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Abstract 

The frequency content of a seismogram varies with time and amplitude response to 

thickness and porosity in frequency domain more than in time domain, hence analysis of 

a time domain signal in the frequency domain shows features that are not visible on the 

time domain sections. The following spectral decomposition techniques: Constrained 

Least Square Spectral Analysis (CLSSA), Discrete Fourier Transform (DFT), and 

Continuous Wavelet Transform (CWT), were applied on the field data from West Waha 

and Worsham Bayer fields. All the techniques illuminate the reservoirs and also identify 

low frequency shadows beneath the reservoirs at low frequency. This validates that the 

recently developed CLSSA is a good direct hydrocarbon detection technique. 

The application of these techniques on a horizon across a channel feature on the Stratton 

field dataset and comparison of the results reveal CLSSA is best for subtle structure 

delineation. CLSSA reveals the lateral extent of the channel branches more than DFT and 

CWT. 

Application of these techniques on synthetic traces also reveals that CLSSA better 

separate events that are closely spaced without producing side lobe effects and notches as 

seen on the Discrete Fourier Transform (DFT). Continuous Wavelet Transform could not 

separate the events in time at low frequency. 
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Chapter One 

1.0 Introduction 

This research is aimed at using different spectral decomposition techniques as 

hydrocarbon indicators and also comparing the techniques in terms of temporal and 

frequency resolution. The aim of the reservoir geophysicist in exploration and production 

is to detect hydrocarbon, but one of the major limiting factors faced by an interpreter is 

detecting thin reservoirs, especially reservoirs below seismic resolution. Chopra et al. 

(2006) stated that the vertical seismic resolution is the ability to distinguish two or more 

separate events or reflections in both time and depth domain. Widess (1973) used 

reflective properties to define thin beds as the bed with thickness less than 1/8th of its 

wavelength. Interpreters are overwhelmed by the problem of resolution limits as thin 

beds with appreciable commercial hydrocarbons are left undetected. Spectral 

decomposition is a novel method which helps in addressing the problem of seismic 

resolution limit and reduce the risk involve in drilling dry well. 

Partyka et al. (1999) developed spectral decomposition, a technique aimed at enhancing 

seismic resolution and aid interpretation of thin beds because the concept is based on the 

fact that thin bed reflectivity has a unique response in the frequency domain. Spectral 

decomposition was used for layer thickness determination (Partyka et al., 1999), 

Stratigraphic visualization and reservoir delineation (Marfurt and Kirlin, 2001). Castagna 

et al. (2003), Burnett et al. (2003), Fahmy et al. (2005), Sinha et al. (2005), Yandong et 

al. (2011), have all used spectral decomposition as direct hydrocarbon detection 
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technique in complex hydrocarbon plays. 

Spectral decomposition principle assumes that the frequency content of a seismic signal 

varies with time. This implies that at different times, the frequency content of a 

seismogram is non-uniform. Thus the transformation of a signal from a time domain into 

a frequency domain and the analysis of the amplitude and phase spectra at each frequency 

enable temporal bed thickness delineation and lateral geologic discontinuities associated 

with each frequency (Partyka, 1999).  

1.1 Geologic Setting of the Study Area. 

The West Waha and Worsham-Bayer fields (West Texas) form a part of the Delaware 

Basin which is a sub basin of the larger Permian Basin (Keran and Holtz, 1992).  

The field is principally a natural gas producing field with four gas producing units. The 

Ellenburger Formation contains the major producing units, while the Silurian Fusselman 

unit and Devonian Thirtyone unit and Mississippian limestone are minor gas producing 

strata (Kerans et al. 1990). Figure 1.1 shows the map of the study area. 
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Figure 1.1: Location map of the study area. (Hardage and Hentz, 1998) 

 

During the Paleozoic era, the stable West Texas was flooded resulting in deposition of 

limestone and shale. During the late Paleozoic Era, the collision of the European and 

African plates with North and South American plates resulted in sedimentary filling of 

the Ouachita Trough. Convergence of the North and South American plates resulted in 

faulted mountain uplifts of the Ouachita Mountains and basin filled by shallow inland sea 

of the West Texas (Keran and Holtz, 1992).  

