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Abstract

This dissertation gives a brief exposition of the history of Value Distribution The-

ory, often times referred to as Nevanlinna theory, and studies the case for Nevanlinna

theory for holomorphic maps where the source is a disc developed by Ru-Sibony [16].

We start with a motivation into the subject and lay out some classical formulations

with a focus on applications to the shared value problems. These problems are also

referred to as uniqueness theorems.

It is known that if two complex polynomials P and Q share two values without

counting multiplicities, then they are the same. Such problem is called the shared

value problem. In this dissertation, we focus on the study of the shared value problem

for holomorphic maps where the source is a disc. There are derivations for several

new unicity results for a class of holomorphic mappings from the disc into compact

Riemann surfaces and n-dimensional complex projective space.
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Chapter 1

Introduction

Consider a polynomial of one complex variable P (z). We can consider the zeroes

of this polynomial and their multiplicities. These zeroes have a correspondence to the

degree of the given polynomial. This correspondence is known as the Fundamental

Theorem of Algebra:

If P (z) is a non-constant complex polynomial of degree n, then P (z) will

have n complex zeroes, provided the zeroes are counted with multiplicity.

If we consider z = reiθ, then max{|P (reiθ)|} essentially grows like rn as r approaches

infinity. The Fundamental Theorem of Algebra can be reformulated with the growth

rate in mind as this:

Let a ∈ C. The number of z’s, counting multiplicity, satisfying the
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equation P (z)− a = 0 is the order of the growth rate of the polynomial.

Nevanlinna Theory generalizes this reformulation of the Fundamental Theorem of

Algebra to holomorphic and meromorphic functions on the complex plane C.

The question is how do we study this growth rate. For a given entire function,

J. Hadamard in [11] gave two notions for measuring the growth rate: the maximum

modulus on a disc of radius r and the maximum number of times a image point

is attained by the function in the disc. It turns out that that these two rates of

growth are essentially the same, with the former roughly being the exponential of

the latter. Instead of using the maximum modulus to measure the growth, in 1929,

R. Nevanlinna [13] found a more suitable substitute. He introduced the characteristic

function Tf (r) to measure the growth of a meromorphic function f . Starting with

the classical formula from Complex Analysis, Jensen formula, R. Nevanlinna was

able to derive a more subtle growth estimate for meromorphic functions in what he

called the Second Main Theorem. This theorem gives a quantitative version of the

classical versions of Picard’s theorem for meromorphic functions.

R. Nevenlinna’s Theory can be surmised in the following way. There are three

functions that are studied with respect to a meromorphic function f on the complex

disc 4(R).

Definition 1.0.1. Let f be a meromorphic function on 4(R), where 0 ≤ R ≤ ∞

and r < R. Denote the number of poles of f on the closed disc 4(R) by nf (r,∞),

counting multiplicity. We then define the counting function Nf (r,∞) to be

Nf (r,∞) = nf (∞, 0)log r +

∫ r

0

[nf (t,∞)− nf (0,∞)]
dt

t
,
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For each complex number a, we then define the counting function Nf (r, a) to be

Nf (r, a) = N 1
f−a

(r,∞). (1.1)

The counting function counts, as a logarithmic average, the number of times

f takes the value of a in a disc of radius r. In this paper, N f (a, r) is the counting

function not counting multiplicity. This is often referred to as the truncated counting

function.

Definition 1.0.2. The Proximity function of f is defined by

mf (∞, r) =
1

2π

∫ 2π

0

log+|f(reiθ)|dθ, (1.2)

where log+(x) = max{0, log x}. For any complex number a, let

mf (a, r) = m 1
f−a

(∞, r)

The proximity function mf (a, r) measures how close f is, on average, to a on the

circle of radius r.

Definition 1.0.3. The Characteristic Function of f is given by

Tf (r) = Nf (∞, r) +mf (∞, r). (1.3)

Tf (r) measures the growth of f. For example, Tf (r) = O(1) if and only if f is a

constant. Also, Tf (r) = O(log r) if and only if f is a rational function. With the

above definitions, Nevanlinna established the First Main Theorem.

Theorem 1.0.4 (First Main Theorem). If f is a non-constant meromorphic function

on C and a ∈ C ∪ {∞}, then

Nf (a, r) +mf (a, r) = Tf (r) +O(1) (1.4)
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Here Tf (r) takes the place of degree n in the polynomial case. Note thatmf (a, r) ≥

0. Thus, the First Main Theorem says the function f cannot take on the value

a too often in the sense that the frequency with which f takes on the value a

cannot be so high that the Counting function Nf (a, r) grows faster than Tf (r) i.e

Nf (a, r) < Tf (r) for all a ∈ C∪{∞}. This compares to the polynomial case where a

polynomial of degree n takes on every value a at most n times. Looking more closely

at the First Main Theorem, it says that Tf (r) is actually independent of of any point

a.

The next question is whether we can bound the characteristic function above

with respect to the counting function. It turns out that this can be done. This is

established by the much deeper Theorem.

Theorem 1.0.5 (Second Main Theorem).

(q − 2)Tf (r) +Nf,ram(r) ≤
q∑
j=1

Nf (aj, r) +O(log+(Tf (r)) + δ log r ||E (1.5)

holds for all r outside a set E with finite Lebesgue measure.

The term Nf,ram(r) is positive and measures how often the function f is ramified.

We can define the deficiency of a ∈ C ∪ {∞} with respect to f to be

δf (a) = lim inf
r→∞

mf (a, r)

Tf (r)
= 1− lim sup

r→∞

Nf (a, r)

Tf (r)
.

It is clear from the definition that 0 ≤ δf (a) ≤ 1 and if f omits the value a then,

δf (a) = 1. From the Second Main Theorem, we have that the set of deficient values

of a transcendental meromorphic function f is at most countable and∑
δf (a) ≤ 2,
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where the sum is taken over all the deficient values. Thus, the classical theorem of

Picard is recovered by Nevanlinna Theory.

Theorem 1.0.6 (Little Picard Theorem). Let f be a meromorphic function on C.

If f omits three distinct points in C ∪ {∞}, then f must be constant.

R. Nevanlinna’s work was further extended by H. Cartan for holomorphic map-

pings into n-th dimensional complex projective space Pn(C). S.S. Chern followed the

trend and was able to extend Nevanlinna’s theory for holomorphic mappings from C

into compact Riemann surfaces. Nevanlinna Theory has been a very active research

area for the past century.

Chapter 2 briefly covers the primary motivation for the strategies in the proof of

one of the main results presented in this paper. A. Sauer in [19], provides an alternate

view of the Riemann-Hurwitz formula that can be easily utilized in addressing the

shared value problem for mappings between compact Riemann surfaces. The formal

statement and its applications are provided in detail in order to showcase his strategy.

Among the many applications to Nevanlinna Theory, the focus of Chapter 3 are

the uniqueness results and there historical development. In each setting, we show how

the Second Main Theorem is can be used to achieve the desired results. The shared

value problems in this chapter motivate the primary results in this dissertation.

Chapter 4 discusses the theory of holomorphic curves from a disc of radius R

into a compact Riemann surface. This theory has been recently established by Min

Ru and Nessim Sibony in [16]. The comprehensive theory is presented. The chapter

concludes with a brand new uniqueness result, that not only is a new contribution
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to the results in the previous chapter, but recovers some of the prior results as well.

In Chapter 5, the theory for holomorphic curves from a disc of radius R into n-

dimensional complex projective space Pn(C) are discussed. The most current theory,

due to Ru and Sibony in [16], is presented in full. The conclusion of the chapter is

another brand new uniqueness result. This is the second main result of the paper.

This result is also recovers a prior result and therefore extends the list of theorems

regarding the shared value problem.

6



Chapter 2

Historical Motivation

The Second Main Theorem is the primary result in Nevanlinna theory. In [2],

Ahlfors made precise the view that the second main theorem can be seen as a trance-

dental version of the Riemann-Hurwitz for compact Riemann surfaces. An applica-

tion to the Second Main Theorem, which is the focus of our paper, is investigating

shared value problems. The spirit of our main results start with the Riemann-Hurwitz

theorem, its reformulation, and its applications to shared value problems presented

by A. Sauer [19].
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2.1 Riemann-Hurwitz Theorem and The Algebraic

Second Main Theorem

Let f : X → Y be a non-constant holomorphic map, where X and Y are compact

Riemann surfaces. We call νf (p) the multiplicity of f at p ∈ X if there are local

coordinates z for X at p ∈ X and w ∈ Y at f(p) such that w = zνf (p).

Theorem 2.1.1 (Riemann-Hurwitz Theorem [12]). Let X and Y be compact Rie-

mann surfaces with genera gX and gY , respectively, and f : X → Y be a non-constant

holomorphic map. Then

2gX − 2 = deg(f)(2gY − 2) + rf (X),

where deg(f) is the number of pre-images of a point y ∈ Y , counted with multiplicity

and rf (X) :=
∑

p∈X(ν(p)− 1).

There is a well-suited version of the above equation that can be easily utilized

to deal with shared value problems. Let f be defined as in the above theorem and

{y1, ..., yn} ⊆ Y be distinct points. Set M := f−1({y1, ..., yn}). It follows from the

definition of deg(f) that n deg(f) = |M |+rf (M), where |M | is the cardinality of M .

By noticing that rf (X) = rf (M) + rf (M
c), we can rewrite the Riemann-Hurwitz as

(n+ 2gY − 2) deg(f) = |M |+ 2gX − 2− rf (M c).

This yields the below inequality, which is formally equivalent to Nevanlinna’s Second

Main Theorem.

(n+ 2gY − 2) deg(f) ≤ |M |+ 2gX − 2
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When Y is taken to be P1(C), the inequality is known as the Algebraic Second

Main Theorem. For the sake of formality, we provide a statement with proof.

Theorem 2.1.2 (Algebraic Second Main Theorem). Let X be a compact Riemann

surface with genus gX , f : X → P1(C) be a non-constant holomorphic map, and

a1, ..., an ∈ P1(C) be distinct points. Define M := f−1({a1, ..., an}). Then

(n− 2) deg(f) ≤ |M |+ 2gX − 2,

where |M | is the cardinality of M .

Proof. From the definition of degree, we have n deg(f) = |M |+r(M), where r(M) =∑
x∈X(ν(x) − 1). On the other hand, by the Riemann-Hurwitz, we have rf (M) ≤

rf (X) ≤ 2 deg(f) + 2gX − 2. Combining this inequality with the definition of degree

yields (n− 2) deg(f) ≤ |M |+ 2gX − 2

2.2 Motivating Uniqueness Strategy

The proof of the following result is the essence in which the primary result of

this paper was founded upon. The key observation is utilizing a Lemma to fashion a

meromorphic function from Y into P1(C) such that its degree is related to the genus

of Y . We provide the following Lemma and its proof to motivate our proof strategy

in our main result.

Lemma 2.2.1 ([19]). Let X and Y be two compact Riemann surfaces and f, g :

X → Y be two distinct non-constant holomorphic maps that share n values. Then

(n− 4)(deg(f) + deg(g)) ≤ 4(gX − 1)

9



Proof. Let f and g share the following distinct points y1, ..., yn in Y . Let M :=

f−1({y1, ..., yn}) = g−1({y1, ..., yn}). Choose x0 ∈ X such that f(x0) 6= g(x0) and

set y0 := f(x0). It follows from Lemma 4.2.3 that there exists a non-constant mero-

morphic function ϕ : Y → P1(C) with a single pole at y0 of multiplicity less than

or equal to gY + 1. This implies deg(ϕ) ≤ gY + 1. Now consider the following two

compositions, both of which are mappings X → P1(C), F := ϕ ◦ f and G := ϕ ◦ g.

Now the difference F −G can be defined and is non-constant since F (x0) =∞ and

G(x0) ∈ C. By the definition M , for all x ∈ M we have that F (x) − G(x) = 0. By

counting the zeros of F −G we have that

|M | ≤ deg(F −G) ≤ deg(F ) + deg(G) = deg(ϕ)(deg(f) + deg(g))

≤ (gY + 1)(deg(f) + deg(g)).

By the Algebraic Second Main Theorem, we have

(n+ 2gY − 2) deg(f) ≤ |M |+ 2gX − 2.

This yields

(n+ gY − 3) deg(f) ≤ (gY + 1) deg(g) + 2gX − 2.

By symmetry, we have

(n+ gY − 3) deg(g) ≤ (gY + 1) deg(f) + 2gX − 2.

Finally, by adding the above two inequalities, we have that

(n− 4)(deg(f) + deg(g)) ≤ 4(gX − 1).
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A. Sauer([19]) used Lemma 2.1.1 and the Algebraic Second Main Theorem for

the next set of results. The following uniqueness theorems really provide the spirit

and motivation for the primary results in this paper. The first is a bound of shared

values for rational functions on C (which can be viewed as a holomorphic map from

P1(C) to P1(C)). The second provides a bound of shared values for functions between

compact Riemann surfaces.

