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Abstract

Tetrahedral liquids such as water and silica are among the most ubiquitous and

important substances in our world, yet the origin of their well-known structural,

thermophysical, and dynamic anomalies still remains elusive. It has been posited

that anomalous behaviors of tetrahedral liquids under ambient and supercooled con-

ditions are due to critical fluctuations associated with a low-temperature liquid-

liquid critical point (LLCP), below which two distinct metastable liquids undergo

a first-order liquid-liquid phase transition (LLPT). Due to rapid homogeneous nucle-

ation of the crystalline phase, experimental probing techniques have not yet been

able to verify or falsify this hypothesis. Computational studies of molecular fluids

demonstrate metastable LLPTs are possible, but they have not resolved the out-

standing question of how such behavior can be characterized experimentally. We

present results from large-scale molecular dynamics (MD) simulations of more than

100,000 molecules of two model tetrahedral liquids that exhibit LLPTs: the ST2

model of water and an ionic model of liquid silica. The simulations reveal that both

models exhibit anomalous scattering, reminiscent of that observed in experiment,

which is characterized by an increase in the static structure factor at low wavenum-

bers. This unusual behavior is linked with coupled fluctuations in density and local

tetrahedral order in the liquid. The Ornstein-Zernike correlation length estimated

from the anomalous scattering component exhibits power-law growth upon cooling,

consistent with the existence of a liquid-liquid critical point in both models. Further,

spontaneous liquid-liquid phase separation is observed in each model upon thermally

quenching large systems into the two-phase regions. Lastly, we show that nucleation

of the stable crystal phase from metastable tetrahedral liquids, a rare event, can be

investigated by enhanced sampling methods based on the hybrid Monte Carlo (HMC)
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Chapter 1: Introduction

1.1 Water is ubiquitous yet unusual

Water or H2O is essential to the existence and prosperity of lives on earth. It

has tremendous impact on agriculture, manufacturing, pharmaceuticals, and our

lifestyle in general.1 Despite its ubiquitous presence in our daily lives and its seem-

ingly simple molecular structure, water poses many unsolved scientific puzzles that

still baffle scientists today.2–4 Ice floats on water, for example, which conflicts with

our life experience that solid is typically denser than liquid. Water becomes more

fluid rather than viscous when compressed below the room temperature. The den-

sity of a simple liquid exhibits monotonic temperature dependence while that of wa-

ter reaches density maximum at 4 °C at room pressure. These examples are just the

tip of the iceberg of water’s anomalous thermophysical and dynamic properties. In

light of water’s many odd behaviors, it is natural to ask: what is the origin of such a

broad spectrum of anomalies ?

The effort to understand physical properties of supercooled water has been going

on for many decades.5,6 In the 1970s, Angell and his coworkers performed experi-

ment to probe supercooled water down to -26 °C.7 In their work, the temperature

dependence of isothermal compressibility κT can be well characterized by a critical-

like power-law relation with extrapolated divergence at a singular temperature Ts

= 228 K. This temperature is inaccessible by experimental probing techniques due

to rapid homogeneous ice nucleation. The isobaric heat capactiy CP of supercooled

water also becomes increasingly enhanced and can be described by a power-law re-

lation.8,9 In Fig.1.1(a) and (b), the isothermal compressbility and the isobaric heat

capacity of water exhibit non-monotonic temperature dependencies. After passing
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(a) κT vs. T

(b) Cp vs. T

(c) αT vs. T

Figure 1.1: Schematic isobaric temperature dependence of thermodynamic response
functions of water in comparisons with those of typical liquid. (a), (b) and
(c) are temperature dependence of isothermal compressbility, κT , isobaric
heat capacity, CP and thermal expansion coefficient, αP , respectively

through a minimum, their magnitudes become anomalously enhanced as tempera-

ture decreases under ambient pressure. In contrast, the thermodynamic response

functions of a simple typical liquid vary monoatonically with respect to temperature.

These pioneering works not only provide early experimental evidence of water’s ther-

modynamic anomalies but also inspire many physical interpretations to elucidate
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water’s low temperature anomalous behaviors.10

1.2 The Liquid-Liquid Phase Transition (LLPT) hypothesis

Figure 1.2: Water’s complex noncrystalline phase diagram with equilibrium and non-
equilibrium states.11 The red dot "C2" is the hypothetical location of
liquid-liquid critical point.12

At this time, there does not yet exist a thermodynamically consistent scenario

that could account for both thermodynamic and transport properties of water.10,12–14

One scenario that is supported by many experimental and simulation studies sug-

gests that water exhibits a low-temperature liquid-liquid critical point (LLCP), in

addition to its normal gas-liquid critical point at higher temperatures. This hypoth-

esis was proposed based on a series of molecular dynamics studies of an atomistic

water model at supercooled conditions.12,15 In this scenario, water’s anomalous ther-

mophysical properties at ambient and increasingly supercooled conditions can be

attributed to critical fluctuations associated with the LLCP terminating a liquid-

3



liquid phase transition (LLPT) line. Fig.1.2 shows the hypothetical location of this

critical point as "C2" in the middle of phase diagram.11 Below this critical point, su-

percooled water undergoes a first-order phase transition between a low density liquid

(LDL) and a high density liquid (HDL). The LDL is characterized by the local tetrahe-

dral structure where a water molecule is four-coordinated with its nearest neighbors

within the first primary coordination shell. The HDL, on the other the hand, is less

tetrahedral due to the intrusion of a fifth neighbor into the first shell, resulting in

higher density, energy and entropy than those of the LDL. Above the LLCP, in the

supercritical region, the Widom line emanates as a continuation of first-order LLPT

line. By definition, Widom line is the locus of maximum of correlation length.16–19

Crossing this line, the system continuously fluctuates between a LDL-like and HDL-

like state.20 In the vicinity of the LLCP, the loci of thermodynamic response func-

tions κT and CP maxima asymptotically converge onto the Widom line. According

to this hypothesis, the experimentally observed high-density and low-density amor-

phous glasses (HDA and LDA) are considered as kinetically arrested forms of HDL

and LDL, respectively.21 Although this intriguing hypothesis was advanced based

on the evidence from computer simulations of a molecular model of water, only the

experimental evidence can eventually prove or disprove this scenario. If the LLPT

hypothesis could be verified experimentally, then, it would provide a unified inter-

pretation of water’s metastable and stable phase behaviors.

Until now, no conclusive evidence of LLPT in water has been reported yet in ex-

perimental studies of supercooled water.22,23 While current probing techniques and

methods are still in development toward breaching the temperature limit imposed

by spontaneous homogeneous ice nucleation, computer simulations have played a

guiding role in understanding water’s low temperature anomalies. After the sem-

inal work by Poole et al.,12 many computer models of water have been scrutinized

for the possible existence of LLCP.24–31 For now, only the ST2 water model has been
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Figure 1.3: Schematic molecular representation of ST2 water model.

confirmed to exhibit an LLPT through rigorous free energy calculations.28,32–35

The ST2 water model is a rigid and five-site atomistic model of water.36 Fig.1.3

shows the molecular structure of ST2 water model. Two positive charges are posi-

tioned on hydrogen atom and two negative charge are positioned to represent the

oxygen’s lone pair of electrons. The four point charges are equal in magnitude and

are located at corners of a perfect tetrahedron. The oxygen atom is modeled as a soft

sphere with excluded volume and van der Waals interactions. The unique character-

istic of ST2 is its built-in tetrahedrality, which enables this water model to exhibit

its anomalies at more accessible temperature.12 As a result, the LLPT of ST2 water

model can be characterized at relatively higher temperature where other water mod-

els suffer from slow equilibration at deeply supercooled condition.24,33 Although this

water model fails to quantitatively reproduce the properties of real water (e.g., the

temperature of maximum density (TMD) of ST2 water at room pressure is above 50

°C as opposed to 4 °C in real water37), such deficiency seems to be an advantage that

can be exploited to study the LLPT phenomena in in sil ico.38–42

1.3 Water-like anomalies in silica

Although the LLPT hypothesis still remains putative in the experimental stud-

ies of supercooled bulk water, it was investigated and verified in many molecular

liquids other than water, such as silica, silicon, phosphorus, Al2O3 –Y2O3 and triph-

5



enyl phosphate.43–47 A very recent study by Henry et al. showed that a first-order

LLPT and its associated critical point can also be found in liquid sulfur through X-ray

diffraction and Raman scattering techniques.48 A preponderance of evidence point-

ing to the existence of an LLPT in many single-component substances suggests that

certain common physical attributes must play a role.18

Silica or silicon dioxide (SiO2) is a technologically and scientifically important

substance. It is ubiquitous in the form of rock and sand in the nature, and occupies

a significant percentage of compositions of the earth’s crust.49 It is also known for

its remarkable glass-forming ability, and is often used as an important ingredients

for glass production.50 Understanding and then controlling the phase behaviors of

molten silica is of great scientific and industrial interest. Molton silica exhibits many

peculiar properties reminiscent of those found in water.47,51 Just like ice, silica can

exist in a diverse forms of crystalline phases under various temperature and pres-

sure conditions.52,53 Both β-cristobalite and Ice Ic share the same diamond unit cell

structure, and similarly, β-tridymite is the structural analog of Ice Ih.54 It’s not sur-

prising that parallel studies on water and silica, two chemically distinct substances

with the same local tetrahedral bonding arrangements, have uncovered that they

exhibit similar anomalous behaviors. Angell et al. measured the temperature de-

pendence of densities for liquid silicon dioxide, locating it’s temperature of maximum

density (TMD) at 1773 K.47 Fig.1.4 shows the temperature dependence of density

of both silica and D2O plotted together on a reduced scale for comparisons.47 Their

experimental results revealed the importance of averaged bridge-bond angles (O-H-

O angle in D2O and Si-O-Si angle in SiO2) in determining the sharpness of density

variation around the TMD, and the extent of anomalies in tetrahedral liquids.47 Liq-

uid silica also exhibits water-like dynamical anomalies in which the self-diffusion

coefficient reaches a maximum at a given pressure.51

Computational studies of several silica models have been devoted to investigat-

6



Figure 1.4: Both liquid silica and D2O exhibit the density maximum.47

ing the origin of its water-like anomalies. In computer simulation, silica interac-

tions are often treated by a rigid-ion model in which silicon and oxygen carry formal

charges and interact through electrostatic interactions, but do not exhibit explicit

bonding. The models developed by Woodcock, Angell, Cheeseman (WAC) and van

Beest, Kramer, and van Santen (BKS) are examples of such ionic model of silica

commonly used in simulation studies.56–58 Because of the simplified treatment of in-

teractions such as the absence of covalent bonding and the lack of polarizability, none

of these models are able to reproduce quantitatively the physical properties of real

silica, but they do qualitatively reproduce many water-like anomalies such as tem-

perature of maximum density.56,57,59 The search for signatures of LLCP in BKS and

WAC models of silica have been performed by running extensive equation of state

calculations for a range of temperature and pressure conditions.59,60 By using the

crossing of isochores as an indicator of phase transition, the sign of critical point can

be readily identified.60 In an accessible range of conditions examined, BKS model

does not show the tendency of isochores crossing, and therefore, no evidence of an

LLPT, while the WAC model seems to be close to criticality in the glassy region.60

Further studies by Lascaris proposed a simple way of tipping the WAC model toward

a true criticality. By scaling the charge magnitude on both silicon and oxygen by a

7



Figure 1.5: A schematic of rigid-ion model of silica. The number ratio of the silicon
atom to the oxygen atom is 1:2. Each Si atom carries +4 charges and each
oxygen atom carries -2 charges

factor of 0.84 in the original mWAC model, an LLCP can be unambiguously located

in the phase diagram where the extrema of thermodynamic response functions coin-

cide.61 Fig.1.5 shows the schematic of WAC model of silica. A non-bonded pairwise

interaction between Si+4 ion and O−2 ion in WAC model can be described by

UW AC(r i j)= f 2 1
4πε0

zi z j e2

r i j
+ A i j exp(−Bi jr i j), (1.1)

where r i j is separation distance between ions, zi is the charge number of either

zSi = +4 or zO = −2, ε0 is the permitivity of free space, and e is the elementary

charge. The exponential term in Eq.1.1 describes the short-range and excluded vol-

ume interactions with ASiSi = 1.917991469×105 kJ/mol, ASiO = 1.751644217×105

kJ/mol, AOO = 1.023823519× 105 kJ/mol, and Bi j = 34.48 nm−1 for all ion pairs.

When the scaling charge f = 1, the original WAC model is recovered. For f = 0.84,

the modified version of WAC model (mWAC) is obtained.61

The unambiguous evidence of an LLPT in mWAC was further confirmed through

free energy calculations using density as an order parameter.55 Fig.1.6 shows free

energy profiles of mWAC at conditions above and below the estimated critical point.55
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Figure 1.6: Free energy F(ρ) of mWAC model at a range of supercritical and subcrit-
ical temperature and pressure conditions.55

Above the critical temperature, there exists only one metastable liquid phase shown

as single free energy minimum. Below the critical temperature, the model exhibits

two free energy minima of equal depths, suggesting two metastable liquid phases

differing in their densities coexist (see Fig.1.6).

1.4 Homogeneous ice nucleation

Thanks to the metastable nature of pure supercooled tetrahedral liquids, homo-

geneous nucleation of more stable crystalline phases will prevail on long time scales.

As discussed in the previous section, the origin of puzzling properties of tetrahedral

liquids still remain unresolved because of temporal limitations of current experimen-

tal measurement techniques. To further explore the "no man’s land" in supercooled

water, understanding the nucleation mechanism and computing the nucleation rate

will be helpful in designing an experiment that can alleviate such temporal issues.16

However, for current experimental methods, probing crystal nucleation events at the

molecular scale in real time is still challenging, and therefore, intrinsic mechanisms

and kinetics of homogeneous nucleation processes are still elusive.62

Nucleation is the first step of crystallization, and it plays a central role in de-

9



Figure 1.7: A schematic diagram of CNT showing the free energy dependence of the
nucleus size assuming the shape of nucleus is spherical.

termining the outcome of a crystallization process.63 There exists two major classes

of nucleation mechanisms. In homogeneous nucleation, the formation of a stable

embryo of the crystalline phase is triggered by thermal fluctuations, whereas in het-

erogeneous nucleation it is triggered by contact with an external surface. Although

the dominant mechanism for generating the initial crystalline phase in many in-

dustrial and natural phenomena is mostly likely to be heterogeneous, homogeneous

nucleation still plays a pivotal role in many disciplines of science and engineering.2

For example, supercooled water can often be found in high-altitude cloud of atmo-

sphere,64 and cloud development is influenced by the homogeneous ice nucleation

rate.65

Classical nucleation theory (CNT), though initially proposed to account for the

process of vapor condensation66 or liquid-vapor transition, provides a qualitative de-

scription of thermodynamics and kinetics of crystal nucleation processes (see Fig.1.7).

