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ABSTRACT

Some formulas were derived to construct the phase angle
loci and the gain loci by the shifting technique. These
formulas give thelangular frequencies and corresponding gains
for the phase angle loci and the angular frequencies for the
gain loci for each shift of the jw -axis.

The oscillatory conditions for the phase angle loci were
determined by applying the Continued Fraction Expansion to
the ratio of the polynomials obtained from the real and
imaginary pact of the phase angle loci equation. From the
Continued Fraction Expansion, two sets of formulas were cb-
tained; one set for ¢ = vr , (v=20,1,2,3, ...) and one
set for ¢ # vmr . Each set consists of two forinulas to de-
termine the angular frequency and gain. By these formulas
the angular frequencies and corresponding gains for a partic-
ular value of phase angle ¢ are determined.

Two formulas were derived for construction of the gain
loci by the shifting technique; one for a polynomial form
and one fo£ a factored form of the phase angle loci equation.
By this formula the angular frequencies, for a particular

value of gain K , are determined for each shift of the juo -

axis.
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CHAPTER I

INTRODUCTION

1.1 The Phase Angle Loci

The subject of this thesis is to develop a technique for
constructing the phase angle and the gain loci of a system
from its open loop transfer function.

The technique applied for constructing the phase angle
loci was previously developed by C. F. Chen and C. Hsu (2) for
the construétion of the root locus of a system. They have
compact formulas for obtaining the angular frequency w and
gain K respectively.

The shifting technique was also applied by V. Krishnan
for root locus (9). 1In his approach, he expresses the numera-
tor and denominator polynomials in Taylor series for determin-
ing the angular frequericy « and the gain K .

To construct the phase angle loci by this technique it is
neceésary to develop the oscillatory conditions for a phase
angle loci equation. Thus first effort was to find equations
for determining the Jjwu -axis frequencies and corresponding
gains frcm the open loop transfer function.

The procedure is the application of the invariance
principle of the geometrical configuration of the phase angle

loci in the complex plane under Jjuw -axis transformation. The
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principle can be stated as follows: The geometrical shape of
the curve of an algebraic eqguation in the complex plane does
not change under a linear coordinate transformation (6).

The technique consists of a parallel shifting the ju -
axis by =~ "y" and then determining the Jju -axis frequencies
and gains from the new phase angle loci equation. Thus a
family of curves can be obtained for different values of the
phase angle ¢ .

An equation was also developed to determine the new co~
efficients of the numerator and denominator polynomials of
the open loop transfer function after Jju —-axis transformation.
This equétion gives the coefficients of a polynomial by taking
consecutive derivatives of the constant term of the new poly-
nomial with respect to "y" . This constant term is obtained
from the given polynomial replacing "s" by "a" .

The most important information available from the phase
angle loci is the relative effects of gain changes along the
various root loci. It is also important that the family of
constant gain curve (gain loci) is orthogonal to the phase
angle loci. The phase angle loci provide the possibility of
extending the locus plot to obtain more complete picture of
system behavior. -

TQe_general concept associated with the phase angle loci

is important, because the constant gain counters can often be



sketched roughly to indicate the approximate location of
corresponding points on the various root loci. The phase
angle loci may be ¢onsidered as a convenient means for re-
shaping the root locus of systems to obtain more desirable
performénce characteristics.

A practical digital computer program can be used to
calculate the phase angle loci and the gain loci from the

equations derived in this thesis.



CHAPTER IT

DETERMINATION OF PHASE ANGLE LOCI

2.1 Phase Angle Loci Eguation

on the conplex plane, for a given open loop transfer
function, K G(s) shown in Figure 1, a family of curves can

be obtained for various values of ¢ from the following

equation:

K G{s) = E@%é§L = Exp (fj¢) = Cos ¢ t j Sin ¢ (2.1-1)
where

) - Phase angle (constant)

K - Gain factor (gain constant)

G(s) - Forward transfer function of the system

P(s) - Numerator polynomial of transfer function, G{s)

Q(s) - Denominator polynomial of transfer function, G(s)

s - Complex variable.

Equétion (2.1-1) is called the phase angle loci equation.
The phase angle loci have two important properties(u:
a) The phase angle loci are symmetrical with respect to
the real axis.
b) The shape of the phase angle loci depends on the rela-
tive positions of the poles and zeros, and is inde-

pendent of the axes of the s-plane.



’ .
R(s) — §} B> ox P> G(s) > C(s)
L

Figure 1. Block Diagram of System
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Therefore, according to these two properties, a parallel
shifting of the Jjw —-axis does not disturb the symmétry and
the shape-of the phase angle loci. If the amount of shift is
"y", the new complex variable s' in texms of the complex

variablé s and vy is:
s' = (s + v) (2.1-2)

Substituting (s' + y) for s in Eqg. (2.1-1), one obtains

the following result:

R P(st,y) _ Cos ¢ T § sin ¢ (2.1-3)

AL E -

The coefficients of P(s',y) and Q(s',y) in Eg. (2.1-3)
are functions of y and they will be determined in Chapter II,
Section 2.4, in convenient forms for any degree polynomials.

.By substituting Jjw for s' in Eq. (2.1-3), two poly-
nomials are obtained as functions of the angular frequency,
one from real part and one from imaginary part. Then the
oscillatory condition can be determined from these two equa-
tions for any value of the phase angle ¢ .

The coefficients of these two phase angle loci polynomials
are, ih‘general, functions of shift "y" , gain K and phase
angle ¢ . For given values of y and ¢ , these two §01y~
nomials must be satisfied by «w and K simultaneously. This

means that the phase angle loci polynomials must have common

roots for common values of K . Therefore, the possibilities



7
for these polynomials to have common roots for common K's
must be determined.

Common angular fregquency o and gain K can be deter-
mined by the Continued Fraction Expansion (8) applied to the
ratio of the phase angle loci polynomials. The Continued
Fraction Expansion ends prematurely when these two polynomials
have common roots for common values of gain K . Thus the
solutions for gain XK and angular frequency w can be obtained
by forcing the Continued Fraction Expansion of the phase angle
loci polynomials to end prematurely. Hence the phase angle
loci for each particular value of phase angle ¢i can be con-
structed by this technique, first by shifting the juw -axis,
and then by determining gain K and corresponding angular
frequency w on the 3ju —axis for each shift. The detail of
the prbcedure for determining the oscillatory condition for a

phase angle loci will be given in Chapter II, Section 2.2.

2.2 Determination of Oscillatory Conditions of Phase Angle

Loci Equation

The detail for determining the gain K and the angular
frequency w by the Continued Fraction Expansion will be
given for six degree phase angle loci polynomials. .Howéver,
this technique can be applied similarly to the any degree

phase éngle loci polynomials.
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The phase angle equation, Eg. (2.1-1), after shifting

the Jjw -axis by w , is rewritten as follows:

_ K P(s')

0(s") = Cos ¢ - j Sin ¢ (2.2-1)

K G(s')

where

s = s+ v

Assuming that Q(s') , (or both P(s') and Q(s') ), is
a six degree polynomial of s' . After substituting Jjw for
s' in Eg. (2.2-1), the following two phase angle loci polf-

nomials,one from real part and one from imaginary part, are

obtained:
6 5 4 3 2 _
Fl(w) = Dllw +D12w +Dl3w +Dl4m +Dl5w +Dl6w+D17 =0, (2.2-2)
_ 6 5 4 3 2 _ )
Fz(w) = Dzlw +D22w +D23w +D24m +D25m +D26w+D27 =0, (2.2-3)
where

. D31/P12/DP13:P14rPy5/D16:DPy 70
and
D1 1Dy0rDy31Dy1Dy5:D56:D05

are functions of vy , X and ¢ .



