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ABSTRACT 

Natural and manmade disasters are low-probability, high-impact adverse events that 

incur extravagant cost and hardship on society. One way to mitigate the impact of these 

unfavorable events is to enhance the resilience of the system. Resilience is defined as the 

ability of a system to reduce the impact of an event and return it to its initial state in minimal 

time. The primary objective of this study is to develop methods for enhancing system 

resilience. To accomplish this goal, this study addresses: i) a quantification method for 

measuring resilience;  ii) the suitability assessment of the developed resilience metric for 

various systems; iii) an optimization model for allocating a limited budget to components 

of a system to maximize improvement of the resilience; and iv) under the budget constraint, 

an optimal selection of multiple components of a system to minimize the total impact when 

those components are compromised.  

The resilience metric (RM) is a quantitative measure that can help evaluate the 

effectiveness of investments on resilience enhancement. A good RM highlights the 

characteristics indicated in the associated resilience framework. We propose a new 

resilience metric and a methodology based on analysis of variance and experimental design 

to assess the suitability of a resilience metric. The numerical results show that our proposed 

metric performs better for a general system than the existing metrics found in the literature. 

In our metric, the three abilities of a resilient system (absorbability, adaptability, and rapid 

recovery) are statistically significant, whereas other metrics either lack one of these 

abilities or the importance of one ability is entirely neglected. 



vi 
 

The proposed RM is used to formulate a mathematical programming model to 

maximize the resiliency of a system by allocating a limited budget to the system’s 

components. Utility curves are introduced to build alternative component enhancement 

options that link between the cost of resilience improvement and the effect on the 

component functionality. Resilience-based component importance is then utilized to map 

the functionality of the component onto the functionality of the system. This approach 

provides insights as to which component needs to be enhanced and how much budget is 

required to do so.  

To enhance the resilience of a network system, it is also essential to predict the 

potential action of the adversarial attacks on the network. This can be solved through the 

problem of finding a predetermined number of arcs whose failure have the highest impact 

on system functionality. This problem is computationally intensive; thus, we provide a 

mixed-integer formulation and a heuristic for initialization strategy to reduce the 

computational cost.  
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CHAPTER 1 

I. INTRODUCTION 

1.1. Background and Motivation 

Society depends on infrastructures in order to maintain stability and regulate 

political, economic, and social issues and events. These infrastructures include electrical, 

water and wastewater, natural gas, transportation, banking and finance, railways, airways, 

telecommunication, etc. If these systems were to not function properly, major costs could 

be incurred, and lives could be endangered. Unfavorable events may disrupt these systems 

from being able to operate at an optimal level. An example of this can be seen from one of 

the most severe natural disasters Japan has ever seen, the magnitude-9.0 earthquake and 

accompanying tsunami that imposed $235 billion in repairs and restorations, as well as the 

28,000 fatalities it caused. Another event was the September 11th terrorist attacks on the 

Twin Towers that resulted in 2,996 deaths and $10 billion just in infrastructure and building 

damage [1]. Adverse events effecting societal infrastructures are not limited exclusively to 

disasters imposed on physical systems. Cyber-physical attacks can exploit the 

vulnerabilities of the cyber side of systems in order to disrupt them. During the Cold War, 

Soviet Union used a software that was infected with a trojan horse to operate the pumps, 

turbines, and valves of their Siberian natural gas pipelines [2]. In 1982, this trojan horse 

caused an explosion which had a huge economic impact and other geopolitical 

consequences. Not all the manmade disasters are terroristic, some may be unintentional. 

The 2010 Deepwater Horizon oil spill, caused by an inadvertent explosion, resulted in 
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environmental destruction, health problems, severe regional economic damage, and 

inevitably caused $3.12 billion in damages. 

 

Figure I.1: Cost of billion-dollar natural disasters by year (CPI-Adjusted) [3] 

Figure I.1 shows the annual cost of natural disasters in United States from 1980 to 

2018. An immediate observation is that there seems to be no discernable pattern in the data, 

and, therefore, it doesn’t seem feasible to be able to forecast the effect of these events in 

advance. In other words, these events are essentially unpredictable and unavoidable. 

Another common characteristic of these events is that, after disruption, it takes a long time 

for the system to recover. Seven years after Japan’s 2011 Fukushima Daiichi nuclear 

disaster, there are still extravagant costs that are being incurred [4]. In December of 2016 

the government of Japan estimated that the costs associated with decontamination, 
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compensation, decommissioning, and radioactive waste storage amounted to $187 billion. 

The 2017 hurricane Maria that devastated Dominica, St Croix, and Puerto Rico was another 

event that was accompanied by a long recovery period, in which one month after the 

hurricane, 85% of Puerto Rico still suffered from electrical outage. Two-and-a-half months 

after the disaster, only 53% of the population had electrical power. 

These unfavorable events are inevitable; preventive strategies may not stop them 

from happening. But their consequences can be alleviated. There are several concepts that 

researchers and practitioners use to deal with these events. While these concepts are not 

mutually exclusive, they represent distinct conditions and situations.  

Risk is the possibility of an undesired event and its associated loss [5]. Risk models 

(e.g., Kaplan model and Pressure and release model) consider the risk scenario, likelihood 

probability distribution function (PDF), and consequence of the risk. Reliability is the 

ability of a system or component to function under some previously stated conditions 

(operational and environmental) for a specified period of time [6], [7]. Maintainability, 

expressed as Mean Time to Repair (MTTR), is the ability of an item, under certain stated 

conditions of use, to be retained in, or restored to, a state in which it can perform its required 

function(s). This pertains to when maintenance is performed under the stated conditions, 

as well as to using prescribed procedures and resources. Availability is the probability that 

a system is available for use at a given time and is a function of reliability and 

maintainability. Robustness is the ability of a system to cope with a given set of 

disturbances and maintain its functionality [5]. Stability is the ability of a system to 

withstand long-term disruptions and continue its critical operations [8]. Survivability is the 

ability of a system to minimize the impact of a finite disturbance on value delivery to 
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alleviate the consequences of unfavorable events [9].  Redundancy is the extent to which 

other systems can replace the functionality or performance of another system without 

significant loss of either aspect [10]. Resourcefulness is the ability to identify and prioritize 

problems and to initiate solutions by identifying and monitoring all resources, including 

economic, technical, and social information.   

These concepts are don’t fully allow a way to study a system and improve it to reduce 

the negative impact of extreme events. Reliability only deals with a set of defined 

situations, which excludes some extreme event. Robustness considers the ability of a 

system at the time of a predetermined shock and it does not take in account recovery from 

the disaster. Risk does not consider the recovery time and it assumes a probability for the 

occurrence of an event. To cover these deficiencies, the concept of resiliency has been 

developed.  

1.2. Resilience definition 

 Resilience (or resiliencycomes from the Latin word “resiliō”, which refers to the 

ability of an object to rebound or return to its original state after being stressed (e.g., bent, 

compressed, stretched, etc.). In 1973, Holling [11] noted the characteristics of a resilient 

ecological system to be bouncing back from a distress. Some years later the term resilience 

was described as a property of timber and used to explain why some types of wood were 

able to accommodate sudden and severe loads without breaking [12]. Gunderson et al. [13] 

recognized absorption as a characteristic of resiliency. 

Researchers from different disciplines have proposed different definitions for 

resilience. However, a unified definition of resilience is still a work-in-progress. Below, 



5 
 

Table 1-1 summarizes definitions in different disciplines. All of these definitions maintain 

the idea of a system being able to reduce negative impact and rapidly recover to an 

acceptable estate.  

Table I-1: Resilience definitions 

Discipline Definition of resilience 

Dictionary 

The power or ability to return to the original form, position, etc., 
after being bent, compressed, or stretched; elasticity. Resiliency is a 
quality in objects to hold or recover their shape, or in people to stay 
intact. This is a kind of strength [14]  

Infrastructure 
Systems 

The ability to reduce the magnitude and duration of disturbances. It 
depends on infrastructure and the system’s ability to predict, absorb 
and adapt to disturbances and systems recover rapidly [15]. 

Economic 
Systems 

The response to hazards that enables people and communities to 
avoid some economic losses at micro—macro market levels. It is 
the capacity for the enterprise to survive and adapt following 
market or environmental shocks [16]. 

Social Systems 
The ability of a community to withstand stresses and disturbances 
caused by social, political and economic changes [17]. 

Organizational 
Systems 

The ability of an organization to identify risks and to handle 
perturbations that affect its competencies, strategies and 
coordination [18]. 

Ecology 

resilience determines the persistence of relationships within a 
system and is a measure of the ability of these systems to absorb 
change state variable, driving variables, and parameters and still 
persist [19]. 

As we mentioned earlier, there are overlapping concepts that may be confused with 

resilience. Figure I.2  illustrates the similarity and differences between resiliency and 

concepts of reliability, risk, and robustness:  
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Reliability vs resilience: Chandra et al.  [20] sum up the differences between 

reliability and resiliency for a power grid. Resiliency is measured in response to an 

unfavorable event affecting the system, but reliability is measured generally in frequency, 

time, and duration of outage. Resilience may be computed before or after an event, 

however, reliability usually is computed over a certain time period. There are well defined 

measures for reliability, however there are no well-defined measures for resilience. 

Risk vs. Resilience: Risk is the possibility of an undesired event and its associated 

loss [5]. There are two important models for risk analysis. The first model is Kaplan [21], 

which includes the risk scenario, likelihood PDF, and consequence of the risk. Given a set 

of possible hazards, risk is defined as 

𝑅𝑖𝑠𝑘௜ = {< 𝑆௜ , 𝑓௜(ς୧),  𝑔௜(𝜉௜) >},  𝑖 = 1,2,  … 

Figure I.2: Overlapping concepts 

Resilience 

Robustness 

Reliability 

Risk 
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in which, ς is the hazard, 𝜉is the system capacity, 𝑆௜ is the risk scenario i, 𝑓௜(ς௜) is the 

likelihood PDF of hazard i, and 𝑔௜(𝜉௜) is the consequence of the hazard i. The second risk 

model is pressure and release [22] which is defined as 

𝑅𝑖𝑠𝑘௜ = 𝑓(ς|𝑖) × 𝑔(𝜉|𝑖) × 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦, 

where, (ς|𝑖) × 𝑔(𝜉|𝑖) is the vulnerability for hazard i, 𝑓(ς|𝑖) is the hazard potential impact 

ς relative to hazard i and 𝑔(𝜉|𝑖) is the system capacity 𝜉 relative to hazard i. An important 

difference between resilience and risk is that, unlike risk assessment, the probability of a 

disturbance is not a crucial factor in resilience. 

Robustness vs. Resilience:  Robustness has a lot in common with resilience and many 

papers [23] consider it as an important characteristic of a resilient system. However, 

robustness considers the strength of the system to withstand the degradation of the system’s 

functionality, while resilience requires flexibility, adaptability, and agility on top of that. 

In robustness we know the threat and its impact, but in resilience the event is 

unprecedented.  

These contrasts indicate that, while each concept is useful for applications, they 

cannot replace the resilience. In this dissertation we study the resilience of a system and 

how we can improve it.   

1.3. Problem Description 

Adverse events are unavoidable; however, their impact can be reduced by enhancing 

the resilience of the system. The widely used definition of system resilience is “the 

system’s ability to prepare, absorb, adapt, and rapidly recover from a low-probability, high-
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impact event” [24]. The primary objective of this dissertation is to provide decision makers 

with tools that enable them to get insight into the resilience level of a system and resilience 

enhancement.  For this purpose, at first, a metric is developed to measure the resilience 

level of the system. Then, using this metric, a mathematical programming problem is 

formulated to maximize the resilience of the system for a given budget, the multi-arc 

disruption is utilized to find the vulnerable arcs, and finally, the resilience of interdependent 

natural gas and power systems is studied.  

This dissertation will study how to quantitatively measure resilience of a system, 

which includes a method to develop a valid resilience metric.  Having a quantitative metric 

is necessary to develop tools for improving system resilience.  The first step is to define 

resilience, then develop the resilience metric, and finally assess the validity of resilience 

metric.  

1.3.1. Resilience Quantification 

Resilience quantification helps us to identify, justify, and prioritize any need for 

improvement, monitor changes, evaluate the effectiveness of the resilience strategies, or 

compare the cost-effective benefits of increasing resilience. Hosseini et al. [24] reviewed 

the resilience metrics and categorized them into two major groups by several criteria 

(Figure 1.3) . Qualitative metrics include conceptual frameworks and semi-quantitative 

indices. Conceptual frameworks describe the characteristics (e.g., redundancy, 

resourcefulness) of a resilient system, whereas semi-quantitative indices provide a 

subjective Likert scale (0-10) to different resilience-based system characteristics [24]. 

Quantitative metrics provide a quantitative means to assess resilience by measuring 
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performance of system, regardless of the structure of system. A quantitative metric is built 

on top of a conceptual frame work and provides a measure of the level to which a system 

has the resilience characteristics that are determined in the conceptual framework. A 

quantitative metric that can capture the stochasticity associated with system behavior is 

said to be probabilistic metric. Moreover, a dynamic metric accounts for time-dependent 

behavior [24]. There are metrics for specific systems that are categorized as structural-

based models. They examine how the structure of a system impacts its resilience. In such 

methods, system behavior must be observed, and characteristics of a system must be 

modeled or simulated.  

 
Figure I.3: Classification scheme of resilience assessment methodologies 

Performance [25], [26] or functionality [27], [28] of a system refers to the 

requirements or objectives [25] of the system under study that indicates how well the 

system fulfills its intended goals [29]. It is measured as a dimensionless (percentage) 

function of time  [27] which can be constant or vary with time [30]. For example, 

functionality of a natural gas network  can be the combination of the normalized gas flow 

rate and the total length of the network [31]. For a power system, functionality can be the 

Quantitative assessment

General measures

Probabilistic Deterministic

Structural-based measures

Optimization 
models

Simulation 
models
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percentage of energized transmission substations, critical facilities with power, or 

customers with power [26]. Choosing a performance or functionality depends on the 

system under study and the management need. General categories of performance 

measures used in metrics are technical, organizational, and economic. Technical metrics 

evaluate the behavior of technologies and of technology-dependent mission/business 

processes (e.g., cyber defense processes). Organizational metrics evaluate organizational 

processes for resilience. Economic metrics focus on the potential cost.  

1.3.2. Resilience Metric Assessment 

Several resilience metrics have been introduced in the literature, but the problem is 

how to choose the best metric for a general system. Unlike a well-defined concept like 

reliability, there is no agreement on the resilience measures [24]. Hence, we developed a 

methodology that uses experimental design to assess the quality of a resilience metric.  

An experiment is an exercise designed to determine the effects of one or more 

variables (factors) on one or more characteristics (response variables) of some well-defined 

system (experimental unit) [32]. In our problem the experiment is measuring resilience. A 

treatment is a combination of factors at a specific level [32]. Experimental design concerns 

the validity and efficiency of the experiment [33]. A design includes, but is not limited to, 

factors to be included, their levels, the treatments for which the experiment should be run, 

the order which the treatments are run, randomized or non-randomized, replication, and 

blocking. The choice of an experimental design depends on the objective. For example, in 

a pharmaceutical factory, the variety screening trial does not need much replication to 

maximize accession number while variety release trial needs appropriate replication for a 
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high precision. After the design, we simulated the data for each treatment and analyzed 

them using analysis of variance (ANOVA) to determine which factors influence the 

response and which do not. 

1.3.3. Investment Optimization 

Resilience enhancement activities aim at mitigating the negative effect of adverse 

events. The extravagant cost and consequences of these events make investment on 

enhancing system resilience justifiable and appealing. But the resources are limited, and 

system wide hardening is not feasible; hence , the budget must be carefully allotted to 

maximize the effectiveness of the investments. As the complexity of the system increases, 

it becomes more difficult to decide which components to enhance. In the component 

importance approach [34], the influence of particular components on the overall resilience 

of the system is measured and the components with highest importance are enhanced. 

However, this method may not necessarily be optimal because as a result of component 

interactions, a less important component may have a higher effect on the resilience of the 

system than a more important component. Absorption and rapid recovery (Figure 1.4) are 

the two main capabilities of a component that we consider enhancing in this research. If 

the current absorption of a component is 60%, it means that after an adverse event the 

component functions at 60% of its normal functionality. A 20% improvement in the 

absorption means that the system will be improved to 80% of normal functionality. Time 

to recovery, T, is measured by unit of time. A 20% improvement in time to recovery means 

that the new time to recovery will be (1-20%)×T. Given the amount allocated to a 
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component, we may have different options to improve the absorbability or time to recovery 

(Figure I.5).  

 

Figure I.4 Absorption and recovery 
capabilities 

 

Figure I.5: Component improvement 
options 

We formulate a mathematical programming model that maximizes the resilience of 

the system for a given budget. This model determines the amount that should be spent on 

each component and the aspects (absorption and time-to-recovery) of the component that 

must be enhanced within the allotted budget. For a system with three components, Figure 

I.6 shows the percentage of budget that is to be assigned to each of them. The first 

component receives 45% of the budget. Blue and green colors indicate the individual 

component absorption and time to recovery, respectively. So, for this component, there is 

more emphasis on reducing the recovery time than increasing the absorption.  
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Figure I.6: Percent budget allocation and absorption and recovery options 

1.3.4. Multiple-Arc Failure with Maximum Impact 

In order to reduce the output of an adversary network, a limited budget is assigned 

to disrupt a predetermined number of network arcs. The multi-arc failure with maximum 

disruption problem (MADP) tries to find arcs in a way that the impact on the network flow 

is the most. The MADP problem has another application which is finding the arcs that are 

of interest of terrorists and try to protect them or change the network structure to make it 

more resilient.   

1.3.5. Resilience of Interdependent Infrastructures 

Infrastructures are interdependent, and, during and after an adverse event, cascading 

effects compound to the gravity of the consequences. So, the interdependence of potentially 

vulnerable infrastructures under disruption should be carefully considered for resilience 

enhancement activities. The critical infrastructures are complex systems and it is not easy 

to formulate interdependence in a single model. This dissertation introduces an applicable 
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statistical method to investigate the impact of the resilience of an infrastructure on the 

resilience of another infrastructure. Natural gas is a major resource for electricity 

generation and, at the time of a disaster, a disruption in natural gas system can affect the 

input to the gas fired generators. As a result, the functionality of a power system depends 

not only on itself, but also on the resilience of the natural gas system. The approach of 

finding the statistical significance of the natural gas system resilience on the power system 

resilience can be applied to other systems, including cyber-physical systems. 

1.4. Contributions 

This dissertation is directed towards resilience enhancement of cyber-physical 

systems. It addresses three main problems of resilience level evaluation, budget 

assignment, and vulnerability detection. We present a new methodology to check the 

consistency of resilience metrics with their underlying framework (the validity of the 

metric). One of the shortcomings of existing metrics is that they cannot evaluate the 

resilience of a system, as the underlying conceptual framework suggests, as they intended. 

We propose a new metric that covers this gap. We also investigate the impact of resilience 

of an infrastructure on another infrastructure. 

Due to the complexity of the system, it is not easy to find the collective effect of 

investment on the components on system resilience. We introduce a method to tackle this 

complexity buy incorporating the component importance and mapping the component’s 

functionality to system functionality. In our approach a new formulation is presented that 

maximizes system resilience under budgetary constraint. We introduce utility function into 

component enhancement, and a resilience-based component importance to map between 
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an individual component functionality and system functionality. The proposed method 

considers a set of possible events, their effects on the component functionality, and the 

component’s enhancement alternatives. The alternatives employ a utility function to 

construct the set of alternatives for component enhancement. In the final step of the 

method, a mathematical programming model is introduced that maximizes the system 

resilience for a given budget.  

The problem of finding multiple arc whose disruption has the maximum impact on 

the network is known to be computationally intensive. To tackle this problem, we introduce 

a heuristic that finds an initial solution for warm start. For this heuristic, a new betweenness 

centrality metric is introduced. This initial solution reduces the computation time 

drastically. Moreover, a pattern generation algorithm is introduced that solves the problem 

in a shorter time with an objective close to optimal objective.   

1.5. Outcomes 

Journal Publications 

 M. Najjarian and G. J. Lim, “Design and assessment methodology for system 

resilience metrics,” Risk Analysis, 39(9), pp1885-1898, September 2019 

 M. Najarian and G. J. Lim, Optimizing Infrastructure Resilience under Budgetary 

Constraint, Reliability Engineering and System Safety (198), June 2020. 

 M. Najarian, G. J. Lim, and M. Barati, Levelized Resiliency Assessment of 

Interdependent Natural Gas and Electric Power Systems, Proceedings of the 2018 

IISE Annual Conference, May 2018. 

 M.  Najarian and G. J. Lim, Multiple-Arc Failure with maximum Impact on 

Network Flow. 
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Conference Presentation 

 M. Najarian, G. J. Lim, and M. Barati, Resilience Assessment of Interdependent 

Gas Network and Electrical Power System Infrastructures: A Quantitative 

Approach. 2017 INFORMS Annual Meeting, October 22-25, 2017.  

 
 M. Najarian, G. J. Lim, and M. Barati, Levelized Resiliency Assessment of 

Interdependent Natural Gas and Electric Power Systems, IISE Annual Conference 

and Expo 2018, May 19-22, 2018. 

 
 M. Najarian, G. J. Lim, A Methodology for Infrastructure Resilience Metric 

Assessment, 2018 INFORMS Annual Meeting, November 4-7, 2018. 

 
 M. Najarian, G. J. Lim, A Flow-Based Network Resilience Metric, 2019 INFORMS 

Annual Meeting, October 20-23, 2019. 

1.6. Organization 

The remainder of this dissertation is organized as follows. Chapter 2 reviews the 

relevant literature on resilience measurement, budget allocation, and interdependency. In 

Chapter 3, the proposed methodology is presented to assess a resilience metric followed by 

newly proposed resilience metric. The proposed metric is compared to other existing 

metrics. Chapter 4 describes our mathematical programming model to optimize the system 

resilience within a given budget. In Chapter 5, a solution approach for the multi-arc failure 

with maximum impact on network flow is presented. In Chapter 6, an approach is 

suggested to measure the effect of the resilience of a system on the resilience of an 

interdependent system. We discuss conclusions and highlight future research directions in 

Chapter 7.  
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CHAPTER 2 

II. LITERATURE REVIEW 

In 2017, Hurricanes Harvey, Irma, and Maria happened within the short period of 

time from August to October. They affected the coastal and inner regions of Texas, Florida, 

and Puerto Rico, respectively. These three hurricanes were all Category 5 storms; however, 

each one affected the power system outages in Texas, Florida, and Puerto Rico in distinctly 

different ways (Figure II.1). The outages that occurred in Texas and Florida were at 2%, 

and were able to recover to their initial states in less than a month [35]. However, in Puerto 

Rico, the power outage was at 96%, and after one month, it only recovered by 22%. Even 

8 months after Hurricane Maria, Puerto Rico’s power system wasn’t fully recovered, and 

the outage was around 10% [36].   