The theory is based a assumption that a vanishingly thin layer exists between the
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supersaturated and the condensed phases, and both phases have the macroscopic

properties of bulk phases respectively.62 If the nucleus is assumed to have a spheri-

cal shape, the thermodynamics of nucleation can be described by a free energy change

due to the formation of crystalline phase from the supersatured phase

∆G(r)= 4
3
πr3∆µ+4πr2γ, (1.2)

where r is the raidus of spherical nucleus and γ is the interfacial free energy per unit

area, and ∆µ is the chemical potential difference per unit volume between bulk su-

persaturated and condensed phase. By taking the first derivative of ∆G with respect

to the radius r and setting it equal to 0, we can obtain the maximum value of ∆G and

the radius r∗ at which the maximum occurs. Using this procedure, we find that the

number of molecules in the critical nucleus is given by

n∗ = 32πρcγ
3

3∆µ3 , (1.3)

where the ρc is the density of crystalline phase. The Gibbs free energy barrier at this

critical nucleus size is given by

∆G∗ = 16πγ3

3∆µ2 . (1.4)

As the above equations indicates, interfacial free energy and chemical potential dif-

ference are factored into the equation cubically and quadratically, and therefore, the

free energy barrier is very sensitive to any uncertainties in those values. An Arrhe-

nius rate law can be applied to describe the kinetics of nucleation by the following

equation

J = J0 exp
(
− ∆G∗

kBT

)
. (1.5)
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According to this equation, the nucleation rate depdends expoentially on the Gibbs

free energy barrier, which determines the probabiliy of forming a critical nucleus at

the top of barrier. At moderate supercooling, the free energy barrier ∆G∗ is domi-

nating term controlling the nucleation rate, while at high supercooling condition, the

free energy barrier ∆G∗ become diminished, and the expotential term approaches

one. Under this condition, the kinetic prefactor J0, which is associated with the

mobility of the system comes into play and becomes a dominating factor. Thus, the

interplay of the kinetic factor J0 and thermodynamic factor ∆G∗ predicts a maximum

in temperature dependence of the nucleation rate.62

The limitations of CNT are also obvious. First, at deeply supercooled condition,

the size of critical nucleus become very small, blurring the boundary between the

supersaturated and condensed phase. The assumption of capillary approximation

breaks down, and the macroscopic properties used for nucleus in the CNT may not

be physically relevant.67 Additionlly, CNT predicts a one-step transformation of su-

persaturated phase into a more stable condense phase. The metastable phase as an

intermediate state during the nucleation is not predicted by CNT. However, in many

experimental and simulations studies, such metastable phase plays a crucial role as

suggested by Ostwald’s step rule, which states that the solid phase that crystallizes

initially from the liquid phase may not be the one that is most thermodynamically

stable but the one that is closest in free energy to the liquid phase.68

In comparison with the spatial and temporal limitations of experimental tech-

niques, computer simulations provide appropriate length and time scale to inves-

tigate the physical phenomena such as nucleation. The first direct observations of

homogeneous ice nucleation in computer simulations were reported by Matsumoto

et al.69 They performed long molecular dynamics simulations using TIP4P water

model, demonstrating the possibility of observing ice nucleation in computer simula-

tions. Because the ice nucleation is a rare event, and the time scale of its emergence
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in supercooled water can be easily beyond the reach of current computer computer

simulations,22,70 brute-force approach or direct simulations using Monte Carlo (MC)

and molecular dynamics (MD) with atomistic water models is usually not computa-

tionally affordable to perform. To facilitate the ice nucleation process in computer

simulations, either a coarse-grained water model can be used26,71–73 or enhanced

sampling methods can be adopted to overcome the time scale challenges associated

with modeling ice nucleation.74–77

The coarse-grained mW model of water has often been used in the study of homo-

geneous ice nucleation.26,68,75,76 This water model can quantitatively reproduce some

physical properties of water such as the melting point at ambient condition with less

computational cost compared with atomsitic model of water.71 The mW water model

treats a water molecule as a coarse-grained bead interacting through two-body and

three-body interactions.

The force-field of mW was derived from Stillinger-Weber potential which was ini-

tially proposed for silicon. All force-field parameters were kept the same as those

for silicon except that those parameters governing the energy and length scales are

fitted to the experimental properties of water.71 The resulting water model favors a

local tetrahedral symmetry and depends on short-ranged interactions to mimic the

hydrogen bonding effect. Without explicit hydrogen atoms, mW suffers from several

shortcomings. It tends to overestimates the self-diffusion coefficient of real water

at given pressure since the hydrogen reorientation is not taken into account.71 It

also underestimates the isobaric heat capacity at low temperature due to the lack of

rotational degree of freedom.71
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Chapter 2: Anomalous scattering in supercooled

ST2 water

This chapter was previously published by Taylor & Francis Group: Guo, J.; Singh,

R. S.; Palmer, J. C. Anomalous scattering in supercooled ST2 water. Molecular

Physics 2018, 116, 1953–1964

2.1 Introduction

Water exhibits a number of anomalous thermophysical behaviours that are not

observed in “simple” non-network-forming liquids.3,16,19 Whereas most liquids den-

sify as temperature decreases, for example, liquid water expands as it is cooled below

4 ◦C at ambient pressure.3 The magnitudes of water’s isothermal compressibility κT ,

thermal expansivity αP , and isobaric heat capacity CP also begin to increase rapidly

as the liquid is cooled near its freezing point; the rate of increase continues to ac-

celerate with decreasing temperature as far as can be measured in the supercooled

regime.3,7–9,78,79

The unusual properties of water are thought to result from fluctuations that drive

the formation of transient low-density and high-density domains in the liquid.3,16,17

The low-density domains are associated with open tetrahedral coordination struc-

tures that are stabilised by water’s hydrogen bonding network. This local tetrahedral

order is partially disrupted in the high-density domains, however, by the entropi-

cally favoured intrusion of additional molecules into water’s primary coordination

shell. The competition between these two locally favoured coordination structures

thus gives rise to mixture-like behaviour that is uncommon in pure liquids. Indeed,

thermodynamic models that treat water as a binary mixture of two partially miscible

liquids have been remarkably successful in describing its unusual properties.80,81
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It has been hypothesised that water’s mixture-like behaviour may even culminate

in a first-order phase transition between a high-density liquid and a low-density liq-

uid (HDL and LDL, respectively) under deeply supercooled conditions.3,12,16,17 The

apparent divergence of κT , αP , and CP upon cooling is thus explained in this scenario

by the presence of a low-temperature critical point that terminates the metastable

HDL–LDL coexistence line. This theory also posits that water’s experimentally ob-

served high-density and low-density amorphous glasses (HDA and LDA)11,82–84 are

kinetically arrested manifestations of the two liquids. Despite the intriguing nature

of the liquid-liquid critical point (LLCP) hypothesis, however, it has proved to be

extremely challenging to falsify experimentally. Extrapolation of water’s thermody-

namic response functions indicates that the hypothesised LLCP lies below the homo-

geneous nucleation temperature for ice (TH ≈ 232 K at ambient pressure6,7). Hence,

the LLCP is predicted to occur in a region of water’s phase diagram where direct

measurement of liquid state properties is frustrated by rapid ice nucleation.3,16,17,74

Numerous computational studies have also searched for a liquid-liquid phase

transition (LLPT) in molecular models of water.24,27,29,38,40,68,85–87 Unfortunately,

the low-temperature phase behaviour of many models remains unclear because sam-

pling under supercooled conditions is often hampered by slow relaxation processes

in the liquid. The few exceptions include the coarse-grained mW water model71 and

the rigid, point-charge ST2 model of Stillinger and Rahman.36 Although mW does

not exhibit an LLPT,26,88 clear evidence of such a transition has been reported for

ST2.12,28,30,32–35,39,42 Free energy calculations performed with enhanced sampling

methods show that two liquids (HDL and LDL) can be brought into phase coexis-

tence in ST2 under deeply supercooled conditions.28,30,32–35,42 At coexistence, both

liquids are metastable with respect to cubic ice, which can nucleate from the LDL

phase.28,42 Recent free energy calculations show, however, that the thermodynamic

stability of ST2’s LLPT with respect to crystallization can be systematically tuned

15



by incorporating bond-angle flexibility into the model.42 The metastable LLPT in

ST2 can therefore be traced in a continuous fashion, by adjusting a single model pa-

rameter, to a thermodynamically stable transition that can be observed without the

possibility of interference from ice nucleation.42

Whereas free energy methods can be used to directly detect LLPTs in molecu-

lar models, obtaining unambiguous experimental evidence to falsify the existence of

such a transition in water is significantly more challenging. Recent measurements

on micron-sized droplets using femtosecond x-ray laser pulses have been successful,

however, in probing the structure of liquid water down to 227 K at ambient pres-

sure.22,23 These investigations mark the first successful attempts to characterise the

properties of liquid water below its homogeneous nucleation temperature. The x-ray

scattering measurements suggest that water’s LLCP, if it exists, may lie at colder

conditions23,89 that are even more difficult to access experimentally. Nevertheless,

they reveal that κT exhibits a maximum at 229 K,22 which is consistent with cross-

ing the Widom line that is predicted to extend from the LLCP into the supercritical

region.16,17

Motivated by these recent experiments, here we perform large-scale molecular

dynamics (MD) simulations of systems containing up to 256000 molecules to inves-

tigate the small-angle scattering behaviour of supercooled ST2 water. We show that

ST2 exhibits anomalous scattering, reminiscent of that observed in experiment,22,90

which is characterised by an increase in the static structure factor at low wavenum-

bers. The anomalous scattering becomes significantly more pronounced at low tem-

perature, indicating that fluctuations in the liquid increase rapidly upon cooling.

We scrutinise this unusual behaviour by analysing fluctuations in density and

local tetrahedral order in ST2. Specifically, we apply a variant of the conventional

Bhatia-Thornton analysis91 in which ST2 water is treated as a binary mixture of

molecular species with low and high tetrahedral order in their primary coordina-
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tion shell, respectively.92,93 This analysis reveals that “concentration” fluctuations

in these species, and hence spatial variations in local tetrahedral order, contribute

significantly to ST2’s anomalous behaviour. We also estimate the static correla-

tion lengths associated with concentration fluctuations and the anomalous scatter-

ing component. As expected, both correlation lengths exhibit power-law divergence

as temperature is decreased, reflecting “critical opalescence” from long-wavelength

fluctuations in the liquid.94 The critical temperature Tc ≈ 245 K estimated from the

correlation lengths is in excellent agreement with values for ST2’s LLCP reported

in the literature.38,39 Finally, we show that spontaneous liquid-liquid phase separa-

tion is observed when a large system containing 256000 molecules is quenched be-

low Tc into the two-phase region. Our large-scale MD simulations therefore confirm

the existence of an LLPT in ST2 and support findings from previous computational

studies performed using significantly smaller systems containing only a few hundred

molecules.28,30,32–35,42 We anticipate that the analysis presented here may prove use-

ful in interpreting scattering experiments on supercooled water and trends observed

in computational studies of other models.

2.2 Methods

2.2.1 Simulation protocol

Canonical (NV T) ensemble molecular dynamics simulations of a system contain-

ing N = 32000 water molecules were performed using a widely-studied variant of

the ST2 model in which the reaction field method is used to account for long-range

electrostatic interactions. Potential parameters and other details of our implemen-

tation of this ST2 variant are identical to those reported in Refs. 38, 39 and 30.

The simulations were performed using a cubic simulation cell with an edge length of

L ≈ 10 nm and a fixed bulk density of 0.94 g cm−3, which is close to the estimated

critical isochore (≈ 0.94–0.96 g cm−3) for the ST2 model.38,86 The equations of mo-

17



tion were integrated using the velocity-Verlet algorithm with a 2 fs time step, and

a Nosé-Hoover thermostat95,96 with a 0.2 ps time constant was applied to maintain

the system’s temperature. The trajectories were propagated for durations ranging

from 150 to 300 ns, depending on the temperature. At the highest temperature stud-

ied (277 K), the system was equilibrated for 25 ns, followed by a production phase

of 125 ns. At the lowest temperature examined (247 K), the equilibration and pro-

duction phases were extended to 50 and 250 ns, respectively. The duration of the

initial equilibration period was chosen to be at least an order of magnitude longer

than characteristic relaxation times associated with the system’s configurational en-

ergy and global bond-orientational order;88 equilibration during this period was also

carefully assessed by monitoring for drift in these quantities. Configurations were

saved to file every 5 ps during the production phase of each simulation for further

analysis.

2.2.2 Structural analysis

The simulation trajectories were used to perform Bhatia-Thornton mixture anal-

ysis91,92,94 and characterise fluctuations in density and local tetrahedral order in the

liquid as ST2’s LLCP was approached from above by cooling the system. The imple-

mentation and description of the Bhatia-Thornton approach presented here closely

follow Ref. 92, where it was applied to study the behaviour of the TIP4P/2005 water

model. In contrast with ST2, however, which exhibits a well-characterised LLPT,28,42

clear numerical evidence of such a transition has not been reported in TIP4P/2005.87

Examination of ST2’s behaviour is therefore expected to provide insight into the cou-

pling between fluctuations in density and local tetrahedral order in the vicinity of an

LLPT.

We treat ST2 water as a binary mixture of species with low and high tetrahedral

symmetry in their first coordination shell, respectively. The extent of local tetrahe-
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dral order was quantified for each molecule i in the system using92,97

qi = 1− 3
8

3∑
j=1

4∑
l= j+1

(
cosφ jl +

1
3

)2
, (2.1)

where φ jl is the angle formed by the lines joining molecule i’s oxygen atom and those

on its jth and lth nearest neighbours (≤ 4). Molecules with qi larger or smaller than

a threshold value of q̃ were classified as low-q (L) and high-q (H) species, respectively.

We have found that the analysis is not particularly sensitive to the choice of q̃ and

thus used the median value of q for each configuration.92 This procedure resulted

in an equimolar mixture of L and H species and allowed the classification of each

molecule to change as its local environment evolved in time.92

We analysed density (NN), concentration (CC), and coupled density-concentration

(NC) fluctuations in ST2 upon cooling using the Bhatia-Thornton structure factors

for binary mixtures.91,92 For the present case in which water is treated as an isotropic

binary mixture of L and H species, these structure factors are given by92

SNN(Q)= S(Q)

= xHSHH(Q)+ xLSLL(Q)+2
p

xHxLSHL(Q), (2.2)

SCC(Q)=

xHxL[xLSHH(Q)+ xHSLL(Q)−2
p

xHxLSHL(Q)], (2.3)

and

SNC(Q)=

xHxL[SHH(Q)−SLL(Q)+ xL − xHp
xHxL

SHL(Q)], (2.4)
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where Q = |Q| is the norm of the scattering vector and x{H,L} are the species mole

fractions (x{H,L} = 0.5 in this case). Here, S(Q) is the total structure factor

S(Q)= N−1
N∑

j,l=1
〈exp

[
iQ · (rl −r j)

]〉, (2.5)

where {ri}N
i=1 are the positions of the oxygen atoms, and 〈. . .〉 denotes an ensemble

average. For an isotropic system, Eq. 2.5 can also be evaluated by taking the Fourier

transform of the radial distribution function, g(r):

S(Q)= 1+4πρ
∫ ∞

0
r2 sin(Qr)

Qr
h(r)dr, (2.6)

where h(r) = g(r)− 1 is the total pair correlation function, ρ = N/V , and V is the

volume of the system. The Bhatia-Thornton expressions also depend on the Ashcroft-

Langreth partial structure factor98 for species α and β

Sαβ(Q)= δαβ+4πρ
√

xαxβ
∫ ∞

0
r2 sin(Qr)

Qr
hαβ(r)dr, (2.7)

where δαβ is the Kronecker delta function, hαβ(r) = gαβ(r)−1, and gαβ(r) is the par-

tial radial distribution function.

Although SNN(Q) is generally not equal to S(Q) for binary mixtures, they are

equivalent in this case because the scattering lengths of both species are identical.

The functions S(Q) and Sαβ(Q) can be evaluated directly using Eq. 2.5 and an anal-

ogous expression for the partial structure factor or by computing the Fourier trans-

form of the radial distribution functions numerically, as suggested by Eqs. 2.6 and

2.7. The former approach is significantly more computationally demanding, whereas

the latter approach can introduce artifacts associated with terminating the integra-

tion at a finite value r = rmax, which must be less than or equal to L/2 to adhere

to the minimum image convention. Discrepancies between the two approaches can
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be minimised by applying finite-size corrections,99 which allow the total and partial

structure factors to be accurately estimated at low wavenumbers. The assumption

underlying both approaches and the finite-size correction scheme, however, is that

the simulated system is large enough to capture the longest correlations in the liq-

uid.93,99 As a result, significant care must be taken when applying these methods to

analyse fluctuations in the vicinity of a critical point.

