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Abstract

The frequency content of a seismogram varies with time and amplitude response to
thickness and porosity in frequency domain more than in time domain, hence analysis of
a time domain signal in the frequency domain shows features that are not visible on the
time domain sections. The following spectral decomposition techniques: Constrained
Least Square Spectral Analysis (CLSSA), Discrete Fourier Transform (DFT), and
Continuous Wavelet Transform (CWT), were applied on the field data from West Waha
and Worsham Bayer fields. All the techniques illuminate the reservoirs and also identify
low frequency shadows beneath the reservoirs at low frequency. This validates that the
recently developed CLSSA is a good direct hydrocarbon detection technique.

The application of these techniques on a horizon across a channel feature on the Stratton
field dataset and comparison of the results reveal CLSSA is best for subtle structure
delineation. CLSSA reveals the lateral extent of the channel branches more than DFT and
CWT.

Application of these techniques on synthetic traces also reveals that CLSSA better
separate events that are closely spaced without producing side lobe effects and notches as
seen on the Discrete Fourier Transform (DFT). Continuous Wavelet Transform could not

separate the events in time at low frequency.
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Chapter One

1.0 Introduction

This research is aimed at using different spectral decomposition techniques as
hydrocarbon indicators and also comparing the techniques in terms of temporal and
frequency resolution. The aim of the reservoir geophysicist in exploration and production
is to detect hydrocarbon, but one of the major limiting factors faced by an interpreter is
detecting thin reservoirs, especially reservoirs below seismic resolution. Chopra et al.
(2006) stated that the vertical seismic resolution is the ability to distinguish two or more
separate events or reflections in both time and depth domain. Widess (1973) used
reflective properties to define thin beds as the bed with thickness less than 1/8" of its
wavelength. Interpreters are overwhelmed by the problem of resolution limits as thin
beds with appreciable commercial hydrocarbons are left undetected. Spectral
decomposition is a novel method which helps in addressing the problem of seismic
resolution limit and reduce the risk involve in drilling dry well.

Partyka et al. (1999) developed spectral decomposition, a technique aimed at enhancing
seismic resolution and aid interpretation of thin beds because the concept is based on the
fact that thin bed reflectivity has a unique response in the frequency domain. Spectral
decomposition was used for layer thickness determination (Partyka et al., 1999),
Stratigraphic visualization and reservoir delineation (Marfurt and Kirlin, 2001). Castagna
et al. (2003), Burnett et al. (2003), Fahmy et al. (2005), Sinha et al. (2005), Yandong et

al. (2011), have all used spectral decomposition as direct hydrocarbon detection



technique in complex hydrocarbon plays.

Spectral decomposition principle assumes that the frequency content of a seismic signal
varies with time. This implies that at different times, the frequency content of a
seismogram is non-uniform. Thus the transformation of a signal from a time domain into
a frequency domain and the analysis of the amplitude and phase spectra at each frequency
enable temporal bed thickness delineation and lateral geologic discontinuities associated

with each frequency (Partyka, 1999).
1.1 Geologic Setting of the Study Area.

The West Waha and Worsham-Bayer fields (West Texas) form a part of the Delaware
Basin which is a sub basin of the larger Permian Basin (Keran and Holtz, 1992).

The field is principally a natural gas producing field with four gas producing units. The
Ellenburger Formation contains the major producing units, while the Silurian Fusselman
unit and Devonian Thirtyone unit and Mississippian limestone are minor gas producing

strata (Kerans et al. 1990). Figure 1.1 shows the map of the study area.
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Figure 1.1: Location map of the study area. (Hardage and Hentz, 1998)

During the Paleozoic era, the stable West Texas was flooded resulting in deposition of
limestone and shale. During the late Paleozoic Era, the collision of the European and
African plates with North and South American plates resulted in sedimentary filling of
the Ouachita Trough. Convergence of the North and South American plates resulted in
faulted mountain uplifts of the Ouachita Mountains and basin filled by shallow inland sea
of the West Texas (Keran and Holtz, 1992).

Cambrian rifting along southern North America margin formed broad shallow water in
southern West Texas during the Ordovician. The carbonate Ellenburger sediments
transgress over the basement to a thickness of 518 m. The karsting of the Ellenburger
Group in middle Ordovician led to deposition of sandstones and shales of the Simpson

Group (T.E Ewing, 1991). This was followed by the deposition of carbonate and
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siliciclastic rocks that constitute the Montaya and Fusselman Formations, Wristen Group,
and Thirtyone Formation. Woodford Formation, a shale unit and the major hydrocarbon
source rock in West Texas was formed during the Late Devonian and Early Mississippian
period (Lucia, F.J., 1995).

Regional tectonic deformation of the Ouachita Mountain building resulted in structural
deformation in West Texas. West Texas was divided into the Delaware and Midland
Basin due to uplift of the Central Basin Platform. This uplift resulted in thrust faulting,
structural rotation, and strike- slip deformation in West Waha and Worsham-Bayer field.
These structures serve as hydrocarbon traps for Ordovician through Mississippian
reservoirs (Loucks and Anderson, 1985). Figure 1.2 shows the stratigraphy column of the

Permian Basin in West Texas.
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Figure 1.2: Stratigraphic of Cambrian through Pennsylvanian rocks in the
Delaware basin (S.C Ruppel 1995).

1.1.1 Reservoir Geology of Ellenburger Group.

The Early Ordovician Group of western Texas consists mainly of dolomitized marine
carbonate rock, with average thickness of 457 m around West Waha. The Middle
Ordovician was marked by regional karsted weathering and erosion, forming the
karstified part of the Ellenburger Group. (Kerans, 1990). The reservoir quality of the
Ellenburger Formation is as a result of tectonic fracturing, brecciation, and karstification.
Reservoirs of karstified Ellenburger Group low and varies from (2-7%) and moderate
permeability that varies from (2-750mD).The Dolomitized Ellenburger has higher

porosity of (2-14%) but its permeability is lower (1-44mD) than
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karstified reservoirs (Loucks and Handford, 1992).