 
Figure II.1: Hurricanes Harvey, Irma, and Maria statistics [37] 

The differences in how the power systems were affected in these three separate 

regions were caused by the differences in their power grid resilience levels. Resilience is 
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the ability to reduce the magnitude and duration of disturbances [24]. The level of resilience 

depends on the particular infrastructure involved and the system’s ability to anticipate, 

absorb and adapt to disturbances, as well as rapidly recover to an acceptable and stable 

state [15], [25], [28], [38]–[42] (Figure II.2). Anticipation is the ability of the system to 

predict and prepare for a disruption; it is aimed at avoiding and withstanding potential 

disruption. The plans and designs in the anticipation phase can help to minimize potential 

impacts on availability, accessibility, affordability, and acceptability of the system output 

[24]. It may not be possible for a system and its associated components to evade disruption. 

However, a proper configuration system will allow for better absorption, which reduces 

the deterioration in a system’s functionality and the cascading effects. Adaptation is the 

utilization of existing resources to increase the performance of the system shortly after 

disruption [24]. Rapid recovery is the ability of the system to respond to the event rapidly 

and reinstate all system operations and service availabilities to their pre-event capacity and 

efficiency [43]. Each of these capabilities can be improved upon through their specific set 

of principles. Resourcefulness, coordination, collaboration, and creativity can boost 

anticipation. Robustness, stability, flexibility, diversity, and efficiency can improve 

absorbability. Resourcefulness, coordination, and redundancy can increase the adaptation. 

Finally, agility, collaboration, flexibility, resourcefulness, and redundancy can reduce the 

recovery time [43].  
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Figure II.2: Abilities of a resilient system  

The resilience metric is a basic tool for the quantitative study and analysis of the 

system’s resilience. It is used for identifying and prioritizing any need for improvement 

and evaluating the effectiveness of the resilience strategies [44]. Studies done on resilience-

based component importance [34] and investment [45], [46] rely on resilience metrics. 

When a resilience metric is available, the resilience of the system can be assessed against 

baseline conditions, thresholds that reflect program objectives, principles of good 

resilience, or peers (benchmarking)  [47]. Several metrics have been proposed in certain 

literature [24]. A structural-based metric is utilized to consider the impact of the system’s 

structure on its resilience [24]. In contrast to a general metric, a structural-based metric can 

be used for the system it is developed for. To develop a general metric, functionality 

(performance) of the system should be measured. Performance of the system can vary 

based on the context and objective. For example, for a power network, performance can be 

the number of customers that are served [48], the load served [49], [50], or the time that 

system is up and running [51]. After developing a list of metrics, the next issue that should 

be addressed is how a particular metric – that is, the metric that fits the system under study 

- should be selected. 
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The National Mitigation Investment Strategy provides an approach to investments in 

mitigation activities and risk management across the United States for federal departments 

and agencies. These include state, territorial, tribal, and local governments (SLTTs) and 

private and non-profit sector entities such as businesses, philanthropies, foundations, 

universities, and other non-governmental organizations [52]. The investment decisions on 

cyber-physical systems, especially those with certain social impacts on critical 

infrastructures, can be viewed from political [53], social, environmental, economic, 

financial [54], and engineering prospects [53], [55]. One of the goals of the engineering 

prospect is to determine how to allocate the budget to specific components of the system 

in order to maximize the resilience.  

An integrated risk-based decision support system is recommended to alert the 

utilities about the probable losses due to lack of investment [56]. To establish a relationship 

between structural features and performance, a link-node representation of water 

distribution is studied by network metrics. These metrics include link density, average 

node-degree, diameter, average path-length, clustering coefficient, meshed-ness 

coefficient, central-point dominance, density of articulation points, density of bridges 

spectral gap, and algebraic connectivity. Using these metrics, properties like redundancy 

and fault tolerance are quantified [55]. When a better tool is not available, a rapid risk 

analysis for a flood can be utilized to support risk-based investment prioritization at the 

community level [57]. In the planner-attacker-defender model presented in [58], small 

investments are made in switch installation to enhance resilience in response to an attack.  

An important factor in investment decisions made regarding system resilience is the 

resource allocation. A resilience-based component importance (RCI) metric measures the 
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extent to which an individual component contributes to the resilience of the system [34], 

[59]–[61]. Using this measure, the components can be ranked based on their importance, 

and the budget is allocated in order of said importance. At the component level, the 

allocated budget is used to improve a combination of component absorption and recovery 

time factors. The collective enhancements in these individual components determine the 

change in the resilience of the system. Hence, at the time of resource allocation, a decision 

on component level enhancement should also be made.  

 
When an adverse event happens (e.g., hurricane, cyber-physical attack, etc.), it can 

damage interdependent infrastructures. For example, gas-fired electricity generation plants 

rely on gas, and gas transmission pumps need electricity to pump gas through the 

transmission pipelines. An adverse event may disrupt the gas network, and, as a result, the 

gas-fired generators won’t be able to produce electricity required. Therefore, the resiliency 

of the natural gas systems may, in turn, affect the resilience of the power system. Rinaldi 

et al. [62] highlight different types of interdependencies associated with urban 

infrastructure, including physical, cyber, and geographic. Two infrastructures are 

physically interdependent if the state of each one is dependent on the material output(s) of 

the other. Interdependence is cyber when the state of the infrastructure is dependent on the 

information transmitted through the communications infrastructure. In a geographical 

interdependence, a change of the local environment can create change in multiple systems. 

Dependencies and interdependencies can cause cascading or escalating effects [62]. A 

preparedness decision making framework is proposed in [16] to promote interdependent 

economic resilience estimation. A protection plan is formulated as a multi-objective model 

in [63] in which the protected nodes cannot be attacked. The objectives are to minimize the 
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maximum percentage of infected nodes, the cost of implementing the protection plan, and 

total time of the attack diffusion. The algorithm presented in [64] identifies vulnerabilities 

due to interdependencies in the current and proposed designs. A coupled model of natural 

gas and power systems is provided by [65] in which the relationship between profit and 

production in the electricity model is introduced into the objective function of the gas 

model, which minimizes the system’s cost. 
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CHAPTER 3 

III. DESIGN AND ASSESSMENT METHODOLOGY FOR SYSTEM 

RESILIENCE METRICS 

3.1. Introduction 

Natural or human-made disasters may impose costs, disrupt routine activities, and 

threaten human life. From 1980 to 2011, more than 130 extreme events resulted in 881 

billion dollars in damages in the United States [66]. Hurricane Katrina caused 108 billion 

dollars and 1,833 fatalities in 2005.[67] Hurricane Harvey in 2017 and Sandy in 2012 cost 

$125 [68] and $70 billion [69], respectively. To improve understanding of unfavorable 

events and alleviate the resulting consequences, researchers and practitioners have 

developed several concepts such as risk, robustness, stability, survivability, and reliability. 

Risk is the possibility of an undesired event and its sequenced loss [70], robustness is the 

system’s ability to tolerate short-term adverse conditions,[70] stability is the ability of a 

system to withstand long-term disruptions and continue its critical operations,[8] 

survivability is the ability of a system to minimize the impact of a finite disturbance on 

value delivery  to alleviate the consequences of unfavorable events,[9] and reliability is the 

ability of a system or component to function under stated conditions (operational and 

environmental) for a specified period of time.[6], [7]  However, in the face of the extreme 

events, like catastrophic hurricanes or earthquakes, some aspects are not covered by these 

concepts which led to the development of another concept: resilience. 
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Resilience (or resiliency) comes from the Latin word “resiliō,” which means “to 

bounce” [71]. Disciplines like social systems [72], organizational systems,[18] economic 

systems [73], psychology [74], ecology[11], and engineering [75], [76] have been studying 

resilience. However, each discipline considers it from its point of view; hence, the 

definitions may vary.  The common elements of resilience among them are disruption and 

returning to the normal situation. Compared to the other fields, not only the number of 

resilience studies in the realm of engineering are limited [24], but also there is not 

unanimity on its definition. We divided the literature review into two sections: 1) resilience 

conceptual framework that includes the studies on the concepts and fundamentals of 

resilient systems, and 2) resilience quantification which reviews the studies on the RMs.   

3.1.1. Resilience Conceptual Framework  

Theoretical frameworks mainly discuss the characteristics of a resilient system and 

steps to enhance the system’s resilience. Hoffman and Nilchiani [10] characterized the 

disaster resilience’s goals to include reduced failure probabilities, reduced consequences 

from failures, and reduced time-to-recovery. The resilience of a network is a 

multidimensional, dynamic concept [77] that addresses its ability to absorb and recover 

from an external, high-impact, low-probability event.[78] Both pre-disaster (preparedness) 

and post-disaster (recovery) activities are necessary for a resilient system [79].  

Performance [25], [26] or functionality [27], [28] of a system refers to the 

requirements or objectives [25] of the system under study that indicates how well the 

system fulfills its intended goals [29]. It is measured as a dimensionless (percentage) 

function of time [27], [28]. For example, for a natural gas network it can be the combination 
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of the normalized gas flow rate and the total length of the network[31]. For a power system, 

it can be the percentage of energized transmission substations, the percentage of critical 

facilities with power, or the percentage of customers with power [26].  

Four abilities of a resilient system are anticipation, absorption, adaptation, and rapid 

recovery [25], [28], [38]–[42], [80]. We merged the resilience profile from Francis and 

Bekera [38] and Ganin et al. [28] to obtain four phases as seen in Figure III.1. While the 

former does not assume separate phases for anticipation and absorption, the latter does not 

include the slack time (𝛿).  Anticipation is tshe phase before anything happens (𝑡 ≤ 𝑡௢) to 

the system while preparing for a hazard. This can include forecasting the adverse event, its 

severity, list of the components prone to failure, the plans for different scenarios, etc. In 

this phase, the functionality is in normal state (𝐹௢). Absorption is the phase in which the 

system absorbs the impact of the hazard and reduces the severity of consequences when a 

disaster strikes the system (𝑡௢ ≤ 𝑡 ≤ 𝑡ௗ). As a result, the system functionality drops to 𝐹ௗ. 

The value of 𝐹ௗ is closer to one as the system becomes more resilient. Adaptation is the 

phase after a disaster and just before the recovery phase (𝑡ௗ ≤ 𝑡 ≤ 𝑡௥
∗). During this time, 

the system can utilize its current resources to improve the functionality of the system from 

𝐹ௗ to 𝐹௥
∗. This phase may include temporal repair, utilizing the redundant components, 

prioritizing and addressing the more critical demands. Francis and Bekera [38] assumed 

initial recovery actions that take place at slack time (𝑡ఋ) to improve the functionality to 𝐹௥
∗. 

These initial recovery actions are not final and are prone to change by the next phase. The 

final phase is recovery (𝑡௥
∗ ≤ 𝑡 ≤ 𝑇) in which the system gradually returns to its initial 

state, or to a stable state. These phases are not mutually exclusive. For example, the 

recovery phase may start in the middle of adapt phase. 
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Figure III.1: Resilience functionality phases 

3.1.2. Resilience Quantification 

The extravagant cost of disasters justifies the investment to improve the system’s 

resilience. Quantification is an essential tool to achieve this goal. This tool can be utilized 

to identify, justify, and prioritize any need for improvement [44]. Some other applications 

include monitoring changes in the resilience level, evaluating the effectiveness of the 

resilience strategies, or comparing the cost-effective benefits of improving resilience [44]. 

RMs must reflect the abilities of a resilient system, and thus must serve the following goals 

[81], [82]: 

 To provide objective evaluations of the system’s current state of resilience. 
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 To provide a mean for identification of potential infrastructure 

vulnerabilities. 

 To enable the evaluation of the changes in the resilience resulted from of the 

resilience enhancement activities.  

There are different approaches to assess resilience. Hosseini et al. [24] categorized 

the quantitative measures into two groups: general and structural. General measures can 

be applied to any domain. They include deterministic and probabilistic, and static and 

dynamic models. In contrast, structural based measures are domain-specific 

representations of the components of resilience. Optimization, simulation, and fuzzy logic 

models are utilized in these models.  

Willis and Loa [83] classified the metrics by three characteristics: resolution, type, 

and maturity. Resolution refers to the scale of the system being described; type refers to 

where the metrics fit; and maturity relates to the suitability, systematically collection, and 

organization of the metrics. Moreover, an RM should not be difficult to implement [51], 

[84], and it must produce the same result when the assessment is repeated [84].  

While some papers assume that RM can be greater than one [38], [85], Ayyub [25] 

defines the RM to be a function that maps a set of possible situations, to the interval [0,1] 

𝑅𝑀 ∶  𝐶 →  [0, 1], (1)  

in which C is an algebra.  

The network structure and components [23], [86]–[90] can also improve the 

resilience of a system, and network measures can be included in an RM. Abbasi et al. [86] 

presented a resilience vector for a power grid which comprised of five sub-indices: load 
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shedding cost savings, restoration cost savings, adaptability, weighted algebraic 

connectivity, and weighted betweenness centrality. The last two sub-indices are extracted 

from the network structure. Zhang and Wang [87] introduced a network-based RM that 

does not consider the performance of the system. However, performance must be 

incorporated into a metric [29]  because it reflects how well the system delivers on its 

intended purpose during and after an event [29].  

 Some researchers used the ratio of the area of real performance region to the area 

of target performance as an RM [91]–[94]. Others divided the previous metric by the 

recovery time to take into account the time-to-recovery [59], [95]–[97]. The metric offered 

by Francis and Bekera [38] is based on the few data points 

((𝑡௢ , 𝐹଴), (𝑡ௗ , 𝐹ௗ), (𝑡௥∗ , 𝐹௥∗), (𝑡௘ , 𝐹௘)) on the functionality curve (Figure III.1), which does 

not consider the whole functionality curve that indicates how the process degrades and 

recovers. Kwasinski [51] used a metric from reliability as an indicator of resilience. Ayyub 

[25] used a weighted sum of normalized ratio of areas in two intervals, one from 𝑡௢ to 𝑡ௗ, 

and the other from 𝑡ௗ to T.  

Definition. Valid Resilience Metric 

A valid RM associated with a conceptual framework is a metric that  

i. Reveals if a system has the abilities suggested by the associated conceptual 

framework, and  

ii. Is not biased towards any of these abilities, i.e., it must not overemphasize or 

underemphasize the importance of any of these abilities. 
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 Systems with different abilities’ settings can have the same resilience measure 

against the same incident (Figure III.2), but it may be different for a biased metric. For 

example, consider System 2 in Figure III.2 with a weak absorption but a rapid recovery, 

and System 3 with a better absorption but a tardy recovery compared to System 2; for an 

unbiased RM System 2 and System 3 have the same resilience value, but for a biased metric 

which overemphasizes the rapid recovery, System 2 shows a better resilience.  
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Figure III.2: Different resilience abilities, systems different settings of abilities: System 1 

has a higher absorption and shorter recovery period comparing to other two systems. 

While System 2 has a shorter recovery and poorer absorption comparing to System 3, 

both have the same resilience measure 

 

Now that we defined a valid RM, the question that arises is “how can we validate an 

RM?” In the subsequent sections of this study, we present our proposed RM and a 

methodology to examine the validity of RMs. We provide numerical results, analyze our 

proposed metric, and compare it to other performance-based metrics. Throughout this 

document, we use RM and resilience index interchangeably. 



30 
 

3.2. Existing resilience metrics  

So far, several RMs have been developed for the systems which are categorized as 

general or structural [24]. In this section, we present the existing metrics and their 

limitations. We use the following notation in the rest of this document. We name the 

existing metrics as 𝐼𝑛𝑑𝑒𝑥௜ , 𝑖 = 1 … 6. The pair (𝑡, 𝐹) indicate the time and functionality of 

the system at that time (Figure III.1). The point (𝑡ை , 𝐹ை) on the curve corresponds to the 

normal or initial state when an incident occurs, at (𝑡ௗ , 𝐹ௗ) system has degraded to its lowest 

functionality, 𝑡ఋ is the time that the initial recovery actions are started, (𝑡௥
∗, 𝐹௥

∗) is the end 

of adaptation, where initial recovery actions end, and (𝑇,  𝐹்) corresponds to the point that 

recovery is achieved.   

A normalized metric (Index1) indicates the percentage of the targeted functionality 

(TF) that has been satisfied [91]–[94]. It is 

𝐼𝑛𝑑𝑒𝑥ଵ =
∫ 𝐹(𝑡)𝑑𝑡

்

଴ 

∫ 𝑇𝐹𝑑𝑡
்

଴

. (2)  

The area ∫ 𝑇𝐹(𝑡)𝑑𝑡 
்

଴
is a normalizing factor which helps to compare resilience of different 

systems and different performance magnitudes together. However, Index1 does not show 

the importance of rapid recovery ability as we have elaborated in the discussion section.  

Kwasinski [51] presented Index2 for power systems, which is similar to availability 

index[98] which is 

𝐼𝑛𝑑𝑒𝑥ଶ =
 𝑇௨

𝑇௨ + 𝑇ௗ
, (3) 
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where 𝑇௨ and 𝑇ௗ are the summations of the up and down times of the system’s components. 

An obvious weakness of this metric is that if we have two components with huge capacity 

differences, and Index2 cannot distinguish the differences between their impacts on the 

resilience measure.  

 In Index3 [20], [34] the minimum functionality is subtracted from the numerator 

and denominator of Index1 to focus more on the after event activities (adaptability and 

recovery). However, their metric still has the same flaw as Index1. 

𝐼𝑛𝑑𝑒𝑥ଷ =
∫ [𝐹(𝑡) − min{𝐹(𝑡)} ]𝑑𝑡

்

଴ 

∫ [𝑇𝐹 − min{𝐹(𝑡)} ]𝑑𝑡
்

଴

. (4) 

Francis and Bekera [38] proposed an index that includes absorptive capacity (𝐹ௗ/

𝐹଴ ) which shows the ability of the system to absorb shocks without recovery action, 

adaptive capacity (𝐹ோ/𝐹଴ ) which relates to those post-disaster activities taken after the 

disruption, and speed of recovery 𝑆௣ which is: 

𝑆௣ =

⎩
⎨

⎧
𝑡ఋ

𝑡௥
∗

𝑒ି௔(௧ೝି௧ೝ
∗)                   ௧ೝஹ௧ೝ

∗

𝑡ఋ

𝑡௥
∗

                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  
 

and 

𝐼𝑛𝑑𝑒𝑥ସ = 𝑆௣

𝐹ோ

𝐹଴ 

𝐹ௗ

𝐹଴
. (5) 

Although it includes sub-metrics for the abilities of the system, this metric just used 

few functionality points, and it cannot demonstrate how the functionality changes along 

the functionality curve (e.g., Systems 3 and 4 in Figure III.2).  
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Ayyub [25] introduced 𝐼𝑛𝑑𝑒𝑥ହ as  

𝐼𝑛𝑑𝑒𝑥ହ =
௧బାி୼்೏ାோ୼்ೃ

௧బା୼்೏ା୼ ೝ்
, (6) 

where Δ𝑇ௗ = 𝑡ௗ − 𝑡଴, F is the failure profile,  F =
∫ ி(௧)ௗ௧

೟೏
೟೔

∫ ்ிௗ௧
೟೏

೟೔

 , Δ𝑇ோ = 𝑡ோ − 𝑡ௗ, R is the 

recovery profile, R =
∫ ி(௧)ௗ௧

೟ೝ
೟೏

∫ ்ிௗ௧
೟ೃೝ

೟೏

,  and 𝑡଴ = 0.  

Kadri and Chaabane [95] divided the value of Index1 by T to incorporate rapid recovery 

into the RM. 𝐼𝑛𝑑𝑒𝑥 6 is 

𝐼𝑛𝑑𝑒𝑥 6 =

∫ 𝐹(𝑡)𝑑𝑡
்

଴

∫ 𝑇𝐹(𝑡)𝑑𝑡
்

଴

𝑇
. 

(7) 

These two last indices put a high weight on the recovery time, while a valid metric must 

be unbiased towards any of the abilities. 

3.3. Proposed resilience metric 

As an attempt to overcome the shortcoming of the existing metrics, we develop a 

performance-based valid RM that can be used in a variety of areas and is more consistent 

with various conceptual frameworks. This metric includes parameters that should be 

determined by the decision makers; hence, it is flexible to any application at hand. Our 

proposed RM is based on three post-disaster related abilities (absorption, adaptation, and 

recovery) because it is commonly reported in the literature. Although adding the 

anticipation ability (a pre-disasters component) can help improve the system resiliency, it 

is beyond the scope of this paper. 
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 The first component is absorption (𝑟ଵ). This component measures how well the 

system can maintain its functionality in the face of an unfavorable event, and how much 

the negative effects will be prevented. The formula for 𝑟ଵis: 

𝑟ଵ =
∫ 𝐹(𝑡)𝑑𝑡 

௧೏

௧೚

∫ 𝑇𝐹(𝑡)𝑑𝑡
௧೏

௧೚
 
, (8)  

in which, F(t) is the functionality of the system at time t, and TF(t) is the required 

functionality or demand at time t. Since the functionality of a system cannot be negative 

(e.g., 0 indicates non-functional system), both functions map the time to 𝑅ା , the non-

negative real numbers. Also, for 𝑡 ∈ [0, 𝑡ௗ), the following inequality holds true, 𝐹(𝑡) ≤

𝑇𝐹(𝑡); hence 0 ≤ 𝑟ଵ ≤ 1. 

 The second component is adaptation (𝑟ଶ). This component shows how well we 

assigned and utilized the existing resources to mitigate the consequences of the event, 

which can be measured by the loss of functionality after degradation until recovery over 

the target functionality. The recovery actions may result in two situations for the 

functionality. If the system recovers to a steady state at the same level or below the initial 

state (𝐹ோ ≤ 𝐹௢), then we use 𝑇 = 𝑡ோ. Otherwise (𝑖. 𝑒. , 𝐹ோ > 𝐹௢), we choose T to be the time 

that the functionality recovers to its initial state (𝑇 = 𝐹ିଵ(𝐹௢) and 𝑇 > 𝑡௢, where 𝐹ିଵ is 

the inverse of functionality function). Because the goal of recovery is to bring the system 

back to the initial state, any efforts made beyond the initial state falls under capacity 

enhancement[99]. Using this T, the formula for 𝑟ଶ is as follows: 

𝑟ଶ =
∫ 𝐹(𝑡)𝑑𝑡 

்

௧೏

∫ 𝑇𝐹(𝑡)𝑑𝑡
்

௧೏
 
, (9)  
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where 

𝑇 = ൜
𝑡ோ 𝐹ோ ≤ 𝐹௢

𝐹ିଵ(𝐹௢) 𝐹ோ > 𝐹௢ 𝑎𝑛𝑑 𝑡 > 𝑡௢
. 