Theorem 2.2.2 ([19]). Let f, g : P1(C)→ P1(C) be non-constant holomorphic maps.

If f and g share four values, then f = g.

Proof. Suppose f and g are distinct. Since the genus of P1(C) is 0, by Lemma 2.1.1,

we have

(n− 4)(deg(f) + deg(g)) ≤ −4. (2.1)

Suppose f and g share four values i.e. n = 4, then the above inequality gives a

contradiction 0 ≤ −4.

Theorem 2.2.3 ([19]). Let X and Y be two compact Riemann surfaces with gX > 0

and f, g : X → Y be distinct non-constant holomorphic maps that share n values.

Then

n ≤ 2 + 2
√
gX + gXgY − gY .

Proof. Since the result is trivial if n < 4, consider the case where 4 ≤ n. By the proof

in Lemma 2.1.3, we have that deg(f) + deg(g) ≥ |M |/(gY + 1). On the other hand,

it is clear that n ≤ |M |. Using (2.1) gives (n− 4)n ≤ 4(gX − 1)(gY + 1). Modifying
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the inequality gives

n ≤
√

4 + 4(gX − 1)(gY + 1) ≤ 2 + 2
√
gX + gXgY − gY .

We can consider f and g to be meromorphic functions on X (which can be viewed

as a holomorphic map from X into P1(C)) if we take Y = P1(C). Then we have the

following result.

Corollary 2.2.4 ([19]). Let X be a compact Riemann surface with gX > 0 and

f, g : X → P1(C) be distinct non-constant holomorphic maps that share n values.

Then,

n ≤ 2 + 2
√
gX .

Proof. The result is proven by Theorem 2.2.3 when gY = 0.

Corollary 2.2.4 is meaningful since for all compact Riemann surfaces the existence

distinct meromorphic f and g that share three values can easily be constructed. For

example, consider

F (z) :=
(z + i)3(z − 2)

(z − i)3(z + 2)

and

G(z) :=
(z + i)(z − 2)

(z − i)(z + 3)
.

It is clear that F and G share the values 0, 1, and∞ on P1(C). By the Riemann-Roch

theorem, there exists a non-constant meromorphic function ϕ : X → P1(C). If we

set f := F ◦ h and g := G ◦ h, we have that f and g share the values 0, 1, and ∞

and are distinct since deg(f) 6= deg(g).

12



Chapter 3

Functions Sharing Values

In 1925, Rolf Nevanlinna [13] extended the classical theorems of Picard and Borel

by developing the value distribution theory of meromorphic functions on the complex

plane C, which is now called Nevanlinna theory. As an application of his Second Main

Theorem, Nevanlinna derived his celebrated five-point theorem: If two non-constant

meromorphic functions f and g defined on C share five distinct values in C ∪ {∞}

(without counting multiplicities), then f ≡ g. Later, Fujimoto [8] extended the result

to holomorphic mappings from C into Pn(C) and, recently, Chen-Yan [4] improved

Fujimoto’s result.

In 1960, S.S. Chern [5] extended Nevanlinna’s Second Main Theorem to holo-

morphic maps from the complex plane C into compact Riemann surfaces. By using

Chern’s Second Main Theorem, E. M. Schmid [20] proved the following result: Let

M be a compact Riemann surface of genus 1 and f, g : C→M be two non-constant
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holomorphic maps. Suppose that f, g share five distinct values in M (without count-

ing multiplicities), then f ≡ g. However, nothing can be said for compact Riemann

surface of genus greater than 1, since, in this case, every holomorphic mapping

f : C→M must be constant.

Recently, Ru-Sibony [16] developed Nevanlinna’s theory for a class of holomorphic

maps where the source is a disc by introducing the notion of a growth index of a

holomorphic map f : 4(R) → M denoted by cf,ω, where M is a complex manifold

and ω is a positive (1,1) form of finite volume on M . The purpose of this chapter

is to recall prior uniqueness results for holomorphic maps. These prior results then

motivate the case for studying holomorphic maps from the disc 4(R) into compact

Riemann surfaces and Pn(C). The case for compact Riemann surfaces is especially

interesting if the genus is greater than 1.

3.1 Uniqueness Results for Polynomials

The following theorem provides the initial motivation and determines our overall

method for addressing shared value problems.

Theorem 3.1.1 ([1]). Let P and Q be two non-constant complex (or any algebraically

closed field of characteristic zero) polynomials. Assume that there are two distinct

complex values aj ∈ C, for j = 1, 2, such that P (z) = aj if and only if Q(z) = aj

without counting multiplicities (we say that P and Q share the values aj). Then P ≡

Q.

14



Proof. Without loss of generality, we can assume that P and Q share the two values

0 and 1. So P (z) = 0 if and only if Q(z) = 0 and P (z) = 1 if and only if Q(z) = 1.

Suppose n = deg(P ) ≥ deg(Q) > 0 and P 6≡ Q. Since every zero of P is a zero of Q,

they are also zeros of P−Q. Similarly, since every zero of P−1 is a zero of Q−1, they

are also zeros of P −1− (Q−1) = P −Q. Considering P ′, we have P |P ′(P −Q) and

P −1|P ′(P −Q). Since P and P −1 are relatively prime, P (P −1)|P ′(P −Q). Thus,

we have deg(P (P − 1)) = 2n and deg(P ′(P −Q)) = 2n− 1. For P (P − 1)|P ′(P −Q)

to hold, it must be the case that P −Q = 0.

3.2 Nevanlinna Five Values Theorem

In 1929, R. Nevanlinna [13] started the theory of value distribution of meromor-

phic functions with his development of Nevanlinna Theory. As an application of his

early work, he proved the following celebrated theorem.

Definition 3.2.1. Consider the set

Sf (a) = {z ∈ C | f(z) = a}.

Let f and g be two meromorphic functions and a ∈ P1(C). We say that f and g

share the value a, if Sf (a) = Sg(a).

Theorem 3.2.2 (Nevanlinna’s Five Values Theorem). Let f and g be two non-

constant meromorphic functions on C. If Sf (aj) = Sg(aj) for five distinct values

a1, ..., a5, then f ≡ g.

15



Proof. Let f and g be two non-constant meromorphic functions such that f 6= g

and a1, ..., aq be distinct points in P1(C). Then by the Second Main Theorem (1.5),

properties of the Characteristic function, and The First Main Theorem (1.4), we

have that for f

(q − 2)Tf (r) ≤
q∑
j=1

N f (aj, r) +O(log+(Tf (r)) + δ log r ||E.

Similarly for g, we have that

(q − 2)Tg(r) ≤
q∑
j=1

N g(aj, r) +O(log+(Tf (r)) + δ log r ||E.

Adding both inequalities above yields,

(q − 2)(Tf (r) + Tg(r)) ≤
q∑
j=1

N f (aj, r) +N g(aj, r)

+O(log+(Tf (r)) +O(log+(Tg(r)) + δ log r ||E.

Then notice, by a counting argument, that
∑q

j=1 N f (aj, r) ≤ Nf−g(0, r). This in-

equality holds similarly for g for the same reasoning. With the above considerations

and the First Main Theorem we have that

(q − 2)(Tf (r) + Tg(r)) ≤
q∑
j=1

N f (aj, r) +N g(aj, r)

+ O(log+(Tf (r)) +O(log+(Tg(r)) + δ log r ||E.

≤ 2Nf−g(0, r) +O(log+(Tf (r)) +O(log+(Tg(r)) + δ log r ||E.

≤ 2Tf−g(r) +O(log+(Tf (r)) +O(log+(Tg(r)) + δ log r ||E.

≤ 2(Tf (r) + Tg(r))

+ O(log+(Tf (r)) +O(log+(Tg(r)) + δ log r ||E.

Thus, as r gets large, if q = 5 we would arrive at a contradiction.
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Note that q = 5 is a sharp bound. As an example, consider the meromorphic

functions f(z) = ez+1
(ez−1)2

and g(z) = (ez+1)2

8(ez−1)
. They share the values ∞, 0, 1,−1

8
.

3.3 Five Values Theorem for Torus

E. Schmid in [20] extended uniqueness results, like the ones above, using S.S

Chern [5] Nevanlinna theory for holomorphic maps from C into compact Riemann

surfaces.

Theorem 3.3.1 (See Theorem 6.1 in [20]). Let f, g : C → T be two non-constant

holomorphic mappings, where T is a 1-dimensional complex Torus. Then if f−1(aj) =

g−1(aj) for distinct points aj ∈ T , j = 1, ..., 5, it follows that f ≡ g.

Proof. See Theorem 4.2.4.

3.4 Uniqueness Theorem’s for Holomorphic Maps

into Pn(C)

The theory of holomorphic maps on the disc into Pn(C) is presented in full in

chapter 5. This theory generalizes Cartan’s original results in [3]. From Theorem

5.1.11, if we take R =∞, we recover Cartan’s Second Main Theorem.

Theorem 3.4.1 ([3]). let H1, ..., Hq be hyperplanes in Pn(C) in general position. Let

f : C → Pn(C) be a linearly non-degenerate holomorphic curve(i.e. its image is not
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contained in any proper subspaces). Then, for any δ > 0, the inequality

q∑
j=1

mf (r,Hj) +NW (r, 0)

≤ (n+ 1)Tf (r) +O(log+ Tf (r)) + δ log r +O(1)

holds for all r outside a set E with finite Lebesgue measure.

Using the Theorem 5.1.1 (First Main Theorem), the inequality in Theorem 3.4.1

can be written as

qTf (r)−
q∑
j=1

Nf (r,Hj) +NW (r, 0)

≤ (n+ 1)Tf (r) +O(log+ Tf (r)) + δ log r +O(1) ‖E.

We use the following reformulation in the uniqueness proofs in this setting.

Theorem 3.4.2. let H1, ..., Hq be hyperplanes in Pn(C) in general position. Let

f : C → Pn(C) be a holomorphic curve whose image is not contained in any proper

subspaces. Then, for any δ > 0, the inequality

(q − (n+ 1))Tf (r) ≤
q∑
j=1

N
(n)
f (r,Hj)

+ +O(log+ Tf (r)) + δ log r +O(1) ‖E

holds for all r outside a set E with finite Lebesgue measure.

Like in the previous sections, we can now establish a unicity result. The following

Theorem is due to L.Smiley in 1983.

Theorem 3.4.3 ([22]). Let f, g : C → Pn(C) be two linearly non-degenerated holo-

morphic curves and H1, ..., Hq be hyperplanes in Pn(C) located in general position.

Assume the following:
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i.) f−1(Hj) = g−1(Hj) for j = 1, ..., q;

ii.) f−1(Hi) ∩ f−1(Hj) = ∅, for each i 6= j;

iii.) A = ∪qj=1f
−1(Hj).

If f(z) = g(z) for all z ∈ A and q > 3n+ 1, then f ≡ g.

Proof. Assume f 6≡ g. We then apply Cartan’s Second Main Theorem to f and g to

get

(q − (n+ 1))Tf (r) ≤
q∑
j=1

N
(n)
f (r,Hj)

+ O(log+ Tf (r)) + δ log r +O(1) ‖E

and

(q − (n+ 1))Tg(r) ≤
q∑
j=1

N (n)
g (r,Hj)

+ O(log+ Tg(r)) + δ log r +O(1) ‖E.

Adding these two inequalities yields,

(q − (n+ 1))(Tf (r) + Tg(r)) ≤
q∑
j=1

N
(n)
f (r,Hj) +N (n)

g (r,Hj)

+ O(log+ Tf (r)) +O(log+ Tg(r))

+ δ log r +O(1) ‖E.

Since f 6≡ g, by fixing the reduced representation of f and g such that Tfi(r) ≤

Tf (r) and Tgi(r) ≤ Tg(r), there exist 1 ≤ i0 ≤ j0 ≤ q such that we can define an

auxiliary function

χ := fi0gj0 − fj0gi0 6≡ 0.
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Then, we can see that
q∑
j=1

N
(1)
f (r,Hj) ≤ Nχ(r, 0).

By Cartan’s First Main Theorem and the fact that Tf−g(r) ≤ Tf (r) +Tg(r), we have

Nχ(r, 0) = Nfi0gj0−fj0gi0 (r, 0)

≤ Tfi0gj0−fj0gi0 (r)

≤ Tfi0gj0 (r) + Tfj0gi0 (r)

≤ Tf (r) + Tg(r).

This gives

(q − (n+ 1))(Tf (r) + Tg(r)) ≤ 2n(Tf (r) + Tg(r))

+ O(log+ Tf (r)) +O(log+ Tg(r)) + δ log r +O(1) ‖E.

This contradicts the assumption that q > 3n+ 1.

Observe that if n = 1, then Nevanlinna’s Five Point Theorem is recovered by the

result.

Theorem 3.4.3 can be improved with the consideration of another auxiliary func-

tion. In the following theorem take q = 2n+ 3.

