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ABSTRACT

The problem of discrete compensator design for acceptable 

transient response in linear stationary plants modeled in state-variable 

form is considered in this research. A digital computer algorithm is 

programmed in FORTRAN for calculation of the feedforward compensator 

transfer function coefficients. The generalized method for realization 

of the compensator is demonstrated. System performance with no compen­

sation, classical phase-lead compensation, and discrete compensation is 

exemplified via a CSMP simulation. An investigation of the effect of 

saturation nonlinearity in the plant with respect to the discrete com­

pensator design is included.

by

Raymond Earl Fulghum
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CHAPTER I

INTRODUCTION

Background

Industrial corporations have recently been confronted with con­

sumer demands for increased economy and reliability. The concurrent 

dissemination of knowledge in the field of automatic control theory has 

led to research in automatic control applications.

The electric utility industry is faced with a twofold control 

problem—the economic dispatch and load frequency requirements. The 

economic dispatch algorithm must calculate a set of steady-state operat­

ing points for the generators such that the power system operating costs 

and energy loss in transmission are minimized for generator output per­

turbations. The load frequency control program must calculate and al­

locate a set of generator demand inputs, altering real power generation 

in response to system load variations such that integrated system control 

error is minimized.

A practical solution to the economic dispatch of real power has 

been developed by Kirchmayer (1958). Research concerning the extension 

of economic dispatch philosophy to reactive power is in progress (Adibi, 

1969).

The load frequency control problem has been widely investigated 

with classical work by Cohn (1957) and most recent effort by Elgerd and 

Fosha (1969). This prior load frequency control research was concentrat­

ed upon the dynamic characteristics of the power system as a whole, ig­

noring the dynamics peculiar to single prime mover-turbine-generator
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combinations. Justification for this approach lay in the fact that the 

power system time constants associated with frequency and net interchange 

variations were two orders of magnitude larger than the time constants 

for output variations in turbine-generator units. Furthermore, the sub- 

critical steam generators and hydro units traditionally used as prime 

movers could be considered as energy sources. As such, these prime 

movers had insignificant time constants with respect to load frequency 

control (Cohn, 1957). Figure 1.1 shows the traditional relationship of 

a typical prime mover-turbine-generator combination to the load frequency 

control system.

Figure 1.1

TRADITIONAL LOAD FREQUENCY CONTROL 
RELATIONSHIP

The need for increased thermodynamic efficiency in the prime mover 

has recently been served by the installation of supercritical (once- 

through) steam generators. The major local electric utility, Houston 

Lighting and Power Company, currently produces fifty-three per cent of 

its system capability with four supercritical utiits. Power output of a 

once-through boiler is a function of fuel and air input. Also, the time 

constants associated with supercritical boiler dynamics are of the same 
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order of magnitude as the time constants for system frequency and net 

interchange variations. Therefore, the once-through boiler must be 

placed in the load frequency control loop, as illustrated in Figure 1.2 

(Kenny, 1967).

GENERATOR 
DEMAND

REAL POWER 
OUTPUT

Figure 1.2 

SUPERCRITICAL BOILER/LOAD FREQUENCY CONTROL 
RELATIONSHIP

Problem Definition

The area of investigation in this work is one of compensator 

design for acceptable transient response of a generalized boiler-turbine- 

generator unit under load frequency control. As the load frequency con­

trol is accomplished in a region of perturbation about a steady-state 

operating point, a linear plant model of the boiler-turbine-generator 

will be satisfactory (Schultz and Melsa, 1967:112-118). The time con­

stants for parameter variations in the plant are on the order of months; 

thus the linear plant will be considered time-invariant with respect to 

load frequency control.

Houston Lighting and Power Company is currently implementing a 

typical digital load frequency control program. The algorithm employs 

sampled-data inputs and generator demand outputs, both of identical con­

stant periodicity. The generator demand signal is conditioned to a step 
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of constant amplitude during the sample period. The step has height 

directly proportional to the magnitude of the generator demand and sign 

indicating the direction of change. Also, the load frequency control 

algorithm treats each boiler-turbine-generator unit as a single-input 

(generator demand) and single-output (real power) plant.

Within the context of plant real power output response to gener­

ator demand input, acceptable transient response may be defined as small 

rise time, small overshoot, and small settling time. The specific prob­

lem considered in this thesis is, therefore, compensator design for 

approximately deadbeat response of a single-variable, linear, time­

invariant plant to a step input.



CHAPTER II

STATE-VARIABLE THEORY

This chapter prepared the reader with the basics of state-variable 

theory as background for the compensator design procedure developed in 

Chapter III. The state-variable representation is defined, and the state 

transition equation for continuous variables is derived.

State-Variable Representation

A state-variable representation is the expression of an n-th 

order ordinary differential equation as a set of n first order ordinary

differential equations (Dorf, 1965). For example, consider the second

order ordinary differential equation

d^y , dy .
‘!^2taldt+Vr 2.1

Letting x = y and = 4^. 
i z dt the set of first order differential equations

may be written as

dxj 
dT = x2

dx2 a0 ai
-—  ---- x, - L xo +dt a2 1 a2

2.2

2.3

The time derivative ^Xn is written in the form throughout the remain­

der of this work. As Equation 2.1 is linear. Equations 2.2 and 2.3 may

be written in matrix form
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Here the dependent variables and x2 are defined as the state­

variables. The system represented by Equation 2.1 is completely described 

by Equation 2.4 and the value of the state vector at some initial time tg

xi(to) C!

x2(to) c2
2.5

Now the word "plant11 will be defined as the unaltered set of 

first order differential equations describing a process, and the word 

"system" as the total set of equations describing the original process 

and any attached compensation in either a feedforward or feedback signal 

path.

State Transition Equation

Given a linear plant with external input and the initial value 

of the state vector, calculation of the state vector value for an arbi­

trarily specified later point in time is possible. A mathematically 

tractable format for this calculation, the state transition equation, will 

now be derived.

The generalized matrix notation for describing a linear plant 

with a single input is

1 = A x + b_ r 2.6

where, for an n-vector x and scalar input r, A is the n x n plant matrix 
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and is the n-vector relating the input to the state-variables. For a 

time-invariant system, the elements of A and b_ are constants.

First consider the scalar, time-invariant form of Equation 2.6

x = a x + b r 2.7

Taking the Laplace transform of Equation 2.7 results in

k X (s) - x (0) = a X (s) + b R (s) 2.8

Solving for X (s),

X (s) - 2.9

The inverse Laplace transform of Equation 2.9 is (Cheng, 1961)

x = eat x<0) + / EaCt*-Y) r (y) j y 2.10
0

Equation 2.10 is the scalar state transition equation for continuous 

variables.

Now a similar set of operations is performed on Equation 2.6, 

assuming time-invariance.

L {jc} = fe {A x + b r) 2.11

s X (s) - x (0) = A X (s) + b R (s) 2.12

Solving for X (s),

X (s) = {s I - A}-1 x (0) + {s I - A}"1 b R (s) 2.13

where I is the identity matrix.
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The inverse Laplace transform of Equation 2.13 is (Schultz and Melsa, 

1967:129)

x = x. (0) + / eA(t-y) r a 2.14
0

Ait*The matrix exponential function e will now be expressed in 

terms of the plant matrix A. Consider the input r of Equation 2.14 equal 

to zero

x = EAt X (0) 2.15

Now assume a Taylor’s Series expansion of the vector x about the origin 

of state space

x - V ctn 2.16
— ~nn=0

or = So + + Sa^2 + c3t3 + • • • 2.17

In order to determine the vector coefficients c^» Equation 2.17 is suc­

cessively differentiated and evaluated at t=0 (Dorf, 1965:8). This set 

of operations gives

An = —r x (0) 2.18—n n! —

Substituting from Equation 2.18 to Equation 2.16,

00 An fn
x = 'L x (0) 2.19

n=0

Now by comparing like terms of Equation 2.19 and Equation 2.15, 
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The Infinite series of Equation 2.20 may be shown to be convergent for 

all square matrices A (Courant and Hilbert, 1965:19).
AtBy defining the transition matrix $(t) as e and specifying 

arbitrary initial time t0. Equation 2.14 is rewritten

t
x (t) = $ (t-t.) x (t ) + / $(t-x) b r (y) d y 2.21

u u
0

Equation 2.21 is the general form of the matrix state transition equa­

tion for continuous variables (Dorf, 1965:12).