With a reasoning like the previous part, we will have 0 ≤ 𝑟ଶ ≤ 1. 

The third component is time-to-recovery (𝑟ଷ). Each system has a favorite time-to-

recovery (𝑇଴) which can be determined in several ways, such as expert opinion. Having 𝑇଴ 

we calculate 𝑟ଷ using formula (4). 

𝑟ଷ = 𝑓(𝑇) = ൝

1 𝑇 ≤ 𝑇଴

𝑇଴

𝑇
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (10) 

when 𝑟ଷ = 1, it tells us that the time-to-recovery is shorter than the favorable time and if 

the recovery time is terrible (𝑇 → ∞) then the corresponding component is very small 

(𝑟ଷ → 0). The function 𝑓(𝑇) can be replaced by the function that best suits the system. 

Also, it holds that 0 ≤ 𝑟ଷ ≤ 1.  Our proposed RM is a convex combination of the three 

components 

𝑟 = 𝛼ଵ𝑟ଵ + 𝛼ଶ𝑟ଶ + 𝛼ଷ𝑟ଷ, 

∑ 𝛼௜
ଷ
௜ୀଵ = 1 and 𝛼௜ ≥ 0 for i=1,2, and 3, 

(11) 

where 𝑟ଵ, 𝑟ଶ, and rଷ are values of absorption, adaptation, and recovery components, 

respectively. The weight parameters (𝛼ଵ, 𝛼ଶ, 𝛼ଷ) can be obtained using any priority ranking 

method among those three abilities such as  analytic hierarchical process (AHP) [100].   



35 
 

3.4. A resilience metric assessment methodology  

When we talk about a valid RM, the question arises: “how can we assess its validity”. 

In this section, we introduce a methodology that can be used for this purpose. This 

methodology is not just for a particular case or domain and can be applied to any 

performance-based RM. Our methodology utilizes experimental design [32] and statistical 

analysis.  

 “An experiment is a test or a series of tests in which purposeful changes are made 

to the input variables of a process or a system so that we may observe and identify the 

reasons for changes that may be noticed in the output response” [32]. Experimental design 

is an efficient procedure for planning experiments so that the data obtained can be analyzed 

to yield valid and objective conclusions [101]. It is used to choose between alternatives, 

select the key factors affecting a response, model a process, "fine tune" a process, and 

optimize a process output [32], [101]. 

We use the experimental design method to assess the validity of a metric. The steps 

of the proposed methodology are as follows.  

Step 1: Select factors and their levels. We must have a factor for each of the items 

we want to study, which in our case they are abilities of the system. Each factor can be a 

function of sub-factors. Combinations of factor levels are called treatments. The response 

variable is the RM value. 

Step 2: Obtain the performance measure for each treatment. The probability of 

occurrence of extreme events is minimal, and it is not feasible to get the real data for 
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experiments. Hence, we use simulation to obtain the data. The output of a simulation is the 

functionality of the system which will be used in calculating the resilience.  

Step 3: Calculate RM. In this step, we use the performance data in the previous step 

to calculate the resilience for each treatment.  

Step 4: Analyze the results. Now use analysis of variance (ANOVA) to test the 

statistical significance of factors’ effects on the resilience of the system. The output of 

ANOVA includes the p-values for the factors. In statistics, we compare this p-value with a 

significance level. The smaller the p-value, the more significant it is. If p-value for a factor 

is significant, it signals that changing the value or level of that factor (ability) will not 

change the resilience; hence we can say that that metric is not valid. For example, if a factor 

associated with absorption has a p-value of 0.1, then it shows that this factor is not 

significant, and that means that absorption has no significant effect on the resilience of the 

system. However, from the conceptual framework, we know that it is one of the key 

abilities of a resilient system. 

3.5. Numerical studies  

In this section, we will examine our proposed RM by the methodology that we 

presented in Section 4. For this, we need a system to simulate the events (i.e., feed input 

factors for each treatment and extract response and calculate the output of the proposed 

RM). We adopted security constrained unit commitment (SCUC) which models electrical 

power systems [102], [103]. The SUSC model and description can be found in Appendix I 

For simplicity, without loss of generality, we assumed that the disruption just affects 

the nodes (generators), however, it can be extended to include links and other components 
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as well. We applied SCUC on a modified 57-bus test case which consists of 57 buses, seven 

units, and 80 lines [104]. The data can be found in Appendix II. Now we go through the 

steps of our methodology for metric assessment.  

a. Metric assessment 

The following steps are followed to assess the proposed resilience metric and check 

if it is a valid RM for the power system example. 

Step 1: Select factors and levels. Let labels A, B, and C stand for the three design 

factors (absorption, adaptation, and recovery, respectively). The factors should be extracted 

from the primary items that influence the resiliency of the power system units. These items 

are time-to-recovery, generation capacity, ramp up, ramp down [102], and severity, where 

severity is the number of generators that are inoperable. In 57-bus test case data, there is a 

high correlation among the generation capacity, ramp up, and ramp down. Due to this 

correlation we arbiterarily choose one of them, e.g., generation capacity. During an adverse 

event, a better absorption can result in fewer inoperable generators. Hence we use severity 

as a measure of A. Generation capacity can be used for B. This is because, after an adverse 

event, the high capacity generators can inject more spinning and non-spinning reserves into 

the system and satisfy more demand [105], [106]. Factor C is time-to-recovery. 

For factors A and B, we selected two levels using the Pareto rule in a way that the 

distance between two levels is 80% of the range of data. In a severe situation, the number 

of inoperable generators will increase. In the 57-bus test case, there are seven generators 

with generation capacities of 20, 30, 50, and 80 Megawatts.  Since we have seven 

generators, at its lowest level, B assumes 1, which means that only one generator will 
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become inoperable and the rest of generators will continue their regular production. At its 

highest level, four generators will become inoperable. For factor C, which is the time-to-

recovery, we used the time-to-repair (TTR). Researchers use lognormal and exponential 

probability distributions for TTR [107]. We collected the mean time-to-repair (MTTR) of 

each generator (unit) [108]–[111], and we fit an exponential probability distribution for the 

TTR. We assume that generator is operable after this TTR. The time horizon for usual 

SCUC is 24 hours, however, since the MTTR for some generators was more than 24, we 

considered a 96 hours horizon. Let g(t) be the exponential probability distribution function 

of time-to-repair, t, and G(t) is its cumulative distributin function. Therefore, the TTR 

corresponding to a probability p is calcuated as 𝐺ିଵ(𝑝). We expect a complicated 

relationship between time-to-recovery and the RM value. Hence, five levels[112] are 

selected to reflect the actual effect of recovery time on the RM. The first four levels are 

𝐺ିଵ(0.25), 𝐺ିଵ(0.5), 𝐺ିଵ(0.63), and 𝐺ିଵ(0.75). The last level (T) is the minimum of the 

time horizon (96) and 𝐺ିଵ(0.99) for the selected generator.  
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Table III-1: Factor and levels for metric assessment. For recovery time f is the 
exponential probability density function 

Factor Name 

Factor 

ID Levels 

Generating capacity (MW) A Low (-) = 20, High (+) = 80 

Severity (#of inoperable 

generators) B Low (-) = 1, High (+) = 4 

Time-to-recovery (Hours) C 𝐺ିଵ(0.25), 𝐺ିଵ(0.5), 𝐺ିଵ(0.63), 𝐺ିଵ(0.75), T 

Figure III.3 shows the treatments resulted from experimental design. The name of 

each treatment consists of the AB treatment label (i.e., 1, a, b, ab), an underscore, and 

probability of factor C. For example, case a_0.25 corresponds to the TTR for the 

probability of 0.25 and AB at a (i.e., factors A is at its high level (+) with a value of 80 and 

B is at its low level (–) with a value of 1.)  For each treatment, we generated the data for 

inoperable generators.  

 

Figure III.3: Design of the experiment for analysis of metrics 

Step 2: Obtain the performance measures. For this step, we coded the SCUC in Java 

and used Java API of IBM CPLEX Studio 12.6 for optimization[113]. For each of the 

treatments, we fed the input data into the SCUC, extracted load shedding, and calculated 

 -  A  + 

+ 

B 

- 
1 a 

b ab 

0.25 0.5 0.63 0.75 T 

C 
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the demand served (demand served equals actual demand minus load shedding). Figure 

III.4 plots the demand served and actual demand. 

 

Figure III.4: Demand vs. supply for each treatment. The columns correspond to levels of 

factor C, and the rows correspond to level combinations of AB.  

Step 3: Calculate RM. For our proposed metric, we first calculated the metric 

components (Figure III.5). Then, to study the effect of the choice of 𝛼௜s on the resilience, 

we devised different combinations of 𝛼௜s (Appendix III). The name of each combination 

is derived from the values of the 𝛼௜s (e.g., m145 is for 𝛼ଵ = 0.1, 𝛼ଶ = 0.4, and 𝛼ଷ = 0.5; 

and m25255 is for 𝛼ଵ = 0.25, 𝛼ଶ = 0.25, and 𝛼ଷ = 0.5). Finally, we calculated the 

resilience for each treatment and each combination of 𝛼௜s. 
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Figure III.5: Resilience metric components 

Step 4: Analyze the results: First we determined the effect model using the 

experimental design techniques, and then calculated the ANOVA table. To see if there are 

interactions among the factors we drew interaction plots (Appendix IV). Since there were 

no interactions (interaction lines does not cross each other) we used the following linear 

model: 

𝑌 = 𝜇଴ + 𝜇ଵ𝑋ଵ + 𝜇ଶ𝑋ଶ + 𝜇ଷ𝑋ଷ + 𝜖 
(12)  

in which the variables 𝑋ଵ,  𝑋ଶ, 𝑎𝑛𝑑 𝑋ଷ correspond to the factors A, B, and C. 𝜇௜ are 

parameters and 𝜖 is the error term. Table II contains the ANOVA table for the metric 

corresponding to vector 𝛼 = (𝛼ଵ, 𝛼ଶ, 𝛼ଷ) = (0.25,0.25,0.5). 
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Table III-2: ANOVA table for 𝜆 = (0.25,0.25,0.5) 

  df sum_sq mean_sq F PR(>F) 

A 1 0.4258 0.4258 101 2.40E-08 

B 1 0.3008 0.3008 72 2.60E-07 

C 1 0.3501 0.3501 84 9.20E-08 

Residual 16 0.0668 0.0042 nan nan 

We calculated ANOVA for all 𝜆 vectors (Table III). Among these combinations, 

for cases m451 and m541 the factor A is not significant at 0.01 significance level. Thus, 

we will exclude these two from the possible 𝛼௜𝑠. All other combinations are validated 

through our model. For application, one can choose one of these 𝛼௜ combinations using 

AHP.  

Table III-3: P-values extracted from ANOVA for some combinations of 𝛼௜s 

  m145 m235 m25255 m325 m415 m154 m253 m25525 

A 1.40E-08 1.90E-08 2.40E-08 3.20E-08 6.80E-08 2.00E-09 6.50E-09 2.00E-08 

B 2.20E-07 2.30E-07 2.60E-07 3.00E-07 4.80E-07 6.70E-08 2.90E-07 9.60E-07 

C 6.20E-08 7.60E-08 9.20E-08 1.20E-07 2.30E-07 2.60E-07 1.70E-05 0.00018 

         
  m352 m451 m514 m523 m52525 m532 m541 

 
A 6.70E-08 5.90E-07 1.10E-07 1.90E-07 3.10E-07 5.20E-07 1.40E-06 

 
B 3.30E-06 2.80E-05 1.20E-06 3.80E-06 7.50E-06 1.50E-05 5.20E-05 

 
C 0.0015 0.035 8.40E-06 0.00025 0.0013 0.0053 0.05 

 
 

3.6. Discussion 

The presented methodology enables us to study various resilience metrics 

quantitatively. Since we are looking for a general metric to quantify the system resilience, 
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all metrics are compared based on the conceptual framework of a resilient system (Section 

1.1). If two out of three resilience abilities are fixed as constant and leave the other one to 

change, we must be able to identify the change in a resilient metric. If it does not show that 

the altered ability have a significant effect on the metric, and the resulting metric is not 

valid.  

We now examine the performance of the existing resilience metrics using the 

proposed assessment methodology for the power network system discussed in Section 5. 

For this specific example, the results of Step 1 and Step 2 are the same as those presented 

in Section 5. Hence, we will perform the remaining two steps for each of the metrics in this 

section. The result of Step 3 is summarized in Figure III.6. As we expected, Index2 is less 

sensitive to the generation capacity in a way that when we have four high capacity 

inoperable generators (case ab_0.99), the rest of the indices are close to 0. Index6 has the 

least correlation with other metrics, and it shows less variability compared to other RMs. 

One can see that when we have a long time-to-recovery and more significant severity (cases 

ab_0.99 and case b_0.99), Index3 drops dramatically. Also for case 1_0.25 which is the 

least severe case, Index3 has an unfavorable result, and we have weaker resilience than case 

1_0.63, which has the same treatment setting except for time-to-recovery. 
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Figure III.6: Chart of RM values for experimental design treatments 

Analysis of variance will demonstrate which factors have a significant effect on the 

metrics. The p-values from ANOVA tables for these metrics are summarized in Table III-4.  

Table III-4: The p-values extracted from ANOVA analysis 

 Index1 Index2  Index3  Index4  Index5 Index6  
Our proposed 

Metric* 

A  9.6e-08 0.013 4.2e-07 5.1e-09 0.024 0.024 2.4e-08 

B  1.3e-05 7.9e-06 0.0044 0.00021 0.027 0.027 2.4e-08 

C  0.048 6e-05 0.25 0.66 0.0087 0.0087 2.4e-08 

*Results are based on 𝜆 = (0.25,0.25,0.5) 

The p-value is a good way to assess statistical significance of a factor on resilience. 

Index1 shows that at a significance level of 5%, recovery time is not a statistically 

significant factor for resilience, while the other two factors are significant. Resilience 

frameworks emphasize that time-to-recovery is one of the important abilities of a resilient 

system. Based on this perspective, Index1 is not valid. Likewise, Index2 underrates the effect 

of factor A. Index3 and Index4 also do not show the significance of time-to-recovery (their 
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p-value is larger than 0.05). Index6 underrates the effect of factors A and B which account 

for absorption and adaptation. Table 4 summarizes the pros and cons of the existing 

metrics. 

Table III-5: Pros and cons of the current RMs derived from the ANOVA analysis 

 
Pros Cons 

Index1 Considers the absorption and adaptation 

(implicitly) 

 Does not reflect recovery time 

Index2 Considers adaptation and time-to-

recovery 

Undervalues the significance of 

absorption 

Index3 It is Similar to metric 1, but it better 

shows the adaptation and recovery 

actions  

 Does not reflect recovery time 

Index4 Considers absorption and time-to-

recovery 

It is more sensitive to the 

generator capacity than to the 

time.  

Index5 
and  

Index6 

Considers the absorption and adaptation 

(implicitly) 

moreover, time-to-recovery 

It is too sensitive to time-to-

recovery and underrates the effect 

of the other abilities.  

 

Overall, the p-values of all factors in our proposed metric are close to 0 as seen in 

Table III-5; hence, they are all significant. Furthermore, the proposed metric is not biased 

toward any of the three factors. Therefore, our proposed metric is a valid resilience metric.   
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3.7. Conclusion 

Building a resilient system or community cannot be overemphasized against 

disasters. There have been several approaches reported in the literature to quantify 

resilience of a system. However, they were often designed to work for a specific application 

and there is a large variability on the performance of resilient metrics. Therefore, we have 

developed a statistical assessment method for a resilient metric to be valid according to the 

concept of resilience. The design of experiments and ANOVA are utilized. We have tested 

well-known resilience metrics to compare performance using a power network system. 

Because those metrics exhibited a large variation in performance, a new resilience metric 

was developed.  Using the proposed assessment methodology, the new resilience metric 

was evaluated and compared with the existing metrics. The results showed that the 

proposed metric is a valid resilience metric, which is not biased towards any of the abilities 

of a resilient system. As an extension to this work, one can include pre-disaster information 

for the resilience metric, i.e., “anticipation” ability. Such a metric may be able to capture 

the resilience of a system more accurately.  
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CHAPTER 4 

IV. OPTIMIZING THE INFRASTRUCTURE RESILIENCE 

UNDER BUDGETARY CONSTRAINT  

Communities located in regions prone to natural and man-made disasters endure 

hardship and financial loss in the face of these events. Investment to enhance infrastructure 

resilience is vital to reduce the consequences of these low probability high-impact events. 

Budget and resources are limited, and they must be allocated wisely to infrastructure 

components to build a resilient community. The complexity of infrastructure makes it 

difficult to show the effects of component enhancements on system resilience. This paper 

proposes a mathematical programming model aimed at optimizing infrastructure resilience 

against a set of adverse events by optimally allocating budget to the infrastructure 

components. Investment, component enhancement, and corresponding functionality are 

combined with the resilience-based component importance to tackle the system 

complexity. Three utility functions are presented to determine the possible component 

enhancement alternatives for an allocated budget and to choose the optimal alternative. A 

resilience-based component importance metric is introduced, which is used in the budget 

allocation optimization problem. This approach establishes a relationship between amount 

allocated to a component and changes in its absorption and recovery, and the aggregate of 

all such changes on the components on the system functionality. The results show that the 

utility function of a component impacts the resilience enhancement of the system 



48 
 

4.1. Introduction 

Adverse events like natural disasters (e.g., earthquake, tropical cyclone, severe 

storm, flooding, freeze, wildfire, winter storm, etc.) or man-made disasters (terrorist and 

non-terrorist) can disrupt the community infrastructures. These adverse events have two 

traits in common. First, their occurrence probability is low; the expected number of 

hurricanes in 100 years in Texas is 7.1 and the expected number of major hurricanes is 2.2 

[114]. Second, their impact in terms of cost and hardship is tremendous. During the past 

37 years, 40 cyclones have caused a combined $870.2 billion in total damages with an 

average of $21.8 billion per event. Hurricane Harvey in 2017 alone accounts for $125 

billion of this amount [3]. Resilience is a concept that addresses the ability of a system to 

continue its functionality during and after an extreme event with low functionality 

degradation and a rapid return to normalcy. Anticipation, absorption, adaptation, and rapid 

recovery are the main characteristics of a resilient system [24]. The United States 

Government Accountability Office (GAO) expressed the necessity of an investment 

strategy for resilience enhancement that reduces the nation’s losses from future disasters. 

The investment decisions on cyber-physical systems (CPSs), especially those with a social 

impact like critical infrastructures, can be viewed from political [53], social, environmental 

[115], economic [116], financial [54], and engineering [53], [55] perspectives. While the 

benefits of these investments are generally difficult to monetize [117], an early investment 

in community resilience will pay back when disasters inevitably strike [44], and a lack of 

investment will possibly result in an overall higher cost [56]. Considering this importance, 

the Federal Emergency Management Agency (FEMA) is working on the National 

Mitigation Investment Strategy (“Investment Strategy”) which provides a national 
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approach to invest in mitigation activities and risk management across the United States 

[52].  

The problem of investing in urban infrastructure resilience can be considered at three 

levels: macro, meso, and micro. At the macro level, the problem can be categorized as 

funding, prioritizing, and resource allocation to several infrastructures. Some of the 

funding approaches are earmarks [118], pork-barrel [119], trust-fund [120], and block 

grants [121]. For resource allocation at a macro level, Hill et al. [122] suggested a method 

to reduce disaster impacts through systematic investments in which the socioeconomic 

risks associated with natural disasters is estimated. Graeden et. al. [57] proposed a rapid 

risk analysis that can be utilized to support risk-based investment prioritization at the 

community level. After the budget is assigned to a system, at the meso level, the system 

allocates resource to its components. For this purpose, one approach is to find the most 

critical components in the network and improve them within the limited budget. A 

resilience-based component importance (RCI) metric, which measures the extent to which 

individual component contributes to the network resilience [123], can be used for this 

purpose [34], [60], [124]. Component enhancement can result in a combination of less 

degradation in component functionality and rapid recovery of functionality in the face of a 

shock. This problem is handled at the micro level.  

Literature has covered some specific issues and events regarding this subject, but 

there is more that needs to be taken into account. Some studies considered just a special 

system (transportation [125], power grid [58], [117], etc.), or a single event (e.g., cyber-

attack [126], terrorist attacks [58], etc.), and they suggested a treatment for that specific 

system or event. Even so, a system is threatened by a pool of events, and preparing for only 
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one of them and neglecting the other can still be devastating if a second event strikes while 

attempting to recover from the first one. Moreover, if we consider the pool of potential 

events, the amount of investment to mitigate multiple risks is more efficacious than 

investing against each risk individually. The approaches based on RCI  [34], [60], [124] do 

not provide the amount of the investment on the components. While RCI ranks the 

components based on their importance, it does not determine how much should be invested 

in each one. Moreover, the allotted resource to a component can be utilized in different 

ways to change the main resilience characteristics of that component, i.e., absorption and 

time to recovery. RCI does not determine which of these characteristics must be 

emphasized.  

Therefore, the goal of this paper is to fill the identified gaps by proposing a method 

that can be applied to a general system. Specifically, this paper adds to the existing body 

of literature: a new formulation to maximize system resilience under budgetary constraint, 

an introduction of utility function into component enhancement, and a resilience-based 

component importance to map between an individual component functionality and its 

system functionality. The proposed method considers a set of possible events, their effects 

on the component functionality, and the component’s enhancement alternatives. The 

alternatives employ a utility function to construct the set of alternatives for component 

enhancement. In the final step of the method, a mathematical programming model is 

introduced to optimize the system resilience of under a budget constraint using the 

information generated in the previous steps. 
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4.2. Model & Solution Methodology 

The resource allocation problem has many applications in facility planning, job 

scheduling, buffer allocation, pollution control, and portfolio management. The investment 

on a system resilience can be translated into a resource allocation problem. In this section, 

we start with a tradeoff between absorption and recovery enhancements for a single 

component. Then, we propose an RCI followed by an integer programming formulation 

that optimally allocates budget to the components aiming at maximizing the system 

resilience.  

