich for many GO

terms, suggesting that the gene groupings are biologically meaningful.

Figure 2.4B shows the number of statistically significant GO term enrichments as

a function of noise level, c. Interestingly, enrichment peaks at a noise level of c = 1,

which corresponds to the artificial data with noise level consistent with that of the

experimental data. This is presumably due to the fact that the mean expression

values found from the experimental data are estimates, so that a noise value of

c = 0 will give a precise, but not necessarily accurate estimate of gene expression.

As discussed above, increasing the noise in the artificial datasets causes the size

of the core communities to decrease. Interestingly, the c = 0 core community that

dissolves the quickest, core community 5 (numbered beginning in the upper left hand

corner of Figure 2.3A), contributes only one significant GO term enrichment at c = 0.

Finally, note that there are some differences in the identity of core communities when

the restricted set of 152 experiments is compared to those generated using the full

experimental data (at fmin = 2). Nevertheless, as mentioned in Ref. [88], the CLR

algorithm can produce nearly equivalent results as the full data set when a small,

yet diverse set of expression profiles is chosen. This fact highlights the importance

of judiciously choosing experimental conditions when the data set is small.
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Table 2.1: The 25 most relevant relationships found for fmin = 4 without noise.

P value GO term Com size GO size In com Description
8.41e-42 9288 72 24 24 bacterial-type flagellum
9.57e-39 6826 53 37 25 iron ion transport
8.22e-38 1539 72 28 24 ciliary or flagellar motility
3.67e-35 6412 826 101 79 translation
6.51e-34 3735 826 56 54 structural constituent of ri-

bosome
3.08e-31 3723 826 105 77 RNA binding
1.73e-29 6935 72 22 19 chemotaxis
4.30e-29 3774 72 17 17 motor activity
5.38e-29 9425 72 17 17 bacterial-type flagellum

basal body
2.06e-25 19861 72 15 15 flagellum
5.61e-25 5506 53 210 31 iron ion binding
3.72e-24 19843 826 42 40 rRNA binding
6.98e-23 6811 53 79 22 ion transport
6.99e-22 30529 826 36 35 ribonucleoprotein complex
1.72e-21 5840 826 38 36 ribosome
6.62e-21 8652 247 62 32 cellular amino acid biosyn-

thetic process
4.11e-17 5506 139 210 39 iron ion binding
6.66e-16 9055 139 116 29 electron carrier activity
7.30e-15 51539 139 98 26 4 iron, 4 sulfur cluster bind-

ing
8.22e-15 15453 300 15 15 oxidoreduction-driven ac-

tive transmembrane trans-
porter activity light-driven
active transmembrane
transporter activity

1.85e-13 6865 247 70 27 amino acid transport
6.13e-13 45272 300 13 13 plasma membrane respira-

tory chain complex I
9.19e-13 30964 300 13 13 NADH dehydrogenase com-

plex
1.97e-12 9060 300 21 16 aerobic respiration
2.15e-12 5515 826 875 251 protein binding calmodulin

binding
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Table 2.2: The 25 most relevant relationships found for fmin = 6 without noise.

P value GO term Com size GO size In com Description
1.07E-78 3735 107 56 51 structural constituent of ri-

bosome
3.09E-68 6412 107 101 57 translation
6.45E-57 19843 107 42 38 rRNA binding
7.99E-53 5840 107 38 35 ribosome
8.37E-47 30529 107 36 32 ribonucleoprotein complex
5.60E-42 9288 71 24 24 bacterial-type flagellum
2.84E-40 3723 107 105 42 RNA binding
5.49E-38 1539 71 28 24 ciliary or flagellar motility
5.24E-34 6826 63 37 24 iron ion transport
6.54E-34 45272 14 13 13 plasma membrane respira-

tory chain complex I
1.31E-33 30964 14 13 13 NADH dehydrogenase com-

plex
9.34E-31 3954 14 12 12 NADH dehydrogenase ac-

tivity
1.27E-29 6935 71 22 19 chemotaxis
3.29E-29 3774 71 17 17 motor activity
4.11E-29 9425 71 17 17 bacterial-type flagellum

basal body
3.18E-28 15453 14 15 12 oxidoreduction-driven ac-

tive transmembrane trans-
porter activity light-driven
active transmembrane
transporter activity

4.56E-28 9432 56 23 18 SOS response
1.04E-26 48038 14 18 12 quinone binding ubiquinone

binding
1.63E-25 19861 71 15 15 flagellum
1.23E-24 9408 30 26 15 response to heat
1.66E-24 8652 192 62 32 cellular amino acid biosyn-

thetic process
2.61E-24 9061 14 40 13 anaerobic respiration
4.12E-23 22627 107 17 16 cytosolic small ribosomal

subunit
5.56E-21 15986 11 11 9 ATP synthesis coupled pro-

ton transport
7.23E-20 46933 11 8 8 ” hydrogen ion transporting

ATP synthase activity, rota-
tional mechanism ”
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2.6 Inferring candidate regulatory interactions

Partitioning of regulatory networks into communities of genes with similar responses

to genetic and environmental perturbations can be used to identify candidate new

regulatory interactions between genes. To this end, the communities that most

significantly enriched for a GO Term at fmin = 4 and fmin = 6 are considered,

and the relatedness network among the genes within each community are compared

to the subnetwork of known regulatory interactions involving these genes presented

in RegulonDB [239]. What follows are simply two examples; however, the results

contain a wealth of other gene communities whose interactions can be analyzed in a

similar manner.

The community with the most significant GO term enrichment at fmin = 4 con-

tains 72 genes, including all 24 genes in the GO term for bacterial-type flagellum

(Table 2.3). Because of their co-regulation, the remaining 48 genes in this com-

munity are implicated as having some relevance for the development, function or

control of the E. coli flagellum. Indeed, of these genes, many have recognized roles

in environmental sensing and signal transduction, functions that are physiologically

upstream of flagellum control. An additional 11 genes in the community do not

have any annotated function, but two of them, ycgR and yhjH, contain domains

that are consistent with flagellum related activity and five of them (yjdA yjdZ ynjH

ycgR and yhjH) are annotated as being regulated by at least one of the two charac-

terized regulators present in the community (flhDC and the flagellum sigma factor,

fliA) [240, 239]. One further unannotated gene, ymdA, is connected to flhDC only

in the CLR network, and is therefore a candidate for being connected to flagellum

regulation as well as having a role in flagellum function. The pattern of connections
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in this community also serves to highlight the difference between the RegulonDB (di-

rect regulatory links) and CLR (co-regulation) networks. Ten operons are identified

that interact with FlhDC in the CLR but not the RegulonDB network. These in-

teractions might represent previously unknown direct interactions, but are probably

best explained as indirect interactions mediated through their direct regulation by

FliA, which is regulated by FlhDC (Fig. 2.6).

At fmin = 6, the community with the most significant functional enrichment con-

tains 107 genes, including 51 of 56 genes annotated as being structural components

of the ribosome (Table 2.4). This very significant enrichment suggests that the 15

genes present in the community that do not have any annotated function might also

be involved in translational processes. The most striking aspect of this community,

however, is that it contains only one recognized regulator, fis, which, as annotated in

the regulonDB database, is involved in only a very small fraction of the inferred reg-

ulatory interactions (Fig. 2.7). Moreover, no recognized transcription factor serves

to indirectly connect regulation of more than three of the community operons and no

sigma factor is unique to this community. These observations suggest the presence

of some other regulatory factor that is in common to some or all of the genes in the

community. One candidate for this factor is ppGpp, a small molecule which, in asso-

ciation with DskA, is known to affect regulation of many ribosome associated genes

by decreasing the stability of the RNA polymerase open complex [241]. Indeed, a

recent study directly examined the effect of ppGpp on nine of the 51 primary pro-

moters present in the community. In all cases, ppGpp was shown to affect promoter

activity in at least one of the tested conditions and a comparison of global gene ex-

pression profiles of bacteria that differed in ppGpp levels, found that a further twelve

promoters in the community differed in expression by at least 2-fold in response to
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ppGpp [7, 8]. Together, these results suggest the remaining 30 promoters in the

community as candidates to also be affected by ppGpp.

2.7 Conclusion

Unsupervised methods have been presented for determining communities of co-regu-

lated genes and their hierarchical organization based on expression data profiles col-

lected under a variety of environmental and genetic perturbations. These methods

combined the CLR algorithm and a tunable threshold value to infer the underly-

ing regulatory network. A statistical ensemble analysis of the network partitionings

that result from a recently developed community detection algorithm was used to

determine the network’s community structure. Applying these methods to E. coli ex-

pression data three key results were obtained. i). Regulatory communities in E. coli

were largely hierarchical so that the effect of increasing (decreasing) the fmin thresh-

old was largely simply to split (combine) the communities found. ii) The structure of

the inferred regulatory network was robust to relatively high experimental noise. iii)

The regulatory communities found significantly enrich for functionally related gene

groupings. These findings are discussed in turn.

The technique used applies a threshold to determine whether mutual informa-

tion between the expression responses of two genes is sufficient to infer a connecting

regulatory link. The value of this threshold influences the size and unity of the in-

ferred network. However, the network structure is relatively invariant to the addition

or removal of links between more weakly related genes. There at least two broad

mechanisms that might cause genes to be weakly connected in the network. First,

96



Table 2.3: Genes in the community at fmin = 4 that enrich GO:9288 bacterial-type
flagellum.

Genes in the GO Term Genes not in GO Term
cheZ, flgB, flgC, flgE, flgF, flgG, flgH,
flgI

aer, cheA, cheB, cheR, cheW, cheY,
flgA, flgD, flgM, flgN, flhA, flhB, flhC,
flhD, flhE, fliA

flgJ, flgK, flgL, fliC, fliD, fliE, fliF, fliG fliI, fliK, fliL, fliP, fliT, fliZ, flxA, intG,
modA, modB, modC, motA, motB,
qseB, rcsA, tap

fliH, fliJ, fliM, fliN, fliO, fliQ, fliR, fliS tar, trg, tsr, uhpT, ves, ybjM, ycgR,
yecR, yedN, yfdY, yhjH, yjcZ, yjdA,
ykfB, ymdA, ynjH
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Figure 2.6: Regulatory links from flhDC and fliA in the fmin = 4 commu-
nity that significantly enriches for flagellum associated genes. Genes are
organized into operons as annotated by RegulonDB. Black, blue and red lines indi-
cate regulatory interactions that are annotated in RegulonDB, inferred in the CLR
network or both, respectively. For simplicity, only links from FlhDC and to targets
of these links from fliA are shown. Many of the interactions that are found in the
CLR network are not present in RegulonDB (blue lines). These interactions are can-
didates for indicating unrecognized regulatory interactions between FlhDC and the
target genes. However, in most cases these interactions can be explained through
the action of FlhDC on the sigma factor encoded by fliA (thick red line), which does
directly affect all but one of the target genes. This point underlines the difference
between the CLR network, which includes direct and indirect regulatory interactions,
and the direct transcriptional network as annotated in RegulonDB. Note the CLR
connection between FlhDC and the target gene ymdA cannot be explained through
any known indirect interaction and is, therefore, a candidate for representing a new
direct interaction.
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Table 2.4: Genes in the community at fmin = 6 that enriches GO:3735 structural
constituent of ribosome

Genes in the GO Term Genes not in GO Term
rplA, rplB, rplC, rplD, rplE, rplF, rplI,
rplJ, rplK, rplL, rplM, rplN, rplO,
rplP, rplQ, rplR, rplS, rplU, rplV,
rplW, rplX, rplY,

cdsA, cmk, dnaG, dusB, efp, fis,
fusA, gidB, gmk, infB, ispU, lpxB,
mnmG, mrdA, murA, nusA, nusG,
obgE, parE,

rpmA, rpmB, rpmC, rpmD, rpmE,
rpmG, rpmH, rpmJ, rpsA, rpsB, rpsC,
rpsD, rpsE, rpsF, rpsG, rpsH, rpsI,
rpsJ, rpsK,

ppa, prfC, priB, pyrH, queA, rbfA,
rho, rimM, rlmN, rnhB, rnpA, rpoA,
rpoZ, secE, secG, secY, speA, speB,
tff, tig,

rpsL, rpsM, rpsN, rpsO, rpsP, rpsQ,
rpsR, rpsS, rpsT, rpsU,

trmA, trmD, trmI, truB, truC, tsf,
typA, yadB, yggN, ygiQ, yhbC, yhbE,
yhbY, yidC, yidD, yqcC

99



nudF−yqiB−cpdA−yqiA−parE 

gmk

rpoZ−spoT−trmH−recG 

rpmH−rnpA

rpsP−rimM−trmD−rplS 

secG−leuU

rpsT

rpmE

ygiQ

yhbY

ppa

rlmN

speAB−yqgB

prfC

murA

efp

ybeB−rlmH−mrdAB−rlpA 

yqcC−truC−yqcA 

rpsU−dnaG−rpoD 

trmA

metY−rimP−nusA−infB−rbfA−truB−rpsO−pnp 

secE−nusG
typArplM−rpsI

rplNXE−rpsNH−rplFR−rpsE−rpmD−rplO−secY−rpmJ 
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rplKAJL−rpoBC
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Figure 2.7: Links connecting operons in the fmin = 6 community that en-
riches for genes involved in ribosome structure. CLR links are in light blue,
RegulonDB links are in black. Small symbols are genes that are not in the commu-
nity, but are regulators of genes that are in the community and are therefore candi-
dates for mediating indirect interactions between community genes. Symbol shape
and color indicate attributes as follows: red, transcription factors; dark blue, ppGpp
regulated promoter by direct assay [7]; light blue, ppGpp regulated translation re-
lated promoter by microarray [8]; pink, other; hexagon, σ70 promoter; diamond, σ24
promoter; square, σ32 promoter; circle, unknown sigma factor. Note that very few
interactions observed in the CLR network can be explained by the direct interac-
tions annotated in RegulonDB. The high proportion of ppGpp sensitive promoters
among operons contained in the community suggests this molecule as a good candi-
date for regulating the remaining interactions. The network layout was determined
by the circular layout option in Cytoscape 2.8.1, no particular significance should be
attached to operons being outside the main circle.
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the relevant molecular interactions may exert weak expression control on the regu-

lated gene. Second, the regulatory interactions might be environmentally dependent,

being active in only a subset of the experimental conditions. Comparison of commu-

nities present in regulatory networks obtained at increasingly stringent thresholds

indicates that the regulatory network is largely hierarchical such that large commu-

nities present in the low threshold network tended to split into smaller sub-groups

of strongly related genes as the threshold was increased. By contrast, increasing the

threshold causes relatively few genes to associate in new communities that were not

subsets of the original communities.

Relatively high experimental noise is of considerable concern in analysis of gene

expression data. Indeed, even small differences in preparation and sample growth

conditions, or in the exact platform and analysis procedure used, can manifest as

substantial differences in gene expression estimates [228, 229, 230, 242]. To address

the influence of experimental noise on the ability identify regulatory interactions and

communities, datasets were generated with different noise levels, calculated indepen-

dently across experiments and genes. Comparing communities identified in networks

inferred from these data sets, it was found that not only are the predictions for the

functional communities robust against noise up to double that seen in the original

empirical dataset, but that the effects of experimental noise are mainly conservative.

That is, experimental noise reduced the size of core regulatory communities but did

not tend to create new communities.