The Ellenburger Group of West Texas was divided based on reservoir quality into three
units: (1) Karstified dolostone reservoir, (2) ramp carbonate, and (3) tectonically
fractured dolostone based on reservoir quality (Holtz and Kerans, 1992). The karstified
Ellenburger reservoir is located in the inner part of the platform where karstification
plays an important role in the reservoir quality. This unit is located in the Central Basin
Platform and Midland Basin of West Texas (Hardage and Hentz, 1998). The karstified
Ellenburger has produced the largest amount of hydrocarbon in the Ellenburger Group,
accounting for 37 percent of total production in the Ellenburger Group (Jones, 1953). The
reservoir quality of the Kkarstified Ellenburger unit is controlled by brecciation and
karsting during the Middle Ordovician. Waters responsible for Kkarstification were
introduced through faults, fractures, and joints into the formation. Structural traps are
faulted anticlines, and anticlines (Holtz and Kerans, 1992). Figure 1.3 shows the three

major Ellenberger reservoir types in the study area.
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Figure 1.3: Three major Ellenberger reservoir types in West Texas.
(Holtz and Kerans, 1992).

The ramp carbonates Ellenburger unit is located in the southern Midland Basin and
Eastern Shelf. It account for 4% of the oil and gas produced from the Ellenburger Group
and contains 5% of the remaining oil and gas in place. The reservoir quality is as a result
of the diagenesis history of the reservoir. Dolomitized packstone and limestone led to
intercrystalline pore space and permeability (Holtz and Kerans, 1992). The structural
controls of reservoir development are anticlines and faulted anticlines, while the seal is
the overlying limestone (Ewing, T. E., 1991). These reservoirs are located in the
Delaware and Val Verde Basins in West Texas. The porosity is 2-14 percent and with
average permeability of 12mD (Levey et al. 1994).

The tectonically fractured Ellenburger reservoir forms the third unit within the
Ellenberger Group in the West Waha and Worsham-Bayer fields. The reservoir quality

resulted from tectonic fractures (Kupecz et al., 1991). This unit contains most



hydrocarbons accumulated in the Ellenberger Group. The fracture porosity and low
permeability of this reservoir led to high gas mobility relative to oil, this being the reason
for the production of no associated gas in the reservoir. The study area is adjacent to the
Ouachita orogeny belt which resulted in complex structures within the area (Ewing,

1991).
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Figure 1.4: Schematic cross section of the Ellenberger facies assemblage over the
crystalline basement (Hardage and Hentz, 1998).

1.1.2 Reservoir Geology of the Fusselman Formation

The Fusselman Formation is a member of the Silurian stratigraphic section in West
Texas; it is composed of limestone and dolomites. It is overlain by the Silurian Wristen
Group and underlain by the Ordovician Montoya Group (Ruppel and Holtz, 1994). The
northern West Texas part of Fusselman is dolomitize and they are limestone in the region
of West Waha and Worsham-Bayer fields. The Fusselman was described as a shallow-
water carbonate facies containing porous and permeable basal ooids overlain by fenestral
mudstones and underlain by thick pelmatozoan grainstone and packstone containing spar
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and voids interpreted has leaching events (Ruppel and Holtz, 1994). The Fusselman
reservoirs have been categories in the Shallow-Platform Carbonate play and have

produced oil from over 300 reservoirs in West Texas (Holtz et al., 1997).
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Figure 1.5: The distribution of the dolostone and limestone of the Fusselman group
(Ruppel and Holtz, 1994).

1.1.3 Reservoir Geology of Thirtyone Formation.

The Thirtyone Formation belongs to the Devonian stratigraphic section around the West
Texas and Worsham Bayer fields. It is underlain by the Wristen Group and overlain by
the Woodford Formation (shale) which serves as the source rocks to the reservoirs in the
Delaware Basin (Jones, T.S., 1953). The Thirtyone Formation is a hydrocarbon reservoir
of limestones, dolomites and cherts. The reservoir quality is controlled by vuggy,
intercrystalline, and fracture porosity. The deposition history, as described by Ruppel and
Holtz (1994), has basin siliceous sediments due to transgression by prograding and
aggrading carbonate sediments into a shallow water ramp. As shown in figure 1.6. The

9



cherts were deposited as a result of pelagic sedimentation and turbidite flow in the down
slope direction. The composition of the Thirtyone Formation is more siliceous towards
the base and relatively carbonate upward. Ruppel and Holtz (1994), classified the
formation into the following facies: dark color chert/carbonate laminite, thick bedded
laminate chert, burrowed chert, and skeletal packstone. The Thirtyone Formation is
divided into two oil productive plays which are the ramp carbonate play and the deep
water chert play. The Thirtyone Formation in the West Waha and Worsham-Bayer fields
is predominantly a gas reservoir. The reservoir quality is controlled by conversion of
silica phases from metastable to stable silica during deposition and compaction (Ewing,

1991).
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Figure 1.6: Facies distribution of Thirtyone Formation during deposition in West
Texas (Ruppel and Holtz, 1994).
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1.2 Data Set

The field data are owned by Gas Research Institute (GRI) and US Department of Energy
(DOE). The data set consist of 3D time migrated stacked sections, 11 well logs and
production data of the West Waha Worsham Bayer Fields, Delaware Basin, West Texas.

Figure 1.7 shows the location of the wells within the seismic section.
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Figure 1.7: Location of the wells within the seismic section (Hardage and Hentz, 1998).