4.2.1 Single component functionality and indifference curve 

In order to develop a mathematical model and have a better understanding of the 

system behavior, we study the components individually. The functionality of a component 

is the level at which the component performs a task or function. For example, the 

functionality of a water transmission pipeline is the amount of flow that it carries. In a 

normal situation, the target functionality is the amount of water that the pipe is planned 

and expected to carry. Two component’s characteristics that influence its functionality 

during and after an adverse event are absorbability and rapid recovery. After an event, the 

functionality degrades by A. Absorbability is the ability to reduce the negative effects of 

the event and have a smaller A. Rapid recovery or recovery is the time to recover (T) from 

a disruption. It is the length of the time from the moment that the event happens to the 

moment that the functionality returns to an acceptable level, usually the initial level. 

Keeping all other factors fixed, a component with a smaller A or a smaller T has a higher 
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resilience. In this section, we study different outcomes of enhancement activities on a 

single component. We will use the following notation.  

A:  The amount of degradation in the functionality  

T: Recovery time of the component 

𝑎: Improvement in the absorption (in percent) 

𝑟: Improvement in the recovery time of the component (in percent) 

f:  Functionality of the component 

Tf: Target functionality of the component 

𝑦: Amount of investment on the component 

𝑉: Value of the component 

The functionality f here is normalized by dividing the real functionality by the target 

functionality, yielding a value between 0% and 100%. The 100% functionality occurs in 

the normal situation or for a system that is highly resilient. Different resilience 

enhancement activities can result in different outcomes for improving absorbability and 

recovery. Let 𝑎 and 𝑟 stand for the percent improvement in the absorption and recovery, 

respectively. The smallest value of 𝑎 (or 𝑟) is 0, meaning that we do not improve the 

component’s absorbability (recovery time), and the highest value is 1, for which the 

component will be intact by an event. For a given amount of investment, 𝑦, we may have 

different combinations of (𝑎, 𝑟) (Figure IV.1). If we spend all the money on the robustness 

of the component, it will improve absorption by 𝑎 percent (Figure IV.1-b) and 𝐴௡௘௪ will 

be 𝐴 × (1 − 𝑎). However, if we spend all the money on redundancy, it may just reduce 

time to recovery by 𝑟 (i.e., 𝑇௡௘௪ = 𝑇 × (1 − 𝑟) as in Figure IV.1-c). Moreover, we may be 

able to improve both capabilities together (Figure IV.1-d). In an extreme case, if 𝑎 is 100%, 
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then there is no degradation in the component functionality and, hence, there is no need to 

improve the time to recovery and vice versa.  

 

Figure IV.1: Component resilience enhancement scenarios  for a fixed budget. System’s 

functionality after disaster and a) before any enhancement, b) after enhancing 

absorbability, c) after reducing the recovery time, d) after improving both absorbability 

and recovery time.  

The relationship between the investment amount and (𝑎, 𝑟) can be established using 

the indifference curves. In economics, indifference curves  represent different quantities of 

two goods for which a consumer has no preference for one combination of those goods 

over another combination on the same curve [127]. Using this concept, we define the 

component enhancement indifference curve (IC) to be all combinations of (𝑎, 𝑟) for which 

we will have the same enhancement cost. It represents different types of improvements that 

we can perform for a fixed cost. Associated with indifference curves, there is a utility 

function 𝑈(𝑎, 𝑟) which relates the budget spent on a component and the improvements in 
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its absorption and recovery time (Equation 1). A utility function is mathematically 

represented as  

𝑈: [0,1] × [0,1] → 𝑅ା 
(𝑎, 𝑟) → 𝑈(𝑎, 𝑟)  

𝑦 = 𝑈(𝑎, 𝑟). 

(1) 

For example, in Figure IV.2, the cost of improving absorption and recovery corresponding 

to points 𝑃1: (𝑎ଵ, 𝑟ଵ) and 𝑃2: (𝑎ଶ, 𝑟ଶ) are 𝑦(𝑃ଵ) =  𝑈(𝑎ଵ, 𝑟ଵ) and 𝑦(𝑃ଶ) = 𝑈(𝑎ଶ, 𝑟ଶ). We 

assume that the ICs are complete, in a way that all points on the indifference curve cost the 

same amount, and the points not on the curve cost either more or less. Figure IV.2 shows 

three investment costs 𝑦ଵ, 𝑦ଶ, and 𝑦ଷ, where 𝑦ଵ < 𝑦ଶ < 𝑦ଷ. Since points 𝑃ଵ and 𝑃ଶ in Figure 

IV.2 are on the same indifference curve, they have the same cost of 𝑦(𝑃ଵ) = 𝑦(𝑃ଶ) = 𝑦ଵ. 

Another characteristic of the IC curves is that they have a negative slope. That is, if 𝑎 is 

decreased, 𝑟 should be increased to stay on the same IC.  Linear [128], Cobb–Douglas 

[128], and Constant Elasticity Substitution (CES) [129] are examples of utility curves 

(Table 1). Value of the component (𝑉௜) is the market value of the component. Consider two 

components with values of 𝑉ଵ and 𝑉ଶ, where 𝑉ଵ is much larger than 𝑉ଶ. To maintain the 

same enhancements for both components (i.e., 𝑎ଵ = 𝑎ଶ and 𝑟ଵ = 𝑟ଶ), the amount of 

investment on the second component should be larger (i.e., 𝑦ଵ(𝑃ଵ) > 𝑦ଶ(𝑃ଵ)). It is 

assumed that 𝑦௜ is proportionate to the 𝑉௜ and it is incorporated into the model by scale 

factor 𝑘௜. We call the result of multiplication 𝜂 by 𝑈(𝑎, 𝑟) the cost factor. Having the cost 

factor 𝜃௜ and the value 𝑉௜ for the component 𝑖, the amount of investment on component 

will be  

𝑦௜ = 𝜃௜𝑉௜ . 
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Figure IV.2: Indifference curve 

Table IV-1: Utility functions and the relationship of a and r 

name formula relationships 

Linear [128] 
𝑈(𝑎, 𝑟) =

𝜃ଵ𝑎 + 𝜃ଶ𝑟

𝜂
 𝑟 =

𝜂𝑦 − 𝜃ଵ𝑎

𝜃ଶ
 

Cobb–Douglas 

[128] 

𝑈(𝑎, 𝑟) =
𝑎ఘ𝑟ଵିఘ

𝜂
, 𝜌 < 1 𝑟 = 𝑒

୪୬(ఎ௬)ିఘ ୪୬(௔)
(ଵିఘ)  

CES [129] 
𝑈(𝑎, 𝑟) =

𝐶

𝜂
(𝜃𝑎ఘ + (1 − 𝜃)𝑟ఘ)

ଵ
ఘ 

𝑟 =
((𝜂𝑦)ఘ − 𝜃𝑎ఘ)

ଵ
ఘ

1 − 𝜃
 

We will use the utility curve to formulate our mathematical model and to determine 

the optimal combination of 𝑎 and 𝑟 on the associated IC curve for a given budget.  

4.2.2 Resilience-Based Component Importance (RCI) 

In reliability component importance metrics like Fussell-Vesely, criticality 

importance measure, risk reduction worth (RRW), risk achievement worth (RAW), and 

Birnbaum measure the amount by which the failure of a component can affect the reliability 

of the system [61]. Based on the reliability context, the resilience-based component 

importance measure (RCI) is defined as the amount by which the resilience of a system is 
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reduced by a component’s failure [34], [60]. A prerequisite for calculating the RCI is a 

resilience metric. . Several qualitative and quantitative resilience assessments have been 

proposed in the literature [24], [130]. Among the quantitative metrics, we need the one 

representing the essential characteristics of a resilient system (i.e., absorption and rapid 

recovery). Moreover, the metric must be simple enough to be utilized in the mathematical 

formulation. Therefore, this study uses the resilience metric suggested by Najarian and Lim 

[131]. It consists of a convex combination of three sub-metrics; absorption (яଵ), adaptation 

(яଶ), and rapid recovery (яଷ). They can be calculated using the following formulas: 

яଵ =
∫ ி(௧)ௗ௧ 

೟೏
೟೚

∫ ்ி(௧)ௗ௧
೟೏

೟೚
 
, яଶ =

∫ ி(௧)ௗ௧ 
೅

೟೏

∫ ்ி(௧)ௗ௧
೅

೟೏
 
, and яଷ = 𝑓(𝑇) = ቊ

1, 𝑇 ≤ 𝑇଴

బ்

்
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

where, 𝐹(𝑡) is the functionality of the system at time t, 𝑇𝐹(𝑡) is the target functionality at 

time t, 𝑡ௗ is the time that functionality of the system reaches to its minimum,  𝑇଴ is the 

desired recovery time of the system which , and 𝑇 is the recovery time of the system. The 

system resilience metric Я it lies in the closed interval [0, 1] and is calculated as 

я = 𝛼ଵяଵ + 𝛼ଶяଶ + 𝛼ଷяଷ, 𝛼ଵ + 𝛼ଶ + 𝛼ଷ = 1, 𝛼ଵ, 𝛼ଶ, 𝛼ଷ ≥ 0. (2) 

Let яା௖  be the resilience of the system when the component c is operable and яି௖ 

when it is not. Then the RCI of the component i is the difference between these two values. 

The following algorithm explains the steps to take to obtain the value of RCI.  

Algorithm 1 Resilience-Based Critical Indexing Algorithm 
Input the component index 𝑖 ∈ 𝐸 ∪ 𝑉 
Calculate the resilience of the system (яା௜) 
Set 𝑓௜ = 0  
Calculate the resilience of the system (яି௜) 
я௜ =(яା௜ − яି௜) 
Return 1-я௜ 
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Since яା୧ ≥ яି୧, the value of я௜ will be within the interval [0,1]; hence, the impact 

of the component i on the system resilience,  𝑅𝐶𝐼௜ = (1 − я௜), assumes values between 0 

and 1, inclusive.  

4.2.3 Resilience Optimization under Budget Constraint 

In a complex system, each component has its own absorption and recovery 

capabilities in the face of an adverse event. For example, in a power grid, even if two 

components are the same, the environment and the facility that supports them may be 

different. As a result, their absorptions and recovery times differ, and possible 

modifications, associated costs, and the effect of enhancement on the whole system must 

be calculated separately for each component. Consider a power generation unit with 

possible characteristics to be modified such as elevation, surrounding building and 

structure, redundancy, source of generation storage (e.g., coal), and environment (e.g., 

drainages). By improving each or a subset of these characteristics, we can enhance the 

absorption and/or reduce the recovery time of the generator. This enhancement will differ 

for different events; a higher elevation or drainage may keep a generator safe against a 

certain level of the flood, i.e., a better absorption against the flood, but it may not improve 

it against a hurricane. However, having a backup generator that can immediately become 

operable in the case of failure in the original generator, shortens the time to recover. Due 

to the budget limit, a subset of the set of all options should be selected in such a way that 

a higher resilience level for the system can be achieved. In this section, we are to formulate 

this problem as and optimization model, and we use the following notation.  
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Notations: 

Sets: 

Γ = {𝛾ଵ … 𝛾௄}: Set of 𝑘 events (including attacks) 

ℚ = {𝑞ଵ … 𝑞ே}: Set of 𝑁 components 

ℂ = {𝑐௜,ଵ. . 𝑐௜,ெ೔
}: The set of 𝑀௜ possible investments on component 𝑖 

Indices: 

𝑖: Index for component, 𝑖 ∈ {1, … , 𝑁} 

𝑡: Index for time 

𝑗: Index for investment option, 𝑗 ∈ {1. . 𝑀௜} 

𝑘: Index for event option, 𝑘 ∈ {1. . 𝐾} 

Variables: 

𝑥௜,௝: A binary variable that is 1 if the investment option 𝑗, is selected for 
component 𝑞௜ 

𝑓௜,௝,௧,௞: Functionality of component 𝑖 with investment 𝑐௜,௝ at time 𝑡 against 𝛾௞  

 𝑓௜,௧: Functionality of component i at time t 

𝐵: Budget limit for enhancement against 𝛾௞ 

𝐴௜: 𝐴௜௝: The drop in the functionality of the component i in face of event j 

 

𝐹௧: Functionality of system at time t, 𝐹௧ = 𝐹(𝑡) 

Parameters:  

𝑐௜,௝: The 𝑗th investment option of component 𝑖  

𝑅𝐶𝐼௜: Resilience-based component importance of 𝑞௜ 

𝑇௜: Time to recovery of component i before investment 

𝑇௜,௝,௞: Time to recovery of component 𝑖 after investment 𝑗 against event 𝑘 

𝐿𝑓௜: Lowest functionality acceptable for a component 

𝛽௞: Weight of attack impact on resilience 

𝑎௜,௝,௞: Improvement in the absorption of component 𝑖 in face of event 𝑘 due to 
investment 𝑗. 
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𝑟௜,௝,௞: Improvement in the recovery of component 𝑖 in face of event 𝑘 due to 
investment 𝑗. 

𝜉௜௟: Coefficients of the objective function 𝑙 = 1 … 5  

 

Proper functionality of a system depends on the seamless functionality of its 

components. If the relationship between the functionality of a component and functionality 

of a system is given, then it may facilitate the measurement of the effect of component 

enhancement on the overall system resilience. However, it is very difficult to find such a 

straightforward relationship because the effect is a function of many unknown variables. 

To simplify the problem, it is assumed that functionality of the component at time t, 𝑓௜,௧, 

has a linear influence on the functionality of the system, 𝐹௧, proportional to its resilience-

based importance, 𝑅𝐶𝐼௜. That is  

𝐹(𝑡) = 𝐹௧ =
1

𝑁
෍ 𝑅𝐶𝐼௜ × 𝑓௜,௧

ே

௜

. (3) 

Moreover, it is assumed that the component indifference curve for a given budget is known. 

The degradation time, 𝑡ௗ, is assumed to be the same for all of the components before and 

after the event. We start developing the mathematical model based on a piecewise linear 

function, and then move on to a more general model.  

4.2.4 Linear functionality and linear utility curve for a single event 

 Assume that components have functionality (𝑓௧) that consists of or can be estimated 

by two line segments 𝑙ଵ and 𝑙ଶ (Figure IV.3). To calculate the resilience using Equation 
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(2), the integral is converted into the summation of the areas 𝑅௧ captured by the trapezoid 

under the functionality curve in the interval [𝑡, 𝑡 + 1].  

𝑅௧ = න 𝑓(𝑡)𝑑𝑡
௧ାଵ

௧

=
𝑓௧ାଵ + 𝑓௧

2
 

 

Figure IV.3: Estimation of the functionality of a component using two straight lines 

At any time t, the functionality of a component is 

𝑓௜,௧  =

⎩
⎪
⎨

⎪
⎧ 1 −

𝐴௜

𝑡௜,ௗ
𝑡,                0 ≤ 𝑡 ≤ 𝑡௜,ௗ

1 −
𝐴௜

𝑇௜ − 𝑡ௗ

(𝑇௜ − 𝑡),     𝑡௜,ௗ ≤ 𝑡 ≤ 𝑇௜

1,                                    𝑡 ≥ 𝑇௜

. 

The sub-metrics absorption (яଵ), adaptation (яଶ), and recovery (яଷ) sub-metrics can be 

calculated using 𝑓௜,௧. In Appendix V, we have derived formulas to calculate яଵ and яଶ. If 

𝑇଴ is small enough that 𝑇 ≥ 𝑇଴ is true, then the resilience of the system will be 

я = 𝛼ଵяଵ + 𝛼ଶяଶ + 𝛼ଷяଷ 

= 𝛼ଵ

1

𝑁
 ෍ 𝑅𝐶𝐼௜(−

1

2
𝐴௜ + 1)

ே

௜ୀଵ

+ 𝛼ଶ

1

𝑁
෍ 𝑅𝐶𝐼௜ ቆ

−𝐴௜

2

(𝑇௜ − 𝑡ௗ)

(𝑇 − 𝑡ௗ)
+ 1ቇ

ே

௜ୀଵ

+ 𝛼ଷ

𝑇଴

𝑇
. 

 

(4) 
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Equation (4) can be described visually using Figure IV.3. In this figure, the expression 

−
ଵ

ଶ
𝐴௜ + 1 is the area enclosed by the trapezoid with the corner points of 

(0,0), (0,1), (𝑡ௗ, 0), (𝑡ௗ, 1 − 𝐴௜) over the area enclosed by the rectangle 

(0,0), (0,1), (𝑡ௗ, 0), (𝑡ௗ, 1). The weighted average of these areas, where weights are RCI, 

yields яଵ. A similar intuition holds for 
ି஺೔

ଶ

(்೔ି௧೏)

(்ି௧೏)
+ 1 and яଶ. For a linear utility function 

and investment 𝑦௜, the new degradation and recovery time for component i are as: 

𝐴௜,௡௘௪ = 𝐴௜(1 − 𝑎), and 

𝑇௜,௡௘௪ = 𝑇௜(1 − 𝑟௜). 

In Appendix VI, Equation (4) is modified to include the enhancements resulted from the 

investments as explained. Then we formulated the problem as a nonlinear optimization 

model described as in Equations (5-1) to (5-5).  

max     я =
1

𝑁
෍ ൬

𝜉௜ଵ 𝑎௜ + 𝜉௜ଶ 𝑎௜𝑟௜ + 𝜉௜ଷ 𝑟௜ + 𝜉௜ସ𝑇 + 𝜉௜ହ𝑎௜𝑇 + 𝜉௜଺

𝑇 − 𝑡ௗ
൰ +

𝑇଴

𝑇
,

ே

௜ୀଵ

 

s.t. 

(5-1) 

෍ 𝑦௜

௜,௝

≤ 𝐵, (5-2) 

𝜃௜ଵ𝑎௜ + 𝜃௜ଶ𝑟௜ = 𝑘௜𝑦௜ , ∀𝑖, (5-3) 

𝑇 ≥ 𝑇௜(1 − 𝑟௜), ∀𝑖, (5-4) 

𝑦௜ , 𝑇 ≥ 0, 0 ≤ 𝑎௜ , 𝑟௜ ≤ 1. (5-5) 

 
Decision variables are the budget allocated to component i (𝑦௜), the percentage 

improvement in absorption and recovery time of the component i (𝑎௜ and 𝑟௜), and the 

system’s recovery time (𝑇). Parameters include coefficients 𝜉௜௝, which are calculated from  

parameters 𝛼ଵ, 𝛼ଶ, 𝑅𝐶𝐼௜ , 𝐴௜ , 𝑇௜ , and 𝑡ௗ  in Appendix F; 𝐵 the total system’s budget limit; 
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utility function parameters (𝜃௜ଵ, 𝜃௜ଶ, and 𝜂௜); and time to recovery 𝑇௜ for component i before 

an investment is made. The objective is to maximize the resilience of the system, Equation. 

(5-1), which is a function of component enhancements (𝑎௜ , 𝑟௜) and system’s recovery time 

(𝑇). Equation (5-2) restricts the total spending on the system to be less than the budget. 

Equation (5-3) relates the investment on component i (i.e., 𝑦௜) to different possibilities of 

enhancements in 𝑎௜ and 𝑟௜ via an indifference curve. As we discussed in Section 2.1, the 

scale factor 𝑘௜ accounts for the value of the component. Recovery time of the system is the 

latest recovery time of the components (Equation (5-4)). Finally, all the variables are 

continuous and non-negative (Equation (5-5)), and 𝑎௜ and 𝑟௜ are less than 1. Solving this 

problem will determine how much we will spend on each component and what absorption 

and recovery enhancement combination will yield a higher resilience.  

4.2.5 A General model 

In this section, we extend the linearity assumption in Section 2.3.1 to general 

functionality and propose a mathematical programming model to optimize the system’s 

resilience within a budget constraint. The goal is to allocate the budget to the components 

and to determine the component absorption and recovery enhancements in a such way that 

a maximum resilience is achieved. Drawing an analytical relationship between investment 

and system resilience is far reaching. To tackle this problem, we discretized the investment 

options and components’ functionality through the following steps. In the first step, for 

each component 𝑞௜, 𝑚௜ possible improvements 𝑝௜,௝,௞ = ൫𝑎௜,௝,௞ , 𝑟௜,௝,௞൯ and their associated 

cost 𝑐௜,௝ is prepared. It is possible to have two different improvement scenarios 𝑝௜,௝,௞ and 

𝑝௜,௝ᇱ,௞ associated with the same cost (i.e., 𝑝௜,௝,௞ and 𝑝௜,௝ᇱ,௞ lie on the same indifference 
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curve). An improvement on 𝑞௜ has different absorption and recovery enhancement 

outcomes against different events; shown by index 𝑘. All these data will be summarized in 

a set of options 𝑂௜,௝,௞ = (𝑐௜,௝, 𝑎௜,௝,௞ , 𝑟௜,௝,௞) among which the optimization problem chooses 

the subset of optimal options. For all the components, option 𝑂௜,଴,௞ = (0,0,0) is included 

so that it can be selected if no enhancement for component i is in optimal set. Using 

indifference curves, the construction of 𝑂௜,௝,௞ can be done either by finding different 

enhancement points 𝑝௜,௝,௞ for a given investment amount, or by finding the cost 𝑐௜,௝ for a 

𝑝௜,௝,௞.  

In the second step, by considering 𝑎௜,௝,௞ and 𝑟௜,௝,௞ , we obtain the discrete system 

functionality for each 𝑂௜,௝,௞ after a disruption. Let 𝑓௜,௝,௧,௞ be the normalized functionality of 

 𝑞௜ at time t after investment j in the face of the adversarial event 𝛾௞ ∈ Γ.  The normalized 

functionality is calculated by dividing the actual functionality over the target functionality 

so that 𝑓௜,௝,௧,௞ assumes a value between 0 and 1. Based on the linear influence assumption 

made at the beginning of Section 2.3, the influence of 𝑞௜ on the total system’s functionality 

is 𝐶𝑃𝐼௜ × 𝑓௜,௝,௧,௞. Now, we use Equations (2)  and (3) to construct the objective function in 

Equation (6-1), which is an indicator of resilience against the set of events. Equations (6-

1) to (6-5) compose our general budget allocation model.  
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max     ෍ 𝛽௞

௞

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼ଵ ∑ ቌ1 −

1
𝑁

෎ 𝐶𝑃𝐼௜ ×
𝑓௜,௝,௧,௞ + 𝑓௜,௝,௧ାଵ,௞

2
௜,௝

× 𝑥௜,௝ቍ
௧೏,ೖିଵ

௧ୀ଴

𝑡ௗ,௞ − 𝑡଴

+

 

𝛼ଶ ∑ ቌ1 −
1
𝑁

෎ 𝐶𝑃𝐼௜ ×
𝑓௜,௝,௧,௞ + 𝑓௜,௝,௧ାଵ,௞

2
× 𝑥௜,௝

௜,௝

ቍ்ିଵ
௧ୀ௧೏

𝑇 − 𝑡ௗ,௞

+

𝛼ଷ

𝑇଴

𝑇
 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

s.t. 