For the purpose of identifying functional communities in a biological network

it was useful to study the community structure of different networks constructed

with a range of relatedness threshold values. At large threshold values, the nodes

in each of the small disconnected pieces were highly related. These small groups
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provided the most statistically significant enrichments for GO terms and thus best

identify biologically relevant communities. However, as the threshold value used

to construct a network is reduced, the community sizes tended to increase. These

enlarged communities include other nodes that may also be relevantly related to

the core communities found at higher threshold values. Because of these competing

considerations, if only one threshold value is to be chosen for which to make biological

comparisons, it is suggested that the critical threshold value should be used, which

for E. coli is approximately fmin = 4. Choosing the critical value will not only

balance the above two considerations, but as discussed earlier, also gives the most

statistically complex distribution of community structure.

The usefulness of the methods presented are multifold. First, the functional

community predictions of the methods can be used to refine existing knowledge

of the functional relationships of genes in well known organisms such as E. coli.

That is, the overlap of the core communities with the E. coli GO terms was not

exact, suggesting that the additional genes in the core communities that enrich a

particular GO term may themselves be candidates for genes that should be included

in that term of the gene ontology. In this way, the predictions of these methods

can be used to suggest new experiments to refine our understanding of the E. coli

regulatory system. It has been explicitly demonstrated how this can be done by

analyzing two of the communities found with the methods that significantly enrich

GO terms and predicting previously unknown regulatory interactions. Furthermore

the methods can readily be applied to expression data for other, less well studied,

organisms, and to other types of biological data, to identify functional communities in

their networks. The predictions from the unsupervised methods will be particularly

useful, for making initial approximate predictions for the functional communities
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and their organization of less well known organisms. Additionally, it should be

noted that the methods have been applied to expression data based on an arbitrary

variety of experimental and genetic perturbations. However, the methods could

instead be applied to more targeted sets of expression data. For example, data

based on particular types of environmental perturbations, particular types of genetic

knockouts, with cells in a particular stage of the cell cycle, or with cells in a particular

developmental stage of a multi-cellular organism. By examining more targeted data

of these sorts, the dynamics of particular functional communities can be explored.
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Chapter 3

Maximizing the Modularity in

Bipartite Networks

Community detection is an important tool when studying the large-scale structure

and function of complex networks. For unipartite networks, such as the E. coli reg-

ulatory network studied in Chapter 2, maximizing the modularity Q [2] provides an

effective method to investigate its structure. However, an important class of complex

networks that have a wide range of real-world applications is bipartite networks. In

a bipartite network, there are two sets of nodes where each node is only connected to

nodes from the other set. Additionally, links in a bipartite network may be weighted

by a real value to represent the relative strength of connection between different pairs

of nodes.

Many real-world complex networks that occur have a natural bipartite topology.

In the social sciences, bipartite graphs commonly arise in the study of affiliation or
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collaboration networks [165, 166, 167, 168, 169, 170]. In scientific collaboration net-

works, the two sets of nodes represent authors and papers with a link representing

authorship. Newman, for example, studied scientific collaboration networks from

databases such as MEDLINE, the Los Alamos e-Print Archive, and NCSTRL [167].

These bipartite networks exhibit some properties similar to those of unipartite net-

works. For example, the distribution of the number of papers a scientist writes and

the number of collaborators of a scientist both exhibit a power-law form and the

networks are highly clustered. Additionally, some biological networks naturally have

a bipartite structure [171, 172, 173]. In the human disease network studied by Goh et

al. [243], one set of nodes represents genetic diseases and the other all known disease

genes in the human genome. Then, links represent a known association between a

mutation in the gene and a genetic disease. Goh et al. studied separately the “human

disease network” and the “disease gene” network by projecting each side of the net-

work onto a unipartite graph. Interestingly, by analyzing the structure of each graph,

it was found that the majority of disease encoding genes are nonessential and that

genes associated with the same disorder share common functional characteristics.

As previously discussed in Section 1.6, modularity Q, defined for unipartite net-

works, is not suited to detect communities in bipartite networks as there is a random

expectation that links will exist between any two nodes in a network. As a conse-

quence, methods have been developed to detect communities in bipartite networks

that broadly fall under two avenues of analysis. Either one biclusters the nodes of

a bipartite network, defined as partitioning both types of nodes into the same com-

munity, or one projects each type of node, separately, onto a unipartite network and

detects communities in the unipartite network. In the latter case, each projected

network is composed of nodes of one type and therefore communities contain only
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nodes of one type. If a projection method is used, a unipartite network is defined,

and communities can be detected using methods discussed in Chapter 1. Addition-

ally, a modification of the modularity for bipartite networks using a projection has

been introduced by Guimera et al. [175] and will be discussed below. Alternatively,

for a biclustering analysis some of the methods in Chapter 1 such as edge cluster-

ing [244], clique percolation [245, 246], and modularity [176] have been generalized

to detect communities in bipartite networks by biclustering. As discussed in Chapter

1, modularity quality functions are particularity suited to the problem of community

detection as they, in general, explicitly contain the definition of a community, com-

pare each community in a partition to a null model, do not require as an input the

number of communities in a network, and measure quantitatively the strength of a

partition. Therefore, this chapter studies the problem of modularity maximization in

bipartite networks when the links can be either unweighted or weighted using both

methods of bipartite analysis.

First, a biclustering modularity introduced by Barber [176] is defined and de-

scribed. This method is a straight-forward extension of Newman’s modularity Q and

generalizes easily to weighted links. Next, a modularity by Guimera et al. [175] is

studied that projects each side of the network onto a unipartite network involving

only nodes of one type using a multi-link projection. Unfortunately, this method does

not extend to weighted bipartite networks. Therefore, a new bipartite modularity

is introduced, called the Information Preserving (IP) modularity, which extends the

ability to partition each side of bipartite networks separately when the links in the bi-

partite network are weighted. Additionally, this method preserves more information

about the bipartite network in its unipartite projection than does Guimera’s modu-

larity. Next, the leading eigenvalue method of modularity maximization is adapted
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for each bipartite modularity and a new tuning step is added that merges commu-

nities. A bipartite Erdös-Rényi type network is defined as a network with P nodes

of type 1 connected to Q nodes of type 2 with probability p. We then show how

each tuning step significantly improves the partitions found when maximizing each

modularity in an ensemble of bipartite Erdös-Rényi type networks and real world

bipartite networks.

Finally, in the last section of this chapter, the expected value and standard devia-

tion of IP modularity for bipartite Erdös-Rényi type networks is analytically derived

so that a Z-score comparison of the modularity values of real-world networks can be

computed. Calculating the Z-score allows the significance of the modularity of the

partitioning to be quantified.

3.1 Bipartite modularity

As mentioned in the previous section, there is a fundamental issue for bipartite

networks when choosing a quality function to maximize. Either both types of nodes

can be included in the same community defining a biclustering analysis or each side

of the network can be partitioned separately using projection methodologies. To

address this issue, two standard definitions have been introduced.

3.1.1 Barber modularity

Bipartite modularity, as defined by Barber [176], partitions nodes from each set into

the same community, which is called biclustering. For a network of N nodes, q of
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the first type and p of the second type, the modularity is defined as

QB =
1

2m

∑

i,j

BijδC(i),C(j). (3.1)

C(i)(C(j)) is the community to which node i(j) belongs, m is the total number of

links in the network and δ is the Kronecker delta function. B has the form

B =









Op×p B̃p×q

B̃T
q×p Oq×q









, (3.2)

where B̃ij is a p× q matrix where node i belongs to the p nodes of the first type and

node j belongs to the q nodes of the second type. Then, B̃ij = Aij − kidj/(m), Aij

is the adjacency matrix, and ki(dj) is the degree of node i(j). Barber’s definition of

bipartite modularity is similar to Newman’s unipartite definition. However, Barber’s

definition accounts for the fact that in a bipartite network one would never expect

nodes of the same set to be connected. Elements of the modularity matrix that

correspond to pairs of nodes in the same set are therefore 0.

3.1.1.1 Weighted links

There are advantages to biclustering a bipartite network in this way. With both

types of nodes in the same community it is easier to conceive why nodes of the first

type were included together in a community. They are connected through the nodes

of the second type in the same community. Additionally, Barber’s modularity does

not require a projection in which case information about the bipartite network is lost.

Furthermore, Barber’s bipartite modularity is easily generalized if the links between

the nodes in the network are weighted. For positive, real valued elements Aij of the

adjacency matrix, the degree of node i, ki, is given by ki =
∑

j Aij, the total weight
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connected to node i. Similarly, m is simply sum of all link weights in the network,

m =
∑

ij Aij/2.

3.1.2 Guimera modularity

One can also partition each set of nodes in a bipartite network separately. Bipartite

modularity, as defined by Guimera et al. [175], labels the set to be partitioned the

actor set and the other the team set. For a network of q actors and p teams, the

modularity for the actor set is defined as

QG =

q
∑

i,j










cij
p
∑

a

ma (ma − 1)

− titj
(

p
∑

a

ma

)2










δC(i),C(j), (3.3)

where ti(tj) is the degree of actor i(j), cij is the number of times actor i and actor j

are found to be in the same team, and ma is the degree of team a. Note that Bii = 0

is defined to be 0 for all i.

Guimera’s definition of bipartite modularity projects each set of nodes in the bi-

partite network, separately, onto a unipartite multigraph [175]. Then each projected

network can be partitioned separately with the advantage that each set of nodes can

be partitioned into a different number of communities. To better understand this

modularity function, consider that each community, s, in the Guimera modularity

makes a contribution to the total modularity of

∑

i 6=j∈s

cij

∑

a

ma (ma − 1)
−

∑

i 6=j∈s

titj

(
∑

a

ma

)2 . (3.4)

109



Consider now each team in the bipartite network with degree ma. Each actor con-

nected to this team will be connected to ma − 1 actors in the multigraph projection.

Therefore, each team contributes ma(ma − 1)/2 links to the multigraph projection

and the total number of these links, Lmp, is given by

Lmp =

∑

a ma (ma − 1)

2
. (3.5)

Additionally,
∑

i 6=j∈s cij is two times the number of inner module links, lmp, in the

multigraph projection. The first term in Eqn. 3.4 can then be written as

∑

i 6=j∈s

cij

∑

a

ma (ma − 1)
=

2lmp

2Lmp
=

lmp

Lmp
. (3.6)

Similarly, the total number of links, L, in the original bipartite networks is given by

L =
∑

ama. Next, rewrite the term
∑

i 6=j∈s titj as

∑

i 6=j∈s

titj =
∑

ij∈s

titj −
∑

i∈s

t2i , (3.7)

and define
∑

iji∈s titj = d2s where, ds is the total degree of community s in the

bipartite network. Then, the each community contribution to the modularity can be

written as

lmp

Lmp
−
[(

ds
L

)2

−
∑

i∈s t
2
i

(L)2

]

. (3.8)

Thus, the Guimera modularity compares the fraction of inner-module links of the

multigraph projection, lmp/Lmp, to the expected fraction of links of the same module

in the bipartite network, (ds/L)
2 minus a correction term,

∑
i∈s t

2

i

(L)2
, that subtracts the

expected fraction of links due to self loops.
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3.1.2.1 Weighted links

Unfortunately, the Guimera modularity is ill defined when the links in the bipartite

network are weighted. As discussed in section 1.6, the problem is due to the term

cij of Eqn. 3.3 which is defined as the number of times actor i and actor j are found

to belong to the same team k. Consider again Fig. 1.10 where the link between

an actor and a team is weighted. Then the number of times actor i and actor j

are considered in the same team k is not easily generalized in the case of weighted

links because each actors membership in team k, Aik and Ajk, can take on any real

value and are not necessarily equal. For example, possible generalizations of cij could

involve the product or, separately, the sum, of Aik and Ajk. Therefore, a projection

is needed which is defined when the links in the bipartite network are both weighted

and unweighted. This problem is further studied in Section 3.1.3.

3.1.2.2 Singleton clusters

In this section, we will analyze a phenomenon that occurs when finding the partition

that maximizes the bipartite modularity defined by Guimera et al. in which there are

many nodes that are partitioned separately into individual communities or clusters

of size one. We will refer to such clusters as “singleton clusters.” An important

question is if this phenomenon is a direct consequence of this particular definition of

the Guimera modularity or if it is dependent on the algorithm used to maximize the

modularity.

To analyze the occurrence of singleton clusters, we will consider the bipartite

network of Fig. 3.1. For this example network, there are two team nodes and

X + Y + Z actor nodes. There are X nodes only connected to the team on the
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Figure 3.1: An example bipartite network. The network contains two (blue
square) team nodes and X +Y +Z (red circle) actor nodes. There are X nodes only
connected to the team on the left, Y nodes connected to both teams and Z nodes
only connected to the team on the right.
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left, Y nodes connected to both teams and Z nodes only connected to the team on

the right. For such a network, singleton clusters often appear when the X nodes are

partitioned into one community, the Z nodes are partitioned into one community, and

there are Y singleton clusters. For this to occur, the contribution to the modularity

when the Y nodes are partitioned into one community must be smaller than the

contribution of the Y singleton clusters. The contribution to the modularity for

these partitions are now analyzed.

If the Y nodes are partitioned into a single community together, then each pair

of nodes would have two teams in common and therefore contain two links between

them in the multi-graph projection. Therefore, the number of inner-module links,

lmp, would be equal to a fully connected network of Y nodes with link weight two

and given by

lmp = Y (Y − 1). (3.9)

Similarly, the total number of links in the multi-graph projection would be

Lmp = (X + Y )(X + Y − 1) + (Y + Z)(Y + Z − 1). (3.10)

The total degree of this module in the bipartite network is given by ds = 2Y , the

total number of links in the bipartite network is L = X +2Y +Z and the correction

term is
∑

i t
2
i = 4Y. Therefore, for Y nodes in a community the contribution to the

modularity is given by

Y (Y − 1)

(X + Y )(X + Y − 1) + (Y + Z)(Y + Z − 1)

−
[

(2Y )2 − 4Y

(X + 2Y + Z)2

]

. (3.11)

If instead, each actor connected to both teams is partitioned into a singleton

cluster, then for each of these Y singleton clusters, lmp = 0, ds = 2, and
∑

i t
2
i = 4.
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Therefore, the first term is zero and the contribution for Y singleton clusters is given

by

−Y

[
(2)2 − 4

(X + 2Y + Z)2

]

= −Y

[
(4− 4)

(X + 2Y + Z)2

]

= 0. (3.12)

Therefore, there is no penalty to the modularity for partitioning this set of nodes

into singleton clusters and the condition for singleton clusters to occur is if the

contribution of Y nodes into a single community is negative. This is exactly when

this partition is no longer a community according to the definition of Guimera et al.

Then, the condition to find singleton clusters for the example network of Fig. 3.1

is when the modularity contribution of Y singleton clusters is greater than the mod-

ularity contribution of the Y nodes in a single community

Y (Y − 1)

(X + Y )(X + Y − 1) + (Y + Z)(Y + Z − 1)

−
[

(2Y )2 − 4Y

(X + 2Y + Z)2

]

< 0. (3.13)

Under the assumptions X ≥ 1, Y ≥ 1, Z ≥ 1, and Z ≥ X, the inequality of Eqn. 3.13

is satisfied when

Z > 5

X < 1 + Z −
√
5 + 4Z

Y <
1

4
(−2X +X2 − 2Z − 2XZ + Z2). (3.14)

When these conditions are satisfied the modularity for the partition with Y singleton

clusters, X nodes in a community, and Z nodes in a community will always be

the maximum modularity possible for any partition in this example network. The
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modularity is then given by

M =
X(X − 1)

2Lpn
− [X2 −X ]

L2

+
Z(Z − 1)

2Lpn

− [Z2 − Z]

L2
. (3.15)

The surface Y (X,Z) = 1
4
(−2X + X2 − 2Z − 2XZ + Z2) is plotted in Fig. 3.2 for

1 < X < 15 and 5 < Z < 40. If, for any point Y(X,Z), the number of nodes Y

is below this surface, then singleton clusters will exist for these values. From the

surface, we can see that for particular values of X and Z the Guimera modularity

gives singleton clusters for a large range of Y values. For example, when X = 5

and Z = 15, singleton clusters exist for 1 < Y < 15. Figure 3.3 shows the partition

found when maximizing the modularity for X = 5, Y = 14, and Z = 15. The

colors represent different communities and there are indeed 14 singleton clusters.

