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Abstract

This dissertation shows a kinetic approach for pedestrian dynamics. First, we

model the evacuation of a crowd from bounded domains. The interactions of a

person with other pedestrians and the environment, which includes walls, exits, and

obstacles, are modeled by using tools of game theory and are transferred to the crowd

dynamics. The model allows to weight between two competing behaviors: the search

for less congested areas and the tendency to follow the stream unconsciously in a

panic situation. For the numerical approximation of the solution to our model, we

apply an operator splitting scheme which breaks the problem into two pure advection

problems and a problem involving the interactions. We compare our numerical results

against the data reported in a recent empirical study on evacuation from a room

with two exits. For medium and medium-to-large groups of people, we achieve

good agreement between the computed average people density, flow rate, and the

respective measured quantities. Through a series of numerical tests, we also show

that our approach is capable of handling evacuation from a room with one or more

exits with variable size, with and without obstacles, and can reproduce lane formation

in bidirectional flow in a corridor.

Next, we consider a crowd model known as ASCRIBE that can also track the

level of emotional contagion in evacuation scenarios. We propose a modification

of this model to track disease contagion. Finally, we couple the disease contagion

model with the one dimension kinetic approach for pedestrian dynamics to simulate

the initial spreading of an infectious disease.
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Chapter 1

Introduction

In recent years, the study of pedestrian dynamics has received much attention from

the scientific community due to the large number of applications in engineering and

social sciences. The interest in modeling pedestrian flow has strongly increased since

reliable simulations of pedestrian flow may greatly aid mass transportation man-

agement, urban planning, and architecture. The challenging analytical and com-

putational problems that arise from pedestrian flow models have also attracted the

attention of many applied mathematicians.

Over the years, a very large variety of models have been developed, which can

be divided into three different approaches related to three different scales [8]. One

approach corresponds to the macroscopic description: evolution equations are de-

rived for mass density and linear momentum, which are regarded as macroscopic

observables of pedestrian flow, see, e.g., [31, 44]. Such an approach is suitable for

high density, large-scale systems, which are not the focus of our work.
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The second approach is related to the microscopic scale. There exists two cate-

gories of microscopic models: grid-based models and grid-free models. A grid-based

model that has gained a lot of popularity is Cellular Automata [15, 16, 18, 23, 35].

These models describe pedestrian flow in space-time by assigning discrete states to

a grid of space-cells. Cells can be occupied by a pedestrian or be empty. Thus,

the movement of pedestrians in space is done by passing them from cell to cell

(discrete space) in discrete time. Grid-free methods use Newtonian mechanics to

interpret pedestrian movement as the physical interaction between the people and

the environment, i.e. the action of other people and the environment on a given

pedestrian is modeled with forces. These microscopic models, also called force-

based models, are one of the most popular modeling paradigms of continuous mod-

els because they describe the movement of pedestrians qualitatively well, see, e.g.,

[21, 26, 29, 30, 36, 39, 49, 56] and references therein. Collective phenomena, like uni-

directional or bidirectional flow in a corridor [38, 46, 53], lane formation [27, 29, 54],

oscillations at bottlenecks [27, 29], the faster-is-slower effect [33, 40], emergency evac-

uation from buildings [27, 37, 54], are well reproduced. Other advantages of these

methods are the ease of implementation, and in particular parallel implementation,

and the fact that they permit higher resolution of geometry and time. Another type

of frequently mentioned model is the agent-based model, see, e.g., [2, 3, 4, 20, 22] and

references therein. Agent-based models allow for flexibility, extensibility, and capa-

bility to realize heterogeneity in crowd dynamics. Both force-based and agent-based

models may introduce artifacts due to the force representation of human behavior,

leading to unrealistic backward movement or oscillating trajectories. These artifacts
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can be reduced by incorporating extra rules and/or elaborate calibrations, at the

price of increasing the computational cost.

The scale of observation for the third approach is between the previous two.

Introduced in [5] and further developed in [1, 6, 7, 9, 10, 11, 12], this approach de-

rives a Boltzmann-type evolution equation for the statistical distribution function

of the position and velocity of the pedestrians, in a framework close to that of the

kinetic theory of gases. See also [13] for a literature review on this approach. The

model proposed in [5, 7, 12] is valid in unbounded domains and with a homogeneous

distribution of walking ability for the pedestrians, while the extension to bounded

domains is presented in [1] and further explored in [9, 10, 11]. In [9], more general

features of behavioral-social dynamics are taken into account. In [10], Monte Carlo

simulations are introduced to study pedestrians behavior in complex scenarios. The

methodology in [10] is validated by comparing the computed fundamental density-

velocity diagrams with empirically observed ones and by checking that well known

emerging properties are reproduced. A kinetic theory approach for modeling pedes-

trian dynamics in presence of social phenomena, such as the propagation of stress

conditions, is presented in [11]. Finally, we refer to [6] for a thorough description

of how kinetic theory and evolutionary game theory can be used to understand the

dynamics of living systems.

Most of the references cited so far have been shown to replicate various cases of

pedestrian movement qualitatively through analysis and/or numerical simulations.

Obviously, if a model cannot represent a certain phenomenon qualitatively, there

is no hope for any quantitative agreement between model prediction and practical
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experiments. However before using a model for quantitative predictions, the model

itself must be validated and the numerical method used to implement the model

must be verified [24]. A verified method is capable of correctly solving the problem

equations, while a valid model is able to correctly describe the features of the problem

(i.e. it uses the right equations). Validation of pedestrian flow models is complicated

by the lack of reliable experimental data. In addition, the few available datasets show

large differences [43, 41, 55]. In order to make the models more reliable, evolutionary

adjustment of the parameters and data assimilations have also been proposed in

[32, 52], respectively.

This thesis deals with a kinetic theory approach to model pedestrian dynamics.

We reproduce the models and simulations from [1] and compare the results given by

our model with the empirical data in [50]. In our model, pedestrians are considered

as active particles and their movement is influenced by the environment, i.e. walls

and exits, and by other pedestrians.

Moreover, we introduce another model of pedestrian dynamics with emotional

contagion [51]. This model can track the level of emotional contagion. Also, this

model has been used to model evacuation scenarios [48] and compared to other mod-

els [47]. For more details, see [14]. In this dissertation, we propose the modification

of this model in order to track disease contagion level and test some particular sim-

ulations.

The dissertation is organized as follows. Chapter 2 introduces the representation

of the system and the modeling of pedestrian interactions. In Chapter 3, we pro-

pose the Lie splitting algorithm for the model described in Chapter 2. Chapter 4

4



presents the numerical results. We first focus on validating our implementation of

the numerical approach described in Chapter 3 with an academic benchmark tests

and empirical data. We analyze the role of the exit size, the influence of the level of

panic, study the influence of the quality of the environment, and devise a strategy

to handle obstacles within the domain evacuating the room with two exits in order

to compare with experimental data in [50]. Finally, we see the bidirectional motion

in a straight periodic corridor to compare the numerical results with the experimen-

tal data in [28]. In Chapter 5, we propose a model to track the contagion level

of a disease called ASCRIBE which allows tracking the emotional contagion level

in evacuation scenarios. We present a one dimensional kinetic approach to model

pedestrian dynamics in Chapter 6. Last, in Chapter 7, we couple the model for the

spreading of an infectious disease presented in Chapter 5 with the one dimensional

model for pedestrian dynamics presented in Chapter 6.
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Chapter 2

Mathematical Model

In this chapter, we describe a kinetic theory approach for pedestrian dynamics.

Pedestrians are viewed as active particles, whose micro-states are defined by position

and velocity direction, and the state of the overall system is given by a probability

distribution function over the micro-state. The equations which model the time and

space dynamics of this distribution function are obtained by a balance of “particles”

in an elementary volume. The net flow into this volume is due to transport and

interactions.

The numerical results obtained with this approach will be shown and compared

against experimental data in Chapter 4. The approach we choose is suitable to

model pedestrian dynamics in a domain with boundaries, which consists of walls

and exits. Modeling the interactions of pedestrians with walls can be viewed as a

statement of boundary conditions for kinetic equations. This is conceptually more

complicated than imposing boundary conditions in the classical theory of particles,

where it is possible to implement suitable reflection rules [19]. Individuals feel the
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presence of walls at a distance and modify their dynamics in order to avoid them.

Another advantage of the model described in this chapter is that it takes into account

the granular feature of pedestrian dynamics, which does not justify the assumption

of continuity of the distribution function over the micro-variable. Thus, we expect

this model to give more realistic pedestrian dynamics than classical kinetic theory

approaches.

2.1 Representation of the system

Let Ω ⊂ R2 be the bounded domain where pedestrians move. We assume that the

boundary ∂Ω includes the exit zone E, while the remaining part of the boundary

constitutes the wall W . It is worth mentioning that E could be the finite union of

disjoint sets, i.e. the domain may have more than one exit. The quality of the domain

where pedestrians move is given by parameter α ∈ [0, 1], where α = 0 corresponds

to the worst quality which forces pedestrians to slow down or stop, while the value

α = 1 corresponds to the best quality, which contributes to walk at the desired speed.

Let x = (x, y) denote position, which is supposed to be a continuous variable

defined over Ω. Let v = (v1, v2) = v(cos θ, sin θ) denote a velocity field defined over

Dv, where Dv ⊂ R2 is the velocity domain. We assume that angle θ, that identifies

the velocity direction, can only take a finite number of values in the interval [0, 2π),

i.e. we consider only uniformly spaced angles θi in the set:

Iθ =

{
θi =

i− 1

Nd

2π : i = 1, . . . , Nd

}
.

The velocity magnitude v is modeled as a continuous deterministic variable which
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evolves in time and space according to macroscopic effects determined by the overall

dynamics. The use of discrete variables for the individual velocity states v and θ is

due to granular nature of pedestrian dynamics, as explained in the previous section.

In fact, we do not want to assume to have such a large crowd to justify a continuous

distribution function over direction angle θ. Instead, we want to be able to deal with

a wide spectrum of crowd sizes.

For a system composed by a number of pedestrians distributed inside a bounded

domain Ω ⊂ R2, the distribution function is given by

f = f(t,x,v) for all t ≥ 0, x ∈ Ω, v ∈ Dv.

Under suitable integrability conditions, f(t,x,v)dxdv represents the number of indi-

viduals who, at time t , are located in the infinitesimal rectangle [x, x+dx]×[y, y+dy]

and have a velocity belonging to [v1, v1 + dv1]× [v2, v2 + dv2]. Notice that when we

use polar coordinates for the velocity, we can write the distribution function as

f = f(t,x, v, θ).

Concerning the velocity modulus v, we assume that pedestrians adjust their speed

according to the level of congestion around them. So higher densities induce people

to reduce their velocity modulus, while in less congested areas people can increase

their speed. Due to the deterministic nature of the variable v, the kinetic type

representation is given by the reduced distribution function

f(t,x, θ) =

Nd∑
i=1

f i(t,x)δ(θ − θi), (2.1)

where f i(t,x) = f(t,x, θi) represents the active particles that, at time t and position

x, move with direction θi. In (2.1), δ denotes the Dirac delta function.
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We will make use of dimensionless quantities. For this purpose, we introduce the

following reference quantities:

- D: the diameter of the domain Ω.

- vM : the highest velocity modulus that a pedestrian can reach in low density

and optimal environmental conditions.

- T : reference time given by D/vM .

- ρM : the maximal admissible number of pedestrians per unit area.

We can now define the following dimensionless variables: position x̂ = x/D, time

t̂ = t/T , velocity modulus v̂ = v/vM and distribution function f̂ = f/ρM . From

now on, all the variables will be dimensionless and hats will be omitted to simplify

notation.