Summary

The discrete compensator design procedure developed in Chapter III 

requires no more from the theory of state-variables than that presented 

in this chapter. As the system is composed of a continuous signal plant 

and a discrete signal compensator, some of the derivations must be made 

in the z-transform domain instead of the Laplace domain, but the principles 

and the form of the equations are exactly the same.



CHAPTER III

DEVELOPMENT OF DESIGN PROCEDURE

The first section of this chapter documents the design procedure 

for the discrete compensator chosen to solve the control problem stated 

in Chapter I. A realization of the discrete compensator is also defined. 

A classical continuous compensator design is formulated in section two 

of this chapter in order that the discrete design and the continuous de­

sign may be compared in Chapter IV.

Discrete Compensator

Design procedure. The major portion of the theory used in the 

discrete compensator synthesis is the result of work by Meksawan and 

Murphy (1963). The identity of the control problem defined in Chapter I 

and the problem investigated by Meksawan and Murphy served as the basis 

for selection of their technique.

Consider the configuration of elements in Figure 3.1.

T 
r(t) > rCtfc) ZERO- 

ORDER 
HOLD

m(t) LINEAR 
PLANT

x(t)

Figure 3.1

OPEN-LOOP SAMPLED SYSTEM

Noting that the linear plant input is m(t), Equation 2.21, page 9, may 

be rewritten as
t

x (t) = (t-t0) x (tQ) + / $ (t-y) b^ m (y) d y 3.1
to



11

The input-output relationship of the zero-order hold is

m (fck + Y) = r (tk), for 0 < y < tfc+i - tfc 3.2

where r (tk) is the instantaneous value of r(t) at corresponding sampling 

instants tk, k = 0, 1, 2, ... . A constant sample period is now chosen, 

of interval length

1 - ‘k+l - ‘k • 3'3

With initial time tQ = tk = kT, Equation 3.1 may be rewritten to give the 

value of the state vector x(t) at t = tk+1 = (k+1) T as

(k+l)T
x [(k+l)T] = $ (T) x (kT) + / $[(k+l)T-Y] b d y r (kT) 3.4

kT

For a time-invariant system, the integral portion of Equation 3.4 is in­

dependent of k, so for k = 0,

(k+l)T T
/ $[(k+l)T-Y] b d y = / (T-y) b d y 3.5
kT 0

As 5> (t) “ e , the value of the integral in Equation 3.5 is independent 

of the direction of integration; therefore,

T T
/ $ (T-y) b_ d y = / (y) b^ d y 3.6
0 0

By definition, let

T
d (T) = / $ (y) b d y 3.7

0
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Then Equation 3.4 becomes

x [(k+l)T] = 5 (T) x (kT) + d (T) r (kT) 3.8

Equation 3.8 may now be used to describe the dynamic behavior of 

a system containing both continuous and discrete elements, or one about 

which some behavioral information is available only at discrete instants 

in time. Such a system is illustrated in Figure 3.2.

Figure 3.2

CONTROL SYSTEM WITH DISCRETE COMPENSATOR

Rewriting Equation 3.8 in the notation of Figure 3.2,

x [(k+l)T] = $ (T) x (kT) + d (T) m (kT) 3.9

The development of a form of Equation 3.9 suitable for digital 

computer programming is now performed. Noting that $(T) is a constant 

matrix and d^(T) is a constant vector, the z-trans6orm of Equation 3.9 is

z X (z) - z x (0) = $ X (z) + d M (z) 3.10

Solving for X (z),

X (z) = (z I - $}-1 z x (0) + {z I - $}_1 d M (z) 3.11

From Kuo (1964:136), the inverse z-transform of Equation 3.11 is
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k-1
x (kT) = $ (kT) x (0) + $ [(k-l-j)T] d (T) m (kT) 3.12

j=0

In order to express Equation 3.12 in a more useful form, multiply both

sides by $(-kT).

k-1
S(-kT)x(kT) = $(-kT)$(kT)x(0) + Y *(-kT)$[(k-l-j)T]d(T)m(kT) 3.13

j-o

It may be shown that e^'1' and e-^ are reciprocal matrices (Schultz and

Helsa, 1967:122), so that

0(-kT)$(kT) = I 3.14

Also,

4>(-kT)$[(k-l-j)T] - e-kATe(k-l-j)AT

= e-(j+l)AT

$(-kT)$[(k-l-j)T] = »[-(j+l)T] 3.15

Therefore, Equation 3.12 may be given as

k-1
$(-kT)x(kT) - x(0) = $[-(j+l)T]d(T)m(JT) 3.16

j=0

Now define

2(1) = $(-lT) d (T) 3.17

and

2(k,i) = $[(i-k)T]x(kT) - x(i) 3.18

Substituting Equations 3.17 and 3.18, Equation 3.16 becomes
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k-1
iCk.O) = Z(j+1) m (jT)

j=0
3.19

For a linear plant of order n, Equation 3.19 represents a set of n 

simultaneous linear equations with k unknowns, where k=n. The sequence 

of unknowns m(jT), j=0, 1, ..., k-1, is the set of control signals required 

to produce state transition from x(0) to scCkT) in at least n sampling 

periods.

Now Equation 3.19 may be expressed as follows:

q1(k,0) p/1) P1(2) . . • p/k) m(0)

q2(k,0)
=

p2(l) P2(2) . . . P2(k) m(T)
3.20

qn(k>0) Jn^) Pn(2) • • • Pn(k)_ m[(k-l)T]

or

£ = P m 3.21

If the matrix P is determined to be non-singular, then the control vector 

m may be found by

m = P"1 £ 3.22

The error vector e(kT) input to the discrete compensator is now 

characterized. Defining as a scalar and as a row vector relating 

the error to the system input and the state vector, respectively, the 

error may be expressed as

e(kT) BjrCkT) + B2x(kT) 3.23
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Equation 3.23 yields an error vector with elements e(jT) for

j = 0, 1, .... k-1.

The discrete compensator input and output vectors developed in 

this subsection are used to produce the discrete compensator realization 

in the following subsection.

Realization. In order to obtain the discrete compensator realiza­

tion, the following pulse transfer function is formed (Dorf, 1965:136):

k-1 
m(jT) 6 (t-jT)

M(T) = j=0
E(T) k-1 > 3*24

y e(JT) 6 (t-jT) 
j=0

where fi(t-jT) is a unit impulse occurring at time t = JT.

A general linear difference equation which allows for storing 

and weighting the present and past values of the compensator input and 

output pulses may be written as

n n
m(kT) = 2 a-ieCkT-lT) - b,m(kT-lT)

1=0 1 1-1 1 3.25

The z-transform of Equation 3.25 yields the ratio of polynomials (Dorf,

1965:93)

M^z).
E(z)

n
I 

1=0
-1 a^z

1=1

3.26

As Z l{z-mJ = 6(t-mT), the similarity of Equations 3.26 and 3.24 is
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evident. E. W. Henry (1960:28) derived a realization of the discrete 

compensator pulse transfer function, expressed as a ratio of polynomials 

in z, in the following manner.