The modularity for this partition is M = 0.099480. When X = 5, Y = 15, and

Z = 15 the condition for singleton clusters is no longer satisfied and the X and Y

nodes, or the Z and Y nodes, are merged into one community. As the difference

between the size of X and Z increases, so does the allowed range of Y . For example,

when X = 5 and Z = 30, singleton clusters exist for 1 < Y < 139.

In conclusion, the existence of singleton clusters is due to the community defi-

nition for the bipartite modularity as defined by Guimera et al. It is a direct con-

sequence of defining Bii = 0 which does not penalize the partition of nodes into

singleton clusters. The existence is therefore independent of the chosen algorithm to

find the partition that maximizes this modularity.

115



Figure 3.2: The QG singleton conditions. A portion of the surface Y = 1
4
(−2X+

X2 − 2Z − 2XZ + Z2). For any point Y (X,Z) below the surface singleton clusters
will exist in the maximum modularity partitions for QG.
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Figure 3.3: The QG singleton clusters. The maximum modularity partition for
the example network in Fig. 3.1 when X = 5, Y = 14 and Z = 15 when maximizing
the QG modularity. The colors represent different communities and there exist 14
singleton clusters.
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3.1.3 Information preserving modularity

To detect communities in bipartite networks, a projection is needed that: i) gen-

eralizes to the case when links in the bipartite network are weighted, ii) preserves

information about the bipartite network, and iii) does not produce singleton clusters.

A projection that satisfies condition ii has been introduced by Newman [164] and

was described in Section 1.6. Newman created a projection of the scientist side of

scientific collaboration networks by assigning a weight between scientist i and j using

the formula

wij =
∑

k

δki δ
k
j

nk − 1
, (3.16)

where k runs over all papers, δki is 1 if scientist i is a co-author of paper k and 0

otherwise, and nk is the degree of paper k. Thus, Newman considered two scientists

co-authorship in a paper as stronger if they were the sole co-authors weighting each

term in the sum by nk − 1. As was shown in Fig. 1.9, this projection preserves more

information than the multilink projection used in the Guimera modularity. Unfortu-

nately, this projection assumes, in both the terms in the numerator and denominator

of the summation, that the links in the bipartite network are not weighted. The delta

functions δki and δkj are defined to be either zero or one. Additionally, if two scientists

are the sole authors of a paper the lowest possible degree for a paper, nk, is two.

Thus the denominator normalizes the degree of each paper by subtracting one so

that the smallest possible value in the denominator of the summand is one. If the

links in a bipartite network are weighted, the possible degree of a paper, nk, extends

to any real value greater than zero in which case subtracting one would result in

a negative term in the summand when 0 < nk < 1 and zero if nk = 1. For these

reasons, Newman’s projection is not suitable for weighted bipartite networks and so
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a new modularity method is now introduced.

Assume again that the set of p nodes in the bipartite network to be partitioned

is the “actor” set and the other set of q nodes is the “team” set. The IP modu-

larity detects communities in bipartite networks by creating a weighted unipartite

projection from the nodes in the actor set and detect communities in the weighted

projection. The projected link weight itself contains information about the bipartite

nature of the network. For each pair of actors (i, j), i 6= j, the new link weight, wij,

in the weighted unipartite projection is given by

wij =

q
∑

k=1

2rikrjk
mk

, (3.17)

where rik(rjk) is the link weight in the bipartite network between node i(j) and team

k and mk is the degree of team k. By dividing each term in the summand by the

team degree, a higher link strength between actors is assigned when there is mutual

membership in a team with a small degree. Note the link weight wii is defined to be

0.

Communities in the weighted unipartite projection are then detected by finding

the partition that maximizes the modularity given by

Q =
1

2m

∑

i,j

(

Aij −
kikj
2m

)

δC(i),C(j). (3.18)

Here, Aij is the element of the adjacency matrix corresponding to actor i and j and

is given by wij. The variable ki(kj) is the degree of node i(j) where ki =
∑

j wij,

C(i)(C(j)) is the community to which node i(j) belongs, m =
∑

ij wij/2 is the total

number of links in the projected network and δ is the Kronecker delta function. The

IP modularity is defined for weighted links but is applicable for unweighted bipartite

networks as well as rik ∈ {0, 1}.
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In addition to its natural extension to weighted links, the projected link weight

wij carries more information about the original bipartite network than the multi-

link projection used in the Guimera modularity. For example, consider the bipartite

network in Fig 3.4a, where there are 5 nodes of type X , 4 nodes of type Y , and 10

links. The projection of type X using the Guimera modularity method is shown in

Fig 3.4b. This projection distinguishes node pairs (1,2) and (2,3) from the rest of the

network as each pair has 2 nodes of type Y in common. However, the two neighbors

of pair (1,2), nodes 6 and 7, are solely connected to nodes 1 and 2. Pair (2,3) also

shares two neighbors; however, one of their neighbors, node 4, is connected to a total

of four nodes. Using the IP modularity projection, as shown in Fig. 3.4c, preserves

this information and the strength of node pair (1,2) is distinguished from (2,3).

3.1.3.1 Singleton clusters

To study the occurrence of singleton clusters using the IP modularity, again consider

the network of Fig 3.1. As shown in section 1.5, the contribution of each community

in the projected network to the IP modularity can be written as

ls
L
−
(
ds
2L

)2

, (3.19)

where, ls is the total number of links contained in community s, ds is the total degree

of community s, and L is the total number of links in the projected network. For

a weighted network the “degree” of each node is equivalent to the sum of each link

weight adjacent to the node. It follows that L is the sum of all link weights in the

projected network, ls is the sum of all projected link weights in community s, and ds

is the sum of each node degree in community s.

Using Eqn. 3.19 and Eqn. 3.17, the total number of links L in the projected
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Figure 3.4: Bipartite projections. (a) a bipartite graph consisting of 5 nodes of
type X and 4 nodes of type Y . (b) the Guimera modularity multi-graph projection
of (a), with each link representing a common neighbor between the pair of nodes.
(c) the IP modularity weighted projection of (a), where the link weight between a
pair of nodes is given by Eqn. 3.17.
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network is given by

L =
X(X − 1)

X + Y
+

2XY

X + Y

+Y (Y − 1)

(
1

X + Y
+

1

Y + Z

)

+
2Y Z

Y + Z
+

Z(Z − 1)

Y + Z
. (3.20)

The contribution to the IP Modularity when either the X nodes are partitioned

in a single community or the Z nodes are partitioned in a single community has the

same form and is given by

M1W∈X,Z =
W (W − 1)

(W + Y )L
−

[
2(W (W−1)+2WY

W+Y

]2

(2L)2
. (3.21)

Similarly, the contribution to the IP modularity when Y nodes are partitioned to-

gether in a single community is given by

M1Y =
Y (Y − 1)

[
1

X+Y
+ 1

Y+Z

]

L
−

[
2XY
X+Y

+ 2Y (Y − 1)
[

1
X+Y

+ 1
Y+Z

]
+ 2Y Z

Y+Z

]2

(2L)2
. (3.22)

Alternatively, if the Y nodes each form their own community the contribution to the

IP modularity of Y singleton clusters is given by

MSC = −Y

[
2(Y −1)
X+Y

+ 2
Y+Z

+ 2Z
Y+Z

+ 2Y
X+Y

]2

(2L)2
.

Finally, the contribution to the IP modularity when all Y nodes form a single com-

munity with either the X or Z nodes, M2Y,W∈X,Z , is given by

M2Y,W∈X,Z =
Y (Y − 1)

[
1

X+Y
+ 1

Y+Z

]
+ 2∗Y ∗W

W+Y
+ W (W−1)

W+Y

L
−

[
2XY
X+Y

+ 2Y (Y − 1)
[

1
X+Y

+ 1
Y+Z

]
+ 2Y Z

Y+Z
+ 2W (W−1)

W+Y
+ 2WY

W+Y

]2

(2L)2
.
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Comparing the above modularities there are conditions for which the modularity

contribution of Y singleton clusters is larger than all Y nodes in a single community

(MSC > M1Y ). However, it is never the case that the maximum modularity will be

found when either the Y nodes are in a community together or there are Y singleton

clusters. Therefore, singleton clusters do not exist in the IP maximum modularity

partition. The maximum modularity is always found when either community Y

is found to be merged with community X or community Z. The modularity and

conditions for each case is given by

Mmax =







M1X +M2Y,Z if Z < X

M1Z +M2Y,X if X < Z.
(3.23)

Thus, for this example network, Y is always merged with whichever set of nodes is

smaller X or Z. If X = Z the modularity is equivalent by merging the Y nodes with

either the X nodes or Z nodes. For the example in Fig. 3.3, when X = 5, Z = 15,

and Y = 14, then Y is merged with community X giving the partition shown in

Fig. 3.5. The modularity for this partition is Mmax = 0.116591.

In conclusion, for the example network analyzed, a condition does not exist for

which the partition giving the maximum IP modularity contains singleton clusters.

This is due to two properties of IP modularity. The first is that although wii is

defined to be zero, the corresponding element of the IP modularity matrix is not

defined to be zero. Thus, singleton clusters are penalized in the IP modularity

definition. Additionally, with the division of the team degree in the definition of wij

the link weight connecting one of the Y nodes to an X node or Z node in the IP

projection will be different unless Z = Y . This was not the case in the Guimera

modularity as each (X,Y) and (Y,Z) pair of nodes shared one team and both link
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Figure 3.5: The QIP maximum modularity partition.The maximum modularity
partition for the example network in Fig. 3.1 when X = 5, Y = 14 and Z = 15 when
maximizing the QIP modularity. Singleton clusters do not exist and the X and Y
nodes are partitioned into one community, shown in blue.
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weights were therefore equal in the projection.

Thus, the IP modularity described above generalizes to the case when links in

the bipartite network are weighted, preserves more information about the bipartite

network than the Guimera modularity, and does not produce singleton clusters.

In chapter 4, the ability for the IP modularity to recover the known structure of

communities in both generated and real-world networks will be validated. Now the

problem of finding the partition that maximizes the bipartite modularities described

above is addressed.

3.2 Maximizing bipartite modularity

To detect communities in bipartite networks by maximizing the modularity, a vari-

ation of the leading eigenvector method [4, 151] to maximize modularity Q (see

section 1.8.4) is now improved and adapted to the Barber, Guimera, and IP modu-

larities discussed in the previous section. This method recursively divides the net-

work according to the elements of the eigenvector corresponding to the largest pos-

itive eigenvalue of the modularity matrix. In the following discussion, the Barber,

Guimera, and IP modularities will be refereed to as QB, QG, and QIP , respectively,

when modifications of the algorithm are specific to a particular modularity method.

To begin, consider a modularity matrix B with elements Bij and modularity given

by

Q =
∑

ij

BijδC(i),C(j), (3.24)

where C(i)(C(j)) is the community to which node i(j) belongs.
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3.2.1 The initial division

One begins by initially bisecting the network into two communities. The modularity

equation can be rewritten by considering a vector s whose element si = 1 if node

i is assigned to the first community or si = −1 if node i is assigned to the second.

With δC(i),C(j) =
(sisj+1)

2
, for the general modularity matrix with elements Bij, the

modularity is given by

Q =
1

2

∑

i,j

Bijsisj. (3.25)

Writing s as a linear combination of the normalized eigenvectors u of B, s =

∑N
i=1 aiui where ai are constants and given by ai = uT

i s, the modularity, as pre-

viously derived, becomes

Q =
1

2

N∑

i=1

a2iβi, (3.26)

where βi is the eigenvalue of B with eigenvector ui. From this equation, it is clear

that maximizing Q is equivalent to choosing the quantities a2i so as to place as much

possible weight in the terms that correspond to the largest positive eigenvalues of B.

Then, the vector s giving the largest value of modularity would be one that is parallel

to vector u1 corresponding to the largest positive eigenvalue, β1, of B. However, the

elements of s are constrained to be either 0 or 1. Therefore, if the element u1
i of

the eigenvector u1 is positive si is assigned a value of 1 and if the element u1
i is

negative then si = −1. For B defined by QG and QIP , finding the eigenvector is

straightforward and is found using the power method. However, there is a problem

for the modularity matrix of QB.

For the modularity matrix of QB, there is an eigenvalue −λ for every eigenvalue

λ. As first discussed by Barber [176], the eigenvalue equation Bxi = λixi defined in
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the Barber modularity of Eqn. 3.28 can be written as









Op×p B̃p×q

B̃T
q×p Oq×q

















ui

vi









=









B̃vi

B̃Tui









= λi









ui

vi









, (3.27)

where ui is a p × 1 vector and vi is a q × 1 vector. However, one can also create a

vector so that








Op×p B̃p×q

B̃T
q×p Oq×q

















ui

−vi









=









−B̃vi

B̃Tui









= −λi









ui

−vi









, (3.28)

which shows for each eigenvalue λi there exists an eigenvalue −λi. Additionally, B̃ is

generally not a square matrix and is not symmetric. Therefore, it is possible for the

left and right eigenvalues to be complex. To address these issues, we consider the

singular values of B̃. The singular values of an m× n matrix A are the square roots

of the eigenvalues of ATA, which are all real and non-negative [200]. The algorithm

begins by dividing the network into two communities by finding the left and right

singular vectors of B̃. If p < q, then we find the singular vector u1 corresponding to

the largest eigenvalue σ1 of B̃B̃T .The eigenvector u1 is found using the power method

and has p elements corresponding to the the first p elements of s. The elements of

vector s are assigned a value of 1 or −1 according to the sign of the corresponding

element in u1. The next q elements of s are assigned using the singular vector v1

given by

v1 =
1

σ1

B̃Tu1. (3.29)

If q < p, elements p+1 to p+q of s are assigned first by finding the singular vector v1

corresponding to the largest eigenvalue σ1 of B̃
T B̃, then u1 is given by, u1 = 1

σ1
B̃v1.
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The modularity of this division can often be improved using a variant of the

Kernighan-Lin tuning algorithm [149]. The algorithm begins by moving each node

from its current community into the other to see if there is an improvement in

modularity. The change in modularity, δQk, from moving node k from its current

community to the other is given by

δQk = −4si
∑

i 6=k

Bkisi. (3.30)

Then, the Kernighan-Lin (K-L) tuning step is as follows:

1. Initialize Qtotal, defined as the improvement using the K-L tuning step, to zero.

2. Set the initial configuration of vector s to sinitial, where the element si = 1 if

node i is assigned to the first community or si = −1 is assigned to the second

community.

3. Consider moving each node k from its current community to the opposite com-

munity by computing, δQ using Eqn. 3.30.

4. Pick the node k giving the largest δQ, even if δQ is negative, and call this node

K. If there is more than one node with the largest δQ choose one of these

randomly.

5. Add δQ to Qtotal.

6. Set the element sK = −sK for node K.

7. If Qtotal is the largest or equal to the largest found so far store s and its

corresponding Qtotal.

8. Repeat steps 3. through 7. only considering nodes which have not been moved

until all nodes have been moved once.
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9. If the largest intermediate Qtotal is positive then repeat from step 1 using the

corresponding s as the initial guess, or if there is more than one intermediate

s stored with this Qtotal randomly choose between them. If Qtotal is negative

end the algorithm returning the initial configuration vector sinitial.