Due to the normalization of f and each f i, the dimensionless local density is

obtained by summing the distribution functions over the set of directions:

ρ(t,x) =

Nd∑
i=1

f i(t,x). (2.2)

As mentioned earlier, we assume that pedestrians adjust their speed depending

on the the level of congestion around them. This means that their speed depends

formally on the local density, i.e. v = v[ρ](t,x). The square brackets are used to

denote that v depends on ρ in a functional way. For instance, v can depend on ρ

and on its gradient.

We assume that the maximum dimensionless speed vM a pedestrian can reach

depends linearly on the quality of the environment. In particular, we take vM =

α. Velocity magnitude v is set equal to the maximal speed vm under low density

conditions (free flow regime), i.e. for ρ ∈ [0, ρc) where ρc = ρc(α) is a critical density
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that can be experimentally measured, see [42]. We take ρc = α/5. For values

of ρ greater than ρc, the velocity modulus decreases to zero (slowdown zone). In

the slowdown zone, pedestrians have a velocity modulus which is here heuristically

modeled by third-order polynomial. We have

v = v(ρ) =


α for ρ ≤ ρc(α) = α/5

a3ρ
3 + a2ρ

2 + a1ρ+ a0 for ρ > ρc(α) = α/5,

(2.3)

where ai, with i = 0, 1, 2, 3, is constant. To find these constants, we impose the

following conditions: v(ρc) = vm, ∂ρv(ρc) = 0, v(1) = 0 and ∂ρv(1) = 0. This leads

to: 

a0 = (1/(α3 − 15α2 + 75α− 125))(75α2 − 125α)

a1 = (1/(α3 − 15α2 + 75α− 125))(−150α2)

a2 = (1/(α3 − 15α2 + 75α− 125))(75α2 + 375α)

a3 = (1/(α3 − 15α2 + 75α− 125))(−250α).

(2.4)

See Figure 2.1. This shows the dependence of the dimensionless velocity modulus

v on the dimensionless density ρ for three different values of the parameter α, i.e. the

quality of the environment. In the free flow zone, pedestrians move with the maximal

velocity modulus vm = α. In the slowdown zone, pedestrians have a velocity modulus

by the third-order polynomial from the point (ρc(α), vm(α)) to the point (1, 0).
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Figure 2.1: Dependence of the dimensionless velocity modulus v on the dimensionless
density ρ for different values of the parameter α representing the quality of the
environment.

2.2 Modeling interactions

This section is devoted to the modeling of pedestrian-pedestrian and pedestrian-

environment interactions. To model interaction dynamics, we assume that pedestri-

ans modify their walking direction by taking into account various inputs: the desire

to reach the exit (or another target destination) and avoid the wall, the search for

less congested directions, and the unconscious attraction to the stream of people. It

is worth noting that this last input models an irrational behavior which is always

present but might be stronger in panic situations. The remaining inputs describe

the behavior of a rational crowd. Interactions are nonlinearly additive, meaning

that they produce a global effect which is not given by the sum of all the individual

interactions.

11



We refer to an i-particle to mean a pedestrian moving with direction θi. Interac-

tions involve three types of particles:

- test particles with state (x, θi): they are representative of the whole system;

- candidate particles with state (x, θh): they can reach in probability the state

of the test particles after individual-based interactions with the environment

or with field particles;

- field particles with state (x, θk): their presence triggers the interactions of the

candidate particles.

As mentioned above, the process through which a pedestrian decides the direction

to take is the results of several factors. Our model that takes into account four factors:

(F1) The goal to reach the exit.

Given a candidate particle at the point x, we define its distance to the exit as

dE(x) = min
xE∈E

||x− xE||,

and we consider the unit vector uE(x), pointing from x to the exit. See

Figure 2.2.

(F2) The desire to avoid the collision with walls.

Given a candidate particle at the point x, we define the distance dW (x, θh)

from the particle to a wall at a point xW (x, θh). We select the unit tangent

vector uW (x, θh) to the boundary ∂Ω at xW that points to the direction a

pedestrian would take to get closer to the exit. See Figure 2.2.

(F3) The tendency to look for less congested area.

A candidate particle (x, θh) may decide to change direction in order to avoid

congested areas. This is achieved by considering the direction that gives the
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minimal directional derivative of the density at the point x. This direction is

denoted by the unit vector uC(θh, ρ).

(F4) The tendency to follow the stream.

A candidate particle modifies its state, in probability, into that of the test

particle due to interactions with field particles, while the test particle loses its

state as a result of these interactions. A candidate pedestrian h interacting

with a field pedestrian k may decide to follow him/her and thus adopt his/her

direction. We define the unit vector uF = (cos θk, sin θk).

xW

Figure 2.2: A particle located at point x.

See Figure 2.2. A particle located at point x tries to reach the exit E walking

through the shortest path, which is the distance dE(x) from a particle to the exit

by the unit vector uE(x) pointing from x to the exit. Also, a particle moving with

direction θh is expected to collide the wall, then it computes not only the distance

from x to the wall but also the unit tangent vector uw(x) toward the exit.

Factors (F1) and (F2) are related to geometric aspects of the domain, while factors
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(F3) and (F4) consider that people’s behavior is strongly affected by surrounding

crowd.

The effects related to assumptions (F3)-(F4) compete with each other. We in-

troduce a parameter ε ∈ [0, 1], that varies according to the particular situation to

be modeled: the value ε = 0 corresponds to the situation in which only the research

of less congested areas is considered, while ε = 1 corresponds to the situation in

which only the tendency to follow the stream is taken into account. The case ε = 1

represents a panic situation.

2.2.1 Interaction with the bounding walls

The interaction with the environment is modeled with two terms:

- µ[ρ]: the interaction rate models the frequency of interactions between candi-

date particles and the boundary of the domain. If the local density is getting

lower, it is easier for pedestrians to see the walls and doors. Following this

idea, we set µ[ρ] = 1− ρ.

- Ah(i): the transition probability gives the probability that a candidate particle

h, i.e. with direction θh adjusts its direction into that of the test particle θi

due to the presence of the walls and/or and exit. The following constraint for

Ah(i) has to be satisfied:

Nd∑
i=1

Ah(i) = 1 for all h ∈ {1, . . . , Nd}.

We assume that particles change direction, in probability, only to an adjacent

clockwise or counterclockwise direction in the discrete set Iθ. This means a candidate

particle h may end up into the states h − 1, h + 1 or remain in the state h. In the
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case h = 1, we set θh−1 = θNd
and, in the case h = Nd, we set θh+1 = θ1. The set of

all transition probabilities A = {Ah(i)}h,i=1,...,Nd
forms the so-called table of games

that models the game played by active particles interaction with the geometry of the

environment.

To take into account factors (F1) and (F2), we define the vector

uG(x, θh) =
(1− dE(x))uE(x) + (1− dW (x, θh))uW (x, θh)

||(1− dE(x))uE(x) + (1− dW (x, θh))uW (x, θh)||
= (cos θG, sin θG). (2.5)

Here θG is the geometrical preferred direction, which is the ideal direction that a

pedestrian should take in order to reach the exit and avoid the walls in an optimal

way.

A candidate particle h will update its direction by choosing the angle closest to

θG among the three allowed angles θh−1, θh and θh+1. The transition probability is

given by:

Ah(i) = βh(α)δs,i + (1− βh(α))δh,i, i = h− 1, h, h+ 1, (2.6)

where

s = arg min
j∈{h−1,h+1}

{d(θG, θj)},

with

d(θp, θq) =


|θp − θq| if |θp − θq| ≤ π,

2π − |θp − θq| if |θp − θq| > π.

(2.7)

In (2.6), δ denotes the Kronecker delta function. Coefficient βh, proportional to

parameter α, is defined by:

βh(α) =


α if d(θh, θG) ≥ ∆θ,

α
d(θh, θG)

∆θ
if d(θh, θG) < ∆θ,
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where ∆θ = 2π/Nd. The role of βh is to allow for a transition to θh−1 or θh+1 even in

the case that the geometrical preferred direction θG is closer to θh. Such a transition

is more likely to occur the more distant θh and θG are. Notice that if θG = θh, then

βh = 0 and Ah(h) = 1, meaning that a pedestrian keeps the same direction (in the

absence of interactions other than with the environment) with probability 1.

2.2.2 Interaction with obstacles

The strategy reported in the previous section to avoid collisions with the walls works

well when the pedestrian is sufficiently far from the walls. If pedestrians get too close

to the bounding walls, and in particular if they are close to an exit, the definition

of uG in (2.5) does not prevent collisions with the walls. Thus, obstacles within the

domain Ω cannot be avoided just by adjusting uW . In this section, we report an

effective strategy to handle obstacles.

Three ingredients are needed to exclude the real obstacle area from the walkable

domain:

1. An effective area: an enlarged area that encloses the real obstacle.

2. A definition of uW to account for the effective area.

3. A setting of the parameter α in the effective area depending on the shape of

the obstacle.

The effective area is necessary especially if the obstacle is close to an exit: it allows

to define uW with respect to a larger area than the one occupied by the obstacle to

achieve the goal of having no pedestrian walking on the real obstacle area. In the

numerical results reported in Section 4.4, we used an effective area that is four times
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bigger than the real obstacle area.

Since some pedestrians will walk on part of the effective area, one needs to set

parameter α. By setting α = 1 (i.e. best quality of the environment) in the effective

area, pedestrians can move with the maximal velocity modulus as they approach the

obstacle and thus they quickly adapt to the effective area through uW . However,

some pedestrians will walk close to the top, bottom, and rear (with respect to the

pedestrian motion) boundary of the effective area. Thus, the real obstacle is located

at the front of the effective area. From the numerical results reported in Section 4.4,

we also see that the shape of the obstacle is square. By setting α = 0 (i.e. worst

quality of the environment) in the effective area, pedestrians are forced to slow down

at the front part of the effective area. The slow down leads to higher densities in the

front part of the effective area, therefore direction uW competes with direction uC .

As a result some pedestrians walk on the front part of the effective area. However, as

the congestion decreases pedestrians avoid the rear part of the effective area. From

the numerical results shown in Section 4.4, we see that the shape of the obstacle for

α = 0 in the effective area is slender.

2.2.3 Interactions between pedestrians

The interaction with other pedestrians is also modeled with two terms:

- η[ρ]: the interaction rate defines the number of binary encounters per unit time.

If a local density increases, then the interaction rate also increases. We take

η[ρ] = ρ. Unlike the case of classical particles, this rate is not related to the

relative velocity, but to the sensitivity of particles to surrounding pedestrians.
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- Bhk(i)[ρ]: the transition probability gives the probability that a candidate par-

ticle h modifies its direction θh into that of the test particle i, i.e. θi, due to the

research of less congested areas and the interaction with a field particle k that

moves with direction θk. The following constrain for Bhk(i) has to be satisfied:

Nd∑
i=1

Bhk(i)[ρ] = 1 for all h, k ∈ {1, . . . , Nd},

where again the square brackets denote the dependence on the density ρ.

Concerning the search for less congested areas, the game consists in choosing

the less congested direction among the three admissible ones. This direction can be

computed for a candidate pedestrian h situated at x, by taking

C = arg min
j∈{h−1,h,h+1}

{∂jρ(t,x)},

where ∂jρ denotes the directional derivative of ρ in the direction given by angle θj. We

have uC(θh, ρ) = (cos θC , sin θC). Also, we recall the unit vector uF = (cos θk, sin θk)

following the direction of a field particle.

To take into account (F3) and (F4), we define the vector

uP (θh, θk, ρ) =
εuF + (1− ε)uC(θh, ρ)

||εuF + (1− ε)uC(θh, ρ)||
= (cos θP , sin θP ),

where the subscript P stands for pedestrians. Direction θP is the interaction-based

perferred direction, obtained as a weighted combination between the trendency to

follow the stream and the tendency to avoid crowded zones.