Henry states that the generalized discrete compensator shown in 

Figure 3.3 has the transfer function of Equation 3.26.

Figure 3.3 

HENRY'S FORM OF DISCRETE COMPENSATOR

The special case of n™2 will be used in the derivation. By inspection of

Figure 3.3,

m - aoe + yT 3.27

= (a1e - bjm + y2) z-1 3.28

y2 = (a2e - b2m) z”1 3.29

Substituting Equation 3.29 into Equation 3.28,
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y1 = (aje - b1m) z-1 + (a2e - b2m) z-2 3.30

and substituting Equation 3.30 into Equation 3.27,

m = aQe + (a^e - b^m) z-1 + (a2e - b2m) z-2 3.31

Collecting terms of m and e,

m(l + b^z-1 + b2z“2) = e(aQ + a^-1 + a2z“2) 3.32

Therefore,

a0 + a^-1 + a2z”2
"Z = --------------- i--- ;----9 3.33e 1 + b z-1 + b z 2

1 2

As the compensator form shown in Figure 3.3 is completely modular, 

Equation 3.33 may be extended by inspection to the general transfer func­

tion of Equation 3.26. Thus, a realization of the discrete compensator 

has been effected.

Continuous Compensator

Design procedure. This subsection deals with the design of a 

classical continuous compensator. In order to facilitate comparison in 

Chapter IV of the discrete compensator and the continuous compensator, 

Example 2 in the Meksawan and Murphy (1963) paper was chosen for the 

continuous compensator development.

Figure 3.4 illustrates the control system configuration to be 

considered.
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The linear plant has the transfer function

G(s) = ____ s+3____
a (s+1) (s+2)

3.34

and the general compensator transfer function is

G (s) ♦ 3 35
c D(s)

Now the standard root locus method (D’Azzo and Houpis, 1966) will be 

used in order to design the compensator GQ for small rise time, small 

overshoot, and small settling time of the output Xj in response to a 

step input R.

The root locus is a plot of the roots of the characteristic 

equation of the closed-loop system as a function of the gain. Thus the 

root locus may be used to determine the effect of compensator gain ad­

justment and compensator pole-zero placement upon the closed-loop system 

transient response.

In order to identify a compensator of minimum complexity which 

provides acceptable transient response, first consider only constant-gain 

compensation. The characteristic equation of the closed-loop system 

shown in Figure 3.4 is
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s(s+l)(s+2) D(s) + (s+3) N(s) = 0 3.36

For constant-gain compensation, N(s) ■ K and D(s) = 1; therefore. 

Equation 3.36 may be rewritten as

s3 + 3s2 + (2+K) s + 3K = 0 3.37

The roots of Equation 3.37 were calculated for a range of K by the use 

of a FORTRAN subroutine, POLRT (IBM, 1968a:181). Figure 3.5 illustrates 

the corresponding root locus plot. Examination of the root locus for 

increasing values of gain K reveals the fact that constant-gain compensa­

tion gives unsatisfactory transient response. The closed-loop system 

becomes increasingly oscillatory as the complex root pair approaches the 

j a)-axis.

The lead network is a compensator of the next order of complexity 

which may produce acceptable transient response in the system configura­

tion of Figure 3.4. The general lead network transfer function is

N(s) = K(s+al 3 38
D(s) s+b

Therefore, the characteristic equation of the lead-network compensated, 

closed-loop system becomes

8(s+l)(s+2)(s+b) + K(s+a)(s+3) - 0 3.39

The lead-network compensator design procedure of D’Azzo and 

Houpis (1966:411) suggests the following placement of the compensator 

pole and zero. The linear plant G(s) of Equation 3.34 is Type 1 (has a 

denominator term of the form sn, where n”!). In such a case, the
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Figure 3.5

ROOT LOCUS FOR CONSTANT-GAIN COMPENSATION
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compensator zero is chosen to cancel the most positive real pole of G(s), 

excluding the pole at s=0. The compensator pole is chosen such that its 

effect upon the transient response is minimized (its corresponding real 

exponential term decays rapidly with increasing time). Thus, for a=l 

and b=10. Equation 3.39 is written as

s4 + 13s3 + (32+K)s2 + (20+4K)a + 3K = 0 3.40

The subroutine POLRT (IBM, 1968a;181) was again employed in order to cal­

culate the roots of Equation 3.40 for varying K. The root locus plot for 

the lead-network compensated system is shown in Figure 3.6.

In order to specify a desired value of gain K, additional con­

straints must be placed upon the compensator design. These constraints 

may be expressed in terms of peak overshoot and settling time, as the lead- 

network compensated system may be approximated by a second-order system. 

Referring to the root locus in Figure 3.6, the second-order approximation 

is possible due to the fact that, for increasing values of gain K, the 

pole at s = -10 moves toward the zero at s = -3, producing a cancellation 

effect. Also, the poles at s = 0 and s ■ -2 break away from the o-axis, 

becoming dominant complex poles for increasing values of gain K.

The second-order approximation is of the form (D’Azzo and Houpis, 

1966:243)

X.i(s) T
„ i.   = ------------ --------------------- 3 41
R(s) s2 + 2^a)ns + <irn2

The dominant complex poles of the lead-network compensated system corre­

spond to the roots of the denominator of the right-hand side of Equation



22

Figure 3.6

ROOT LOCUS FOR LEAD NETWORK COMPENSATION
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3.41,

al,2 = "^n 1 jti)n , 3.42

where 0 <5 < 1. Now, the settling time Tg for ±2 per cent error in the 

second-order system is approximately four time constants (D’Azzo and 

Houpis, 1966:83). Therefore,

T_ = -A_ 3.43
^n

The peak overshoot of the second-order system in response to a unit step 

input is given as

M = 1 + e 3.44
P

In order to obtain small overshoot while maintaining small rise time 

(D’Azzo and Houpis, 1966:81), the damping ratio is chosen as r, = 0.71. 

Substitution of the value = 0.71 into Equation 3.44 yields the value 

Mp = 1.042. The representation of = 0.71 on the root locus plot of 

Figure 3.6 is a radial line from the origin, forming an angle n with the 

cr-axis such that

n = cos-1 r, 3.45

Evaluating Equation 3.45 for £ = 0.71 gives the value n = 44.77 degrees.

Now Example 2, Meksawan and Murphy (1963) has n=3 state-variables 

and sample period T » 0.5. From Equation 3.19, the settling time of this 

discrete-compensated system is

Tsd = nT 3.46
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Evaluating Equation 3.46 for n=3 and T = 0.5 yields the value Tg^ = 1.5. 

Assuming that the settling time of the lead-network compensated system is 

required to be less than or equal to the settling time of the discrete- 

compensated system.

s - sd 3.47

Substituting Equations 3.43 and 3.46 into Equation 3.47 and evaluating.

4 nT

4
tco n

1.5

Therefore, > 2.667. This relation is represented on the root locus 

plot of Figure 3.6 as that area to the left of the vertical line 0 ■ -2.667.

The intersection of the root locus and the radial line C = Q.71 

gives K = 42.2. This value of gain K yields ?u)n = 3.800, thus satisfying 

the requirement ?u)n > 2.667.