1.2.1 Borehole Data

The borehole data consist of 11 well logs, a checkshot survey, and directional wells. All
well logs include gamma ray, sonic, neutron, or density logs, and electrical (resistivity or
induction), caliper, and SP logs. Figure 1.8 is a well log of the study area containing sonic

and gamma ray logs.
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Figure 1.8: Well log of the study area with identified reservoirs

1.2.2 3D Seismic Data

The seismic data is approximately 51.8 km® Three-Dimensional post stacked migrated
data set. It has 261 inlines (720-980) and 201 crosslines (460-660), sampling rate of 4ms
and the time range is 0 — 4s with average amplitude of 3.61. The stacking bins are 33.5 m.
The line number byte position is 9 to 12 and the trace number byte position is 21 to 24.

The seismic section is shown in 3D view in figure 1.9 with time slice at 2s.

12
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Figure 1.9: 3D view of the seismic section and a time slice at 2s.

1.3 Research Workflow
1.3.1 Well Log Preparation

The well logs were quality checked to note if logs for lithology and fluid identification
are in place for each well, where they are not, density logs were generated by inversion
using the Gardener’s equation and carefully estimating P-wave velocity from sonic logs.
Also, pseudo sonic logs were generated using the Han’s transform. These steps are
necessary because density and sonic logs are used to compute impedance log and
reflection coefficient, which are convolved with wavelet to generate synthetic

seismogram.
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1.3.2 3D Seismic Analysis

The 3D seismic data were quality checked by eye to catch reflections with traps, closures,
and structures such as bright spot, flat spot, faults, etc. The seismic and well logs are then
correlated, and time to depth conversion was done. This was followed by identifying
lithology/reflections of interest on the vertical seismic section and horizons of interest
were picked. The seismic section was then cropped into sub cubes of interest to speedup
computation rate of spectral decomposition and to minimize extraneous data that have no

significance to the study.
1.3.3 Attribute Analysis

This process involves generating attribute maps for the picked horizons to emphasize
features of interest. These features of interest may include localized amplitude anomalies
associated with variation in geology.

1.3.4 Spectral Decomposition and Interpretation

This involves decomposing the broadband seismic into its constituent frequencies. It is a
time frequency transformation that transforms time domain seismic data into the
frequency domain. The techniques used in this transformation include: Continuous
Wavelet Transform (CWT), Discrete Fourier Transform (DFT), and Constrained Least
Squares Spectral Analysis (CLSSA). Using these techniques, frequency volumes that
correspond with discrete energy in the seismic band were generated with the same
sampling rate as the original broadband seismic. A total of one hundred and twenty-five

(125) frequency volumes corresponding to the frequency bandwidth of the original

14



seismic data were generated. This was followed by analyzing each frequency volume for
amplitude anomalies that are associated with the gas-bearing formations.

The amplitude spectrum from these various techniques were computed for a single
seismic trace, and then for a seismic horizon and the results compared with one another to
access effectiveness of each technique. Figure 1.10 shows the workflow of the research

work.

¥ (Create pseudo sonic and density logs where

. . necessary
[ Well logs Preparation ’_’ ¥ Identify lithology of interest
v" Load checkshot into well logs

¥" Quality checks reflectors and structures on
vertical seismic section.

Create synthetic seismogram
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Map lithology of interest using the correlated
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decomposition techniques used
v" Create frequency gathers

Figure 1.10: Shows the workflow of the research work.
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Chapter Two

2.0 Data Interpretation

2.1 Well Log Interpretation

Well log interpretation is important to properly analyze the diagnostic features of rocks

and fluid properties in the reservoir. Several well log data were available for the study

area, but only two wells (Well 37 and Well 46) were utilized in this research (figure 2.1).

Both wells were supplied with a suite of log data that include: gamma ray, resistivity,

density, and sonic logs. The logs are displayed below in figure 2.1 with the reservoirs

identified and correlated on both well logs.
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Figure 2.1: (a) Well 37 with the various formation identified

the corresponding lithology identified.

b) Well 46 with
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2.2 Gamma Ray Log

Gamma ray logs measure the radioactive content of formation. Shale formations have
high radioactive content, explaining the high gamma ray reading observed in shales.
Shale-free formations such as sandstones and carbonates have low radioactive contents,
and thus have low gamma ray readings. Exceptions to this are sandstones containing
potassium feldspars, micas, and glauconite (Asquith, 1982).

The study area is a carbonate environment without feldspars and micas. The Woodford
shale unit has high gamma ray reading as seen on Well 37 (figure 2.1a) around 2050 ms -
2100 ms, representing the source rock in this field. The same formation (Woodford
Formation) is seen on Well 46 (figure 2.1b) with high gamma ray reading at 1800 ms —
1870 ms. The Mississippian limestone (gas reservoir) on Well 37 is shown to have a low
gamma ray reading at 2000 ms -2050 ms. This corresponds to the low gamma ray reading
at 1760 ms — 1810 ms on Well 46. The limestone and dolomitic Thirtyone Formation is
indicated by low gamma ray reading at 2100 ms — 2170 ms on Well 37, which
corresponds to low gamma ray reading on Well 46 at 1870 ms -1940 ms. The Fusselman
Formation and Ellenburger Group are also represented by low gamma reading on Well 37

and Well 46 as shown in figure 2.1.
2.3 Sonic Log
The sonic log measures the interval transit time (Atin gs/ ft) of a compressional sound

wave travelling through one foot of formation. The transit time is dependent upon both
lithology and porosity (Asquith, 1982). Well 37 shows the Mississippian limestone with
compressional wave velocity of 4900 m/s and Well 46 shows that the Mississippian

17



limestone has a velocity of 5400 m/s. The underlying Woodford shale has a velocity of
3500 m/s on Well 46 and Well 37. The Thirtyone Formation (dolomite and limestone)
has a velocity of 5500 m/s on Well 37 and velocity of approximately 6000 m/s on Well

46 typical of limestone reservoirs.
2.4 Resistivity Log

Resistivity is an electrical property of materials that describes the ability to resist the flow
of electric current. It is the inverse of conductivity. Brine-saturated rocks are conductive
and have low resistivity because they contain free ions that support the flow of current.
The short normal and the induction logs are the electrical type logs available for this
research on Well 37 (figure 2.1a). All the reservoirs have high resistivity values when
compared with the Woodford shale with low resistivity of approximately 150 ohm/m on
the deep induction log. The Mississippian limestone has an average of 240 ohm/m on the
deep induction log. Thirtyone Formation has about 720 ohm/m and the Fusselman
Formation has 480 ohm/m-720 ohm/m as compared with the overlying shale formation
with less than 100 ohm/m. The high resistivity values in the reservoirs indicate the
presence of hydrocarbon.