If the Kernighan-Lin algorithm fails to find an assignment that produces an increase

in modularity when splitting the community, the algorithm stops.

3.2.2 Subsequent divisions

To continue dividing a community, Ck, after the initial division one must choose s

to maximize

δQCk
=

1

2

(
∑

i,j∈Ck

Bijsisj −
∑

i,j∈Ck

Bij

)

. (3.31)

For the bi-clustering modularity matrix of QB, again due to the property that there

is an eigenvalue −λ for every eigenvalue λ, one chooses s to maximize the first term,

∑

i,j∈Ck
Bijsisj , by considering the singular values of B̃k = {B̃ij|i, j ∈ Ck}. Then,

one must check that the division truly gives a positive increase in modularity by

subtracting the correction term,
∑

i,j∈Ck
Bij . For the modularity matrix of QG and

QIP , δQCk
may be simplified to give

δQCk
=

1

2

∑

i,j∈Ck

Bk
ijsisj, (3.32)

where, Bk
ij = Bij − δij

∑

l∈Ck
Bil. Again, each division is improved by the Kernighan-

Lin step and this process continues iteratively until the modularity can no longer

be increased. However, as was shown by Sun et al. [9] in the leading eigenvalue

algorithm for maximizing modularity Q in unipartite networks, a bias is introduced

when continually bisecting the network in this way [9].
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3.2.3 Final tuning

After the initial bisection of the network, each community forms two disjoint subsets.

Each subset of nodes will only be divided in the subsequent iterations of the algorithm

so that once two nodes are separated into different communities they are never again

found together in the same community. Dividing the network in this way creates

hard partitions and a bias in the algorithm.

A manifestation of these hard partitions can be seen when considering the distri-

bution of the community sizes in an ensemble of bipartite Erdös-Rényi type networks.

The distribution of the community sizes for an ensemble of bipartite Erdös-Rényi type

network partitions is shown in Fig. 3.6. Each network contains 200 actors and 200

teams with the probability of an actor-team connection of p = 0.02. The network

was bi-clustered using the modularity of Barber et al., QB. The black curve (circles)

is the community size distribution for partitions in which the modularity was found

by continually bisecting the network and applying the Kernighan-Lin tuning step.

There are two peaks corresponding to sizes of N/23 and N/24 where N is the size of

the network (N = 400). The bias is manifested in the fact that the peaks occur at

community sizes equal to N divided by a power of two.

Fig. 3.7 and Fig. 3.8 give the distribution of the community sizes for the same

ensemble using the modularity of Guimera, QG, and the IP modularity , QIP , respec-

tively. For each network the actor set was partitioned. For both figures, the black

curve (circles) is the community size distribution for partitions in which the modular-

ity was found by continually bisecting the network and applying the Kernighan-Lin

tuning step. There are two peaks corresponding to sizes of N/22 and N/23 where N
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is the size of the actor set (N = 200). Therefore, for all definitions of bipartite mod-

ularity the bisection bias is manifested in the fact that the peaks occur at community

sizes equal to N divided by a power of two.

To amend the bias, a modified Kernighan-Lin step, defined as “final tuning”,

is applied that was first introduced by Sun et al. [9] for the unipartite modularity

of Newman and Girvan. Here, the algorithm is described when considering any

modularity matrix B. After the initial division of the network with Kernighan-Lin

tuning, consider the change in modularity from moving each node from its current

community to all existing communities or forming its own community. In the case

when node l begins in community Cx and is moved to community Cy, then the change

in modularity is given by

δQl =
∑

i∈Cy

Bil +
∑

j∈Cy

Blj −
∑

i∈Cx

Bil −
∑

j∈Cx

Blj + 2Bll. (3.33)

This equation is applicable when considering the modularity matrix B̃ but can be

simplified when the modularity matrix is symmetric as in QG and QIP . For a sym-

metric matrix

δQl = 2




∑

i∈Cy

Bil −
∑

i∈Cx

Bil +Bll



 . (3.34)

Then, the final tuning step is as follows:

1. Initialize Qtotal, defined as the improvement using the final tuning step, to zero.

2. Set the initial partition of the network vector P (G) to P (G)initial, where the

element Pi is equal to the current community assignment of node i.

3. Consider moving each node l from its current community, to all other existing

communities, or into a community of its own by computing δQ using Eqn. 3.33.
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Figure 3.6: Community size distribution found by maximizing Barber’s
modularity for an ensemble of bipartite Erdös-Rényi type networks with
200 nodes of each type and probability of connection p = 0.02. Each net-
work was partitioned by maximizing QB using the bisectioning algorithm, (black
circles), the bisectioning algorithm combined with final tuning, (red squares), and
the bisectioning algorithm combined with final tuning and agglomeration (blue tri-
angles).
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Figure 3.7: Community size distribution found by maximizing Guimera’s
modularity for an ensemble of bipartite Erdös-Rényi type networks, 200
of the first type and 200 of the second, with probability of connection
p = 0.02. For each network the actors were partitioned by maximizing QG using
the bisectioning algorithm, (black circles), the bisectioning algorithm combined with
final tuning, (red squares), and the bisectioning algorithm combined with final tuning
and agglomeration (blue triangles).
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Figure 3.8: Community size distribution found by maximizing the IP mod-
ularity for an ensemble of bipartite Erdös-Rényi type networks, 200 of the
first type and 200 of the second, with probability of connection p = 0.02.
For each network, actors were partitioned by maximizing QIP using the bisection-
ing algorithm, (black circles), the bisectioning algorithm combined with final tuning,
(red squares), and the bisectioning algorithm combined with final tuning and ag-
glomeration (blue triangles).

134



4. Pick the move giving the largest δQ. If there is more then one move with the

largest δQ, choose one of these randomly.

5. Add δQ to Qtotal.

6. Fix the community assignment for the node moved by updating P (G).

7. If Qtotal is the largest or equal to the largest found so far store P (G) and Qtotal.

8. Repeat steps 3 through 7 only considering nodes which have not been moved,

until all nodes have been moved once.

9. If the largest intermediate Qtotal is positive then repeat from step 1 using the

corresponding P (G) as the initial guess or, if there is more than one interme-

diate P (G) stored with this Qtotal, randomly choose between them. If Qtotal

is negative, end the algorithm returning the initial partition P (G).

To demonstrate the usefulness of final tuning with an analytic example, consider

the simple bipartite network of Fig. 3.9 in which there are 9 actors, 5 teams and 15

links. If this network is bi-clustered by bisecting, then the first division produces

the partition of Fig. 3.9a. The next and final step when bisecting is to divide the

community of 5 actors and 3 teams resulting in the partition of Fig. 3.9b. This

partition has a modularity value of QB = 114/225. However, this is not the partition

with the maximum modularity. Applying final tuning produces the partition of

Fig. 3.9c in which an actor from the first community has been moved to the middle

community. The modularity value for this partition is QB = 24/45.

Similarly, final tuning improves the results when projecting a bipartite network

onto a unipartite multigraph using the QG modularity. Consider the bipartite net-

work of Fig. 3.10a in which there are 9 actors, 5 teams and 17 links. The unipartite
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(a)

(b)

(c)

Figure 3.9: Biclustering partitions of a simple bipartite network (a) after
one bisection, (b) giving the final result with bisectioning and (c) giving the optimal
partitioning that maximizes modularity QB. The optimal partitioning is found when
bisectioning is combined with final tuning.
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(a)

(b)

(c)

Figure 3.10: The maximization of modularity QG where (a) is the initial bipar-
tite network, (b) is the partitioned unipartite projection of the red actor set using
bisectioning, and (c) is the optimal partitioning of the unipartite projection of the
red actor set using bisectioning combined with final tuning.
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multigraph projection of the actor set shown in Fig. 3.10b and 3.10c using QG. Each

link between two actors represents a team through which they are connected. If this

network is partitioned by bisecting then the resulting partition is given in Fig. 3.10b.

The partition has a modularity value of QG = 2230/6069 and further dividing either

community will result in a lower modularity. However, applying final tuning results

in the partition of Fig. 3.10c. This partition has three communities and a modularity

value of QG = 2413/6069.

Final tuning improves the results when projecting the same bipartite network,

used in the previous section, onto a unipartite multigraph using the modularity QIP .

Consider the bipartite network of Fig. 3.11a in which there are 9 actors, 5 teams and

17 links. The unipartite multigraph projection of the actor set shown in Fig. 3.11b

and 3.11c using QIP . Each link between two actors is weighted using Eqn. 3.17.

If this network is partitioned by bisecting then the resulting partition is given in

Fig. 3.11b. The partition has a modularity value of QIP = 2645/10368 and further

dividing either community will result in a lower modularity.Applying final tuning

produces the partition of Fig. 3.11c in which an actor from the first community has

been moved to the middle community. The modularity value for this partition is

QIP = 31/96.

Consider again the ensemble of bipartite Erdös-Rényi type networks. The distri-

bution of community sizes when final tuning step is added to the algorithm is given

by the red curves for QB, QG, and QIP , in Fig. 3.6, Fig. 3.7, and Fig. 3.8, respec-

tively. For all modularity definitions, adding the final tuning step results in a single

peak indicating the bias has now been removed.
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(a)

(b)

(c)

Figure 3.11: The maximization of modularity QIP where (a) is the initial bipar-
tite network, (b) is the partitioned unipartite projection of the red actor set using
bisectioning, and (c) is the optimal partitioning of the unipartite projection of the
red actor set using bisectioning combined with final tuning. In the unipartite projec-
tion solid links represent weight 1

4
, dotted links represent weight 7

12
, and dash-dotted

links represent weight 1
3
.
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3.2.4 An agglomeration step

In both the Kernighan-Lin and Final tuning algorithms the ability to find the max-

imum modularity partition is improved by performing local searches in modularity

space. That is, both of the previous tuning algorithms move individual nodes to

improve the current partition. In this section, a tuning step is introduced to the al-

gorithm that performs a global search in the modularity space by considering moving

entire communities of nodes in the current partition. A global search may be able

to find partitions in the modularity space that a local search would be unable to.

For example, if two communities exist in the current iteration of the algorithm that

would give a larger modularity score when merged, a local search may never find

this partition as the modularity penalty of moving, individually, each node from its

current community to the other, would be too large.

To find the change in modularity Q when community Cx and community Cy are

merged, begin with the definition of a general modularity function Q written as

Q =
Nc∑

k=1

k 6=x,y

∑

i,j∈Ck

Bij +
∑

i,j∈Cx

Bij +
∑

i,j∈Cy

Bij , (3.35)

where Nc is the total number of communities. If community Cx and community Cy

are merged to form community Cz the new modularity is written simply as

Q′ =

N ′
c∑

k=1

k 6=z

∑

i,j∈Ck

Bij +
∑

i,j∈Cz

Bij , (3.36)

where N ′
c = Nc − 1. In terms of Cx and Cy the contribution to the modularity of

community Cz can be written as

∑

i,j∈Cz

Bij =
∑

i,j∈Cx

Bij +
∑

i,j∈Cy

Bij + 2
∑

i∈Cx

∑

j∈Cy

Bij . (3.37)
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Therefore, the change in modularity δQ = Q′ −Q from merging community Cx and

Cy is given by

δQ = 2
∑

i∈Cx

∑

j∈Cy

Bij . (3.38)

.

For each round of bisection with Kernighan-Lin after final tuning is performed

the following agglomerative tuning step is performed:

1. Initialize Qtotal, defined as the improvement using the final tuning step, to zero.

2. Set the initial partition of the network vector P (G) to P (G)initial, where the

element Pi is equal to the current community assignment of node i.

3. Compute the change in modularity δQ for the agglomeration of all possible

pairs of communities using Eqn 3.38.

4. Merge the pair of communities giving the largest δQ and update the merger in

P (G).

5. Add δQ to Qtotal.

6. Record Qtotal up to this point and the corresponding P (G).

7. Repeat from step 3 until you are left with only one community containing all

N nodes.

8. Find the configuration with the largest change in modularity.

9. If the largest intermediate Qtotal is non-negative, assign the communities to the

corresponding intermediate configuration P (G). If there are multiple config-

urations with the same positive Qtotal, choose the configuration with the least
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number of communities. If the largest Qtotal is negative assign the communities

to the initial partition P (G)initial.

Note that when considering multiple configurations with the same change in modu-

larity, rather than choose a random configuration, the configuration with the least

number of communities is chosen. This choice serves as a “correction” to the current

partition of nodes that the bisection with Kernighan-Lin with final tuning step has

missed.

3.2.5 The complete algorithm

To incorporate all of the tuning steps described above to maximize bipartite modu-

larity:

1. Initialize the network with all N nodes partitioned into one community of size

N. Note this step assumes that for the QG and QIP modularities the network

of N nodes is the projected network.

2. Attempt to divide each of the existing communities using the leading eigen-

value method as described in Sections 3.2.1 and 3.2.2 with the Kernighan-Lin

algorithm described in Section 3.2.1.

3. Perform the final tuning algorithm as described in Section 3.2.3.

4. Peform the agglomeration algorithm as described in Section 3.2.4.

5. Repeat steps 2-4 until no further improvement of the modularity is achieved.
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3.3 Numerical results

3.3.0.1 Biparite Erdös-Rényi type network

When partitioning a bipartite Erdös-Rényi type network using bipartite modularity,

final tuning removes the bias created by hard partitioning when dividing the network,

as shown in Fig. 3.6, Fig. 3.7, and Fig. 3.8. Fig. 3.12 shows the corresponding distri-

butions of the modularity for the same set of ensemble of networks when partitioning

a network using QB. The average of the bisectioning only peak, shown in black is

0.516618 ± 0.000018, with standard deviation 0.012853 ± 0.000011. When applying

final tuning the average of the bisectioning with FT peak, shown in red is 0.528079

± 0.000018 with standard deviations 0.012686 ± 0.000011. The distribution curve

where final tuning is applied is shifted to the right indicating an improvement in mod-

ularity. Similarly, when adding the agglomeration tuning step, the average of the

corresponding peak, shown in blue is 0.529426 ± 0.000018 with standard deviation

0.012832 ± 0.000011 again indicating a further improvement.

For the Guimera modularity, again final tuning improves the average modularity

as shown in Fig. 3.13. The average of the bisectioning only peak, shown in black and

the bisectioning with final tuning peak, shown in red is 0.320294 ± 0.000023 and

0.332522 ± 0.000023, respectively with standard deviations 0.015933 ± 0.000014

and 0.015974 ± 0.000014, respectively. When applying agglomeration the average

marginally improves shown by the blue peak is 0.332896 ± 0.000023 with standard

deviation 0.016009 ± 0.000014.

Finally, for the IP modularity, both tuning steps again improve the average mod-

ularity as shown in Fig. 3.14. The average of the bisectioning only peak, shown
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in black and the bisectioning with final tuning peak, shown in red is 0.301142 ±

0.000019 and 0.312340 ± 0.000019, respectively with standard deviations 0.013569

± 0.000012 and 0.013635 ± 0.000012, respectively. When applying agglomeration

the average modularity marginally improves. The average of the agglomeration peak,

shown in blue is 0.312791 ± 0.000019 with standard deviation 0.013698 ± 0.000012.

Interestingly, the agglomeration tuning step has a greater improvement on the aver-

age modularity for QB. This may be due to size of the projected networks of QG and

QIP being half the size of the biclustered networks of QB. With more nodes, and

therefore a larger number of possible partitions in the network, the agglomeration

step is expected to have a greater impact on modularity maximization and this is

shown to be true in the next section.