For the system sizes and thermodynamic conditions examined in this study, we

found that the two approaches for evaluating the structure factors produced very

similar results when finite-size corrections were applied. We therefore report re-

sults obtained using the Fourier transform method (Eqs. 2.6 and 2.7) with finite-size

corrections. As discussed in the following section, we have explicitly checked for

finite-size effects at the lowest temperature examined (247 K), where the correlation

length is expected to be longest, by simulating a significantly larger system contain-

ing N = 256000 molecules. The linear dimension of this system is L ≈ 20 nm and

thus it can accommodate fluctuations twice as large. The correlation lengths esti-

mated from the structure factors computed for both systems are in statistical agree-

ment, indicating that results presented for N = 32000 molecules are not significantly

affected by finite-size effects.

2.3 Results and Discussion

We use the parameter q (Eq. 2.1) to analyse fluctuations in local tetrahedral order

in supercooled ST2 water. The probability density distributions of q calculated from

the simulation trajectories exhibit a strong high-q peak around 0.9, which is close to

the limiting value q = 1 expected for a regular tetrahedron (Fig. 2.1). A second much

weaker peak at lower q is also observed in the distributions near 0.5 (Fig. 2.1). The

high-q peak becomes more pronounced upon cooling, whereas the magnitude of the

low-q peak decreases as T is lowered. This behaviour has been reported in numerous

computational studies,92,93,100 and it signifies an increase in tetrahedral order, which
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Figure 2.1: Probability density distributions for the tetrahedral order parameter q
computed at different temperatures for a system containing N = 32000
ST2 water molecules. The vertical dashed lines indicate the median val-
ues of q at the highest and lowest temperatures.

is consistent with the interpretation of x-ray scattering experiments on supercooled

water.89,101

Bimodal q-distributions have also been previously reported for the TIP5P,

TIP4P/2005 and SPC/E water models.92,93,100 The weak bimodality reflects the exis-

tence of two subpopulations of molecules with distinct local environments. Although

these subpopulations are not completely distinguished by the order parameter q,

the trajectory-averaged value of the median separates the low-q and high-q peaks

at each temperature investigated (Fig. 2.1). Similar behaviour is also found when

examining the q-distributions computed for single configurations (not shown). This

observation suggests that the median is a reasonable choice for the threshold value

q̃. As noted in Sec. 2.2.2, we have found that Bhatia-Thornton analysis is not par-

ticularly sensitive to the choice of q̃, provided that it separates the low- and high-q

peaks in the q-distribution. The median was also found to be a suitable choice for q̃

in a similar study of the TIP4P/2005 water model.92

The total structure factor S(Q) exhibits distinct peaks S1 and S2 at Q ≈ 18 and 28

nm−1, respectively (Fig. 2.2(a)). These peaks are also observed in x-ray scattering ex-
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Figure 2.2: (a) Total structure factors and (b) total pair correlation functions com-
puted at different temperatures for a system containing N = 32000 ST2
water molecules. The inset in (b) shows an enlargement of the total pair
correlation function for r ≥ 2 nm.

periments,23,101,102 and they are associated with the peaks at approximately 0.7 and

0.45 nm in water’s total pair correlation function.39 The latter value is the second-

nearest-neighbor separation distance expected for a tetrahedral coordination struc-

ture
p

8/3a ≈ 0.45 nm, where a ≈ 0.28 nm is the distance between the oxygen sites on

nearest neighbours.23,101 The growing separation between S1 and S2 observed upon

cooling water in both simulation and experiment thus reflects an increase in tetra-

hedral order as T decreases,23 which is in agreement with the behaviour reported

above for the parameter q.

The magnitude of S(Q) in the low-Q region increases dramatically as T decreases
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(Fig. 2.2(a)). This behaviour has been reported in experiment and previous simula-

tion studies,22,90,92,100,103 and it is associated with the enhancement of fluctuations

in water as it is cooled below its normal freezing point. The limiting value of S(Q)

as Q → 0 is related to particle number (density) fluctuations and the isothermal com-

pressibility κT
90,104

lim
Q→0

S(Q)= 〈N2〉−〈N〉2

〈N〉 = ρkBTκT , (2.8)

where kB is Boltzmann’s constant. Hence, the increase in S(0) as T decreases indi-

cates that the metastable liquid becomes more compressible. “Simple” liquids (e.g.,

the Lennard-Jones fluid), by contrast, become less compressible and exhibit a con-

comitant decrease in S(0) as T is lowered.22,90 The increase in compressibility upon

cooling is thus unusual behaviour for a pure liquid and is one of supercooled water’s

characteristic thermophysical anomalies.3,16

The total pair correlation function shows that ST2 exhibits increasing short- and

intermediate-range order as it is cooled, in accord with an enhancement of local tetra-

hedral symmetry in the liquid (Fig. 2.2(b)). We analyse the function r2h(r) rather

than h(r) directly to facilitate detection of long-length-scale correlations. At the high-

est temperature (277 K), no correlations are observed beyond ∼ 1.8 nm (Fig. 2.2(b)

inset). As T is lowered, however, longer-range correlations emerge. At the lowest

temperature examined (247 K), very weak correlations can be detected up to ca. 3.5–

4.0 nm. This behaviour suggests a growing correlation length in ST2 water. As we

demonstrate below, the increase in the correlation length in ST2 water upon cooling

is consistent with the approach towards a low-temperature LLCP at ∼ 245 K.

Insight into the nature of the growing correlations in ST2 can be gained by ex-

amining the partial pair correlation functions computed by treating ST2 water as an

equimolar binary mixture of low-q (L) and high-q (H) species (Fig. 2.3). The functions

hLL(r) and hHH(r) reveal the presence of very weak, long-range (r > 2 nm) density cor-

relation between like species in the system (Fig. 2.3(a),(b)). The strength and range of
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Figure 2.3: Partial pair correlation functions for low-q and high-q species computed
at different temperatures for a system containing N = 32000 ST2 water
molecules.
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these positive correlations grow as T decreases. By contrast, hHL(r) shows that long-

range density correlations between unlike species become increasingly negative as

T is lowered. Long-range density correlations between like and unlike species thus

make positive and negative contributions to the total pair correlation function h(r),

respectively (Fig. 2.3(c)). These results demonstrate that density and concentration

fluctuations are coupled in the system, and they suggest that decreasing miscibility

of the two species contributes to the growth of static correlations in the liquid as T is

lowered, as expected in the vicinity of a demixing transition.92,93

The mixture-like behaviour of supercooled ST2 water motivates analysis of the

Bhatia-Thornton structure factors to characterise fluctuations in the liquid (Fig. 2.4).

As noted in Ref. 92, SCC(0) will diverge upon approaching a demixing transition in

a binary system; SNN(0) and SNC(0) will also exhibit similar, albeit significantly less

pronounced, divergent behaviour if the two components have different partial molar

volumes. We find that SCC(0) increases rapidly as T decreases. The magnitude of

the change with T is substantially larger than that observed for SNN(0) = S(0). The

significant rise in SCC(Q) as Q → 0 demonstrates that strong concentration fluctua-

tions are present at each temperature examined. Similarly, the increase in SNC(Q) at

low wavenumber reveals that density and concentration fluctuations are coupled, as

suggested by the pair correlation functions. An appreciable increase in SNC(0) is also

observed as T decreases. The behaviour of the Bhatia-Thornton structure factors is

therefore consistent with the approach to a demixing transition.

The Ornstein-Zernike correlation length ξ can also be estimated by analysing the

low-wavenumber behaviour of the structure factor.22,90,104 This quantity provides a

measure of the characteristic size of correlations in the liquid, and its behaviour can

be used to detect the presence of critical singularities. Specifically, along a critical
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Figure 2.4: Bhatia-Thornton structure factors SCC(Q) (Eq. 2.3) and SNC(Q) (Eq. 2.4)
computed at different temperatures for a system containing N = 32000
ST2 water molecules. The structure factors SNN(Q) = S(Q) (Eq. 2.2) are
shown in Fig. 2.2(a).

isochore, ξ should exhibit power-law divergence as T decreases93

ξ= ξ0

(
T
Tc

−1
)−ν

, (2.9)

where ξ0 is a constant, Tc is the critical temperature, and ν is the critical exponent

associated with ξ. As noted in Ref. 93, ξ can be obtained from SCC or the anomalous

contribution to the total structure factor. The latter quantity is obtained by splitting

S(Q) into normal SN(Q) and anomalous SA(Q) components:22,90,104

S(Q)= SN(Q)+SA(Q). (2.10)

This division of S(Q) is motivated by the unusual behaviour of water’s isothermal

compressibility, which passes through a minimum around 319 K at ambient pres-

sure.7 Above the minimum, κT decreases with T, as expected for a “normal” liquid.

Below the minimum, however, κT begins to increases with decreasing T. The anoma-

lous increase in κT upon cooling continues as far as can be measured experimentally
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in the supercooled regime.7 Thus, it has been proposed that the non-monotonic be-

haviour of water’s isothermal compressibility can be modelled by considering κT as

the superposition of two functions κT = κN
T +κA

T .7,78 The component κN
T follows the

behaviour expected for a “normal” liquid and decreases monotonically with T.7,90,104

The anomalous component κA
T , on the other hand, generally increases as T decreases

and accounts for enhanced density fluctuations that arise from the competition be-

tween local coordination structures in the liquid. The relationship between S(0) and

κT given in Eq. 2.8 therefore suggests that S(Q) can be split in a similar fashion.

The division of S(Q) can also be rationalised by considering water as a mixture of

two “normal” liquids.101

Defining SN(Q) and SA(Q) is to some extent arbitrary in practice.101,104 In exper-

imental studies, it is usually assumed that the normal component is independent

of Q in the low wavenumber region, i.e., SN(Q) = SN(0) for small Q.104 Alterna-

tively, the behaviour of SN(Q) at small Q may be approximated by extrapolation

from larger wavenumbers, where the anomalous contribution to S(Q) is assumed to

be negligible.90,104 The extrapolation is performed by imposing the constraint that

SN(0) = ρkBTκN
T , where κN

T is obtained from values tabulated in the literature.78,105

It has also been proposed that SN(Q) may be computed in simulation using the

Bhatia-Thornton expression for the structure factor92

S(Q)= S2
NC(Q)/SCC(Q)+θ(Q), (2.11)

where

θ(Q)= xHxL[SHH(Q)SLL(Q)−S2
HL(Q)]/SCC(Q). (2.12)

If density and concentration fluctuations are uncoupled in the system, SNC(Q) = 0

and Eq. 2.11 reduces to S(Q) = θ(Q). The function θ(Q) thus provides a measure
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of S(Q) in the absence of coupled density-concentration fluctuations,91,92 motivating

the choice of SN(Q)= θ(Q) as an operational definition for the normal contribution.

Estimates of the correlation length are obtained by fitting the low-Q regions of

SA(Q) and SCC(Q) to Lorentzian functions90,104

SA(Q)= a(T)
ξ−2 +Q2 (2.13)

and

SCC(Q)= b(T)
ξ−2 +Q2 , (2.14)

where a(T) and b(T) are temperature-specific constants. We have used this proce-

dure to estimate ξ from SCC(Q) and SA(Q)= S(Q)−θ(Q). According to Eqs. 2.13 and

2.14, the functions 1/SA(Q) and 1/SCC(Q) should vary linearly with Q2 over the fitted

wavenumber range at each temperature. Additionally, although the finite-size cor-

rections allow S(Q) to be estimated even at very small wavenumbers, we restrict our

fitting to Q ≥ 2π(L/2)−1 ≈ 1.26 nm−1.100 A suitable range of Q satisfying both of these

criteria was identified at each temperature examined (Fig. 2.5).

Figure 2.6 shows estimates of the correlation length ξ calculated from SA(Q) (cir-

cles) and SCC(Q) (squares) for a system containing N = 32000 ST2 water molecules.

Lines are power-law fits to the data for N = 32000 molecules using Eq. 2.9 with ξ0

and Tc as adjustable parameters and ν= 0.63, which is the critical exponent for the

three-dimensional Ising universality class. The fits to ξ from SA(Q) and SCC(Q) yield

Tc = 244.6 K and Tc = 245.3 K, respectively. The large black symbols denote esti-

mates for ξ from simulations conducted using N = 256000 molecules at 247 K. Un-

certainties were estimated using block analysis. The correlation lengths extracted

from SCC(Q) and SA(Q) grow rapidly as T decreases, in accord with the power-law

divergence predicted by Eq. 2.9 (Fig. 2.6). Histogram reweighting studies conducted
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Figure 2.5: Ornstein-Zernike plots for (a) SA(Q) and (b) SCC(Q). Points are data
from MD simulations of N = 32000 ST2 water molecules, whereas lines
in (a) and (b) are fits using Eqs. 2.13 and 2.14, respectively.
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using small systems (N < 800) suggest that ST2’s LLPT belongs to the 3D Ising uni-

versality class.33,39 Very close to Tc, it is therefore expected that ξ will grow via Eq.

2.9 with the 3D Ising scaling exponent ν≈ 0.63.94,106–108 Further away from Tc, how-

ever, the scaling of ξ should cross over to mean-field behaviour with ν = 0.5.106–108

Uncertainty in the location of Tc and statistical error in ξ prevent us from distin-

guishing between the crossover region and the asymptotic regime where Ising-like

scaling is expected. Consequently, in fitting the data to Eq. 2.9, we set ν = 0.63 and

used ξ0 and Tc as adjustable parameters. We observe that the data are well-described

by power-law fits using the 3D Ising exponent ν ≈ 0.63 (Fig. 2.6). Ising-like scaling

behavior for ξ has reported over the same range of T/Tc −1 for the demixing tran-

sition in symmetric binary Lennard-Jones mixtures.94 We have also fit the data by

fixing Tc and using ν and ξ0 as adjustable parameters (not shown). Our analysis

suggests 245±1 K and 0.6±0.1 as best estimates for Tc and ν. The value Tc ≈ 245

K is in excellent agreement with estimates of 246±1 and 247±3 K for ST2’s liquid-

liquid critical temperature obtained from histogram reweighting39 and equation of

state analysis,38 respectively. Finally, to gauge the magnitude of finite-size effects at

these conditions, we repeated the analysis at the lowest temperature (247 K) for a

significantly larger system containing N = 256000 water molecules, as discussed in

Sec. 2.2.2. We find that the values of ξ computed for both systems are in good agree-

ment, indicating that the system with N = 32000 molecules is large enough to obtain

accurate estimates of the correlation length over the range of conditions examined in

this study.

Bhatia-Thornton analysis has also been used to characterise fluctuations in

TIP5P and TIP4P/2005.93 The behaviour of ξ for TIP5P was found to be consistent

with the existence of a low-temperature LLCP near 212 K. The correlation length

for TIP4P/2005, by contrast, was reported to exhibit much weaker scaling with T

than expected in the vicinity of an LLCP. Equation of state analysis suggests that
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Figure 2.6: Estimates of the correlation length ξ calculated from SA(Q) (circles)
and SCC(Q) (squares) for a system containing N = 32000 ST2 water
molecules. Lines are power-law fits using Eq. 2.9

both models may exhibit an LLPT at deeply supercooled conditions.24,29,87 To our

knowledge, however, the existence of such a transition has not been confirmed in

either model using rigorous free energy methods, such as those that have been ap-

plied to locate and characterise ST2’s LLPT. Free energy calculations are expected

to be extremely challenging to perform for these models, particularly for TIP4P/2005

where slow relaxation processes in the liquid frustrate sampling near the hypothe-

sised LLPT.87 Such calculations have only been possible for ST2 because its LLPT oc-

curs at higher temperatures where relaxations are relatively fast.28,30,88 Thus, anal-

ysis of TIP5P and TIP4P/2005 is complicated by the fact that the location of their

LLPTs, should they occur, is not precisely known.