2.5 Seismic to Well Correlation

Seismic to well correlation is the measure of similarity between pair of traces (Asquith,
1982). This process involves generating synthetic seismogram from the drift corrected
sonic and density logs and comparing it with a composite seismic traces extracted around
the well location on the seismic section. Drift correction is applied to the sonic log to

shift the seismic to a reference datum and also to correct for dispersion effects arising
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from high frequency contents of sonic logs. Drift correction is important because of the

following reasons:

1.

2.

The first layer velocity is often unknown.

Seismic data may have time stretch due to frequency dependent absorption and
short period multiples (Asquith, 1992).

There are greater dispersion and absorption on surface seismic as compared to

sonic log.

Creating Synthetic Seismogram

Generating synthetic seismogram is an important aspect of correlation. The following

steps are essential in generating synthetic seismogram:

1.

2.

Drift correction on sonic log.

Calculate acoustic impedance (Z) : Z = ¢v from the density and sonic logs.

Calculate reflection coefficient (R) between successive pair of acoustic
impedance to generate a reflectivity series.

R = Zz_z1
Z,+7Z,

Convolve the reflectivity series with the desired wavelet (S(t) =W (t)*r(t))

Where S(t)is the seismogram, W (t) is the wavelet, * is the convolution operator

and r(t) is the reflectivity series.

This research involves generating synthetic seismogram by convolving the reflectivity

series

with wavelet extracted from the wells and seismic for correlation as shown in

figures 2.3. The well to seismic correlation coefficient for this well is 0.69 shown in red
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circle. The Mississippian Formation location is highlighted with the black circle and the
Fusselman Formation is in yellow circle. The wavelet extracted from the Well 37 and

Well 46 are shown in figure 2.2.

a) Well 37 Wavelet b) Well 46 Wavelet
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Figure 2.2: (a) Wavelet extracted from the seismic at Well 37 location (b) Wavelet extracted
fromwell 46(c) Frequency spectrum of the wavelet extracted from Well 37 (d) Frequency

spectrum of wavelet extracted from Well 46.
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of the Mississippian Limestone and yellow circle is the position of the Thirtyone formation

2.6 Horizon Interpretation

Gao (2007) described horizon interpretation as “an interpretational concept that separates
different geological units such as: water from shallow sediments, sedimentary rock from salt
diapirs or Tertiary clastic from Mesozoic carbonates”. This research is focused on picking

horizons at the top of the reservoir and through the low frequency shadow at low and high
21



frequencies to analyze the changes in amplitude at each frequency. Horizon slices through
the 25Hz and 65Hz DFT volumes corresponding to the top of the reservoir and the low

frequency shadow are shown in figure 2.4.

(a)

Figure 2.4(a) Amplitude extraction on DFT 25Hz at 20ms above the reservoir.

(b) Amplitude extraction on DFT 25Hz through the low frequency shadow.

(c) Amplitude extraction on DFT 65Hz at 20ms above the reservoir. (d) Amplitude
[map of DFT 65 through the low frequency shadow.

Also, horizon picks along a channel were done to investigate the power of the techniques for

structures delineation. Figure 2.5 show the seismic section with black arrow pointing to the

22



channel and picked horizon is indicated by yellow line. The Root Mean Square (RMS)

amplitude of the horizon is shown in figure 2.6 with the black arrows pointing to the channel.
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Figure 2.5: Seismic section showing the picked horizon (yellow) and the black arrow
pointing at the channel.
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Chapter 3
3.0 Methodology

3.1 Spectral Decomposition

Partyka et al. (1997) introduced the concept of spectral decomposition as a post-
processing method for quantifying and visualizing subtle seismic tuning effects. It is
defined as a seismic analysis technique that decomposes seismic data into time-frequency
domain which makes it possible to extract useful information such as layer thickness
(Partyka et al., 1999), direct hydrocarbon detection (Castagna et al., 2003, Wei et al.,
2011), or stratigraphic interpretation (Marfurt et al., 2001). This is possible because
subtle features not visible on time domain seismic data can be emphasized on frequency
domain sections. Localization of events such as reflections, noise, and surface waves are
also possible in the frequency domain, thus making separation and elimination of
undesired events possible (Okaya et al., 1995).

The Short Time Window Fourier Transform (STFT) of spectral decomposition, unlike
traditional Fourier Transform, assumes variable statistic for the seismic signal which
allows the extraction of frequency content unique to all the time samples. The geology of
the signal becomes less random. Analyzing the amplitude and phase spectra of the
frequency volume expresses the temporal frequency distribution of the signal (Partyka et
al., 1999). This is because a reflectivity series, when convolved with a source wavelet in
the presence of noise for a long analyzing window approximate the wavelet spectrum
(figure 3.1). That is, it sums up the effects of the individual thin beds within the

window, flattening the amplitude spectrum (Partyka et al., 1997). A short window does
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not approximate the effect of the thin beds and its response is determined by the acoustic
properties, thickness of the layers within the window, and the geology. Hence the
resulting amplitude spectrum represents the interference pattern of the window as shown
in figure 3.2.