Theorem 3.4.4 ([4]). Let f, g : C → Pn(C) be two linearly non-degenerated holo-

morphic curves and H1, ..., Hq be hyperplanes in Pn(C) located in general position.

Assume the following:

i.) f−1(Hj) = g−1(Hj) for 1 ≤ j ≤ q;
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ii.) f−1(Hi) ∩ f−1(Hj) = ∅, for each i 6= j;

Let A = ∪qj=1f
−1(Hj). If f(z) = g(z) for all z ∈ A and q > 2n+ 2, then f ≡ g.

Proof. Assume f 6= g. We construct an auxiliary function as in [4] (see also [9]). By

lemma 3.1 in [18], there exists a hyperplane

Hc = {c0x0 + · · ·+ cnxn = 0}

such that f−1(Hc ∩Hj) = ∅ and g−1(Hc ∩Hj) = ∅ for j = 1, ..., q. Fix such an Hc.

Let Hj = {aj0x0 + · · · + ajnxn = 0}. Then define (f,Hj) :=
aj0f0+···+ajnfn
c0f0+···+cnfn , where

(f1, ..., fn) is a local reduced representation of f . We define (g,Hj) similarly. We

arrange the hyperplanes H1, .., Hq into groups:

Group 1:

(f,H1)

(g,H1)
≡ · · · ≡ (f,Hk1)

(g,Hk1)
6≡ (f,Hk1+1)

(g,Hk1+1)

Group 2:

(f,Hk1+1)

(g,Hk1+1)
≡ · · · ≡ (f,Hk2)

(g,Hk2)
6≡ (f,Hk2+1)

(g,Hk2+1)

· · ·

Group s:

(f,Hks−1+1)

(g,Hks−1+1)
≡ · · · ≡ (f,Hks)

(g,Hks)

where ks = q. The assumption of “in general position” implies that the number of

each group does not exceed n. For each 1 ≤ i ≤ q, we set σ(i) = i+n if i+n ≤ q and

σ(i) = i+n− q if i+n > q. Then it can be seen that σ is bijective and |σ(i)− i| ≥ n
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since q ≥ 2n. Define Pi as follows:

Pi = (f,Hi)(g,Hσ(i))− (g,Hi)(f,Hσ(i)).

Since f 6≡ g, we have that Pi 6≡ 0. We define the auxiliary function

P :=

q∏
i=1

Pi. (3.1)

Fix an index i with 1 ≤ i ≤ q. For z 6∈ ∪s 6=tf−1(Hs ∩ Ht), notice first, if z is a

zero of (f,Hi), then z is a zero of Pi with multiplicity at least min{(f,Hi), (g(, Hi)}.

Similarly, if z is a zero of (f,Hσ(i)), then z is a zero point of Pi with multiplicity at

least min{(f,Hσ(i)), (g(, Hσ(i))}. Secondly, if z is a zero of (f,Hv) with v ∈ {i, σ(i)},

then z is a zero of Pi since in this case f(z) = g(z). Denote by νP (z), the zero order

of P at the point z and νnF (Hi)
(z) = min{n, νF (Hi)(z)}. Then,

νPi(z) ≥ min{ν(f,Hi)(z), ν(g,Hi)(z)}+ min{ν(f,Hσ(i))(z), ν(g,Hσ(i))(z)}

for z 6∈ ∪s 6=tf−1(Hs∩Ht). Since min{a, b} ≥ min{a, n}+min{b, n}−n for all positive

integers a and b, it follows from the above inequality

νPi(z) ≥
∑

v=i,σ(i)

min{ν(f,Hv)(z), n}+ min{ν(g,Hv)(z), n} − nmin{ν(f,Hv(z), 1}
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for z 6∈ ∪s 6=tf−1(Hs ∩Ht). Using the fact that f−1(Hs ∩Ht) = ∅ for s 6= t, we have

νP (z) ≥ 2

q∑
v=1

(
min{ν(f,Hv)(z), n}+ min{ν(g,Hv)(z), n} − nmin{ν(f,Hv(z), 1}

)
+ (q − 2)

q∑
v=1

min{ν(f,Hv(z), 1}

= 2

q∑
v=1

(νn(f,Hv)(z) + νn(g,Hv)(z)) +
(q − 2− 2n

2

) q∑
j=1

(ν1
(f,Hj)

(z) + ν1
(g,Hj)

(z))

≥ 2

q∑
j=1

(νn(f,Hj)(z) + νn(g,Hj)(z)) +
(q − 2− 2n

2

) q∑
j=1

(νn(f,Hj)(z) + νn(g,Hj)(z))

≥
(q − 2 + 2n

2n

) q∑
j=1

(νn(f,Hj)(z) + νn(g,Hj)(z)).

By integrating both sides of the above inequality, we have

NP (r) ≥
(q − 2 + 2n

2n

) q∑
j=1

(N
(n)
f (r,Hj) +N (n)

g (r,Hj)).

By the definition of the characteristic function and the First Main Theorem, we have

NP (r) ≤ q(Tf (r) + Tg(r)) +O(1).

This implies

q(Tf (r) + Tg(r)) ≥
(q − 2 + 2n

2n

) q∑
j=1

(N
(n)
f (r,Hj) +N (n)

g (r,Hj)). (3.2)

Applying the Second main Theorem to f and g, we have

(q − (n+ 1))Tf (r) ≤
q∑
j=1

N
(n)
f (r,Hj)

+ O(log+ Tf (r)) + δ log r +O(1) ‖E

and

(q − (n+ 1))Tg(r) ≤
q∑
j=1

N (n)
g (r,Hj)

+ O(log+ Tg(r)) + δ log r +O(1) ‖E.
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Adding these two inequalities yields,

(q − (n+ 1))(Tf (r) + Tg(r)) ≤
q∑
j=1

N
(n)
f (r,Hj) +N (n)

g (r,Hj) (3.3)

+ O(log+ Tf (r)) +O(log+ Tg(r))

+ δ log r +O(1) ‖E.

Combining (3.2) and (3.3),

(q − 2 + 2n

2n

)
(q − (n+ 1))(Tf (r) + Tg(r)) ≤ q(Tf (r) + Tg(r)) +O(1).

Thus, (q − 2 + 2n

2n

)
(q − (n+ 1)) ≤ q.

We arrive at a contradiction if q > 2n+ 2.

In this dissertation, we will use the auxiliary function given above to study unique-

ness results in the disc case.
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Chapter 4

Holomorphic Mappings into

Compact Riemann Surfaces

4.1 Value distribution of Holomorphic Mappings

into Compact Riemann Surfaces

In 2017, Min Ru and Nessim Sibony [16] developed Nevanlinna’s theory for a

class of holomorphic maps where the source is a disc of radius R. There work was

motivated first by Nevenlinna’s work in [13], establishing the Second Main Theorem

for meromorphic functions on the complex plane C. Shortly after, H. Cartan [3]

developed the value distribution theory for holomorphic mappings from C into the

n-dimensional complex projective space Pn(C) and studied the intersection with hy-

perplanes in general position. In 1960, S.S. Chern [5] was able to extend Nevanlinna’s
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result to holomorphic mappings from the complex plane C into compact Riemann

surfaces. At the time Cartan was developing his theory, it was observed (first by

Nevanlinna) that similar results hold for meromorphic functions from the complex

unit disc 4(1) to Pn(C), under the condition that

lim
r→1

Tf (r)

log 1
1−r

=∞.

This observation motivates the notion of the growth index, defined below.

We first introduce some notations. For a complex variable z, let

∂u =
∂u

∂z
dz, ∂̄u =

∂u

∂z̄
dz̄.

Let d = ∂ + ∂̄, dc =
√
−1

4π
(∂̄ − ∂). Then we have that ddc =

√
−1

2π
∂∂̄.

Let M be a compact Riemann surface. Let ω = a(z)
√
−1

2π
dz ∧ dz̄ be a positive

smooth (1, 1) form on M . Let Ric(ω) := ddc log a. Then we have

Ric(ω) = −Kω,

where K is the Gauss curvature of the metric form ω.

Let 4(R) denote a disc of radius R with the convention that 4(∞) = C. Let M

be a Hermitian manifold and ω be a positive (1,1) form of finite mass on M .

Definition 4.1.1. The Characteristic (or height) function of f with respect

to ω of a non-constant holomorphic map f : 4(R)→M , for 0 < r < R, is given by

Tf,ω(r) =

∫ r

0

dt

t

∫
|z|<t

f ∗ω.
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For each c <∞, let

Ec =
{
f |
∫ R

0

exp(cTf,ω(r))dr =∞
}
, (4.1)

E = ∪c<∞Ec and E0 = ∩c>0Ec. (4.2)

Notice that the set Ec contains maps from the unit disc to M which satisfy, for r

close to 1,

Tf,ω(r)

log 1
1−r
≤ 1

c
.

Definition 4.1.2. Let M be a complex manifold and ω be a positive (1,1) form of

finite volume on M. Let 0 < R ≤ ∞ and f : 4(R)→M be a holomorphic map. We

define the growth index of f with respect to ω as

cf,ω := inf{c > 0|
∫ R

0

exp(cTf,ω(r)dr =∞}.

We always assume that the set {c > 0|
∫ R

0
exp(cTf,ω(r)dr =∞} is non-empty. If

f is of bounded characteristic (hence R < ∞), then cf,ω = ∞. In the case where

R = ∞, noticing that
∫ R
o

exp(εTf,ω(r)dr = ∞ for any arbitrary small ε if f is not

constant, cf,ω = 0 and f is in E0. Thus, the following results also include the classical

results for mappings on the whole complex plane f : C→M.

We introduce some examples of holomorphic maps on the unit disc which are in

the class we will study.

Example 1. Let N be a compact Riemann surface of genus ≥ 2. Then N has a

smooth metric form ωP whose Gauss curvature is −1. We take ϕ : 4(1)→ N as the

uniformizing map. Then

Tϕ,ωP (r) = log
1

1− r
+O(1).
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In this case, cϕ,ωP = 1. Thus ϕ ∈ E1.

Example 2. Let M be a compact Kobayashi manifold and let ω be a metric form.

Then, by Brody’s theorem (see [15]), there is a constat C > 0 such that for any

holomorphic map ϕ : 4(1) → M , we have that |f ′(0)|ω ≤ C. Hence |f ′(z)|ω ≤ C
1−|z|

on 4(1). Which implies that we have Tf,ω(r) ≤ C log 1
1−r . So the space E0 is empty.

However, cf,ω is not necessarily finite since it requires an estimate on the lower bound

on Tf,ω(r).

We are ready to begin establishing the preliminaries to the theory of holomorphic

mappings from the disc. We proceed in the usual way.

Lemma 4.1.3 (Calculus Lemma). Let 0 < R ≤ ∞ and let γ(r) be a non-negative

function defined on (0, R) with
∫ R

0
γ(r)dr =∞. Let h be a non-decreasing function of

class C1 defined on (0, R). Assume that limr→R h(r) = ∞ and h(r0) ≥ c > 0. Then

for every 0 < δ < 1, the inequality

h′(r) ≤ h1+δ(r)γ(r)

holds for all r ∈ (0, R) outside a set E with
∫
E
γ(r)dr <∞.

Proof. Let E ⊂ (ro, R) be the set of r such that h′(r) ≥ h1+δ(r)γ(r). Then∫
E

γ(r)dr ≤
∫ R

r0

h′(r)

h1+δ(r)
dr =

∫ ∞
c

dt

t1+δ
<∞.

This proves the lemma.

Lemma 4.1.4. Let 0 < R ≤ ∞ and let γ(r) be a function defined on (0, R) with∫ R
0
γ(r)dr = ∞. Let h be a function of class C2 defined on (0, R) such that rh′ is a
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non-decreasing function. Assume that limr→R h(r) =∞. Then

1

r

d

dr

(
r
dh

dr

)
≤ rδ · γ2+δ(r) · h(1+δ)2(r)

holds outside a set E ⊂ (0, R) with
∫
E
γ(r)dr <∞.

Proof. We apply the Calculus lemma twice. First to the function rh′(r) and then to

the function h(r).

The use of the Calculus lemma will be the following. Let Γ be a non-negative on

4(R) with 0 < R ≤ ∞. Define

TΓ(r) :=

∫ r

0

dt

t

∫
|z|<t

Γ

√
−1

2π
dz ∧ dz̄

and

λ(r) :=

∫ 2π

0

Γ(reiθ)
dθ

2π
.

By using polar coordinates,

√
−1

2π
dz ∧ dz̄ = 2rdr ∧ dθ

2π
.

Hence

r
dTΓ

dr
= 2

∫ 2π

0

(∫ r

0

Γ(teiθ)tdt
)dθ

2π
,

d

dr

(
r
dTΓ

dr

)
= 2r

∫ 2π

0

Γ(reiθ)
dθ

2π
= 2rλ(r).