The Continuved Fraction Expansion is:

6 5 4 3 2
Fl(w) _ Dllw + Dlzw + Dl3w + Dl4w + Dl5w + Dle + D17
6 5 4 3 2 -
Fz(w) D21w + D22w - D23w + D24w + D25w + D26w + D2.7
P11, 1
Dr1 DPoa My 1
-C—-CL)+C {"C
31 31 31 61 1
covteote i
51 51 51 ,, 81
e teT
71 71
1
+ 2
C M w + M w + M
+ C71 w + 10,1 ; 10,2 10,3 (2.2-4)
91 Cglw + C92w + C93
M w2 + M w + M
The last fraction, 10,1 5 10,2 10,3 provides
¢9:1w + C9’2w + C9’3 :
the oscillatory condition for ¢ = vr (v = 0,1,2,3 ...) when

Eqg. (2.2-4) ends prematurely.
For the phase angles, ¢ # vm , the Continued Fraction
Expansion is carried on until the following fraction is

obtained:

6 5 4 3 2
Fl(w) Dllw + Dlzm + Dl3w + Dl4w + Dlsw + Dle + Dl7

6 5 4 3 2
+ D,.w” 4+ D w” + D,,w” + D25w + D26w + D27

21% 22 23 24

Fz(w) D
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_ou, 1
D1 P;; M1 1
c.ow® il M
31 31 ©31 61 1
F et =t -
51 51 51 ‘81 1
o w+C +
71 71
€51, a1 1
€71 0 S Mo, 1
Co1 Co1 o1, Mi2,1, S *Cuo
C11,1 C11,1 C13,1
(2.2-5)
C w + C
The last fraction, 1.1 11,2 , provides the
Ci3,1

oscillatory condition for the phase angle loci for ¢ # vrm ,
.when it ends prematurely.

It is assumed that D21 #0 , D and D cannot be

21

zero simultaneously. Only one of these

11

or can

(Dyy Dyq)

be zero when ¢ = vn . If D is zero the Continued Fraction

21
Expansion must be applied to {Fz(m)/Fl(w& instead of
{Fl(w)/Fz(wB' .

The last fraction of Egq. (2.1-4) and Eq. (2.2-5) provide

the equations to calculate the gain K and angular freguency

of the phase angle loci for ¢ = vr and ¢ # vr respectively.
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Case No. 1l: ¢ = vm , Root Locus

For ¢ = vr , MlO,l ' M10'3 ' C9,2 are simultaneously
zero. Then the last fraction of Eg. (2.1-4) is reduced to

10,2

2
7lm + C

(2.2-6)

73

By forcing to be zero, the Continued Fraction Expansion

Mi0,2

can be ended prematurely; this provides the following result:

2 -
C7lw + C73 =0 (2.2-7)
c
w?= -2 (2.2-8)
71
Mg 5 =0 (2.2-9)

MlO 2 is only function of K for a given value of vy . Thus
! -

the solution of Eg. (2.2-9) gives common values of K . Sub-
stitute XK and vy in.Eq. (2.2-8), the Jjw =~axis angular

frequencv is then determined.

Case No. 2: ¢ # vrn

The last fraction of Eg. (2.1-5) gives

C11,1 * €112
C13,1

The Continued Fraction Expansion, Eg. (2.2~5), ends prematurely

when Cl3,l is zero. Thus by forcing Cl3,l to be zero the
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following result is obtained:

Cpp 10 + Cyq 5 = 0 (2.2-11)
C
0 = - EliLE (2.2-12)
11,1
Cryq =0 (2.2-13)

As in Case No. 1, Ci3 3 is only function of K for a given
r

Y . Thus the solution of Cl3 1 gives common values of K .
14

Example

The phase angle loci equation is:

K(s + 10)
s{(s + 3)(s + 6)

K G(s) + = Cos ¢ + j Sin ¢ (2.2-14)

For vy =0, G(s') = G(s)
In this example, the gain K and angular frequency « will be

determined for only ¢=-30° and ¢ = 180° .

¢ = —30°:

i

Cos ¢ 0.866

-.500

It

Sin ¢

K(s + 10) = (0.866 - § 0.500) (s> + 9s2 + 18s) (2.2-15)

Substituting jw for s 1in Eq. (2.1-15), the following are

obtainéd:

K(jo + 10) = (0.866 = j 0.500) (~ju> - 90° + 18jw) (2.2-16)
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From real part of Eg. (2.1-16)

~w3 Sin ¢ - 902 Cos ¢ + 18w Sin ¢ - 10K = O (2.2-17)
From imaginary part of Eq. (2.1-16)
—w3 Cos ¢ + 902 Sin ¢ + (18 Cos ¢ - K) = 0 (2.2-18

Applying the Continued Fraction Expansion Technigque to the
ratio of Eg. (2.2-17) and Eg. (2.2-18), the gain K and

angular frequency are obtained as follows:

0.5
0.666
3 2 ) 3 2
10.8660° + 4.502 - (15.6 + K)w | ~0.5u> + 7.80° + 9w - 10K
“0.50° - 2.602% + (940.577K)
4+ 10.40% - 0.577Kw - 10K
0.866
70.2 ©
2 ' 3 2
+10.40% - 0.577Ke - 10K |+0.8660° + 4.50° — (15.6+K)u

+0.8660° — 0.048Kw2 - 0.832Ko

+(4.540.048K) 02— (15.6+0.168K)w



, (4.5 = 0.048K) 14
10,4
+10.402 - 0.577Ke - 10K| (4.5 + 0.048K)w> - (15.6 + 0.168K)uw
(4.5 — 0.048K)w? - (0.25K + 2.68 x 10 °kK%)w - (4.32132K + 4.6 x 1072%x2)
L (15.6 - 0.082K - 2.68 x 107°K2] 1) + (4.32K 4 4.6 x 107 %K?)
~10.4w
(15.6 - 0.082K ~ 2.68 x|1¢ 107 °K?2)
~3.2 ~2.2. 2
(15.6-0.082K-2.68 5 107 K%)u+(4.32K+4.6 x 107°K%) [+10.40° - 0.577Ks - 10K
2 10.40(4.32K|- © ~ 4.6 x 107%k%)u
' +10. 4o 8 £y
(15.6 - o.oszT K - 2.68 x 10 °Kk?)
1&.43.4 (4.32K + 4.6 x 10 %K?)
- 0.577K - Sl o - 10k
(15/6 .6 — 0.082K - 2.68 x 10 k%)
C .4 (4.32¢+44.64.
0.577K - —20-4 ( +4.64.6 x 10 (15.6 - 0.082K - 2.68 x 10 K?)
(15.6-0.082K~2)68.68 x 10~
~3.2 221 ( 10.4 (4.328+4.64.6 x 10 2K2)
(15.6-0.082K 2.68 x 10 °K%)wt (4.32K+1.6 x 107 “K%)|-30.577K ~ — L ! - 10K
C (15.6 -0.082K-2.€2.68 x 10 °K?)
:
| 10.4 (4.32K-4.6x10 2R2) 2.9
| o g 0.577K- -t - j(4 V32K 4+ 4.6 x 102Kk
10.4 (4.32K—%.€4.6 x 107%k%)y (15.6-0.082K-2.68%10 &%)
- . K -
@ STTR = (15.6-0.082K-216£.68 x 10 °k?) (15.6-0.082K-2.58x10  °K?)
- 1 10.4(4.32Ke4. F
{?.577K - — ( +4.6x10_ K } (4.32K+4. 610" 22y
10K - (15(15.6-0.082K-2.68x10 °K%
. ~ (15 6 0.082K~2.68x10 >K?) _ (2.1-19)
. 1
Forcing the last term to be zero, one obtains

2 .
i, ~3.2
~10K(15.6 - 0.082K - 2.68 x 107 °K%) + {6.577K(15.6 ~ 0.082K - 2.68 x 10 K)r%)_10.4(4.32Ke 4.6 x 10'2K23}(4,32K + 4.6 x 1072k

|

! e

b

= 0 (2.1-20)
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~(15.6-0.082K-2.68 x 10 “K%)w 4+ (4.32K-4.6 x 107%k%) = 0  (2.2-21)

oxr

(4.32K 4+ 4.6 x 107 2K)
(15.6 - 0.082K - 2.68 x 10

3K2)

Solution of Eg. (2.1-21) gives
K = 13.4

Substituting X in Eqg. (2.1-22), the angular frequency

is obtained:

¢ = 180°: (Root Locus)

Sin ¢ = 0
'Cos ¢ = -1

For ¢ = 180°, BEg. (2.2-17) and Eg. (2.2-18) give

-0 0 + 9% - 0w -10K=0 (2.2-23)

w3+ 0wl - (18 + Ko +0=0 (2.2-24)

Applying the Continued Fraction Expansion to the ratio of
Eg. (2.2-23) and Eg. (2.2-24), the gain K and w2 are
obtained as follows:

-0

1

0> + 002 - (18 + K)w + 0 | 00> + 902 - 0w - 10X

—0m3 + sz - 0w - 0

9w2 + 0w - 10K
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1
'g(.u

9w2 + 0w - 10K w3 + sz - (18 + RK)uw + O

m3 + sz - 18K

W

0w? - §}18 + K) - 185 w + 0 (2.2-25)

Forcing last term, {318 + K) - 185 , to be zero, the

following result is obtained:

{gls - K) - 1%5}= 0 (2.2-26)

9 w2 - 10K = 0

we = l%& (2.2-27)

Solution of Eg. (2.2-26) and Eq. (2.2-27) gives: -

K = 162
w? = 180
2.2.1 Determination of Mij and Cij of the Continued

Fraction in Egs. (2.1-4) and (2.1-5)

. A .
To determine Aij and Cij in terms of Dll’DlZ’ Dl3

"and D for every

D14/P15:P16:P17 21'P227P23rP54/Dy5:Dy4:Doy

value of ¢ , it is assumed that for ¢ = vrw :
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Dll = D13 = DlS = D17 = 0 and

22

The procedure is as follows:

6 , 7\ 5 4 3 2 s N 6 5 3 “*
Dozw. + Do + Dovew® +/D- o> + Daw® +MD.Dw + D Dy w- + Doow> +7 + ¥ Dy, 0 +(D; w° + D, _w +;D,D
21 Kg;, 23 <:2; 25 <\g§ 27 |\ J1y 12 \\}; 14 <’15 16 17

D D . D D D D

6 11 5 11 4 11 3 11 2 11 11

D.,w + D ===~ + 0 w + D w + D == w + D = w + D —

11 22 D21 2323 D2 24 D21 25 D21 26 D21 27 D21'

D D D D D
11, 5 11, 4 11, 3 11, 2 11
+ (D, ,-D ) w |+ (- (D 5w +(Dy, 5w+ (Dyg ) w +(Dy¢ =) 0+ (D ,-D
12 722 D2l 137 23 D21 24 D21 25 D21 26 D'l 17 727 D
D D D D D D .
- _11 11 _ 11 11 11 11 .
(D12 D22 ) ) (DL3 023 B—m) P (Dl4 D24 5——) p (D15—D25 5——0 ,(DlG-D26 5——0 ) and (Dl7—D27 B——) are indicated .by C31,C32,C33,034,C35,C36 and C37
12 21 21 21 2] 21
respectively.

5 . 4 3,7\ 2 6 5 4 N 3]
C ‘ i \ 14 \\ ! :
31Y \CBZN + C33w +Q3/4jm + C35w +@ Dzlw +@'w + D23m +@,“’ ‘+ + D25w +AD26‘J + 27

D D D
6 21 5 21 4 4 21 3 21 2 21
’ D..w  + C w> + C — . C w + C w + C ®
21 32 C3q 33 C3y ' 34 Cy1 35,c3l 36 C31
‘ _
D D D D, D
21, 5 21, 4 21, 3 21
(D,,-C LA +(D ~ —)uw +(D =——)w + (D ) )
2 J3 ;W + . )(1)+D
2 32 Cqy 3 c31 C34 Cy1 257C35 c31 26 36 c31 27
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!

A D
' 21 . .
D D D Dy Dy, 2'~) and (D,.-C =—=) are indicated b M,. M M M M i N : .
21 e 21 (D. —-C __2_1_) (D ~C. . 2%) (D. -C._ _2% 277 %37 @ Y Mgy MyprMyzeMy, M, and M, o respectively.
(Dy,=Cs, EEI) ; (Dy4=Cyy 031)  Paa™C3a Ty v PasTes 1 6T IS T 1 31
|
. M41 ]
C31 -
o~
- 3 e -~ 3 2 + M, dw + M
5 L0 3 060 W2 FEDN TN M, e 20 M, 0 4 T4 46
Cypu” +(Cqgv + Caze” *(Cag0” * Cas0 T (3 |Ugge T Ma2w Tagt T Mast 0 N0
M M M
M M 4 3 41 2 41 41
5 41 4 41 3 7+ C w’ 4+ C w + C
| M ' M M M
M W, 741, 3 41, 2 41 , 41
41, 4 _ ) + M, ,~C —)w +M,.~C )+ (M, ~C.. =)
+(M42 C32 C3l)w +(J.V‘.43 C3- a C31 44 ~34 C31 45 T35 C31 46 736 C3l
|
M i ”46
M M M . LY E' . .
41 41 41, 41 . _ 4¢+—) are indicated by C.,,C.,,C.,,C., and C_..
(M, ~Co m=m) , (Mya=Con ===) , (M;,~Chy =) + (M;=Coc =) and (M, ~C,. 21 . 5177527753754 55
42 732 C3l ! 43 733 C3l ! 44 T34 C31 45 T35 C31 i€ 6 C L: .
{
c |
31 " !
C51 [
4 a3 2@ 5 Lo 3, 2 .« o aleliCse
C..ow +(C.w + Crow +{C_w + C Cuqw” +(Chow  + Coou” +(Chw” + Chew CIG3Y
51 (59 53 5 55 | 31 N 33 (34 359 T 0
C. o C
a, 3
oS 4o 3L 4o 31 3, ¢ ~'3312+055c3l“’+cssc3l
31" ‘52 Toq © 53 Co, 54 C;5s1 - 2051 51
51 51 ‘ A A
C C C
C C : 31, 2 31 31
31, 4 31y 3. (F(CqyCoy )0+ (C o Crr =) 0t (Cy ~Cr, ==7)
4
L]
'




C, C3l C3l C C C3l
(C357Cqy C51) r (C33=Cg3 -——CSl) r (C347Cgy C51) r (C35Cgg -—-——CSl) and (C4,-Cio & ————CSI) are indicated by Meq Mgy Mea M, and Mc o respectively.
C51
4, En,S 1 3¢ e? i
CSlw +igsgw + C +(\J§w + C :M’;\ + M62w +\?§}w + M64w +k§é;
M_. M, M M M
4 61l 3 61 2 61 61
M. .w + C - w -+ C -— w + C — —= w + C —_—
61 52 CSl ‘ ' 53.C51 54| C C51 55 C51
M. M ] M M
61, 3 61, 2 2 61 61
+ (M, ~C )W +(M YuT+t +{(M —)uw+ (M, _~C —)
62 752 C51 53 C51 | 64 54 C51 65 755 C51
(M_,-C M61) M_.,-C M——-——61) (M M6 ) and (M l\i6-l) are in'iicntelited b C C C d C
62752 C 1 63753 T o Mgy=Coy @ Cs55 ¢ Hleatec Y tq1rtyortgz and oo
, 51 51 51 51
z .
51 |
| C71 |
e’ G Cay ey’ 2 ¥ (€
Ciqw +{C, ™ + C,o0 +(C Cow +{C.w” + Coow +(Co,w + C
71 \\z; 73 74 51 \\59 53 (\59 ;
|
C C C C
4 51 3 51 2 51 * 51
C.,w + C w + C w + C w +C C
51 72 C71 73 C71 74 C71 75 C71
C C. C C
51, 3 1, 2 51 51
+(Ces~Cy =—)uw™ + (C.,-C Ju® + (Coy o y=Co, =)o + (C C )
52 772 C7l 53 773 C71 >4 54 74_C71 55 75 C71
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91