The lead-network compensator which gives peak overshoot Mp = 1.042 

and settling time Tg < 1.5 for the second-order system approximation is 

now expressed in the form of Equation 3.38 as

G (s) = 42.2(s+1) 
c s+10 3.48

Realization. The continuous compensator transfer function of 

Equation 3.48 will be realized in this subsection using linear, passive 

network elements. Consider the network shown in Figure 3.7 (D'Azzo and 

Houpis, 1966:159-160).
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The output voltage E2(s) Is

E2(s) 3.49

Taking the ratio of voltages and collecting like terms.

E2(s) R2 1 + RjCs
EjCs) = R + R2 r

1-1-

r2
Let a =------- and B = R.C.Rx + R2 1

3.50

Then Equation 3.50 may be rewritten as

E2(a)  1 + gs
Ej(s) a 1 + ags 3.51

or, in another form,
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E2(s)

Ei (a)

s+l
&

8 + oF
3.52

Equation 3.52 is now recognized as the dynamic portion of Equa­

tion 3.38 with a = 1/g and b = l/ag. For s = 0, the static gain of the 

transfer function of Equation 3.52 is a. From Equations 3.48 and 3.52, 

a = 0.1 and 8=1. Substituting Equation 3.51 into Equation 3.48 and 

evaluating,

G=(a) ■4-22 3153

Now a = R2/(Ri+R2) = 0.1 and 8 = Rj^C = 1. Choose C = 1 microfarad, 

giving Rj = 1 megohm. Evaluating R2/(1 x 106 + R2) = 1 x 10-1 gives 

R2 = 1/9 megohm.

The gain factor of 4.22 in Equation 3.53 may be realized by a 

linear voltage amplifier. Details of the amplifier design were not con­

sidered in this work.

Figure 3.8 illustrates the continuous compensator realization 

for the transfer function of Equation 3.48.

CONTINUOUS COMPENSATOR REALIZATION
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Summary

Compensator design procedures have been developed for both the 

discrete case, using the design technique of Meksawan and Murphy and the 

realization due to Henry, and the continuous case, employing the root 

locus design method and the lead network compensator realization. The 

organization of the investigation utilizing these design and synthesis 

techniques is documented in Chapter IV.



CHAPTER IV

ORGANIZATION OF THE INVESTIGATION

The investigation associated with this work is logically con­

structed in two phases. The first of these phases, the design phase, 

contains a digital computer program implementation of the discrete com­

pensator design technique developed in Chapter III. The second, or 

analysis phase, demonstrates a digital simulation method for verification 

of both the discrete and the continuous compensator designs. The analysis 

phase also includes consideration of the effect of saturation nonlinearity 

in the plant with respect to the discrete compensator design.

Design Phase

As the discrete compensator design method of Meksawan and Murphy 

is mathematically general and deals primarily with linear operations, a 

digital computer program implementation of this method is facilitated. 

FORTRAN (IBM, 1968b) was chosen as the source language because of its 

problem-oriented nature. Design program inputs and outputs are described 

in this section, and the Internal structure of the program is detailed in 

the Appendix.

The required design program inputs and corresponding outputs are 

best described by a specific example. Example 2 from the Meksawan and 

Murphy (1963) paper is to be considered, as shown in Figure 4.1.
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Figure 4.1

G(s) = (s+3)/s(s+1)(a+2), DISCRETE-COMPENSATED

The linear plant in Figure 4.1 is represented in state-variable format.

of this linear plant to the linear plant in Figure 3.4The equivalence

shown by block-diagram In matrix format, thereduction.

linear plant is described as

+ b mA xx

or

4.1

with initial conditions

4.2

page 18, may be

m

x(0) =

Now the control problem specifies that the output state-variable x^ is re­

quired to equal the unit step system input r in n sampling periods T,
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where n is the number of state-variables in the linear plant. Also, 

must reach the steady-state in n = 3 sampling periods, therefore 

Xj(nT) = 0. For T = 0.5, the constraints on x1 and x1 are expressed as

x(nT) = 4.3

The error input e to the discrete compensator is written, by inspection 

of Figure 4.1, in the following manner:

4.4

The system under consideration is now sufficiently defined for design 

program input.

The program accepts input, in the standard NAMELIST format, as 

follows:

Record 1, SIZE

NDIM - number of state-variables n in the linear plant

NINPUT - number of inputs to the system

Record 2, PARM1

PLANT - plant matrix A

X - initial conditions 2E.(0)

XQUIES - final conditions x(nT)
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EPSLN - error criterion e for transition matrix series 

convergence (set arbitrarily small, 1 x 10-5)

Record 3, PARM2

B - vector relating plant input m to plant state- 

variables

R - sign and magnitude of unit step system input r

INTOER - scalar relating system input r to error e

TRNDCR - row vector g2 relating plant state vector x to error e

Record 4, PARM3

TIMPD - sample period T

LASTS! - "last set" switch. (0 =► another case follows, 1 => 

last case)

Output from the design program is routed to the line printer. The printed 

output of the plant matrix A, input vector b_, and the matrix 5> and vector 

d for the transition equation corresponding to Example 2 of Meksawan and 

Murphy is shown in Figure 4.2. The elements of the control vector m and 

the error vector je are displayed as the open-loop control sequence and 

the error sequence, respectively, in Figure 4.3. The final program output, 

upon completion of successful execution, is the message

"***** CONTROL SEQUENCES VALID FOR ANALYSIS PHASE *****".

The design-program calculated values for the matrix and vector d_ agree 

exactly with the published values of Meksawan and Murphy. Furthermore, 

the calculated values for the sequences m and e, are equal to the published 

values within the bounds of computer sound—off error (Meksawan and Murphy, 

1963:298).

A second example of discrete compensator design is now developed
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DISCRETE COMPENSATION OF A STATE-VARIABLE 
DEFINED LINEAR PLANT

SAMPLE PERIOD = 0.500

LINEAR PLANT MATRIX 'A*

0.0 1.000000 1.000000
0.0 -2.000000 1.000000
0.0 0.0 -1.000000

VECTOR *B' RELATING EXTERNAL INPUTS TO PLANT STATES

0.0
0.0
1.000000

♦♦♦♦TAYLOR’S SERIES CONVERGED IN 10 ITERATIONS****
TRANSITION MATRIX ’PHI*

1.000000 O.aibObO O.*70878
0.0 0.3b787R 0.238b51
0.0 0.0 O.bOb531

VECTOR ’O' RELATING EXTERNAL INPUTS TO PLANT STATES

0.121081
0.077*08
0.383*b8

Figure 4.2

DESIGN PROGRAM OUTPUT, PAGE 1
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CONTROL SEQUENCES FOR HENRY'S 
FORM OF THE DISCRETE COMPENSATOR

CASE NUMBER 1
THE LINEAR PLANT HAS 3 STATES

SAMPLE PERIOD = 0.500

OPEN-LOOP CONTROL ERROR
SEQUENCESEQUENCE

5.35078
-5.223b0
1.19515

1.00000
0.35085

-O.IIORR

Figure 4.3
DESIGN PROGRAM OUTPUT, PAGE 2 
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for the system illustrated in Figure 4.4. The linear plant transfer

function.

G(s) = ----- ------ 4 5
s(s+l)(s+2) *

is similar to G(s) for the previous example except for the absence of a 

zero at s = -3 and the presence of a constant factor of 4 in the numerator.

Figure 4.4

G(s) = 4/s(s+1)(s+2), DISCRETE-COMPENSATED

Discrete compensator coefficients were calculated to the specifications 

of Figure 4.4 for sample periods TIMED = {1.0, 0.75, 0.5, 0.25, 0.1}. 

Table 4.1 enumerates the compensator coefficient sequences m and e for 

all sample periods considered.