Thus, from Lemma 4.1.3, we have

λ(r) ≤ 1

2
rδ · γ2+δ(r) · T (1+δ)2

Γ (r) (4.3)
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holding for all r ∈ (0, R) outside a set E with
∫
E
γ(r)dr <∞. In this paper, we will

always use the inequality (4.3) with a proper chosen γ(r).

In order to proceed forward, we recall some definition’s regarding Divisors.

Definition 4.1.5. let M be a compact complex manifold. A Weil Divisor on M ,

denoted by D, is a formal sum

D =
∑

njZj,

where nj ∈ Z and Zj ⊂ M are smooth irreducible subvarieties of co-dimension 1. If

nj ≥ 0 for all j, then we call D an effective divisor.

Definition 4.1.6. Let X be a irreducible analytic subset of co-dimension 1 in M .

Let x ∈ X and f be a meromorphic function defined around x. The order ordX,x(f)

of f is the largest integer a such that in the local ring OX,x we have f = hag. It

turns out that ordX,x(f) is independent of x ∈ X, so we just write ordX(f).

For our case, we will need to use a version of the Green-Jensen formula using

the notion of a current. Let g be a sub-harmonic function and let Z be the set of

singularities in 4(t). Denote by S(Z, ε)(t), the union of small circles around the

singularities in 4(t).

Definition 4.1.7. The current ddc[g] is the functional such that∫ r

0

dt

t

∫
|ζ|<t

ddc[g] =

∫ r

0

dt

t

∫
|ζ|<t

ddcg + Singg(r),

where

Singg(r) =

∫ r

0

dt

t
lim
ε→0

∫
S(Z,ε)(t)

dcg.
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Theorem 4.1.8 (Green-Jensen formula [15]). Let g be a function on 4(r) such that

ddc[g] is of order zero and g(0) is finite. Then∫ r

0

dt

t

∫
|ζ|<t

ddc[g] =
1

2

∫ 2π

0

g(reiθ)
dθ

2π
− g(0)).

If we take g = log |f |2 for some holomorphic function f , we have the following

Lemma.

Lemma 4.1.9. Let f be a holomorphic function on 4(r), then for any t with 0 <

t < r,

lim
ε→0

∫
S(Z,ε)(t)

dc log |f |2 = nf (t, 0)− nf (t,∞).

Proof. Let p be a singular point of f . It suffices to prove that

lim
ε→0

∫
S(p,ε)

dc log |f |2 = ordp(f),

where S(p, ε) is the circle centered at p with radius ε. Without loss of generality,

we may assume that p = 0. Let k = ord0(f). We can write ff̄ = r2kh(r, θ), where

h(r, θ) is positive and smooth. So

lim
ε→0

∫
S(p,ε)

dc log |f |2 = lim
ε→0

∫
S(p,ε)

dc log r2k.

Observe the following,

dc log r2k =
1

4π
r
∂(log r2k)

∂r
dθ =

1

2π
kdθ.

Thus,

lim
ε→0

∫
S(p,ε)

dc log |f |2 = lim
ε→0

∫ 2π

0

k
dθ

2π
= k.
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In particular, we now have the following

Singlog |f |2(r) =

∫ 2π

0

dt

t
lim
ε→0

∫
S(Z,ε)(t)

dc log |f |2

= Nf (r, 0)−Nf (r,∞). (4.4)

We now can rewrite Lemma 4.1.9 as the next theorem.

Theorem 4.1.10 (Poincare-Lelong Formula). Let f be holomorphic on 4(r), then∫ 2π

0

dt

t

∫
|ζ|<t

ddc[log |f |2] = Nf (r, 0)−Nf (r,∞),

or we write in the sense of a current,

ddc[log |f |2] = Df ,

where Df =
∑

p(ordp f) · p is the divisor associated to f .

Proof. Applying the definition of a current to ddc[log |f |2], we have∫ r

0

dt

t

∫
|ζ|<t

ddc[log |f |2] =

∫ r

0

dt

t

∫
|ζ|<t

ddc|f |2 + Singlog |f |2(r).

However, from (4.4),

Singlog |f |2(r) = Nf (r, 0)−Nf (r,∞),

and since f is holomorphic, ddc[log |f |2 = 0. Thus,∫ r

0

dt

t

∫
|ζ|<t

ddc[log |f |2] = Nf (r, 0)−Nf (r,∞).
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Let M be a compact Riemann surface and let ω be a positive smooth (1,1) form

of class C1 on M such that
∫
M
ω = 1. Consider the equation, in the sense of currents,

ddcu = ω − δa, (4.5)

where δa is the Dirac measure at a.

Theorem 4.1.11. let U be an open set in a compact Riemann surface M such that

M\U consists of at most a finite number of points.

(i). Let ω be a positive (1,1) form of volume 1 on M. Let a ∈ M. Then equation

(4.5) admits a positive solution ua, smooth in M\{a}, with a log singularity at

the point a

(ii). If M\U is non-empty and ω is proportional to the Poincare′ form of M so that

it is of volume 1, then equation (4.5) admits a positive solution ua, smooth in

U = \{a}, with a log singularity at the point a.

Proof. (i). Since the cohomology class of the right hand side is zero, equation (4.5)

always has a solution. The regularity in the complement of a and the behavior

at a imply that ua is smooth in M\{a}, with a log singularity at the point a.

By adding a constant if necessary, we have the desired positivity of ua. This

proves case (i).

(ii). In the case of (ii), the proof is similar to the above. Note that the Poincare’

metric at the points in M\U behaves like cdz ∧ dz̄/(|z|2(log |z|)2), which has

finite volume. Using the fact that the Poincare’ metric of the pointed disc has
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curvature -1, we can by comparison establish that the solution ua goes to ∞

when approaching the points at the boundary. This gives the positivity of ua.

Let a ∈ U and ua be the solution of the equation (4.5). We define the proximity

function by

mf,ω(r, a) =
1

2

∫ 2π

0

ua(f(reiθ))
dθ

2π
. (4.6)

The counting function is defined in the standard way as

Nf (r, a) =

∫ r

0

nf (t, a)

t
dt, (4.7)

where n(r, a) is the number of elements of f−1(a) inside |z| < r, counting multi-

plicities (for simplicity we assume 0 is not in f−1(a)). The truncated counting

function is defined as

N f (r, a) =

∫ r

0

n̄f (t, a)

t
dt, (4.8)

where n̄(r, a) is the number of elements of f−1(a) inside |z| < r, without counting

multiplicities.

Theorem 4.1.12 (First Main Theorem).

mf,ω(r, a) +Nf (r, a) = Tf,ω(r) +O(1) (4.9)

Proof. Observe, by applying the integral operator∫ r

0

dt

t

∫
|ζ|<t
·

to equation (4.5) and using the Green-Jensen formula yields the desired equation.
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Theorem 4.1.13 (The Second Main Theorem [16]). Let M be a compact Riemann

surface. Let ω be a smooth positive (1,1) form on M . Let f : 4(R) → M be a

holomorphic map with cf,ω < +∞, where 0 < R ≤ ∞. Let a1, . . . , aq be distinct

points on M . Then, for every ε > 0, the inequality

q∑
j=1

mf,ω(r, aj) + T
f,Ric(ω)

(r) +Nf,ram(r) (4.10)

≤ (1 + ε)(cf,ω + ε)Tf,ω(r) +O(log Tf,ω(r)) + ε log r

holds for all r ∈ (0, R) outside a set E with
∫
E

exp((cf,ω + ε)Tf,ω(r))dr < ∞. Here

Nf,ram(r) is the counting function for the ramification divisor of f .

Note that, by the First Main Theorem and the fact that

Nf (r, a)−Nf,ram(r) ≤ N f (r, a), (4.11)

the above inequality (4.10) can be written as

(q − (1 + ε)(cf,ω + ε))Tf,ω(r) + T
f,Ric(ω)

(r) ≤
q∑
j=1

N f (r, aj)

+O(log Tf,ω(r)) + ε log r ‖E,

where ‖E means the inequality holds for all r ∈ (0, R) outside a set E with∫
E

exp((cf,ω + ε)Tf,ω(r))dr <∞.

Proof. Consider

Ψ = C
( q∏
j=1

(u−2
aj

exp(uaj))
)
ω

where C is chosen such that
∫
M

Ψ = 1. Write

f ∗Ψ = Γ

√
−1

2π
dζ ∧ dζ̄.
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Then, by the Poincaré-Lelong formula,

ddc[log Γ] =

q∑
j=1

ddc[uaj ◦ f ] + [f ∗Ric(ω)] +Df,ram − 2

q∑
j=1

ddc[log uaj ◦ f ]. (4.12)

Applying the integral operator ∫ r

0

dt

t

∫
|ζ|<t

.

to the above identity and using the Green-Jensen formula, we get that

1

2

∫ 2π

0

log Γ(reiθ)
dθ

2π
+O(1) =

q∑
j=1

mf (r, aj) + T
f,Ric(ω)

(r) +Nf,ram(r)

− 2

q∑
j=1

∫ 2π

0

dt

t

∫
|ζ|<t

ddc[log uaj ◦ f ].

Using the Green-Jensen formula, the concavity of log, and the First Main Theo-

rem, we have that

2

∫ 2π

0

dt

t

∫
|ζ|<t

ddc[log uaj ◦ f ] =

∫ 2π

0

log uaj(f(reiθ))
dθ

2π

≤ log

∫ 2π

0

uaj(f(reiθ))
dθ

2π
+O(1)

= log mf,ω(r, aj) +O(1)

≤ logTf,ω(r) +O(1).

By using the concavity of log, equation (4.3), taking γ(r) := exp((cf,ω + ε)Tf,ω(r)),

and δ = 2ε, we have that,

1

2

∫ 2π

0

log Γ(reiθ)
dθ

2π
≤ 1

2
log

∫ 2π

0

Γ(reiθ)
dθ

2π
+O(1)

≤ 1

2
((2 + 2ε)(cf,ω + ε)Tf,ω(r)

+ (1 + 2ε)2log+TΓ(r) + 2εlogr) +O(1)
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holds for all r ∈ (0, R) outside a set E with
∫
E

exp(cf,ωTf,ω(r)) <∞.

It remains to estimate

TΓ(r) =

∫ r

0

dt

t

∫
|ζ|≤t

Γ
dθ

2π
dζ ∧ dζ̄ =

∫ r

0

dt

t

∫
|ζ|≤t

f ∗Ψ.

We follow the approach by Alhors-Chern. By the change of variables formula, we

have ∫
M

nf (r, a)Ψ(a) =

∫
|ζ|≤r

f ∗Ψ.

Then by using the First Main Theorem, we have∫ r

0

dt

t

∫
|ζ|≤t

f ∗Ψ =

∫
M

Nf (r, a)Ψ(a) ≤
∫
M

Tf,ω(r)Ψ(a) +O(1) = Tf,ω(r) +O(1).

This finishes the proof.

4.2 A Uniqueness Result for Holomorphic Map-

pings from a Complex Disc into a Compact

Riemann Surface

As a application of the Second Main Theorem (4.10), we are able to derive a

new unicity result that recovers previous results dealing with holomorphic mappings

from C to a compact Riemann surface M . In particular, note that if f and g are

non-constant and R =∞, then cf,ω = cg,ω = 0 (see [16]). So Theorem 4.2.4 extends

the results of R. Nevanlinna and E. M. Schmid mentioned.
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Let M be a complex manifold. A holomorphic line bundle over M is a complex

manifold L together with a surjective holomorphic map π : L → M having the

following properties

i.) Locally trivial: For all p ∈ M there is a neighborhood U of p and a map

φU : π−1(U)→ U × C is a biholomorphic.

ii.) Global linear structure: For each pair of such neighborhoods Uα and Uβ there is

a holomorphic map gαβ : Uα∩Uβ → C∗ such that φα ◦φ−1
β (x, λ) = (x, gαβ(x)λ).

The map φU is called the local trivialization of the line bundle and the maps gαβ are

called the transition functions. The set Lx := π−1(x), x ∈M is called the fiber of the

line bundle at x.

For a holomorphic line bundle L over M , a holomorphic section s of L is a

collection {sα} where each sα is a holomorphic function defined on Uα and satisfying

sα = gαβsβ on Uα ∩ Uβ.

A metric on a line bundle L is collection of positive smooth functions hα : Uα →

R>0 such that on Uα ∩ Uβ, we have hβ = |gαβ|2hα.

For a given metric {hα} on L, we can define a (1, 1)-form θL := −
√
−1

2π
∂∂̄ log hα on

Uα. Since hβ = |gαβ|2hα on Uα∩Uβ, we have locally log hβ = log gαβ +log ḡαβ +log hα

for some local branch of log gαβ. Since ∂̄ log gαβ = 0 and ∂ log ḡαβ = 0, we have that

−
√
−1

2π
∂∂̄ log hα = −

√
−1

2π
∂∂̄ log hβ on Uα ∩ Uβ. Hence, the form θL is well-defined.