Recent studies also demonstrated that the thermodynamic stability of LLPTs

in tetrahedral fluids can be remarkably sensitive to model parameters.41,42 Adjust-

ment of bond-angle flexibility in colloidal models of tetravalent DNA nanostars can

cause the LLPTs in these systems to vanish completely.41 Similarly, ST2’s metastable

LLPT becomes thermodynamically stable with respect to crystallisation when bond-

angle flexibility is introduced into the model.42 An LLPT can also be induced in the
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WAC model of silica by tuning the Coulombic interactions.61,109 These results sug-

gest that not all water models necessarily exhibit a low-temperature LLPT. Indeed,

there seems to be no such transition in the mW water model.26,88

The existence of a metastable LLPT in ST2 suggests that it should be possible

to observe spontaneous phase separation and the formation of a stable liquid-liquid

interface at T < Tc. Yagasaki et al.110 have reported evidence of a spontaneous phase

separation in ST2. They used canonical ensemble molecular dynamic simulations to

instantaneously quench systems containing N = 4000 molecules from 300 to 235 K

(0.96 Tc) along the ρ = 0.98 g cm−3 isochore, which crosses into the two-phase region.

The simulations were performed in a rectangular simulation cell with an aspect ratio

of Lx:L y:Lz = 1:1:4 to promote formation of a planar interface. As expected, they

observed the development of low- and high-density domains (corresponding to ST2’s

LDL and HDL phases, respectively), which were separated by a diffuse interface

oriented with its surface normal parallel to the major axis of the simulation cell.

They also reported similar behaviour in complementary simulations performed for

TIP5P and TIP4P/2005.

Overduin and Patey93 subsequently applied the approach of Yagasaki et al. to

study the behaviour of TIP5P and TIP4P/2005 in larger systems containing up to

N = 32000 molecules. Interestingly, they found that density of the quenched systems

became increasingly homogeneous as N was increased from 4000 to 32000. In the

largest system with N = 32000 molecules, no evidence of liquid-liquid phase sepa-

ration was observed. Thus they concluded that the behaviour reported by Yagasaki

et al. for TIP5P and TIP4P/2005 is a finite-size artifact associated with using small

systems and not evidence of an underlying LLPT. Although Overduin and Patey did

not perform simulations for ST2, they hypothesised that the simulations conducted

for this model by Yagasaki et al. may also suffer from finite-size artifacts.93

To test this hypothesis, we have performed similar molecular dynamics simula-
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Figure 2.7: (top) Density profile ρ(z) at 237 K computed along the major axis (z-axis)
of a rectangular simulation cell containing N = 256000 ST2 molecules af-
ter the system was thermally quenched into the region of liquid-liquid
coexistence. (bottom) The HDL–LDL interfaces are observed in render-
ings of the system in which the particles are shaded according to the local
density across the z-axis of the simulation cell.

tions for ST2 using a significantly larger system containing N = 256000 molecules.

The density of the system was fixed at ρ = 0.98 g cm−3, which is the same value used

by Yagasaki et al. We also used an elongated rectangular simulation cell, but chose

a different aspect ratio (Lx:L y:Lz = 1:1:
p

2). The minimum and maximum dimen-

sions of the simulation cell were therefore set to Lx = L y = 17.67 and Lz = 24.99 nm,

respectively.

The system was equilibrated at 300 K for 1 ns and then quenched to 237 K by

abruptly changing the set temperature of the thermostat. The quench was followed

by HDL–LDL phase separation, as evidenced by the rapid formation of large low-

and high-density domains that spanned the x-y plane of the simulation cell. Al-

though their positions fluctuate, the domains persist for the duration of the simu-
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lation trajectory (ca. 200 ns). Analysis of the density profile ρ(z) reveals that the

liquid domains are separated by an interface normal to the z-axis and have densi-

ties of 0.89 and 1.07 g cm−3, respectively (Fig. 2.7). These values are consistent with

the densities reported for LDL and HDL by Yagasaki et al.110 for smaller systems

with N = 4000 molecules. They are also in good agreement with location of the LDL

and HDL basins observed in free energy surfaces computed for ST2 using N = 216

molecules.30,42 These studies collectively show that an LLPT is observed in ST2, in-

dependent of system size, across a range of N that spans at least three orders of

magnitude. Hence, they demonstrate that ST2 exhibits a genuine metastable LLPT

that is not connected to, or strongly influenced by, artifacts stemming from finite-size

effects.

Finally, we note that as N →∞, the characteristic time scale for ice nucleation

will eventually become smaller than that required to relax the liquid and thus di-

rect observation of ST2’s LLPT will be prevented by rapid crystallisation. For the

N = 256000 molecule system studied here, however, we did not observe evidence of

crystallisation. Molecules with ice-like local order identified using the CHILL+ al-

gorithm111 were found to constitute less than 7 % of the total population over the

duration of the ca. 200 ns MD trajectory. By contrast, the liquid-liquid separation

process completed in a few nanoseconds, which is comparable to the liquid relax-

ation time under these conditions.110 The crystallisation and liquid relaxation time

scales thus appear to be separated to some extent even in the largest systems and at

the lowest temperatures examined in our study. As reported by Yagasaki et al.,110

we anticipate that crystallisation in ST2 may be observed by extending the duration

of the simulations into the microsecond regime. Although this might be possible in

future investigations, the computational cost associated with simulating these very

large systems has prevented us from accessing such time scales in the present study.
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2.4 Conclusions

We have performed large-scale MD simulations of systems containing up to

N = 256000 molecules to investigate the low-temperature behaviour of the ST2 water

model. Free energy studies of small systems with N ≈ 200 molecules have demon-

strated that ST2 exhibits a phase transition between two metastable liquids (HDL

and LDL) below a critical temperature of Tc ≈ 245 K. The liquids have different den-

sities and are also distinguished by the extent of tetrahedral order in their local

coordination environment. Here, we have exploited these differences to analyse fluc-

tuations in supercooled ST2 water by treating it as an equimolar binary mixture of

molecular species with low and high tetrahedral order in their primary coordination

shell, respectively.

We found that ST2 exhibits anomalous scattering at low wavenumbers, similar

to that observed experimentally in supercooled water. This behaviour is directly

related to supercooled water’s well-known increase in compressibility upon cooling,

and it demonstrates that fluctuations in the liquid grow in magnitude as temper-

ature is lowered. Analysis of the Bhatia-Thornton structure factors revealed that

density, concentration, and coupled density-concentration fluctuations contribute to

ST2’s anomalous scattering. Estimates of the correlation lengths associated with

the anomalous scattering component and concentration fluctuations were also ex-

tracted using Bhatia-Thornton analysis. Both correlation lengths increase rapidly

upon cooling and exhibit power-law growth consistent with the presence of a critical

singularity at Tc ≈ 245 K. Thus the rapid growth of the correlation lengths points to

the existence of a low-temperature LLCP in ST2, in accord with previous computa-

tional studies of significantly smaller systems.38,39

Finally, we observed that spontaneous liquid-liquid phase separation occurs when

large systems with N = 256000 molecules are thermally quenched below Tc into the

two-phase region. Similar behaviour was also reported by Yagasaki et al.110 for sig-
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nificantly smaller systems containing N = 4000 molecules. The consistency between

the two studies therefore demonstrates that ST2’s behaviour is not sensitive to sys-

tem size. By contrast, Overduin and Patey93 found that low- and high-density liquid

domains in TIP5P and TIP4P/2005 gradually vanish as N is increased from 4000

to 32000. As discussed in Ref. 87, there are many possible explanations for this

behaviour. Distinguishing between the different scenarios, however, will be chal-

lenging and require performing numerous large-scale MD simulations of TIP5P and

TIP4P/2005 to examine the effects of box shape, system density, and equilibration

time, among other variables, on the apparent phase behaviour of these models. We

therefore leave in-depth examination of these models for future investigations.
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Chapter 3: Fluctuations near the liquid–liquid

transition in a model of silica

This chapter was previously published by Royal Society of Chemistry: Guo, J.;

Palmer, J. C. Fluctuations near the liquid–liquid transition in a model of silica. Phys.

Chem. Chem. Phys. 2018, 20, 25195–25202

3.1 Introduction

Tetrahedral liquids, such as water and silica, exhibit a number of well-known

thermophysical anomalies.3,16,19,112 Whereas “simple” non-network-forming liquids

densify upon cooling, for example, many tetrahedral liquids exhibit density maxima,

below which they expand as temperature decreases.3,16,112 The non-monotonic be-

havior of the density arises from the conversion of entropically favored high-density

arrangements in the liquid into energetically favored low-density tetrahedral coordi-

nation structures.3,92,112 It has been proposed that this mixture-like behavior81,86,113

may result in a liquid-liquid phase transition (LLPT) between a high-density and

a low-density phase (HDL and LDL, respectively) at deeply supercooled condi-

tions.3,12,16,17,112 According to the LLPT hypothesis, anomalies such as the marked

increase in the isothermal compressibility of tetrahedral liquids upon cooling7,16,89

arise due to fluctuations associated with the liquid-liquid critical point (LLCP) ter-

minating the line of HDL–LDL coexistence. This intriguing scenario also posits that

the high-density and low-density amorphous glasses (HDA and LDA) of water11,82–84

and silica114 are kinetically arrested forms of the two liquids.

Results from recent experiments on stretched and deeply supercooled water are

consistent with the LLPT hypothesis.22,115 Direct observation of such a transition,

however, has thus far been prevented by the rapid nucleation of ice near water’s
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predicted LLCP.3,16,17,23,62,74 Computational studies have also investigated the exis-

tence of LLPTs in models of tetrahedral liquids .24,26,27,29,38,40,41,60,68,85–87,116 Coarse-

grained models of DNA tetramers116 and tetra-functional patchy particles41 have

been shown to exhibit LLPTs. Similar behavior has not been confirmed in most

molecular and atomic systems, however, due to the computationally demanding na-

ture of equilibrating their liquid phases at the low temperatures where the transi-

tions are predicted to occur. Exceptions include the ST2 model of water12,36 and the

modified Woodcock-Angell-Cheeseman (mWAC) model of silica,57,61 which both ex-

hibit low-temperature LLPTs.28,30,32–35,39,42,109 Although the existence of an LLPT

in ST2 has been challenged by Limmer and Chandler,25,117 it was recently demon-

strated that the results and conclusions presented in their studies are invalid due to

a serious conceptual error in the design of their simulation code.112,118

Models such as ST2 water and mWAC silica, while not quantitatively accurate in

predicting properties of these substances, provide unique opportunities to elucidate

the connections between LLPTs and other anomalous thermophysical behaviors, and

thus guide interpretation of the growing body of experimental work on tetrahedral

liquids. In this study, we perform large-scale molecular dynamics (MD) simulations

of up to 216,000 atoms to investigate the scattering behavior of the mWAC model

of silica near its LLPT. We find that mWAC exhibits anomalous scattering, similar

to that observed in experimental and computational studies on supercooled water,

in which the magnitude of the static structure factor S(Q) at low-Q increases upon

cooling. This behavior arises from a significant increase in density fluctuations in

the liquid. Bhatia-Thornton analysis reveals that the enhanced density fluctuations

are strongly coupled to those associated with local tetrahedral order, consistent with

proximity to an HDL–LDL demixing transition. Moreover, we find that the Ornstein-

Zernike correlation length estimated from the anomalous scattering component ex-

hibits power-law growth upon cooling and appears to diverge near 3300 K, which is
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in excellent agreement with previous estimates of mWAC’s liquid-liquid critical tem-

perature. Finally, we use MD to thermally quench systems with 4500, 36,000, and

432,000 atoms below the predicted LLCP into the two-phase region. We observed

spontaneous HDL–LDL phase separation immediately following the quench, inde-

pendent of system size. These findings are similar to those reported in our analogous

investigation of the ST2 model of water,119 suggesting common signatures that may

be useful in identifying LLPTs in other models and interpreting scattering experi-

ments on tetrahedral liquids.

Methods

Molecular dynamics simulations

Large-scale MD simulations of the mWAC silica (SiO2) model were performed

using GROMACS 4.6.7.120 Following the original model of Woodcock, Angell, and

Cheeseman57 (WAC), the mWAC model describes SiO2 as a 1:2 binary mixture of

Si+4 and O−2 ions, which interact through a standard Coulomb-Buckingham poten-

tial.60,61 Parameters for mWAC are identical to those of the original WAC model.57,60

In addition, the mWAC model introduces a new parameter f that scales the mag-

nitudes of the charges on the ions.61,109 The original WAC model ( f = 1) does not

exhibit an LLPT in the computationally accessible region of its phase diagram.61

Reducing f to 0.84, however, induces an LLPT under conditions that can be read-

ily explored with simulation.61,109 The existence of an LLPT in the mWAC model

with f = 0.84 has been confirmed by both equation of state and free energy calcu-

lations.61,109 Spontaneous liquid-liquid phase separation has also been directly ob-

served in mWAC upon thermally quenching large systems containing N = 108,000

atoms at fixed density into the predicted two-phase region.109 These studies suggest

that the liquid-liquid critical temperature, pressure, and density for mWAC with

f = 0.84 are TC = 3350±75 K, pC = 0.19±0.09 GPa, and ρC = 1.8±0.1 g cm−3, respec-

40



tively.

We performed canonical (NV T) ensemble MD simulations to study the behav-

ior of the mWAC model with f = 0.84 in the vicinity of its LLCP. The simulations

were conducted approximately along the critical isochore (ρ ≈ 1.85 g cm−3) at dif-

ferent temperatures (3375 K ≤ T ≤ 3800 K) for a system with N = 36,000 atoms in

a periodic, cubic cell with edge length L = 8.65 nm. This large system was chosen

to minimize finite-size effects and facilitate investigation of long-wavelength fluctu-

ations near TC. The equations of motion were integrated using the velocity-Verlet

algorithm with a 2 fs time step, and the temperature was maintained using a Nosé-

Hoover thermostat95,96 with a 2 ps time constant. Pairwise interactions were trun-

cated at 1.0 nm, and long-range contributions to the electrostatics were treated using

the particle mesh Ewald method, with parameters chosen to ensure a relative error

of less than 10−4 in the calculated energy. Each simulation was equilibrated for 25

ns, followed by a production period of 175 ns. Configurations were saved every 20 ps

during the production period for subsequent analysis. Three independent runs were

performed at the lowest temperatures (T ≤ 3450 K) to improve sampling statistics.

Fluctuation analysis

Density fluctuations in mWAC were analyzed by computing the static structure

factor,

S(Q)= N−1
s

Ns∑
j,l=1

〈exp
[
iQ · (rl −r j)

]〉, (3.1)

where {ri}
Ns
i=1 are the positions of the Ns scatterers and Q = |Q| is the norm of the

wavevector. For a homogeneous isotropic system, S(Q) can be expressed in terms of

the Fourier transform of the radial distribution function, g(r):

S(Q)= 1+4πρs

∫ ∞

0
r2 sin(Qr)

Qr
[g(r)−1]dr, (3.2)
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where ρs = Ns/V and V is the volume of the system. The small-Q limit of S(Q) is

related to fluctuations in Ns and the isothermal compressibility κT
90,104

S(0)= lim
Q→0

S(Q)= 〈N2
s 〉−〈Ns〉2

〈Ns〉
= ρskBTκT , (3.3)

where kB is Boltzmann’s constant.

For our analysis, we set Ns = NSi = N/3 and only considered scattering from Si

atoms, noting that similar results are obtained when contributions from O atoms

are also included. In analogy to O atoms in water’s tetrahedral O–H–O hydrogen-

bond network, Si atoms serve as “molecular” centers that are linked via Si–O–Si

ionic bonds in liquid silica.121 Hence, they are suitable scattering centers for charac-

terizing fluctuations in silica’s tetrahedral network. Accordingly, we evaluated S(Q)

numerically from the Si–Si radial distribution function via Eq. 3.2, using standard

finite-size corrections99 and an upper integration limit of rmax = L/2.