Spectral decomposition is useful in delineating subtle features and thin beds because thin
bed reflectivity has a characteristic response in the frequency domain (Castagna et al.,
2003). The output of spectral decomposition is a series of amplitude and phase spectra
tuned to specific frequencies. The amplitude spectrum is essential in estimating bed
thickness in time domain while the phase spectrum is wused to define
geologic/stratigraphic discontinuities (Partyka et al., 1999). Time-frequency analysis of a
seismogram can be achieved in many ways, some of the methods include: The Fourier-
based methods (Short Time Fourier Transform, Fast Fourier Transform), the wavelet-
based methods (Continuous Wavelet Transform and Discrete Wavelet Transform) and
those that depend on wavelet dictionary selection (Matching Pursuit Decomposition). The
STFT is a Fourier-based method for time-frequency analysis of a seismogram. It
transforms a 1D signal in time into a 2D time-frequency representation by taking a
continuous fixed short time window along the time axis (Okaya et al., 1995).

Mathematically, it can be represented as:

F(z, W) = fw f()g(t—r7)¢ ™dt 0

where 9(t)is the window function, f (t)is the seismogram to be transformed, (7" s the

Fourier kernel
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STFT can also be performed on frequency domain by sampling along the frequency axis
with fixed bandwidth band-pass filter (Okaya et al. 1995). The major pit fall of the STFT
is the fixed resolution problem due to the fixed predetermined analyzing window length.
A wide window gives better frequency resolution and poor time resolution and a short
window gives good time resolution and poor frequency resolution (Castagna et al., 2003).
When the window length is too short, smearing of energy across bandwidth is observed
on the STFT spectrum beyond the band of the original seismic data. If the window length
is too long, interference is observed between non isolated reflections within the window,
degrading the time resolution (Castagna et al., 2003). The wavelet analysis method was
introduced to improve the resolution problem of the STFT. Continuous Wavelet
Transform and Discrete Wavelet Transform are based on the superposition principle that
states that the frequency spectrum of a seismogram is the sum of the constituent
frequency spectra of the wavelet that sum up to produce the seismogram (Castagna et al.,
2003). CWT scales and translates the basis wavelet by applying bandpass filter to
produce series of wavelets, which are convolved with the seismogram to yield time-
frequency panels. Discrete Wavelet Transform (DWT) decomposes a function by
applying a band-pass filter to the original signal at different bandwidths, unlike CWT, the
DWT uses quadrature mirror filters to decompose a seismogram. Both CWT and DWT
have resolution limitations at intermediate frequencies. Matching Pursuit Decomposition
(MPD) is another time-frequency analysis method that has good intermediate to high
frequency resolution. This method of signal decomposition requires selection of wavelet

from a suite of wavelet dictionary. It scales, translates, and modulates a single window
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function to produce a set of basis functions (Okaya et al., 1995). MPD introduces artifacts
into the time-frequency analysis over wide frequency band or long time interval

(Castagna et al., 2003).
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3.2 Spectral Decomposition as Hydrocarbon Indicator

Castagna et al. (2003) described the use of spectral decomposition as hydrocarbon
detection technique. They analyzed the frequency response of amplitude variation caused
by variation in fluid properties, thickness, and porosity. The frequency response also aids
in the interpretation of the reservoir geomorphology and structural complexity. Castagna
et al. (2003) identified three unique spectral responses associated with hydrocarbon
bearing zones. These responses are:

Q) Abnormal seismic attenuation in thick reservoirs.

(i) Low frequency shadows beneath the reservoir.

(iii)  Differences between tuning frequency of gas sands and brine sands.

3.3 Low Frequency Shadow

The concept of low frequency shadow beneath gas charged reservoirs is an old and
familiar concept,( e.g Taner and Sheriff, 1979, Castagna et al., 2003), but the cause of
this phenomenon is not clearly understood. Different authors have attempted to explain
the precise cause of the low frequency shadow beneath gas reservoirs. In a reservoir with
energy absorbing fluid and sufficient thickness, it might be reasonable to conclude that
the low frequency shadows beneath the reservoirs are due to attenuation. But in thin
reservoirs where there is no enough travel paths for the seismic waves, one cannot
conclude that low frequency beneath the reservoir is due to seismic energy attenuation
(Castagna et al., 2009).

Dan Ebrom (2006) described the likely causes of low frequency shadow. He classified

these causes into two categories which are, stack-related effects and non-stack -related
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effects. Stack- related effects reduce the apparent frequency by selectively suppressing
higher frequencies. Non-stack related effects could be due to intrinsic attenuation,
multiple reflections from the top and bottom of a gas reservoir. Attenuation is like a low
pass filter, it suppresses higher frequencies more than lower frequencies. Some reservoirs
usually have a low attenuation coefficient (Q factor) than its background and exhibit
zones of anomalous absorption lying in a larger background region (Winkler and Nur,
1982).

Wang, 2007 investigated the effects of attenuation on a seismic section, he applied an
inverse Q filter to compensate high frequency energy loss due to attenuation and phase
distortion resulting from frequency dispersion (figure 3.3). After running spectral
decomposition on both data set (original seismic and the inverse Q filtered data), the
spectral decomposition shows that low frequency shadows still exist on the inverse Q
filtered data which implies that low frequency shadows beneath gas reservoirs are not
entirely due to attenuation. Castagna et al, (2009), investigated the cause of low
frequency shadows in reservoirs by building wave equation based synthetic wedge model
in which the wedge has a velocity and density close to that of gas sand and it is embedded
in between high impedance rock with velocity and density similar to shale. They
compared the frequency response due to attenuation, differences in velocity of brine sand
and gas sand, and thickness. They conclude that the low frequency shadows are as a
result of the low velocity of gas filled reservoir which causes time sag below the

reservoir. Figure 3.5 shows spectra shifts due to gas accumulation in the reservoir.
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Figure 3.3: (a) The seismic section without inverse-Q filtering and, (b) the section
after inverse Q filtering. The filtered section shows reflections wavelets that are
narrow from shallow to deep. (Wang, 2007).
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shadows still exist on the cubes. (Wang, 2007).
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Figure 3.5: Shows the frequency response of attenuation, velocity and thickness
respectively (left to right) at reservoir level. There is significant spectral shift due to
velocity drop (Castagna et al., 2009).