(6-1) 

 ෍ 𝑐௜,௝ 𝑥௜,௝

௜,௝

≤ 𝐵, (6-2) 

 ෍ 𝑥௜,௝

௝

= 1, ∀𝑖, (6-3) 

 𝑇 ≥ 𝑇௜,௝,௞  𝑥௜,௝, ∀𝑖, (6-4) 
 𝑥௜,௝ ∈ {0,1}. (6-5) 

The objective function (Equation (6-1)) is the weighted sum of the resilience of the 

system for the set of events Γ. The binary variable 𝑥௜,௝ assumes 1 if the 𝑗௧௛ investment 

option for 𝑞௜ is selected. The weights 𝛽௞ are parameters to show the importance of the 

corresponding event. They can be calculated using multi-criteria decision methods 

(MCDM) with criteria such as the possibility of event occurrence, cost of the devastation 

caused by the event, and cost of making the system resilient against that event. The budget 

constraint, Equation (6-2), limits the total cost of chosen options to be less than the budget. 

In the optimal solution, we just choose one investment option (Equation (6-3)) for each 

component. The key point in this equation is that we have designed the cost scenarios in 

such a way that we do not need to select two options for the same component for different 

events. Equation (6-4) calculates the system’s time to recovery (T), which is the largest 

time to recovery of all the components. The steps for constructing the mathematical model 

is demonstrated in Algorithm 2. 
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Algorithm 2 Constructing the mathematical programming for general model 
1. Input the set of components, simulation model to calculate functionality in different situations 
2. For each component 𝑖 ∈ 𝑉 ∪ 𝐸 do: 
3. Determine the value 𝑘௜ of the component from the 𝑉௜ 
4. Choose 𝑆 values for the investments on component i (𝑐௜

௦, 𝑠 = 1, … , 𝑆) 
5. Choose the utility function 
6. 𝑗 = 0 
7. For each s in S: 

a. Determine  𝑃 points on the indifference curve associated with 𝐶௜
௦ 

b. For each p in P: 
i. 𝑗 =j+1 

ii. 𝑐௜,௝ = 𝑐௜
௦ 

iii. For 𝑘 in events:  
a. Obtain 𝑎௜,௝,௞ and 𝑟௜,௝,௞ corresponding to point p on the IC of  𝑐௜,௝  or 

find the cost associated with (𝑎௜,௝,௞, 𝑟௜,௝,௞) 
b. Calculate 𝑓௜,௝,௧,௞ associated 𝑎௜,௝,௞ and 𝑟௜,௝,௞  

8. Calculate the 𝑅𝐶𝐼௜ using Algorithm 1 
9. Insert these parameters into the model in Equations (6-1) to (6-5) 

4.3. Numerical results 

We perform our numerical studies on the power grid system using the security 

constrained unit commitment. We apply the SUSC model on a 6-bus IEEE standard test 

case. As shown in Figure IV.5, the grid comprises the generation units N0, N1, and N2; 

the electricity lines E3 to E9; and the demand nodes D4, D5, and D6 with share of total 

demand of 20%, 40%, and 40%, respectively. The 6-Bus data are available in Appendix F.   

  

Figure IV.4: Network of IEEE 6-Bus test system 
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By following the steps in Algorithm 2, we construct the data for our investment 

optimization problem for a single event (𝑘 = 1). For convenience, we drop the index x 

from our parameters (e.g., we use 𝑂௜,௝ instead of 𝑂௜,௝,௞).  For a component, say generator 

𝑁1 (𝑖 = 1), we find the values of 𝑂௜,௝, 𝑗 = 1, … , 𝑚௜ and related functionalities 𝑓௜,௝,௧. The 

calculations for the rest of the components will be similar. We choose the scale factor 𝑘௜ 

to be the ratio 1 𝑉௜⁄ , which indicates that te investment will be proportionate to the value 

of the component. If we assume that the value of a brand new generator 𝑁1 is $30,000 

(𝑉ଵ = 30000), the value of 𝑘ଵ will be 1/30000. If we invest $7,500 on this generator (i.e., 

𝑦ଵ = 7500), then the cost factor 𝜏ଵ will be 0.25 (𝜏ଵ = 𝜂ଵ𝑦ଵ = 0.25). In case both 𝜃௜ and 

𝑉௜ are given, then we can simply calculate the investment cost by 𝑦௜ = 𝜏௜𝑉௜. Associated 

with $7,500 investment and a linear utility curve with 𝛾ଵ,ଵ and 𝛾ଵ,ଶ both equal to 0.5, the 

indifference curve in Figure IV.5 is constructed. Now we can choose as many points 𝑝ଵ,௝ =

൫𝑎ଵ,௝, 𝑟ଵ,௝൯ on this curve as we need (e.g., 𝑝ଵ,ଵ = (0.5,0), 𝑝ଵ,ଶ = (0,0.5), and 𝑝ଵ,ଷ =

(0.25,0.25) with corresponding options of 𝑂ଵ,ଵ = (7500, 0.5,0), 𝑂ଵ,ଶ = (7500,0,0.5), and 

𝑂ଵ,ଷ = (7500,0.25,0.25)). For a higher investment amount, say $22,500, the cost factor 𝜃ଵ 

is 0.75 which provides better options such as  𝑂ଵ,ସ = (22500,1.0,0.5) and 𝑂ଵ,ହ =

(22500,0.5,1.0). The above process constructs 𝑝௜,௝ for a given 𝑐௜,௝ (another way is to find 

the 𝑐௜,௝ associate for a 𝑝௜,௝ by first obtaining the 𝜃௜ using the utility function, and then 

multiplying it by 𝑉௜.) No matter whether we construct costs from enhancements or 

enhancements from cost, the goal in this step is to construct the investment options 𝑂௜,௝, 

among which the decision maker will choose. 
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Figure IV.5: Change in the absorption and recovery of component i against 

event k for a) cost factor of 0.25 and b) cost factor of 1.5 

 Following the second way, we chose 𝑝௜,௝ as in Figure IV.6Figure IV.6. For each 

component, the scenario 𝑝௜,଴ = (0,0) is added and it stands for no enhancement option. 

The associated cost of these enhancement for a linear utility with 𝛾௜ଵ and 𝛾௜ଶ of 0.5 is 

summarized in the heat-map chart in Figure IV.7. In this figure darker cells indicates a 

higher investment (e.g., the cost of enhancing the component N1 by (a, r) = (1,0.75)  is 

60). For each option 𝑂௜,௝, we obtain the resulted functionality 𝑓௜,௝,௧ by considering the 

corresponding absorption and recovery.  

 1  (0.25,1) (0.5,1) (0.75,1) (1,1) 

 0.75  (0.25,0.75) (0.5,0.75) (0.75,0.75) (1,0.75) 
𝑟 0.5  (0.25,0.50) (0.5,0.5) (0.75,0.5) (1,0.5) 

 0.25  (0.25,0.25) (0.5,0.25) (0.75,0.25) (1,0.25) 

 0 (0,0)     
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    𝑎   

Figure IV.6: Scenarios for 𝑝௜,௝  
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Figure IV.7: Heat-map of component investment options for a linear 
utility function with parameters 𝛾௜ଵ and 𝛾௜ଶ of 0.5 and 0.5 
respectively. N1, N2, and N3 are nodes and E3 to E10 are electricity 
lines between the nodes. The color bar in the right shows the value 
cells in the heat map.  

Utilizing the SCUC and the resilience metric in [131], Algorithm 1 outputs the RCI 

as in Figure IV.8. A failure in the component E9 has a higher impact on the resilience of 

the system and the component N2 disruption has the lowest effect. Now, the parameters 

𝑐௜,௝, 𝑓௜,௝,௧, 𝑅𝐶𝐼௜ ,  and 𝑡௜,௝ for the problem Equations (6-1) to (6-5) are ready. Applying these 

parameters and optimizing the budget allocation for a budget limit of $50,000 yields the 

solution in Table IV-2. We calculate the resilience metric for the optimal 𝑃௜,௝. Let the initial 

resilience level of the system be я = 0.73, which happens when the absorption of all the 

components drop to 50% after an event and the recovery time is the same as mean time to 

repair of the component. The optimal investment in Table IV-2  with a total cost of $49,500 

improves the resilience level to я = 0.84. 
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Figure IV.8: Component importance for IEEE 6-bus 

Table IV-2: Optimal investments for linear utility with both parameters of 0.5 
and budget limits of $50,000. The resulting total cast is $49,500 and the resulted 

objective is 0.372. 

 N0 N1 N2 E3 E4 E5 E6 E7 E8 E9 
𝒄𝒊,𝒋

∗  
($1000) 

0 11.4 0 12.5 0 11.4 7.6 2.7 0 4.3 

𝒂𝒊,𝒋,𝒌
∗  0 0.25 0 0.25 0 0.25 0.25 0.25 0 1 

𝒓𝒊,𝒋,𝒌
∗  0 0.5 0 0.25 0 0. 5 0.5 0. 5 0 0.25 

  

To find out the effect of different budget limits, further experiments are made on 

different budget scenarios. Considering that the value of the existing system is $301,000 

(∑ 𝑉௜
ே
௜ୀଵ ), we chose the values of $10,000, $50,000, $100,000, $150,000, and 300,000 for 

the budget limit. Following the steps for all these budgets, we will find the corresponding 

improvement in the resilience of the system (Figure IV.9Figure IV.9). For the budget of 

$150,000 and $300,000 the optimal solution yields the same amount of investment 

($103,800) and the optimal solution remains the same. Hence, the highest budget that is 

needed to enhance the resilience of the 6-bus system with linear utility whose parameters 

are (𝛾௜ଵ, 𝛾௜ଶ) = (0.5,0.5) is $103,800.  
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Figure IV.9: Resilience improvement within budget limits  of $10,000, $50,000, 
$100,000, $150,000, and 300,000 and a linear utility function with ൫𝛾ଵ,ଵ, 𝛾ଵ,ଶ൯ =

(0.5,0.5). 

The utility function and its parameters are inherent characteristics of a component. 

Knowing a utility function can help us to decide about the type of improvement in the 

component. Table 3 summarizes the 𝜃௜,௝ for utility functions introduced in Table IV-1 with 

different parameters and 𝑝௜,௝. Assuming that all the components have the same utility 

function, Algorithm 2 is applied for each utility function and budget limits of $10,000, 

$50,000, $100,000, $150,000, and 300,000.  After obtaining the optimal allocation, the 

resulted resiliency measure is obtained as in Figure IV.11-13. The linear utility functions 

with parameters (𝛾ଵ, 𝛾ଶ)  of (0.7, 0.3) and  (0.5, 0.5) show a higher cost and a lower 

resilience for budgets of $10,000 and $50,000. However, the amount of investment in the 

components can change this behavior. Figure IV.13 shows the changes in the area under 

the functionality curves for different coefficients and cost factor 𝜃. As 𝜃 increases the 

utility function shifts to the upper right (left-hand side plots in Figure IV.13), meaning that 

better absorption and recovery combinations are possible. The area under the functionality 
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curve, as a sub-metric of the resilience metric, shows highest value for the 𝑎 to be 1. For 

an investment of 90% of the total value of the component (i.e., 𝜃 = 0.9), the area under the 

utility curve approaches to 1, which means that the component is close to its highest 

functionality after an event. Based on Figure IV.11, the cost of enhancing resilience of a 

system whose components have a linear utility function with parameters of (0.9,0.1) is 

lower. 

The Cobb-Douglas utility (Figure IV.13) with 𝜌 = 0.3 and 𝜌 = 0.5 resulted in 

similar resilience and investment costs. A 𝜌 = 0.1 has a resilience similar to 𝜌 = 0.3 and 

𝜌 = 0.5 but with lower costs for budget limits over $100,000.  The other two parameters 

(𝜌 = 0.7 and 𝜌 = 0.9) resulted in a lower cost and a higher resilience. If components have 

a CES utility with parameters (𝛾, 𝜌) of (0.5,1), then system will reach to its highest 

resilience level for a budget greater than $100,000,  while this budget limit is $50,000 for 

other parameters.  If the goal is to increase the resilience of the system from я = 0.73 to a 

resilience around я = 0.9, then CES with parameters (0.3, 0.1) would need a more budget.  
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Table IV-3: Cost factor 𝜃௜,௝ of absorption and recovery scenarios for utility functions 

    𝒑𝒊,𝒋,𝒌 = (𝑎𝑖,𝑗,𝑘, 𝑟𝑖,𝑗,𝑘) 
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) (0.1, 0.9) 0 0.25 0.48 0.7 0.92 0.28 0.5 0.73 0.95 0.3 0.52 0.75 0.98 0.32 0.55 0.78 1 
(0.3, 0.7) 0 0.25 0.42 0.6 0.77 0.32 0.5 0.68 0.85 0.4 0.57 0.75 0.92 0.48 0.65 0.82 1 
(0.5, 0.5) 0 0.25 0.38 0.5 0.62 0.38 0.5 0.62 0.75 0.5 0.62 0.75 0.88 0.62 0.75 0.88 1 
(0.7, 0.3) 0 0.25 0.32 0.4 0.48 0.42 0.5 0.57 0.65 0.6 0.68 0.75 0.82 0.77 0.85 0.92 1 
(0.9, 0.1) 0 0.25 0.28 0.3 0.32 0.48 0.5 0.52 0.55 0.7 0.73 0.75 0.78 0.92 0.95 0.98 1 

C
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b
-D
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gl

as
 𝝆

 0.1 0 0.25 0.47 0.67 0.87 0.27 0.5 0.72 0.93 0.28 0.52 0.75 0.97 0.29 0.54 0.77 1 
0.3 0 0.25 0.41 0.54 0.66 0.31 0.5 0.66 0.81 0.35 0.56 0.75 0.92 0.38 0.62 0.82 1 
0.5 0 0.25 0.35 0.43 0.5 0.35 0.5 0.61 0.71 0.43 0.61 0.75 0.87 0.5 0.71 0.87 1 
0.7 0 0.25 0.31 0.35 0.38 0.41 0.5 0.56 0.62 0.54 0.66 0.75 0.82 0.66 0.81 0.92 1 
0.9 0 0.25 0.27 0.28 0.29 0.47 0.5 0.52 0.54 0.67 0.72 0.75 0.77 0.87 0.93 0.97 1 

C
E

S
 ( 𝜷

,𝝆
)  

(0.1, 0.5) 0 0.25 0.47 0.69 0.9 0.27 0.5 0.72 0.94 0.29 0.52 0.75 0.97 0.3 0.54 0.77 1 
(0.3, 0.1) 0 0.25 0.41 0.55 0.67 0.31 0.5 0.67 0.82 0.35 0.57 0.75 0.92 0.39 0.62 0.82 1 
(0.5, 1) 0 0.25 0.38 0.5 0.62 0.38 0.5 0.62 0.75 0.5 0.62 0.75 0.88 0.62 0.75 0.88 1 

(0.7, 0.3) 0 0.25 0.31 0.36 0.4 0.41 0.5 0.57 0.63 0.56 0.67 0.75 0.82 0.7 0.82 0.92 1 
(0.9, 0.4) 0 0.25 0.27 0.29 0.3 0.47 0.5 0.52 0.54 0.69 0.72 0.75 0.77 0.9 0.94 0.97 1 
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Figure IV.10: Resilience for linear utility functions achieved by applying the 
enhancement in the optimal solution for different budgets for linear utility functions. 

 

 
Figure IV.11: Resilience for Cobb-Douglas utility functions achieved by 

applying the enhancement in the optimal solution for different budgets for 
Cobb-Douglas utility functions. 

 

 
Figure IV.12: Resilience for CES utility functions achieved by applying the 

enhancement in the optimal solution for different budgets for CES utility functions. 
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Figure IV.13: Linear utility curves: charts on the left are linear utility curves 
for different values of investment and parameters. Charts on the right are the 

area under utility function for the utility functions on the left.  

  In summary, if components of the system we considered in our numerical analysis, 

all have a Cobb-Douglas utility curve with 𝜌 = 0.9, then the system will become more 
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resilient with a lower investment comparing to other utility functions. If we have two 

components with the same functionality and cost, but with two different utility curves, we 

can use similar analysis to choose one them. For a budget limit and known utility functions, 

Algorithm 2 can give the optimal budget allocation to maximize the resilience.  

4.4. Conclusion 

This study introduced a quantitative method to enhance system resilience under the 

budgetary constraint.  Different states of enhancements for component’s absorption and 

recovery were elaborated and a metric was introduced to measure the resilience-based 

component importance. A mathematical programming formulation was developed to 

optimally allocate budget to components while maximizing the resilience within the limited 

budget. Due to the difficulty of drawing an analytical relationship between investment and 

system resilience, we have developed an algorithm consisting of two steps, in which the 

investment options and components’ functionality were discretized; hence, it overcomes 

the computational difficulty. The proposed optimization model determines how much to 

invest to each selected component, and optimal levels of enhancement in the component’s 

absorption and recovery time. The proposed approach was tested on the IEEE 6-bus and 

the effects of different utility curves were discussed on the cost of enhancement and 

system’s resilience level. Using the test case, we have demonstrated how optimally allocate 

budget to enhance the system resilience. Moreover, we have observed that the resilience of 

a system may be enhanced with a lower budget if the components follow a Cobb-Douglas 

utility function.  
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CHAPTER 5 

V. MULTI-ARC DISRUPTION WITH MAXIMUM IMPACT ON NETWORK 

FLOW 

In a network flow problem, critical arcs can be defined as arcs in which a failure 

occurrence results in maximum impact on the network flow. The problem of multi-arc 

disruption with maximum impact (MADP) aims to find multiple critical arcs whose 

simultaneous disruptions result in the maximum flow disruption of the network. This 

problem can be formulated as a mixed-integer programming (MIP) model. The MIP 

problem is computationally expensive; hence, this paper aims to reduce computational 

time. The contributions are a) a new problem formulation is presented following a pattern 

generation approach to provide a near optimal solution, and b) a fast heuristic is developed 

to find a good initial feasible solution for warm-start MIP. For this heuristic, a new 

centrality measure is developed. Our numerical results show that the initialization heuristic 

reduces the computational time for MIP drastically (between 10% to 90% percent). 

Moreover, the proposed pattern generation reduces the CPU time considerably while the 

gap between optimal objective value and the pattern generation approach is small and in in 

70% of the cases the gap is zero. 

5.1. Introduction 

Disrupting an adversarial network is of interest in many domains. The adversarial 

network can be an enemy infrastructure, such as transportation system [132] of a drug, 
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weapon, or human trafficking network [133]; or an information network [132]. From a 

game theoretical perspective, an interdictor (attacker) has limited resources to disrupt an 

adversarial network while an adversary (defender) aims to maximize the flow through the 

disrupted network (residual network) [133]. In many cases, the resource limit can be 

translated into the number of arcs in the network to be disrupted (𝜗). For example, 

resources can be a limited number of missiles available to strike enemy’s transportation 

system. Another example is the number of checkpoints in the supply chain of precursor 

chemicals for drug production [134]. In this case, the attacker is interested in selecting 𝜗 

arcs whose disruption will have the highest impact on the defender’s network [135], i.e., it 

minimizes the maximum flow in the residual network. Another application of the problem 

is to predict a terrorist’s potential targets and reduce the impact caused by the terrorist 

attack on the network [136]. For example, a terrorist sets fire in a place and tries to 

maximize the shortest path of fire trucks to prevent them from reaching to the fire on time.  

The goal of the terrorist is to find the most vital arcs whose failure will result in the greatest 

increase in the length of the shortest path [137]. Therefore, one might be interested in 

protecting those arcs from such attacks to mitigate the resulting impact.  

Different approaches can be used to find 𝜗 arcs to be disrupted. One approach can 

be based on some network measures. If the attacker has enough resources and the goal is 

to shut down the whole network, node and arc connectivity measures can be utilized. The 

node connectivity is the smallest number of nodes whose removal results in a disconnected 

or single-node graph. It is the smallest number of node-distinct paths between any two 

nodes [138]. Similarly, the arc connectivity is the smallest number of links whose removal 

results in a disconnected graph. Another group of metrics include centrality measures, 
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which are commonly described as indices of prestige, prominence, importance, and power 

[139]. The shortest-path-betweenness centrality is a measure of the extent to which a 

component is located on the paths between two other components [140]. It indicates how 

much a component has control over the flow between the components. Hence, their 

removal can have a negative impact on the network. The eigenvector centrality measures 

the influence of a node in a network and it depends on both the centrality of the component 

and the centrality of its neighbors [141]. Google’s PageRank algorithm is a variant of 

eigenvector-centrality and is used to rank web pages in the search engine results. 

Eigenvector-centrality is Katz centrality and it measures the relative degree of influence of 

a node in a social network [142]. Freeman and Borgatti [139] introduced a flow-

betweenness centrality (𝜑) that incorporates the strength of the linkage between nodes into 

the metric. Flow can be physical (e.g., used goods and money) or it can be non-physical 

(e.g., gossip, attitude). In an s-t network flow [143], arcs can be ranked based on their 

relative contribution to the flow in the network, i.e., based on their 𝜑 value. This metric 

can be useful when we are interested in a single vital arc; if the single arc with the highest 

𝜑 is disrupted, the decrease in the network output will be high. However, for the problem 

of multiple-arc failure with maximum impact on network flow, these metrics may not 

provide the best solution, as they do not consider the effect of simultaneous disruption of 

arcs on the network flow.  

An approach to solve MADP is to formulate the problem as a bilevel (attacker-

defender) model, where in the upper level the attacker selects 𝜗 arcs to disrupt and in the 

lower level, the defender maximizes the flow through the residual network. The upper level 

objective is to minimize the maximum flow in the lower level. When the attacker has 
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enough resource to disrupt one arc (𝜗 = 1), the problem of finding a single vital arc in a 

network flow can be solved using the Newton algorithm [144]. The bilevel problem of 

finding 𝜗 arcs is NP-hard [133]. Some efforts were made in the literature to reduce the 

computational cost [133] by using a binary programming model that maximizes the sum 

of the arc capacities under attack; however, solving this model is still computationally 

expensive [134]. A Lagrangian-relaxation based heuristic has also been explored to provide 

a local optimum [134].  