Coupled fluctuations in density and tetrahedral order were characterized using

the Bhatia-Thornton analysis proposed by Overduin and Patey92 for supercooled wa-

ter. This approach treats the pure liquid as a binary mixture of molecular species

with low (L) and high (H) tetrahedral symmetry in their first coordination shell,

respectively. We adapted this analysis to study fluctuations in liquid silica by com-

puting the local tetrahedral order parameter92,97

qi = 1− 3
8

3∑
j=1

4∑
l= j+1

(
cosφ jl +

1
3

)2
, (3.4)

where φ jl is the angle formed by the lines joining Si atom i with its jth and lth

nearest Si neighbors ({ j, l} ≤ 4). Silicon atoms with qi values smaller or larger than

the median were classified as L and H species, respectively. This approach resulted

in an equimolar mixture and allowed the classification of each Si atom to change with

time.92
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Density (NN), species concentration (CC), and coupled density-concentration

(NC) fluctuations were analyzed by computing the Bhatia-Thornton structure fac-

tors for isotropic binary mixtures:91,92

SNN(Q)= S(Q)

= xHSHH(Q)+ xLSLL(Q)+2
p

xHxLSHL(Q), (3.5)

SCC(Q)=

xHxL[xLSHH(Q)+ xHSLL(Q)−2
p

xHxLSHL(Q)], (3.6)

and

SNC(Q)=

xHxL[SHH(Q)−SLL(Q)+ xL − xHp
xHxL

SHL(Q)], (3.7)

where x{H,L} = 0.5 are the species mole fractions. Equations 3.5 –3.7 are functions of

the Ashcroft-Langreth partial structure factors98 for species α and β,

Sαβ(Q)= δαβ+4πρs
√

xαxβ
∫ ∞

0
r2 sin(Qr)

Qr
[
gαβ(r)−1

]
dr, (3.8)

where δαβ is the Kronecker delta function and gαβ(r) is the partial radial distribu-

tion function. Because the scattering lengths are identical for both species in the

present case, SNN(Q) = S(Q), as indicated by Eq. 3.5. Thus, SNN(Q) and S(Q) are

used interchangeably in our analysis and discussion.

Results and Discussion

We applied the analysis methods described in the previous section to characterize

the behavior of the mWAC model near its LLPT. The primary peak in the total struc-
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ture factor S(Q) is split into a weak shoulder S1 at Q ≈ 15 nm−1 and a pronounced

maximum S2 at Q ≈ 23 nm−1 (Fig. 3.1(a)). The separation between S1 and S2 in S(Q)

has been shown to be a sensitive measure of the degree of local tetrahedral order in

the liquid.23,122 In deeply supercooled water, S1 and S2 are more clearly resolved and

become increasingly separated as T is lowered, indicating a significant enhancement

in tetrahedral order upon cooling.23,101,102,119 In the mWAC model, by contrast, they

are poorly resolved at all temperatures, suggesting that the extent of tetrahedral

order and its increase upon cooling are not as significant.

The radial distribution function g(r) reveals a slight increase in short- and

intermediate-range order as the mWAC model is cooled (Fig. 3.1(b)). Very weak long-

length-scale correlations are also observed in g(r) (Fig. 3.1(b) inset), which increase

in range from 2.8 to more than 4.0 nm as T is lowered from 3800 to 3375 K. Similar

behavior has been reported in supercooled water,93,119 and it suggests the growth of a

static correlation length. These long-length-scale correlations give rise to the sharp

increase in S(Q) below Q ≈ 5 nm−1 (Fig. 3.1(a)). The magnitude of the structure

factor in the small-Q limit, S(0), also increases rapidly as T decreases (Fig. 3.1(a)

inset). This trend has been reported in previous experimental and computational

studies on supercooled water,22,90,92,100,103,119 and it signifies a pronounced increase

in density fluctuations upong cooling, as expected near a phase transition. As indi-

cated by Eq. 3.3, the thermodynamic consequence of this behavior is an increase in

κT as T decreases, which is a well-known anomaly of water and other tetrahedral

liquids.3,16,112

The increase in density fluctuations upon cooling is accompanied by changes in

tetrahedral order. The probability density distribution for the tetrahedral order pa-

rameter q is bimodal and exhibits distinct peaks near q ≈ 0.5 and 0.85 (Fig. 3.2(a)),

suggesting the existence of two subpopulations with distinct local coordination struc-

tures. The high-q peak is located close to the value q = 1 expected for a regular tetra-
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Figure 3.1: (a) Structure factor and (b) radial distribution function computed for a
system of N = 36,000 atoms. The inset in (a) shows S(0) as a function
of T, and the inset in (b) shows an enlargement of r2 [g(r)−1] for r ≥ 2.5
nm.

hedron, revealing that a substantial fraction of the Si atoms have highly ordered

coordination environments. As T is lowered, the low- and high-q peaks decrease and

increase in magnitude, respectively. This behavior signifies an increase in tetrahe-

dral order, in agreement with the analysis of S(Q) and g(r). Similar trends have

been observed in computational studies of water models such as TIP5P, TIP4P/2005,

SPC/E, and ST2.92,93,100,119 The high-q peak for these water models is more pro-

nounced, however, particularly at low temperatures, reflecting a higher degree of

tetrahedral symmetry in the liquid. Near ST2’s LLPT, for example, the low-q peak
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appears as a weak shoulder in the tail of the strongly dominant high-q peak.119 By

contrast, the q-distribution for mWAC remains bimodal with distinct low- and high-q

peaks, even at low T.

The bimodal nature of the q-distributions motivates application of the Bhatia-

Thornton mixture analysis to characterize concentration fluctuations in the two sub-

populations of Si atoms. For a binary system, the magnitude of SCC(0) should diverge

as a demixing transition is approached.92,119 Similarly, if the partial molar volumes

of the two components differ, SNN(0) and SNC(0) should also exhibit divergent behav-

ior.92,119 Accordingly, we observe that the magnitudes of SCC(0) and SNC(0) increase

rapidly as T is lowered towards TC (Fig. 3.2(b)). This behavior indicates a signif-

icant increase in species concentration and coupled density-concentration fluctua-

tions upon cooling, consistent with approach to a demixing transition. The growing

inhomogeneities in concentration can be directly observed in simulation snapshots

where Si atoms are colored according to their species designation (Fig. 3.2(c)).

The low-Q region of the structure factors can also be analyzed to estimate the

Ornstein-Zernike (OZ) correlation length ξ, a measure of the characteristic length

scale over which static correlations in the liquid decay. The quantity ξ can be ob-

tained from SCC(Q) or the anomalous contribution to the structure factor,93

SA(Q)≡ S(Q)−SN(Q), (3.9)

where SN(Q) is the normal component. This definition assumes that “anomalous”

fluctuations associated with the critical phenomena are superimposed on “normal”

thermal fluctuations in the liquid. Unfortunately, defining SN(Q) and SA(Q) is to

some extent arbitrary in practice.101,104 Consequently, following Refs. 92,93 and our

previous study of the ST2 water model,119 we motivate our definitions of these func-
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Figure 3.2: (a) Probability density distribution for the tetrahedral order parameter
q. The median values of q at the highest (3800 K) and lowest (3375 K)
temperatures are indicated by vertical dashed lines. (b) Bhatia-Thornton
structure factors SCC(Q) (Eq. 3.6) and SNC(Q) (Eq. 3.7). (c) Simulation
snapshots at 3800 K and 3375 K showing the H (red) and L (blue) species
of Si atoms. Data in (a) – (c) are for a system containing N = 36,000
atoms.

tions from the Bhatia-Thornton expression for the structure factor

S(Q)= S2
NC(Q)/SCC(Q)+θ(Q), (3.10)
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where

θ(Q)= xHxL[SHH(Q)SLL(Q)−S2
HL(Q)]/SCC(Q). (3.11)

In the absence of coupling between density and species concentration fluctuations,

SNC(Q)= 0 and Eq. 3.10 reduces to S(Q)= θ(Q). This behavior suggests SN(Q)= θ(Q)

as a suitable operational definition for the normal component, which we adopted in

our analysis.

The OZ correlation length ξ was estimated by fitting the low-Q regions of SCC(Q)

and SA(Q) to Lorentzian functions90,104

SCC(Q)= a(T)
ξ−2 +Q2 (3.12)

and

SA(Q)= b(T)
ξ−2 +Q2 , (3.13)

where a(T) and b(T) are temperature-specific constants. Two criteria were used to

determine the appropriate range of Q over which the fitting should be performed at

each temperature. First, as indicated by Eqs. 3.12 and 3.13, 1/SCC(Q) and 1/SA(Q)

should vary linearly with Q2 over the fitted range. Second, the fitted range should

be restricted to Q ≥ 2π(L/2)−1 ≈ 1.45 nm−1 100 to ensure consistency with the upper

limit rmax = L/2 used in evaluating g(r). In each case, a graphical approach was used

to identify an appropriate range of Q satisfying both criteria (Fig. 3.3).

Along a critical isochore, ξ should exhibit power-law divergence as T → TC
93

ξ= ξ0ε
−ν, (3.14)
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Figure 3.3: Ornstein-Zernike plots for (a) SCC(Q) and (b) SA(Q). Points are data
from MD simulations of N = 36,000 atoms. Solid lines in (a) and (b) are
fits to the Lorentzian functions given by Eqs. 3.12 and 3.13, respectively.

where ε = (T −TC)/TC, ν is the critical exponent associated with ξ, and ξ0 is a con-

stant. In accord with this expectation, ξ estimated from SCC(Q) and SA(Q) increases

rapidly upon cooling (Fig. 3.4). Liquid-liquid transitions in tetrahedral fluids are

thought to belong to the 3D Ising universality class.123 Indeed, Bhatia-Thornton

analysis119 and histogram reweighting studies33,39 indicate that the behavior of the

LLPT in ST2 is consistent with the 3D Ising universality class. Consequently, the

scaling exponent ν should equal approximately 0.6394,106–108 for small ε and eventu-

ally cross over to the mean-field value of 0.5 as ε increases.106–108 Uncertainty in the
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Figure 3.4: Ornstein-Zernike correlation length ξ estimated from SCC(Q) (squares)
and SA(Q) (circles) for a system of N = 36,000 atoms. Lines are power-
law fits using Eq. 3.14

values of ξ and TC, however, typically prevent the asymptotic and crossover regimes

from being clearly distinguished in computational investigations. In fitting the data

to Eq. 3.14, we therefore followed previous studies93,94,119 and set ν = 0.63, while

leaving TC and ξ0 as adjustable parameters. The data for SCC(Q) and SA(Q) are

clearly captured by fits using TC = 3280±30 and 3300±40 K, respectively, demon-

strating that the increase in ξ upon cooling is consistent with the power-law diver-

gence expected near a critical singularity. The large black symbols in Fig. 3.4 are

estimates of ξ at 3375 and 3350 K for a system of N = 216,000 atoms. Uncertainties

were estimated using block analysis. These estimates for TC are also in excellent

agreement with the value 3350±75 K obtained from previous equation of state and

free energy calculations.109

We also performed simulations of a significantly larger system (L = 15.72 nm)

containing N = 216,000 atoms at 3375 and 3350 K to assess the magnitude of finite-

size effects on the values of ξ calculated at low temperatures. The estimates of ξ

are in statistical agreement at 3375 K, the common temperature examined for both

systems (Fig. 3.4). Further, the values of ξ computed from SCC(Q) and SA(Q) at 3350
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K are consistent with extrapolation of the power-law fits to the data for the smaller

system. These results demonstrate that the system with N = 36,000 atoms is large

enough to accurately estimate ξ over the range of temperatures examined. They also

suggest that the power-law fits based on Eq. 3.14 reasonably capture the divergent

behavior of ξ near mWAC’s LLCP.

The low-Q behavior of the Bhatia-Thornton structure factors and the power-law

divergence of ξ upon cooling are consistent with the existence of an LLCP in the

mWAC model. The associated LLPT in mWAC can also be directly observed in

simulation at T < TC. In our previous study of mWAC,109 we used canonical en-

semble MD simulations to study liquid-liquid phase separation in a large system

with N = 108,000 atoms. The simulations were performed in a rectangular simula-

tion cell with an aspect ratio of Lx:L y:Lz = 1:1:3 to promote the formation of planar

liquid-liquid interfaces, and the mean density was fixed at 1.87 g cm−3, which is in

between the characteristic values of the HDL and LDL phases (2.10 and 1.55 g cm−3,

respectively). The system was equilibrated at Thigh = 5000 K for 1 ns and then ther-

mally quenched to a lower temperature Tlow by instantaneously changing the set

point of the thermostat. Small HDL- and LDL-like domains developed in the sys-

tem after quenching to Tlow = 3450 and 3300 K, but no LLPT was observed.109 At

Tlow = 3150 and 3000 K, by contrast, the system spontaneously phase separated into

large HDL and LDL domains partitioned by planar interfaces that spanned the x-

and y-dimensions of the simulation cell.109 The MD simulations thus showed clear

evidence of an LLPT in mWAC below the critical temperature TC ≈ 3300 K estimated

from analysis of ξ in this study (Fig. 3.4).

Yagasaki et al.110 performed similar simulations to study the possibility of liquid-

liquid phase separation in the TIP5P, TIP4P/2005, and ST2 water models. Upon ther-

mally quenching small systems with N = 4000 molecules into the predicted liquid-

liquid coexistence region of each model, they observed the formation of HDL and
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LDL domains separated by diffuse interfaces. Overduin and Patey93 noted similar

behavior for TIP5P and TIP4P/2005 in small systems with N = 4000 molecules, but

found that the HDL and LDL domains gradually vanished as N was increased and

observed no phase separation in systems with N = 32,000 molecules. Consequently,

they posited that the behavior reported by Yagasaki et al. was a finite-size artifact

rather than a genuine LLPT. Overduin and Patey did not investigate the behavior of

the ST2 water model in their study, but they speculated that the liquid-liquid sepa-

ration observed by Yagasaki et al. in this model may also be a finite-size artifact.93

Recently, however, we observed HDL–LDL immiscibility in large-scale MD simula-

tions of N = 256,000 ST2 water molecules, in accord with Yagasaki et al.’s study of

significantly smaller systems.119 These findings are fully consistent with the well-

established existence of an LLPT in ST2,12,28,30,32–35,39,42 and they demonstrate that

its liquid-liquid separation behavior is not a finite-size artifact.

We investigated the influence of system size effects on mWAC’s LLPT by per-

forming canonical ensemble MD simulations, analogous to those described above,

using N = 4500, 36,000, and 432,000 atoms. To facilitate comparison with our

previous study,109 the simulations were conducted by fixing the mean density at

1.87 g cm−3 and using elongated rectangular simulation cells with aspect ratios of

Lx:L y:Lz = 1:1:3. Following the quench from Thigh = 5000 to Tlow = 3000 K, each sys-

tem rapidly phase separated into HDL and LDL. Density profiles computed over the

last 25 ns of the ∼ 200 ns MD trajectories demonstrate that the interfaces separating

HDL and LDL are oriented normal to the z-axis of each simulation cell (Fig. 3.5).

As expected, they also show that the HDL and LDL domains have densities of ca.

2.10 and 1.55 g cm−3, respectively. These findings are in excellent agreement with

our previous MD simulations of N = 108,000 atoms and our free energy calculations

using N = 1500.109 The only qualitative difference between the three systems is that

four HDL–LDL interfaces, rather than two, are observed when N = 432,000 (Fig.
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Figure 3.5: Density profiles at Tlow = 3000 K computed along the major axes (z-
axes) of rectangular simulation cells containing (a) N = 4500, (b) 36,000,
and (c) 432,000 atoms. The abscissa in each panel is normalized by the
length of the simulation cell, Lz. (d) Liquid-liquid interfaces are observed
in snapshots of the largest system (N = 432,000) in which Si atoms are
colored according to the local density profile in (c).