3.3.0.2 Real-world networks

Thus far, it has been shown that for an ensemble of bipartite Erdös-Rényi type net-

works, final tuning and agglomeration improves the modularity values found for all

definitions of bipartite modularity. Applying final tuning and agglomeration to a

number of real-world networks also improves the modularity compared to bisecting

without final tuning as shown in Table 3.1, Table 3.2, and Table 3.3. The networks are

a social network of southern women in the 1930’s [165], the largest component of the

Scotland corporate interlock network [247], and the largest component of a network

of the administrative elite in The Netherlands [248]. Due to stochastic elements

in the community detection algorithm, such as when a move is chosen randomly

among the multiple moves that result in the same increase in modularity, hundreds

of analyses for each network were run and the partition with maximum modularity is

reported. There are, however, cases in which adding final tuning and agglomeration
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Figure 3.12: QB modularity distribution for an ensemble of bipartite Erdös-
Rényi type networks. There are 200 nodes of each type and probability of con-
nection p = 0.02. Each network was partitioned by maximizing QB using the bi-
sectioning algorithm, (black circles), the bisectioning algorithm combined with final
tuning, (red squares), and the bisectioning algorithm combined with final tuning and
agglomeration (blue triangles).
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Figure 3.13: QG modularity distribution for an ensemble of bipartite Erdös-
Rényi type networks. There are 200 nodes of each type with probability of con-
nection p = 0.02. For each network the 200 node set of the first type was partitioned
by maximizing QG using the bisectioning algorithm, (black circles), the bisectioning
algorithm combined with final tuning, (red squares), and the bisectioning algorithm
combined with final tuning and agglomeration (blue triangles).
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Figure 3.14: QIP modularity distribution for an ensemble of bipartite
Erdös-Rényi type networks. There are 200 nodes of each type with probabil-
ity of connection p = 0.02. For each network the 200 node set of the first type was
partitioned by maximizing QIP using the bisectioning algorithm, (black circles), the
bisectioning algorithm combined with final tuning, (red squares), and the bisection-
ing algorithm combined with final tuning and agglomeration (blue triangles).
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QB

Network Actors Teams wo/ft ft a
Southern 18 14 0.340866 0.345158 0.345158
Scotland 131 86 0.703660 0.709366 0.709432
Dutch 1794 585 0.776806 0.783532 0.801707

Table 3.1: Comparison of the maximum modularity QB found for real world bipartite
networks using bisectioning without final tuning (wo/ft) , bisectioning with final
tuning (ft), and bisectioning with final tuning and agglomeration (a).
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does not improve the maximum modularity found when combined with bisectioning.

For example in Table 3.2, for the Southern women’s network, adding final tuning

does not improves the maximum modularity found. Similarly in Table 3.1, adding

the agglomeration step does not improve the maximum modularity found when using

final tuning. For these cases, the partitioning with maximum modularity is found

without the addition of final tuning and agglomeration. However, as the example

networks grow in size the addition of final tuning and agglomeration is expected to

improve the maximum modularity found. This is also the case for unipartite net-

works as shown in Table 3.4. Maximum modularity values for networks beginning

with the network of size 453 are improved when adding the final tuning step as shown

in the last column.

In this section, a leading eigenvalue algorithm to find the partition that maximizes

bipartite modularity has been developed. Regardless of which bipartite modularity is

maximized, finding the network partition that maximizes the modularity by contin-

ually bisecting the network creates a bias in the algorithm due to hard partitioning.

Applying a modified Kernighan-Lin step called final-tuning amends the bias and

improves the modularity values found. Additionally, an agglomeration step in the

algorithm, that considers merging pairs of communities, further improves the results

by performing a global search of the modularity space.
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QG

Network Actors wo/ft ft a
Southern 18 0.216875 0.216875 0.216875
Scotland 131 0.611385 0.615863 0.616002
Dutch 1794 0.804407 0.807471 0.819560
Network Teams wo/ft ft a
Southern 14 0.278773 0.278773 0.278773
Scotland 86 0.612727 0.616884 0.618095
Dutch 585 0.561673 0.568781 0.571242

Table 3.2: Comparison of the maximum modularity QG for each type of nodes in the
bipartite network found using bisectioning without final tuning (wo/ft) , bisectioning
with final tuning (ft), and bisectioning with final tuning and agglomeration (a).
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QIP

Network Actors wo/ft ft a
Southern 18 0.2440909 0.2440909 0.2440909
Scotland 131 0.5597220 0.5603517 0.5603517
Dutch 1794 0.7037658 0.7074518 0.7158929
Network Teams wo/ft ft a
Southern 14 0.168122 0.168122 0.168122
Scotland 86 0.557789 0.557789 0.557789
Dutch 585 0.524446 0.536349 0.540076

Table 3.3: Comparison of the maximum modularity QIP for each type of nodes in the
bipartite network found using bisectioning without final tuning (wo/ft) , bisectioning
with final tuning (ft), and bisectioning with final tuning and agglomeration (a).
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Q
Network Size ft* a
Karate 34 0.420 0.419790
Jazz musicians 198 0.445 0.445144
Metabolic 453 0.452 0.452647
E-mail 1133 0.580 0.582368
Key signing 10680 0.867 0.883528
Physicists 27519 0.737 0.746743

Table 3.4: Comparison of the maximum modularity Q found for real world unipartite
networks using bisectioning with final tuning (ft) and bisectioning with final tuning
and agglomeration (a). *Values as reported by Sun et al. [9].

152



3.4 Characterizing effect-size and significance of

the results

As discussed in Section 1.7.3, Reichardt and Bornhold [182, 61, 249] derived an

approximation for the expected value of modularity Q, for an ensemble of Erdös-

Rényi graphs with N nodes and link probability p, given by the equation

〈Q〉 = 0.97

√
1− p

Np
. (3.39)

This equation was derived with the assumptions that N ≫ 1 and p ∼ 1. In other

words, this equation is expected to hold for large dense networks. However, in

many real-world systems, networks are typically sparse [30], and often their size

is only few tens of nodes [134, 250, 251]. Therefore, to ensure the applicability

of Eqn 3.39, it is necessary to find appropriate scaling corrections. Finding such

corrections analytically is a difficult problem, thus, here we find a suitable correction

numerically.

For small system sizes, it has been found that values of the modularity measured

in simulations are lower than those predicted by Eqn 3.39 [252]. For larger systems,

the equation is effectively in agreement with simulations, expect for values of p in

the vicinity of the giant component transition [252]. This suggests the correction we

need is twofold, consisting of a multiplicative piece to scale down the prediction for

small systems, and a second additive piece to account for the case of sparse networks.

Thus, an ansatz for the corrected form is

〈Q〉 → C1 · 0.97
√

1− p

Np
+ C2. (3.40)
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Simulation results seem to quickly approach the prediction of Eqn. 3.39 with

increasing system size [252]. Therefore, assume that C1 is of the form

C1 = 1− λe−
N
No .

Recent work [252] has shown empirically that fitting these two parameters with the

high-p tail of the results yields

λ =
7

5

No = 50.

Therefore, the multiplicative correction is

C1 = 1− 7

5
e−

N
50 . (3.41)

For the additive piece of the correction there is a clear dependence on p and N ,

we start by assuming the general form

C2 = Cop
α(1− p)βNγ , (3.42)

where the exponents α, β, and γ may depend on N . Recent work [252] has shown

empirically that fitting these parameters yields

Co = 1

α = −1

6
log

(
2

5
N

)

β =
5

4

γ = −6

5
+

13

15
e−

N
100 .

Then, to obtain the corrected expression for the expected maximum modularity

the previous parameters are substituted into Eqn. 3.42, and using Eqn. 3.41 with
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Eqn. 3.40:

〈Q〉 =
(

1− 7

5
e−

N
50

)

0.97

√
1− p

Np
+ p−

1

6
log ( 2

5
N) (1− p)

5

4 N− 6

5
+ 13

15
e−

N
100 . (3.43)

To compute the Z-score of a given modularity score for a particular network

we need to be able to express the variance of the modularity in the null model

choice. To do so, we first use Eqn. 3.39 to find the expected form of the variance,

using propagation of uncertainties. Equation 3.39 was originally derived assuming

the number of nodes N and edges M are fixed, rather than N and p. Therefore,

in finding an equation for the variance of 〈Q〉, p cannot be considered a constant.

Then,

σ2
〈Q〉 = (∂p〈Q〉)2σ2

p . (3.44)

With M fixed, one can write p = 2M
N2 , hence

σ2
p = (∂Mp)2σ2

M =
4

N4
σ2
M . (3.45)

As M is binomially distributed, its variance is

σ2
M =

N2

2
p(1− p). (3.46)

Substituting Eqn. 3.46 into Eqn. 3.45 yields

σ2
p =

2

N
p(1− p). (3.47)

Finally, substituting Eqn. 3.47 into Eqn. 3.44 one obtains

σ2
〈Q〉 =

0.972

2

1

N3p2
. (3.48)

Once more, numerical simulations indicate that the actual variance deviates from

the theoretical prediction [252]. Thus, also in this case we need to find a correction.
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The deviation of the measured variances from those predicted by means of Eqn. 3.48

rapidly increases with the size of the network, apparently converging towards a con-

stant. Therefore, we postulate that the correction C ′ to Eqn. 3.48 is multiplicative

and has the form

C ′ = C ′
o − e−ǫ(N−No). (3.49)

A fit of these parameters gives C ′
o = 2, ǫ = 1

30
andNo = 10. Thus, the final expression

for the variance for an ensemble of Erdös-Rényi graphs is

σ2
〈Q〉 =

(
15− e−(N−10)/30

) 0.972

2

1

N3p2
. (3.50)

To determine p for a particular network of size N one simply computes p using

p =
2L

N(N − 1)
, (3.51)

where L is the number of links in the network. With Eqn. 3.51, Eqn. 3.43, and

Eqn. 3.50 the Z-score of a given modularity Q score for a particular network can now

be computed.

Next, we will modify the previous results to compute the Z-score of a given

modularity QIP score for a particular bipartite network containing NA actor nodes,

NT team nodes, and L′ links. For this particular bipartite network with L′ links an

equivalent bipartite Erdos-Reyni type network will be connected with probability p′

given by

p′ =
L′

NANT
. (3.52)

To detect communities using the QIP modularity, the NA actor nodes are then pro-

jected onto a weighted unipartite network using the weight between an actor i and

actor j defined in Eqn. 3.17. As this projected network is now unipartite, we can
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compute the equivalent Erdös-Rényi p value in this projected network of NA nodes

by computing the average weight 〈wij〉 between actor i and actor j. The average

degree of team k,〈mk〉 = p′NA and therefore

〈wij〉 =
∑

k

2(p′)2

p′NA
=

2p′NT

NA
. (3.53)

Therefore, the average number of links L or, equivalently, the total link weight, in

the projected network of NA actors is given by

L =
NA(NA − 1)

2
· 2p

′NT

NA
, (3.54)

and therefore, the equivalent p is given by

p =
2p′NT

NA

. (3.55)

Then, an analytic expression for the average maximum 〈QIP 〉 modularity and vari-

ance σ2
〈QIP 〉 can be given by substituting

N → NA (3.56)

p → 2p′NT

NA

(3.57)

into Eqn. 3.43 and Eqn. 3.50, giving

〈QIP 〉 =

(

1− 7

5
e−

NA
50

)

0.97

√

1− 2p′NT

NA

2p′NT

(3.58)

+

(
2p′NT

NA

)− 1

6
log ( 2

5
NA)(

1− 2p′NT

NA

) 5

4

N
− 6

5
+ 13

15
e−

NA
100

A

σ2
〈QIP 〉 =

(
15− e−(NA−10)/30

) 0.972

2

1

NA(2p′NT )2
. (3.59)

Then for a particular network with an IP modularity score of QIP , the Z-score is

given by

z =
QIP −

〈
QIP

〉

σ〈QIP 〉

. (3.60)
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3.5 Conclusion

This chapter introduced and discussed methods that maximize modularity for de-

tecting communities in bipartite networks when the links are both weighted and

unweighted. There are two general methods to detect communities in bipartite net-

works. One can choose to bicluster both types of nodes into one community or

create two separate unipartite projections and detect communities in each projected

network. To bicluster a network, Barber introduced a generalization of Newman’s

modularity Q that nullifies the expectation that two nodes of the same type in a bi-

partite network are connected. This method generalizes easily when the links in the

network are weighted. To detect communities by projecting a bipartite network into

a unipartite network, a standard method currently used is the method introduced

by Guimera. Unfortunately, this method does not generalize when the links in the

bipartite network are weighted. Additionally, it was shown there is a problem in the

definition of the projected modularity, which allows nodes to be partitioned into sin-

gleton clusters without a modularity penalty. Therefore, the Information Preserving

bipartite modularity was introduced that easily generalizes to a weighted bipartite

network, does not suffer from the singleton cluster problem, and ,additionally, pre-

serves more information about the bipartite network in the unipartite projection.

To find the partition that maximizes the modularity, the leading eigenvalue

method with final tuning was generalized to maximize modularity in bipartite net-

works. Additionally, a novel agglomerative tuning step was introduced that considers

iteratively merging communities to improve the modularity. This tuning step further

improves the modularity, with a significant increase over final tuning for larger net-

works, when tested on both random bipartite Erdös-Rényi type networks and real
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world networks. For unipartite networks, this extends the current algorithm’s ability

to find the partition with the largest value of modularity Q for any algorithm in

networks of up to at least tens of thousands of nodes in size. Finally, the expected

value and standard deviation of IP modularity for bipartite Erdös-Rényi type net-

works was then analytically derived. A Z-score comparison of the modularity values

of real-world networks can now be computed.

It remains to be seen whether the IP modularity does in fact find meaningful

partitions when detecting communities in networks. In the next chapter, the IP

modularity is validated by testing its ability to recover the known structure of a

bipartite model with unweighted and weighted links. Furthermore, the metabolic

network of E. coli is used as a real-world example of the applicability of the method.

159



Chapter 4

Validation and Application of the

Information Preserving

Modularity

4.1 Introduction

In Chapter 3, two different methods were discussed to find communities in bipartite

networks. The first method is biclustering in which both types of node in the bipartite

network are partitioned into the same community. The most common modularity

definition used to bicluster nodes is the modularity of Barber [176], applicable when

the links in a bipartite network are either weighted are unweighted. The other

method that was discussed was unipartite projection in which each type of node in

the bipartite network may be projected onto a unipartite network. Communities are

then detected in the unipartite projection. The most common modularity definition
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used for the unipartite projection method is the modularity of Guimera et al. [175].

It was shown in Chapter 3 that the Guimera et al. modularity suffers from the

fact that it is not easily generalized to the case in which the links in the bipartite

network are weighted and, additionally, there is a problem in which nodes are likely

to be assigned into singleton clusters. Therefore, a new bipartite modularity was

introduced, the Information Preserving modularity, whose projection preserves more

of the bipartite information, generalizes to weighted links, and whose modularity

measure does not suffer from the problem of finding singleton clusters.

In this chapter, the Information Preserving modularity’s ability to recover mean-

ingful community structure is validated in two ways. First, the IP modularity is

tested by using it to find the structure in a bipartite network model that is con-

structed a priori with a community structure. Then, the effectiveness of IP mod-

ularity is compared to that of Guimera’s and Barber’s by using them to recover

the assigned partition when the links in the generated network are unweighted and

weighted, respectively. Additionally, the real-world metabolic network of Escherichia

coli is used as an example application and a validation of the use of IP modularity.

To this end, the IP, Barber, and Guimera modularity methods are used to detect

communities in the metabolic network and these communities are tested for biologi-

cal relevance in their ability to significantly enrich for gene ontology (GO) terms and

metabolites grouped by their Metabolic reaction classification.