Analysis Phase

System response. In the analysis phase of the investigation, 

both the compensator design procedures and the compensator realizations 

developed in Chapter III are verified. The demonstration of system per­

formance in the time domain is effected employing Continuous System 

Modeling Program (CSMP) digital simulation (IBM, 1968c). CSMP allows pro­

gramming of the linear plant with no compensation, discrete compensation.
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Table 4.1

DISCRETE COMFENSATOR COEFFICIENTS FOR G^s) = 4/s(s+1)(s+2)

TIMED = 1.0 TIMED =0.75

m e m e— —- —

0.91479 1.00000 1.62640 1.00000

-0.46034 0.69246 -1.13116 0.72947

0.04554

TIMED

0.06904 0.17142

= 0.5

0.08806

TIMED = 0.25

m e m e— ” — —
4.02059 1.00000 22.97933 1.00000

-3.91770 0.76583 -31.83402 0.80071

0.89711 0.11070 10.85469

TIMED = 0.1 

m e

289.85529 1.00000

-499.58552 0.82060

214.73023 0.15441

0.13698

or continuous compensation through the use of CSMP function blocks and 

FORTRAN-type source statements.

Figure 4.5 shows the time response of the output state-variable

xj for a unit step input r to the system of Figure 4.1 with the compensa­

tor by-paased such that m = e. The output response of the system of 

Figure 4.1 with the discrete compensator intact is illustrated in



CD Os
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Figure 4.6. Figure 4.7 shows the output response of the system of 

Figure 4.1 with the discrete compensator displaced by the continuous 

compensator of Figure 3.8, page 26. Therefore, the uncompensated, 

discrete-compensated, and continuous-compensated versions of Example 2, 

Meksawan and Murphy may be compared using Figures 4.5, 4.6, and 4.7.

Numerical values of the response in Figure 4.6 are listed in 

Table 4.2 for sampling instants t = nT; n = 0,1,2,3; T = 0.5. The 

corresponding values from the Meksawan and Murphy paper are also shown.

Table 4.2

NUMERICAL RESPONSE VALUES FOR G(s) = (s+3)/s(s+1)(s+2), 
DISCRETE-COMPENSATED

t = nT
Xi

CALCULATED
*1

PUBLISHED

0 0.000 0

0.5 0.649 0.649

1.0 1.138 1.140

1.5 1.001 1

Figure 4.8 illustrates the response of the output x for a unit 

step input r to the system of Figure 4.4 with the compensator by-passed 

such that m = e. Figures 4.9 to 4.13, inclusive, present output response 

curves for the system of Figure 4.4 with sample periods 

TIMPD = {1.0, 0.75, 0.5, 0.25, 0.1}, respectively.
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COMPENSATED RESPONSE, G(s) = 4/s(s+1)(s+2), 
TIMPD = 1.0



COMPENSATED RESPONSE, G(s) = 4/s(s+1)(s+2), 
TIMPD =0.75

N?



COMPENSATED RESPONSE, G(s) = 4/s(s+1)(s+2), 
TIMPD = 0.5



COMPENSATED RESPONSE, G(s) = 4/s(s+1)(s+2), 
TIMPD =0.25



Figure 4.13

COMPENSATED RESPONSE, G(s) = 4/s(s+1)(s+2), 
TIMPD =0.1
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Saturation nonlinearity. The design and analysis work has, to 

this point, been performed on systems containing linear plants. Actual 

systems such as those boiler-turbine-generator units described in 

Chapter I may rarely contain significant saturation nonlinearity. This 

nonlinearity is isolated in the electromechanical or hydraulic actuator 

for the turbine inlet valve train; therefore, the saturation character­

istics may be lumped and placed at the compensator output, in cascade 

with the compensator and the linear plant (Kenny, 1967) .

Consider the system of Figure 4.4, adding an ideal saturation 

nonlinearity with the transfer characteristic

f -L, m < -L
m^ = 5 m, -L < m < L , 4.6

L L, m > L

where m is the discrete compensator output and m' is the linear plant 

input. Any term of the control sequence m greater than L in magnitude 

cannot be completely delivered to the linear plant. Examination of the 

control sequences m and corresponding sample periods from Table 4.1 shows 

that an inverse relationship exists between the value of sample period 

and the value of the term of greatest magnitude within the respective 

control sequence m. This inverse relationship is explained by the fact 

that the time derivative of the state vector x is directly proportional 

to the plant input m, and the value of the vector x(t) for arbitrary 

time t^ is inversely related to the value of the sample period. There­

fore, the effect of a saturation nonlinearity as described by Equation 

4.6 may be obviated by choice of a sample period of sufficient length,.
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Summary

The compensator design procedures and compensator realizations 

formulated in Chapter III have been programmed using FORTRAN and CSMP 

and have been verified by example from Meksawan and Murphy, as described 

in this chapter. A second example further exercised the discrete com­

pensator design program and provided data for a range of sample periods, 

used in the consideration of a system containing saturation nonlinearity. 

Chapter V contains an evaluation of the investigation forming a portion 

of this work.



CHAPTER V

CONCLUSIONS

The results of the investigation described in Chapter IV 

clearly demonstrate the mathematical validity of both the discrete 

compensator design procedure of Meksawan and Murphy and the discrete 

compensator realization of Henry. As the discrete compensator design 

procedure is mathematically general and deals primarily with linear 

operations, a digital computer implementation using matrix algebra is 

facilitated. The discrete compensator realization is modular to the extent 

that delay and weighting sections may be added or subtracted in order to 

serve linear plants containing more or fewer state-variables, respectively. 

Another advantage of discrete compensation is the fact that control signal 

update is required only periodically. As the discrete compensator design 

procedure is formulated for a control problem identical to the basic load 

frequency control problem defined in Chapter I, this procedure could be 

integrated into a practical electric power system control configuration.

An element of the discrete compensator hypothesis worthy of 

further study is best expressed in the question: What characteristics of 

the plant matrix A and the input vector b_would produce singularity in the 

matrix P? Additional study of the effect of other nonlinearity types upon 

discrete compensator applications is also recommended.
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APPENDIX

This appendix describes the internal structure of the discrete 

compensator design program used in the investigation as defined in 

Chapter IV. The design program is coded as a set of FORTRAN subroutines 

employing a simple main program for execution initiation.

In order for a program user to obtain a design, it is necessary 

to supply only the input data as specified in Chapter IV, and to start 

the procedure with a main program consisting of a single statement,

CALL DESIGN.

The subroutine DESIGN, with flowchart shown in Figure A-l, reads the 

input data, properly sequences other subroutine calls, and completes 

output of the discrete compensator solution.

The transition matrix 5>(t) is developed from the plant matrix A 

in the subroutine TRANS. As shown in the flowchart of Figure A-2, the 

transition matrix is evaluated utilizing Equation 2.20, page 8, as the 

Taylor’s series expansion of the matrix exponential function e^. The 

criterion used to determine convergence of the Taylor’s series is based 

upon the magnitude of change

|l$k+il - l^lI < lEPSLN* K-Jl 
। k 1 - 1 k+1 1

where is the determinant of the matrix consisting of the identity 

matrix plus k additional terms of the Taylor’s series and EPSLN is an 

arbitrarily small positive constant. Several trials were performed using 
plant matrices A with known analytic solutions (Dorf, 1965) for e^. For 

a value of EPSLN = 1 x 10-5, the given convergence criterion produced



52

Figure A-l

SUBROUTINE DESIGN
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Figure A-2

SUBROUTINE TRANS
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accuracy of four significant digits within the range from ten to twenty 

terms of the Taylor’s series.

Figure A-3 illustrates the flowchart for the subroutine INTGRT.