3.5). This behavior indicates that the condition Lz ¿ ξz is no longer satisfied, where

ξz is the correlation length in the z-direction;124 a system with only two liquid-liquid

interfaces can thus be recovered by simply reducing the aspect ratio of the simula-

tion cell. Hence, our simulations demonstrate that mWAC’s LLPT can be directly

observed, independent of system size, over the computationally accessible range of

N spanning more than two orders of magnitude.

Conclusions

We conducted large-scale MD simulations of systems up to N = 216,000 atoms in

size to study static fluctuations in the mWAC model of silica near its LLPT. Previous
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equation of state and free energy studies show that mWAC exhibits an LLPT below

the critical temperature TC ≈ 3350 K.61,109 In accord with these studies, we found

that density fluctuations in the liquid increase rapidly upon cooling, as evidenced

by the anomalous increase in the magnitude of the static structure factor at low-Q

with decreasing temperature. Similar anomalous scattering behavior, signifying an

increase in the liquid’s isothermal compressibility upon cooling, has been observed

in experimental and computational studies of supercooled water. Moreover, Bhatia-

Thornton mixture analysis revealed that fluctuations in density and local tetrahe-

dral order are strongly coupled in the liquid and that this coupling contributes to

anomalous scattering at low-Q. The Ornstein-Zernike correlation length extracted

using the Bhatia-Thornton analysis exhibits power-law growth upon cooling and is

predicted to diverge at T ≈ 3300 K, consistent with previous estimates of TC.61,109

Hence, the fluctuation analysis presented in this study supports the existence of a

low-temperature LLCP in mWAC, in agreement with previous computational studies

of significantly smaller systems.61,109

Finally, we demonstrated that spontaneous liquid-liquid phase separation is ob-

served when systems with N = 4500, 36,000, and 432,000 atoms are thermally

quenched below TC into the two-phase region. These simulations show that mWAC’s

qualitative behavior is insensitive to system size over a range of N spanning more

than two orders of magnitude and thus not strongly influenced by finite-size effects.

These findings are similar to those reported in our investigation of the analogous

LLPT in the ST2 water model,119 but in sharp contrast to the strong system-size

dependent behavior that has been recently observed for TIP5P and TIP4P/2005.93

We anticipate that future investigations will be needed to elucidate the origin of the

finite-size effects in TIP5P and TIP4P/2005 and reveal whether these models of water

exhibit genuine LLPTs similar to those observed in ST2 and mWAC.
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Chapter 4: Hybrid Monte Carlo with LAMMPS

This chapter was previously published by World Scientific: Guo, J.; Haji-Akbari,

A.; Palmer, J. C. Hybrid Monte Carlo with LAMMPS. Journal of Theoretical and

Computational Chemistry 2018, 17, 1840002

4.1 Introduction

Molecular dynamics (MD) has become the dominant tool of modern computational

statistical mechanics in recent decades due to the emergence of efficient and highly

parallel open-source simulation software packages.120,125 There exist a number of

scenarios, however, in which Monte Carlo (MC) sampling techniques can offer signif-

icant advantages over conventional MD.126–129 Slow relaxation processes that frus-

trate sampling with MD, for example, can be accelerated or even bypassed with clev-

erly designed MC moves.126–129 Whereas the discrete time integration schemes used

in MD introduce sampling errors, MC methods are exact in principle and asymptot-

ically sample from the correct statistical ensemble. Hence, MC methods are useful

for applications (e.g., free energy calculations) where control over sampling errors is

important.127,129 There is also greater flexibility in implementing biased sampling

schemes with MC. Because the gradient of the bias potential is needed to compute

forces in MD, the biased order parameter (OP) must be continuously differentiable

with respect to the particle coordinates. By contrast, arbitrary OPs can be biased in

MC, including discrete variables (e.g., largest cluster size) such as those widely used

in studying nucleation processes.127,130

Comparatively few open-source package have been developed to perform Monte

Carlo simulations. Although noteworthy efforts have recently been made to address

this issue,131–133 the majority of MC studies are still performed using bespoke codes
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that are not made publicly available. A number of hybrid methods have been devel-

oped,134 however, that can leverage the efficiency and flexibility of open-source MD

software packages to perform MC sampling. The most common method is hybrid

Monte Carlo (HMC),135–138 which uses short microcanonical MD trajectories as trial

MC moves. Because these moves efficiently relax collective degrees of freedom, HMC

sampling has been successfully applied to investigate processes ranging from nucle-

ation139–146 to conformational rearrangements in biomolecules and polymers.137,147

The simplest approach to implement HMC with an existing MD package is to use

an external script to handle the workflow. In this case, the external script launches

the MD software to generate trial trajectories, evaluates the Metropolis acceptance

criterion, and performs the necessary file manipulation and bookkeeping tasks before

and after each HMC move. Although the simplicity of this approach is appealing, it

is generally inefficient because it requires frequent file manipulation and reinitial-

ization of the MD software at the beginning of each trial trajectory. Alternatively, the

HMC acceptance-rejection test and supporting routines may be implemented directly

in the MD software. This approach is efficient, but it requires significant knowledge

of the MD software’s inner workings. Additionally, further modification of the MD

source code will be needed to implement biased HMC sampling schemes.

Here, we demonstrate a strategy for performing HMC with LAMMPS,125,148 one

of the most widely used and flexible open-source MD software packages. We de-

scribe how HMC can be implemented straightforwardly in both the canonical and

isothermal-isobaric ensembles by using a simple Python driver script to execute

LAMMPS commands through its built-in library interface and accompanying wrap-

pers.148 This approach retains the simplicity of using a high-level language to drive

the simulations, while avoiding the computational overhead associated with frequent

external file manipulation and reinitialization of setup routines. We document a

number of rigorous consistency checks that have been used to validate our approach,
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and we also illustrate how biased HMC sampling schemes can be implemented effi-

ciently by invoking fast Fortran routines from the Python script to compute complex

OPs. The codes and sample input files from the documented examples are freely

available on the web (https://github.com/palmergroup/hmcwithlammps).

4.2 Hybrid Monte Carlo

4.2.1 Algorithm

A number of variations on the standard HMC algorithm have been proposed in

the literature. We focus on the original HMC algorithm proposed by Duane et al.,135

which is widely used to simulate condensed matter systems.136–147,149,150 This algo-

rithm consists of three basic steps:134,135,144

Step 1. Draw a set of initial velocities from the Maxwell-Boltzmann (MB) distri-

bution

PMB(v)=
N∏

i=1

(
βmi

2π

)3/2
e−

β
2 mi(vi ·vi), (4.1)

where β= (kBT)−1, N is the number of particles in the system, v= {vi}N
i=1, and vi and

mi are the velocity vector and mass of particle i, respectively.

Step 2. Propagate a microcanonical MD trajectory to take the system from state

{vold,rold} to {vnew,rnew}, where r ≡ {ri}N
i=1 is the complete set of particle coordinates.

The length of the trajectory ∆t = nsteps ×δt is specified by the number of integration

steps nsteps and time step δt.

Step 3. Accept or reject the new configuration rnew according to the Metropolis

criterion

Pold→new
acc =min

(
1, e−β∆H

)
, (4.2)

where ∆H =H new−H old is the change in the system’s Hamiltonian during the MD

trajectory. The Hamiltonian is defined as the sum of kinetic and potential energy

H (v,r)≡ K(v)+U(r), with K(v)≡∑N
i=1

β

2 mi(vi ·vi).
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Repeated application of Steps 1–3 will generate a Markov chain that asymp-

totically samples configurations from the canonical (NV T) ensemble (i.e., %(r) ∝
e−βU(r)).134,135 Sampling from the isothermal-isobaric (N pT) ensemble can be

achieved by simply combining the HMC algorithm with standard volume change MC

moves.144,151

4.2.2 Implementation notes

We have implemented HMC using the LAMMPS library interface and its accom-

panying Python wrapper (LAMMPS-17Nov16 release148). The wrapper provides a

low-level Python interface to the library that allows users to create instances of

LAMMPS, invoke LAMMPS commands, perform MD, extract results, and modify

simulation parameters. Thus, all of the HMC workflow is handled through a cus-

tom Python driver script, which invokes LAMMPS commands to generate trial MD

trajectories, performs the Metropolis acceptance-rejection test, and intermittently

dumps simulation output to file. The user only needs to provide a LAMMPS data

file containing an initial configuration for the system and a standard input file for

performing a microcanonical MD simulation that specifies the potential functions,

integrator, etc. The LAMMPS commands and Python wrapper used by our HMC

code are well-documented.148 Accordingly, here we provide only a short description

of the major component of our code.

Velocity initialization (Step 1) is performed in the Python driver script by assign-

ing components of vi using

vi, j =
(
βmi

)−1/2
N (0,1) (4.3)

for j = x, y, z, where N (0,1) is a standard Gaussian random number generated via

Python’s random module. The resulting velocities obey MB statistics (Eq. 4.1). The

particle masses mi needed for this step are imported into Python from LAMMPS,
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along with other system parameters such as N. After initialization, the velocities are

passed to LAMMPS using the scatter.atoms command148 provided by the Python

wrapper.

Propagation of each trial MD trajectory (Step 2) is performed by using the Python

wrapper’s command function to pass the run directive to LAMMPS. This directive

invokes a time-reversible and volume-preserving velocity-Verlet integrator (fix nve

in LAMMPS148). These integrator attributes are required to perform HMC sampling

using the standard acceptance criterion (Eq. 4.2). The choice of integrator is specified

in the user-generated input file, whereas parameters δt and nsteps are set in the

Python driver.

The Metropolis acceptance-rejection test (Step 3; Eq. 4.2) is performed in the

Python driver script. The Hamiltonian H is evaluated from values of K and U ex-

tracted from LAMMPS using the Python wrapper’s extract_compute command.148

The acceptance-rejection step also requires passing particle coordinates to and from

LAMMPS. These exchange operations are performed in the driver script using the

Python wrapper commands scatter.atoms and gather.atoms,148 respectively.

Sampling in the isothermal-isobaric ensemble is performed by combining the

HMC algorithm with MC moves that attempt to change the logarithm of the sim-

ulation cell volume from lnV to lnV +∆(lnV ) (see Algorithm 11 in Ch. 5 of Ref. 151).

For each MC sweep, the driver script executes one attempted HMC or log-volume

change move, the type of which is selected at random. The HMC and log-volume

moves are attempted with probabilities PHMC and 1−PHMC, respectively. The pa-

rameter PHMC, the size of the maximum allowed log-volume change ∆(lnV )max, and

the number of MC sweeps nsweeps are specified in the driver script. Adjustments

to the cell dimensions for the log-volume moves are performed by using the Python

wrapper’s command function to pass the change_box directive148 to LAMMPS. Par-

ticle coordinate exchanges with LAMMPS are executed using the same commands
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employed in the HMC moves. The current implementation of the log-volume moves

can only be used with cubic simulation cells.

4.2.3 Model and sampling protocol

Code validation tests were performed using the Rowley, Nicholson, and Parson-

age Lennard-Jones model for argon (εAr/kB = 119.8 K and σAr = 0.3405 nm).152 In-

teractions between argon molecules were calculated using a force-shifted Lennard-

Jones potential (pair_style lj/smooth/linear in LAMMPS148) with a cut-off dis-

tance of 2.5σAr. Canonical ensemble HMC simulations of a system containing

N = 512 molecules were performed using δt = 30 fs and nsteps = 10. For isothermal-

isobaric HMC simulations, these parameters were used along with PHMC = 0.8 and

∆(lnV )max = 0.04. Depending on the state conditions, this sampling protocol yields

typical acceptance rates between 60 and 80 % for the HMC and log-volume moves.

For comparison, we also performed MD simulations of this system with LAMMPS

using δt = 8 fs. For canonical ensemble MD simulations, the system temperature

is maintained using a Nosé-Hoover (NH) thermostat95,96 (fix nvt in LAMMPS148).

Simulations in the isothermal-isobaric ensemble were performed by combining the

NH thermostat with a Martyna-Tuckerman-Tobias-Klein (MTTK) barostat153 (fix

npt in LAMMPS148). The relaxation time constants for the thermostat and barostat

were set to 1 and 5 ps, respectively.

The duration of each simulation was measured in terms of the statistical in-

efficiency gA ≡ 1+ 2τA, where τA ≡ ∫ ∞
0 CA(t)dt is the integrated auto-correlation

time for property A computed from the normalized auto-correlation function CA(t)=
(〈A(t)A(0)〉−〈A〉2)/(〈A2〉−〈A〉2). The value of gA quantifies the number of correlated

time series samples required to generate a single effectively uncorrelated sample for

an observable A.154 For sampling in the canonical ensemble, we use time series data

for the potential energy U from the post-equilibrium, production phase of each simu-

lation to compute g. For isothermal-isobaric simulations, we report g =max(gU , gρ),
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where ρ is the mean density of the system. All simulations were equilibrated for at

least 3×103 g, following by a production period ≥ 2×104 g in duration. To compute

statistical uncertainties, we estimate the number of effectively uncorrelated samples

using nsamp = tsim/g, where tsim is the duration of the simulation’s production phase.

4.2.4 Validation

We performed a number of consistency checks to validate our HMC implemen-

tation. In the first test, we compare liquid-state properties along three isotherms

(T = 89.84, 119.80, and 179.69 K) computed using HMC with the equation of state

data generated from MD simulations performed with LAMMPS (Fig. 4.1). Average

liquid densities 〈ρ〉 from the isothermal-isobaric ensemble HMC and MD simulations

agree within statistical uncertainty at all conditions examined. Similar agreement

between HMC and MD is observed in comparing structural properties computed for

the liquid, such as the radial distribution function (not shown). Further, the pre-

dicted equation of state agrees with published reference data for the Lennard-Jones

fluid.155

Although consistency checks based on equation of state comparisons should al-

ways be conducted, they can be misleading if not performed carefully over a broad

range of state conditions. Further, comparisons with literature data are ambiguous

if statistical uncertainties are not reported. Consequently, these checks may fail to

detect subtle implementation errors that can significantly affect free energy calcu-

lations, for example. Fortunately, there are often rigorous quantitative consistency

checks that can be performed to ensure that a code is functioning properly. For ped-

agogical purposes, we describe two of these checks.

The HMC method has a built-in consistency check.136 As discussed in Section

4.2.2, the standard HMC algorithm requires using a time-reversible and volume-

preserving integrator to propagate trial MD trajectories. Invoking the volume-

preserving property, it is straightforward to show that an HMC sampling algorithm
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Figure 4.1: Equation of state data for liquid argon calculated using HMC and MD
(filled and open symbols, respectively). Excellent agreement between
HMC and MD is observed at all conditions examined. Statistical un-
certainties are smaller than the symbols.

should satisfy the normalization condition:136

〈e−β∆H 〉 = 1, (4.4)

where the average is taken over the attempted HMC moves. This rigorous statis-

tical mechanical relationship should be obeyed independent of the chosen sampling

parameters. Accordingly, we find that our HMC implementation satisfies the nor-

malization condition, within statistical uncertainty, for all choices of the integration

time step δt (Fig. 4.2). Similarly, we find that Eq. 4.4 is satisfied when other sampling

parameters (e.g., nsteps) are varied.

Systematic sampling errors can also be detected through fluctuation analysis. In

the canonical ensemble, for example, the log ratio of the potential energy distribu-

tions at temperatures β1 = (kBT1)−1 and β2 = (kBT2)−1 should vary linearly with U :

ln
[

P(U |β2)
P(U |β1)

]
=−(β2 −β1)U +const.. (4.5)
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Figure 4.2: Test of the HMC normalization condition (Eq. 4.4). Normalized devi-
ations (〈e−β∆H 〉 −1)×σ−1 computed using the estimated uncertainty σ

standard error) are less than 1 and thus illustrate that Eq. 4.4 is satis-
fied within statistical error.