C C . C
51 51 _ 51 ) . s » . S
(C52—C72 E;IQ 537C3 E;I) ' (C54 Coy E;I) and Cg, are indicated by Mg Mgy Mg, /Mg, and Mg, respectively.
|
Mgy
€1 |
3 N2 . . N 3 2
C7lw + (-\C\?%‘w + (,73w + @ (1\4\8}00 + I482w + @ + M84
M . " |
3 81 2 81 - g1 !
Moqw- + Cop === 0° + Copy === w + C ,
81 72 C7l4 | 73 71 . 74 C7l :
. M M . .M
_ 81, 2 81 81
+ (M C., ===)w® + (M Co s Yo | ¢ M, - C.,, =—==)
82 72 C7l 83 73 C7l 84 74 71
Mgy Mgy Mgy
(M82 - C72 E—,;I (M83 - C73 -C—-;—I) and (M.84 - C74 E-;—i—) are indicated by C9 Cgl,cgz and C93
71
Co1
2 - 3 2 ,
Cqpu” + cg\zm + C Cqqu +@w + Cqgu +@
C C
3 71 2 71
Chiw + C — w + C w
71 92 C91 93 C91
C, C
71, 2 71
+ (C - C —=)w + (C - C - —)ut+ C
72 92 C91 73 93 C9l 74
(c - C SZl) (Cc - C Eli) da ¢ indicated by M M ar d . 25
72 ~ C92 € r €93 ~ Co3 ¢ and  Cq, are indicated by M4 /Mg 2|7 and M, 5 respectively.
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10,1
Cq1 } .
C w4+ + C M 24 + M
91% 92¢ 93 10,19 10,2% 10,3
M M
2 10,1 10,1
M WS+ Con =L+ O et
10,1 92 "Cg; 93 "Cqy
M M.
- 10,1 - 10,1
*(Myg,27Cop T et My 37Coy —5
91 9
M M
_ 10,1 . _ 10,1 . o
(MlO,Z Con G ) and (M10,3 Cy3 ~E~—-) are indicated by
91 91
Cll,l and Cll,2 respectively.
Co1 .
Ci1 1
C +C C w4 C + C
11,1% 11,2 91% 92% 93
: C
2 91
C,qw + C w
91 11,2 €111
c
91
+ (Cyn—C — = Jw + C
92 ~11,2 Cl1.1 93
(C - C —52£~) and C are indicated b M a
92 11,2 T 5 93 iparcated by My,,1 @n
7

_M12,2} respectively.
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12,1
C11,1
C11,1¢ * Cy1,2 | Mi2,29 T Myp1
M
12,1
M w + C L
12,1 11,2 T 4
M
12,1
4+ My, 4 =~ C =2y
12,1 7 “11,2 & 5
(M - c M12'1) is indicated by C
12,1 -~ 11,2 T, 13,1 °
’

1 n

To keep the sequence of the rows, even numbers for i
(i =2,4,6, ...) are assigned to Mij and odd numbers for
"i"* (i =1,3,5,7, ...) are gssigned to Cij .

Similarly the Continued Fractioﬁ Expansion- is applied
to 5 dégree and 4 degree phase angle loci polynomials. The
results are given in Appendix A and Appendix B.

From the resulté of the Continued Fraction Expansion
of 6 degree, 5 degree and 4 degree phase angle loci polynomials,
the following eguations for angular frequency « and gain K
can be found by a mathematical intuition:

Two cases must be considered:

a) n is an even number

H) n 1is an odd number

where n 1is the degree of the phase angle loci polynomials.



Case No. 1l: n 1is an even number

For ¢ =vw , (v =10,1,2,3, ...)

2o S(on=3),3
C(2n-3),1
M(2n-2),2 = 0
For ¢ # vm
Lo Seenmny 2
C(an-1),1
Ciont1y,1 = O

Case No. 2: n is an odd number

For ¢ = vr , (v=20,1,2,3, ...)

2 Sn-3),3
€(2n-3),1

Mion-2y,2 = 0

For ¢ # vm

_ Con-n,2
W= - e
(2n-1) ,1

Cizn+1),1 = 0

3

23

(2.2-28)

(2.2-29)

(2.2-31)

(2.2-32)

(2.2-33)

(2.2-34)

(2.2-35)

Solution of Eg. (2.2-29) or (2.2-32) and (2.2-31) or

(2.2-35), for ¢ = vr and ¢ # vn respectively, determines
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the values of K's , as many as the degree of polynomials.
Only some of these K's which give positive real values for

w are valid values of K .

2.2.2 General Formulas for Determining ij and Cij

The general formulas for ‘determining Mij and ij

in terms of D ce. D and D

11'P12P13- in

are written by an intuvition as follows:

21'Pp2rPo3r +v= Dy

Ci-1), (3+1)

Mis = Clio3), 5+1) ~ C(i-3) 1 C it 1 (2.2-36)
where

i=4,6,8,10, ...,

j=1,2,3,4,5, ...
_and

My, = Dyys Myy = Dy s Moy = Dig y eeeennnn My = Dy

c C. ..
Mgy = (Dyp = Dy E%%)""' Mgs = Dy (541) ~ P;1 —ééé%fll
M,

Cij = Mi-1), (3+1) ~ C(i-2), (3+1) Efifi%f% (2.2-37)
where .

i=3,5,7,9, ...

j=1,2,3,4,5, ...
and ) .

C11 = DPo1r Gy = Dopr €33 = Dp3r » » v = 4 Cpy = Doy



D D

_ 22 _ _
Cyp = 5.7+ C335 = Py (441) 11 b

(D - D
31 12 11 D21

Equations (2.2-36) and {2.2-37) are applicable to a

computer programming.

Example No. 2

The result, (2.2-32), (2.2-33), (2.2-34) and (2.2-35),
will be applied to the same example given in (2.2-14). For

convenience it is rewritten again:

K(s + 10)

K G(s) S1e¥37(5%6)

Cos ¢ + j Sin ¢ (2.2-38)

For ¢ 30° , the phase angle loci polynomials are:

~0.5 4> =~ 7.8 w2 + 9 u - 10K = O (2.2-29)
20866 w3 + 4.5 02 + (15.6 - K)u = 0 - (2.2~40)
Therefore '
Dy, = - 0.5 D,y = 0.866
Dy, = 7.8 D,, = 4.5
Dy =9 D,y = - (15.6 + K)
Dy, = - 10K D,, = 0

From Egs. (2.2-34) and (2.2-35), one obtains:

w = - (2.2-41)
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Then, from Eg. (2.2-36) and Eq. (2.2-37), M's and C's

are obtained as follows:

My, = - 0.5 C;q = 0.866
My, = 7.8 C,, = 4.5
My, = 9 Cy3 = = (15.6 + K)
M), = - 10K Cyy = O
My, = (4.5 = 0.048K) Cyy = 10.4
Mgo = - (15.6+0.1688) C32 = ~ 0.377K
Cyy = = 10X
(4.33K + 4.6 * 1072 K?)
M, = €0.577 + 10.4 . . =
(15.6-0.082K~2.66%107 "K?)
M_. = - 10K C.. =-(15.6-0.082-2.66%10°10%)
62 51 -6-0. .
Co. = +(4.33 + 4.6 * 10" %k%)
52
(4.33+4.6%107 2k?) }
-1 —5—
oy {;'577 10-4 (15.6-0.082K-2.66%107Kk?)
Co. = —10K-(4.33+4.6*10 °K -
71 ( : (15.6 -0.082K-2.66*107 °K?)

Substituting C and C in Eq. (2.2-41), and

51 52

solving C71 the same results are obtained:

k)
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(4.33K + 4.6%107 %x%)
(15.6 - 0.082K - 2.66%10 °K?)

W =

—lOK(lS.6—0.082K—2.66*10_3K2)2—(4.33K+4.6*10-2K2){0.577(15.6 -

-o.oazK—z.66x10’3K2)-1o.4(4.33+4.6x10‘2K2i}= 0

¢ = 180°
Phase angle polynomials are:
-0 w> + 9 w? - 0w - 10K = 0 (2.2-43)

w3 = 0 w? - (18 4+ Kw=-20=0 (2.2-44)

From Egs. (2.2-32) and (2.2-33), one obtains:

w2 = - Eéi | (2.2-45)
31
My, = 0
Djp =0 Dy =1
Dyp =9 _ Dyp =0
Dl3-; 0 D23 = -(18 - K)
Dy, = - 10K D,, = 0
Cyy = 9 | My, = -(18 - K) - & _ o
Cypy = 0
Cyy = - 10K

Substituting Cy; and C; and solving M,, one obtains the

same results as in Eq. (2.2-26) and Eg. (2.2-27):7

K = 168, w2 = 180
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2.2.3 Phase Angle Loci Array--Deternination of Mij and

C

Ci5 by an Array

Mij and Cij can also be determined with a typical
array. The array for 6. degree phase angle polynomials,

Eg. (2.2-2) and Eq. (2.2-3), is as follows:

14,1

The arrows indicate the direction of the multiplication,

sign of the product of the components cf the rows involved to
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the procedure. The components at the beginning and at the

end of an arrow are multiplied, next the product of other two

corresponding components is substracted. Then the difference

of these two products is
the arrow starts.