Techniques

3.4 Continuous Wavelet Transform (CWT)

CWT method of signal transform was introduced by Morlet et al. (1982) and Goupillaud
et al. (1985). It scales and translates the basis wavelet to produce series of wavelets which
are convolved with the signal to produce time scale map (scalogram). The scale map is
then transformed into time-frequency map, for analysis of the amplitudes and phase
spectra of the individual frequencies (Castagna et al., 2006). CWT uses variable sized
window length to analyze the wavelet of the signal which eliminates the fixed time
window constraint of STFT (Okaya et al., 1995). As the size of the bandpass (window
length) increases, the center frequency increases (Morlet et al., 1982). If we define a

wavelet as a functiony(t)éR, where w(t)is continuous in both time and frequency
domain, the scaling and translation of this basis wavelet y/(t) generate series of wavelets:

Voo = v (D) o
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where aand b are scale and translation parameter respectively. CWT of signal f (t) with

respect to wavelet y/(t) is given as:
1 5 t—Db
CWT,, ., =— | f(y" (—)dt 3
(08 ££()w(a) (3)

where * represents a complex conjugate and CWT ,,,is time-scale map. To test the

invertibility of CWT, (that is reconstruct the original signal), f(t)from CWT. The

Inverse Continuous Wavelet Transform (ICWT) gives:

L o =Pygbda

f(t)= 2[ J;a—lz CWT .1 ﬁ a @

W(t) is the dual function of /(t) and should satisfy admissibility condition (Morlet et al.,

1982).

C =ijdW<w
Tow (5)

where C, is the admissibility constant, and Wis the Fourier transform ofy . For a
successful inverse transform, the admissibility constant must satisfy 0<C, <+ .

Goupillaud et al. (1985) states the admissibility conditions that must be satisfied by the
basis wavelet. These conditions are stated as follows:
Q) The wavelet must be absolutely integrable and square integrable (Okaya et al.,

1995).
[w(t)ydt <o and j|y/(t)|2dt<oo
(i)  The wavelet must be band limited with zero mean (Okaya et al., 1995).
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J‘%‘dw < o0,

Morlet wavelet as formulated by Goupillaud et al. (1985) satisfies the conditions above.

Morlet wavelet is given as

2

w(t) :fjvt[tz'
The parameter v allows tradeoff between time and frequency resolutions. The constraint
v>5 is applied to prevent limitations with Morlet wavelet at high temporal resolution.
Other wavelets that meet the admissibility conditions include: a vibroseis correlated
wavelet, and an uncorrelated linear or nonlinear sweep but they are not as desirable as
Morlet wavelet due to inherent ringiness (Okaya et al., 1995). The scale and the wavelet
functions are the essential functions that define a wavelet. The scale factora, either
dilates or compresses a signal. It is responsible for the coverage of the spectrum of the
wavelet, at a high value of a, the wavelet is compressed and the time resolution increases
and at low value ofa, the wavelet dilates and the time resolution decreases (Sinha et al.,

2005). Figure 3.6 shows Morlet wavelet at different scales.
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Figure 3.6: Morlet wavelet at different scales (Okaya et al., 1995).

3.5 Discrete Fourier Transform

DFT is a transform of a discrete time domain series into frequency domain (Okaya et al.,
1992). The input function is usually a sequence of finite set of evenly spaced time sample
whose non-zero values have limited durations. This function is usually a segment of an
infinite length periodic signal (Goupillaud et al., 1985). If this is not true, a window
function is introduced to enhance the spectrum artifact. The Inverse Discrete Fourier
Transform (IDFT) cannot reconstruct the entire length of the original time domain signal
but it reproduces the analyzed finite segment (Mallat et al., 1989). DFT is most often

computed from Fast Fourier Transform (FFT) algorithms which reduce the running speed

of the FFT. DFT computation from FFT algorithm is of the NZoperation for

transformation of an N-point sequence (Chambers et al., 1993). The transformation of a

series of complex numbers X;....... ,...Xy_y USINg DFT is given by:
N-1 iﬂikn
Xp=) XN
®)
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where Xo IS the amplitude and phase spectra of the sinusoidal components of the input

sample X,. In polar form, the amplitude and phase spectra can be expressed in terms of
the complex modulus and argument of X,

@, =arctan(l,,(X)/ R, (X;)

where R,and | are the real and imaginary components of X, respectively. The Inverse

Discrete Fourier Transform (IDFT) is given as:

1
"N
(7)

The above equation shows how to reconstruct the sampled function x, by summing the

: . : : k
sinusoidal components of equation (7) with frequency of chcles per sample. The

2 7ikn

vector ¢ N forms the basis of the time series (Chambers et al., 1993). Transforming a

time domain signal into frequency domain introduces aliasing which can be avoided if
the Nquist frequency is higher than the maximum frequency component (Chambers et al.,
1993). The analyzing window also influences the DFT resolution in that using a window
length that is too short smears energy across bandwidth beyond the band of the original
seismic data. Using a window length that is too long causes interference between non
isolated reflections within the analysis window. This effect degrades the temporal

resolution (Castagna et al., 2003).
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3.6 Constrained Lease Squares Spectral Analysis (CLSSA).