Hence, if canonical sampling is performed at two nearby temperatures, the slope of

a linear fit line to the log ratio of the resulting potential energy distributions should

be equal to −(β2−β1) within statistical uncertainty. The challenge with this test lies

in determining whether deviations from the expected slope are statistically signifi-

cant. To address this issue, Shirts156 has developed the checkensemble package,157

which provides Python routines to implement this consistency check and estimate

statistical uncertainties.

We used the canonical ensemble consistency test (Eq. 4.5) implemented in

checkensemble to validate our HMC sampling algorithm. Data for this test were

generated from HMC simulations performed at T1 = 132.0 K and T2 = 145.5 K and a

fixed density of 0.451 g cm−3. Following the recommendation of Shirts, the temper-

ature gap was chosen such that ∆Ttrue = T2 −T1 ≈ T1(2kB/CR
V )1/2, where CR

V is the

residual heat capacity estimated at T1. For comparison, the same consistency check

was also conducted using data from canonical ensemble MD simulations performed
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with LAMMPS. The production phases of the HMC and MD simulations were long

enough to generate ≥ 3×104 uncorrelated samples at each thermodynamic condition.

The effective temperature gap ∆Tobs. ±σ = 13.421±0.059 K estimated from the

slope of the fit to the HMC data is within statistical uncertainty of ∆Ttrue = 13.5

K (Fig. 4.3). In Fig. 4.3, the HMC simulation data, fit to the data, and theoreti-

cal prediction based on Eq. 4.5 are shown as points, a dash lined, and solid line,

respectively. Here, σ is the standard deviation computed from the covariance ma-

trix for the fit parameters. It provides a measure of the certainty in the error be-

tween ∆Tobs. and ∆Ttrue,156 with ∆Tobs.±2σ signifying approximately the 95% confi-

dence interval for ∆Tobs. (assuming the fitting errors are normally distributed). De-

viations |∆Tobs. −∆Ttrue| consistently larger than 2 – 3σ would therefore indicate

the presence of systematic sampling errors. For our HMC code, however, we find

that |∆Tobs. −∆Ttrue| is only 0.079 K or equivalently 1.34σ. The value of ∆Tobs. is

thus statistically indistinguishable from ∆Ttrue, which suggests that our HMC al-

gorithm correctly samples fluctuations in U in accord with Eq. 4.5. Similar agree-

ment is found when analyzing the MD simulations data (not shown), which yields

∆Tobs. ±σ= 13.504±0.068 K or a deviation of only 0.06σ.

The test reported above uses histogram data to check for ensemble consistency

(Fig. 4.3). Although histograms are convenient for visualizing data, the results

may be sensitive to the choice of bin width. As a result, we also conducted ensem-

ble consistency tests using the maximum likelihood estimation (MLE) approach in

checkensemble. The MLE approach performs parameter estimation directly from

the time series data and thereby avoids potential systematic errors associated with

analyzing histograms. We used MLE to perform the canonical ensemble consistency

test (Eq. 4.5). We also conducted two additional MLE consistency checks to validate

our isothermal-isobaric HMC sampling algorithm. The first check is based on ana-

lyzing fluctuations in enthalpy, H ≡U+pV , at temperatures β1 and β2, which should
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Figure 4.3: Histogram-based canonical ensemble consistency test (Eq. 4.5) per-
formed on HMC simulation data for Lennard-Jones argon.

obey

ln
[

P(H|β2, p)
P(H|β1, p)

]
=−(β2 −β1)H+const. (4.6)

for p1 = p2 = p. The second check tests whether volume fluctuations at pressures p1

and p2 follow

ln
[

P(V |β, p2)
P(V |β, p1)

]
=−β(p2 − p1)V +const. (4.7)

for β1 = β2 = β . These expressions have the same linear form as the relationship

presented for the canonical ensemble (Eq. 4.5). Accordingly, they can be applied in

an analogous manner to validate isothermal-isobaric sampling algorithms.

Our HMC implementation satisfies all three ensemble consistency checks per-

formed using the MLE approach in checkensemble (Table 1). In agreement with the

histogram based analysis, the MLE test demonstrates that the potential energy dis-

tributions generated by HMC simulations at 132.0 and 145.5 K are consistent with

the canonical ensemble (Table 1; Eq. 4.5). Similarly, the enthalpy fluctuations sam-

pled at T1 = 125.0 K and T2 = 127.8 K and p = 100 atm using HMC are consistent

with the isothermal-isobaric distribution function (Table 1; Eq. 4.6); the temperature
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gap for this test was chosen by substituting the constant-pressure residual heat ca-

pacity CR
p for CR

v in the criterion presented above. The distributions of U and H from

MD simulations with LAMMPS also satisfy the MLE based ensemble consistency

tests (Table 1).

The volume distribution test (Eq. 4.7) was performed at 125 K using p1 = 100

atm and p2 = 120 atm. The pressure gap was chosen using the criterion suggested

by Shirts:156 ∆ptrue = p2− p1 ≈ (2kBT/VκT)1/2, where κT is the isothermal compress-

ibility at the lower pressure p1. The effective pressure gap estimated from the HMC

data deviates from the true value by ca. 5σ (Table 1). This deviation is more statisti-

cally significant than those observed when analyzing potential energy and enthalpy

fluctuations. We have confirmed that similar deviations are observed when identical

tests are performed with other MC codes that employ standard single-particle moves

and volume displacements in V rather than lnV (see Algorithms 2 and 10 in Ref.

151, respectively). For comparison, a deviation of 8.44σ is found when MD simula-

tions of argon are performed using the MTTK barostat (Table 1). Shirts156 conducted

similar tests with this model of argon at nearby conditions to analyze the ensemble

consistency of the MTTK, Parrinello-Rahman, and Berendsen pressure control algo-

rithms for MD. Deviation of 9.0, 9.5, and 17.1 σ were reported for the three barostats,

respectively. The MTTK barostat was therefore found to be the most ensemble con-

sistent algorithm, with a reported deviation similar to the value obtained from our

analysis (Table 1). Hence, in practice, all of the pressure control algorithms seem

to be slightly off in sampling volume fluctuations consistent with the isothermal-

isobaric ensemble. The MLE tests reveal, however, that our HMC sampling scheme

is generally comparable to or better than state-of-the-art MD algorithms in sampling

from the canonical and isothermal-isobaric ensembles, which indicates that the code

functions as intended.

We have validated our HMC sampling algorithm using several rigorous quan-
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titative consistency checks. The fluctuation analysis tests performed with the

checkensemble package are general and can be applied to scrutinize any MD or MC

code. Our experience suggests that they are extremely effective in detecting subtle

implementation or user errors that affect the ensemble consistency of sampling al-

gorithms. We therefore recommend that users also conduct these tests as an initial

starting point for learning how to use open-source simulation software packages.

Table 1: Results of ensemble consistency tests

Ua (∆Ttrue = 13.5 K) ∆Tobs. ±σ (K) Deviationb (σ)
HMC 13.502±0.058 0.03
MD 13.580±0.067 1.19

Hc (∆Ttrue = 2.80 K) ∆Tobs. ±σ (K) Deviation (σ)
HMC 2.793±0.025 0.27
MD 2.763±0.130 2.91

V d (∆ptrue = 20 atm) ∆pobs. ±σ (atm) Deviation (σ)
HMC 19.249±0.149 5.04
MD 19.333±0.079 8.44

Note: Results are reported as output by checkensemble, with-
out modifying the number of significant figures
a T1 = 132.0 K, T2 = 145.5 K, and ρ = 0.451 g cm−3

b Deviation is defined as |true−observed| ×σ−1 and has units
of σ
c T1 = 125.0 K, T2 = 127.8 K, and p = 100 atm
d p1 = 100 atm, p2 = 120 atm, and T = 125 K

4.3 Free Energy Calculations

4.3.1 Biased sampling

Our HMC code can also be easily adapted to implement biased sampling schemes

for performing free energy calculations. Rare events such as chemical reactions,

phase transitions, and protein folding, for example, are characterized by infrequent

transitions between long-lived metastable states. They are commonly analyzed in
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simulation by computing the Landau free energy:130

βF(φ)=− lnP(φ)+const., (4.8)

where P is the equilibrium probability density function associated with the order pa-

rameter (OP) φ(r). The parameter φ is chosen to distinguish between the metastable

states of interest; if φ also describes the dynamical progress along the rare event

transition pathway, then it is a special type of OP known as a reaction coordinate.130

Direct calculation of F(φ) through unbiased simulations is almost always imprac-

tical due to the presence of large free energy barriers (À kBT) along φ, which sepa-

rate the metastable basins of interest. Consequently, biased sampling schemes are

typically required to converge F(φ) calculations over the full range of φ relevant to

the characterization of the rare event. These schemes can be readily implemented

with HMC by evaluating ∆H in the Metropolis acceptance-rejection test using a

modified potential energy function:

Uw ≡U +η(φ). (4.9)

The weight function η(φ) is chosen to enhance sampling along φ. An optimal choice of

βη(φ)=−βF(φ) will offset the underlying free energy landscape and result in uniform

sampling. Of course, other choices are necessary in practice because F(φ) is not

known a priori. Irrespective of the choice of η(φ), however, the free energy can always

be obtained using

βF(φ)=− lnPw(φ)−βη(φ)+const., (4.10)

where Pw(φ) is the probability density function sampled during the biased simula-

tion.

The OP, φ, is often a complex function of the particle coordinates. Consequently, it
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can be computationally expensive to compute, particularly with Python, which is not

as natively efficient as languages such as Fortran and C. To address this issue, our

HMC implementation invokes routines from a custom Fortran library to compute

φ from the particle coordinates passed by the Python driver script. The value of

φ returned to the driver script is used to calculate the weight function η for the

Metropolis acceptance-rejection test. The Python interface to the Fortran library is

generated using the package F2PY.158 A similar approach can be employed to invoke

fast C or C++ routines from Python to compute φ.

4.3.2 Nucleation of mW water

To illustrate the approach described above, we use biased simulations to drive

homogeneous ice nucleation in the coarse-grained mW water model.159 The mW

model treats water molecules as point particles that interact through a three-body

Stillinger-Weber (SW) potential160 (pair_style sw in LAMMPS148), which is short

ranged and fast to compute even for large systems. Despite its coarse-grained nature,

the mW model is remarkably accurate in predicting bulk properties of liquid water

near ambient conditions.159 Because mW crystallizes rapidly compared to atomistic

models,74,161–163 it has also been widely used to study ice nucleation in supercooled

water.26,77,141,164,165 Thus mW is a well-studied and computationally efficient model

for demonstrating the capabilities of biased sampling algorithms.

We use a biased HMC sampling scheme to compute the free energy F(n∗), where

n∗ is the size of the largest crystalline cluster. Reinhardt and Doye77 performed sim-

ilar calculations for mW using umbrella sampling166 with standard single-particle

MC moves. Following their study, we compute F(n∗) for a system of N = 1400 mW

molecules at 220 K and 1 bar, which corresponds to a supercooling of ca. 20 %. The

parameter n∗ is evaluated by using bond order parameters to classify molecules as

either ice- or liquid-like based on their local environment. A molecule is considered

ice-like if it forms a sufficient number of crystalline connections with its neighbors.
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The number of connections for molecule i is determined using

ncon(i)=
Nb(i)∑
j=1

Γ(dl(i, j)), (4.11)

where Nb(i) is the number of nearest neighbors and

dl(i, j)≡ ql(i) ·ql( j)
|ql(i)| |ql( j)| (4.12)

is the scalar product of the complex vectors ql ∈ C2l+1, the components of which are

given by:

ql,m(i)≡ 1
Nb(i)

Nb(i)∑
i=1

Yl,m(ri j), − l ≤ m ≤ l (4.13)

where Yl,m are the spherical harmonics and ri j = r j −ri is the displacement vector

from particle i to particle j. As in Ref. 77, we use l = 3. Similarly, Γ(·) is given by:

Γ(x)=


1 if [(x <−0.82)∨ (−0.145< x <−0.065)]

0 otherwise.
(4.14)

Nearest neighbors are identified with a distance cutoff of rc = 0.36 nm. Water

molecules with ncon ≥ 3 are classified as ice-like. Clusters of ice-like molecules are

identified using a single-linkage algorithm based on the neighbor cutoff distance. A

detailed justification of these choices is given in Ref. 77.

The free energy F(n∗) is computed by performing independent simulations in

overlapping regions or windows along n∗. Rather than specifying a fixed func-

tional form for the weight function, we used the Wang-Landau (WL) algorithm167

to optimize η(n∗) in each sampling window. Our implementation of the WL algo-

rithm closely follows the scheme described in Appendix A of Ref. 168. After each

MC trial move, a histogram representation of the weight function is updated using

η(k) = η(k)+ ln f , where ln f is an update factor and k is the histogram bin corre-
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sponding to the value of n∗ after the move. In addition, a states-visited histogram,

h, is also updated after each move via h(k)= h(k)+1. This procedure continues until

h is sufficiently flat or uniform. The criterion min[h] = sh̄ is used to assess flatness,

which requires that the minimum value in h be within a factor s of the histogram

mean h̄. Once the flatness criterion is satisfied, h is set to zero and the update fac-

tor is decreased using ln fnew = α ln fold, where α is a multiplicative factor between

zero and one. This process is repeated until ln f drops below a predetermined value.

Harmonic walls were also placed at the upper and lower bound of each window (n∗
L

and n∗
U, respectively) to restrict sampling to the targeted region. Consequently, if the

system moved beyond the specified bounds of the sampling window, it was subjected

to a bias potential of the form ηL,U(n∗)= kwall(n∗−n∗
L,U)2/2, where kwall is the spring

constant.

The WL simulations were conducted using HMC parameters δt = 6 fs, nsteps = 15,

PHMC = 0.8, and ∆(lnV )max = 0.025. These conservative choices of δt and ∆(lnV )max

were necessary to ensure that acceptance rates above ca. 25 % were maintained for

the HMC and log-volume moves during the biased simulations. Parameters s = 0.8

and α = 0.5, along with an initial value of ln f = 0.2, were chosen for the WL algo-

rithm, and a spring constant of kwall = 300 kBT was used for the harmonic walls. Up-

dates to the bias potential were performed using the WL algorithm until the value

of ln f fell below 5×10−3. Once this threshold was reached, the WL updates were

stopped and the simulations were allowed to continue sampling using the converged

bias potential. Time series data from this final portion of each simulation were ana-

lyzed using the multistate Bennett acceptance ratio method169 (MBAR) to obtain an

unbiased estimate of F(n∗).

Example simulation trajectories show that the WL algorithm promotes near-

uniform sampling in each window (Fig. 4.4A). In Figure 4.4A, time is reported in

units of MC sweeps, where a sweep is defined as one attempted HMC or log-volume
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MC move. Harmonic walls were applied at n∗
L = 1 and n∗

U = 25 to restrain the simula-

tions to the targeted sampling region. The adaptive bias compensates for barriers in

the underlying free energy landscape and drives the system towards under-explored

regions of the OP space. After several WL iterations, the bias converges such that

βη(n∗) ≈−βF(n∗). Under these conditions, the free energy landscape is almost com-

pletely offset by the bias, and the system can freely diffuse across the range of n∗

defined by the sampling window. By contrast, unbiased HMC simulations are only

able to explore the lower region of the sampling window due to the presence of free

energy barriers along n∗ (Fig. 4.4A). Adaptive biasing using the WL algorithm thus

significantly enhances sampling of the OP space.

The free energy F(n∗) computed from the WL HMC simulations is in good agree-

ment with independent calculations performed by Reinhardt and Doye77 (Fig. 4.4B).