Two examples for

61

62

Q
it

71

Cia =

divided by the component at which

M,

M

M

ij

32

33

62

63

and C..
ij

¢, 2t
52 Tp;

c €31
53 .,
" Cs52
61 Cp,

" Cs3
61 C;,

2.3 Phase Angle Loci on the Real-Axis

are given as follows:

The phase angle loci may have some points .on the real

axis. Since the frequency « 1s zero on the recal-axis, these

points can be determined by equating the constant terms of

Eg. (2.2-2) and Eg. (2.2-3), which are designated as

D . Thus a simultaneous solution of D

27

17

and D

27

D

17 and

for a

particular phase angle gives the points on the real axis for

each shift, Y .
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2.4 Linear Transformation of Jjw =-Axis

The open loop transfer function is rewritten as follows:

n n-1
_P(s) _ K(aos + a

Q(s) ‘b s™+b.s™t 4. . tb . +0b)
O m- m

K G(s)

(2.4-1)
The Jjo -axis is translated parallel by "y" from its
original position as seen in Figure 2. Thus the origin 0
will be shifted to its new origin 0' on the o -real axis.
The new s'-domain can be expressed in terms of the previous
s~-domain and the amount of shift, "y".
The coefficients of the numerator and the denominator

polynomial can be found for each shift. A relation for find-

ing the new coefficients may be derived as follows:
s' = 0 + jow (2.4-2)
After shifting the jw -axis by y , s is:
s = (; + v) + jJw = s' + vy , (2.4-3)

Then substituting s' for (o + juw) , the s 1is expressed
in terms of s' and vy .

In Eqg. (2.4-4), (s) is the complex variable of initial
s-domain, (s') is the complex variable of the new s-domain,
and vy is the amount of a parallel shift of the Jjw -axis.

The powers of s in terms of s' and y are given as

follows:



Real Axis

-
UTRWOop ,S

<%

JOo sTXe-

uTewop ,S

Jo sIxe-

-plane

and s'

S

Complex

Figure 2.

31



s =s' + vy
82 = S'2 -+ ZS'Y + v
&3 = gt + 3s'2Y + 3s'y2 + Y3
s = s'4 + 4s'3y + 65'2Y2 + 4S'Y3 + y4
n < on i n-1
s = (s' + y) = 2;_(i) s' (2.4-4)
i=0
where
n, _ n!
(i) =ITm-D1
Substituting (s' + y) for s in the numerator and

denominator polynomials of Eg. (2.4-1), one obtains the

" following results:

vy — 1 L1h-1 v _
P(s') = A_s'" + A;s + ... . +RA 48"+ A (2.4-5)
1 . : I lm_l ' [ _
Q(s') = Bos + Bls + . .« o+ Bm—ls + Bm (2.4-6)
where
and Bo,Bl,'. . ”Bm are functions of

ARy, « + /A

-y and given as follows:
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A

1 naoy + al

A =g
o o)

and similarly

m m--1
= +
Bm boY blY + -c e 9 . + bm—lY + bm N
_ m-1 Ii~-2

By Fmby *(m-1)byy “H+...+Db o (2.4-8)
.

B1 = mboy

B =b /

o o

The coefficients of Eq. (2.4-5) and Eq. (2.4-6) can be determined by
taking consecutive derivatives of An and Bm with respect to y. The General

formulas are given as follows:

byt g ) (2.4-9)
n-i il ayt n .

i
By =G o (B (2.4-10)



CHAPTER III

DETERMINATION OF GAIN LOCT

3.1 Derivation of the Gain Loci Formula

The gain loci area family of curves which is orthogonal
to the family of the phase angle loci curves. The gain loci
provide important information about the relative effect of
gain changes along the various root loci. The gain loci can
be constructea by the shifting technique.

The procedure for constructing the gain loci by shifting
technigue is, as follows:

The open loop transfer function after shifting by vy is:

K P(s') KMAsT+as ™4 42
' —_— (¢} 1 n
KG(sh) = Q (s") = m m-1 - =
(Bos' + Bls' + . .+ Bm)
- +. _ + .
= Exp (=j%) = Cos ¢ j Sin ¢ (3.1-1)
where
s' = s - Yy , and
Ao’Al’AZ’ . « » and Bo’Bl’BZ’ . « . are functions of a

shift, «vy .
Since the gain loci curves are orthogonal to the phase
angle }oci curves, the gain loci also have the same properties

as the phase angle loci (Chapter II, Section 2.1, page 4).
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Thué two important properties of the gain loci are:

a) Gain loci are symmetrical with respect to the real
axis of the complex s-plane.

b) Shape of gain loci depends on the relative position
of the poles and zeros, and is independent of the
axes of the complex s-plane.

When a real part of s' 1is zero, Eg. (3.1-1) may be

rewritten for a negative and positive values of s' as

follows:
. _ K P(+jm_)_ — *j¢ ' = 3 -
K §(+jw).f ISV e , 8" >0 , and ¢ =0 (3.1-2)
_xy - KP(-Juw) _ _+3i¢ ' = -
# G(-jw) = =50 e , 8s' < 0 , and ¢ 0 (3.1-3)
" where
w is, Jjw —-axis frequency and ¢ 1is phase angle.
The product of Eg. (3.1-2) and Eg. (3.1-3) gives the
following result:
2 . .
K” P(+juw) P(-jw) -1 (3.1-4)

Q(+jw) Q(-jw)

As it is seen froﬁ Eq. (3.1—4), P's and Q's exist in
‘complex conjugate pairs. Thus the product P (+jw) P(-jw) ‘and
0(+jw) O(-jw) are even functions of . Therefore, the con-
struction of the gain loci for a constant value of K is re-

duced to determining the roots of a polynomial which is obtained
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from Eq. (3.1-4).
The product P(+jw) P(-jw) and Q(+jw) Q(-jw) may be
calculated by a general formula: The product of a complex

conjugate polynomial pair P(+jw) and P(-jw) is

n
P(+50) P(-ju) = 2 a2 W20y
i=0
L I
F DR > Y (-1 (n—j_l"l)zAziAz(.+l)w2(n"3"l“l) -
i=0  j=i J
M M
_ ,_\D 4y (n=j-i-2) 2(n~j-i-2)
(-1) é; }j—_ (=1) 2B (0341) 2 (2543) 0
i=0 J=1
(3.1-5)
where
n A\
L = é‘ - l |
‘ for n 1is an even integer-
M= (L - 1) J '
_ n+ 1 _ Y
L = > 2
for n is an odd integer
M=1L= 23 oo

A general formula for the denominator polynomial of
Eq. (3.1-1) may be obtained by replacing P with Q@ , A
with B and n with m in Egq. (3.1-5).

Substituting the above result in Eqg. (3.1-4), one obtains:



n L L
. -1 N y -j=-i-1 2(n-j—-i-1
PN R P S S S DRt )2A2iAz(j+n‘° )
i=0 i=0 Jj=i ] o
1 L' L'
- S -j-i- 2(m~j-i-1
a2 2D ogym SN (o) (eedd l)ZAZiAz(j+l)w (m-j-i-1)
i=0 . i=0 j=i
where
L = % -1
for n is an even integer
M= (L - 1)
n - 1 ~ . ] .
L=M= 5 - 2 for n is an odd integer
m
(R
L' = 5 1
for m 1is an even integer
M' = (L' - 1)
' m- 1 . .
L' = M' = 5 -2 for m is an odd integer

Solution of

Eg. (3.1-6) for a particular

K , gives the points of

(~

—

(-.
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M M )

NN 1y (n-j-i-2) 2(n-j-i-2)

o i L 2R B2 @

\DL" M’ ( | =1 (3.1-6)
> (m~j-i-2) 2 (m~-j-i-2)

{{-_0 .§_=__l (-1} 2A(2i+l)A(2j+3)w

in loci on the juw -axis.
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3.2 Determining Gain Loci by Shifting Techniques

If the open loop transfer function in Eg. (3.1-1) is

given in a factored form as follows:

n
KI {s' + (y - z.)}
_ KP(s) _ i _
K G(s) = A0 = (3.1-7)
r 1 1 .
Tis' + (y - p;)}
where s = s' + v , and
z; are zeros and p; are poles,
then the phase angle loci equations are:
n
KI {+jo + (v - z;)} iy
K G(+juw) = o =eJ?% , s'">0 and
T {+jo + (v - Py} =0 (3.1-8)
n : .
. KI {=jw + (y - 2.)1} - .
K G(-juw) = = = = e*1¢ ; ' < 0 and
m{~jo +.(Y - Pj)} 5 = 0 (3.1-9)
Then the product of Eg. (3.1-8) and Eq. (3.1-9) is
n
5 K2 H{w2 + (y - zi)z}
K" G(+jw)G(-juw) = =1 (3.1-10)