The transition probability is given by:

Bhk(i)[ρ] = βhk(α)ρδr,i + (1− βhk(α)ρ)δh,i, i = h− 1, h, h+ 1,
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where r and βhk are defined by:

r = arg min
j∈{h−1,h+1}

{d(θP , θj)},

βhk(α) =


α if d(θh, θP ) ≥ ∆θ

α
d(θh, θP )

∆θ
if d(θh, θP ) < ∆θ.

We recall that d(·, ·) is defined in (2.7).

2.3 Equation of balance

The derivation of the mathematical model can be obtained by a suitable balance of

particles in an elementary volume of the space of microscopic states, considering the

net flow into such volume due to transport and interactions [1].

Taking into account factors (F1)-(F4), we obtain:

∂f i

∂t
+∇ ·

(
vi[ρ](t,x)f i(t,x)

)
= J i[f ](t,x)

= J i
G[f ](t,x) + J i

P [f ](t,x)

= µ[ρ]

 n∑
h=1

Ah(i)fh(t,x)− f i(t,x)


+ η[ρ]

 n∑
h,k=1

Bhk(i)[ρ]fh(t,x)fk(t,x)− f i(t,x)ρ(t,x)

 (2.8)

for i = 1, 2, . . . , Nd. Functional J i[f ] represents the net balance of particles that

move with direction θi due to interactions. As seen in the previous subsection, we

consider both the interaction with the environment and with the surrounding people.
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Thus, we can write J i as J i = J i
G+J i

P , where J i
G is an interaction between candidate

particles and the environment and J i
P is an interaction between candidate and field

particles.

Equation (2.8) is completed with Equation (2.2) for the density and Equation (2.3),

(2.4) for the velocity. In the next chapter, we will discuss a numerical method for

the solution of problem (2.2), (2.3), (2.4), and (2.8).

20



Chapter 3

Numerical Method

In this chapter, we propose a numerical method for the initial value problem in a

bounded domain discussed in Chapter 2. The approach we consider is based on a

splitting method, where the equation is split into the transport part and the interac-

tion term. The idea is to split the problem into a set of subproblems that are easier

to solve and for which practical algorithms are available. The numerical method is

then completed by picking an appropriate numerical scheme for each subproblem.

Among the available operator-splitting methods, we chose the Lie’s splitting scheme

because it provides a good compromise between accuracy and robustness as shown

in [25].

3.1 The Lie operator-splitting scheme

Although the Lie splitting scheme is well-known, it may be useful to briefly present

this scheme before applying it to the solution of problem (2.2), (2.3), (2.4), and (2.8).
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Let us consider a first-order system in time:

∂φ

∂t
+ A(φ) = 0, in (0, T ),

φ(0) = φ0,

where A is an operator from a Hilbert space into itself. Operator A is then split, in

a non-trivial decomposition, as

A =
I∑
i=1

Ai.

The Lie scheme consists of the following. Let ∆t > 0 be a time discretization step

for the time interval [0, T ]. Denote tk = k∆t, with k = 0, . . . , Nt and let φk be an

approximation of φ(tk). Set φ0 = φ0. Then, for n ≥ 0 compute φk+1 by solving

∂φi
∂t

+ Ai(φi) = 0 in (tk, tk+1), (3.1)

φi(t
k) = φk+(i−1)/I , (3.2)

and then set φk+i/I = φi(t
k+1), for i = 1, . . . .I.

This method is first-order accurate in time. More precisely, if (3.1) is defined on

a finite-dimensional space, and if the operators Ai are smooth enough, then ‖φ(tk)−

φk‖ = O(∆t) [25]. In our case, operator A that is associated with problem (2.8) will

be split into a sum of three operators:

1. A pure advection problem in the x direction.

2. A pure advection problem in the y direction.

3. A problem involving the interaction with the environment and other pedestri-

ans.
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3.2 Lie scheme applied to problem (2.8)

Let us apply the Lie operator-splitting scheme described in the previous section to

problem (2.8). Given an initial condition f i,0 = f i(0,x), for i = 1, . . . , Nd, the

algorithm reads: For k = 0, 1, 2, . . . , Nt − 2, perform the following steps:

1. Find f i, for i = 1, . . . , Nd, such that


∂f i

∂t
+

∂

∂x

(
(v[ρ] cos θi)f

i(t,x)
)

= 0, on (tk, tk+1)

f i(tk,x) = f i,k
(3.3)

Set f i,k+
1
3 = f i(tk+1,x).

2. Find f i, for i = 1, . . . , Nd, such that


∂f i

∂t
+

∂

∂y

(
(v[ρ] sin θi)f

i(t,x)
)

= 0, on (tk, tk+1)

f i(tk,x) = f i,k+
1
3

(3.4)

Set f i,k+
2
3 = f i(tk+1,x).

3. Find fi, for i = 1, . . . , Nd, such that


∂f i

∂t
= J i[f ](t,x) on (tk, tk+1)

, f i(tk,x) = f i,k+
2
3

(3.5)

Set f i,k+1 = f i(tk+1,x).

Notice that with f i,k+1, for i = 1, . . . , Nd, we use an equation (2.2) to get the

density ρk+1 and equations (2.3),(2.4) to get the velocity magnitude at time tk+1.
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3.3 Space and time discretization

Let us assume for simplicity that the computational domain under consideration is a

rectangle [0, L]× [0, H], for given L and H. We discretize the computational domain

by choosing ∆x and ∆y to partition interval [0, L] and [0, H], respectively. Let Nx =

L/∆x and Ny = H/∆y. Then, we define the discrete mesh points xpq = (xp, yq) by

xp = p∆x, p = 0, 1, . . . , Nx,

yq = q∆y, q = 0, 1, . . . , Ny.

It will also be useful to define

xp+1/2 = xp + ∆x/2 =
(
p+

1

2

)
∆x,

yq+1/2 = yq + ∆y/2 =
(
q +

1

2

)
∆y.

In order to simplify notation, let us set φ = f i, θ = θi, t0 = tk, tf = tk+1. Let M

be a positive integer (≥ 3, in practice). We associate with M a time discretization

step τ = (tf − t0)/M and set tm = t0 +mτ .

Step 1

Let φ0 = f i,k. Problem (3.3) can be rewritten as
∂φ

∂t
+

∂

∂x

(
(v[ρ] cos θ)φ(t,x)

)
= 0 on (t0, tf ),

φ(t0,x) = φ0.

(3.6)

The finite difference method we use produces an approximation Φm
p,q ∈ R of the cell

average

Φm
p,q ≈

1

∆x∆y

∫ yq+1/2

yq−1/2

∫ xp+1/2

xp−1/2

φ(tm, x, y)dx dy,
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where m = 1, . . . ,M , 1 ≤ p ≤ Nx− 1 and 1 ≤ q ≤ Ny− 1. Given an initial condition

φ0, function φm will be approximated by Φm with

Φm

∣∣∣∣
[xp−1/2, xp+1/2]×[yq−1/2, yq+1/2]

= Φm
p,q

The Lax-Friedrichs method for problem (6.6) can be written in conservative form

as follows:

Φm+1
p,q = Φm

p,q −
τ

∆x

(
F(Φm

p,q,Φ
m
p+1,q)−F(Φm

p−1,q,Φ
m
p,q)
)

where

F(Φm
p,q,Φ

m
p+1,q) =

∆x

2τ
(Φm

p,q − Φm
p+1,q) +

1

2

(
(v[ρmp,q] cos θ)Φm

p,q + (v[ρmp+1,q] cos θ)Φm
p+1,q

)
.

Step 2

Let φ0 = f i,k+
1
3 . Problem (3.4) can be rewritten as
∂φ

∂t
+

∂

∂y

(
(v[ρ] sin θ)φ(t,x)

)
= 0 on (t0, tf ),

φ(t0,x) = φ0

Similarly to step 1, we use the conservative Lax-Friedrichs scheme:

Φm+1
p,q = Φm

p,q −
τ

∆y

(
F(Φm

p,q,Φ
m
p,q+1)−F(Φm

p,q−1Φ
m
p,q)
)

where

F(Φm
p,q,Φ

m
p,q+1) =

∆y

2τ
(Φm

p,q − Φm
p,q+1) +

1

2

(
(v[ρmp,q] sin θ)Φm

p,q + (v[ρmp,q+1] sin θ)Φm
p,q+1

)
.
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Step 3

Let J = J i and φ0 = f i,k+
2
3 . Problem (3.5) can be rewritten as

∂φ

∂t
= J [f ](t,x) on (t0, tf ),

φ(t0,x) = φ0.

For the approximation of the above problem, we use the Forward Euler scheme:

Φm+1
p,q = Φm

p,q + τ
(
Jm[Fm]

)
,

where Fm is the approximation of function (2.1) at time tm.
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Chapter 4

Numerical Results

In this chapter, we focus on the simulation of the evacuation from a room. The room

has one or more exits and might have obstacles in it.

First, we consider a square domain with one exit door located on the right side.

The goals of this first test are: to analyze the role of space discretizations and time

discretizations, the role of the exit size, and the influence of the parameter ε. Next,

we study the influence of α, which measures the quality of the environment, and

devise a strategy to handle obstacles within the domain. Such obstacles will have

different shapes and positions. As part of our validation effort, we consider a room

with two exits and a different number of pedestrians evacuating the room in order

to compare with experimental data. Finally, we show that our model successfully

reproduces lane formation in a periodic corridor.

All the simulations in this chapter are performed with interaction rate µ = 1− ρ
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and η = ρ. We consider eight different velocity directions Nd = 8 in the discrete set:

Iθ =

{
θi =

i− 1

8
2π : i = 1, . . . , 8

}
.

The velocity modulus is assumed to depend on the density, as described (2.3) in

Section 2.1.

4.1 Space and time discretizations

The first test we consider is taken from [1]. The computational domain encloses

a square room with each as side 10 m, which features an exit door located on the

middle of the right side. The exit size is 2.6 m. The computational domain is slightly

larger than the room itself in order to simulate evacuation, i.e. pedestrians do not

disappear from the computational domain when they leave the room. A group of

46 pedestrians is initially distributed into two equal-area circular clusters . The two

groups are moving against the each other with opposite initial directions θ3 and θ7.

Following [1], simulations are performed with ε = 0.4.

We are going to consider dimensionless quantities as described in Section 2.1. The

dimensionless quantities are obtained by using the following reference quantities:

- D = 10
√

2 m;

- vM = 2 m/s;

- T = D/vM = 5
√

2 s;

- ρM = 7 people/m2.

For the space discretization, we use three different meshes: a coarse mesh with

∆x = ∆y = 0.5 m, a medium mesh with ∆x = ∆y = 0.25 m, and a fine mesh with
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∆x = ∆y = 0.125 m. Similarly, for the time discretization we consider three different

time steps: a large time step ∆tlarge = 1.5 s, a medium time step ∆tmedium = 0.75 s,

and a small time step ∆tsmall = 0.375 s. The value of M for the Lie splitting scheme

is set to 3. In order to avoid stability issues, we consider six combinations of the

above meshes and time steps:

1. coarse mesh and ∆tlarge; see Figure 4.1 for the density at times t = 0, 1.50,

3.00, 6.00, 10.50, and 13.50 s.

2. coarse mesh and ∆tmedium; see Figure 4.2 for the density at times t = 0, 1.50,

3.00, 6.00, 10.50, and 13.50 s.

3. coarse mesh and ∆tsmall; see Figure 4.3 for the density at times t = 0, 1.50,

3.00, 6.00, 10.50, and 13.50 s.

4. medium mesh and ∆tmedium; see Figure 4.4 for the density at times t = 0, 1.50,

3.00, 6.00, 10.50, 13.50 s.

5. medium mesh and ∆tsmall; see Figure 4.5 for the density at times t = 0, 1.50,

3.00, 6.00, 10.50, and 13.50 s.