The goal of this study is to present methods to reduce the computational burden for 

solving the MADP. The contributions are twofold. First, a mathematical programming 

model is presented, and a pattern generation algorithm is proposed to solve it. Second, a 

new centrality measure and a heuristic are introduced to provide a good initial solution for 

the MIP formulation. The heuristic utilizes the path-based network flow problem. This 

initial solution is also used in the proposed pattern generation. The organization of the rest 

of this paper is as follows. Chapter 2 describes the path-based mathematical programming 

model for MADP. Chapter 3 presents the solution methodology which includes two 

algorithms. The first algorithm provides an initial solution generation strategy and the 

second is a pattern generation algorithm to solve the MADP. Section 4 provides the 

numerical results. The conclusion is drawn in Chapter 

5.2. Multiple-Arc Failure Maximum Impact (MADP) Mathematical 

Formulation 

Let 𝐺 = (𝑉, 𝐸) be a directed graph or digraph where 𝑉 is a set of vertices (nodes) 

and 𝐴 ⊆ 𝑉 × 𝑉 is a set of arcs. Let 𝐺 have two special nodes s and t (called the source and 
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the sink, respectively). Each arc is an ordered pair 𝑒௨௩ = (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑉. A path (𝑃௩భ௩೗
)  

between nodes 𝑣ଵ and 𝑣௟ is a sequence of adjacent nodes 𝑣௜, 1 ≤ 𝑖 ≤ 𝑙, such that 

(𝑣௜ , 𝑣௜ାଵ) ∈ 𝐸. In this study, the networks are assumed to be directed acyclic graph (DAG), 

or in other words, a directed graph with no cycles. Suppose an arc 𝑒௨௩ has a capacity of 

𝑐௨௩. A flow is a function which assigns the amount of flow  𝑓௨௩ to arc 𝑒௨௩. 

 

Figure V.1: MADP in a network flow 

 

The MADP can be formulated as a bilevel programming model [145]. Prior to a 

disruption, an adversary (defender) flows the maximum commodity or information 

possible through a network from a source vertex (𝑠) to a terminal vertex (𝑡) (Figure V.1). 

In the upper level, the attacker disrupts a predetermined number (𝜗) of arcs in the 

adversarial network (e.g., arcs (𝑠, 𝑣ଷ) and (𝑣ଶ, 𝑣ଷ) in Figure V.1 with 𝜗 = 2). The defender 

notices the damages to the network and acts accordingly, i.e., in the lower level problem 

he changes its operations to maximize the flow through the residual network (the network 

excluding the disrupted arcs). The attacker is aware of the defender’s goal and tries to 

choose 𝜗 arcs in a way that the adversary’s maximum flow is minimized. Let 𝑦௨௩ be a 

binary variable that shows the attacker’s decision, where  
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𝑦௨௩ = ቄ
1 𝑖𝑓 𝑎𝑟𝑐 (𝑢, 𝑣)𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

shows the attacker’s decision. In the upper level, the attacker selects 𝜗 arcs. In the upper 

level the attacker selects 𝜗 arcs (Equation (1-2)), whose disruption will drop the flow 

through those arcs to 0 (Equation (1-4)). The flow through each arc is limited by its capacity 

(Equation (1-4)). Moreover, the flow is conserved (Equation (1-5)), and it does not flow 

into the source or out of the sink (Equation (1-6)). After disruption, the defender maximizes 

the flow in the residual network. The goal of the attacker is to minimize the maximum flow 

of the defender (Equation (1-1). 

min
௬

𝑧௬ (1-1) 

s.t. ෍ 𝑦௨௩

(௨,௩)∈ா

= 𝜗, (1-2) 

𝑧௬ = max
௙

෍ 𝑓௦௩

௩∈௏

, (1-3) 

s.t. 𝑓௨௩ ≤ 𝑐௨௩(1 − 𝑦௨௩)∀𝑢, 𝑣 ∈ 𝑉, (1-4) 

෍ 𝑓௨௩

௨:(௨,௩)∈ா

= ෍ 𝑓௩௪

௪:(௩,௪)∈ா

, (1-5) 

𝑓௨௦ = 𝑓௧௨ = 0, ∀𝑢, (1-6) 

𝑓௨௩ ≥  0, 𝑦௨௩ ∈ {0,1}, ∀𝑢, 𝑣 ∈ 𝑉. (1-7) 

 

5.3.1. A path-based model formulation 

The path-based formulation [146], [147] of Problem (1) is used in the literature to 

reduce the problem size. Let ℘ be a set of all distinct paths that contain at least one unique 

arc. For brevity, instead of denoting an arc with 𝑒௨௩, it is shown as 𝑗, where 𝑗 is a unique 

number assigned to an arc. Hence, a path-arc incidence matrix (P) can be defined as 
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  Arcs 

𝑃 = 

P
at

hs
 

൥

𝑝ଵଵ ⋯ 𝑝ଵ௠

⋮ ⋱ ⋮
𝑝௛ଵ ⋯ 𝑝௛௠

൩ 

where  

𝑝௜௝ = ቄ
1 if arc 𝑗 is an incident in  path 𝑖,
0 otherwise.

 

One should note that this matrix does not show the sequence of incidences. 

Moreover, if arc 𝑒௝ is incident to more than one path, then the aggregation of flows in all 

paths passing through 𝑒௝ should be less than the arc’s capacity (i.e., ∑ 𝑝௜௝𝑓௜௜ ≤ 𝑐௝). Let 𝑓 =

(𝑓ଵ … 𝑓௛) be the vector of the defender decision variables and 𝑦 = (𝑦ଵ … 𝑦௠) be the vector 

of the attacker decisions. Equations (2-1) through (2-5) construct the path-based bilevel 

MADP. In the upper level (Equations (2-1) and (2-2)), the attacker decides which arcs to 

attack. These arcs must meet the resource limitation (Equation (2-2)). In the lower level 

(Equations (2-3)  through (2-5)), the defender maximizes the network flow in the residual 

network. 

min 𝑧 (2-1) 

s.t. 𝟏்𝑦 = 𝜗, (2-2) 

𝑧 = max 𝟏்𝑓, (2-3) 

𝑃்𝑓 ≤ 𝐶(𝟏 − 𝑦), (2-4) 

𝑓 ≥ 0, 𝑦 ∈ {0,1}|ா|. (2-5) 

 

5.3. Solution Approach 

To reduce the computational burden for solving Problem (2), we provide two 

different solution approaches. The first one is a warm-start approach for the MIP model in 

which a heuristic method is used to initialize values of 𝑦 so that the MIP model can be 
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solved much faster than the MIP model with default values provided by a commercial 

solver. The second approach is based on a model reformulation, followed by a pattern 

generation algorithm to solve it. 

5.3.2. MIP formulation 

Problem (2) is reformulated as an MIP model through the following process. After 

the attacker has made the decision on which arcs (𝑦ො) to disturb, the 𝑦ො remains constant for 

the defender in the lower level, in a way that the Equations (2-3) through (2-5) construct a 

linear programming. Hence, it can be replaced by its dual problem.  

Let 𝑤 = (𝑤ଵ … 𝑤௠) be the dual variable corresponding to constraints (2-4), the dual 

of the subproblem for a fixed 𝑦ො is 

𝑧 = min
௪

𝐶(𝟏 − 𝑦ො)𝑤, (3-1) 

s.t.  𝑃𝑤 ≥ 𝟏, (3-2) 

𝑤 ≥ 0. (3-3) 

Problem (4) is an LP formulation of the minimum cut problem [148]. By applying these 

changes in the subproblem of Problem (4), the MADP becomes as: 

min
୷

𝑧, (4-1) 

s.t. 𝑒்𝑦 = 𝜗, y ∈ {0,1}|ா|, 
(4-2) 

𝑧 = min
௪

𝐶(𝟏 − 𝑦ො)𝑤, 
(4-3) 

𝑃𝑤 ≥ 𝟏, 
(4-4) 

𝑤 ≥ 0. 
(4-5) 

By replacing z in Equation (4-1) with Equation (4-3), the problem becomes  



84 
 

min
୷

min
௪

𝐶(𝟏 − 𝑦)𝑤 , 
(5-1) 

s.t. 𝟏்𝑦 = 𝜗, 
(5-2) 

𝑃𝑤 ≥ 𝟏, 
(5-3) 

w ≥ 0, y ∈ {0,1}|ா|. 
(5-4) 

The objective (5-1) then can be changed to  

min
௪,௬

෍ 𝑐௝൫1 − 𝑦௝൯𝑤௝

௝∈ா

= ෍ 𝑐௝൫𝑤௝ − 𝑦௝𝑤௝൯

௝∈ா

. (6) 

The objective function in Equation (6) is non-convex, and the optimality is not 

guaranteed. Therefore, we linearize it by setting  𝑥௝ = 𝑦௝𝑤௝ and exploiting a sufficiently 

large number 𝑀. As a result, the new formulation is:  

min 𝐶(𝑤 − 𝑥) 
(7-1) 

−𝑀y ≤ 𝑥 ≤ 𝑀y,  
(7-2) 

𝑀(𝟏 − 𝑦) ≤ 𝑤 − 𝑥 ≤ 𝑀(𝟏 − y), 
(7-3) 

𝑃𝑤 ≥ 𝟏, 
(7-4) 

𝟏்y = 𝜗 
(7-5) 

𝑤, 𝑥 ≥ 0, y ∈ {0,1}|ா|. 
(7-6) 

Equation (7-1) and the variable linearization equations (Equations (7-2) and (7-3)) 

minimize the minimum cut capacity. This is equivalent to minimizing the maximum flow 

in the network. Equation (7-4) is the dual constraint in the path based minimum cut problem 

[148]. Equation (7-5) sets the limit on the number of arcs to be disrupted. 
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5.3.3.  Initialization 

This section introduces an initialization heuristic for variable vector 𝑦 to solve the 

MIP model faster. A new metric, min-flow-betweenness centrality (𝜑), is developed, which 

is an integral part of the heuristic. The maximum-flow-betweenness (MFB) centrality 

introduced in [139] evaluates the maximum possible flow that can pass through an arc. The 

MFB of an arc is less than or equal to the arc capacity. For example, in Figure V.1, the arc 

(𝑣ଶ, 𝑡) with capacity 6 has a an MFB equal to 4 which implies that the network set up 

doesn’t allow it to utilize more than 4 units of its capacity. However, if an arc with high 

MFB is disrupted, other paths may have the capacity to carry a large portion of that flow 

(i.e., there can be an arc with high MFB but with low impact). Instead, our metric considers 

the minimum flow 𝜑௝ that can pass through arc 𝑗 and does not decrease the maximum flow. 

The network in Figure 1 has four paths, delivered as 𝑝ଵ: 𝑠 → 𝑣ଷ → 𝑡, 𝑝ଶ: 𝑠 → 𝑣ଵ → 𝑣ଷ →

𝑡, 𝑝ଷ: 𝑠 → 𝑣ଶ → 𝑣ଷ → 𝑡, and 𝑝ସ: 𝑠 → 𝑣ଶ → 𝑡 Assume that in the optimal solution, the flow 

along p1, p2, p3, and p4 are 6, 2, 1, and 4, respectively; these values are combined to create 

a maximum flow of 15. The maximum flow that can pass through the arc (𝑣ଵ, 𝑣ଷ)  is 2. 

However, if we choose to flow 3 units through 𝑝ଷ, the flow in 𝑝ଶ will drop to 0 while the 

maximum flow of the network remains 15. The value of 𝜑 for the arc (𝑣ଵ, 𝑣ଷ) is zero.  

Let 1ᇱ and 2ᇱ represent the new indices such that 𝜑ଵᇲ ≥ 𝜑ଶᇲ. When the problem refers 

to finding a single arc with the highest impact on the maximum flow, the solution is to 

select arc 𝑒ଵᇲ. However, in the case of 𝜗 ≥ 2 components, removing 𝑒ଵᇲ , 𝑒ଶᇲ , … , 𝑒ణᇲ may 

not result in the highest impact. Consider the simple network in  Figure V.2. In this network  

𝜑ଵ = 𝜑ଶ = 5, and 𝜑ଷ = 𝜑ସ = 2, and the network has a maximum flow of 7. For 𝜗 = 1, 

the solution to MADP is either 𝑒ଵ or 𝑒ଶ, and the residual network maximum flow will be 
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2. If 𝜗 = 2 and we choose the two components with highest values of 𝜑௝ (i.e., 𝑒ଵ and 𝑒ଶ), 

then two units can still flow through the rest of the network. However, if we choose 𝑒ଵ and 

𝑒ଷ, then no flow can pass through the network. 

 

Figure V.2: A simple network. The numbers on the arcs are arc capacities.  

In neuroscience, the functional connectivity is a matrix that captures the change in 

the level of activation regions of the brain in response to specific experimental conditions 

[149]. We define the functional connectivity of arcs similarly.  

Definition: For two arcs 𝑒௟ and 𝑒௝ in 𝐸, functional connectivity is defined as the 

possible amount of change in the MFB of 𝑒௝ if the functionality of 𝑒௟ is disrupted.  

Γ୪ = ൣγ୪୨൧௝∈ா
 

The vector Γ୪ constructs the rows of the functional connectivity matrix Γ. Using the 

functional connectivity, we propose an algorithm that determines 𝜗 arcs (i.e., vector 𝑦) that 

serves as an initial solution. Let 𝑙 be the index of the arc with the largest 𝜑௝. Algorithm 1 

begins by selecting arc 𝑒௟ which reduces the maximum flow the most significantly, i.e., by 

𝜑௟ = max
௜

𝜑௜. The value of 𝜑௝ for the residual network after removing arc 𝑒௟ will be 

decreased by γ୪୨ ( 𝜑௡௘௪ =  𝜑 −  γ୪୨). Then, we choose the arc with largest 𝜑௡௘௪ as the 

second arc. In this algorithm, matrix 𝑃 is collocated with the paths’ capacity in the last 
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column, 𝜑௝ in the last row, and two, the number of arcs of to be disrupted in the last entry 

of the matrix. The tableau matrix will look like the Figure V.3: 

  Arcs 𝑄 

M= 

𝑃𝑎𝑡ℎ𝑠 

⎣
⎢
⎢
⎢
⎡
𝑝ଵଵ ⋯ 𝑝ଵ௠

⋮ ⋱ ⋮
𝑝௛ଵ  ⋯ 𝑝௛௠

𝑞ଵ

⋮
𝑞௛

𝜑ଵ … 𝜑௠ 𝜗 ⎦
⎥
⎥
⎥
⎤

 

𝜑 

Figure V.3: Collocated matrix 𝑃, Q, 𝜑௝, and 𝑘.  

This algorithm also removes the redundant paths, thus drastically reducing the problem 

size at each iteration.  

Algorithm 1 

Input: A set of paths ℘ 

Output: ℚ:= list of arcs to be disrupted  

Step 1. Set counter =1; ℚ = {}. 
Step 2. Calculate/update  𝜑௝. 

Step 3. Select the arcs with highest 𝜑௝. 

Step 4. Delete the rows in which column 𝑗 entry is 1. 
Step 5. Delete column j and add j to the set ℚ. 
Step 6. If counter is equal to k or the maximum flow is 0 then 

go to Step 6 
  else 

go to Step 2 
Step 7. Set counter=counter +1. 
Step 8. Output the ℚ 

 

5.3.4. Pattern Generation Approach 

The number of variables in Problem (2) and Problem (7) grow exponentially as the 

number of arcs grows. To address this challenge, a pattern generation (PG) is proposed by 
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reformulating Problem (2) to Problem (8). In PG, a master problem and corresponding 

subproblems are constructed [150]. The PG process starts with an initial pattern 𝑦ො, finds the 

dual solution of the master problem, and uses them in the pricing subproblem to generate 

a new pattern. A difference between PG and the column generation [151] is that in column 

generation, the constructed pattern in the subproblem is appended to the technical 

coefficients, whereas in PG the current pattern is replaced with the new pattern. We propose 

a new formulation for Problem (2) and solve it using the pattern generation. A pattern 𝑦ො ∈

{0,1}|ா| has exactly 𝜗 entries where value 1 (i.e., 𝑒்𝑦ො = 𝜗) indicates which arc is disrupted 

and as a result the flow in all the paths passing through them is stalled (Equation (8-2)).  

𝑧 = max 𝟏்𝑓, (8-1) 

s.t. 𝑝்𝑓 + 𝐶𝑦ො ≤ 𝑐, (8-2) 

𝑓 ≥ 0.  (8-3) 

 

In each iteration, the subproblem generates a new pattern that provides a better solution to 

Problem (8). Consider the general maximization problem in the form of  

max 𝑑்𝑥, (9-1) 

𝐴𝑥 ≤ 𝑏, (9-2) 

𝑥 ≥ 0, (9-3) 

where 𝑑 = (𝑑ଵ … 𝑑௡) is the cost coefficient, 𝑋 = (𝑥ଵ … 𝑥௡) is the non-negative decision 

variable, 𝑏 is the resource constraint, and 𝐴 = ൣ𝑦௜௝൧, 𝑖 = 1. . ℎ, 𝑗 = 1. . 𝑚, is the 

technological coefficient. The current objective expression [152] for a feasible solution is 
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𝑧 = 𝑑஻𝐴஻
ିଵ𝑏 − ෍ ൫𝑑஻𝐴஻௔௦௜௦

ିଵ 𝑦௝ − 𝑑௝൯𝑥௝

௝∈ே஻௏

, (10) 

in which variables are divided into two groups: basic (BV) and non-basic (NBV) variables. 

Matrix 𝐴஻௔௦௜௦
ିଵ  consists of the columns of 𝐴 corresponding to BVs, and 𝑦௝ is the 𝑗th column 

of 𝐴. If a variable with negative 𝑑஻𝐴஻௔௦௜௦
ିଵ 𝑦௝ − 𝑑௝ enters the basis, then the objective value 

will be increased; if a variable with positive value enters, then the objective value will be 

decreased. We are interested in the latter. The subproblem for the PG algorithm is  

𝑧௦௨௕ = max 𝜋∗்𝐶𝑦, 
(11-1) 

s.t 𝟏்𝑦 = 𝜗, 
(11-2) 

𝑦 ∈ {0,1}|ா|. (11-4) 

in which 𝜋∗்𝐶𝑦 equals 𝑑஻𝐴஻௔௦௜௦
ିଵ 𝑦௝ − 𝑑௝. Problem (11) attempts to find a pattern that can 

decrease the current maximum flow. The pattern 𝑦 must satisfy the constraint in Equation 

(5-2), i.e., this pattern has exactly 𝜗 non-zero variables. If the object value of Problem (11) 

is positive and it is different from the previous solution, then the new pattern will replace 

the current pattern. Algorithm 2 summarizes the PG process for MADP. It starts with 

generating an initial solution using Algorithm 1; then, it finds the dual values of the master 

problem. Using the dual values, Problem (11) finds a new pattern, and the process 

continues until the stopping criteria are met.  
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Algorithm 2 Pattern Generation for MADP 
Input: the network 
Output: The optimal solution to MADP 
Step 1. Create an initial plan using Algorithm 1 
Step 2. Set the current pattern to the initial pattern. 
Step 3. Run the master problem (Problem (6)) for the current pattern. 
Step 4. Use the optimal dual solution of the master problem and solve the 

subproblem 
a. If the optimal objective value of the subproblem is positive and the 

current pattern is different from the previous pattern, set the current 
pattern to the pattern generated in the subproblem and go to 3. 

b. Else go to 5  
Step 5. Output the current pattern as optimal. 

 

5.4. Numerical Results 

We start the numerical example with a simple network presented by Freeman [139] 

(Figure V.4); we name it Net 1 for future reference. This network has four paths; the first 

path (𝑝ଵ) begins at node 𝑠, passes through node 3, and ends at node 𝑡. Equivalently, path 

𝑝ଵ passes through arcs 𝑒ଷ and 𝑒଻ (shown as 𝑝ଵ: 𝑒ଷ → 𝑒଻). Similarly, the other paths are 

𝑝ଶ:𝑒ଵ → 𝑒ସ → 𝑒଻, 𝑝ଷ: 𝑒ଶ → 𝑒଺ → 𝑒଻, and 𝑝ସ: 𝑒ଶ → 𝑒ହ. Figure V.5 shows the incident matrix 

𝑃 associated with these four paths. Suppose that the attacker has sufficient resources to 

attack two arcs (i.e., 𝜗 = 2). The attacker then has ቀ
7
2

ቁ = 21 options to choose from 

(Figure V.6). Step 1 in Algorithm 1 starts with an empty set ℚ and sets the counter to 1.  In 

Step 2, vector 𝜑 is calculated (Figure V.7). The arc with the highest value of 𝜑 (i.e., 𝑒଻ 

with 𝜑଻ = 4 for Net 1) is selected in Step 3. Removing 𝑒଻ will disrupt the flows from paths 

𝑝ଵ, 𝑝ଶ, and 𝑝ଷ. Hence, in Step 4, these paths are removed from the incidence matrix. Then 

𝑒଻ column is removed, and it is added to set ℚ (i.e., ℚ = {𝑒଻}). Sine the counter is 1, being 

less than 𝜗 = 2, we go to Step 2 for the second iteration. We can easily find the functional 
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connectivity for 𝑒଻, which is the updated 𝜑 after the removal of 𝑒଻; updating the functional 

connectivity Γ଻ = (3,0,1,3,0,1)  from 𝜑 results in 

𝜑௡௘௪ = 𝜑 − Γ଻ = (3,2,1,3,2,0,4) + (−3,0, −1, −3,0,0, −4) = (0,2,0,0,2,0,0). (10) 

Based on the 𝜑௡௘௪, two options 𝑒ଶ and 𝑒ହ will provide the same result. We select 𝑒ଶ 

arbitrarily and update ℚ = {𝑒଻, 𝑒ଶ}. The resulting initial solution is  

𝑦 = (0, 1, 0, 0, 0, 0, 1). Removing these two arcs will drop the maximum flow to 0. So, in 

this case, we do not need to run the MIP model. 

 

Figure V.4 Network of Net 1 [139] 

Arc 

𝑒ଵ 𝑒ଶ 𝑒ଷ 𝑒ସ 𝑒ହ 𝑒଺ 𝑒଻ 

𝐴 = 

𝑝ଵ

𝑝ଶ
 

𝑝ଷ

𝑝ସ
 

቎

0 0 1 0 0 0
1 0 0 1 0 0
0 1 0
0 1 0

0 0 1
0 1 0

1
1
1
0

቏ 

Figure V.5 Path arc incidence matrix 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
𝑎ଵ 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
𝑎ଶ 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
𝑎ଷ 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
𝑎ସ 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 
𝑎ହ 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 
𝑎଺ 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 
𝑎଻ 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 

Figure V.6: Possible options to select two arcs from Net 1 
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Figure V.7: The MFB for network of net1 

The PG process begins with the initial pattern obtained using Algorithm 1. The 

master problem is solved after fixing 𝑦 to the initial pattern. The duals of the constraints of 

the master problem then are used in the pricing subproblem to generate a new pattern 𝑦. 