The Chern form of L with respect to the metric {hα} is defined on Uα to be

θL := −
√
−1

2π
∂∂̄ log hα.
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θL is denoted by c1(L, h) or c1(L).

Let L be a line bundle with metric {hα}. Given two sections of L si and sj, we

define the inner product of the two sections by

< si, sj >= siαs̄jαhα.

In particular, ||s||2 = |sα|2hα. This is well-define due to the transition properties of

sα and hα.

Let 4(R) denote the disc of radius R with the convention that 4(∞) = C. For a

complex manifold M , let 0 < R ≤ ∞ and f : 4(R)→M be a holomorphic map. Let

ω be a positive (1, 1) form on M . Recall that the characteristic (or height) function

of f with respect to ω is defined, for 0 < r < R, as

Tf,ω(r) =

∫ r

0

dt

t

∫
|z|<t

f ∗ω.

In general, for a complex projective variety M and an hermitian line bundle (L, h)

where h is an Hermitian metric on the fibers of L, we define

Tf,L(r) =

∫ r

0

dt

t

∫
|z|<t

f ∗c1(L, h),

where c1(L, h) is the first Chern form. It is independent, up to a bounded term, of

the choice of h. We also denote by c1(L) ∈ H2(M,Z) the first Chern class of L.

For a compact Riemann surface M , we make the usual identification of H2(M,Z)

with Z (by fixing a generator). With this identification we can also regard c1(L)

as an integer, which is called the Chern number of L (so we use c1(L) to denote

it as the Chern class, as well as the Chern number in the Riemann surface case).
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Indeed the Chern number is equal to
∫
M
c1(L, h), which is (see the Lemma below) the

difference of the number of zeros of σ minus the number of poles of σ on M ,counting

multiplicities, where σ is any meromorphic section of L.

Lemma 4.2.1. Let (L,h) be a Hermitian holomorphic line bundle over a compact

(without boundary) Riemann surface M and assume that there exists a non-trivial

meromorphic section σ of L. Then∫
M

c1(L, h) = deg(σ = 0)− deg(σ =∞).

Proof. The proof uses the following elementary result

lim
ε→0

∫
|z|=ε

dclog|z|2 = 1.

Indeed, write z = reiθ, since dc = 1
4π

( r∂
∂r
⊗dθ− r−1 ∂

∂θ
⊗dr), dc log |z|2 = r ∂

∂r
log r ∂θ

2π
=

dθ
2π

. Hence

lim
ε→0

∫
|z|=ε

dclog|z|2 =

∫ 2π

0

dθ

2π
= 1.

We can now prove the lemma. For simplicity, we assume that σ is holomorphic

(otherwise, we just need to include all the poles as well). The zero set [σ = 0] consists

of a finite number of points a1, ..., aN with vanishing order µ1, ..., µN respectively.

Chose local coordinates for discs4i,ε centered at each ai with radius ε > 0. At a point

a ∈M , there exists a local coordinate neighborhood U of a and we may write ||σ||2 =

hU |sU |2 with sU being holomorphic on U . Thus log |sU |2 is harmonic (outside the set

of zeros of sU), so that ddc log ||σ||2 = ddc log hU +ddc log |sU |2 = −c1(L, h)|U(outside

the set of zeros of sU). From this we deduce from Stokes’ theorem, by writing
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sU = zµiφi where φi is nowhere vanishing,∫
M

c1(L, h) = − lim
ε→0

∫
M\∪i4i,ε

ddc log ||σ||2

= lim
ε→0

∫
∂4i,ε

dc log hU +
∑

lim
ε→0

∫
∂4i,ε

dc log |s|2U

=
∑

lim
ε→0

∫
∂4i,ε

dc log |s|2U =
∑

µi lim
ε→0

∫
∂4i,ε

dc log |z|2

=
∑

µi = deg(σ = 0).

This proves the theorem.

Theorem 4.2.2 (Riemann-Roch Theorem). For any divisor D on a compact Rie-

mann surface M of genus g, then

dimL(D)− dimL(K −D) = deg(D)− g + 1,

where K is the canonical divisor on M and L(D) is the vector space of meromorphic

functions f on M such that f ≡ 0 or (f) +D ≥ 0.

From the Riemann-Roch theorem, we establish the following lemma that is used

in the proof of one of our main results.

Lemma 4.2.3. Let M be a compact Riemann surface with genus g. Let y0 ∈ M .

Then there exists a non-constant meromorphic function φ on M with a single pole

at y0 of multiplicity less than or equal to g + 1.

Proof. Taking D = (g + 1)y0, the above Riemann-Roch theorem implies that

dimL(D) ≥ 2. Thus, there exists a non-constant meromorphic function φ on M

with a single pole at y0 of multiplicity less than or equal to g + 1.
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We can now prove a new result.

Theorem 4.2.4. Let M be a compact Riemann surface. Let ω be a smooth positive

(1,1) (metric) form on M . Let f, g : 4(R) → M be two holomorphic maps with

cf,ω < +∞ and cg,ω < +∞, where 0 < R ≤ ∞. Assume that there are q distinct

points a1, . . . , aq on M such that f(z) = aj if and only if g(z) = aj for j = 1, . . . , q.

If q > 4 + cf,ω + cg,ω, then f ≡ g.

Proof. Let ω be the metric form on M whose Gauss curvature is of constant K, i.e.,

Ric(ω) = −Kω. We also assume that
∫
M
ω = 1. Then, T

f,Ric(ω)
(r) = −KTf,ω(r).

By the Gauss-Bonnet theorem, K = 2 − 2gM , where gM is the genus of M . So

T
f,Ric(ω)

(r) = (2gM − 2)Tf,ω(r). Thus, applying Theorem 4.1.13, we get

(q + 2gM − 2 + (1 + ε)(cf,ω + ε))Tf,ω(r) ≤
q∑
j=1

N f (r, aj) +O(log Tf,ω(r)) + ε log r ‖E

and

(q+ 2gM − 2− (1 + ε)(cg,ω + ε))Tg,ω(r) ≤
q∑
j=1

N g(r, aj) +O(log Tg,ω(r)) + ε log r ‖E.

Now assume that f 6≡ g. Then there is a point z0 ∈ C such that f(z0) 6= g(z0).

Set y0 = f(z0) ∈ M . It follows from Lemma 4.2.3 that there exists a non-constant

meromorphic function φ : M → C ∪ {∞} (which can be regarded as a holomorphic

map φ : M → P1(C)) with a single pole at y0 of multiplicity less than or equal to

gM + 1. Consider F := φ(f) and G := φ(g). Then F − G is non-constant since

F (z0) = ∞ and G(z0) ∈ C. Also by the assumptions and the First Main Theorem,

we have
∑q

j=1 N f (r, aj) ≤ NF−G(r, 0) ≤ (TF (r) + TG(r)) and
∑q

j=1N g(r, aj) ≤
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NF−G(r, 0) ≤ (TF (r) + TG(r)). Thus, we have

(q + 2gM − 2− (1 + ε)(cf,ω + cg,ω + ε))(Tf,ω(r) + Tg,ω(r))

≤ 2(TF (r) + TG(r)) +O(log Tf,ω(r) + log Tg,ω(r)) + 2ε log r ‖E.

We now estimate TF (r) and TG(r). We only consider F (as G is similar). From our

definition above, TF (r) = TF,OP1 (1)(r) where OP1(1) is the hyperplane line bundle

over P1(C). For a compact Riemann surface, we make the usual identification of

H2(M,Z) with Z (with ω being the generator). With this identification, we know

that c1(φ∗OP1(1)) is an integer, and from Lemma 4.2.1, it is equal to the number

of zeros (counting multiplicities) of any holomorphic section of φ∗OP1(1) on M . In

particular, if we take the holomorphic section as φ∗σ with σ ∈ H0(P1,OP1(1)) such

that [σ = 0] = {[z0 : z1] | z1 = 0}, then we get, by the fact that φ has a single pole

at y0 of multiplicity less than or equal to gM + 1,

c1(φ∗OP1(1)) ≤ gM + 1.

Thus,

TF (r) = TF,OP1 (1) =

∫ r

1

dt

t

∫
|z|<t

F ∗c1(OP1(1))

=

∫ r

1

dt

t

∫
|z|<t

f ∗(c1(φ∗OP1(1)))

≤ (gM + 1)

∫ r

1

dt

t

∫
|z|<t

f ∗ω

= (gM + 1)Tf,ω(r).

Similarly, TG(r) ≤ (gM + 1)Tg,ω(r). Hence we get,

(q + 2gM − 2− (1 + ε)(cf,ω + cg,ω + ε))(Tf,ω(r) + Tg,ω(r))
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≤ 2(gM + 1)(Tf,ω(r) + Tg,ω(r))) +O(log Tf,ω(r) + log Tg,ω(r)) + 2ε log r ‖E,

i.e.

(q − 4− (1 + ε)(cf,ω + cg,ω + ε))(Tf,ω(r) + Tg,ω(r))

≤ O(log Tf,ω(r) + log Tg,ω(r)) + 2ε log r ‖E.

As r gets large, we have a contradiction if q > 4 + cf,ω + cg,ω. The theorem is thus

proved.
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Chapter 5

Holomorphic Mappings into Pn(C)

5.1 Value Distribution of Holomorphic Mappings

into Pn(C)

In this section, we establish the theory of Nevanlinna for a class of holomorphic

maps from a disc of radius R into Pn(C). We follow Ahlfors’ method with some

simplifications (see [6], [15], [21], and [23]). However, we treat differently the error

term. The key is to use the methods in [6] by choosing a suitable γ to allow the

usage of the Calculus lemma, lemma 4.1.3. We can choose γ(r) := exp((cf + ε)Tf (r))

for any given ε, where cf := cf,ωFS and Tf (r) := Tf,ωFS(r). In the following, we use

the notation ” ≤ ||” to denote the inequality holds for all r ∈ (0, R) except for a set

E with
∫
E

exp((cf + ε)Tf (r))dr <∞. We always assume that the holomorphic map

f : 4(R) → Pn(C) is linearly non-degenerate (that is, f(4(R)) is not contained in
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any proper subspace of Pn(C)).

Let f : 4(R)→ Pn(C) be a holomorphic map. Let L = OPn(1) be the hyperplane

line bundle with transition functions gαβ = wα
wβ

, where Uα = {wα 6= 0}. the sections

of L are given by sH = {<a,w>
wα
} with H = [sH = 0] = {a0w0 + · · ·+ anwn = 0}. The

metric on L is given by hα = |wα|2
‖w‖2 . The first Chern form of this line bundle is

c1(L, h) = −ddclog hα = ddclog ‖w‖2.

This local expression is called the Fubini-Study metric on Pn(C). We have, by the

Green-Jensen formula, an expression for the characteristic function for f in this

setting by

Tf (r) =

∫ r

0

∫
|ζ|≤t

ddclog ‖f‖2 =

∫ 2π

0

log ‖f(reiθ)‖dθ
2π

+O(1).

Here f = (f0, ..., fn) is a reduced representation of f , i.e., f0, ..., fn have no common

zeros. For reduced form f , it can easily be shown that

T fi
fj

(r) ≤ Tf (r). (5.1)

The proximity function is defined by

mf (r,H) =

∫ 2π

0

log
1

‖sH ◦ f(reiθ)‖
dθ

2π
=

∫ 2π

0

log
‖f(reiθ)‖‖H‖
| < a, f(reiθ) > |

dθ

2π
.

The Counting function of f with respect to H is given by

Nf (r,H) =

∫ r

0

(nf (t,H)− nf (0, H))
dt

t
+ nf (0, H)log r,

where nf (t,H)= number of points of < a, f >= 0 in the disc |z| < t, counting

multiplicity. By Jensen’s formula, the counting function can be written as

Nf (r,H) =

∫ 2π

0

= log | < a, f(reiθ) > |dθ
2π

+O(1).
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Applying the above definitions, we have the following Theorem.

Theorem 5.1.1 (First Main Theorem).

Tf (r) = mf (r,H) +Nf (r,H) +O(1).

Let f : 4(R) → Cn+1 − {0} be a reduced representation of f . Consider the

holomorphic map Fk defined by

Fk = f ∧ f′ ∧ · · · ∧ f(k) : 4(R)→
k+1∧

Cn+1.

Evidently Fn+1 ≡ 0. Since f is linearly non-degenerate, Fk 6≡ 0 for 0 ≤ k ≤ n. The

map Fk = P(Fk) : 4(R) → P(
∧k+1 Cn+1) = PNk(C), where Nk = (n+1)!

(k+1)!(n−k)!
− 1

and P is the natural projection, is called the k-th associated map. Let ωk =

ddclog||Z||2 be the Fubini-Study form on PNk(C), where Z = [x0 : · · · : xNk ] ∈

PNk(C). Let

Ωk = F ∗kωk =

√
−1

2π
hkdz ∧ dz̄, 0 ≤ k ≤ n, (5.2)

be the pull-back via the k-th associated curve. Observe that since Fk has no inde-

terminacy points, Ω = F ∗kωk is smooth and hk is non-negative.