6. fine mesh and ∆tsmall; see Figure 4.6 for the density at times t = 0, 1.50, 3.00,

6.00, 10.50, and 13.50 s.

For a more immediate comparison of the results on different meshes and with

different time steps, Figure 4.7(a) shows how many pedestrians are left in the square

room for the six combinations mentioned above. In all the cases the total evacuation

time is around 18 s, which is in great agreement with the results reported in [1].

From Figure 4.7(a), one can observe that as the time step gets smaller with a given

mesh, people evacuate the room faster. Vice versa, as the mesh gets finer with a
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Figure 4.1: Evacuation process from a 10 m × 10 m room with a 2.6 m wide exit for
t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 46 pedestrians initially grouped into two
clusters, coarse mesh, and time step ∆tlarge. The color refers to density.
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Figure 4.2: Evacuation process from a 10 m × 10 m room with a 2.6 m wide exit for
t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 46 pedestrians initially grouped into two
clusters, coarse mesh, and time step ∆tmedium. The color refers to density.
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Figure 4.3: Evacuation process from a 10 m × 10 m room with a 2.6 m wide exit for
t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 46 pedestrians initially grouped into two
clusters, coarse mesh, and time step ∆tsmall. The color refers to density.
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Figure 4.4: Evacuation process from a 10 m × 10 m room with a 2.6 m wide exit for
t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 46 pedestrians initially grouped into two
clusters, medium mesh, and time step ∆tmedium. The color refers to density.
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Figure 4.5: Evacuation process from a 10 m × 10 m room with a 2.6 m wide exit for
t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 46 pedestrians initially grouped into two
clusters, medium mesh, and time step ∆tsmall. The color refers to density.
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Figure 4.6: Evacuation process from a 10 m × 10 m room with a 2.6 m wide exit for
t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 46 pedestrians initially grouped into two
clusters, small mesh, and time step ∆tsmall. The color refers to density.
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Figure 4.7: (a) Number of pedestrians for 6 different simulations combining different
meshes and different time steps and (b) Change of the number of pedestrians under
3 different conditions.

given time step, pedestrians take longer to leave the room the room. Figure 4.7(b)

compare the results from the cases 1, 4, and 6. We can see a very good agreement.

4.2 Different exit sizes

This second test is also taken from [1] for validation purposes. The aim of this test

is to study how the evacuation time is affected by the exit size. We let the exit size

vary from 1.5 m to 4 m. We consider the medium meshes and ∆tmedium from Section

4.1, since it is an appropriate choice as we have seen in the previous section. All the

other parameters are set like in Section 4.1.

Figure 4.8 shows the total evacuation time as a function of the exit size: Fig-

ure 4.8(a) from [1] and Figure 4.8(b) from our simulations. First, we notice that our

results are in very good agreement with the results from [1]. As expected, the total
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evacuation time decreases with the exit size. However, we remark that once the exit

is large enough for the crowd, the evacuation time does not change significantly of

the exit is further enlarged.

(a)
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Figure 4.8: The evacuation time on different exit sizes: (a) from [1] and (b) our
simulation.

4.3 Influence of parameter ε

In the model introduced in Section 2.2, parameter ε can be interpreted as a measure

of the level of panic: ε = 0 corresponds to the situation that pedestrians look for

less congested, while ε = 1 represents a panic situation with pedestrians following

the stream. In this section, we are interested in looking at how the evacuation from

a room with one exit is affected by the level of panic.

We consider a square room of side 10 m. An exit door of size 2 m is centered in

the middle of the right side of the room. Pedestrians are initially distributed in a
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6

Figure 4.9: Initial distribution of about 46 pedestrians with direction θ3 in a 10 m
× 10 m room with a 2.6 m wide exit. The color refers to density.

circular region, with constant density ρ = 0.70. That corresponds approximately to

46 pedestrians. The pedestrians initially move with direction θ3. See Figure 4.9.

Figure 4.10 show the computed density at times t = 3, 6, 13.5 s for ε = 0 (left)

and ε = 1 (right). In the case when the pedestrians look for less congested areas,

i.e. ε = 0, they take a longer path to approach the exit but they walk faster since the

density is not high. On the other hand, when pedestrians follow the stream, i.e. ε = 1,

the level of congestion is high and that leads to a decreased velocity modulus. In

this particular case, the level of panic does not affect the overall evacuation time.
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Figure 4.10: Computed density in a 10 m × 10 m room at t = 3.00, 6.00, and 13.50
s for ε = 0 (left) and ε = 1 (right). The color refers to density.
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4.4 Influence of the parameter α and presence of

obstacles

In the model introduced in Section 2.2, parameter α represents the quality of the

environment, which influences also the maximal reachable dimensionless velocity

modulus, Figure 2.1. In theory, parameter α = 0 forces pedestrians to stop, while

the value α = 1 contributes to keep the maximal velocity modulus. However, in our

experience this parameter alone is not very useful in modeling obstacles within the

domain. Thus, after understanding the role and the limitations of parameter α, we

present a new strategy to deal with obstacles.

We consider a square room of side 10 m with a 2.6 m wide exit located on the right

wall and featuring either one obstacle (in two different positions) or two obstacles.

Since as mentioned above α = 0 does not prevent pedestrians from walking into the

obstacle, we adopt the following strategy: define an effective area for the obstacle,

i.e. an enlarged area with respect the real obstacle which corresponds to the area

the pedestrian avoids to bypass the obstacle, and update the definition of uW to

account for the effective area. As we well see, the change of uW does not prevent

the pedestrians to walk through the effective area. Therefore, we explore the role of

α in defining the shape of the real obstacle, i.e. the area all the pedestrians avoid.

Three configurations are considered:

a) One obstacle close to the exit, i.e. in the middle of the right wall; see Fig-

ure 4.19(a) for the effective area.

b) One obstacle close to the top of the right wall; see Figure 4.19(b) for the
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Figure 4.11: Set-up of the effective area; (a) placed in the middle, (b) placed on the
right top and (c) placed symmetrically. The color refers to density.

effective area.

c) Two obstacles close to the right wall, place symmetrically with respect to the

exit; see Figure 4.19(c) for the effective area.

Pedestrians are initially distributed in a rectangular region, with constant density

ρ = 0.80, for a total of 44 pedestrians. Initially, pedestrians movies with direction

θ1. Other parameters are set the same way as in the previous subsection.

Before we present the results for the room with the obstacles, we show the evacua-

tion progress in the absence of obstacles. Figure 4.12 displays the density at different

times computed with α = 1 everywhere in the domain. The total evacuation time

for this case is 15.525 s.

Next, we present the results for the cases with obstacles. We first compare the

evacuation process when in the effective area we prescribe α = 1 and α = 0, in

order to identify the shape of the real obstacles. See Figure 4.13 and 4.14 for the

density computed in case a) with α = 1 and α = 0 in the effective area, respectively.

Likewise, see Figure 4.15 and 4.16 for the density computed in case b) with α = 1

and α = 0 in the effective area, respectively. Finally, see Figure 4.17 and 4.18 for the
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Figure 4.12: Evacuation process from a 10 m × 10 m room with a 2.6 m wide exit
for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 44 pedestrians initially distributed in a
rectangular shape moving with initial direction θ1 with no obstacle. The color refers
to density.
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density computed in case c) with α = 1 and α = 0 in the effective area, respectively.

From Figure 4.13, 4.15, and 4.17 we see that when α = 1 pedestrians avoid the front

part of the effective area. This is a possible explanation: when α = 1, the quality of

environment is at best and pedestrians can move with the maximal velocity modulus,

thus the quickly adapt to the effective area through uW , but then are driven towards

the exit and walk through the back part of the effective area. From Figure 4.14, 4.16,

and 4.18 we observe that when α = 0 pedestrians avoid the back part of the effective

area. In this case, the possible explanation is that α = 0 forces the pedestrians to

stop, which causes higher densities in the front part of the effective area.

Finally, Figure 4.19 shows the evacuation times for the room with no obstacles

and α = 1, and for cases a), b), and c) both for α = 1 and α = 0. Obviously,

the shortest evacuation time is for the room with no obstacles and and overall good

quality of the environment. The evacuation time is slightly larger when there is one

obstacle (either in the middle of the right wall or at the top) and α = 1, and it

increases again slightly when two obstacles are present and α = 1. The evacuation

times increase more significantly when we set α = 0. In particular, when the obstacle

is placed in the middle of the right wall (i.e. in front of the door), the evacuation

time more than doubles. It is slightly less then double when the obstacle is at the

top of the right wall. Finally, the largest evacuation time is for the room with two

obstacles.
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Figure 4.13: Case a): Evacuation process of 44 pedestrians initially distributed in a
rectangular shape moving with initial direction θ1 and α = 1 in the effective area.
Computed density for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s, respectively. The
small rectangle within the effective area represents the real obstacle.
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Figure 4.14: Case a): Evacuation process of 44 pedestrians initially distributed in a
rectangular shape moving with initial direction θ1 and α = 0 in the effective area.
Computed density for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s, respectively. The
small rectangle within the effective area represents the real obstacle.
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Figure 4.15: Case b): Evacuation process of 44 pedestrians initially distributed in a
rectangular shape moving with initial direction θ1 and α = 1 in the effective area.
Computed density for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s, repectively. The
small rectangle within the effective area represents the real obstacle.

46



time = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

time = 3.0000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time = 6.0000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 7.5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time = 10.5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 13.5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.16: Case b): Evacuation process of 44 pedestrians initially distributed in a
rectangular shape moving with initial direction θ1 and α = 0 in the effective area.
Computed density for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s, repectively. The
small rectangle within the effective area represents the real obstacle.
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Figure 4.17: Case c): Evacuation process of 44 pedestrians initially distributed in a
rectangular shape moving with initial direction θ1 and α = 1 in the effective area.
Computed density for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s, respectively. The
small rectangle within the effective area represents the real obstacle.
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Figure 4.18: Case c): Evacuation process of 44 pedestrians initially distributed in a
rectangular shape moving with initial direction θ1 and α = 0 in the effective area.
Computed density for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s, respectively. The
small rectangle within the effective area represents the real obstacle.
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Figure 4.19: Evacuation times depending on the obstacle’s positions.

4.5 Two exits

In this section, we investigate the cases of two exits [1, 50]. Following [1], in Sec-

tion 4.5.1 we let the pedestrians decide actively which is the most convenient way

to the exit. In the remaining subsections, we consider the case of a room with two

doors of variable size and compare our results with the experimental data in [50].

4.5.1 Two identical exits

We consider again a square room of side 10 m. In the case considered in this section,

two identical doors of length 2.2 m are placed symmetrically with respect to the

center on the right side and they are 1 m apart. A group of 53 pedestrians are

initially distributed in a circular region and they move with initial direction θ3. We

use the fine mesh previously used in the same room and ∆tsmall. All the other
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parameters are set like in Section 4.1.

Figure 4.20 shows the computed density at different times. Pedestrians choose

the most appropriate way to the exit by taking into account not only the closeness

to each door but also the less crowded path, which is similar to the results reported

in [1].

4.5.2 Different exits and variable number of pedestrians

We consider the usual room of side 10 m. Two different sized exits are place on on

the right side: the side length of exit 1© is 0.7 m and the side length of exit 2© is

1.1 m. See Figure 4.21. The distance between the two exits is 3 m. We choose this

setting in order to compare with the experimental data in [50].

In [50], ten experiment runs were performed: 2 trials with 18 pedestrians, 6 trials

with 40 pedestrians, and 2 trials with 138 pedestrians. The density and flow graph

are reported in Figure 4.24(a) and 4.24(c), respectively. Figure 4.21, 4.22 and 4.23

show the computed densities for the evacuation of a group of 18, 40, 138, respectively.