?{mz + (y - P.)z}
i
Similarly, solution of Eq. (3.1-10) for a particular K ,
gives the points of the gain loci on the Jjuw -axis.
Therefore, shifting the Jjw -axis by <y and then, for
particular values of K , finding_the corresponding w for

each shift, the gain loci can be constructed on the s-plane.
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Example No. 3

Gain Loci
The phase angle loci transfer function, as given in

Example No. 1, is:

_ K (s + 10)
“ s(s + 3)(s + 6)

i .
K G(s) = ¢ J¢ (3.1-11)

Substituting (s' + y) for s , one finds the following:

_— Kf{s' + (y + 10)} LT '
K G(s') = G T T 5505 T ~ e for s' > 0
(3.1-12)
Yy = K{-s' + (y + 10)) S L :
Kesh) = e (ms w3 1 =s (o) ~ ¢~ for s’ <0
(3.1-13)
The product of Eg. (3.1-12) and Eg. (3.1-13) is
K% -s'? + (v + 1007 =1 (3.1-14)

2

(5" 2+y2) (-8 2 (v+3) “H =8 2+ (y+6) °)

Substituting ju for s' , the following result is obtained:

K2 {2+ (y+10) 2}
(w24v2) {02+ (v+3) %) {02+ (v+6) 2}

=1 (3.1-15)

Simplification of Eg. (3.1-15) gives:
k20?2 + (v + 10023 = ((w? + v+ (p o+ D2+ (v + 6) )=
N (3.1-16)

Solution of Eq. (3.1-16) .for a particular value of K gives

the points of the gain loci on the juw -axis for each shift y .
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Thus determining w for each shift ¢, the gain loci are

constructed on the s-plane.



CHAPTER IV
ILLUSTRATIVE EXAMPLES

4.1 Problem No. 1

4.1.1 Construction of Phase Angle Loci

The open loop transfer function is:

K G(s) = —2— (4.1-1)
and the phase angle loci is:
L (4.1-2)
where ¢ 1is a positive phase angle.
After shifting the j -axis by y , s is:
s =85+ v | (4.1-3)

‘where s = juw .

Substituting Eq. (4.1-3) in Eqg. (4.1-2), one obtains:

K

w Sin ¢ + (y + a) Cos ¢ (4.1-4)

o
Il

§ Cos ¢ — (y + a) Sin ¢ (4.1-5)

Then the Continued Fraction Expansion is applied as
follows:

(Sin /Cos )
w Cos ¢ - (y + a) Sin ¢ w Sin ¢ + (y + a) Cos ¢ - K

w Sin ¢ = (y + a) (Sin? &/Cos )

0 + (y+a)Cos 6 -K+(y+a) (Sin2¢/Cos ¢)



When

2
(y - a) Cos ¢ - K + §%%§"$ (v ~ a) =0 (4.1-6)

the Continual Fraction Expansion ends prematurely. Therefore
{y Cos ¢ - (y + a) Sin ¢} is a common factor of Eq. (4.1-4)

and Eg. (4.1-5). Thus one obtains:

K = i%sé—%l . 6 # (2n - 1)n/2 (4.1-7)
=S5in ¢ 4y 4y, 6 # (2n 4 1)n/2 (4.1-8)
Cos ¢ ! :

where n - 0,1,2,3, ...
For ¢ =1/2 , vy #a , K and g are infinite, for
¢$ =7/2, y =a, K and w are indefinite; but substituting

.ﬂ/2 for ¢ in Eq. (4.1-4) and Eg. (4.1-5), one obtains:
w = K
(y +a) =0

Therefore the phase angle loci is a vertical line at
(-a) for a .n/2 degree phase angle. The family of curves

of the phase angle loci is shown in Figure 3.

4,1.2 Construction of Gain Loci

After shifting the jw -axis by <y , the phase angle
loci equations for (jw) and (-jw) values of s are given

as follows:
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. B K b K - -
K G(jw) = o F (v Ay e , for s > 0 (4.1-9)

. _ K _ J¢ B
K G(-jw) TS T (v Ay - e , for s < 0 (4.1-10)

The product of Eq. (4.1-9) and Eqg. (4.1-10) is:

2
B ;=1 (4.1-11)
w + (y + a)
Equation (4.1-11) gives
w2+ (y + a)? = k2 (4.1-12)

Thus Eg. (4.1-12) gives a family of circles centered on

the real axis at (-a) as seen in Figure 3.

4,2 Problem No. 2

4,2.1 Construction of Phase Angle Loci

The open loop transfer function is

- K N T -
K G(s) I NS e (4.2-1)

In a polynomial form

K G(s) = — > = Cos ¢ - § Sin ¢ (4.2-2)
s + 8s” + 15s

3

After shifting the Jjw =-axis by «y , the phase angle

loci eguation is:



CH

n
N

BEE 20220 TO I

Loci of Problem # 1
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5 > = Cos ¢ - 3 Sin ¢ (4.2-3)
B s” + Bys® + B,s + B, ,
Where
B, =3 + 8y% 4+ 15y + 0
2
By = 3y° + 16y + 15
Bl=3y+8
B, = 1

From the real and imaginary part of Eq. (4.2-3), one

obtains the following equations:

w3BO Sin ¢ + szl Cos ¢ — wB, Sin ¢ ~ B, Cos ¢ + K =0 (4.2-4)

2 3

Sin ¢ - wB, Cos ¢ + B

1 2

m3BO‘Cos o - sz 3 Sin ¢ = 0 (4.2-5)

Applying the Continual Fraction Expansion procedure to
‘Eq. (4.2-4) and Eq. (4.2-5) after substituting a particular
value of the phase angle, the oscillatory conditions are
obtained.

The célculation fo curves for various phase angles are

given on the followingipages.
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Y B B, By

3 17 920 144

2 14 59 70

1 11 34 24

0 8 15 0
-1 5 2 -8
-2 2 -5 -6
-2.5 0. —6f25 -3.125
-3 -1 -6 0
-3.5 -2. -1.25 2.625
-4 -4 -1 4
-4.5 -5. -36.75 3.5
—5‘ -7 10 0
-6 -10 27 -18
-7 ‘ -13 50 -71
-8 -16 79 -120



Eg.

(4.

¢ = 90° (or phase angle is -90°)
Sin ¢ = 1
Cos ¢ =0

Substituting Sin ¢ and Cos ¢ in Eq.

2-5), one obtains

w3 - B2w + K =20

Applying the procedure, one obtains
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(4.2-4) and

2
2 B3 B3
K- =g~ By~ 57
1 1
w = 'Bligﬁ By - g_i)
1 1
K
v
0 0
1 1.5 47.6
2 2.2 122.6

3 2.9 238.
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¢ = 225° (or phase angle =-225°)
Cos ¢ = - 7;
~Sin ¢ = - T;
~0> - w%B, 4+ wB. +B.+ 2K =0
w wBy T wEy 3 =
- 4+ w Bl + sz - B3 = 0
| 2B+L _ 2B+L
where L = 2K
(2B3+L)
. “2B3 {B, + —pp—}
_ 1
w-—
' (2B3+L) 5
[2{B, + BT 17+ LBy
¢ = 135°
Sin¢'=72
Cos ¢ = - 7;
3 2
w - w B1 - sz + B3 + 2K =0
-w3 - sz + wB, + B, = 0

1 2 3
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2 3 2
L{[2BlB2 + (2B3 + I)1° - ZBl L} + 2B3{2BlBZ+(2B3 + L)} =0

where

(2B3+L)
~B4{B, + 28] }
©o= (2B, + L)
{2(B2 + 28] ) - BlL}
Root Locus:
¢ = 180° (or phase angle -180°)
Sin ¢ = 0
Cos ¢ = 01

Substituting Sin ¢ and Cos ¢ in Eq. (4;2—3) and

Eg. (4.2-4), one obtains:

Then the Stieltjes procedure gives:
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On the real axis:

3
= 0
Y W Y w
0 3.87 0 0
1 5.83
2 7.68 3 0
2 9.48 5 0
-1 1.41
$ = 270° (or phase angle -270°)
"Cos ¢ = 0
Sin ¢ = 01

Substituting Sin ¢ and Cos ¢ in Eg. (4.2-4) and

Egq. (4.2-5), one obtains:
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B
3 3
w = =/ (B - —~—-) = K
BlK 2 Bl
A possible solution is only for = -3. Therefore

the curve of the phase angle loci for -270 degrees is a vertical

line at (-3).