Cambrian rifting along southern North America margin formed broad shallow water in 

southern West Texas during the Ordovician. The carbonate Ellenburger sediments 

transgress over the basement to a thickness of 518 m. The karsting of the Ellenburger 

Group in middle Ordovician led to deposition of sandstones and shales of the Simpson 

Group (T.E Ewing, 1991). This was followed by the deposition of carbonate and 
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siliciclastic rocks that constitute the Montaya and Fusselman Formations, Wristen Group, 

and Thirtyone Formation. Woodford Formation, a shale unit and the major hydrocarbon 

source rock in West Texas was formed during the Late Devonian and Early Mississippian 

period (Lucia, F.J., 1995). 

Regional tectonic deformation of the Ouachita Mountain building resulted in structural 

deformation in West Texas. West Texas was divided into the Delaware and Midland 

Basin due to uplift of the Central Basin Platform. This uplift resulted in thrust faulting, 

structural rotation, and strike- slip deformation in West Waha and Worsham-Bayer field. 

These structures serve as hydrocarbon traps for Ordovician through Mississippian 

reservoirs (Loucks and Anderson, 1985). Figure 1.2 shows the stratigraphy column of the 

Permian Basin in West Texas. 
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Figure 1.2: Stratigraphic of Cambrian through Pennsylvanian rocks in the  
Delaware basin (S.C Ruppel 1995). 
 
 
 1.1.1 Reservoir Geology of Ellenburger Group. 

The Early Ordovician Group of western Texas consists mainly of dolomitized marine 

carbonate rock, with average thickness of 457 m around West Waha. The Middle 

Ordovician was marked by regional karsted weathering and erosion, forming the 

karstified part of the Ellenburger Group. (Kerans, 1990). The reservoir quality of the 

Ellenburger Formation is as a result of tectonic fracturing, brecciation, and karstification. 

Reservoirs of karstified Ellenburger Group low and varies from (2-7%) and moderate 

permeability that varies from (2-750mD).The Dolomitized Ellenburger has higher 

porosity of (2-14%) but its permeability is lower (1-44mD) than  
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karstified reservoirs (Loucks and Handford, 1992). 

The Ellenburger Group of West Texas was divided based on reservoir quality into three 

units: (1) Karstified dolostone reservoir, (2) ramp carbonate, and (3) tectonically 

fractured dolostone based on reservoir quality (Holtz and Kerans, 1992). The karstified 

Ellenburger reservoir is located in the inner part of the platform where karstification 

plays an important role in the reservoir quality. This unit is located in the Central Basin 

Platform and Midland Basin of West Texas (Hardage and Hentz, 1998). The karstified 

Ellenburger has produced the largest amount of hydrocarbon in the Ellenburger Group, 

accounting for 37 percent of total production in the Ellenburger Group (Jones, 1953). The 

reservoir quality of the karstified Ellenburger unit is controlled by brecciation and 

karsting during the Middle Ordovician. Waters responsible for karstification were 

introduced through faults, fractures, and joints into the formation. Structural traps are 

faulted anticlines, and anticlines (Holtz and Kerans, 1992). Figure 1.3 shows the three 

major Ellenberger reservoir types in the study area. 
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 Figure 1.3: Three major Ellenberger reservoir types in West Texas. 
 (Holtz and Kerans, 1992). 
 

The ramp carbonates Ellenburger unit is located in the southern Midland Basin and 

Eastern Shelf. It account for 4% of the oil and gas produced from the Ellenburger Group 

and contains 5% of the remaining oil and gas in place. The reservoir quality is as a result 

of the diagenesis history of the reservoir. Dolomitized packstone and limestone led to 

intercrystalline pore space and permeability (Holtz and Kerans, 1992). The structural 

controls of reservoir development are anticlines and faulted anticlines, while the seal is 

the overlying limestone (Ewing, T. E., 1991). These reservoirs are located in the 

Delaware and Val Verde Basins in West Texas. The porosity is 2-14 percent and with 

average permeability of 12mD (Levey et al. 1994). 