In the simulation with 18 and 40 pedestrians, the group is initially positioned in a

square with higher people density towards the back of the room and they are given

initial direction θ1. In the run with 138 pedestrians, 90 of them start from the middle

of a room and are also given initial direction θ1. All the simulations use the medium

mesh and ∆tsmall.

The mean density and mean flow rate computed from our simulations are given

in Figure 4.24(b) and 4.24(d). The density is averaged in two 4 m2 areas in front of

the exits using the Voronoi method from [45]. Our results in Figure 4.24(b) compares
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Figure 4.20: Evacuation process from the 10 m × 10 m room with two identical exits
of size 2.2 m for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50, respectively. The group of
53 pedestrians is initially distributed in a circular shape and moves with direction
θ3. See top left panel.

52



time = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

2©

1©

time = 1.5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time = 3.0000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 6.0000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time = 10.5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 13.5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.21: Evacuation process from a 10 m × 10 m room with exit 1© 0.7 m and
exit 2© 1.1 m for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 18 pedestrians moving
with initial direction θ1. The color refers to density.
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Figure 4.22: Evacuation process from a 10 m × 10 m room with exit 1© 0.7 m and
exit 2© 1.1 m for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 40 pedestrians moving
with initial direction θ1. The color refers to density.
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Figure 4.23: Evacuation process from a 10 m × 10 m room with exit 1© 0.7 m and
exit 2© 1.1 m for t = 0, 1.50, 3.00, 6.00, 10.50, and 13.50 s: 138 pedestrians moving
with initial direction θ1. The color refers to density.
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well with the experimental data in Figure 4.24(a). On the other hand, Figure 4.24(d)

matches Figure 4.24(c) only when the number of pedestrians is large enough. This

is to be expected: the kinetic approach is not meant to simulate the movement of a

small number of pedestrians.

Figure 4.24: The density (ped m−2): (a) empirical data in [50] and (b) our simula-
tions, and the flow (ped m s−1): (c) empirical data in [50] and (d) our simulations.

4.5.3 Different velocity moduli

This subsection considers different velocity moduli. So far, we have used the velocity

modulus as (2.3). Now, simulations are preformed considering different choices for

the velocity modulus. Velocity modulus (2.3) is a cubic polynomial. So, as other

possible choices we consider

vpurple = vpurple(ρ) = (1 + cos((ρ− 0.2)
2
3π/0.8

2
3 ))/2.

vorange = vorange(ρ) = (1 + cos((ρ− 0.2)
1
2π/0.8

1
2 ))/2.

vblue = vblue(ρ) = (1 + cos((ρ− 0.2)
1
3π/0.8

1
3 ))/2.

See Figure 4.25(a). In Figure 4.25(a), the yellow line is the original velocity

modulus (2.3). Now, we consider the purple, orange, and blue curves. All the
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other conditions are the same as for the results in Figure 4.23, with α = 1. The

evacuation times are computed and the results are shown in Figure 4.25(b). The

velocity modulus is getting lower, the evacuation requires more time.
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Figure 4.25: (a) The different velocity moduli and (b) Evacuation times of 138
pedestrians by different velocity moduli.

We remind that Figure 4.23 shows the evacuation process using the original ve-

locity modulus. Figure 4.26 and 4.27 show computed density and velocity magnitude

(with selected velocity vectors) for the evolution of evacuation process using the pur-

ple velocity modulus. Similarly, Figure 4.28 and 4.29 show computed density and

velocity magnitude (with selected velocity vectors) for the evolution of evacuation

process using the orange velocity modulus, and Figure 4.30 and 4.31 are for the case

of blue velocity modulus.
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Figure 4.26: Evacuation process of 138 pedestrians in a 10 m × 10 m room for the
purple velocity modulus: density (left) and velocity magnitude with selected velocity
vectors (right) for t = 0, 3.00, and 6.00 s, respectively.
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Figure 4.27: Evacuation process of 138 pedestrians in a 10 m × 10 m room for purple
velocity modulus: density (left) and velocity magnitude with selected velocity vectors
(right) for t = 9.00, 12.00, and 15.00 s, respectively.
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Figure 4.28: Evacuation process of 138 pedestrians in a 10 m × 10 m room for the
orange velocity modulus: density (left) and velocity magnitude with selected velocity
vectors (right) for t = 0, 3.00, and 6.00 s, respectively.
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Figure 4.29: Evacuation process of 138 pedestrians in a 10 m × 10 m room for the
orange velocity modulus: density (left) and velocity magnitude with selected velocity
vectors (right) for t = 9.00, 12.00, and 15.00 s, respectively.
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Figure 4.30: Evacuation process of 138 pedestrians in a 10 m × 10 m room for blue
velocity modulus: density (left) and velocity magnitude with selected velocity vectors
(right) for t = 0, 3.00, and 6.00 s, respectively.
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Figure 4.31: Evacuation process of 138 pedestrians in a 10 m × 10 m room for the
blue velocity modulus: density (left) and velocity magnitude with selected velocity
vectors (right) for t = 9.00, 12.00, and 15.00 s, respectively.
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4.5.4 Initial positions and width ratios of two exits

In this section, we first compare two initial positioning of the pedestrians and see

how that affects the overall evacuation. The first initial position is as in Figure 4.22.

For the second, 40 pedestrians are placed close to the exit 1©. Everything else is

same as for the simulation whose results are shown in Figure 4.22. The computed

density for the second initial positioning is displayed in Figure 4.32. We observe that

even though the closest exit to the initial position is the exit 1©, some pedestrians

change the direction and head to the exit 2©.

Next, let us investigate the relationship between evacuation time and the width

ratio of the two exits. We fix the size and position of exit 1©. Also, the position of

the center of exit 2© is fixed, but not size. The other conditions are exactly same as

for the results in Figure 4.22. In the top left panel of Figure 4.33 we report the table

of width ratios under consideration, which vary in the interval [1, 4].

Figure 4.33 and 4.34 show the distributions of 40 and 138 pedestrians, respec-

tively, at a fixed time and for five different width ratios. One can observe that

when the ratio of exit 2© width/exit 1© width increases, the total evacuation time

decreases. Since pedestrians search for the less crowded path, the larger the ratio is,

the greater is the number of pedestrians that are heading to exit 2©.

4.6 Lane formation

This section is aimed at reproducing numerically a phenomenon that is observed

in practice: formation of lanes when groups of pedestrians have opposite walking
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Figure 4.32: Evacuation process of 40 pedestrians initially placed near the exit 1© in
a 10 m × 10 m room.
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Figure 4.33: Table of the ratios of exit 2© width/exit 1© width and distributions of
40 pedestrians in a 10 m × 10 m room when exit 1© for five different ratios at time
t = 7.1250 s.
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Figure 4.34: Distributions of 138 pedestrians in a 10 m × 10 m room for five different
width ratios at time t = 7.1250 s and evacuation times for different initial positions
and width ratios.
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directions [28].

We consider the periodic corridor Ω of length L=20 m and width H=5 m. The

diameter, the highest velocity modulus and the maximum admissible number of

pedestrians per unit area are set to: D = 5
√

17 m, VM = 2 m/s, and ρM = 7 per/m2,

respectively. The reference time is TM = 5
√

17/2 s. These quantities are used to

switch to dimensionless quantities as described in Section 2.1.

We consider a mesh with ∆x = ∆y=0.2 m and the time step ∆t = 0.3 s. Pedes-

trians are initially distributed into four equal-area rectangular clusters moving with

opposite initial directions θ1 and θ5. Figure 4.35 and 4.36 show the movement pro-

cess of 98 and 188 pedestrians in the periodic corridor, respectively. Movement in

opposite directions can lead to collisions. So pedestrians try to avoid contact by

changing the direction, which leads to sorting and separation. From this, the lane

formation emerges.
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Figure 4.35: The movement process of 98 pedestrians grouped into four clusters
with opposite initial direction θ1 and θ5 in the 20 m × 5 m periodic corridor for
t = 0, 4.20, 12.30, 19.80, 33.90, 50.70, and 72.30 s, respectively. The color refers to
density.
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Figure 4.36: The movement process of 188 pedestrians grouped into four clusters
with initial opposite direction θ1 and θ5 in the 20 m × 5 m periodic corridor for
t = 0, 4.50, 12.60, 19.80, 33.90, 50.70, and 89.70 s, respectively. The color refers to
density.
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Chapter 5

Contagion Model

In this chapter, we focus on a pedestrian model known as ASCRIBE [17]. This model

has the interesting feature of tracking the level of fear within the individual agents,

which is assumed to influence their motion. ASCRIBE has been implemented in

agent-based simulation tool ESCAPES [48] that has been used to model evacuation

scenarios at the International Terminal at Los Angele International Airport. Also,

ASCRIBE has compared favorably to actual crowd footage of a video of Amsterdam

crowd scene and recent protests in Greece relative to other pedestrian model, such as

Base Models, ESCAPES, Durupinar model, in [47]. In [14], a mathematical analysis

of the ASCRIBE model through particle, continuum, and kinetic descriptions was

developed. In [51], two efficient numerical methods for a multi-scale kinetic equation

with emotional contagion of ASCRIBE are presented. The emotional contagion

model assumes that the velocity is proportional to the fear level [51], which means

that agents will run faster if more scared, see also [7, 9].
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5.1 Fear contagion dynamics

In this section, we briefly review the model of contagion dynamics in one dimension

taken from [51]. We start with the agent-based model at the microscopic level reads

dxm
dt

= vm = qm;
dqm
dt

= γ(q∗m − qm); q∗m =

∑Na
j=1 κm,jqj∑Na
j=1 κm,j

, m = 1, 2, 3, . . . , Na, (5.1)

where each particle m represent a pedestrian, and xm(t), vm(t) and qm(t) are its

position, velocity and fear contagion level, respectively. Here we assume that velocity

is proportional to fear level, which means that agents will walk faster if more scared.

The quantity q∗m is the local “average” contagion level weighted by the distance to x

and Na is the total number of particles. In Equation (5.1), κm,j = κ(|xm−xj|) is the

interaction kernel, which serves as the weights in the average q∗m. The interaction

kernel κ is a decreasing function of the mutual distance between two particles and

is parametrized by an interaction distance R, where xm and xj are positions in the

domain L. Parameter γ describes the contagion interaction strength and it may vary

with the particle for more general cases. The model works as follows: if γ is 0, there

will be no contagion, if γ is not 0, there will be contagion and the higher the value,

the more contagion will take place.

The microscopic system (5.1) is often too expensive to compute as Na becomes

large, in which case one needs to consider the kinetic level. Denote the empirical

distribution density by

hNa =
1

Na

Na∑
m=1

δ(x− xm(t))δ(q − qm(t)),

where δ is Dirac delta function. We assume that the particles remain in a fixed

compact domain (xm(t), qm(t)) ∈ Ω ⊂ R2 for all m and up to the time we consider.
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Then Prohorov’s theorem in [17] implies that the sequence {hNa} is weakly ∗ relatively

compact. Therefore, there exists a subsequence {hNk}k such that hNk converges to

h with weak∗ -convergence in P(R2) and pointwisely in time as k →∞. Here P(R2)

denotes the space of probability measure on R2. Now considering a test function

ψ ∈ C1
0(R2), we have

d

dt
〈hNa , ψ〉x,q =

d

dt

〈
1

Na

Na∑
m=1

δ(x− xm(t))δ(q − qm(t)), ψ

〉
x,q

=
d

dt

1

Na

Na∑
i=1

ψ(xm(t), qm(t))

=
1

Na

Na∑
m=1

ψxqm + ψqγ(q∗m − qm)

= 〈ψxqm, hNa〉+
γ

Na

Na∑
m=1

ψq

(∑Na

j=1 κm,jqj∑Na

j=1 κm,j
− qm

)
. (5.2)

Here 〈·〉x,q means integration against both x and q, and 〈·〉x means integration

only in x. Further,

1

Na

Na∑
m=1

κ(|xm − xj|) =

〈
κ(|xm − y|),

1

Na

Na∑
j=1

δ(y − xj)
〉
x

= κ ∗ ρhNa
(xm),

1

Na

Na∑
m=1

κ(|xm − xj|)qj =

〈
κ(|xm − y|),

1

Na

Na∑
j=1

δ(y − xj)qj
〉
x

= κ ∗mhNa
(xm),

where we have used the definitions

ρhNa (x) =
1

Na

Na∑
m=1

δ(x− xm)

and

mhNa (x) =

〈
q,

1

Na

Na∑
j=1

δ(x− xj)δ(q − qj)
〉
x,q

=
1

Na

Na∑
j=1

δ(x− xj)qj.
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Then equation (5.2) reads

d

dt
〈hNa , ψ〉x,q = 〈ψxq, hNa〉x,q + γ

〈
hNa ,

κ ∗mhNa

κ ∗ ρhNa

ψq − qψq
〉
x,q

,

which leads to

hNa
t + (qhNa)x = γ((q − q∗)hNa)q, (5.3)

via integration by parts.