4.2.2 Construction of Gain Loci

After shifting the jw -axis by y , the phase angle

loci equations for jw and -ju are:

. _ K _ =3¢ _
K G(jw) = Got7) Fory+3) (5o F5) e  for s >0 (4.2-6)

K ~aJt -
(CIo=y) (SSaiy+3) (SSutyesy ~© , for s < 0 (4.2-7)

K G(-jw)

The product of Eg. (4.2-6) and Eg. (4.2-7) is:

K2 (
| A _ =1 4.2-8)
W2 + v w2 + (v + 3212 + (v + 5%}

Equation (4.2-8) gives a six degree polvnomial of w ,
and it has only even terms. Thus the construction of the
Gain Loci is reduced to finding the roots of this polynomial

for each shift.



Gain Loci From Eq. (4.2-1):
K = 100
Y w
2 +1.704
1 +2.880
0 +3.528
-1 t3.924
-2 +4.138
-3 t4.186
-4 +t4.066
-5 13.757
-6 +3.200
-7 £2.210
-7.5 *1.320
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= 24

Y w

0 10.129
-1 +1.397
-2 t2.064
-3 +2.184
-4 t2.210
-5 t1.720
-6 +0.795



K =
Y w
0.5 +0.063
0.3 +0.339
0. +0.523
-0.3 +0.533
-0.5 +0.491
-0.8 +0.43
-1. +0.0
-1.5 +0.189
-2 +0.706
-3 +1.098
-3.5 +1.074
-4, +0.971
-4.5 10.87
-5. +0.742
-5.5 +0.294

K =

Y w

0 t0.265
-0.3 +0.092
-2.5 $0.376
-3. %0.623
-3.5 %0.448
-4.5 +0.297
-5. 10.391
~5.3 i07124
+0.2 10,134

53
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4,3 Problem No. 3

s+ (y ¥+ 2){s + (v +1

Construction of Phase Angle Loci

The open loop transfer function is

K(s + 3) R £

KG(s) + 1Ty

(4.3-1)

After shifting by, the phase angle loci eguation is:

K{is + (y + 3)1}

7T = Cos ¢ - j Sin ¢ (4.3-2)

From the real imaginary part of Eq. (4.3-2), one

obtains the following:

w2Cos ¢ - w(2y=3) Sin ¢ - (y+1) (y+2) Cos ¢ + K(y+3) = 0  (4.3-3)

828in ¢ + {(2y+3)Cos 6 - K}-(y+1) (y+2) Sin ¢ = 0 (4.3-4)

Applying the Continued Fraction Expansion procedure to

"Eq. (4.3-3) and Eq. (4.3-4) after substituting a particular

value of the phase angle, the oscillatory conditions are

obtained.

¢ = 60° (or phase angle -60°)

w

2

2

- 1.74(2y + 3)o = (y + L) (y + 2) + 2RK(y + 3) = 0

w- 4+ {0.575(2y + 3) = 1.15K}w = (y + 1)(y + 2) = O

{2.31(2y + 3) = 1.15K}w = +2K(y + 3)

2K (y + 3)

© T T2.315(2y + 3) - 1.15K]
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Y K w
0 1.40 1.45
1 2.6 3.52
2 4.6 4,2
5 10.2 8.8

¢ = 90° (or phase angle -90°)
w' =K =y + L)y +2) =0
-w(2y + 3) + (y + 3)X =0

The Continued Fraction Expansion procedure gives:

A, = K
A3 = -(y + 1) (y + 2)
Bl = =(2y + 3)

B, = K(y + 3)



B,{A,B; = B,} - B12A3 = 0

w = (;AéBl— B.)
271 2

Y K w

0 0
-0.25 3.80
-0.50 1.94
~0.75 0.967

-1. 0

"Root Locus:

¢ =.180° (or phase angle -180°)

w2+ (y + 1)(y +2) -K( =-3) =0

- {(2y + 3) + K} v =0

K== (2y + 3)

Wl = (y £ 1)(y +2) - (2y + 3)(y + 3)

On the real axis:

‘v =0

K

- v+ 1Dy +2)/(y +3)
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-1.000 0
~1.586 0.172 0
-2, 0
-3. 0
-3.5 1.32
-2, 1. 1.
-2.5 1.32
-3. 3. 1.414
-4. 5. 1.
-4.,414 7. 0.00
0.00
¢ = 270° (or phase angle -270°)

w(2y + 3) + K(y - 3) =0

2

~w” = Ko + (y - 1)(y - 2) =0

' The Continued Fraction Expansion procedure gives:

2 _
+ A2) - B,LA = 0

A, (B 2By

121

3



W = B2Al
(BlAl + A2)
where

Al = (2v + 3) A2 = K(y + 3)
B, = - K ' B, = (v = ) (y - 2)

Y K w
-2 0
-2.3 0.788 . 345
-2.5 1.55 .388
-2.8
-2.8 4fl7 .33
-2.9 6.8 .244
_3.

4.3.2 Construction of Gain Loci
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After.shifting the ju —-axis by, the phase angle loci

equations for Jjw and -ju are:

K{jw + (y + 3)1} - e—j¢

KGOw = =D 5o 50} =

RK{-jw + (y + 3)1}
=Jut (yrD) J(~Jwt (y+2)

K G(~jw) = = e for

<

(4.3-5)

(4.3-6)
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The product of Eg. (4.3-5) and Eqg. (4L3—6)'gives:

k2102 + (v43)%) = {02 + (v+1)21{? + (v+2) %) (4.3-7)

K = 0.5 K=1.,0

Y w Y w
~0.8 0.105 ‘0.4 0.19
-0.9 0.76 0.2 0.74
-1 0.83 0 1
-1.3 0.815 -0.5 1.36
-1.5 0.77 -1. 1.414
-1.8 0.704 =1.5 1.32
-2 0.5 -2 1
-2.1 0.406 -2.1 0.89
-2.2 0.243 -2.2 0.74



K =
Y w
1.56 t0.
1. +1.565
0. +2.26
-0.5 2.4
-1. *2.39
-2. +2.
-2.4 +2.36
-2.5 *1.36
*0.

60



Gain and Phase Angle

Figure 4.
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CHAPTER V
CONCLUSION

The formulaé,derived for the phase angle loci oscillatory
condition in Chapter II, Section 2.2.1 and Section 2.2.2, and
for the gain loci in Chapter III, Section 3.1, give easy and
exact solutions for the Jjw -axis angular frequencies and gains
for the phase angle loci, and the jw -axis angular frequencies
for the gain loci. These formulas are easily applicable to a
digital computer. Thus the shifting technique with these
formulas provides an easy and exact way for constructing the

phase angle loci and the gain loci of a system.
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APPENDIX A

The Continued Fraction Expansion for 5 degree polynomials:

5 4 3 2

Fl(w) _ Dllw + Dlzw + Dl3w + Dl4w + D15w + Dl6 ~
. 5 4 3 2 -
Fz(w) Dzlw + D22w + D23w + D24w + D25w + D26
_ P . 1
Dy1 DPo1 Mgy 1
co e te i
31 %31 731 .6l 1 ~
Csp  Cgy  Cgy  Mgjws + Mgow + Mgq
oo wt y
71 C7lw + C72w + C73
M m2 - M w - M
The last fraction, 8,1 5 8,2 8,3 ;, provides the
lelw + C7’2w + C7’3

oscillatory condition for ¢ , (0,1,2,3, ...,) when it ends
prematurely.
For the phase angles ¢ the Continued Fraction Expansion

is carried on until the following fraction is obtained:

Fy () _ D11+ 1
Folw) Doy Dgy L1, 1
c..Y" ¢ C M
31 31 ©31 61 1
; cowteote M
51 51 “s1 . Me1, 1
C71 C71 €71 Myg,1  Cg10tCy,
c et —t—¢
91 91 11,1
. Cg 19 = Cg 2
The last fraction, ,C '~ , provides the oscillatory
11,1

conditions for the phase angle loci for ¢ when it ends

prematurely.
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5

+ /D

©

w

4

+ D

23“.