The tectonically fractured Ellenburger reservoir forms the third unit within the 

Ellenberger Group in the West Waha and Worsham-Bayer fields. The reservoir quality 

resulted from tectonic fractures (Kupecz et al., 1991). This unit contains most 
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hydrocarbons accumulated in the Ellenberger Group. The fracture porosity and low 

permeability of this reservoir led to high gas mobility relative to oil, this being the reason 

for the production of no associated gas in the reservoir. The study area is adjacent to the 

Ouachita orogeny belt which resulted in complex structures within the area (Ewing, 

1991). 

. 

 
Figure 1.4: Schematic cross section of the Ellenberger facies assemblage over the  
crystalline basement (Hardage and Hentz, 1998). 
 
1.1.2 Reservoir Geology of the Fusselman Formation 

The Fusselman Formation is a member of the Silurian stratigraphic section in West 

Texas; it is composed of limestone and dolomites. It is overlain by the Silurian Wristen 

Group and underlain by the Ordovician Montoya Group (Ruppel and Holtz, 1994). The 

northern West Texas part of Fusselman is dolomitize and they are limestone in the region 

of West Waha and Worsham-Bayer fields. The Fusselman was described as a shallow-

water carbonate facies containing porous and permeable basal ooids overlain by fenestral 

mudstones and underlain by thick pelmatozoan grainstone and packstone containing spar 
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and voids interpreted has leaching events (Ruppel and Holtz, 1994). The Fusselman 

reservoirs have been categories in the Shallow-Platform Carbonate play and have 

produced oil from over 300 reservoirs in West Texas (Holtz et al., 1997). 
 

 
 Figure 1.5: The distribution of the dolostone and limestone of the Fusselman group 
 (Ruppel and Holtz, 1994). 
 

1.1.3 Reservoir Geology of Thirtyone Formation. 

The Thirtyone Formation belongs to the Devonian stratigraphic section around the West 

Texas and Worsham Bayer fields. It is underlain by the Wristen Group and overlain by 

the Woodford Formation (shale) which serves as the source rocks to the reservoirs in the 

Delaware Basin  (Jones, T.S., 1953). The Thirtyone Formation is a hydrocarbon reservoir 

of limestones, dolomites and cherts. The reservoir quality is controlled by vuggy, 

intercrystalline, and fracture porosity. The deposition history, as described by Ruppel and 

Holtz (1994), has basin siliceous sediments due to transgression by prograding and 

aggrading carbonate sediments into a shallow water ramp.  As shown in figure 1.6. The 
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cherts were deposited as a result of pelagic sedimentation and turbidite flow in the down 

slope direction. The composition of the Thirtyone Formation is more siliceous towards 

the base and relatively carbonate upward. Ruppel and Holtz (1994), classified the 

formation into the following facies: dark color chert/carbonate laminite, thick bedded 

laminate chert, burrowed chert, and skeletal packstone. The Thirtyone Formation is 

divided into two oil productive plays which are the ramp carbonate play and the deep 

water chert play. The Thirtyone Formation in the West Waha and Worsham-Bayer fields 

is predominantly a gas reservoir. The reservoir quality is controlled by conversion of 

silica phases from metastable to stable silica during deposition and compaction (Ewing, 

1991). 

  
 Figure 1.6:  Facies distribution of Thirtyone Formation during deposition in West  
 Texas (Ruppel and Holtz, 1994). 
 
 
 
 
 
 
 



 

11 
 

1.2 Data Set 
 

The field data are owned by Gas Research Institute (GRI) and US Department of Energy 

(DOE). The data set consist of 3D time migrated stacked sections, 11 well logs and  

production data of the West Waha Worsham Bayer Fields, Delaware Basin, West Texas. 