Now letting k → ∞, the subsequence hNk formally leads to the limiting kinetic

equation

ht + (qh)x = γ((q − q∗)h)q, (5.4)

where h(t, x, q) is the probability of finding people with contagion level q at time

t and position x. The quantity q∗(t, x) is the local average contagion level of fear

weighted by the distance to x:

q∗(t, x) =

∫ ∫
κ(|x− y|)h(t, y, q)qdqdy∫ ∫
κ(|x− y|)h(t, y, q)dqdy

. (5.5)

Finally, we define the macroscopic bulk contagion level:

q̃(t, x) =

∫
h(t, x, q)qdq. (5.6)

5.1.1 Space and velocity discretization

In this sections, we present the numerical discretization in time and space for the

kinetic Equation (5.4). Divide the spatial and velocity domain into a number of

cells [xj− 1
2
, xj− 1

2
] and [ql− 1

2
, ql+ 1

2
], where j ∈ 1, 2, . . . , Nx and l ∈ 1, 2, . . . , Nq. Here

Nx and Nq are the total number of points in x− and q− directions, respectively.

Each cell is centered at xj or ql with a uniform length ∆x and ∆q. Let us denote
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hj,l = h(t, xj, ql) and q∗j = q∗(t, xj), then a first-order semi-discrete upwind scheme

of the kinetic equation (5.4) reads

∂thj,l +
ηj+ 1

2
,l − ηj− 1

2
,l

∆x
+ γ

ξj,l+ 1
2
− ξj,l− 1

2

∆q
= 0, (5.7)

where

ηj,l+ 1
2

= qlhj,l, (5.8)

ξj,l+ 1
2

=
|q∗l − ql+ 1

2
|+ (q∗j − ql+ 1

2
)

2
hj,l +

(q∗l − ql+ 1
2
)− |q∗j − ql+ 1

2
|

2
hj,l+1

:= ξ+j,l + ξ−j,l+1. (5.9)

Here we have used edge-values for the velocity discretization and ql+ 1
2

= (ql + ql+1)/2.

We compute q∗j using a midpoint rule for the integral (5.5), i.e.,

q∗j =

∑
m,l κ(|xj − xm|)hm,lql∆x∆q∑
m,l κ(|xj − xm|)hm,l∆x∆q

. (5.10)

To construct a second-order scheme in velocity, we add a flux limiter. Then

equation (5.7) is modified to

∂thj,l +
ηj+ 1

2
,l − ηj− 1

2
,l

∆x
+ γ

ξj,l+ 1
2
− ξj,l− 1

2

∆q
+ γ

Cj,l+ 1
2
− Cj,l− 1

2

∆q
= 0, (5.11)

where Cj,l+ 1
2

is the corrector defined as

Cj,l+ 1
2

=
1

2
|sj,l+ 1

2
|

(
1− ∆t

∆q
|sj,l+ 1

2
|

)
W̃j,l+ 1

2
, (5.12)

with

sj,l− 1
2

= q∗j − ql− 1
2
, Wj,l− 1

2
= hj,l − hj,l− 1

2
, W̃j,l− 1

2
= Wj,l− 1

2
ϕ

(
Wj,b− 1

2

Wj,l− 1
2

)
. (5.13)
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The subscript b is l-1 if sj,l− 1
2
> 0 and l+1 if sj,l− 1

2
< 0. Here ϕ is the slope limiter

function such as the Van Leer function in [34],

ϕ(θ) =
|θ|+ θ

1 + |θ|
. (5.14)

5.1.2 Numerical results

We validate our implementation of the scheme presented in the previous section

with a test case taken from [51]. The computational domain in the xq-plane is

[−10, 10]× [0, 3]. Also, Nx and Nq denote the number of points in x- and q-direction,

respectively. The time step ∆t is chosen as

∆t =
1

2
min

{
∆x

qmax
,

∆q

2qmaxγ

}

to satisfy the Courant-Friedrichs-Lewy (CFL) condition, where qmax = maxjqj.

The delta function in the kinetic scheme is approximated by

δ(q) ∼ E(q) =
1

√
πR0

e
−
q2

R2
0 , R0 = 0.04 (5.15)

and ∆q is small enough to resolve it. The interaction kernel takes the from

κ(x) =
R

(x2 +R2)π
, (5.16)

where R is an interaction distance. In a dense crowd setting, it is reasonable to

assume a relatively small interaction radius and a rather quick interaction strength.
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Thus, it is natural to consider the case in which R→ 0 and γ →∞. Let us further

suppose that as we approach these limiting values, the quantity Rγ = C remains

fixed, so that we can use the results of Theorem 1 from [14] to determine if two

particles may cross paths upon meeting. Since R→ 0, the particles will not interact

until they are within distance R of each other for any non-zero initial spacing. When

two particles are placed in the same initial position, we define that QL and QR are

the largest and smallest value of q, respectively. Specifically, Theorem 1 in [14] tells

us that if the greatest difference in emotion between two particles ∆Q = QL − QR,

satisfies ∆Q ≤ 2C, particle paths will never cross, while if ∆Q > 2C, particle paths

may cross. Bigger values of γ give faster convergence rates, i.e. the disease contagion

level q is inversely proportional to R.

We define the following reference quantities:

- QL = 2.5

- QR = 1.5

- γ = 100

- R = 0.0002

We consider a mesh with ∆x = 0.02 m, ∆q = 0.02, and ∆t = 0.001 s. We set the

initial conditions following [51].

ρI(0, x) = sin

(
πx

10

)
+ 2, vI(0, x) =

1

2

(
3− tanhx

)
,

hI(x, q) = ρI(x)

(
1

4
E(q − qI(x)− 0.5) +

3

4
E(q − qI(x) + 0.3)

)
. (5.17)

See Figure 5.1. Notice that hI(x, q) has two bumps in q for every x, as displayed

in the Figure 5.1, left plots. As time passes, h(t, x, q) starts to concentrate on q̃(t, x),
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(a) (b)

(c) (d)

Figure 5.1: (a) Plot of h(t, x, q) at t = 0 s and (b) at t = 0.05 s from [51], and (c)
Plot of h(t, x, q) at t = 0 s and (d) at t = 0.05 s from our simulation. The white dash
line represents q̃(t, x) and the color represents the probability of finding people.
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as confirmed by Figure 5.1. Our results are in very good agreement with the results

reported in [51].

5.1.3 Influence of the parameters γ and R

In the model (5.4), the quantity Rγ = C is fixed, where R is an interaction distance

and γ is the contagion interaction strength. In this section, we are interested in

looking at how the evolution of h(t, x, q) changes by decreasing parameter γ and

increasing parameter R at the same time, while keeping C fixed. Now, we fix C =

0.02 and take two cases below:

a) γ = 10, R = 0.002.

b) γ = 1, R = 0.02.

All other initial data are set in the same way as for the results in Figure 5.1.

The case a) is shown in Figure 5.2. It takes more time to concentrate on q̃(t, x)

by decreasing γ (and increasing R). See Figure 5.3 for the case b). It takes even

longer than case a) to concentrate on q̃(t, x). Moreover, after t = 1 s, h(t, x, q) does

not change substantially.

5.2 Disease contagion model

In this section, we investigate the relationship between velocity and disease contagion

level. We assume that velocity modulus decreases when the disease contagion level

increases, which means that pedestrians will walk slower if they get infected. Notice

that this is the opposite of what happens in the case of emotional contagion. At the
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Figure 5.2: case a): Plots of h(t, x, q) for γ = 10 and R = 0.002 at t =
0, 0.045, 0.09, 0.135, 0.18, and 0.275 s, respectively. The white dash line represents
q̃(t, x) and the color represents the probability of finding people.
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Figure 5.3: case b): Plots of h(t, x, q) for γ = 1 and R = 0.02 at t =
0, 0.125, 0.25, 0.05, 0.75, and 1 s, respectively. The white dash line represents q̃(t, x)
and the color represents the probability of finding people.
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microscopic level, we have:

dxm
dt

= vm;
dqm
dt

= γ(q∗m − qm); q∗m =

∑Na
j=1 κm,jqj∑Na
j=1 κm,j

, m = 1, 2, 3, . . . , Na, (5.18)

Notice that the only difference with respect to equation (5.1) is that vm 6= qm.

Following the same procedure used to get equation (5.2) , we obtain

d

dt
〈hNa , ψ〉x,q =

d

dt

〈
1

Na

Na∑
m=1

δ(x− xm(t))δ(q − qm(t)), ψ

〉
x,q

=
d

dt

1

Na

Na∑
i=1

ψ(xm(t), qm(t))

=
1

Na

Na∑
m=1

ψxvm + ψqγ(q∗m − qm)

= 〈ψxvm, hNa〉+
γ

Na

Na∑
m=1

ψq

(∑Na

j=1 κm,jqj∑Na

j=1 κm,j
− qm

)
. (5.19)

Similairly, equation (5.19) leads to

ht + (vh)x = γ((q − q∗)h)q, (5.20)

We are going to consider dimensionless quantities, like we did for the pedestrian

dynamics case. We consider the following two velocity moduli

c) v1 = 1− q;

d) v2 = (1− q)2.

See Figure 5.4, which shows how the velocity v varies with the contagion level q

in the two cases.
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Figure 5.4: Contagion level q vs velocity modulus v.

5.2.1 Space and velocity discretization

We are considering the same approach as in Section 5.1.1. the only difference with

respect to equations (5.9), (5.11), and (5.12) is that we replace ql to vl.

∂thj,l +
ηj+ 1

2
,l − ηj− 1

2
,l

∆x
+ γ

ξj,l+ 1
2
− ξj,l− 1

2

∆q
+ γ

Cj,l+ 1
2
− Cj,l− 1

2

∆q
= 0, (5.21)

where

ηj,l+ 1
2

= vlhj,l, ξj,l+ 1
2

= ξ+j,l + ξ−j,l+1, (5.22)

and

Cj,l+ 1
2

=
1

2
|sj,l+ 1

2
|

(
1− ∆t

∆q
|sj,l+ 1

2
|

)
W̃j,l+ 1

2
. (5.23)

5.2.2 Numerical results

The computational domain corresponds to the setting studied in Figure 5.1.
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(a) case c)

(b) case d)

Figure 5.5: Plots of h(t, x, q) with (a) velocity v1 and (b) v2, for t = 0, 0.003, and
0.05 s, respectively. The white line represents q̃(t, x) and the color represents the
probability of finding people.

c) v1 = 1− q;

d) v2 = (1− q)2.

And other initial data are same with Figure 5.1. The case c) has an ininital velocity

vI1

vI1(0, x) = 3−
1

2

(
3− tanhx

)
, (5.24)

and the case d) has an initial velocity vI2

vI2(0, x) =
(√

3−
1

2
√

3
(3− tanhx)

)2
. (5.25)

See Figure 5.5 for the evolution of the solution in both cases. Like in Figure 5.1,
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h matches well with q̃(t, x) at t = 0.05 s in both cases.