4.2 Bipartite planted partition model

As discussed in Chapter 1, the planted l partition model [180] is a standard method to

assess the performance of community detection methods in unipartite networks. The
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model tests how well a community detection method is able to recover l communities

each containing n assigned nodes as noise is added to the network. A similar model

is needed to test community detection methods in bipartite networks. One is now

introduced.

4.2.1 The model

To compare methods to find bipartite communities, a bipartite model based on the

unipartite planted partition model [180] is now constructed. A bipartite network

contains two types of nodes and for the following discussion nodes of the first type are

called the “actor” set and nodes of the second type are called the “team” set. Then

the model begins with l communities each containing a actors and t teams. Actors

are connected to teams in the same community with probability pin and connected

to teams in different communities with probability pout. The average actor degree,

〈ka〉, and average team degree, 〈kt〉, are given by

〈ka〉 = t pin + (l − 1) t pout (4.1)

〈kt〉 = a pin + (l − 1) a pout.

For the majority of bipartite community detection methods that will be evaluated

only one set of nodes in the bipartite network is partitioned. In this case, the set in

the planted partition model that is partitioned is chosen to be the actor set. Then,

for each actor, kintra ≡ t pin is defined as the average intra-community degree and

kinter ≡ (l − 1) t pout is defined as the average inter-community degree of each actor.

For a given a, t, l, and 〈ka〉, if kinter = 0, then the l communities are well

defined with no inter-community links. When kinter is increased, the number of

inter-community links increases until pin = pout = 〈ka〉 /(t l) at which point the
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network is a completely random, Erdös-Rényi type bipartite network. This occurs for

kinter = (l−1) 〈ka〉 /l ≡ kmax and, thus, depends on both the number of communities

and the average actor degree. Therefore, to evaluate community detection methods,

for example as 〈ka〉 increases or decreases, define knorm ≡ kinter/kmax. The network is

composed of l disconnected communities when knorm = 0 and is completely random

when knorm = 1. As in the unipartite case, the quality of a community detection

method is evaluated by how well it recovers the l communities of a nodes as a function

of kinter, or equivalently of knorm.

4.2.2 Partition quality

To measure the performance of a community detection method, the amount of overlap

between the planted partition of the l communities of a nodes and the partition

found by a community detection method must be described quantitatively. For

this purpose, the mutual information between found and known partitions can be

used [253]. The normalized mutual information I between partitions A and B is

defined as

IAB =
−2
∑NA

M

i=1

∑NB
M

j=1 n
AB
ij ln

(
nAB
ij N

nA
i nB

j

)

∑NA
M

i=1 n
A
i ln

(
nA
i

N

)

+
∑NB

M

j=1 n
B
j ln

(
nB
j

N

) , (4.2)

where N is the total number of actors in the network, NA
m is the number of commu-

nities in partition A, nA
i is the number of nodes in community i for partition A, nAB

ij

is the number of nodes in community i of partition A and community j of partition

B. The normalized mutual information is then 1 if the two partitions are identical

and 0 if there is no correlation.

To further elucidate the behavior of the mutual information, IAB, perhaps it’s
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simplest to consider a unipartite model. Consider an initial partition, Po, in which N

nodes have been assigned to 4 communities of equal size. For example, for a partition

of N = 20 nodes, a possible Po is Po = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4].

Now, consider a separate partition Pr that, initially, is equal to Po. When Pr = Po,

the mutual information between the two partitions is equal to 1. However, as Pr

changes the mutual information should decrease. To see exactly how this decrease

behaves as the difference between Pr and Po increases, consider Fig. 4.1. In Fig. 4.1

the ensemble-averaged mutual information between Po and Pr is plotted as a function

of the fraction of nodes that are randomly reassigned in Pr, for various sizes of N . As

more of the nodes in Pr are randomly assigned, the amount of overlap between the

original partition Po and Pr decreases, and IAB decreases toward 0. This is also true

as the network increases in size. Note that IAB is not exactly zero when all the nodes

have been randomly assigned because the random assignment has been restricted to

one of the four existing communities. The mutual information would continue to

decrease if the nodes are randomly assigned to more than four communities.

4.2.3 Unweighted links

To test the ability to detect communities in unweighted bipartite networks, the In-

formation Preserving (IP) modularity and the Guimera (G) modularity are now

compared using the bipartite l-partition model. In Fig. 4.2a there are 4 communities

each containing 50 actors and 12 teams. In Fig. 4.2a, one can see when the average

actor degree, 〈ka〉, is equal to the number of teams the G and IP modularity curves

overlap. The planted partition is particularly easy to find because when 〈ka〉 is equal

to the number of teams, each community begins, at knorm = 0, fully connected with
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Figure 4.1: The behavior of the mutual information, IAB. The ensemble-
averaged mutual information between an initial partition Po and a partition Pr is
plotted as a function of the fraction of nodes that are randomly reassigned in the Pr

partition. The number of nodes, N , in the partition is given in the legend and the
size of the Pr ensemble used in the calculation is 10,000.
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each actor connected to all teams in its assigned community. However, as 〈ka〉 de-

creases, and there is therefore less information about the planted partition, the IP

modularity recovers a larger amount of the planted partition as indicated by a larger

average IAB. In Fig. 4.2b the same analysis is performed as in Fig. 4.2a but for

the opposite set of nodes in the bipartite network which contains a = 12 nodes per

community. Both modularities are able to recover a larger amount of the planted

partition for larger values of knorm when compared to the results of Fig. 4.2a. This is

due to the average degree, 〈k〉, being larger. So, for example, when each side of the

network is on average connected to 1
2
of the nodes of the opposite type the average

degree when a = 50 is 6 while the average degree when a = 12 is 25. For most cases,

the IP modularity finds a higher average IAB than the Guimera modularity. There

is a point however, when the Guimera IAB curve crosses the IP IAB curve and is

higher for some values of knorm. This crossover is most evident in Fig 4.2b. However,

the crossover occurs for large values of knorm and small values of IAB indicating a

large amount of inter-community links and a low amount of overlap with the planted

partition.

To investigate if these results change as the ratio of teams to actors in each com-

munity changes, models were generated with 4 communities, 50 actors, and 〈ka〉 = 1
3
t.

The number of teams in each community was varied, and the results are shown in

Fig. 4.3a. From the figure, the IP modularity consistently performs better than the G

modularity with the closest performance pertaining to the extreme case when there

are very few teams to actors (ratio of 0.1). In Fig. 4.3b, the opposite side of the

bipartite network shown in Fig. 4.3a is partitioned. Again, for most cases, the IP

modularity finds a higher average IAB than the Guimera modularity with a crossover

occurring for large values of knorm and small values of IAB.
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Figure 4.2: Bipartite planted partition comparison for unweighted links and
varying degree. For each plot in the graph, at each value of knorm, 1000 models of 4
communities are generated and for each model the modularity maximizing algorithm
is run once and the average IAB is calculated for the resulting partitions when (a)
a = 50 and t = 12 and when (b) a = 12 and t = 50. The average degree of each
node a is indicated for each plot in the legend.
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Figure 4.3: Bipartite planted partition comparison for unweighted links and
varying set size. For each plot in the graphs, at each value of knorm, 1000 models
of 4 communities are generated and for each model the modularity maximizing algo-
rithm is run once and the average IAB is calculated for the resulting partitions when
(a) a = 50, t varies, and 〈ka〉 = 1

3
· t and when (b) a varies, t = 50, and 〈ka〉 = 50

3
.

The size of the varied set is indicated for each plot in the legend.
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4.2.4 Weighted links

To test the performance of the IP modularity for a weighted network consider the

case in the bipartite l-planted partition model when pin = pout. For these values,

the network is a completely random, Erdös-Rényi type bipartite network and is

therefore ideal for adding a weighted constraint to the links. To do so, assume

that if a link occurs in the bipartite network between an actor and team of the

same community, a weight is assigned randomly from a uniform distribution of mean

〈wintra〉 and width 0.5. Furthermore, assume that if a link occurs between two nodes

in different communities a weight is assigned randomly from a uniform distribution

of mean 〈winter〉 and width 0.5. Additionally, let 〈wintra〉+ 〈winter〉 = 2.0. Then the

quality of a community detection method can be evaluated by how well it recovers

the l communities of a nodes as a function of 〈winter〉. For the following analysis,

〈winter〉 ranges from 0.25 to 1.0. Initially, when 〈winter〉 = 0.25 any link between

communities has an average value of 0.25 and a link within a community has an

average value of 1.75, and the communities are well defined. At the end of the range

with 〈winter〉 = 〈wintra〉 = 1.00 the network becomes completely random.

To study the performance of the IP modularity, we can only compare it to that of

Barber (B) because the Guimera modularity does not generalize to weighted links.

The B modularity biclusters a network into communities, therefore when computing

the normalized mutual information of a B modularity partition, only the overlap of

the actor set is considered. In Fig. 4.4a, there are 4 communities, each containing 50

actors and 12 teams, and the average actor degree is varied. As the average degree

decreases, there is less information about the planted partition and the mutual infor-

mation decreases. From the figure, in each case, the B modularity is able to recover
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more of the planted partition than the IP modularity. However, this is perhaps not

surprising because the IP modularity creates a weighted projection which loses some

information in the original bipartite network. Nevertheless, the IP modularity is able

to recover a large amount of the planted partition structure. In Fig. 4.4b, the same

analysis is performed as in Fig. 4.4a but for the opposite set of nodes in the bipartite

network which contains a = 12 nodes per community. Again, the B modularity is

able to recover a higher amount of the planted partition with a wider gap between the

IP and B average mutual information than in the case of Fig. 4.4a. When projecting

the smaller set of nodes in the bipartite network, much more information must be

projected into a smaller number of nodes. This indicates there may be a limit to the

projection method when studying the smaller side of a bipartite network and this

limit is now studied further.

To investigate the behavior of the IP modularity as the ratio of teams to actors

in each community changes, models were generated with 4 communities, 50 actors,

and 〈ka〉 = 3
2
t. The number of teams in each community was varied and the results

are shown in Fig. 4.5a. Just as in Fig. 4.4a, the B modularity has a higher mutual

information but the gap between the IP and B modularities is consistent, which

suggests that the projection is losing the same amount of information regardless of

the team size. However, this is not the case when the smaller side of the network

becomes the actor set. In Fig. 4.5b, the opposite side of the network is partitioned

and one can see that as the size of the actor side decreases the gap between the mutual

information curves of the B and IP modularity increases. The team side in the case

stays the same at t = 50, but as the actor side decreases the projection must condense

information about the 50 node side into a smaller number of actor nodes. As Fig. 4.5b

shows, the mutual information curve for the IP modularity decreases quite rapidly
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when the actor side of the network is about 10% the size of the team side of the

bipartite network. Nevertheless, the IP modularity is able to find a large amount of

the planted partition when the links in the bipartite network are weighted. Note that

this does not suggest one should always use the Barber modularity. The bipartite

planted partition model introduced here for comparison, biclusters the nodes in the

network, with each type of node constrained to the same number of communities.

This is exactly the type of partition the Barber modularity seeks to find. Therefore,

it is reasonable that for this model the Barber modularity finds a higher amount

of the planted partition. In the next section, the bipartite metabolic network of

Escherichia coli is used to further compare bipartite modularity when partitioning

real world networks.

4.3 The Escherichia coli metabolic network

As seen in the previous section, the IP modularity performs well at recovering the

partition of a model bipartite network where a known partition is defined a priori .

However, in real world networks, communities are usually not known beforehand.

Therefore, in this section, the IP modularity is applied to the real world bipartite

metabolic network of E. coli as both a test and an example application.

4.3.1 Data

For the following analysis, a genome-scale reconstruction of E. coli metabolism is

studied. This reconstruction accounts for 1366 genes, 2251 metabolic reactions, and

1136 metabolites of the laboratory strain E.coli K-12 MG1655 [254]. Then, to create
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Figure 4.4: Bipartite planted partition comparison for weighted links and
varying degree. For each plot in the graphs, at each value of knorm, 1000 models of 4
communities are generated and for each model the modularity maximizing algorithm
is run once and the average IAB is calculated for the resulting partitions when (a)
a = 50 and t = 12 and when (b) a = 12 and t = 50. The average degree of each
node a is indicated for each plot in the legend.
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Figure 4.5: Bipartite planted partition comparison for weighted links and
varying set size. For each plot in the graph, at each value of knorm, 1000 models of 4
communities are generated and for each model the modularity maximizing algorithm
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a network, each gene, representing an enzyme, and metabolite are represented as a

node. A link is placed between a metabolite and gene if the gene’s corresponding

enzyme is involved in catalyzing a reaction involving the metabolite. To simplify the

network representation, all sink and transport equations are ignored as well as the

direction of the reactions. This naturally creates an unweighted undirected bipartite

network with two types of nodes representing the enzymes and metabolites. With the

transport and sink equations removed the resulting bipartite network is composed of

1062 genes and 1094 metabolites.

4.3.2 Detecting communities

To detect communities in the metabolic network, the same leading eigenvalue method

with final tuning [9] and agglomeration used in Section 4.2 is applied to maximize the

Barber, Guimera, and IP modularity. Additionally, variants of the analysis methods

developed in Chapter 2 for unipartite networks are used in this bipartite analysis.

The community detection algorithm for each modularity is run 1000 times and the

ensemble of partitions is analyzed. Maximizing the Barber modularity results in co-

clustered communities of both enzyme and metabolite nodes. For the modularities

of both the Guimera and IP, a unipartite projection from the bipartite network is

created for each type of node in the network and each network is then clustered

separately. Creating a unipartite projection results in a separate enzyme network

and metabolite network for the Guimera and IP modularity methods. As previ-

ously discussed in Chapter 2, community detection algorithms contain stochastic

elements that can result in different partitions for multiple runs. This property is

again exploited, by analyzing the ensemble of 1000 partitions and finding each core
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community of nodes, which is defined as all pairs of nodes that are always found

together in the same community for the entire ensemble.

The resulting modularity values found for the ensemble of partitions using all

three modularity methods is described in Table 4.1. For each method, the average

modularity, its standard deviation and the maximum modularity are given for the

ensemble of 1000 partitions. As discussed in Section 1.7.3, a better measure of a

partitions modular strength is given by the z-score. Therefore, the corresponding z-

score, its standard deviation, and maximum z-score are also computed. The z-score

was computed using Eqn. 1.28, by finding the average modularity and standard de-

viation of a 250,000 ensemble of random bipartite Erdös-Rényi type networks with

1062 nodes of type 1, 1094 nodes of type 2 and the same average number of links

as the E.Coli metabolic network. For the 1062 node side of the random bipartite

Erdös-Rényi type network, the ensemble averaged IP modularity was 0.124384 with

an analytic prediction using Eqn. 3.58 of 0.230350. For the 1094 node side of the ran-

dom bipartite Erdös-Rényi type network, the ensemble averaged IP modularity was

0.125389 with an analytic prediction using Eqn. 3.58 of 0.219799. For all modulari-

ties, the average z-score of the partitions found was large indicating a high modular

strength. Analyzing the ensemble of partitions for the Barber method there is a

mode of 17 communities with the largest community consisting of 923 nodes. For

the enzyme side of the metabolic network there is a mode of 67 and 12 communities

for the Guimera and IP modularity, respectively, with the largest community con-

sisting of 671 and 311 genes, respectively. For the metabolite side of the metabolic

network, there is a mode of 29 and 12 communities for the Guimera and IP modular-

ity, respectively, with the largest community consisting of 913 and 997 metabolites,

respectively.
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Q
Avg Mod SD Max Mod Avg Z SD Max Z

Barber 0.609534 0.003449 0.616410 77.842342 0.898230 79.633225
Guimera
Enzy 0.407850 0.0 0.407850 123.747782 0.0 123.747782
Met 0.561262 0.000828 0.562958 191.188834 0.365799 191.776834
IP
Enzy 0.478747 0.000029 0.478748 171.404750 0.014062 171.405195
Met 0.441709 0.002060 0.444633 151.734026 0.988340 153.136815

Table 4.1: Comparison of the modularity Q and z-score found for the Escherichia
coli metabolic network using the Barber modularity, Guimera modularity, and the
IP modularity. For each bipartite modularity, the resulting ensemble of 1000 par-
tition’s average modularity (Avg Mod) and its standard deviation (SD), maximum
modularity (Max Mod), average Z-score (Avg Z) and its standard deviation (SD),
and the maximum Z-score is reported.
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4.3.3 Enrichment

4.3.3.1 Enzyme communities

To analyze and compare the community detection results for each modularity method,

each gene core community is compared to known biological functional communities

in E. coli using the gene ontology identified in E. coli [235, 236, 237] using a hyperge-

ometric test with Benjamini-Hochberg correction [238] as described in Section 2.5.1.