This subroutine is used to perform the numerical integration required by 

Equation 3.7, page 11, in order to develop the vector

T
d^(T) = / 5>(y) b_ d y .

0

The integration is accomplished using a Simpson’s Rule numerical approxi­

mation (Crandall, 1956). The integration interval 0 < t < T is partitioned 

into 100 subintervals of equal length AT. This partitioning yields

/ »(Y)bdY a AT d0 + + ilOOAT

where d = $(m)b_.

The subroutine OPSEQ, flowcharted in Figure A-4, calculates the 

control sequence m and the error sequence e^ utilizing both the discrete 

compensator design procedure of Meksawan and Murphy, and the discrete 

compensator realization requirements of Henry, as formulated in Chapter III.

All of the matrix operations required in the design program are 

performed by additional FORTRAN subroutines, as follow:

ZERO - generates an m x n null matrix

MADD - forms the sum of two m x n matrices

MTMUL - forms the scalar product of a 1 x m row vector and a

m x 1 column vector
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Figure A-3

SUBROUTINE INTGRT



56

Figure A-4

SUBROUTINE OPSEQ
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DET - calculates the determinant of an m x m matrix using the 

matrix triangularization method (Frazer, Duncan, and 

Collar, 1963:106-108)

MINV - calculates the inverse of an m x m matrix using the 

method of postmultipliers, with accuracy improvement 

(Frazer, Duncan, and Collar, 1963:109-112,120-121)

SHIFT - replaces one m x n matrix with another m x n matrix 

MSUB - forms the difference of two m x n matrices

MTSCAL - forms the m x n matrix product of an m x n matrix and 

a scalar

IDENT - generates an m x m identity matrix

MTMPY - forms the 1 x n matrix product of an 1 x m matrix and 

an m x n matrix.

Table A-l contains FORTRAN source listings of all subroutines in 

the discrete compensator design program. Arrays are currently dimensioned 

for a maximum of ten state-variables in the linear plant.
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Table A-l

DESIGN PROGRAM SOURCE LISTINGS

MAIN
CALL DESIGN
WRITE (b,l)1 FORMAT <'IV/Z/SC*') »'CONTROL SEQUENCES VALID FOR ANALYSIS PHASE* 

)1
STOP
END
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Table A-l (continued)

DESIGN
SUBROUTINE DESIGN 
INTEGER+2 JtNDIMEN,KtICOL,LASTS!,IROW,NPUTS,INCALL,I,NDIM,KOUNT, 

ININPUT
REAL*8 INTOER(5,5) 
DOUBLE PRECISION A(10,10),PHI(10,10),PLANT(10,10),B(10,5),D(10,5), 
IX(10,1),R(5,1),XQUIES(1O,1),TRNDCR(5,101,FCOMP(10,5),RCOMP(10,5), 
2EPSLN,TIMPD,PERIOD
COMMON A,PHI,X,XQUIES,B,D,R,EPSLN,PERIOD,NDIM,NINPUT,INCALL 
NAMELIST /SIZE/NDIM,NINPUT /PARM1/PLANT,X,XQUIES,EPSLN /PARM2/ 
1B,R,INTOER,TRNDCR /PARM3/TIMPD,LASTS!
REWIND 12 
REWIND 13 
KOUNT = 0 
READ (5,SIZE) 
WRITE (13,1) NDIM,NINPUT

1 FORMAT (212)
CALL ZERO(B,NDIM,NINPUT) 
CALL ZERO(PLANT,NDIM,NDIM) 
READ (5,PARM1) 
READ (5,PARM2)

2 INCALL = 0 
READ (5,PARM3) 
PERIOD = TIMPD 
KOUNT = KOUNT+1 
WRITE (b,3)

3 FORMAT ( •IV/lIX, ’DISCRETE COMPENSATION OF A STATE-VAR I ABLE •/24-X, 
1’DEFINED LINEAR PLANT’//)
WRITE (b,*) PERIOD

H FORMAT (22X,'SAMPLE PERIOD = ’,F7.3//) 
CALL TRANStPLANT)

5 CALL INTGRT 
WRITE (b,b)

b FORMAT (//SX,’VECTOR "D" RELATING EXTERNAL INPUTS TO PLANT STATE 
IS’//)
DO 7 IROW = 1,NDIM

7 WRITE (b,8) (D(IROW,ICOL), ICOL = l.NINPUT)
8 FORMAT (2X,10F10.bl
CALL OPSEQlINTOER,TRNDCR) 
IF (LASTS!.EQ.0) GO TO 2 
ENDFILE 13 
REWIND 13 
READ (13,1) NDIMEN,NPUTS 
DO 1R K = 1,KOUNT 
WRITE (b,R) K

R FORMAT ('l’//15X,'CONTROL SEQUENCES FOR HENRY" S'/lIX, 'FORM OF THE 
1 DISCRETE C0MPENSAT0R'//22X,'CASE NUMBER ',12)
WRITE (b,10) NDIMEN

10 FORMAT (/1*X,'THE LINEAR PLANT HAS ',12,' STATES'/)
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Table A-l (continued)

DESIGN
READ (13,11) PERIOD

11 FORMAT (D15.8)
DO 11 I = 1,NINPUT
DO 12 J = 1,NDIM

12 READ (13,11) FCOMP(J,I) 
DO 13 J = 1,NDIM

13 READ (13,11) RCOMP(J,I)
11 CONTINUE

WRITE (b,20) PERIOD
WRITE (b,15)

15 FORMAT (//?X,•OPEN-LOOP CONTROL•,8X,'ERRORV11X,'SEQUENCE•,12X 
I'SEQUENCE*)
DO 1R I = 1,NINPUT 
WRITE (b,lf>)

lb FORMAT (//)
DO 17 J = 1,NDIM

17 WRITE (b,18) FCOMP(J,I),RCOMP(J,I)
18 FORMAT (8X,F11.5,RX,F11.5)
1R CONTINUE
20 FORMAT (18X,'SAMPLE PERIOD = ',F7.3//) 

REWIND 13 
RETURN 
END
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Table A-l (continued)

TRANS
SUBROUTINE TRANS(PLANT) 
INTEGER*2 I COL,IKNTtNDIM,NINPUT,IROW,J,ITER,INCALL 
DOUBLE PRECISION A(10,10),PHI1(10,10),PH I 2(10,10),TERM(10,10) , 
IPLANTdO,10),8(10,5),D(10,5),X(10,1),R(5,1),XQUIES(10,1),W(10,10) , 
2EPSLN,PERI0D,TIME,FCTRL,DET
COMMON A,PHI 1,X,XQUIES,B,D,R,EPSLN,PERIOD,ND IM,NINPUT,INCALL 
IF (INCALL.NE.O) GO TO b 
CALL ZERO!A,ND IM,NDIM) 
CALL SHIFT(PLANT,A,NDIM,NDIM) 
WRITE (b,l)

1 FORMAT (5X,'LINEAR PLANT MATRIX "A" '//) 
DO 2 IROW = 1,NDIM

2 WRITE (b,3) (A(IROW,ICOL), ICOL = 1,NDIM)
3 FORMAT (2X,10F10.b) 

WRITE (b,*i)
H- FORMAT (Z/SX, 'VECTOR "B" RELATING EXTERNAL INPUTS TO PLANT STATE 
IS'//)
DO 5 IROW = 1,NDIM 

5 WRITE (b,3) (B(IROW,ICOL), ICOL = 1,NINPUT) 
b CALL ZERO(PHI2,NDIM,NDIM) 

CALL IDENT(TERM,NDIM) 
CALL SHIFT(TERM,PHU,NDIM,NDIM) 
TIME = PERIOD 
FCTRL = 0.0 
IKNT = 1 
DO 10 J = 1,100 
ITER = J 
FCTRL = FCTRL+1.0 
CALL MTMPY(TERM,A,W,NDIM,NDIM,NDIM) 
CALL MTSCAL(W,NDIM,NDIM,(TIME/FCTRL),TERM) 
CALL MADD(PHU,NDIM,NDIM,TERM,PHI1) 
IF (IKNT-t) 7,8,R