Finally, we consider the case of γ = 10 and R = 0.002 for both initial velocity

moduli:

e) γ = 10, R = 0.002, and v1(t, x) = 1− q(t, x).

f) γ = 10, R = 0.002, and v2(t, x) =
(
1− q(t, x)

)2
.

Figure 5.6 and Figure 5.7 show case e) and f), respectively. Initially, h(t, x, q) has

two bumps in q for every x. As time passes, h(t, x, q) concentrate on q̃(t, x) as we

have seen also in Section 5.1.3.
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Figure 5.6: case e): Plots of h(t, x, q) with γ = 10, R = 0.002 and v1(t, x) = 1−q(t, x)
for t = 0, 0.05, 0.1, 0.15, 0.3, and 0.35 s, respectively. The white line represents q̃(t, x)
and the color represents the probability of finding people.
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Figure 5.7: case f): Plots of h(t, x, q) with γ = 10, R = 0.002 and v1(t, x) =(
1 − q(t, x)

)2
for t = 0, 0.05, 0.1, 0.15, 0.3, and 0.35 s, respectively. The white line

represents q̃(t, x) and the color represents the probability of finding people.
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Chapter 6

One Dimensional Model for

Pedestrian Dynamics

In this Chapter, we present a one dimensional version of the model introduced in

Chapter 2. In Chapter 7, this one dimensional model of pedestrian dynamics will be

coupled with the one dimensional contagion model described in Chapter 5.

We recall a problem (2.8) and consider only the x-direction. There are two

velocity directions Nd = 2 in the discrete set,

Iθ =
{
θi = (i− 1)π : i = 1, 2

}
,

which means people can walk back and forth without the interaction with the walls.
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So, we get:

∂f i

∂t
+
∂
(
vi[ρ](t, x)f i(t, x)

)
∂x

= J i[f ](t, x)

= J i
G[f ](t, x) + J i

P [f ](t, x)

= µ[ρ]

 2∑
h=1

Ah(i)fh(t, x)− f i(t, x)


+ η[ρ]

 2∑
h,k=1

Bhk(i)[ρ]fh(t, x)fk(t, x)− f i(t, x)ρ(t, x)

 (6.1)

for i = 1, 2. Let us recall that functional J i as J i = J i
G+J i

P , where J i
G represent to

goal to reach the exit and J i
P is an interaction between candidate and field particles

that move with direction θi due to interactions. See Chapter 2.

6.1 The Lie operator-splitting scheme

We apply the same scheme used in Chapter 3. Problem (6.1) will be split into a sum

of two operators by applying the Lie operator-splitting scheme

1. A pure advection problem in the x direction.

2. A problem involving the interaction with the environment and other pedestri-

ans.

Given an initial condition f i,0 = f i(0, x), for i = 1, 2, the algorithm reads: For

k = 0, 1, 2, . . . , Nt − 2, perform the following steps:
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1. Find f i, for i = 1, 2, such that
∂f i

∂t
+

∂

∂x

(
(v[ρ] cos θi)f

i(t, x)
)

= 0, on (tk, tk+1)

f i(tk, x) = f i,k
(6.2)

Set f i,k+
1
2 = f i(tk+1, x).

2. Find f i, for i = 1, 2, such that


∂f i

∂t
= J i[f ](t, x) on (tk, tk+1)

f i(tk, x) = f i,k+
1
2

(6.3)

Set f i,k+1 = f i(tk+1, x).

As in Section 3.2, once we compute f i,k+1 for i = 1, 2, we use an equation (2.2) to

get the density ρk+1 and equations (2.3), (2.4) to get the velocity magnitude at time

tk+1.

6.1.1 Space and time discretization

We assume the computational domain under consideration is line segment [0, L], for

given L. We mesh the computational domain by choosing ∆x to partition interval

[0, L]. Let Nx = L/∆x. The discrete mesh points xp are given by

xp = p∆x, p = 0, 1, . . . , Nx, (6.4)

xp+1/2 = xp + ∆x/2 =
(
p+

1

2

)
∆x. (6.5)
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In order to simplify notation, let us set φ = f i, θ = θi, t0 = tk, tf = tk+1. Let M

be a positive integer (≥ 3, in practice). We associate with M a time discretization

step τ = (tf − t0)/M and set tm = t0 + mτ . Next, we proceed with the space and

time discretization of each subproblem.

Step 1

Let φ0 = f i,k. Problem (6.2) can be rewritten as
∂φ

∂t
+

∂

∂x

(
(v[ρ] cos θ)φ(t, x)

)
= 0 on (t0, tf ),

φ(t0, x) = φ0.

(6.6)

The finite difference method we use produces an approximation Φm
p ∈ R of the cell

average

Φm
p ≈

1

∆x

∫ xp+1/2

xp−1/2

φ(tm, x)dx,

where m = 1, . . . ,M , 1 ≤ p ≤ Nx − 1. Given an initial condition φ0, function φm

will be approximated by Φm with

Φm

∣∣∣∣
[xp−1/2, xp+1/2]

= Φm
p

The Lax-Friedrichs method for problem (6.6) can be written in conservative form

as follows:

Φm+1
p = Φm

p −
τ

∆x

(
F(Φm

p ,Φ
m
p+1)−F(Φm

p−1,Φ
m
p )
)

where

F(Φm
p ,Φ

m
p+1) =

∆x

2τ
(Φm

p − Φm
p+1) +

1

2

(
(v[ρmp ] cos θ)Φm

p + (v[ρmp+1] cos θ)Φm
p+1

)
.
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Step 2

Let J = J i and φ0 = f i,k+
1
2 . Problem (6.3) can be rewritten as

∂φ

∂t
= J [f ](t, x) on (t0, tf ),

φ(t0, x) = φ0.

For the approximation of the above problem, we use the Forward Euler scheme:

Φm+1
p = Φm

p + τ
(
Jm[Fm]

)
.

6.2 Numerical results

In this section, we consider a simple simulation: the computational domain is [0,

L] with L given the real length of the domain. The door is placed at 100 m, but

the domain is longer than that with a one exit at xexit = 100 m. A group of 34

pedestrians is initially located as shown in Figure 6.1 top, left panel. See Figure 6.1.

Pedestrians are moving toward the exit with the initial direction θ1. This simulation

is performed with ε = 0.4 and α = 1.

We define the following reference quantities:

- D = 100 m;

- vM = 2 m/s;

- T = D/vM = 50 s;

- ρM = 7 people/m2.
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We use three different meshes: a coarse mesh with ∆x = 1 m, a medium mesh

with ∆x = 0.5 m, and a fine mesh with ∆x = 0.25 m. Similarly, for the time

discretization we consider three different time steps: a large time step ∆tlarge = 0.03

s, a medium time step ∆tmedium = 0.015 s, and a small time step ∆tsmall = 0.0075 s.

The value of M for the Lie splitting scheme is set to 3. To avoid stability issues, we

consider the following three combinations of the above meshes and time steps:

1. coarse mesh and ∆tlarge;

2. medium mesh and ∆tmedium;

3. fine mesh and ∆tsmall.

Figure 6.1 shows how 34 pedestrians move for the three combinations mentioned

above. From Figure 4.7, one can observe that two combinations, coarse mesh with

∆tlarge and medium mesh with ∆tmedium are too dissipative. Hence, fine mesh and

∆tsmall is the best combination.
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Figure 6.1: Evacuation progress of 34 pedestrians with initial direction θ1 for three
different combinations of mesh and time steps for t = 0, 6.9, 14.1, 28.5, 57.3, and 84.9
s
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Chapter 7

One Dimensional Pedestrian

Dynamics Model Coupled to the

Disease Contagion Model

In this section, we couple the one dimension pedestrian dynamics model with the

model of the spreading of an infectious disease. A small number of sick people are

introduced in given environment, e.g. a corridor or a room. We are interested in the

probability of people getting infected. Let us refer to equation (6.1). Since we have

different groups of people with different directions, we will have different levels of

contagion qi that are governed by the disease contagion model equation (5.20) from

Section 5.2:

hit + (vihi)x = γ((qi − qi,∗)hi)q, (7.1)

where hi(t, x, q) is the probability of finding people with contagion level q at time t,

position x, and direction i and vi is the velocity with the direction θi. The quantity
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qi,∗(t, x) is the local average contagion level of infectious disease weighted by the

distance to x:

qi,∗(t, x) =

∫ ∫
κ(|x− y|)hi(t, y, q)qdqdy∫ ∫
κ(|x− y|)hi(t, y, q)dqdy

. (7.2)

As seen in Section 5.1, the macroscopic bulk fear level is

q̃i(t, x) =

∫
hi(t, x, q)qdq.

Now, we consider the couple model:
∂f i

∂t
+
∂
(
vi[ρ](t, x)f i(t, x)

)
∂x

= J i[f ](t, x),

∂hi

∂t
+
∂(vihi)

∂x
= γ

∂((qi − qi,∗)hi)
∂q

.

(7.3)

(7.4)

Let us find f i and hi for i = 1, 2, such that equations (6.1) and (7.1) hold.

7.1 Numerical method

From the one dimension kinetic approach pedestrian model, we can compute the

distribution function f i(tk, x) for time t = tk. By summing the distribution function

f i(tk, x) with all directions i, the density ρ(tk, x) is obtained. The velocity vi(tk, x) is

computed using Equations (2.3) and (2.4), and then we use this velocity for the dis-

ease contagion model. Thus, problem (7.1) depends on the solution of Equation (6.1),

but not vice versa, which means that the coupling is one way.

7.1.1 Numerical scheme

Let us apply the Lie operator-splitting scheme described in the Section 3.2 to problem

(7.3). Given an initial condition f i,0 = f i(0, x), for i = 1, 2, the algorithm reads:
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Given an initial condition hi,0 = hi(0, x), for i = 1, 2, for k = 0, 1, 2, . . . , Nt − 2,

perform the following steps

1-a. Find f i, for i = 1, 2, such that


∂f i

∂t
+

∂

∂x

(
(v[ρ] cos θi)f

i(t, x)
)

= 0 on (tk, tk+1)

f i(tk, x) = f i,k
(7.5)

Set f i,k+
1
2 = f i(tk+1, x).

1-b. Find f i, for i = 1, 2, such that


∂f i

∂t
= J i[f ](t, x) on (tk, tk+1)

f i(tk, x) = f i,k+
1
2

(7.6)

Set f i,k+1 = f i(tk+1, x). Find the velocity modulus v(tk+1, x) by using Equa-

tions (2.3) and (2.4).

2. Find hi, for i = 1, 2, such that


∂hi

∂t
+
∂(v[ρ] cos θih

i)

∂x
= γ

∂((qi − qi,∗)hi)
∂q

on (tk, tk+1)

hi(tk, x) = hi,k
(7.7)

Set hi,k+
1
2 = hi(tk+1, x).

7.1.2 Space, contagion level and time discretization

We assume for simplicity that the computational domain under consideration is a

line [0, L], for given L. We discretize the computational domain [0, L] by choosing
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∆x to partition. Let Nx = L/∆x. Then, we define the discrete mesh points xp by

xp = p∆x, p = 0, 1, . . . , Nx, (7.8)

It will also be useful to define

xp+1/2 = xp + ∆x/2 =
(
p+

1

2

)
∆x. (7.9)

For the stability, the subtime step τ is chosen the satisfy the Courant-Friedrichs-Lewy

(CFL) conditions.

max

{
τ

∆x
,
τ

∆y

}
≤ 1, (7.10)

where qmax = maxjqj.

In order to simplify the notation, let us set φ = f i, θ = θi, t0 = tk, tf = tk+1. Let

M be a positive integer (≥ 3, in practice). We associate with M a time discretization

step τ = (tf − t0)/M and set tm = t0 +mτ .