We recall the following lemma (see [10], [15], [23], and [21]).

Lemma 5.1.2.

hk =
||Fk−1||2||Fk+1||2

||Fk||4
.

We now turn to the Plücker Formula. By Lemma 5.1.2 and the Poincaré-Lelong

formula, we get

ddclog hk = Ωk−1 + Ωk+1 − 2Ωk + [hk = 0], (5.3)
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where [hk = 0] is the zero divisor of hk. We recall a few facts on the geometric

meaning of this divisor(see [10], [21]). We consider the point z0 with Fk(z0) = 0.

Without loss of generality, we assume that z0 = 0 and f(z0) = [1 : 0 : · · · : 0] and

that the reduced representation f of f in a neighborhood of 0 has the form

f(z) = (1 + · · · , zν1 + · · · , · · · , zνn + · · · ),

with 1 ≤ ν1 ≤ · · · ≤ νn. Then it is easy to set that

Fk(z) = zmk(1 + · · · , zνk+1−νk + · · · , · · · ),

where mk = ν1 + · · ·+ νk− k(k+1)
2

. On the other hand, if we write in a neighborhood

of 0, hk(z) = z2µkb(z) with b(0) > 0, then we get that µk = mk+1 − 2mk + mk−1.

Define the k-th characteristic function

TFk(r) =

∫ r

0

dt

t

∫
|z|≤t

F ∗kωk.

Denote by

Ndk(r) =

∫ r

0

ndk(t)
dt

t
,

where ndk(t) is the number of zeros of hk in |z| < t, counting multiplicities. Note

that Ndk(r) does not depend on the choice of reduced representation. Define

Sk(r) =
1

2

∫ 2π

0

log hk(re
iθ)
dθ

2π
. (5.4)

Then, by applying the integral operator∫ 2π

0

dt

t

∫
|ζ|≤t

.

to (5.2) and using Green-Jensen’s formula, we get the following lemma.
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Lemma 5.1.3 (Plücker’s Formula). For any integers k with 0 ≤ k ≤ n,

Ndk(r) + TFk−1
(r)− 2TFk(r) + TFk+1

(r) = Sk(r) +O(1),

where TF−1(r) ≡ 0 and TF0(r) = Tf (r).

Plücker’s formula implies the following lemma which gives the estimate of TFk(r)

in terms of Tf (r). We use our estimate of the error term.

Lemma 5.1.4. For 0 ≤ k ≤ n− 1 and every δ > 0,

TFk(r) ≤ (n+ 2)3(1 + (2 + δ)cf )Tf (r) + n(n+ 1)2δ log r +O(1) ‖.

Proof. Write T (r) =
∑n−1

k=0 TFk(r). Observe that

1

r

d

dr

(
r
dTFk(r)

dr

)
= 2

∫ 2π

0

hk(re
iθ)
dθ

2π
.

Applying the Calculus Lemma (see (4.3)) with γ(r) = exp((cf + δ)Tf (r)),we get that∫ 2π

0

hk(re
iθ)
dθ

2π
≤ r2δecf (4+2δ)Tf (r)T

(1+2δ)2

Fk
(r) ‖.

This implies

Sk(r) =
1

2

∫ 2π

0

log hk(re
iθ)
dθ

2π

≤ 1

2
log

∫ 2π

0

hk(re
iθ)
dθ

2π

≤ (2 + δ)cfTf (r) +
1

2
(1 + 2δ)2log T (r) + δlog r ‖. (5.5)

From Lemma 5.1.3, we claim that, for 0 ≤ q ≤ p,

TFp(r) + (p− q)TFq−1(r) ≤ (p− q + 1)TFq(r) +

p−1∑
j=q

(p− j)(Sj(r) +O(1).
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In fact, the claim is true for p = q. Assume that the claim is true for q, q + 1, ..., p.

If p = q, then the proof is done. If p < q, we proceed, by using Lemma 5.1.3,

TFq−1(r)− TFq(r) + TFp+1(r)− TFp(r) =

p∑
j=1

(TFj−1
(r)− 2TFj(r) + TFj+1

(r))

=

p∑
j=q

Sj(r)−
q∑
j=q

Ndj(r) +O(1)

≤
p∑
j=q

Sj(r) +O(1).

So

TFp+1(r) + TFq−1(r) ≤ TFq(r) + TFp(r) +

p∑
j=q

Sj(r) +O(1).

Thus,

(p+ 1− q)TFq−1(r) + TFp+1(r) = (p− q)TFq−1(r) + TFq−1(r) + TFp+1(r)

≤ (p− q)TFq−1(r) + TFq(r) + TFp(r)

+

p∑
j=q

Sj(r) +O(1).

On the other hand, from Lemma 5.1.3 again, we have that

TFp(r)− (p− q + 1)TFq(r) + (p− q)TFq−1(r)

=

p∑
j=q

(p− j)(TFj−1
(r)− 2TFj(r) + TFj+1

(r))

≤
p∑
j=q

(p− j)Sj(r) +O(1).

Hence,

TFp(r) + TFq(r) + (p− q)TFq−1(r) ≤ (p− q + 2)TFq(r)

+

p∑
j=q

(p− j)Sj(r) +O(1).
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Therefore,

TFp+1(r) + (p+ 1− q)TFq−1(r) ≤ (p− q + 2)TFq(r)

+

p∑
j=q

(p− j)Sj(r) +O(1).

This proves our claim. Now take q = 0 and p = k and notice that TF−1(r) ≡ 0, then

TFk(r) ≤ (k + 1)Tf (r) +
k−1∑
j=0

(k − j)Sj(r) +O(1).

This, together with (5.5), gives for 0 ≤ k ≤ n,

TFk(r) ≤ (k + 1)Tf (r)

+
1

2
k(k + 1)((2 + δ)cfTf (r) + (1 + 2δ)2log T (r) + δlog r +O(1)‖.

Therefore,

T (r) ≤ (n+ 1)2Tf (r)

+
1

2
n(n+ 1)2

(
(2 + δ)cfTf (r) +

1

2
(1 + 2δ)2log T (r) + δlog r +O(1)

)
‖.

Since 1
2
n(n + 1)2(1 + 2δ)2log T (r) ≤ 1

2
Tf (r), where r is close enough to R, we have

that

T (r) ≤ (n+ 2)3(1 + (2 + δ)cf )Tf (r) + n(n+ 1)2δlog r +O(1) ‖.

For intgers 1 ≤ q ≤ p ≤ n+ 1, the interior product ξbα ∈
∧p−q Cn+1 of vectors

ξ ∈
∧p+1 Cn+1 and α ∈

∧q+1(Cn+1)∗ is defined by

β(ξbα) = (α ∧ β)(ξ)
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for any β ∈
∧p−q(Cn+1)∗. Let

H = {[x0 : · · · : xn]|a0x0 + · · ·+ anxn = 0}

be a hyperplane in Pn(C) with unit normal vector a = (a0, · · · , an). In the rest of the

section, we regard a as a vector in (Cn+1)∗ which is defined by a(x) = a0x0+· · ·+anxn

for each x = (x0, · · · , xn) ∈ Cn+1, where (Cn+1)∗ is the dual space of Cn+1. Let

x ∈ P(
∧k+1 Cn+1). The projective distance is defined by

‖x;H‖ =
‖ξba‖
‖ξ‖‖a‖

, (5.6)

where ξ ∈
∧k+1 Cn+1 with P(ξ) = x. Define

mFk(r,H) =

∫ 2π

0

log
1

‖Fk(reiθ);H‖
dθ

2π
. (5.7)

We have the following weak form of the First Main Theorem for Fk.

Theorem 5.1.5 (Weak First Main Theorem).

mFk(r,H) ≤ TFk(r) +O(1).

Proof. Let fk : 4(R) →
∧k+1 Cn+1 be a reduced representation of Fk, and we con-

sider the holomorphic map

Fkba : 4→ P(
k+1∧

Cn+1),

which is given by Fkba := P(G), where G = fkba. Note that G is a representation of

the holomorphic map Fkba, but not reduced. We denote by νG the divisor of G on

4(R), and NG(r, 0) the counting function associated to νG (which is independent of

the choices of the reduced representation of Fk). We have

(Fkba)∗ωk + νG = ddclog ‖G‖2.
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Applying the integral operator ∫ r

0

dt

t

∫
|ζ|≤t
·

to the above identity and by using Green-Jensen’s formula, we get

TFkba(r) +NG(r, 0) =

∫ 2π

0

log ‖G(reiθ)‖dθ
2π

+O(1)

=

∫ 2π

0

log ‖fkba‖(reiθ)
dθ

2π
+O(1).

On the other hand, from the definition (notice that fk is a reduced representation of

Fk),

TFk(r) =

∫ 2π

0

log ‖fk‖(reiθ)
dθ

2π
+O(1).

Hence, from the definition of mFk(r,H),

TFkba(r) +NG(r, 0) +mFk(r,H) =

∫ 2π

0

log ‖fkba‖(reiθ)
dθ

2π
+O(1)

+

∫ 2π

0

log
‖fk‖‖a‖
‖fkba‖

(reiθ)
dθ

2π

=

∫ 2π

0

log ‖fk‖(reiθ)
dθ

2π
+O(1)

= TFk(r) +O(1).

We will need the following product to sum estimate. It is an extension of the

estimate of the geometric mean by arithmetic mean.

Lemma 5.1.6 (See Theorem 3.5.7 [15]). Let H1, ..., Hq (or linear forms a1, ...,aq )

be hyperplanes in PnC in general position. Let k ∈ Z[0, n− 1] with n− k ≤ q. Then

there exists a constant ck > 0 such that for every 0 < λ < 1, x ∈ P(
∧k+1 Cn+1) with
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x 6⊂ Hj, for 1 ≤ j ≤ q and y ∈ P(
∧k+1 Cn+1) we have that

q∏
j=1

‖y;Hj‖2

‖x;Hj‖2−2λ
≤ ck

( q∑
j=1

‖y;Hj‖2

‖x;Hj‖2−2λ

)n−k
.

Let φk(H) = ‖Fk;H‖2. Define

hk(H) =
φk−1(H)φk+1(H)

φ2
k(H)

Ωk. (5.8)

The function φk(H) is defined out of the stationary points, however analysis near

those points shows φk(H) can be extended smoothly at those points (see [21]). The

key is to use the following so-called Ahlfors’ estimate. We include the proof here.

Theorem 5.1.7 (Ahlfors’ estimate (see [15] or [23])). Let H be a hyperplane in

Pn(C). Then for any 0 < λ < 1, we have∫ r

s

dt

t

∫
|z|<t

φk+1(H)

φk(H)1−λΩk
dt

t
≤ 1

λ2
(8TFk(r) +O(1)).

To prove Ahlfors’ estimate, the following lemma plays a crucial role

(see [15], [21], or [23]). The proof of the lemma is based on a standard but lengthy

computation. For the details of the proof, see Lemma A3.5.10 in [15].

Lemma 5.1.8 ( Lemma A3.5.10 in [15]). Let H be a hyperplane in Pn(C)and λ be

a constant with 0 < λ < 1. Then, for 0 ≤ k ≤ n, the following inequality holds on

4(R)− {z | φk(H)(z) = 0},

λ2

4

φk+1(H)

φ1−λ
k (H)

Ωk − λ(1 + λ)Ωk ≤ ddc log (1 + φk(H)λ).

We now prove Theorem 5.1.7 (Ahlfors’ estimate).
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Proof. By Lemma 5.1.7,

λ2

4

φk+1(H)

φ1−λ
k (H)

Ωk − λ(1 + λ)Ωk ≤ ddclog (1 + φk(H)λ).

Thus,

λ2

4

φk+1(H)

φ1−λ
k (H)

Ωk ≤ ddclog (1 + φk(H)λ) + λ(1 + λ)Ωk. (5.9)

By Green-Jensen’s formula,∫ r

s

dt

t

∫
|z|<t

ddclog (1 + φk(H)λ) =
1

2

∫ 2π

0

ddclog (1 + φk(H)λ)
dθ

2π
+O(1).

This, together with (5.9) implies that

λ2

4

∫ r

s

dt

t

∫
|z|<t

φk+1(H)

φ1−λ
k (H)

Ωk ≤
∫ r

0

∫
|z|<t

ddclog (1 + φk(H)λ) + λ(1 + λ)TFk(r)

=
1

2

∫ 2π

0

ddclog (1 + φk(H)λ)
dθ

2π
+ λ(1 + λ)TFk(r) +O(1)

≤ λ(1 + λ)TFk(r) +
1

2
log 2 +O(1)

≤ 2TFk(r) +O(1),

using 0 ≤ φk(H) ≤ 1.