7 IKNT = IKNT+1 
GO TO 10

8 CALL SHIFT(PHU,PHI2,NDIM,NDIM) 
IKNT = IKNT+1
GO TO 10 

R IKNT = 1
IF (DABS(DET(PHI2,NDIM)-DET(PHI1,NDIM)) .LE. DABS(DET(PH 11,NDIM)♦ 

1EPSLN)) GO TO 12
10 CONTINUE

WRITE (b,ll)
11 FORMAT (Z/5X,5(•♦'),'TRANSITION MATRIX ''PHI" DID NOT CONVERGE IN 

1 100 ITERATIONS',5('♦'))
GO TO 1*

12 IF (INCALL.NE.O) GO TO 17 
WRITE (b,13) ITER

13 FORMAT (Z/5X, "K'*'),'TAYLOR'•S SERIES CONVERGED IN ',13,' ITERATID
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Table A-l (continued)

TRANS
INS’,*(*♦•))

if WRITE (b,15)
15 FORMAT (/5X,’TRANSITION MATRIX ”PHI” *//)

DO lb IROW = 1,NDIM
lb WRITE (b,3) (PHIKIROWtICOL), ICOL = 1,NDIM)
1? RETURN

END
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Table A-l (continued)

INTGRT
SUBROUTINE INTGRT 
INTEGERS I COL, N INPUT, I ROW, ND I Mt I, INCALL 
DOUBLE PRECISION A(10,10),PHI(10,10),PHIHLD(10,10),MAT1(10,5),MATE 

1(10,5),B(10,5),D(10,5),X(10,1),R(5,1),XQUIES(10,1),EPSLN,PERIOD, 
BHOLD,DELT,ODDCON,EVNCON
COMMON A,PH I,X,XQUIES,B,D,R,EPSLN,PERIOD,ND IM,NINPUT,INCALL 
REWIND 12 
INCALL = 65535 
CALL SHIFT!PHI,PHIHLD,NDIM,NDIM) 
HOLD = PERIOD 
DELT = 0.01*HOLD 
DO 2 I = 1,101 
CALL TRANS(PHI) 
CALL MTMPYIPHI,B,D,NDIM,NDIM,NINPUT) 
DO 1 IROW = 1,NDIM

1 WRITE (12) (D(IROWtICOL), ICOL = 1,NINPUT) 
PERIOD = PERIOD-DELT

2 CONTINUE 
REWIND 12 
ODDCON = *.0 
EVNCON = 2.0 
PERIOD = HOLD
CALL SHIFT(PHIHLD,PHI,NDIM,NDIM) 
CALL ZERO(D,NDIM,NINPUT) 
DO 3 IROW = 1,NDIM

3 READ (12) (D(IROWtlCOL), ICOL = 1,NINPUT) 
DO b I = I,**)
DO 1 IROW = 1,NDIM

1 READ (12) (MATK IROW, ICOL), ICOL = 1,NINPUT) 
DO 5 IROW = 1,NDIM

5 READ (12) (MAT21IROW,ICOL), ICOL = 1,NINPUT) 
CALL MTSCAL(MAT1,NDIM,NINPUT,ODDCON,MAT!) 
CALL MTSCAL(MAT2,NDIM,NINPUT,EVNCON,MAT2) 
CALL MADD(D,NDIM,NINPUT,MAT1,D)

b CALL MADD(D,NDIM,NINPUT,MAT2,D) 
DO 7 IROW = 1,NDIM

7 READ (12) (MAT1(IROW,ICOL), ICOL = 1,NINPUT) 
CALL MTSCAL(MAT1,NDIM,NINPUT,ODDCON,MAT1) 
CALL MADD(D,NDIM,NINPUT,MAT1,D)
DO 8 IROW = 1,NDIM

8 READ (12) (MATKIROW,ICOL), ICOL = 1,NINPUT) 
REWIND 12
CALL MADD(D,NDIM,NINPUT,MAT1,D) 
CALL MTSCAL(D,ND IM,NINPUT,(DELT/3.0),D) 
RETURN 
END
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Table A-l (continued)

OPSEQ
SUBROUTINE OPSEQ(BETA I,BETA) 
INTEGERS J, ICOL, INCALL, K,IROW, NOIM, NINPUT, I 
REAL*8 M(10,l) 
DOUBLE PRECISION A(10,10),PHI(10,10),B(10,5),D(10,5),X(10,1),R(5,1 
1),P(10,10),Q(10,1),VEC(10,1),PHIHLD(10,10),XQUIES(10,1),VECHLD(10, 
21),BETAlt 1,5),BETA2(1,10),XVEC(10,1),ERROR(10,1),BETA(5,10),BETA I( 
35,5),DVEC<10,1),WORK(10,1),WORK1(10,10),EPSLN,PER IOD,HOLD,FORDER, 

TEMPI,TEMPE,DET
COMMON A,PHI,X,XQUIES,B,D,R,EPSLN,PERIOD,ND IM,NINPUT,INCALL 
REWIND 12 
INCALL = 255 
HOLD = PERIOD 
CALL SHIFT(PHI,PHIHLD,NDIM,NDIM) 
FORDER = NDIM 
PERIOD = -FORDER*HOLD 
CALL TRANS(PHI) 
CALL MTMPY(PHI,XQUIES,WORK,NDIM,NDIM,1) 
CALL MSUBlWORK,NDIM,1,X,Q) 
PERIOD = HOLD 
WRITE (13,1) PERIOD

1 FORMAT (D15.8)
DO 13 I = 1,NINPUT 
DO 2 J = 1,NINPUT 
BETA1(1,J) = BETAI(I,J)

2 CONTINUE
DO 3 J = 1,NDIM 
BETA2(1,J) = BETA! I,J) 
VEC(J,1) = D(J,I)

3 CONTINUE
CALL SHIFT!VEC,VECHLD,NDIM,1) 
DO 5 J = 1,NDIM 
CALL SHIFT(VECHLD,VEC,NDIM,1) 
FJ = J 
PERIOD = -FJ*HOLD 
CALL TRANS1PHI) 
CALL MTMPY(PHI,VEC,WORK,NDIM,NDIM,l) 
CALL SHIFT(WORK,VEC,NDIM,1) 
DO I K = 1,NDIM

4 P(K,J) = VEC(K,1)
5 CONTINUE

IF (DABS(DET(P,NDIM)).LE.0.1D-5) GO TO 14 
CALL MINV(P,NDIM,WORK1) 
CALL MTMPY(WORK1,Q,M,NDIM,NDIM,1) 
DO 10 J = 1,NDIM 
IF (J.GT.l) GO TO 7 
CALL SHIFT(X,XVEC,NDIM,1) 
GO TO R