CLSSA is a weighted least square constrained algorithm of spectral decomposition
(Puryear et

al., 2012).The forward problem is given as:

FM =d (8)

where F s the kernel matrix with complex sinusoidal basis, M is the model parameter
(desired spectral decomposition coefficients) and d is the window segment of the
complex seismic trace. Since d is a complex trace, it can be expressed as:

d=d, +id 9)

where d, the real seismic traces and id is the Hilbert transform of the trace.

F is a complex sinusoid with length defined by the length of the analyzing window in
time domain. F can be represented as:

F () = Cosé +iSin® (10)

where @ is given as 2zft, f is the discrete frequency and t is the discrete time window.
Inj matrix, columns in F represent the number of frequencies and rows in F are the
number of samples in the time window. Solving equation (8), the Least Mean Square
Error (LMSE) solution is given as:

M =(F'F)*Fd (11)

where * is the complex conjugate transpose, if the sinusoids are uncorrelated, F*F=1
which reduces equation (11) to

M =F*d. (12)
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To have a unique solution, equation (8) is constrained with diagonal matrices.W,_ and
W, W,, is the model weighted matrix (Puryear C., 2012) given by:

W_ = G(KAf) (13)

where  G(KAf) is the frequency panel of the windowed spectrum.

According to Portniaguine et al., (2004) writing the analytical Lagrange solution to the

well-posed minimization of the Tikhonov parameter function gives:

M, =F,*(F,F, *+al)"W (. (15)
Using Gaussian elimination, the above equation is computed. Where F,is a weighted

quantity and M is diagonal matrix. (Interested reader is referred to Puryear , 2012).
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Chapter Four

4.0 RESULTS AND DISCUSSION
4.1 Direct Hydrocarbon Detection

Spectral decomposition has a useful application to hydrocarbon detection, (e.g Castagna
et al., 2003, Wei et al., 2011). The utility of spectral decomposition as hydrocarbon
indicators is based on the fact that low frequency shadows are commonly observed
beneath gas-charged reservoirs. These low frequency shadows are delineated as
anomalous high amplitudes at low frequencies on iso-frequency sections, which
gradually disappear at higher frequencies.

The approach adopted in this research involves interpreting seismic horizons that
corresponds to hydrocarbon reservoirs. The next step is to transform the seismic volume
into iso frequency volumes using the spectral decomposition techniques discussed earlier
(sections 3.4, 3.5, and 3.6). To inspect for hydrocarbon detection, horizon slices that
correspond to the hydrocarbon reservoirs are extracted from the various frequency
volumes to produce spectral horizon maps. These maps are visually inspected for
amplitude variations that are diagnostic of hydrocarbon in the reservoir.

Figure 4.1 shows the seismic section with yellow circle highlighting the Mississippian
limestone (gas-charged reservoir) and black circle indicating the location of the Thirtyone

Formation (gas reservoir).
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(black circle) on vertical seismic section.

Figure 4.2a is a DFT frequency volume at 25 Hz showing low frequency shadows
indicated by black arrows. These low frequency shadows were observed beneath the
Mississippian limestone and the Fusselman Formation. The Mississippian is
approximately 30 m in thickness and the Fusselman Formation is about 25 m thick. At
65Hz (figure 4.2b), DFT preferentially illuminate the reservoirs with no background
energy around the gas reservoirs. CLSSA also shows the high energy low frequency
shadow beneath the reservoirs at 20Hz (figure 4.3a) and at 30Hz (figure 4.3b), the high
energy low frequency shadows have been attenuated. This validates the newly developed
CLSSA as a good hydrocarbon detection technique. CWT also identifies high energy low

frequency shadows on the frequency volume at 25Hz (figure 4.4a) and at 73Hz (figure
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4.4b), the shadows were attenuated. There is preferential illumination of the reservoirs

are preferentially illuminated with little background energy on the frequency volume.
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Figure 4.2a: DFT frequency section at 25 Hz, the black arrows point to the
positions of the low frequency shadow and the yellow arrows point to the top
of the reservoirs.
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Figure 4.2b: DFT frequency section at 65 Hz, yellow arrows point to the
reservoir location and the black arrow poing to the position of the shadows.
Notice the shadows are gone (black arrows).
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Figure 4.3a: CLSSA at 20 Hz, black arrow point to the shadows and the
reservoirs locations are identify by yellow arrows.

Xine 461 467 473 479 435 491 497 503 509 515 521 527 533 530 545 551 557 563 568 575 581 587 593 599 6( 0
L iy 8137
8032
7928
1600 o

7720
7616
7511
1700 707
7303
7199
7095
6990

6866

1800

6762
6673

1500

6574
8469

2000

" R
2100 NP ia A
WG~ N5 0 2y @
ANl els
Figure 4.3b:CLSSA at 30 Hz the shadow are diminished (black arrow), the
Yellow arrows pointing to the top of the reservoir.

5949
5844
5740

42



Xine 461 467 473 479 485 401 497 503 509 515 521 527 533 530 545 551 557 563 569 575 581 587 503 599 & [ COUrfe
T T T PO TR TR F AT r Nt IR RL FECT Ry FARTRT PR TR IR TR IR N T CRA IR o TR T e M I . Ll

1600

1700

1800

Figure 4.4a: CWT at 25 Hz |dent|f|es the shadows (black aroows) and -
reservoirs (yellow arrows).