To validate the PG approach, 200 randomly generated graphs are used for numerical 

experiments (see Appendix I). Figure V.8 shows the histogram of the number of arcs for 

the generated networks, detailing a near-normal distribution with a mean of 100 and a 

standard deviation of 47 arcs. For each network, the optimal solution of the MADP problem 

using the PG is compared to the exact solution obtained from the MIP model. The gap 

between the two objective values resulting from the two approaches is measured as 

𝑔𝑎𝑝 =
z୔ୋ

∗ − z୑୍୔
∗

z୑୍୔
∗ . 

(11) 

Figure V.9 shows the histogram of the gap in the generated networks. The MADP is solved 

for each network for 𝜗 = 1, … ,6. This histogram shows that the MADP found an optimal 

solution (i.e., gap = 0) in 71% of the problems, while the gap ranged between 0 and 0.15 

for 20% of the cases. Although the PG does not guarantee optimality, it finds a good 

solution at a small fraction of time to solve the optimization model. Hence, it can be a 

Arc 

𝜑 
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decent way to generate an initial starting solution for the MIP model from which it can start 

its Branch-and-Bound process to speed up the convergence.  

    
Figure V.8: Histogram of number of arcs  

 

   
Figure V.9: Histogram of the objective gap between optimal CG and   objectives 

To illustrate the effectiveness of the proposed solution approach, a subset of 

networks is randomly selected from the previously generated networks; they are labeled as 

Net 2, …, Net 5. The network in Figure V.4 with 5 nodes and 7 arcs is also included and is 

named Net 1. All computational experiments are made on a personal computer with Core 

i5-3470S 2.9 GHz CPU and 8 Gigabyte of RAM. To account for the effect of the 
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performance of the PG on the CPU time, each experiment is run 10 times, and the average 

time is used in the analysis. Table V-1 summarizes the effect of the initialization on the 

CPU time for the selected networks and for values 1, … ,6 for 𝜗. For Net 1 and 𝜗 = 1, the 

initialization heuristic provides a feasible solution to the MIP problem with a flow of two 

in 0.0020 seconds. This solution is used as the initial solution (i.e., a warm-start) to the 

MIP model. After 0.0130 seconds, the MIP model yielded an optimal objective value of 2.  

In this case, the initialization heuristic happened to find the optimal solution. Similar results 

for some other cases are marked with a “*” in column (𝜗) of  Table V-1. For Net 1 and 

𝜗 = 2, the initialization provided a solution with a flow of zero in 0.0030 seconds. The 

flow of 0 means that the disrupted arcs have produced the maximum impact on the network 

that disrupting more arcs will not disturb the network flow. Hence, the initial solution is 

optimal, and the algorithm stops. Similar results were observed for Net 3 and 𝜗 = 6, in 

which the initialization heuristic resulted in an objective value of 0. Thus, there is no need 

to proceed to solving the MIP model.  
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Table V-1: The effect of a warm-start strategy on the MIP model 

ID 
(N, E) 

𝜗 
Objective Value Solution Time (Seconds) 
Initialization 
Heuristic 

MIP with Warm-
Start 

Initialization 
Heuristic 

MIP with Warm-
Start 

Net 1 
(5, 7) 

1* 2 2 0.0020 0.013 
2 0 - 0.0030 0.000 

Net 2 
(14, 32) 

1* 17 17 0.0040 0.175 

2 12 10 0.0060 0.160 

3 9 5 0.0060 0.237 

Net 3  
(25, 89) 

1* 21 21 0.003 3.909 

2 16 14 0.007 3.815 

3 11 9 0.010 3.751 

4 4 4 0.011 4.540 

5* 2 2 0.018 4.779 

6 0 - 0.014 0.000 

Net 4  
(32, 166) 

1* 26 26 0.007 81.28 

2 22 18 0.011 85.59 

3 21 14 0.023 114.08 

4 13 10 0.026 115.02 

5 11 7 0.031 128.40 

6 11 5 0.030 206.31 

Net 4 
(38, 216) 

1* 65 65 0.0424 165.42 

2 56 55 0.0749 175.92 

3 55 46 0.0514 191.43 

4 48 39 0.0938 190.27 

5 46 32 0.1408 198.28 

6 39 25 0.1338 193.35 

Now we examine the computational performance of three solution approaches: a) 

MIP formulation without warm-start, where the initial solution is provided by the solver; 

b) MIP formulation with warm-start, in which the initial solution is provided by Algorithm 

1; and c) PG. The computational time of finding a solution to the MADP for the test 

networks are summarized in Table V-2. 
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Table V-2: Computational performance comparison of three solution approaches 

 

𝜗 

CPU time 
MIP 

MIP with warm-start  PG 

CPU time 

Reduction in 
CPU time due 

to 
initialization 

CPU time 
 

Gap 

Reduction 
in CPU time 
comparing 

to MIP 

Net 1 
(5,7) 

1 0.025 0.015 40% 0.02 0% 20% 

2 0.018 0.003 83% 0.017 0% 6% 

Net 2 
(14, 32) 

1 0.200 0.179 10% 0.129 0% 36% 

2 0.184 0.166 10% 0.143 0% 22% 

3 0.263 0.243 8% 0.117 0% 56% 

Net 3 
(25, 89) 

1 4.19 3.91 7% 2.88 0% 31% 

2 4.96 3.82 23% 4.73 0% 5% 

3 4.00 3.76 6% 3.9 0% 3% 

4 5.62 4.55 19% 2.78 0% 51% 

5 5.20 4.80 8% 5.01 0% 4% 

6 3.84 0.01 99% 2.77 0% 28% 

Net 4  
(32, 166) 

1 93.05 81.28 13% 68.95 0% 26% 

2 97.87 85.60 13% 89.58 0% 8% 

3 163.43 114.10 30% 139.16 0% 15% 

4 137.63 115.04 16% 132.12 0% 4% 

5 149.36 128.42 14% 130.92 0% 12% 

6 230.64 206.34 11% 111.82 0% 52% 

Net 5 
(38, 216) 

1 217.64 165.46 24% 133.92 0% 38% 
2 232.75 176.00 24% 136.63 0% 41% 
3 258.37 191.48 26% 128.61 0% 50% 

4 260.94 190.37 27% 131.81 0% 49% 
5 269.33 198.42 26% 127.76 0% 53% 
6 375.60 193.48 48% 124.96 4% 67% 

These results show that the MIP with the proposed initialization heuristic reduced 

the computational time by a range of 6% to 99% when compared to the MIP without the 

warm-start. Especially, the reduction in CPU time was over 24% for Net 5 with 216 arcs.  

The PG also improved the computational time over the MIP without the warm-start. 

Moreover, the outperformance of the PG was more pronounced for larger-sized problems 
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(e.g., Net 5). For example, for Net 5 and 𝜗 = 6,  the initialization reduced the CPU time of 

MIP by 48%, while PG reduces it by 67%. 

5.5. Conclusion 

In this study, we have developed solution approaches to reduce the computational 

time of the multi-arc disruption with maximum impact on network flow problem (MADP). 

Our approaches include a pattern generation (PG) process and a warm-start heuristic to 

solve the MADP. The subproblem of the PG is designed to find a new pattern for an arc 

failure that can result in the highest reduction of the maximum flow in the network. The 

PG performed very well and provided the optimal solution in 71% of the test networks 

attempted in this paper. A minimum-flow-betweenness centrality metric is introduced for 

the warm-start heuristic. The warm-start strategy reduced the number of iterations as well 

as the computational time. In several cases, the initial solution was found to be the optimal 

solution. The performance comparison on the CPU time for solving the MIP model with-

and-without the warm-start heuristic revealed that the initialization approach significantly 

reduced the computational time by a range of 6% to 99%. 

Our approach in this paper for the initialization heuristic and the pattern generation 

relies on the network paths. Finding network paths is computationally extensive; many 

researchers try to develop path generation algorithms that generate a portion of paths which 

solving the problem using those paths can provide an objective value close to the objective 

value of the original problem (i.e., the problem in which all the paths are included). Future 

work to consider includes developing an enhanced functional connectivity for the 

initialization heuristic. Functional connectivity is used to show the effect of one edge 
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disruption on the other edges and on the network paths. A good functional connectivity can 

result in a better initial solution for warm-start strategy.   
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CHAPTER 6 

VI. LEVELIZED RESILIENCY ASSESSMENT OF INTERDEPENDENT 

NATURAL GAS AND ELECTRIC POWER SYSTEMS 

6.1. Introduction 

Critical infrastructures serve as the pillars of nations’ economy and security. 

Electricity power system, communication system, natural gas delivery system, water and 

wastewater systems, and transportation system are examples of critical infrastructures. 

Unprecedented disasters like tornado, flood, hurricane, earthquake, and explosion are 

destructive to infrastructures, and they incur billions of dollars of economic loss. Moreover, 

the infrastructure’s interdependence and cascading effects compound the gravity of the 

consequences of these disasters.  

The concept of resilience has been developed to mitigate the effects of these extreme 

events. Resilience means to bounce back after a shock. Several metrics have been presented 

to measure the resilience of systems. These metrics can be utilized to evaluate the current 

state of infrastructure resilience, determine the components and processes to be improved, 

select and prioritize the investments on resilience, and to measure the effect of the 

investment and actions. However, few studies have addressed the resilience of 

interdependent infrastructures. Natural gas is one of the primary sources for electricity 

generation in the U.S., and the number of gas-fired generators has been increasing ( 

Figure VI.1). As a result, disruption of gas supply may cause unsatisfied electricity 

demand. In this study, we are to measure the effect of the resilience of natural gas system 

on the resilience of Electric power systems. In section 2 a literature review on the resilience 
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is presented. In section 3 the methodology to assess the effect of the resilience of gas 

infrastructure on the resilience of electric power system is discussed. Section 4 describes 

the mathematical model. Finally, the numerical results and conclusion are the provided in 

sections 5 and 6. 

 

 

Figure VI.1: Annual share of total U.S. electricity generation by source  (including 
forecasts for 2018 and 2019) 

 

 

Figure VI.2: Share energy sources of total U.S. electricity generation in 2017 
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6.2. Literature Review  

Resilience can be traced back to the work of Holling [11], who mentioned the 

features of a resilient ecological system. Five years later Gordon [12] referred to the “ability 

of woods to accommodate sudden and severe loads without breaking” as resilience. In fact, 

the concept of resilience emphasizes the unavoidability of extreme events. While it has 

been studied for decades, there isn’t consensus on the definition of resilience and different 

disciplines developed their definition. The goals of resiliency are to reduce failure, the 

hazard consequences, and time to recovery [10]. Resilience has a multi-dimensional nature 

[30], [153]. Most of the researchers have focused on the conceptual framework. There are 

two approaches to a resilience framework: the strategic approach in which resources are 

being planned and utilized for an anticipated outcome; and the operational approach in 

which management considers outcomes satisfactory considering the available resources 

[154]. Conceptual frameworks emphasize that a resilient system be capable of anticipation, 

absorption, adaptation, and rapid recovery. Anticipate is the ability of a system to plan and 

prepare the system to face an extreme event. Resist/absorb is the ability to mitigate the 

seventy or consequences. Respond/adapt is the ability to employ the current resources and 

ongoing activities, tasks, and programs to manage the adverse effects of the unfavorable 

event. Rapid recovery is the ability to effectively and efficiently change the functionality 

to a level that is acceptable to the stakeholders.  
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These capacities can also be thought of as phases that a system may undergo in the 

face of hazard (Figure VI.3). In each of these phases, different improvements can be 

employed to enhance the resilience of the system. For example, in the planning phase 

design of the system and also forecasts are included [23] in the absorption phase robustness 

plays a crucial role in the resilience [93], in the adaptability phase resourcefulness can 

improve the resilience, and in the rapid recovery phase, agility is vital[89].  

Quantification is an essential tool for resilience management. Molyneaux et al. [155] 

discuss the ways that disciplines try to measure resilience. A system may have different 

levels of resilience to different disruptions, and the resilience of a system is assessed against 

a specific disruption [156]. Resilience is a multi-dimensional measure. However, most of 

the developed metrics have just considered one or a few of the dimensions. The measures 

may be infrastructure specific (water, transportation, power, natural gas) or for a general 

system or network. The quantitative assessment of resilience dimensions is based on the 

measure of performance. Examples of such measures are demand not served, percent of 

Figure VI.3: Functionality of a system during a resilience evaluation 
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the nodes in the network that are inoperable, and time to full recovery. A resilience matrix 

can be used to assess the performance of complex systems [157] at global, technical, and 

organizational levels.  

  It is unrealistic to think of an isolated system. There are a few studies on the 

importance of interdependence, and several studies [158]–[161] have addressed the 

interdependence of natural gas and power system. In this study, we measure the effect of 

interdependence on the resilience of power systems. Due to complexity, it is not feasible 

to prepare a mathematical model that incorporates the dynamics of the system. Hence we 

utilized a levelized approach. Also, the gas supply during an adverse event is not 

deterministic. We used Monte Carlo simulation with several gas supply scenarios to 

incorporate this stochastic in our model. For each scenario, we obtained a measure of 

performance using the SCUC and the resilience.   

6.3. Methodology 

One of the widely used resilience metrics is the real functionality (F) over targeted 

functionality (TF)  

 
я =

∫ 𝐹(𝑡)
௧ೝ

௧೐
𝑑𝑡

∫ 𝑇𝐹(𝑡)
௧ೝ

௧೐
𝑑𝑡

 . (1) 

 

We used this metric to generate scenarios for gas resilience at a given resilience level 

and finally to determine the natural gas supply to the gas-fired generation units. To 

calculate the performance of power grid we used the SCUC [103], [162], [163] and 

incorporated the dependency of the gas in the constraints [164]. It is supposed that extreme 

events will disrupt electricity generation until the recovery action brings the generators 
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back to generation. A full 23 factorial experiment was designed to test for any significant 

differences among three factors to the resilience of the power grid. The factors consist of 

generation capacity (GC), repair time (RT), and severity (SE), which indicated by percent 

inoperable of total generators.  summarizes the treatments.  

 

Table VI-1 Treatments of the factorial design 

 

 

 

Table VI-2: Experiment design 

 

 

To examine the resiliency of the gas network, the resiliency of the gas system, we 

fixed the gas system resilience at six distinct levels, including 100%, 90%, 80%, 70%, 

60%, and 0%. For the scenarios, we supposed the following assumptions: 1) the gas facility 

system has enough adequacies to provide the natural resiliency more than 60%. 2) The 

functionality of the system after recovery will be retained to the initial target functionality 

Factor Level Low (-) Level High (+)

Recovery Time (RT) 9 24

Generation Capacity (GC) <30 MW >500 MW

Severity (SE) # of Gen. Out. <6 (~10%) # of Gen. Out. >27 (~50%)

 A B C 
1 - - - 
a + - - 
b - + - 
ab + + - 
c - - + 
ac + - + 
bc - + + 
abc + + + 
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(100%) of the system. The decision tree of the proposed model consisting the levelized gas 

resilience and electric power system is shown in the following figure.  

 

Figure VI.4 Decision tree of combine gas and power system infrastructure 

 

6.4. Numerical Result 

An integrated IEEE 118-bus system with the Belgian high-calorific gas network [22] 

is used to illustrate the effect of gas supply constraint into the hourly SCUC. All test data 

and network diagrams are available online on the provider’s website [22]. The power 

network includes 54 thermal units, 186 branches, and 91 demand sides. The gas system has 

21 pipelines, three compressors, 20 nodes, nine non-electrical loads, two wells and four 

storages. These networks are linked through 12 gas units: U1, U2, U5, U10 and U11 

consume gas from node 16; U16, U19, and U29 consume gas from node 5; and U40, U47, 

U48, and U52 consume gas from node 10. The result of the simulation for each treatment 

is calculated separately. We assumed different resilience levels for natural gas five different 

supply scenarios for each of these levels were generated. For each gas scenario (100%, 

90%, 70%, 60%, and 0%) and each treatment (Table VI-3). We ran the SCUC using 

CPLEX 12.6 and Java API. The loss of load was calculated for each of the 198 runs of 

SUSC and then 100,000 iterations for Monte Carlo simulation per gas resilience level 
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generated. The summary is presented in Table VI-3. Although the model was to generate 

the events and the generators’ inoperability based on experiments, the result shows a range 

of 1% to 9% decrease as the effect of gas resilience on the resilience of the power system. 

One can compare it to 15% drop in the resilience if the gas is not supplied to any generator 

and there is not a contingency. A high correlation between the gas resilience and power 

resilience observed.  

Table VI-3: The summary of the Monte Carlo simulation for each experiment treatment 

  Electric Resilience 

 
 

1 a ab abc ac b bc c 

N
at

u
ra

l G
as

 
R

es
il

ie
n

ce
 

90% 97% 96% 78% 44% 93% 93% 74% 96% 

80% 95% 94% 76% 43% 91% 91% 73% 94% 

70% 94% 93% 75% 43% 90% 90% 73% 93% 

60% 93% 92% 74% 42% 89% 89% 72% 92% 

0% 84% 83% 65% 36% 80% 81% 63% 83% 

Correlation 93% 92% 93% 97% 91% 93% 98% 92% 

 

6.5. Conclusion 

In this study, we presented a formulation for SCUC which includes gas supply 

constraints. The model was run using CPLEX 12.6 and Java Eclipse. Four levels of gas 

resilience and five scenarios for each of these levels were developed. For each treatment 

of the experiment and each of the gas scenarios, we ran the SCUC and the loss of load 

obtained. The results show a high correlation between power system resilience and natural 

gas system resilience. In some cases, the low resilience of gas supply can reduce the 

resilience of power system to 9%.  
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CHAPTER 7 

VII. CONCLUSIONS AND FUTURE WORK 

In this dissertation, we focused on the resilience enhancement. As a first step, we 

provided a resilience metric. There have been several approaches reported in the literature 

to quantify resilience of a system. However, they were often designed for a specific system 

and there is a they may not be suitable for a given resilience conceptual framework. 

Therefore, we have developed a statistical assessment method for a resilient metric to be 

valid according to the concept of resilience. The design of experiments and ANOVA are 

utilized.  

Then we introduced a quantitative method to enhance system resilience under the 

budgetary constraint. Different states of enhancements for component’s absorption and 

recovery were elaborated and a metric was introduced to measure the resilience-based 

component importance. A mathematical programming formulation was developed to 

optimally allocate budget to components while maximizing the resilience within the limited 

budget. Due to the difficulty of drawing an analytical relationship between investment and 

system resilience, we have developed an algorithm consisting of two steps, in which the 

investment options and components’ functionality were discretized; hence, it overcomes 

the computational difficulty. The proposed optimization model determines how much to 

invest to each selected component, and optimal levels of enhancement in the component’s 

absorption and recovery time. The proposed approach was tested on the IEEE 6-bus and 
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the effects of different utility curves were discussed on the cost of enhancement and 

system’s resilience level. Using the test case, we have demonstrated how optimally allocate 

budget to enhance the system resilience. Moreover, we have observed that the resilience of 

a system may be enhanced with a lower budget if the components follow a Cobb-Douglas 

utility function.  

 The impact of multi-arc failure on system output is considered from the prospect of 

attacker. The problem is a bilevel programming problem; to tackle the computational 

intensity, we developed an MIP problem that solves the original bilevel problem and reduce 

the solving time drastically. We also provided an initialization heuristic that can be used in 

the MIP problem to reduce the computational time. This heuristic is based on our new 

minimum-flow-betweenness centrality. The combination of initializing and MIP can solve 

the problems rather fast. 

For future work the following extensions of the problems studied is suggested. 

Although the relationship between the change in the component absorption and recovery 

and the change in the system functionality was assumed to be linear in this paper, one can 

study further to find a system specific relationship between different enhancement 

scenarios and the change in the functionality of the system in the face of adverse events. 

This can help estimate the projected benefit of an investment on the system resilience. The 

behavior of more utility curve can be studied to find the one with better resilience traits. 

Finally, finding a path generation algorithm for the MADP that generates a portion of all 

the paths, but retains the important paths that are in the optimal solution can enhance our 

approach in this research. Moreover, finding functional connectivity will be utilized in the 
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initialization process. With good functional connectivity, Algorithm 1 can provide a very 

good solution in a short time  
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APPENDIX I : SECURITY CONSTRAINED UNIT COMMITMENT 

The objective of the SCUC problem is to find a unit commitment schedule that 

minimizes the commitment and dispatch costs while meeting the forecasted system load. 

It takes into account various physical or intertemporal constraints of generating resources, 

transmission, and system reliability requirements [103]. The following notations will be 

used in the mathematical model: 

 Sets/indices: GG stands for the number of gas generation units, NG the number of 

units, NT the number of periods, and NB the number of buses.  Index b is  for the buses, 

index i for units, l for lines, and t for the time. 

 Parameters: The parameters in the mathematical formulation consist of, 𝐻 for gas 

heating value (39 MJ/MBTU), 𝑃஽,௧ for system demand at time t, 𝑃௅,௧ for system losses 

at time t, 𝑃୫୧୬ / 𝑃୫ୟ୶  for the Lower / upper limit of the real power generation of the 

unit, 𝑃𝐿௟,௠௔௫
௧ /𝑃𝐿௟,௠௜௡

௧  for the maximum/minimum capacity of the line l, 𝑅ை,௧ / 𝑅ௌ,௧  for 

the system operating / spinning reserve requirement at time t, 𝑇௜
௢௙௙ / 𝑇௜

௢௡ for minimum 

down and up time of the unit i, 𝑈𝑅௜/ 𝐷𝑅௜ for the maximum Ramp  up/down, and finally 

𝜂௜ for the efficiency of the generator. Parameter 𝑍௜௧ and 𝐺௜௧ are the control variables in 

our simulations that are designed specifically for each scenario. 

 Decision variables. 𝐼௜௧ is the commitment state of the unit i at time t , 𝑃௜௧  is the 

generation of unit i at time t, 𝑃𝐿௟
௧ is the real power flow on line l, 𝑅ை,௜௧ and 𝑅ௌ,௜௧ are the 

operating and spinning reserve of the unit i at time t respectively. 𝑋௜௧
௢௙௙and 𝑋௜௧

௢௡ are the 

OFF and ON time of the unit i at time t, 𝜃௕௜ is the phase angle, and 𝑄௜௧ the quantity of 

gas consumed by the (gas fired) generator i at time t. 
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Equation (7) is the objective function, which is the cost of generation and load 

shedding cost with a value of lost load (VOLL) $1000/MWh. The objective function is 

comprised of the fuel cost for producing electric power, the startup cost, and the shutdown 

cost. Originally the fuel cost is a quadratic and convex function, and we used a piecewise 

linear function to estimate it. Equation (8) is the generation limit. Constraint (9) indicates 

the capacity boundaries of each unit. The C problem must meet the required system 

spinning and operating reserves (10) which are defined by the independent system operator 

(ISO). The ramp up (11) and ramp down (12) constraints, minimum uptime and minimum 

down time (13) constraints have to satisfy in operation of the power system.  Constraint 

(14) shows the static network security constraints, including power flow and transmission 

line flow. The constraint (15) reflects the dependency of power generation dispatch and 

natural gas supply as an input of a power plant. We extract load shedding from the last 

equation (16). 