We prove the following general version of H. Cartan’s theorem.

Theorem 5.1.9 (A General Form of SMT). Let f : 4(R)→ Pn(C) be a linearly non-

degenrate holomorphic curve (i.e. its image is not contained in any proper subspace

of Pn(C)) with cf <∞, where cf := cf,ωFS and 0 < R ≤ ∞. Let H1, ..., Hq (or linear

forms a1, ...,aq) be arbitrary hyperplanes in Pn(C). Then, for any ε > 0, we have
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that ∫ 2π

0

max
K

∑
j∈K

log
1

‖f(reiθ);Hj‖
dθ

2π
+NW (r, 0)

≤ (n+ 1)Tf (r) +
n(n+ 1)

2
(1 + ε)(cf + ε)Tf (r)

+ O(log Tf (r)) +
n(n+ 1)

2
ε log r ‖,

where the max is taken over all subsets K of {1, .., q} such that the linear forms aj,

j ∈ K are linearly independent.

Proof. Without loss of generality, we may assume q ≥ n + 1 and that #K = n + 1.

Let T be the set of all injective maps µ : {0, ..., n} → {1, ..., q} such that aµ(0), ..., aµ(n)

are linearly independent. Take

λ := Λ(r) = min
k

{ 1

TFk(r)

}
. (5.10)

For any µ ∈ T , by Lemma 5.1.6 with λ = Λ(r) and φk(H) = ‖Fk, H‖, we have

for 0 ≤ k ≤ n− 1,

n∏
j=0

φk+1(Hµ(j))

φk(Hµ(j))2−2Λ(r)
≤ ck

( n∑
j=0

φk+1(Hµ(j))

φk(Hµ(j))2−2Λ(r)

)n−k
for some constant ck > 0. Since φn(Hµ(j)) is a constant for any 0 ≤ j ≤ n and

F0 = f , the above inequality implies that

n∏
j=0

1

‖f ;Hµ(j)‖2
≤ c

n−1∏
k=0

( n−1∑
j=0

φk+1(Hµ(j))

φk(Hµ(j))2−2Λ(r)

)n−k
·
n−1∏
k=0

n∏
j=0

1

φk(Hµ(j))2Λ(r)
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for some constant c > 0. Therefore∫ 2π

0

max
K

∑
j∈K

log
1

‖f(reiθ);Hj‖2

dθ

2π
=

∫ 2π

0

max
µ∈T

log
n∏
j=0

1

‖f(reiθ);Hµ(j)‖2

dθ

2π

≤
n−1∑
k=0

∫ 2π

0

max
µ∈T

log
( n∑
j=0

φk+1(Hµ(j))

φk(Hµ(j))2−2Λ(r)
(reiθ)

)n−k dθ
2π

+
n−1∑
k=0

n∑
j=0

∫ 2π

0

max
µ∈T

log
( n∑
j=0

1

φk(Hµ(j))2Λ(r)(reiθ)

)dθ
2π

+O(1)

=
n−1∑
k=0

(n− k)

∫ 2π

0

max
µ∈T

log
( n∑
j=0

φk+1(Hµ(j))

φk(Hµ(j))2−2Λ(r)
(reiθ) · hk(reiθ

)dθ
2π

−
n−1∑
k=0

(n− k)Sk(r) +
n−1∑
k=0

n∑
j=0

∫ 2π

0

max
µ∈T

log
( n∑
j=0

1

φk(Hµ(j))2Λ(r)
(reiθ)

)dθ
2π

+O(1),

where hk is defined in (5.2). Observing that NW (r, 0) = Ndn(r), we have by Plückers

formula

n−1∑
k=0

(n− k)Sk(r) =
n−1∑
k=0

(n− k)Ndn(r)

+
n−1∑
k=0

(n− k)(TFk−1
(r)− 2TFk(r) + TFk+1

(r)) +O(1)

= Ndn(r)− (n+ 1)Tf (r) +O(1)

= NW (r, 0)− (n+ 1)Tf (r) +O(1).

By Theorem 5.1.5 (The Weak First Main Theorem) and by Lemma 5.1.4,

n−1∑
k=0

n∑
j=0

∫ 2π

0

max
µ∈T

log
( n∑
j=0

1

φk(Hµ(j))2Λ(r)
(reiθ)

)n−k dθ
2π

=
∑
µ∈T

n−1∑
k=0

n∑
j=0

2Λ(r)mFk(r,Hµ(j)) +O(1)

≤
n−1∑
k=0

n∑
j=0

2qΛ(r)TFk(r) +O(1)

≤ O(1).
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So ∫ 2π

0

max
K

∑
j∈K

log
1

‖f(reiθ);Hj‖
dθ

2π
≤ (n+ 1)Tf (r)−NW (r, 0) +G(r), (5.11)

where

G(r) =
1

2

n−1∑
k=0

(n− k)

∫ 2π

0

max
µ∈T

log
( n∑
j=0

φk+1(Hµ(j))

φk(Hµ(j))2−2Λ(r)
(reiθ) · hk(reiθ

)dθ
2π
.

We now estimate G(r). Let

T̂ (r) :=

∫ r

0

(∫
|z|<t

φk+1(H)

φk(H)2−2Λ(r)
hk

√
−1

2π
dz ∧ dz̄

)dt
t
.

Then, from Ahlfor’s estimate, equation (5.10), and lemma 5.1.3, we get

T̂ (r) ≤ O(T 3
Fk

(r)) = O(T 3
f (r)). (5.12)

Then, by the inequality (4.1) with γ(r) = e(cf+ε)Tf (r), for every hyperplane H,∫ 2π

0

φk+1(H)(reiθ)

φk(H)2−2Λ(r)(reiθ)
hk(re

iθ)
dθ

2π
≤ r2εe(cf+ε)(2+2ε)Tf (r) · T̂ (1+2ε)2(r) ‖.

This, together with the concavity of log and (5.13), gives

G(r) =
1

2

n−1∑
k=0

(n− k)

∫ 2π

0

max
µ∈T

log
n∑
j=0

φk+1(Hµ(j))

φk(Hµ(j))2−2Λ(r)
(reiθ) · hk(reiθ)

dθ

2π

≤
n−1∑
k=0

n− k
2

log

∫ 2π

0

q∑
j=1

φk+1(Hj)(re
iθ)

φk(Hj)2−2Λ(r)(reiθ)
hk(re

iθ)
dθ

2π

≤ ((cf + ε)(2 + 2ε)Tf (r) + 2εlog r)
n−1∑
k=0

n− k
2

+O(log T (r))

=
n(n+ 1)

2
((1 + ε)(cf + ε)Tf (r) + ε log r) +O(log Tf (r)) ‖.
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Combining the above with inequality (5.11), we have that∫ 2π

0

max
K

∑
j∈K

log
1

‖f(reiθ);Hj‖
dθ

2π
+NW (r, 0)

≤ (n+ 1)Tf (r) +
n(n+ 1)

2
(1 + ε)(cf + ε)Tf (r)

+
n(n+ 1)

2
ε log r +O(log Tf (r)) ‖E.

Thus, the theorem is proved.

Definition 5.1.10. Given hyperplanes H1, ..., Hq. We say that H1, ..., Hq are in

general position if for any injective map µ : {0, 1, ..., n} → {1, ..., q}, Hµ(0), ..., Hµ(n)

are linearly independent.

Lemma 5.1.11 (see Lemma A3.1.6 in [15]). Let H1, ..., Hq be hyperplanes in Pn(C) in

general position. denote by T the set of all injective maps µ : {0, 1, ..., n} → {1, ..., q}.

Then
q∑
j=1

mf (r,Hj) ≤
∫ 2π

0

max
K

∑
j∈K

log
1

‖f(reiθ);Hj‖
dθ

2π
+O(1)

We can now establish The Second Main Theorem for maps into Pn(C).

Theorem 5.1.12 ([16] ). Let H1, . . . , Hq be hyperplanes in Pn(C) in general position.

Let f : 4(R)→ Pn(C) be a linearly non-degenerate holomorphic curve (i.e. its image

is not contained in any proper subspace of Pn(C)) with cf < ∞, where cf = cf,ωFS

and 0 < R ≤ ∞. Then, for any ε > 0, the inequality

q∑
j=1

mf (r,Hj) +NW (r, 0) ≤ (n+ 1)Tf (r) +
n(n+ 1)

2
(1 + ε)(cf + ε)Tf (r)

+
n(n+ 1)

2
ε log r +O(log Tf (r))

59



holds for all r ∈ (0, R) outside a set E with
∫
E

exp((cf + ε)Tf (r))dr < ∞. Here W

denotes the Wronskian of f .

Proof. By Theorem 5.1.9 and Lemma 5.1.11 we have

q∑
j=1

mf (r,Hj) +NW (r, 0)

≤
∫ 2π

0

max
K

∑
j∈K

log
1

‖f(reiθ);Hj‖
dθ

2π
+NW (r, 0)

≤ (n+ 1)Tf (r) +
n(n+ 1)

2
(1 + ε)(cf + ε)Tf (r)

+
n(n+ 1)

2
ε log r +O(log Tf (r)) ‖E. (5.13)

We are able to reformulate the above theorem in terms of the truncated counting

function by introducing the following Lemma.

Lemma 5.1.13 ([15]). Let f : 4(R) → Pn(C) be a non-degenerate holomorphic

map. Let H1, ..., Hq be hyperplanes in Pn(C), located in general position. Then, for

0 < r < R,
q∑
j=1

Nf (r,Hj)−NW (r, 0) ≤
q∑
j=1

N
(n)
f (r,Hj).

Proof. Without loss of generality, for each z ∈ C, we assume that < f, aj > vanishes

at z for 1 ≤ j ≤ q1 and < f, aj > does not vanish at z for j > q1. There are integers

kj ≥ 0 and nowhere vanishing holomorphic functions gj in a neighborhood U of z

such that

< f, aj >= (ζ − z)kjgj
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for j = 1, ..., q. Here kj = 0 if q1 < j ≤ q. Also we can assume that kj ≥ n if

1 ≤ j ≤ q0 and 1 ≤ kj < n, where 0 ≤ q0 ≤ q1. Using a property of the Wronskian,

we have

W = W (f0, ..., fn) = CW (< f, aµ(1) >, ..., < f, aµ(n+1) >)

and

W (< f, aµ(1) >, ..., < f, aµ(n+1) >=

q0∏
j=1

(ζ − z)kj−nh(ζ),

where h(ζ) is a holomorphic function defined on U and µ : {0, 1, ..., n} → {1, ..., q}

is an injective map such that aµ(0), ..., aµ(n) are linearly independent. Thus W van-

ishes at z with order at least
∑q0

j=1 kj − q0n. This, together with the definitions of

Nf (r,Hj), NW (r, 0), and N
(n)
f (r,Hj), proves the lemma.

Theorem 5.1.14 ([16]). Let H1, ..., Hq be hyperplanes in Pn(C) in general position.

Let f : 4(R)→ Pn(C) be a holomorphic curve whose image is not contained in any

proper subspace, with cf < ∞, where cf = cf,ωFS and 0 < R ≤ ∞. Then, for any

ε > 0, the inequality

(q − (n+ 1))Tf (r) ≤
q∑
j=1

N
(n)
f (r,Hj)

+
n(n+ 1)

2
(1 + ε)(cf + ε)Tf (r)

+
n(n+ 1)

2
ε log r +O(log Tf (r)) ‖E

holds for all r ∈ (0, R) outside a set E with
∫
E

exp((cf + ε)Tf (r))dr < ∞. Here W

denotes the Wronskian of f .
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5.2 Uniqueness Results for Holomorphic Mappings

from Complex Discs into Pn(C)

In this setting, we provide another uniqueness result using Theorem 5.1.12. The

next Theorem is a brand new result and the second main result of this dissertation.

Theorem 5.2.1. Let f, g : 4(R)→ Pn(C) be two linearly non-degenerate holomor-

phic curves with cf < +∞ and cg < +∞, where 0 < R ≤ +∞. Let H1, ..., Hq be hy-

perplanes in Pn(C) located in general position. Assume that f−1(Hj) = g−1(Hj), 1 ≤

j ≤ q, and that there is a k such that ∩kj=1f
−1(Hij) = ∅. Let A = ∪qi=1f

−1(Hi)

and assume that for every point z ∈ A, f(z) = g(z). Then we have the following

conclusions.

(a) If q ≥ 2(n+ 1)k and

q − (n+ 1)− n(n+ 1)

2
(cf + cg)−

2knq

q − 2k + 2kn
> 0, (5.14)

then f ≡ g.

(b) If q < 2(n+ 1)k and

q > (n+ 1)(k + 1) +
n(n+ 1)

2
(cf + cg), (5.15)

then f ≡ g.