The hypergeometric test with Benjamini-Hochberg correction results in a P value

that is the probability of the overlap between a core community and GO term occur-

ring randomly.Then, P-values lower than 0.05 are considered statistically significant.

We limit the study to account only for communities of size 5 or greater. For the

co-clustered communities of the Barber method the metabolites are removed from

each community during the analysis so that each “core community” is only composed

of genes.

4.3.3.2 Metabolite communities

In the genome-scale reconstruction of E. coli metabolism being studied, each reac-

tion is classified by a metabolic subtype such as Nucleotide Salvage Pathway, Glyc-

erophospholipid Metabolism, Cofactor and Prosthetic Group Biosynthesis, Nitrogen

Metabolism and Cysteine Metabolism [254]. Previously, it has been shown that

metabolites are likely to be grouped into communities whose members share a com-

mon subtype [41]. To test for this, the metabolites in the dataset are assigned to

groups whose constituents are involved in reactions of the same metabolic subtype.

Note that this means a metabolite may be assigned to more than one group if it is

177



involved in multiple disparate reactions. Then each metabolic community of size 5

or larger is tested for significant overlap with a metabolic subtype group using a hy-

pergeometric test with Benjamini-Hochberg correction as described in Section 2.5.1.

For the co-clustered communities of the Barber method the genes are removed from

each community during the analysis so that each “core community” is only composed

of metabolites.

4.3.4 A comparison of the 3 bipartite modularities

For communities identified using the Barber, Guimera and IP modularity method,

152, 127 and 167 statistically significant matches are found between gene core com-

munities and GO terms, respectively. Not only are there more statistically signifi-

cant matches using the IP modularity method, but the most significant enrichments,

measured by smallest P value, were found using the IP modularity. Tables 4.2, 4.3,

and 4.4 detail the results for the 20 most significant enrichments for the Barber,

Guimera, and IP modularity, respectively. The most significant gene core commu-

nity has a P value of 1.34e-34 and 2.05e-23 for the Barber and Guimera modularity

methods, respectively. The Barber community with the most significant functional

enrichment contains 78 genes, including 33 of 39 genes in the GO Term for anaerobic

respiration. The Guimera community with the most significant functional enrich-

ment contains 43 genes, including 20 of 24 genes involved in the translation process.

The most significant gene core community for the IP modularity has a P value of

3.22e-78. This community contains 234 genes, including 141 of 170 genes involved in

ATP binding. Furthermore, there is one other gene core community contributing a
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smaller P value of 3.37e-40 using the IP modularity than the most significant com-

munity found using each of the other two methods. Additionally, Tables 4.5, 4.6,

and 4.7 give the single most significant enrichment for each gene core community

using the Barber, Guimera, and IP modularity, respectively.

For the metabolite communities, there are 16, 33, and 30 statistically significant

enrichments of metabolic subtypes using the Barber, Guimera, and IP modular-

ity method, respectively. Table 4.9 displays the metabolite community enrichments

found using the Barber modularity and Tables 4.8 and 4.10 detail the results for

the 20 most significant metabolite community enrichments for the Guimera, and

IP modularity, respectively. Interestingly, although the Guimera and IP modular-

ity have a similar number of significant enrichments, the most significant is found

using the Barber modularity. Nevertheless, the 30 significant enrichments provides

further confirmation that the IP modularity is able to find biologically meaningful

communities. Additionally, Tables 4.11, 4.12, and 4.13 give the single most signifi-

cant enrichment for each metabolite core community using the Barber, Guimera, and

IP modularity, respectively. With these results, to detect communities in bipartite

networks, we recommend that both the Barber modularity and IP modularity be

used. These modularity definitions are each representative of the two methodologies

of bipartite network analysis and can be applied to both weighted and unweighted

bipartite networks.

4.4 Conclusion

In this chapter the ability of using IP modularity to find meaningful partitions was

tested and validated using both a computational model and a real-world network.
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First, a model network was created whose partitioning is defined, a planted parti-

tion, and the ability of the IP modularity to recover the partition was tested as noise

was added to the network. When the links in the model network were unweighted,

the IP modularity was able to recover more of the planted partition when compared

to the Guimera modularity. Additionally, weights were added to the links in the

bipartite network and the IP modularity was compared to the Barber modularity’s

ability to recover the planted partition. In this case, the Barber modularity was able

to recover a larger amount of the planted partition. However, the IP modularity

creates a unipartite projection from the bipartite network and therefore some of the

information of the bipartite network must be lost. Nevertheless, the IP modularity

was able to recover a large amount of the planted partition. Furthermore, the bi-

partite planted partition model biclusters the nodes in the network, with each type

of node constrained to the same number of communities. This is exactly the type

of partition the Barber modularity seeks to find. Therefore, it is reasonable that for

this model the Barber modularity finds a higher amount of the planted partition.

As an example application to a real-world network, the IP modularity was ap-

plied to the metabolic network of E. coli [254]. An unweighted undirected bipartite

network is created from a genome-scale reconstruction by connecting an enzyme and

metabolite if that particular enzyme was known to catalyze a reaction involving

the metabolite. Next, communities were detected in the network using the Barber,

Guimera, and IP modularity and for each modularity an ensemble of 1000 parti-

tions were analyzed. To quantify the modular strength the z-score of the resulting

partitions for each bipartite modularity was computed. ”Core community” of genes

and separately ”core community of metabolites” were created by finding those nodes
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who were always found together in the same community for the ensemble of parti-

tions. These core communities were then tested for biological significance by testing

whether the gene core communities and metabolite core communities significantly

enrich for gene ontology (GO) terms and Metabolic reaction classification, respec-

tively. The IP modularity found the highest number of total significant enrichments

with 197 followed by the Barber modularity with 168 and finally the Guimera mod-

ularity with 160. With these results, the IP modularity is shown to find meaningful

community structure in a bipartite network. Furthermore, the ability to partition

bipartite networks by creating a unipartite projection from the bipartite network has

been extended to weighted networks using the IP modularity.
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Table 4.2: The 20 most relevant gene relationships found for the Barber modularity.

P value GO term Com size GO size In com Description
1.34e-31 9061 78 39 33 anaerobic respiration
1.70e-25 9055 78 71 38 electron carrier activity
3.86e-20 5506 78 111 41 iron ion binding
9.74e-20 22900 78 59 31 electron transport chain
3.01e-17 15986 11 9 9 ATP synthesis coupled pro-

ton transport
7.70e-17 8654 26 13 12 phospholipid biosynthetic

process
1.70e-16 5886 78 192 48 plasma membrane integral

to plasma membrane
1.76e-15 9252 18 37 14 peptidoglycan biosynthetic

process
5.30e-15 46933 11 8 8 ” hydrogen ion transporting

ATP synthase activity, rota-
tional mechanism

7.85e-15 55114 78 248 52 oxidation reduction
1.33e-14 8658 18 9 9 penicillin binding
5.66e-14 16491 78 165 42 oxidoreductase activity
7.48e-14 6810 78 113 35 transport
1.70e-13 45272 78 13 13 plasma membrane respira-

tory chain complex I
1.78e-13 51539 78 61 26 ” 4 iron, 4 sulfur cluster

binding
1.89e-13 30964 78 13 13 NADH dehydrogenase com-

plex
9.31e-13 46961 11 7 7 ” proton-transporting AT-

Pase activity, rotational
mechanism

9.36e-13 9002 18 8 8 serine-type D-Ala-D-Ala
carboxypeptidase activity

2.25e-12 3954 78 12 12 NADH dehydrogenase ac-
tivity

1.16e-10 6631 8 13 7 fatty acid metabolic process
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Table 4.3: The 20 most relevant gene relationships found for the Guimera modularity.

P value GO term Com size GO size In com Description
2.05e-23 6412 43 24 20 translation
5.87e-17 4812 43 15 14 aminoacyl-tRNA ligase ac-

tivity
1.76e-15 9252 18 37 14 peptidoglycan biosynthetic

process
1.22e-13 166 43 176 31 nucleotide binding
2.04e-13 6418 43 14 12 tRNA aminoacylation for

protein translation
1.40e-12 9002 18 8 8 serine-type D-Ala-D-Ala

carboxypeptidase activity
8.35e-12 8658 18 9 8 penicillin binding
1.58e-11 16874 43 32 15 ligase activity ligase activ-

ity, forming carbon-oxygen
bonds

4.86e-11 5524 43 170 28 ATP binding
1.23e-10 30170 20 49 13 pyridoxal phosphate bind-

ing
1.00e-09 8360 18 29 10 regulation of cell shape
3.84e-09 9263 14 6 6 deoxyribonucleotide biosyn-

thetic process
2.23e-08 55114 671 248 200 oxidation reduction
5.67e-08 15293 10 5 5 symporter activity
1.57e-07 15035 14 9 6 protein disulfide oxidore-

ductase activity
2.38e-07 46930 5 4 4 pore complex
3.86e-07 16837 18 5 5 carbon-oxygen lyase activ-

ity, acting on polysaccha-
rides

1.16e-06 104 32 6 6 succinate dehydrogenase ac-
tivity

1.29e-06 43169 17 9 6 cation binding
1.72e-06 6631 6 13 5 fatty acid metabolic process
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Table 4.4: The 20 most relevant gene relationships found for the IP modularity.

P value GO term Com size GO size In com Description
3.22e-78 5524 234 170 141 ATP binding
1.76e-68 166 234 176 137 nucleotide binding
3.37e-40 9055 120 71 55 electron carrier activity
2.63e-31 22900 120 59 45 electron transport chain
2.31e-26 9252 50 37 26 peptidoglycan biosynthetic

process
1.04e-25 5886 120 192 72 plasma membrane integral

to plasma membrane
8.67e-25 9061 120 39 33 anaerobic respiration
3.34e-24 5506 120 111 54 iron ion binding
7.04e-24 55114 120 248 79 oxidation reduction
5.40e-21 51539 120 61 38 4 iron, 4 sulfur cluster bind-

ing
9.56e-21 6810 120 113 51 transport
6.47e-18 8137 120 20 20 NADH dehydrogenase

(ubiquinone) activity
7.18e-18 9060 120 20 20 aerobic respiration
9.93e-18 16491 120 165 58 oxidoreductase activity
1.36e-17 16874 234 32 31 ligase activity ligase activ-

ity, forming carbon-oxygen
bonds

1.39e-15 8360 50 29 18 regulation of cell shape
8.01e-14 30170 296 49 41 pyridoxal phosphate bind-

ing
9.37e-14 48038 120 18 17 quinone binding ubiquinone

binding
1.49e-13 19439 15 11 9 aromatic compound

catabolic process
3.34e-13 7047 50 27 16 cellular cell wall organiza-

tion oncogenesis
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Table 4.5: The single most relevant gene relationship for each core community found
for the Barber modularity.

P value GO term Com size GO size In com Description
1.34e-31 9061 78 39 33 anaerobic respiration
3.01e-17 15986 11 9 9 ATP synthesis coupled pro-

ton transport
7.70e-17 8654 26 13 12 phospholipid biosynthetic

process
1.76e-15 9252 18 37 14 peptidoglycan biosynthetic

process
1.16e-10 6631 8 13 7 fatty acid metabolic process
1.87e-09 16226 10 7 6 iron-sulfur cluster assembly
1.02e-08 9263 16 6 6 deoxyribonucleotide biosyn-

thetic process
7.14e-07 9486 6 4 4 cytochrome bo3 ubiquinol

oxidase activity
7.14e-07 8745 6 4 4 N-acetylmuramoyl-L-

alanine amidase activity
2.99e-05 43169 5 9 4 cation binding
4.33e-05 8253 16 4 4 5’-nucleotidase activity
1.26e-04 8556 5 3 3 potassium-transporting

ATPase activity
1.52e-04 16491 11 165 10 oxidoreductase activity
1.68e-04 9401 5 4 3 phosphoenolpyruvate-

dependent sugar phospho-
transferase system

2.50e-03 16887 6 6 3 ATPase activity en-
dodeoxyribonuclease
activity, producing 5’-
phosphomonoesters

2.23e-02 8942 5 2 2 nitrite reductase
[NAD(P)H] activity

3.34e-02 16961 6 2 2 mitochondrion inheritance
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Table 4.6: The single most relevant gene relationship for each core community found
for the Guimera modularity.

P value GO term Com size GO size In com Description
2.05e-23 6412 43 24 20 translation
1.76e-15 9252 18 37 14 peptidoglycan biosynthetic

process
1.23e-10 30170 20 49 13 pyridoxal phosphate bind-

ing
3.84e-09 9263 14 6 6 deoxyribonucleotide biosyn-

thetic process
2.23e-08 55114 671 248 200 oxidation reduction
5.67e-08 15293 10 5 5 symporter activity
2.38e-07 46930 5 4 4 pore complex
1.16e-06 104 32 6 6 succinate dehydrogenase ac-

tivity
1.29e-06 43169 17 9 6 cation binding
1.72e-06 6631 6 13 5 fatty acid metabolic process
6.43e-06 8415 7 31 6 acyltransferase activity
1.18e-05 8253 12 4 4 5’-nucleotidase activity
1.73e-05 8415 55 31 12 acyltransferase activity
9.23e-05 43171 19 4 4 peptide catabolic process
1.69e-04 8654 5 13 4 phospholipid biosynthetic

process
3.01e-04 4332 25 4 4 fructose-bisphosphate

aldolase activity
1.16e-03 8654 7 13 4 phospholipid biosynthetic

process
3.60e-03 8742 13 3 3 L-ribulose-phosphate 4-

epimerase activity
6.99e-03 8168 5 8 3 methyltransferase activity
4.92e-02 9103 6 45 4 lipopolysaccharide biosyn-

thetic process
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Table 4.7: The single most relevant gene relationship for each core community found
for the IP modularity.

P value GO term Com size GO size In com Description
3.22e-78 5524 234 170 141 ATP binding
3.37e-40 9055 120 71 55 electron carrier activity
2.31e-26 9252 50 37 26 peptidoglycan biosynthetic

process
8.01e-14 30170 296 49 41 pyridoxal phosphate bind-

ing
1.49e-13 19439 15 11 9 aromatic compound

catabolic process
4.08e-13 8654 47 13 12 phospholipid biosynthetic

process
7.40e-13 6631 9 13 8 fatty acid metabolic process
4.32e-11 43169 19 9 8 cation binding
1.82e-10 45454 34 13 10 cell redox homeostasis
2.73e-07 16226 43 7 7 iron-sulfur cluster assembly
2.09e-05 287 116 129 35 magnesium ion binding
1.17e-02 5975 75 45 12 carbohydrate metabolic

process
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Table 4.8: The relevant metabolite relationships found for the Barber modularity.