𝑚𝑖𝑛 ෍ ෍[𝐹௖௜(𝑃௜௧) + 𝑆𝑈௜௧ + 𝑆𝐷௜௧]

ே்

௧ୀଵ

ேீ

௜ୀଵ

+ ෍ ෍ 𝑉𝑜𝑙𝑙 × 𝐿𝑆௜௧

ே்

௧ୀଵ

ே஻

௜ୀଵ

  

s.t. 𝑃௠௜௡ 𝐼௜௧ ≤ 𝑃௜௧ ≤ 𝑃௠௔௫ 𝐼௜௧, ∀𝑖, 𝑡 (1)  

෍ 𝑝௜௧

ேீ

௜ୀଵ

= 𝑃஽,௧, ∀𝑡  (2)  

෍ 𝑅ௌ,௜௧ × 𝐼௜௧ ≥ 𝑅ௌ,௧

ேீ

௜ୀଵ

, ∀𝑠, 𝑡 

෍ 𝑅ை,௜௧ × 𝐼௜௧ ≥ 𝑅ை,௧

ேீ

௜ୀଵ

, ∀𝑠, 𝑡 

(3)  

𝑃௜௧ − 𝑃௜(௧ିଵ) ≤ [1 − 𝐼௜௧൫1 − 𝐼௜(௧ିଵ)൯𝑈𝑅௜ + 𝐼௜௧൫1 − 𝐼௜(௧ିଵ)൯𝑃௜,௠௜௡] (4)  
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𝑃௜(௧ିଵ) − 𝑃௜௧ ≤ [1 − 𝐼௜௧൫1 − 𝐼௜(௧ିଵ)൯𝐷𝑅௜ + 𝐼௜௧൫1 − 𝐼௜(௧ିଵ)൯𝑃௜,௠௜௡] 
(5)  

ൣ𝑋௜(௧ିଵ)
௢௡ − 𝑇௜

௢௡൧ൣ𝐼௜(௧ିଵ) − 𝐼௜௧൧ ≥ 0, ∀i, t 

ቂ𝑋௜(௧ିଵ)
௢௙௙

− 𝑇௜
௢௙௙

ቃ ൣ𝐼௜௧ − 𝐼௜(௧ିଵ)൧ ≥ 0, ∀𝑖, 𝑡 
(6)  

−𝑃𝐿௟௧,୫ୟ୶ ≤ 𝑃𝐿௟௧ ≤ 𝑃𝐿௟௧,୫ୟ୶ , ∀i, t 

𝑃𝐿௟௧ =
𝜃௕௜ − 𝜃௕௝

𝑥௕௜,௕௝ 
 

(7)  

𝑝௜௧ =  𝜂௜  𝑄௜௧𝐻, ∀i ∈ GG, t 

𝑄௜௧ ≤ 𝑄𝐺௜௧, ∀i ∈ GG, t 
(8)  

෍ 𝑃𝐿௟௧ = 𝑃௕௧ − 𝑃𝐷௕௧ + 𝐿𝑆௕௧

ே௅

௟ୀଵ

. ∀𝑏, 𝑡 
(9)  

 

APPENDIX II: 57-BUS SYSTEM DATA 

Table II.1: Demand data for the first 24 hours 
Hour demand ssr sor  Hour demand ssr sor 
1.  131.97 0 0  13.  183.43 0 0 
2.  136.12 0 0  14.  188.41 0 0 
3.  128.65 0 0  15.  189.24 0 0 
4.  123.67 0 0  16.  193.39 0 0 
5.  120.35 0 0  17.  199.2 0 0 
6.  120.35 0 0  18.  199.2 0 0 
7.  125.33 0 0  19.  191.73 0 0 
8.  135.29 0 0  20.  191.73 0 0 
9.  138.61 0 0  21.  185.09 0 0 
10.  145.25 0 0  22.  185.09 0 0 
11.  161.02 0 0  23.  180.94 0 0 
12.  177.62 0 0  24.  152.72 0 0 
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Table II.2: Percent of total load at each bus 

bus percent load bus percent load bus percent load 
1 0 20 65.82 39 87 
2 24.42 21 18.05 40 17 
3 37 22 25.48 41 17 
4 0 23 45.65 42 18 
5 21.23 24 62.63 43 23 
6 24.42 25 24.42 44 113 
7 24.42 26 62.63 45 63 
8 49.89 27 35.03 46 84 
9 36.09 28 32.91 47 12 

10 14.86 29 27 48 12 
11 95.54 30 20 49 277 
12 26.54 31 37 50 78 
13 11.68 32 37 51 77 
14 63.69 33 18 52 39 
15 47.77 34 16 53 28 
16 19.11 35 53 54 66 
17 14.86 36 28 55 68 
18 10.62 37 34 56 47 
19 7.43 38 20 57 68 

 

Table II.3: Line data 

start End Max Flow x  Start End Max Flow x 

23 24 100 0.0492  30 31 500 0.127 

25 27 500 0.163  31 32 100 0.4115 

31 32 100 0.0985  32 33 100 0.0355 

23 24 100 0.0492  34 32 100 0.196 

1 3 100 0.0424  34 35 100 0.18 

25 27 500 0.163  35 36 100 0.0454 

25 27 500 0.163  36 37 100 0.1323 

8 9 100 0.0605  37 38 100 0.141 

9 10 100 0.0487  37 39 500 0.122 

9 11 100 0.289  36 40 100 0.0406 

9 12 100 0.291  22 38 100 0.148 

9 13 100 0.0707  11 41 100 0.101 

13 14 100 0.00955  41 42 100 0.1999 

13 15 100 0.0151  41 43 100 0.0124 

1 15 100 0.0966  38 44 100 0.0244 

1 16 100 0.134  15 45 500 0.0485 
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start End Max Flow x  Start End Max Flow x 

1 17 100 0.0966  14 46 500 0.105 

3 15 100 0.0719  46 47 100 0.0704 

4 18 100 0.2293  47 48 500 0.0202 

4 18 100 0.251  48 49 500 0.037 

5 6 100 0.239  49 50 100 0.0853 

7 8 100 0.2158  50 51 100 0.03665 

10 12 100 0.145  10 51 100 0.132 

11 13 100 0.15  13 49 100 0.148 

12 13 500 0.0135  29 52 100 0.0641 

12 16 100 0.0561  52 53 500 0.123 

12 17 100 0.0376  53 54 500 0.2074 

14 15 500 0.0386  54 55 100 0.102 

18 19 500 0.02  11 43 100 0.173 

19 20 500 0.0268  44 45 500 0.0712 

21 20 500 0.0986  40 56 500 0.188 

21 22 500 0.0302  56 41 500 0.0997 

22 23 500 0.0919  56 42 100 0.0836 

23 24 500 0.0919  39 57 500 0.0505 

24 25 100 0.218  57 56 500 0.1581 

24 25 100 0.117  38 49 100 0.1272 

24 26 500 0.037  38 48 100 0.0848 

26 27 100 0.1015  9 55 100 0.158 

27 28 500 0.016  28 29 100 0.2778 

7 29 100 0.324  25 30 500 0.037 
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Figure II.1: Graph of 57-bus, source: http://icseg.iti.illinois.edu 

Table II.4: unit data 
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cs
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cs
eg
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1 30 80 74 0 0 4 4 40 40 3 0 1 4 30 96 40 17 52 

2 5 20 18 0 0 1 1 10 10 1 0 1 1 5 96 10 38 114 

3 20 50 59 0 0 1 1 50 50 1 0 1 1 20 96 25 23 70 

6 30 80 74 0 0 4 4 40 40 3 0 1 4 30 96 40 17 52 

8 5 30 32 0 0 1 1 30 30 1 0 1 1 5 96 15 27 82 

9 5 20 18 0 0 1 1 10 10 1 0 1 1 5 96 10 38 114 

12 5 20 18 0 0 1 1 10 10 1 0 1 1 5 96 10 38 114 
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APPENDIX III: 𝜶 SCENARIOS 

 

Figure III.1: Different 𝜆 combinations 

APPENDIX IV: INTERACTION PLOTS 

 

Figure IV.1: Interaction plots 
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APPENDIX V: CALCULATIONS OF Я𝟏 AND Я𝟐 BEFORE INVESTMENT 

a) Calculations for яଵ 

яଵ = න
𝐹(𝑡)

𝑇𝐹(𝑡)
𝑑𝑡

௧೏

଴

= ෍
𝐹(𝑡) + 𝐹(𝑡 + 1)

2

௧೏ିଵ

௧ୀ଴

=
1

2𝑡ௗ
෍ ൭

1

𝑁
෍ 𝑅𝐶𝐼௜ 𝑓௜,௧

ே

௜ୀଵ

+
1

𝑁
෍ 𝑅𝐶𝐼௜ 𝑓௜,௧ାଵ

ே

ଵ

൱

௧೏ିଵ

௧ୀ଴

 

1

2𝑁𝑡ௗ
෍ ቌ෍ 𝑅𝐶𝐼௜ ቌ൬1 −

𝐴௜

𝑡ௗ
𝑡൰ + ൭1 −

𝐴௜

𝑡ௗ

(𝑡 + 1)൱ቍ

ே

௜ୀଵ

ቍ

௧೏ିଵ

௧ୀ଴

=
1

2𝑁𝑡ௗ
෍ ቌ𝑅𝐶𝐼௜ ෍ ൬2 −

2𝐴௜

𝑡ௗ
𝑡 −

𝐴௜

𝑡ௗ
൰

௧೏ିଵ

௧ୀ଴

ቍ

ே

௜ୀଵ

=
1

𝑁𝑡ௗ
෍ 𝑅𝐶𝐼௜(−

1

2
𝐴௜𝑡ௗ + 𝑡ௗ)

ே

௜ୀଵ

=
1

𝑁
෍ 𝑅𝐶𝐼௜(−

1

2
𝐴௜ + 1)

ே

௜ୀଵ

 

b) Calculations for яଶ 

яଶ = න
𝐹(𝑡)

𝑇𝐹(𝑡)
𝑑𝑡

்

௧೏

=
1

𝑇 − 𝑡ௗ
෍

𝐹(𝑡) + 𝐹(𝑡 + 1)

2

்ିଵ

௧ୀ௧೏

=
1

2(𝑇 − 𝑡ௗ)
෍ ൭

1

𝑁
෍ 𝑅𝐶𝐼௜ 𝑓௜,௧

ே

௜ୀଵ

+
1

𝑁
෍ 𝑅𝐶𝐼௜ 𝑓௜,௧ାଵ

ே

௜ୀଵ

൱

்ିଵ

௧ୀ௧೏

=
1

2𝑁(𝑇 − 𝑡ௗ)
෍ 𝑅𝐶𝐼௜ ቌ ෍  𝑓௜,௧

்ିଵ

௧ୀ௧೏

+ ෍  𝑓௜,௧ାଵ

்

௧ୀ௧೏ାଵ

ቍ

ே

௜ୀଵ

 

We calculate ∑  𝑓௜,௧
்ିଵ
௧ୀ௧೏

+ ∑  𝑓௜,௧ାଵ
்
௧ୀ௧೏ାଵ  separately and plug it into the above formula. 
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෍  𝑓௜,௧

்ିଵ

௧ୀ௧೏

= ෍  ൭1 −
−𝐴௜

𝑇௜ − 𝑡ௗ

(𝑇௜ − 𝑡)൱

்೔ିଵ

௧ୀ௧೏

+ ෍ 1

்ିଵ

௧ୀ்೔

              

= ෍  
−𝐴௜

𝑇௜ − 𝑡ௗ
𝑇௜ +

்೔ିଵ

௧ୀ௧೏

෍  
𝐴௜

𝑇௜ − 𝑡ௗ
𝑡 +

்೔ିଵ

௧ୀ௧೏

෍ 1

்ିଵ

௧ୀ௧೏

= −𝐴௜𝑇௜ +
𝐴௜

2
(𝑡ௗ + 𝑇௜ − 1) + (𝑇 − 𝑡ௗ), 

and 

෍  𝑓௜,௧ାଵ

்

௧ୀ௧೏ାଵ

= ෍  ൭1 −
𝐴௜

𝑇௜ − 𝑡ௗ

(𝑇௜ − 𝑡)൱

்೔

௧ୀ௧೏ାଵ

+ ෍ 1

்

௧ୀ்೔ାଵ

= ෍  
−𝐴௜

𝑇௜ − 𝑡ௗ
𝑇௜ +

்೔

௧ୀ௧೏ାଵ

෍  
𝐴௜

𝑇௜ − 𝑡ௗ
𝑡 +

்೔

௧ୀ௧೏ାଵ

෍ 1

்

௧ୀ௧೏ାଵ

= −𝐴௜𝑇௜ +
𝐴௜

2
(𝑡ௗ + 𝑇௜ + 1) + (𝑇 − 𝑡ௗ). 

Hence  

෍  𝑓௜,௧

்ିଵ

௧ୀ௧೏

+ ෍  𝑓௜,௧ାଵ

்

௧ୀ௧೏ାଵ

= −𝐴௜𝑇௜ +
𝐴௜

2
(𝑡ௗ + 𝑇௜ − 1) + (𝑇 − 𝑡ௗ) − 𝐴௜𝑇௜ +

𝐴௜

2
(𝑡ௗ + 𝑇௜ + 1) + (𝑇 − 𝑡ௗ)

= −2𝐴௜𝑇௜ +
𝐴௜

2
(2𝑡ௗ + 2𝑇௜) + 2(𝑇 − 𝑡ௗ) = −𝐴௜(𝑇௜ − 𝑡ௗ) + 2(𝑇 − 𝑡ௗ) 

Replacing the ∑  𝑓௜,௧
்ିଵ
௧ୀ௧೏

+ ∑  𝑓௜,௧ାଵ
்
௧ୀ௧೏ାଵ  in the яଶ yields 

яଶ =
1

2𝑁(𝑇 − 𝑡ௗ)
෍ 𝑅𝐶𝐼௜൫−𝐴௜(𝑇௜ − 𝑡ௗ) + 2(𝑇 − 𝑡ௗ)൯

ே

௜ୀଵ

=
1

𝑁
෍ 𝑅𝐶𝐼௜ ቆ

−𝐴௜

2

(𝑇௜ − 𝑡ௗ)

(𝑇 − 𝑡ௗ)
+ 1ቇ

ே

௜ୀଵ

. 
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APPENDIX VI: CALCULATING Я AFTER INVESTMENT 

The parameters 𝛼ଵ, 𝛼ଶ, 𝑅𝐶𝐼௜ , 𝐴௜ , 𝑇௜ , 𝛾௜,ଶ, and 𝑡ௗ are inputs to the model and they are known 

prior to the optimization. Let 𝑏௜ଵ =
ఈభோ஼ூ೔஺೔

ଶ
, 𝑏′௜ଵ = −𝑏௜ଵ + 𝛼ଵ𝑅𝐶𝐼௜𝑡ௗ , 𝑏௜ଶ =

ఈమோ஼ூ೔஺೔

ଶ
, and 

𝑏௜ଶ
ᇱ = 𝑏௜ଶ𝑇௜ , then яଵ and яଶ can be calculated as follows: 

яଵ =
1

𝑁
෍ 𝑅𝐶𝐼௜ ൬−

1

2
𝐴௜(1 − 𝑎௜) + 1൰

ே

௜ୀଵ

=
1

𝑁
෍(𝑏௜ଵ𝑎௜ + 𝑏௜ଵ

ᇱ )

ே

ଵ

 

яଶ =
1

𝑁
෍ 𝑅𝐶𝐼௜ ቆ

−𝐴௜(1 − 𝑎௜)

2

[𝑇௜ (1 − 𝑟௜) − 𝑡ௗ]

(𝑇 − 𝑡ௗ)
+ 1ቇ

ே

௜ୀଵ

=
1

𝑁
෍

−𝛼ଶ𝑅𝐶𝐼௜𝐴௜

2

[𝑇௜  (1 − 𝑟௜) − 𝑡ௗ]

(𝑇 − 𝑡ௗ)

ே

௜ୀଵ

+
1

𝑁
෍

𝛼ଶ𝑅𝐶𝐼௜𝐴௜

2

𝑎௜[𝑇௜  (1 − 𝑟௜) − 𝑡ௗ]

(𝑇 − 𝑡ௗ)
+ 𝛼ଶ𝑅𝐶𝐼௜

ே

௜ୀଵ

=
1

𝑁
෍ ቆ

[𝑏௜ଶ
ᇱ  𝑟௜ − 𝑏௜ଶ

ᇱ + 𝑏௜ଶ𝑡ௗ] + [ 𝑏௜ଶ
ᇱ  𝑎௜−𝑏௜ଶ

ᇱ  𝑟௜𝑎௜ + 𝑏௜ଶ𝑡ௗ𝑎௜]

𝑇 − 𝑡ௗ
ቇ

ே

௜ୀଵ

+ 𝛼ଶ𝑅𝐶𝐼௜

=
1

𝑁
෍ ቆ

𝑏௜ଶ
ᇱ  𝑟௜ + (𝑏௜ଶ

ᇱ  + 𝑏௜ଶ𝑡ௗ)𝑎௜−𝑏௜ଶ
ᇱ  𝑟௜𝑎௜ + (𝑏௜ଶ𝑡ௗ − 𝑏௜ଶ

ᇱ )

𝑇 − 𝑡ௗ
ቇ + 𝛼ଶ𝑅𝐶𝐼௜

ே

௜ୀଵ

 

 

я = 𝛼ଵяଵ + 𝛼ଶяଶ + 𝛼ଷ

𝑇଴

𝑇
=

1

𝑁
෍ ൬

𝜉௜ଵ 𝑎௜ + 𝜉௜ଶ 𝑎௜𝑟௜ + 𝜉௜ଷ 𝑟௜ + 𝜉௜ସ𝑇 + 𝜉௜ହ𝑎௜𝑇 + 𝜉௜଺

𝑇 − 𝑡ௗ
൰ +

𝑇଴

𝑇

ே

௜ୀଵ

 

where 𝜉௜ଵ = 𝑏௜ଵ𝑡ௗ + 𝑏௜ଶ
ᇱ  + 𝑏௜ଶ𝑡ௗ, 𝜉௜ଶ = −𝑏௜ଶ

ᇱ , 𝜉௜ଷ = 𝑏௜ଶ
ᇱ , 𝜉௜ସ = 𝑏௜ଵ

ᇱ , 𝜉௜ହ = 𝑏௜ଵ and 

𝜉௜଺ = 𝑏௜ଵ
ᇱ 𝑡ௗ + 𝑏௜ଶ𝑡ௗ − 𝑏௜ଶ

ᇱ . 
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APPENDIX VII: IEEE BUS-6 DATA 

 

 
Figure VII.1: Bus-6 network diagram Figure VII.2: Bus-6 hourly total demand 

 

Table VII.1: Bus-6 data for generation units 
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1 

ps
eg

m
ax
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cs
eg

1 

cs
eg

2 

ge
nm

tt
r 

in
ve

st
m

en
t 

N0 
1 100 220 10.15 50 100 4 4 55 55 1 0 1 5 25 25 50 50 18.46 55.4 30 60 

N1 
2 10 100 39 100 200 3 2 50 50 1 0 1 11 50 25 100 100 13.73 41.2 68 30 

N2 
3 10 40 31.67 0 0 1 1 20 20 1 0 1 1 10 25 15 15 27.2888 81.9 68 27 

 

Table VII.2:Bus-6 data for transmission lines. 

Names begin end phase capacity linemttr investment 
E3 1 2 0.17 200 12 10 
E4 2 3 0.037 100 8 7 
E5 1 4 0.258 100 8 7 
E6 2 4 0.197 100 8 7 
E7 4 5 0.037 100 8 7 
E8 5 6 0.14 100 8 7 
E9 3 6 0.018 100 8 7 
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APPENDIX VIII: COST FACTORS 

Table VIII.1: Cost factors 

  

re 0 0.25 0.5 0.75 1 

ab 0 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

L
in

ea
r 

(0.75,0.25) 0 0.25 0.31 0.38 0.44 0.44 0.5 0.56 0.62 0.62 0.69 0.75 0.81 0.81 0.88 0.94 1 
(0.6,0.4) 0 0.25 0.35 0.45 0.55 0.4 0.5 0.6 0.7 0.55 0.65 0.75 0.85 0.7 0.8 0.9 1 
(0.5,0.5) 0 0.25 0.38 0.5 0.62 0.38 0.5 0.62 0.75 0.5 0.62 0.75 0.88 0.62 0.75 0.88 1 
(0.4,0.6) 0 0.25 0.39 0.54 0.68 0.36 0.5 0.64 0.79 0.46 0.61 0.75 0.89 0.57 0.71 0.86 1 

(0.25,0.75) 0 0.25 0.41 0.56 0.72 0.34 0.5 0.66 0.81 0.44 0.59 0.75 0.91 0.53 0.69 0.84 1 

C
D

  

0.1 0 0.25 0.27 0.28 0.29 0.47 0.5 0.52 0.54 0.67 0.72 0.75 0.77 0.87 0.93 0.97 1 
0.3 0 0.25 0.31 0.35 0.38 0.41 0.5 0.56 0.62 0.54 0.66 0.75 0.82 0.66 0.81 0.92 1 
0.5 0 0.25 0.35 0.43 0.5 0.35 0.5 0.61 0.71 0.43 0.61 0.75 0.87 0.5 0.71 0.87 1 
0.9 0 0.25 0.47 0.67 0.87 0.27 0.5 0.72 0.93 0.28 0.52 0.75 0.97 0.29 0.54 0.77 1 

C
E

S 

(0.1, 0.1) 0 0.25 0.27 0.28 0.29 0.47 0.5 0.52 0.54 0.68 0.72 0.75 0.77 0.88 0.94 0.97 1 
(0.3, 0.5) 0 0.25 0.36 0.45 0.54 0.36 0.5 0.62 0.72 0.45 0.62 0.75 0.87 0.54 0.72 0.87 1 
(0.5, 0.4) 0 0.25 0.34 0.42 0.49 0.39 0.5 0.59 0.68 0.52 0.64 0.75 0.85 0.64 0.78 0.9 1 
 (0.9, 1) 0 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

 

 

 