Note that (5.14) holds if

q > k +
1

2
(n+ 1) +

1

2
n(n+ 1)(cf + cg) +

(
2k + kn(cf + cg)(n

2 − 1)

+ (k +
n+ 1

2
)2 + (8kn+ 4n2 + 4n)(n+ 1)(cf + cg) + n2(n+ 1)2(cf + cg)

2
)1/2

.
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Proof. Assume f 6= g and q ≥ 2n. We construct an auxiliary function as in [4] (see

also [9]). By lemma 3.1 in [18], there exists a hyperplane

Hc = {c0x0 + · · ·+ cnxn = 0}

such that f−1(Hc ∩Hj) = ∅ and g−1(Hc ∩Hj) = ∅ for j = 1, ..., q. Fix such an Hc.

Let Hj = {aj0x0 + · · · + ajnxn = 0}. Then define (f,Hj) :=
aj0f0+···+ajnfn
c0f0+···+cnfn , where

(f1, ..., fn) is a local reduced representation of f . We define (g,Hj) similarly. We

arrange the hyperplanes H1, .., Hq into groups:

Group 1:

(f,H1)

(g,H1)
≡ · · · ≡ (f,Hk1)

(g,Hk1)
6≡ (f,Hk1+1)

(g,Hk1+1)

Group 2:

(f,Hk1+1)

(g,Hk1+1)
≡ · · · ≡ (f,Hk2)

(g,Hk2)
6≡ (f,Hk2+1)

(g,Hk2+1)

· · ·

Group s:

(f,Hks−1+1)

(g,Hks−1+1)
≡ · · · ≡ (f,Hks)

(g,Hks)

where ks = q. The assumption of “in general position” implies that the number of

each group does not exceed n. For each 1 ≤ i ≤ q, we set σ(i) = i+n if i+n ≤ q and

σ(i) = i+n− q if i+n > q. Then it can be seen that σ is bijective and |σ(i)− i| ≥ n

since q ≥ 2n. Define Pi as follows:

Pi = (f,Hi)(g,Hσ(i))− (g,Hi)(f,Hσ(i)).

Since f 6≡ g, we have that Pi 6≡ 0. We define the auxiliary function
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P :=

q∏
i=1

Pi. (5.16)

We will use the following Lemma to study the the zero orders of P .

Lemma 5.2.2 ([17]). Let f, g : 4(R)→ Pn(C) be two linearly non-degenerate holo-

morphic curves. Let F = (f0, .., fn) be a reduced representation of f and G be a

reduced representation of g. Let H1, ..., Hq be hyperplanes in Pn(C) located in general

position with q ≥ 2n. Let 0 < R ≤ +∞. Assume the following:

i.) f−1(Hj) = g−1(Hj) for 1 ≤ j ≤ q;

ii.) Let k ≤ n be a positive integer such that f−1(∩k+1
j=1Hij) = ∅ for 1 ≤ i1 ≤ · · · ≤

ik+1 ≤ q;

iii.) f = g on ∪qi=1f
−1(Hi).

Then the following holds on 4(R) :

(a) If q ≥ 2(n+ 1)k, then

νP (z) ≥
(q − 2k + 2kn

2kn

) q∑
i=1

(νnF (Hi)
(z) + νnG(Hi)

(z)),

where νP (z) is the zero order of P at the point z and νnF (Hi)
(z) = min{n, νF (Hi)(z)};

(b) for q < 2(n+ 1)k, we have

νP (z) ≥
( q

(n+ 1)k

) q∑
i=1

(νnF (Hi)
(z) + νnG(Hi)

(z)).
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Proof. We first prove (a). Denote by Pi := F (Hi)G(Hσ(i))−G(Hi)F (Hσ(i)). Observe,

if z 6∈ ∪qi=1f
−1(Hi), then νnF (Hi)

(z) = 0. In this case the lemma is true. Thus, we

consider the case where z ∈ ∪qi=1f
−1(Hi). Define I := {i : F (Hi)(z) = 0, 1 ≤

i ≤ q} and denote by t := #(I) the number of elements of I. Then, t ≤ k since⋃
1≤i1<...<ik+1≤q f

−1(∩k+1
j=1Hij) = ∅. If i ∈ I, then z is a zero of F (Hi), and hence

z is a zero of Pi with multiplicity at least min{νF (Hi)(z), νG(Hi)(z)}. We now define

σ−1(I) = {i : σ(i) ∈ I}. If l ∈ {1, ...q}\(I ∪ σ−1(I)), then z is a zero of Pl with

multiplicity of at least 1 because of the assumption f(z) = g(z) on ∪qi=1f
−1(Hi).

Hence νPl ≥ 1. Then

νP (z) ≥
∑

i∈I,i∈σ−1(I)

min{νF (Hi)(z), νG(Hi)(z)}+
∑

l∈{1,...,q}\(I∪σ−1(I))

νPl

≥
∑

i∈I,i∈σ−1(I)

min{νF (Hi)(z), νG(Hi)(z)}+
∑

l∈{1,...,q}\(I∪σ−1(I))

1

≥ 2
∑
i∈I

min{νF (Hi)(z), νG(Hi)(z)}+ q −#(I ∪ σ−1(I))

= 2
∑
i∈I

min{νF (Hi)(z), νG(Hi)(z)}+ q − 2t. (5.17)

Since t ≤ k, we have

νP (z) ≥ 2
∑
i∈I

min{νF (Hi)(z), νG(Hi)(z)}+ q − 2k.

Using the fact that min{a, b} ≥ min{a, n}+min{b, n}−n for all positive integers
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a and b, it follows from the above inequality

νP (z) ≥ 2
∑
i∈I

[min{νF (Hi)(z), n}+ min{νG(Hi)(z), n} − n] + q − 2k

≥ 2
∑
i∈I

[min{νF (Hi)(z), n}+ min{νG(Hi)(z), n} − n ·min{νF (Hi)(z), 1}]

+q − 2k

= 2
∑
i∈I

(νnF (Hi)
(z) + νnG(Hi)

(z)− n · ν1
F (Hi)

(z)) +
q − 2k

2k
· 2k.

Since k ≥
∑q

i=1 min{1, νF (Hi)(z)} =
∑q

i=1 ν
1
F (Hi)

(z), we get

νP (z) ≥ 2
∑
i∈I

(νnF (Hi)
(z) + νnG(Hi)

(z)− n · ν1
F (Hi)

(z))

+
q − 2k

2k

q∑
i=1

(ν1
F (Hi)

(z) + ν1
G(Hi)

(z))

≥ 2
∑
i∈I

(νnF (Hi)
(z) + νnG(Hi)

(z))

+(
q − 2k

2k
− n)

q∑
i=1

(ν1
F (Hi)

(z) + ν1
G(Hi)

(z))

≥ 2
∑
i∈I

(νnF (Hi)
(z) + νnG(Hi)

(z))

+(
q − 2k

2kn
− 1)

q∑
i=1

(νnF (Hi)
(z) + νnG(Hi)

(z))

≥ (
q − 2k

2kn
+ 1)

q∑
i=1

(νnF (Hi)
(z) + νnG(Hi)

(z))

≥ (
q − 2k + 2kn

2kn
)

q∑
i=1

(νnF (Hi)
(z) + νnG(Hi)

(z)).

We now prove (b). From (5.14), we have

νP (z) ≥ 2
∑
i∈I

min{νF (Hi)(z), νG(Hi)(z)}+ q − 2t.
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Again, using the fact that min{a, b} ≥ min{a, n}+ min{b, n} − n, we have

νP (z) ≥ 2
∑
i∈I

min{νF (Hi)(z), νG(Hi)(z)}+ q − 2k

≥
(

2− q

(n+ 1)k

)∑
i∈I

min{νF (Hi)(z), νG(Hi)(z)}

+
q

(n+ 1)k

∑
i∈I

(min{νF (Hi)(z), n}+ min{νG(Hi)(z), 1} − n) + q − 2t

≥
(

2− q

(n+ 1)k

)
t− qnt

(n+ 1)k
+ q − 2t

+
q

(n+ 1)k

∑
i∈I

(min{νF (Hi)(z), n}+ min{νG(Hi)(z), n})

≥
( q

(n+ 1)k

)∑
i∈I

(min{νF (Hi)(z), n}+ min{νG(Hi)(z), n})

=
( q

(n+ 1)k

) q∑
i=1

(νnF (Hi)
(z) + νnG(Hi)

(z)).

Continuing the proof, from the above Lemma we have,

νP (z) ≥
(q − 2k + 2kn

2kn

) q∑
i=1

(νnF (Hi)
(z) + νnG(Hi)

(z)),

where νP (z) is the zero order of P at the point z and νnF (Hi)
(z) = min{n, νF (Hi)(z)}.

In the case when q ≥ 2(n + 1)k, the inequality in part (a) of the Lemma 5.2.2,

can be integrated on both sides to yield, for 0 < r < R,

NP (r, 0) ≥
(q − 2k + 2kn

2kn

) q∑
i=1

(N
(n)
f (r,Hi) +N (n)

g (r,Hi)).

Notice, by Jensen’s formula and the definition of the characteristic function, we

have that

NP (r, 0) ≤ q(Tf (r) + Tg(r)) +O(1).
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Thus, the above Lemma implies that

q∑
i=1

(N
(n)
f (r,Hi) +N (n)

g (r,Hi)) ≤
2knq

q − 2k + 2kn
(Tf (r) + Tg(r)) +O(1).

Applying Theorem 5.1.14 to f and g, and together with the Lemma above, we get

(q − (n+ 1)− n(n+ 1)

2
(1 + ε)(cf + cg + ε))(Tf (r) + Tg(r))

≤
q∑
j=1

(N
(n)
f (r,Hj) +N (n)

g (r,Hj)) +O(log Tf (r) + log Tg(r))

+
n(n+ 1)

2
ε log r ‖E.

Taking the above into consideration, we have

(q − (n+ 1)− n(n+ 1)

2
(1 + ε)(cf + cg + ε))(Tf (r) + Tg(r))

≤ 2knq

q − 2k + 2kn
(Tf (r) + Tg(r)) +O(log Tf (r) + log Tg(r)) +

n(n+ 1)

2
ε log r.

Thus

q − (n+ 1)− n(n+ 1)

2
(cf + cg)−

2knq

q − 2k + 2kn
≤ 0,

which contradicts with the assumption of (5.14). Thus, the theorem is proved for the

case when q ≥ 2(n+ 1)k. In the case that q < 2(n+ 1)k, we use part (b) of Lemma

5.2.2 to get

NP (r, 0) ≥
( q

(n+ 1)k

) q∑
i=1

(N
(n)
f (r,Hi) +N (n)

g (r,Hi)).

Thus, using NP (r, 0) ≤ q(Tf (r) + Tg(r)) +O(1), we get

q∑
i=1

(N
(n)
f (r,Hi) +N (n)

g (r,Hi)) ≤ (n+ 1)k(Tf (r) + Tg(r)) +O(1).

68



Taking the above into consideration, we have,

(q − (n+ 1)− n(n+ 1)

2
(1 + ε)(cf + cg + ε))(Tf (r) + Tg(r))

≤ (n+ 1)k(Tf (r) + Tg(r)) +O(log Tf (r) + log Tg(r)) +
n(n+ 1)

2
ε log r.

Thus

q ≤ (n+ 1)(k + 1) +
n(n+ 1)

2
(cf + cg),

which contradicts with the assumption in (5.16).
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Chapter 6

Conclusions

Due to the theory by Min Ru and Nessim Sibony, we are able to provide new

uniqueness results that recover prior well known theorems. In turn, we are able to

shorten the proofs as well. The arguments for the main results in Theorem 4.2.4 and

Theorem 5.2.2 follow the same sense of spirit as the prior uniqueness results.

Min Ru and Nessim Sibony in ([16]) established another Second main theorem

for holomorphic mappings from a disc into Abeilan varieties.

Theorem 6.0.1 (See Theorem 6.6 in [16]). Let A be an Abelian variety, and let D

be an ample divisor on A. Let f : 4(R) → A be a holomorphic map with Zariski

dense image. Assume that f ∈ E0. Then there is a positive integer k0 such that, for

any ε > 0,

Tf,D(r) ≤ N
(k0)
f (r,D) + εTf,D(r) +O(log Tf,D(r)) + ε log r

holds for r ∈ (0, R) except for a set E with
∫
E

exp(εTf,D(r))dr <∞.
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It is natural to try to apply the strategies in the proofs for the uniqueness theorems

in this dissertation to acquire another unicity result. This would require Theorem

6.0.1 to hold for k0 = 1. Indeed, following the work of Dulock-Ru [7], a path that

could be utilized is extending the below result from K. Yamanoi’s paper to the case

of 4(R).

Theorem 6.0.2 ([26]). Let A be an Abelian variety and let D ⊂ A be a reduced

effective divisor. Let L be an ample line bundle on A. Let f : C→ A be a holomorphic

curve such that the image of f is Zariski dense. Then we have

Tf (r,D) ≤ N
(1)
f (r,D) + εTf (r, L) ||ε,

for all ε > 0.
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