Both estimates of F(n∗) exhibit a maximum at approximately n∗ = 114 molecules,

which is the critical nucleus size. The barrier to nucleation, or height of the maxi-

mum, predicted by our calculations is ∼ 22±1 kBT. The shaded region in Fig. 4.4B

indicates statistical uncertainties in F(n∗). Although this value is slightly lower than

the barrier of ∼ 24 kBT predicted by Reinhardt and Doye,77 the two estimates are in

statistical agreement if one assumes uncertainties of ∼ 1 kBT for their calculations.

As discussed by Reinhardt and Doye,170 convergence of the biased simulations

can be verified by computing the enthalpy as a function of the OP,

〈H(n∗)〉 = 〈H(n∗)eβη(n∗)〉w

〈eβη(n∗)〉w
, (4.15)

where the ensemble averages on the right side of the equation are computed using

data from the biased simulations. Because enthalpy is an absolute quantity, the val-

ues of 〈H(n∗)〉 computed in adjacent sampling windows should be consistent in the

regions of overlap. Significant hysteresis in 〈H(n∗)〉 would therefore indicate poor
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Figure 4.4: A. Trajectory from an HMC simulation that was adaptively biased using
the WL algorithm (dashed line). A sample trajectory from an unbiased
HMC simulation (solid line) is also shown for comparison. B. Free en-
ergy F(n∗) computed from biased WL HMC simulations (dashed line) are
in good agreement with previous calculations performed by Reinhardt
and Doye77 (solid line). C. Average enthalpy ∆〈H(n∗)〉 = 〈H(n∗)〉−〈H(2)〉
computed as a function of n∗ using data from the biased WL HMC simu-
lations.
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convergence of the simulations. As expected, the enthalpy computed from the WL

HMC simulations is consistent across the sampling windows (Fig. 4.4C). The data in

Fig. 4.4C have been shifted such that the maximum value at n∗ = 2 is zero. Data

from different sampling windows are denoted using different symbols. Consistency

in regions of overlap illustrates that the order parameter space is well-sampled. The

agreement in regions of overlap is slightly better than observed in similar calcula-

tions performed by Reinhardt and Doye (see Fig. 6.6 in Ref. 170), which may explain

the minor discrepancies between our respective free energy calculations (Fig. 4.4C).

We anticipate that the HMC moves used in our sampling algorithm may be more

efficient in equilibrating slow, collective degrees of freedom in the system than the

standard single-particle MC moves used in their study. Nevertheless, the agreement

between the two studies is satisfactory, considering the challenging nature of these

calculations.

4.4 Conclusions

We have documented a successful strategy for performing canonical and

isothermal-isobaric ensemble HMC simulations with the widely-used LAMMPS MD

software package. The HMC simulations are driven by an external Python script that

manages the overall workflow and invokes commands through LAMMPS’ built-in li-

brary interface to propagate trial MD trajectories. This approach is general and also

computationally efficient because it utilizes LAMMPS’ highly optimized routines to

perform numerically intensive tasks such as force calculations. We have also shown

that our HMC implementation satisfies several stringent consistency tests based on

rigorous statistical mechanical relationships. These tests are generally useful for

validating molecular dynamics and Monte Carlo sampling algorithms, and they can

also help detect even subtle user errors that may affect the ensemble consistency of

simulations. Finally, we have demonstrated that our code can be easily adapted to

perform biased HMC simulations in which complex OPs are calculated using cus-
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tom Fortran or C/C++ routines. As an illustrative example, we used an adaptive bias

scheme based on the Wang-Landau algorithm to successfully compute the free energy

barrier to homogeneous ice nucleation for the mW water model at a supercooling of

ca. 20 %. The results from these calculations were found to be in good agreement

with those previously reported in the literature. The codes and input files from the

examples described in this study are freely available on the web.171

Although the algorithms described in this study are appropriate for point par-

ticles, we note that some modifications must be made to simulate polyatomic

molecules. For flexible polyatomic molecules, with no internal bond or angle con-

straints (e.g., bead-spring polymers with harmonic bonds), only the algorithm for

performing volume change MC moves needs to be modified. Specifically, as described

in standard texts,151 the volume change moves should be conducted by rescaling

the position of each molecule’s center of mass, rather than independently rescaling

the position of each atomic site. For rigid polyatomic molecules, Steps 1 and 2 of

the HMC algorithm must also be modified. Care must be taken to account for in-

ternal constrains within rigid molecules when generating initial velocities from the

Maxwell-Boltzmann distribution in Step 1 (see Supporting Information of Ref. 143).

Initial velocities may be drawn from other distributions, but the HMC acceptance

criterion (Eq. 4.2) should be reformulated accordingly to prevent detailed balance

violations.172 A volume-preserving and time-reversible integrator for rigid bodies

must also be used to propagate the trial MD trajectories in Step 2. An appropri-

ate integrator173 is distributed with LAMMPS (fix rigid/nve148), but the current

implementation does not allow the rigid body velocities to be modified via LAMMPS’

built-in library interface. As a result, LAMMPS’ source code must be modified to

perform HMC simulations using this integrator. Alternatively, holonomic constraint

algorithms174,175 (e.g., fix shake and fix rattle in LAMMPS148) may be used to

integrate the equations of motion for rigid polyatomic molecules. Unfortunately,
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these algorithms are not strictly time reversible173 because of the inexact nature

of the iterative numerical procedures that are used to solve the constraint equations.

Destroying time reversibility will lead to detailed balance violations and introduce

sampling errors. In many cases, these errors may be negligible if the solutions to the

constraint equations are fully converged. Nevertheless, we urge caution and suggest

that users apply the consistency tests in Sec. 4.2.4 to detect potential sampling er-

rors and identify specific cases where these algorithms may be used to perform HMC

sampling.
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Chapter 5: Conclusions and Future Work

5.1 Conclusions

In first two publications, we investigated the low-temperature scattering phe-

nomena of two computer models of tetrahedral substances: the ST2 model of water

and the mWAC model of silica. Both models have previously been verified to exhibit

a genuine LLPT between a LDL and a HDL through free energy calculations.28,55 In

order to accommodate enhanced fluctuations near the LLCP, large-scale molecular

dynamics simulations (N = 32,000 ST2 water molecules and N = 12,000 mWAC ions

of SiO2) were performed along critical isochore approaching the estimated critical po

int. Because both liquid phases are distinguished by their densities and local tetra-

hedral order, we performed the fluctuation analysis by first labeling each molecule

based on the extent of local tetrahedral order. Then, we analyzed the density, local

tetrahedral order and their coupled fluctuations resulting from the interplay between

two different molecular motifs.

The static structure factor in both mWAC model of silica and ST2 model of water

become enhanced at low wavenumber region upon cooling. Such enhancement corre-

sponds to the increase of density fluctuation, and hence the increases of isothermal

compressibility, which is a well-known anomaly of tetrahedral liquids. This behavior

is in accordance with the experimental observation of static structure factor of su-

percooled water at the low wavenumber region. The distributions of local tetrahedral

order parameter for both models are bimodal, suggesting the existence of two popula-

tions of molecular species. Bhatia-Thornton mixture analysis indicated that fluctua-

tions in density and local tetrahedral order are strongly coupled, and are responsible

for the anomalous scattering behaviors at the low wavenumber region. The length
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scale with which these fluctuations are correlated were analyzed in the framework

of Ornstein-Zernike theory. The Ornstein-Zernike correlation length corresponding

to the anomalous scattering components exhibit power-law growth upon cooling and

is predicted to diverge at T ≈ 245K and T ≈ 3300K for ST2 and mWAC, respectively.

These estimates of Tc are consistent with previous estimates of Tc from equation

of state and free energy calculations. Consequently, current fluctuation analysis is

consistent with the existence of a low-temperature LLCP in both mWAC and ST2. Fi-

nally, for both models, we also demonstrated that the LLPT can be directly observed

in simulations by quenching the system into the two-phase coexistence region below

the estimated critical point. Different system sizes were used to check finite-size ef-

fects, and for all system size investigated, the LLPT can be observed and the liquids

remain free of signs of crystallization.

In the third publication, we presented a successful strategy for performing HMC

simulations by interfacing Python with the LAMMPS. The overall workflow is man-

aged by a Python script and the numerically intensive calculations such as force

calculations are handled by LAMMPS’s bulit-in library interface, which is optimized

by low-level languages such as C++. In general, our implementation combines easy-

to-use syntax from high-level language, and numerically efficiency afforded by low-

level languages. To validate our implementation, we performed several stringent

consistency checks based on rigorous statistical mechanical principles. These tests

are generally useful and able to detect subtle user errors that may cause sampling

problems. To further demonstrate the capabilities of our approach, we perform bi-

ased HMC simulations of mW water model, in which complex OPs are calculated

using custom Fortran or C/C++ routines. Simulations were driven by an adaptive

bias scheme based on the Wang-Landau algorithm to compute the free energy bar-

rier of homogeneous ice nucleation at a supercooling of ca. 20 %. The resulting free

energy surface is in good agreement with those previously reported in the literature.

78



We note that some modifications must be made in our implementations of HMC code

to simulate polyatomic molecules.

5.2 Future Work

5.2.1 Future Work 1

As a plausible thermodynamic scenarios to resolve water’s low temperature

anomalies, the LLCP hypothesis was proposed and subsequently validated in ST2

model of water.12,28 Ever since, many atomistic models of water have been investi-

gated for the existence of LLCP.24,29,31,176 Recent evidence from fluctuation analy-

sis, similar to that performed here for ST2 and mWAC, suggests that two realistic

models of water TIP4P/2005 and TIP4P/Ice, exhibit a low-temperature LLPT. This

finding indicates that LLCPs may be general features of classical water models.176

Current search for the evidence of LLCP in an atomistic models of water is still com-

putationally expensive even with the assistance of advanced sampling methods.28,176

Coarse-grained (CG) models of water are usually less computationally expensive

than atomistic model of water due to the reduced number of interaction sites and

short-ranged nature of their interaction.71 Moreover, the study of coarse-grained wa-

ter models can provide important molecular insights crucial for understanding the

LLPT phenomena.41,177 The mW model of water is a widely used coarse-grained wa-

ter model. Previous investigations suggested that the mW water becomes unstable

with respect to the ice crystallization at deeply supercooled conditions, revealing no

signs of the metastable LLPT.26 Recently, Chan et al. introduced a machine learning

framework to parameterize a three-body potential for water that effectively incorpo-

rates bond-order dependence on the local environment.177,178 Both the experimen-

tal and simulation data generated from on-the-fly molecular dynamic simulations of

TIP4P/2005 water are used to train the bond-order potentials. The resulting family

of machine-learned bond-order (ML-BOP) CG models of water quantitatively predict
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many experimental properties of water such as TMD and melting point at ambi-

ent pressure.177 The ML-BOP models were found to be more accurate than the mW

model and comparable to the best classical atomistic water models, thus promising

to further bridge the length and time scales between the simulation and the experi-

ment.177 Consequently, ML-BOP models of water will play an important role in un-

derstanding the peculiar properties of water. To this end, a potential future avenue

for study is to investigate the low-temperature phase behavior of the ML-BOP models

by first performing the equation of state calculations at a wide range of temperature

and pressure conditions, and tracing the locus of stability of limit with respect to the

gas and ice nucleation. The LLCP hypothesis can also be checked by determining

the locus of thermodynamic extrema of isothermal compressibility and isobaric heat

capacity, which will be asymptotically converged to an LLCP if it exists.

5.2.2 Future Work 2

Recent work shows that machine-learning methods can be used to develop im-

proved models for water and other substances. Nonetheless, robust and easy to

use software to develop these models is not yield broadly available. Thus, a fruit-

ful avenue for future could be to develop an open-source Python package to help with

the construction of such models. The accuracy of a classical molecular force field

is essential to the applicability and predictive power of molecular simulations.179 A

successful development of a new molecular force field often requires the selection of

appropriate functional form, and derivation of its associated parameters.180,181 Con-

ventional construction of a molecular force field often relies on the physical intuition

of a developer and careful choice of reference data obtained from the experiment.181

Thus, it is a non-trivial task to create an accurate force field for the substance of in-

terest. To facilitate the development of reliable and accurate molecular force fields,

software should be developed with the following in mind. First, the software should

be able to interface with popular open-source MD package such as LAMMPS to deal
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with a diverse range of intermolecular potentials. Parallel on-the-fly MD simulations

must be able to launch concurrently for efficiency. In order to develop a force-field

that reproduces certain desired physical properties, objective functions should also

be readily customizable in a consistent manner. To satisfy these design objectives,

we have begun to develop a reproducible and systematic force-field parameterization

workflow. The force-field parameterization starts with selecting a potential func-

tional form that is compatiable with the MD packages of the user’s choice. The ini-

tial guess of its associated parameters are provided. The desired physical properties

are selected as reference properties, and corresponding objective function forms for

minimizing the difference beteween the reference and predicted properties should

also be defined. Then, the rest of tasks of force field development can be boiled down

to solving a non-linear least squared problem, in which the force field parameters

are iteratively optimized by minimizing difference between reference and predicted

properties of interest. This minimization is achieved by implementing a gradient-free

local optimization algorithm, which avoids expensive gradient evaluations. Finally,

we have validated the current workflow by recovering the force field parameters and

reproducing reference properties of mW model of water.

To demonstrate the validity of the parameterization workflow, we believe that

developing a coarse-grained model of water that can exhibit the LLPT would be a

good starting point not just for validating our workflow but also for understanding

the role of molecular potentials on the LLPT phenomena. For the first stage, we

will use ST2 water model, an atomistic model of water with a well-established LLPT,

to generate extensive reference physical properties including intermolecular forces,

radial distribution and isobars. Owing to the accuracy and efficiency of ML-BOP

models of water, we choose bond-order potential form and ML-BOP parameters as

the initial guess. It would be interesting to see if the ML-BOP model of water will

be able to exhibit an LLPT after being trained against the reference data of ST2.
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The difference between the resulting and original ML-BOP force-field parameters

can reveal crucial insights into the molecular origins of LLPTs in single-component

systems.

5.2.3 Future Work 3

Previous equation of state, free energy and fluctuation analysis55,61,182 suggested

that the family of mWAC models of silica exhibits LLCPs at supercooled conditions,

with the location of the LLCP depending sentiently on the model parameters. To ac-

curately locate the LLCPs in this family of models and understanding how they are

affected by model parameters, future studies could apply the finite size scaling the-

ory and histogram reweighting techniques to study the low-temperature criticality

of mWAC model of silica.183–185 Such techniques require the fitting to 3D Ising uni-

versal distribution of magnetization, and in the case of single-component fluid, this

order parameter is linear combination of density and configurational energy ρ+ sE,

in which s is a mixing-field parameter. The joint probability distribution of density

and energy can be obtained by using the open-source Free Energy and Advanced

Sampling Simulation Toolkit (FEASST) software to perform grand-canonical ensem-

ble Monte Carlo (GCMC) with flat-histogram method to enhance the sampling at low

temperature.186 This package includes an expanded ensemble technique to perform

the gradual insertion and deletion of an ion, as opposed to the conventional insertion

and deletion of neutral ion pair. This method was shown to improve the equilibration

of ionic liquids at relatively high density and low temperatures.186 The approach was

validated and benchmarked by studying the restricted primitive model (RPM) of ions

and was compared with the previous studies.

With this software, one can run a series of GCMC simulations near the estimated

critical point to obtain the two-dimensional probability distribution of density and

configuraitonal energy. The chemical potential, temperature and mixing field param-

eters can then be adjusted so that the resulting joint distribution can be reweighted

82



to match the 3D Ising distribution. By examining the quality of fits between the order

parameter distribution and the asymptotic form for 3D Ising model, the universality

of class of metastable critical point can be confirmed.
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