P value Com num Com size GO size In com Subtype
6.60e-74 145 92 158 86 Glycerophospholipid

Metabolism
1.46e-21 216 18 17 13 Murein Biosynthesis
4.68e-20 100 29 103 24 Nucleotide Salvage Pathway
4.12e-14 216 18 35 12 Murein Recycling
3.81e-12 35 17 50 12 Oxidative Phosphorylation
2.43e-08 77 17 255 16 Cofactor and Prosthetic

Group Biosynthesis
4.28e-05 35 17 30 6 Nitrogen Metabolism
5.68e-05 80 9 103 7 Nucleotide Salvage Pathway
2.84e-04 82 15 103 8 Nucleotide Salvage Pathway
4.24e-04 35 17 28 5 Citric Acid Cycle
1.09e-03 35 17 58 6 Unassigned
1.33e-02 224 7 223 6 Alternate Carbon

Metabolism
1.40e-02 82 15 38 4 Cysteine Metabolism
3.51e-02 35 17 52 4 Inorganic Ion Transport

and Metabolism
3.94e-02 35 17 51 4 Purine and Pyrimidine

Biosynthesis
4.87e-02 82 15 58 4 Unassigned
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Table 4.9: The 20 most relevant metabolite relationships found for the Guimera
modularity.

P value Com num Com size GO size In com Subtype
1.09e-53 95 126 158 88 Glycerophospholipid

Metabolism
1.06e-32 25 58 103 42 Nucleotide Salvage Pathway
1.57e-22 21 41 35 21 Murein Recycling
5.38e-20 21 41 17 15 Murein Biosynthesis
1.54e-08 13 37 23 10 Histidine Metabolism
5.27e-07 13 37 64 13 Arginine and Proline

Metabolism
5.30e-07 13 37 44 11 Tyrosine, Tryptophan, and

Phenylalanine Metabolism
1.49e-06 13 37 30 9 Valine, Leucine, and

Isoleucine Metabolism
1.71e-06 105 19 223 15 Alternate Carbon

Metabolism
2.26e-06 99 6 30 5 Nitrogen Metabolism
8.33e-05 15 75 255 35 Cofactor and Prosthetic

Group Biosynthesis
9.69e-05 19 28 255 18 Cofactor and Prosthetic

Group Biosynthesis
1.57e-04 5 12 223 10 Alternate Carbon

Metabolism
2.08e-04 15 75 14 7 Methylglyoxal Metabolism
2.66e-04 1 61 51 12 Purine and Pyrimidine

Biosynthesis
6.53e-04 1 61 50 11 Oxidative Phosphorylation
6.72e-04 19 28 28 6 Methionine Metabolism
1.11e-03 95 126 143 30 Cell Envelope Biosynthesis
3.25e-03 1 61 52 10 Inorganic Ion Transport

and Metabolism
4.22e-03 13 37 13 4 Glutamate Metabolism
5.05e-03 21 41 98 11 Lipopolysaccharide Biosyn-

thesis / Recycling
1.17e-02 15 75 13 5 Glyoxylate Metabolism
1.25e-02 15 75 52 10 Inorganic Ion Transport

and Metabolism
1.29e-02 13 37 18 4 Alanine and Aspartate

Metabolism
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Table 4.10: The 20 most relevant metabolite relationships found for the IP modu-
larity.

P value Com num Com size GO size In com Subtype
5.95e-49 24 78 103 58 Nucleotide Salvage Pathway
1.93e-23 14 137 68 43 tRNA Charging
3.63e-19 22 47 35 20 Murein Recycling
6.30e-19 22 47 17 15 Murein Biosynthesis
4.87e-16 18 103 223 58 Alternate Carbon

Metabolism
1.30e-15 3 43 223 34 Alternate Carbon

Metabolism
4.67e-12 18 103 50 24 Oxidative Phosphorylation
7.13e-11 5 21 255 20 Cofactor and Prosthetic

Group Biosynthesis
2.12e-09 26 31 23 10 Histidine Metabolism
6.46e-09 18 103 30 16 Nitrogen Metabolism
1.65e-07 22 47 98 18 Lipopolysaccharide Biosyn-

thesis / Recycling
5.46e-07 26 31 64 12 Arginine and Proline

Metabolism
4.20e-06 28 10 98 8 Lipopolysaccharide Biosyn-

thesis / Recycling
4.52e-06 3 43 21 8 Pentose Phosphate Path-

way
6.19e-06 3 43 28 9 Glycolysis/Gluconeogenesis
1.71e-05 18 103 28 12 Citric Acid Cycle
1.13e-04 1 11 52 6 Inorganic Ion Transport

and Metabolism
3.12e-04 18 103 13 7 Glyoxylate Metabolism
1.72e-03 18 103 58 14 Unassigned
3.53e-03 26 31 13 4 Glutamate Metabolism
4.06e-03 14 137 255 47 Cofactor and Prosthetic

Group Biosynthesis
4.82e-03 16 8 44 4 Tyrosine, Tryptophan, and

Phenylalanine Metabolism
8.02e-03 18 103 22 7 Pyruvate Metabolism
1.08e-02 16 8 30 3 Valine, Leucine, and

Isoleucine Metabolism
1.32e-02 16 8 68 4 tRNA Charging
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Table 4.11: The single most relevant metabolite relationship for each core community
found for the Barber modularity.

P value Com num Com size GO size In com Subtype
6.60e-74 145 92 158 86 Glycerophospholipid

Metabolism
1.46e-21 216 18 17 13 Murein Biosynthesis
4.68e-20 100 29 103 24 Nucleotide Salvage Pathway
3.81e-12 35 17 50 12 Oxidative Phosphorylation
2.43e-08 77 17 255 16 Cofactor and Prosthetic

Group Biosynthesis
5.68e-05 80 9 103 7 Nucleotide Salvage Pathway
2.84e-04 82 15 103 8 Nucleotide Salvage Pathway
1.33e-02 224 7 223 6 Alternate Carbon

Metabolism
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Table 4.12: The single most relevant metabolite relationship for each core community
found for the Guimera modularity.

P value Com num Com size GO size In com Subtype
1.09e-53 95 126 158 88 Glycerophospholipid

Metabolism
1.06e-32 25 58 103 42 Nucleotide Salvage Pathway
1.58e-22 21 41 35 21 Murein Recycling
1.55e-08 13 37 23 10 Histidine Metabolism
1.71e-06 105 19 223 15 Alternate Carbon

Metabolism
2.26e-06 99 6 30 5 Nitrogen Metabolism
8.33e-05 15 75 255 35 Cofactor and Prosthetic

Group Biosynthesis
9.69e-05 19 28 255 18 Cofactor and Prosthetic

Group Biosynthesis
1.57e-04 5 12 223 10 Alternate Carbon

Metabolism
2.66e-04 1 61 51 12 Purine and Pyrimidine

Biosynthesis
1.69e-02 9 26 255 14 Cofactor and Prosthetic

Group Biosynthesis
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Table 4.13: The single most relevant metabolite relationship for each core community
found for the IP modularity.

P value Com num Com size GO size In com Subtype
5.95e-49 24 78 103 58 Nucleotide Salvage Pathway
1.93e-23 14 137 68 43 tRNA Charging
3.63e-19 22 47 35 20 Murein Recycling
4.87e-16 18 103 223 58 Alternate Carbon

Metabolism
1.30e-15 3 43 223 34 Alternate Carbon

Metabolism
7.13e-11 5 21 255 20 Cofactor and Prosthetic

Group Biosynthesis
2.12e-09 26 31 23 10 Histidine Metabolism
4.20e-06 28 10 98 8 Lipopolysaccharide Biosyn-

thesis / Recycling
1.13e-04 1 11 52 6 Inorganic Ion Transport

and Metabolism
4.82e-03 16 8 44 4 Tyrosine, Tryptophan, and

Phenylalanine Metabolism
3.38e-02 20 10 255 7 Cofactor and Prosthetic

Group Biosynthesis
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Chapter 5

Conclusions

This dissertation focused on developing fast, accurate, approximate methods for de-

tecting communities in unipartite and bipartite networks by finding partitions that

maximize modularity. Modularity [2] is a function that quantitatively measures

how modular a particular partition is for a particular network. New algorithms and

methods were proposed to find partitions that maximize modularity in unipartite and

bipartite networks when the links in the network are both weighted and unweighted.

Additionally, novel methods were developed to address known drawbacks to find-

ing communities with modularity maximization. The usefulness of the algorithms

and methods developed were demonstrated in applications to real-world biological

networks. In this final chapter of the dissertation these methods, applications, and

results are briefly summarized.

In Chapter 2, novel methods were presented to robustly detect co-regulated and

functionally enriched gene communities and demonstrate their application and valid-

ity for Escherichia coli gene expression data. A weighted network of gene interactions
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was identified from the expression data using the context likelihood of relatedness

(CLR) method [88]. The network of weighted interactions was converted to an un-

weighted network by choosing a threshold value. Any weighted link above the chosen

threshold value was converted to an unweighted link and any weighted link below

the chosen threshold value was removed. A recently developed community detection

algorithm [9] was run multiple times for threshold values below, at, and above the

critical threshold value for the which the unweighted network was no longer fully

connected. The ensemble of community detection results were analyzed to find those

genes that were always found together in the same community, defined as a core

community. Additionally, studying how the ensemble of communities changed as

the threshold value increased allowed the identification and study of the network

hierarchy. The core communities found at each threshold value significantly enriched

for gene ontology (GO) terms [235, 236, 237], consistent with them representing bi-

ologically meaningful groups. Further, analysis of the most significantly enriched

communities identified several candidate new regulatory interactions. The robust-

ness of our methods was demonstrated by showing that a core set of functional

communities is reliably found when artificial noise, modeling experimental noise, is

added to the data. It was found that noise mainly acts conservatively, increasing

the relatedness required for a network link to be reliably assigned and decreasing

the size of the core communities, rather than causing association of genes into new

communities.

In Chapter 3, the problem of community detection in bipartite networks when

the links are both weighted and unweighted links was studied. Bipartite networks are

uniquely structured networks that contain two types of nodes and links connecting

pairs of nodes that consist of one node of each type. Two methods of analysis exist
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to find the community structure of bipartite networks, biclustering and single mode

projection, with modularity functions commensurate to each method. The method

of studying bipartite networks by biclustering, partitions both types of nodes into

the same community. This has the advantage that all of the information from the

bipartite network is incorporated into the community structure. The two sets of

nodes are therefore constrained to contain the same number of communities. The

method of single mode projection studies each type of node in the bipartite network

separately by creating a unipartite projection. This has the advantage of showing

directly the relationships between nodes of one type and allows each type of node

to be partitioned into a different number of communities. However, some amount of

information about the bipartite structure of the network is always lost in the pro-

jection. This chapter introduced a new definition of bipartite modularity called the

Information Preserving (IP) modularity that uses the method of unipartite projec-

tion. The IP modularity, unlike any other known modularity, can be used to parti-

tion weight bipartite networks using a single mode projection. The IP modularity

was compared to two existing definitions of modularity, the Barber modularity [176]

and Guimera modularity [175], that use the method of biclustering and unipartite

projection, respectively. The IP modularity improves on the current methods of uni-

partite projection in its ability to find communities when the weighted links in the

bipartite network are weighted and in preserving more of the bipartite information

in its projection. Then the leading-eigenvalue method [4, 151] with final tuning [9]

was adapted to find the partition that maximizes the modularity using any of the

bipartite modularity definitions described above. An additional tuning step, that

agglomerates communities was added to the algorithm that extends and improves
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the performance of the leading-eigenvalue method of modularity maximization, al-

lowing networks with, at least, tens of thousands of nodes to be analyzed. Finally,

the expected value and standard deviation of IP modularity for random Erdös-Rényi

networks was analytically derived so that a Z-score comparison of the modularity

values of real-world networks can be computed. This allows a better measure of the

statistical significance of the partition.

Finally, in Chapter 4, finding community structure by maximizing Information

Preserving modularity is tested and validated in two ways. First, an ensemble of

model bipartite networks, whose partition is a priori defined, is used to test the IP

modularity’s ability to recover the known partition as noise is added to the network.

For these model bipartite networks whose links are unweighted, the IP modularity

outperforms the Guimera modularity usually recovering more of the known partition

when either side of the network is clustered. Additionally, the IP modularity is tested

when the links in the model bipartite network are weighted and compared to results

from maximizing the Barber modularity. The IP modularity recovers a large amount

of the known partition as noise is added to the bipartite networks but slightly less

than the Barber modularity. However, this is reasonable as the Barber modularity

does not create a projection and seeks to bicluster nodes into what are precisely the

type of communities defined in the model. Furthermore, this analysis validates the

IP modularity’s ability to extend the method of detecting communities by creating

a unipartite projection from a bipartite network to weighted bipartite networks.

Finally, all three modularities are applied to detect communities in the bipartite

metabolic network of Escherichia coli. For each modularity method, an ensemble

of network partitions is analyzed and the core communities are tested for biological

enrichment. The IP modularity finds the largest number of biologically significant
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enrichments with a large number of enzyme core communities that significantly enrich

for gene ontology (GO) terms and metabolite core communities that significantly

enrich for Metabolic reaction classification.

The novel methods developed in this dissertation, most notably, the ensemble

approach to detecting modular and hierarchical structure in networks and the de-

velopment of the IP modularity to find communities in weighted bipartite networks,

will significantly enhance the science of uncovering the structure in networks. Fur-

thermore, algorithmic advances presented in this dissertation, will allow the methods

to be used on much larger networks and datasets, extending the applicability of our

methods to a larger class of real world problems. We have demonstrated their appli-

cability to genetic and metabolic networks of Escherichia coli but they will also be

useful for studying a wide range of biological, medical, social, and physical networks.
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[127] Erzsébet Ravasz, Anna Lisa Somera, Dale A Mongru, Zoltán N Oltvai, and
A-L Barabási. Hierarchical organization of modularity in metabolic networks.
Science, 297(5586):1551–1555, 2002.

[128] Christine Vogel, Sarah A Teichmann, and Jose Pereira-Leal. The relationship
between domain duplication and recombination. Journal of Molecular Biology,
346(1):355–365, 2005.

[129] Jose B Pereira-Leal, Emmanuel D Levy, and Sarah A Teichmann. The
origins and evolution of functional modules: lessons from protein com-
plexes. Philosophical Transactions of the Royal Society B: Biological Sciences,
361(1467):507–517, 2006.

[130] Loic Giot, Joel S Bader, C Brouwer, Amitabha Chaudhuri, Bing Kuang, Y Li,
YL Hao, CE Ooi, Brian Godwin, E Vitols, et al. A protein interaction map of
drosophila melanogaster. Science, 302(5651):1727–1736, 2003.

208



[131] Soon-Hyung Yook, Zoltán N Oltvai, and Albert-László Barabási. Functional
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modeling of two-mode network data. Social Networks, 26(1):29–53, 2004.

[167] Mark EJ Newman. The structure of scientific collaboration networks. Proceed-
ings of the National Academy of Sciences, 98(2):404–409, 2001.

[168] Katy Börner, Jeegar T Maru, and Robert L Goldstone. The simultaneous
evolution of author and paper networks. Proceedings of the National Academy
of Sciences, 101(Suppl 1):5266–5273, 2004.

[169] Michael J Barber, Margarida Faria, Ludwig Streit, and Oleg Strogan. Searching
for communities in bipartite networks. arXiv preprint arXiv:0803.2854, 2008.

[170] Roger Guimera, Brian Uzzi, Jarrett Spiro, and Luis A Nunes Amaral. Team
assembly mechanisms determine collaboration network structure and team per-
formance. Science, 308(5722):697–702, 2005.
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