Step 1-a

Let φ0 = f i,k. Problem (7.5) can be rewritten as
∂φ

∂t
+

∂

∂x

(
(v[ρ] cos θ)φ(t, x)

)
= 0 on (t0, tf ),

φ(t0, x) = φ0.

(7.11)

The finite difference method we use produces an approximation Φm
p ∈ R of the cell

average

Φm
p ≈

1

∆x

∫ xp+1/2

xp−1/2

φ(tm, x)dx,
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where m = 1, . . . ,M , 1 ≤ p ≤ Nx − 1. Given an initial condition φ0, function φm

will be approximated by Φm with

Φm

∣∣∣∣
[xp−1/2, xp+1/2]

= Φm
p

The Lax-Friedrichs method for problem (7.11) can be written in conservative

form as follows:

Φm+1
p = Φm

p −
τ

∆x

(
F(Φm

p ,Φ
m
p+1)−F(Φm

p−1,Φ
m
p )
)
,

where

F(Φm
p ,Φ

m
p+1) =

∆x

2τ
(Φm

p − Φm
p+1) +

1

2

(
(v[ρmp ] cos θ)Φm

p + (v[ρmp+1] cos θ)Φm
p+1

)
.

Step 1-b

Let J = J i and φ0 = f i,k+
1
2 . Problem (7.6) can be rewritten as
∂φ

∂t
= J [f ](t, x) on (t0, tf ),

φ(t0, x) = φ0.

(7.12)

For the approximation of the above problem, we use the Forward Euler scheme:

Φm+1
p = Φm

p + τ
(
Jm[Fm]

)
.

We also discretize the contagion level q by choosing ∆q = qj+1 − qj and define

qj+1/2 = qj + ∆qj+ 1
2
/2, j = 0, 1, . . . , Nq,

99



where Nq denotes the total number of points in q−direction. The time step ∆t is all

chose as

∆t =
1

2
min

{
∆x

qmax
,

∆q

2qmaxγ

}
to satisfy the Courant-Friedrichs-Lewy (CFL) condition, where qmax = maxjqj.

Step 2

Denote hip,j = hi(t, xp, qj) and q∗p = q∗(t, xp). Also, let φ0 = hip,j and φ1 = hip,j+1.

The space discretization of problem (7.7) can be rewritten as
∂φ

∂t
= −

ηp+ 1
2
,j − ηp− 1

2
,j

∆x
− γ

ξp,j+ 1
2
− ξp,j− 1

2

∆qj+ 1
2

− γ
Cp,j+ 1

2
− Cp,j− 1

2

∆qj+ 1
2

on (t0, tf ),

φ(t0, x) = φ0,

(7.13)

where

ηp,j+ 1
2

= vipφ0,

ξp,j+ 1
2

=
|q∗j − qj+ 1

2
|+ (q∗j − qj+ 1

2
)

2
φ0 +

(q∗j − qj+ 1
2
)− |q∗j − qj+ 1

2
|

2
φ1,

and

Cp,j+ 1
2

=
1

2
|sp,j+ 1

2
|

(
1− ∆t

∆qj+ 1
2

|sp,j+ 1
2
|

)
W̃p,j+ 1

2
,

with sp,j− 1
2

= q∗p − qj− 1
2
, Wp,j− 1

2
= hp,j − hp,j− 1

2
, and W̃p,j− 1

2
= Wp,j− 1

2
ϕ

(
W

p,j− 1
2

W
p,j− 1

2

)
.

The subscript j is p-1 if sp,j− 1
2
> 0 and p+1 if sp,j− 1

2
< 0. Here, ϕ is again the Van

Leer function (5.14):

ϕ(θ) =
|θ|+ θ

1 + |θ|
. (7.14)
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Finally, we use a first-order semi-discrete upwind scheme of problem (7.13) and

a flux limiter in order to construct a second-order scheme:

Φm+1
p = Φm

p −∆t

(
ηp+ 1

2
,j − ηp− 1

2
,j

∆x
+ γ

ξp,j+ 1
2
− ξp,j− 1

2

∆qj+ 1
2

+ γ
Cp,j+ 1

2
− Cp,j− 1

2

∆qj+ 1
2

)
. (7.15)

7.2 Numerical results

A group of 34 pedestrians is initially placed as shown in Figure 7.1 top left panel,

with initial direction θ1. All the simulations are performed with ε = 0.4 and α = 1.

We are going to consider dimensionless quantities as described in Section 2.1. The

dimensionless quantities are obtained by using the following reference quantities:

- L = 30 m;

- vM = 2 m/s;

- T = D/vM = 15 s;

- ρM = 3 people/m;

- q ∈ [0, 3];

- γ = 100;

- R = 0.01 m.

For the one dimension kinetic model, we consider mesh size ∆xk = 0.05 m and

the time step ∆tk = 0.003 s. For the disease contagion model, we consider the mesh

size ∆xd = 0.025 m and the time step ∆td = 0.00002 s to satisfy CFL conditions.

Figure 7.1 and 7.2 shows how 38 pedestrians move and how the corresponding disease

contagion level can change.

See Figure 7.1 and Figure 7.2. As expected, where there is a larger crowd there is
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Figure 7.1: Left: Evacuation process of 38 pedestrians moving with initial direction
θ1 and Right: Plot of h(t, x, q) for t = 0, 4.275, and 12 s. The color represents the
probability of finding sick people.
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Figure 7.2: Left: Evacuation process of 38 pedestrians moving with initial direction
θ1 and Right: Plot of h(t, x, q) for t = 16.2, 20.325, and 27 s. The color represents
the probability of finding sick people.
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a higher probability of getting infected. The crowded place has more higher contagion

level q to get infected. See Figure 7.1 top right panel. As time passes, people move

toward the exit and the contagion level q decreases.
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Chapter 8

Conclusions

We considered a kinetic theory approach to model pedestrian dynamics in bounded

domain and adapted it to handle obstacles. For the numerical approximation of the

solution to our model, we applied the Lie splitting scheme which breaks the problem

into two pure advection problems and a problem involving the interaction with the

environment and other pedestrians.

Several test cases have been considered in order to show the ability of the model

to reproduce qualitatively:

- evacuation from a room with one exit, without and with obstacles;

- evacuation from a room with two exits and no obstacles;

- lane formation.

In the case of the room with two exits and no obstacles, we also presented a quanti-

tative comparison with experimental data. Numerical results and experimental data

are in very good agreement for medium and medium-to-large groups of people. With
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the confidence in the model given by the experimental validation, we performed nu-

merical tests to study evacuation for different scenarios in terms of exit sizes, obstacle

shapes, and velocity moduli.

We considered a one dimensional model of kinetic approach known ASCRIBE

that can track the level of emotional contagion. We proposed a modification to track

disease contagion level. Simulations show how the infectious disease spreads for two

choices of velocity moduli. Moreover, we introduced a one dimensional version of the

pedestrian dynamics model and tested it with a simple benchmark combinations.

Finally, we coupled the one dimension kinetic approach for pedestrian dynam-

ics with the disease contagion model. We applied the coupled model to study the

initial spreading of an infectious disease in a corridor with one dimensional motion.

Numerical results show in the crowded part of the corridor it is more likely to get

infected.
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[39] Mehdi Moussäıd, Dirk Helbing, Simon Garnier, Anders Johansson, Maud
Combe, and Guy Theraulaz. Experimental study of the behavioural mecha-
nisms underlying self-organization in human crowds. Proceedings of the Royal
Society of London B: Biological Sciences, 276(1668):2755–2762, 2009.

[40] Debra Parisi and Claudio Dorso. Morphological and dynamical aspects of the
room evacuation process. Physica A: Statistical Mechanics and its Applications,
385(1):343–355, 2007.

[41] Andreas Schadschneider, Wolfram Klingsch, Hubert Kluepfel, Tobias Kretz,
Christian Rogsch, and Armin Seyfried. Evacuation Dynamics: Empirical Re-
sults, Modeling and Applications, 517–550. Springer, New York, 2011.

[42] Andreas Schadschneider and Armin Seyfried. Empirical results for pedestrian
dynamics and their implications for modeling. Networks and Heterogeneous
Media, 6(3):545–560, 2011.

110



[43] Armin Seyfried, Oliver Passon, Bernhard Steffen, Maik Boltes, Tobias Rup-
precht, and Wolfram Klingsch. New insights into pedestrian flow through bot-
tlenecks. Transportation Science, 43(3):395–406, 2009.

[44] Apoorva Shende, Mahendra P. Singh, and Pushkin Kachroo. Optimization-
based feedback control for pedestrian evacuation from an exit corridor. IEEE
Transactions on Intelligent Transportation Systems, 12(4):1167–1176, Dec 2011.

[45] Bernhard Steffen and Armin Seyfried. Methods for measuring pedestrian den-
sity, flow, speed and direction with minimal scatter. Physica A: Statistical
Mechanics and its Applications, 389:1902–1910, 2009.

[46] Yusuke Tajima, Kouhei Takimoto, and Takashi Nagatani. Pattern formation and
jamming transition in pedestrian counter flow. Physica A: Statistical Mechanics
and its Applications, 313(3):709–723, 2002.

[47] Jason Tsai, Emma Bowring, Stacy Marsella, and Milind Tambe. Empirical
evaluation of computational emotional contagion models. Intelligent Virtual
Agents, 6895:384–397, 09 2011.

[48] Jason Tsai, Natalie Fridman, Emma Bowring, Matthew Brown, Shira Epstein,
Gal Kaminka, Stacy C. Marsella, Andrew Ogden, Inbal Rika, Ankur Sheel,
Matthew Taylor, Xuezhi Wang, Avishay Zilka, and Milind Tambe. ESCAPES
- Evacuation Simulation with Children, Authorities, Parents, Emotions, and
Social comparison. International Conference on Autonomous Agents and Mul-
tiagent Systems, Taipei, Taiwan, May 2011.

[49] Alasdair Turner and Alan Penn. Encoding natural movement as an agent-
based system: An investigation into human pedestrian behaviour in the built
environment. Environment and Planning B: Planning and Design, 29(4):473–
490, 2002.

[50] A.U. Kemloh Wagoum, Antoine Tordeux, and Wilson Liao. Understanding
human queuing behaviour at exits: An empirical study. Royal Society Open
Science, 4(160896), 2017.

[51] Li Wang, Martin B. Short, and Andrea L. Bertozzi. Efficient numerical methods
for multiscale crowd dynamics with emotional contagion. Mathematical Models
and Methods in Applied Sciences, 27(1):205–230, 1 2017.

[52] Jonathan A. Ward, Andrew J. Evans, and Nicolas S. Malleson. Dynamic calibra-
tion of agent-based models using data assimilation. Royal Society Open Science,
3(4), 2016.

111



[53] Song Xu and Henry Been-Lirn Duh. A simulation of bonding effects and their
impacts on pedestrian dynamics. IEEE Transactions on Intelligent Transporta-
tion Systems, 11(1):153–161, 2010.

[54] W. J. Yu, R. Chen, Li-Yu. Dong, and S. Q. Dai. Centrifugal force model for
pedestrian dynamics. Physical Review E, 72(7):026112, Aug 2005.

[55] Jun Zhang, Wolfram Klingsch, Andreas Schadschneider, and Armin Seyfried.
Transitions in pedestrian fundamental diagrams of straight corridors and
t-junctions. Journal of Statistical Mechanics: Theory and Experiment,
2011(06):P06004, 2011.

[56] Bolei Zhou, Xiaogan Wang, and Xiaoou Tang. Understanding collective crowd
behaviors: Learning a mixture model of dynamic pedestrian-agents. IEEE Con-
ference on Computer Vision and Pattern Recognition, 2871–2878, 2012.

112