7 DO 8 K = 1,NDIM
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Table A-l (continued)

OPSEQ
DVEC(K,1) = D(K,I)
CALL MTMPY(PHIHLD,XVECtWORK»NDIM»NDIM»1) 
FM = M(J-ltl)
CALL MTSCAL(DVEC,NDIM,l,FMfWORKl)
CALL MADD(WORK,NDIM,1,WORK!,XVEC)
CALL MTMUL(BETA1,R,TEMPI,NINPUT) 
CALL MTMUL(BETA2,XVEC,TEMP2,NDIM) 
ERROR(J,1) = TEMP1+TEMP2 
CONTINUE
DO 11 J = 1,NDIM
WRITE (13,1) M(J,1)
DO 12 J = 1,NDIM
WRITE (13,1) ERROR(J,1)
CONTINUE
PERIOD = HOLD
CALL SHIFT(PHIHLD,PHI,NDIM,NDIM)
RETURN
WRITE (b,15)
FORMAT ('IV/SC*'),’MATRIX "P" IS SINGULAR ’, 5 (•*')//) 
DO lb IROW = 1,NDIM
WRITE (b,17) (P(IROW,ICOL), ICOL = 1,NDIM)
FORMAT (10D12.5)
STOP 
END
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Table A-l (continued)

ZERO
SUBROUTINE ZERO(A,M,N) 
INTEGERS N,ItJ,M 
DOUBLE PRECISION A(10,10) 
DO 1 J = 1,N 
DO 1 I = 1,M

1 A(ItJ) = 0.0 
RETURN 
END
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Table A-l (continued)

MADD

SUBROUTINE MADDlA,M,N ,B ,C) 
INTEGERS J,M,N,I
DOUBLE 
DO 1 J 
DO 1 I 

1 C( ItJ) 
RETURN 
END

PRECI SION A(lOtlO),B(lOtlO),C(lO,LO)
= 1,N
= LtM
= A(ItJ)+B(I,J)
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Table A-l (continued)

MTMUL
SUBROUTINE MTMUL(AtB,C,M) 
INTEGER*2 M,K
DOUBLE PRECISION AC 1,10)fB(10,1),C
C = 0.0
DO 1 K = 1,M

1 C = C+AC1,K)*B(Kt1) 
RETURN 
END
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Table A-l (continued)

DET
DOUBLE PRECISION FUNCTION DET(A,N)
INTEGER*2 J,K,MM,M,I,N
DOUBLE PRECISION A(10f10),AA(10,10),C(10,10),D(10»10) 
MM = N-l
DO 1 J = 1,N
DO 1 I = 1,N

1 AA(I,J) = Ad,J)
DET = 1.0
DO 7 M = 1,MM
DO 3 J = 1,N
DO 3 I = 1,N
IF (I.EQ.J) GO TO 2
C( I, J) = 0.0
GO TO 3

2 Cd,J) = 1.0
3 CONTINUE

DO H- J = M,MM
t C(M,J+1) = -AA(M,J+l)/AA(M,M)

DO 5 J = M,N
DO 5 I = M,N
D( I,J) = 0.0
DO 5 K = M,N

5 Dd,J) = AAd ,K)*C(K, J)+Dd, J )
DO 10 J = M,N
DO 10 I = M,N

10 AAd,J) = Dd,J)
7 DET = DET*D(M,M)

DET = DET*D(N,N)
RETURN 
END
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Table A-l (continued)

MINV
SUBROUTINE MINV(AA,N,AINV) 
DIMENSION ID(10) 
INTEGER*2 J,11,KK,N2,K,IS,NI,NIT,M,IC,IT,NN,I,N,ID,KJ,N1 
DOUBLE PRECISION AA(10,10),Al NV(10,10),A(10,20),WORK3(10,10),B,C,W 
NN = N+l 
N2 = 2*N 
DO 1 I = 1,N 
DO 1 J = 1,N

1 At I,J) = AA(I,J)
K = 1
DO 2 I = 1,N
DO 2 J = NN,N2

2 A(I,J) = 0.0 
DO 3 I = 1,N 
NI = N+I 
A(I,NI) = 1.0

3 ID(I) = I
f KK = K+l

IS = K
IT = K
B = DABS(A(K,K)) 
DO 5 I = K,N 
DO 5 J = K,N 
IF (DABS(A(I,J)).LE.B) GO TO 5 
IS = I 
IT = J
B = DABStA(I,J)) 

5 CONTINUE
IF (IS.LE.K) GO TO 7
DO b J = K,N2
C = A(IS,J) 
A(IS,J) = A(K,J)

b A(K,J) = C
7 IF (IT.LE.K) GO TO R 

IC = ID(K)
ID(K) = ID(IT) 
ID(IT) = IC 
DO 8 I = 1,N 
C = A(I,IT) 
A(I,IT) = A(I,K)

8 A(I,K) = C
R DO 10 J = KK,N2
A(K,J) = A(K,J)/A(K,K)
DO 10 I = KK,N
W = A(I,K)*A(K,J) 
A(I,J) = A(I,J)-W 
IF (DABS(A(I,J)).GE.0■ID—3*DABS(W)) GOTO 10 
A(I,J) = 0.0
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Table A-l (continued)

MINV
10 CONTINUE

K = KK
IF (K.LT.N) GO TO *
DO 11 J = NN,N2

11 AIN,J) = A(N,J)/A(N,N) 
N1 = N-l
DO 12 M = 1,N1
I = N-M
II = 1+1
DO 12 K = II,N 
DO 12 J = NN,N2

12 All,J) = A(I,J)-A(I,K)*A(K,J)
DO It I = 1,N 
DO It J = 1,N 
IF (ID(Jl.NE.I) GO TO It 
DO 13 K = NN,N2 
KJ = K-N

13 AINVd.KJ) = A(J,K)
It CONTINUE

DO 15 I = 1,N
CALL IDENT(A,N)
CALL MTSCAL(A,N,N,2.0,A)
CALL MTMPYIAA,AINV,WORKS,N,N,N) 
CALL MSUBCA,N,N,WORKS,A) 
CALL MTMPY(AINV,A,WORK3,NiN,N) 
CALL SHIFT(WORK3,AINV,N,N) 

15 CONTINUE
RETURN 
END
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Table A-l (continued)

SHIFT
SUBROUTINE SHI FT(A,B,M,N) 
INTEGERS M,N,I,J
DOUBLE PRECISION A(10,10),B(10,10) 
DO 1 J = 1,N
DO 1 I = 1,M

1 B( I,J) = A(I,J)
RETURN
END
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Table A-l (continued)

MSUB
SUBROUTINE MSUB(A,M,N,B,C)
INTEGERS J»M,N,I
DOUBLE PRECISION A(10,10),B(10,10),C(10,10)
DO 1 J = 1,N
DO 1 I = 1,M

1 C( I,J) = A(I,J)-B(I,J)
RETURN
END
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Table A-l (continued)

MTSCAL
SUBROUTINE MTSCAL(A,M,N,S, B ) 
INTEGER*^ M,N,I»J
DOUBLE PRECISION A(10,10),B(10,10)TS
DO 1 J = 1,N
DO 1 I = 1,M

1 B( I,J) = A(I,J)*S
RETURN
END '
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Table A-l (continued)

I DENT
SUBROUTINE IDENT(A,M) 
INTEGERS I»J,M
DOUBLE PRECISION A(10,10) 
DO 2 J = 1,M 
DO 2 I = ltM
IF (I.EQ.J) GO TO 1
A( I,J) = 0.0
GO TO 2

1 A( I,J) = 1.0
2 CONTINUE 

RETURN 
END
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Table A-l (continued)

MTMPY
SUBROUTINE MTMPY(A,B,C,L,M,N)
INTEGER*2 J,N,K,L,I,M
DOUBLE PRECISION A(10,10>,B(10,10),C(10,10)
DO 1 J = 1,N
DO 1 I = 1,L
C( I,J) = 0.0
DO 1 K = 1,M

1 Cd,J) = C( I ,J)+A( I,K)*B(K,J)
RETURN
END