+

‘D

Q2"

w

2

+ D25

P11
D1
. N 4 —~ 3 y z z
w+D/-\, (D \;‘*’ + Disw +/Diysw + Di,w J_+"D/\,U)+D
NG NG 1z 3 14 NS 16
. D.. o DaL . A D, . D D
11 4 11 : 11 2 11
D..w% D 0 4+ Do, =in 4 Do, === 0 + D + D, ===
11 22 D, 23 B,y 24 D, 25 5, © 26D
D I, I . D D
11, 4 1 b11, 3 11, 2 11 11
(D, =D, ===)uw +(D;,_ 45 o2 0P+ (D, oD, , == 0+ (Dy =D, ===) wh (D =D, ===)
127722 B, 13-D,, B BT 147724 B, 157725 B, 16726 Dy
Py .
D3y
DleS + '62\2"“ + D23w3 +"‘E/);4\w2 + Dygu [+ +6;\,
2 26
D, - D D D..
5 21 4 21 3 211212 21
D..w 4D, . === % + D.., =220 4D W 2w
21 32 By, 33 By, 34 D 35 Dy -
f
D 1., D D
21, 4 4121, 3 21, 2 21
(D D,y =—)w + (D - D —<2)w” + D D —=)uw” + (D - D =“=)w + D
22 32 By 23 33 D] 0. 24 34 Dy, 25 35 Dy 26

66
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P31
SR 2,5 (IS 3 4 A2 o
+(33?w + Dyjw -+\Eé;w'+ Dy Qﬂg”) + My L0 +K§f9w + M44w +(§é§
M M n 1 M
41 3 41 2 41 41 41
41 32 D5 33 D] 34 By 31 PPy
M M M M M
41, 3 41, My 2 41 41
(M,, = Daoy =)~ + (M,, = Do, =) =) 0" + My, = Dy, ==)w + (M,o - D, =—)
42 32 Dy 43 33 By, Oy 44 34 D3 45 35 D
!
P31 |
|
€51 |
3 /802 . 4 A0,3 2 | <
+{Ccouw” + Cggu +-€§;Q Dyqw +-Qi§%w + Dyj0 + 6;bw + Dy ;
D D D
4 31 3 31 2 ~31
D,uw +C w + C w + C - W
31 52 Tgy 53 Cq; 54 Cq,
D D ' D D
31, 3 31, 2 31 : 31
(D Cop ==)w” + (Day = Crn =™ + (Dy|Day = Coy ==)uw + (Dyr = Cp, =om)
32 52 Cg 33 53 Cq; 37347 Y54 T 35 54 C.1




68

Me1
Cs1
C S HE DN +c +C/~W TN + Moo MDDy + M
519053+ * 0530 sg) | (leg™™ * Meze” T (g ¥ Mo
M w3+c IV————161(;,2+C I\————q(’lmc M—-—6l -
61 52 C51 53 C51 54 C51
M M M
61, 2 61 61
(M -C '—-—) w +(M -C —-—) w+(M -C A '—‘*—')
62 52 C51 63 753 C51 64 54 CSl
Cs1 )
€1
2,47 3, AN\ 2
C7lw +€7/2m+c73 CSlw + @m + C53w + @
C C
3 51 2 . 51
C.-w + C w + C W
51 72 C71 73 C.”_
C C
51, 2 51
(C C =" + (C C )y + C
52 72 C71 53 73 C71 54
Mgy
1
2 AN W
719 +E7/2,w + C73 @w + M82w + @
C C
2 81 81
Coyw + C -— w + C -
81 72 C7l 73 C7l
M M
81 81
(M C ——)w + (M c —)
82 72 C7l 83 73 C7l



71
Co1
Co.w + C Cow? 4 Conw + C
91" 92 71" 72Y 73
: C
2 71
C,ow + C W
71 92 Ty
c
71
(C - C —}w + C
72 92 Ty
M10,1
Co1
Cg1@ * Cop | Myg,1@ * Mip 2
.
10,1
M w + C L
10,1 92 "Cg
M.
_ 10,1
- M3y 5 = Cop w0

91



APPENDIX B

The Continued Fraction Expansion for a 4 degree polynomial

is:
4 3 2
Fl(w) _ Dllw + Dlzw + D13w + Dl4w + D15
- 4 3 - 2
F2(w) D21w + D22w -+ D23w + D24w + D25
- P11 1
N PO >
21 21 o 4+ 41 + 1
o 7
€31 €31 €31 Mgpue + Mgou + Mgq
. wt 2
51 Cslw + C52w + C53
M w2 + M + M
. 61 62" 63 :
The last fraction, 5 -, provides the
Cslw + C52w + C53
oscillatory condition for ¢ = vr , (v = 0,1,2 ...) when it

ends prematurely.
For the phase angle ¢ # vm , the Continued Fraction

Expansion is carried on until the following fraction is

o

obtainedi
Fqp(w) _Pna . 1
CFyle)  Dyy " Doy L, 1
c..Y"¢ C M
31 31 31, el 1
Cs1  Cs1  Cs1 Mgy Cyyu + Coy
coete* C
71 71 91
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For ¢ = vm , (v =20,1,2,3, ...)¢

Dy3 = Dyg = Dyy = Dyy =0

When Mg, is zero, the Continued Fraction Expansion ends

prematurely and gives the following results:

$ = vm , (v + 0,1,2,3, ...)

For ¢ # e
When Coq is zero, the Continued Fraction Expansion ends

prematurely and gives the following results:

o #£ vr , (v =0,1,2,3, ...)
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C3pu

o

.’-\ 2
*(C3p0" * C330 * Cyy

H)

4 N 3
D21w +Qz

23

4+ D w2 + D;)w + D25

23 5.0}

+C

33 C3y°

Ow—l—D

D
21+

C34

Caq

21
3L

_ Do1
©32 C31

=) w

3

* Dy - C

33

D,

c

3

1, 2

Ju™ + (D
1

t Cys

M
—é—%—w+C

€31

34

M41
C31

Myy -

Myq
C
32 ¢y

—)w

2

+ (M4

M

3 - C33 &

41
31

—)w + (n44

D D D D
11 3 11 2 11 11
+ D b+ Doy === w° 4+ Do | === w4 Do
22 Dy, 23 Doy 241 Dyy 725Dy
D D Dy,
11, 3 11.] 2
Yu + (D —=)" + (D - D )w‘l"(D
22 B, 23 B, 14 24 D21 15
2
4 D23w + DD(» + D25
D D

= o b egy gt €34 c21

1 31 31

D D D,

21, 3 21, 2 Doz
L—)w~ + (D - C Yu© + (D - C Ywt D
C 31 23 33 T3, 4~ %34 T3 25
-

+Qié;w + M

L 2 Mgy Mgz

- w + C w +
I 33 Ty, C34 T3

h M M

1 Mg1 41

—)w” + M —37) y + (I - C ===

1 C33 C31 34 T3

|

72
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C31w
Cs1
2 3 2
Cslw +4\S-5/2w+c_53 C3lm +@w +C330)+C31D
' c C.
31 2 31
C,,w +C w 4+ C w
31 52 T 53 Ty,
Cyp & c,
(c c_. 31y, #(Cyqy = C 2L, ¢ c
32 52 Gy 53 c5l
Ye1
Cgq
2 )2
CSlw +@w+c53 MGl +M2w +U
M M
2 61 61
M, .w +C w + C e
61 52 C.; 53 T,
M M
61 61
M., = Cory === + (M_, = Coqy =)
62 52 T, 63 53 T,
Cs1 .
Cn
C,sw + C C w2+C w + C
71 72 51 52 53
2 Csy
C_.,w tC W
51 72 T )
C
51
(Cgy = Cqp gdw + Cqy
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0,1,2,3,

81
€71
C7lw + C72 Mglm + M82
M
81
My w + C —
81 72 C71
M
82
(M Cqyp =)
82 72 C71
When C9l is forced to be zero, one obtzins
Cogpow + Cuyy = 0 for a premature ending.
Thus:
__S9,2
©ETC
7,1
C9l = 0
for ¢ # vm (v = 0,1,2,3, ...)
For ¢ = vr (Root Locus)
D2 = Dygq = DPy3 = D33 = D15 =0
Then Mo is forced to be zero, for expansion to end
prematurely. Thus:
CSlw + C53 = 0
¢ = v (v =
> M = 0
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