491 49? I:I]3

E-UB 315 521 E-ZT 533 539 545 551 557 5
. el I

a ow h.l..... 284

pips

- oy 40
» " ’ ‘ '. w7

i rt I“ Jl A

1700 i . 2

Kline 451 467 473 479 483

1800
1800
2000

2100

FHn
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shadows are diminished (black arrows)
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Figure (4.5a) is an amplitude map obtained by taking a time slice at 1740 ms (20 ms
above the Mississippian limestone) through the 25 Hz DFT volume. Figure (4.5b) is a
time slice at 1950 ms extracted from the same 25 Hz DFT volume across the low
frequency shadow. The reservoir locations are highlighted in black circles. The 25 Hz
frequency volume shows high spectral energy at the location of the low frequency
shadow (1950 ms), which is absent in the 1740 ms time slice indicating that the energy
is localized around the low frequency shadow.

Figure 4.6 is the same time slices (1740 ms and 1950 ms) extracted from a higher
frequency volume (65 Hz). The low frequency shadow does not show anomalous high
spectral energy at this higher frequency, suggesting that the anomalous energy is only
observed at low frequencies. This observation is consistent with the definition of low

frequency shadow
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Figure 4.5a: Amplitude extraction on 25Hz frequency section at 20 ms above
the reservoir. The reservoir location is indicated by black circle. Note the low
energy at the reservoir and beneath the reservoir.
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Figure 4.5b: Amplitude extraction on 25Hz section at the shadow. Notice the
high energy beneath the reservoir.
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Figure 4.6a: Amplitude extraction on 65Hz frequency cube at 20 ms above
the reservoir. Notice the higher energy beneath the reservoir compare
with the amplitude extraction on the shadow (figure 4.6b)
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Figure 4.6b: Amplitude extraction on 65Hz section at the low frequency
shadow. Note the low energy beneath the reservoir conforming to low
frequency shadow diminishing at high frequency.
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4.2 Structure Interpretation

This study is extended to test the resolution of the various techniques in structural
delineation. A meandering river on the Straton field exactly the same studied by Sinha et
al., 2005, was used to validate the power of the techniques used. A channel was picked on
the seismic section as shown in figure 4.7, the black arrow points to the location of the
channel and the yellow line is the picked horizon. The RMS amplitude of the horizon is
shown in figure 4.8 with black arrows pointing to the channel features. The horizon is
extracted and CLSSA, DFT, and CWT algorithms were applied to further enhance the

visibility of the features.
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Figure 4.7: Show the vertical seismic section with the location of the channel
indicated with black arrow and the horizon pick in yellow.

47



Xline

O e O B I R
10 20 30 40 a0 il 70 80 80 100

Figure 4.8: RMS Amplitude map of the horizon, the arrows are pointing to
the channel features on the map.

CLSSA at 29Hz delineates the channel and further enhances it extent along the branching
which was not seen on the amplitude map. Yellow arrows show the extension of the
channel that was not seen on the amplitude map on the southwestern and northwestern
part of the horizon spectral decomposition map (figure) 4.9. DFT horizon spectral
decomposition with 40 ms analyzing window at 23Hz highlights the channel feature and
also extends the branching beyond what was shown on the amplitude map, yellows
arrows on figure 4.10 show the channel branching delineated by DFT but it suffers from
background energy interference which blurs the continuity of the channel extent on the
southwestern and northwestern part of the map. CWT at 57Hz delineates the channel

feature (figure 4.11) but this method at some point has discontinuity in the lateral extent

of the feature, it gives the least result in terms of delineating structures.
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CLSSA gives the best result as it emphasized the channel more than it was highlighted on

the RMS amplitude map.
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Figure 4.9: CLSSA Horizon spectral decomposition at 29Hz the yellow arrows
indicate the extension of the channel seen on CLSSA that are not visible on

amplitude map.
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Figure 4.10: DFT Horizon spectral decomposition at 23Hz the yellow arrows
indicate the extension of the channel seen on DFT that are not visible on

amplitude map.
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Figure 4.11: CWT horizon spectral decomposition at 57Hz, black arrows show the
point of discontinuities of the channel on the map.

4.3 FREQUENCY GATHER

Frequency gather was computed on synthetic traces from two wells, Well 37 and Well
46. This exercise is aimed at comparing the resolution of the techniques on a trace by
trace basis. It was observed that CLSSA has a better resolution of separating events on
seismic trace. It resolve side lobe distinctively and has minimal notches compared with
other methods. DFT also did a good job of separating events on the traces, but it has the
limitation of side lobe effects and notches were observed on the DFT frequency gather.
CWT has the least resolution of the events, typical of CWT poor time resolution at low
frequencies which is the major limitation of the technique on a seismic section with low
frequency content. The black box in figure 4.12 shows two events that are closely
spaced in time, CLSSA resolves these events distinctively without side lobe effects or

interference pattern. DFT also separate the events but side lobe effect blurs the
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separation while CWT could not separate the events in time. Figure 4.13 shows the
position of the reservoir in black arrow, Although, CLSSA and DFT resolves these

events, the time resolution of the CLSSA is better than DFT.
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Chapter 5

5.0 Conclusion

Three spectral decomposition techniques, namely, DFT, CWT, and CLSSA were applied
to a 3D seismic data from the Waha Fields, West Texas. These spectral decomposition
techniques were accessed for their time-frequency resolution and effectiveness in
delineating subtle reservoir features on seismic horizons. The amplitude spectra for these
techniques were computed for a single seismic trace and for a seismic horizon. The
results show CLSSA to have improved time-frequency resolution over the DFT and
CWT. Spectral and temporal smearing that degrades the DFT and CWT spectrum are
greatly reduced in the CLSSA spectrum. CLSSA is found to give better spectral
characteristics of the original seismic and thus emphasizing subtle features not observed
on the original seismic data.

A second study to investigate the utility of these techniques as direct hydrocarbon
indicators was also presented. The result shows that DFT is best for hydrocarbon
detection because the low frequency shadows were well localized and reservoirs were
preferentially illuminated at high frequency. But CWT and CLSSA also identified the
reservoirs in the study area. This research validates the recently developed CLSSA is a

good structural delineation and hydrocarbon detection technique.
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