Figure 1.7 shows the location of the wells within the seismic section. 

 

 
Figure 1.7: Location of the wells within the seismic section (Hardage and Hentz, 1998). 
 

1.2.1 Borehole Data 

The borehole data consist of 11 well logs, a checkshot survey, and directional wells. All 

well logs include gamma ray, sonic, neutron, or density logs, and electrical (resistivity or 

induction), caliper, and SP logs. Figure 1.8 is a well log of the study area containing sonic 

and gamma ray logs. 
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Figure 1.8: Well log of the study area with identified reservoirs 
 

1.2.2 3D Seismic Data 

The seismic data is approximately 51.8 km2. Three-Dimensional post stacked migrated 

data set. It has 261 inlines (720-980) and 201 crosslines (460-660), sampling rate of 4ms 

and the time range is 0 – 4s with average amplitude of 3.61. The stacking bins are 33.5 m. 

The line number byte position is 9 to 12 and the trace number byte position is 21 to 24. 

The seismic section is shown in 3D view in figure 1.9 with time slice at 2s. 
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Figure 1.9: 3D view of the seismic section and a time slice at 2s. 
 

1.3 Research Workflow 
 
1.3.1 Well Log Preparation 

The well logs were quality checked to note if logs for lithology and fluid identification 

are in place for each well, where they are not, density logs were generated by inversion 

using the Gardener’s equation and carefully estimating P-wave velocity from sonic logs. 

Also, pseudo sonic logs were generated using the Han’s transform. These steps are 

necessary because density and sonic logs are used to compute impedance log and 

reflection coefficient, which are convolved with wavelet to generate synthetic 

seismogram. 
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1.3.2 3D Seismic Analysis 

The 3D seismic data were quality checked by eye to catch reflections with traps, closures, 

and structures such as bright spot, flat spot, faults, etc. The seismic and well logs are then 

correlated, and time to depth conversion was done. This was followed by identifying 

lithology/reflections of interest on the vertical seismic section and horizons of interest 

were picked. The seismic section was then cropped into sub cubes of interest to speedup 

computation rate of spectral decomposition and to minimize extraneous data that have no 

significance to the study. 

1.3.3 Attribute Analysis 

This process involves generating attribute maps for the picked horizons to emphasize 

features of interest. These features of interest may include localized amplitude anomalies 

associated with variation in geology. 

 1.3.4 Spectral Decomposition and Interpretation 

This involves decomposing the broadband seismic into its constituent frequencies. It is a 

time frequency transformation that transforms time domain seismic data into the 

frequency domain. The techniques used in this transformation include:  Continuous 

Wavelet Transform (CWT), Discrete Fourier Transform (DFT), and Constrained Least 

Squares Spectral Analysis (CLSSA).  Using these techniques, frequency volumes that 

correspond with discrete energy in the seismic band were generated with the same 

sampling rate as the original broadband seismic. A total of one hundred and twenty-five 

(125) frequency volumes corresponding to the frequency bandwidth of the original 
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seismic data were generated. This was followed by analyzing each frequency volume for 

amplitude anomalies that are associated with the gas-bearing formations.                 

The amplitude spectrum from these various techniques were computed for a single 

seismic trace, and then for a seismic horizon and the results compared with one another to 

access effectiveness of each technique.  Figure 1.10 shows the workflow of the research 

work. 

   

    Figure 1.10: Shows the workflow of the research work. 
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Chapter Two 

2.0 Data Interpretation 
2.1 Well Log Interpretation 
Well log interpretation is important to properly analyze the diagnostic features of rocks 

and fluid properties in the reservoir. Several well log data were available for the study 

area, but only two wells (Well 37 and Well 46) were utilized in this research (figure 2.1). 

Both wells were supplied with a suite of log data that include: gamma ray, resistivity, 

density, and sonic logs. The logs are displayed below in figure 2.1 with the reservoirs 

identified and correlated on both well logs. 

    
 

 

 

 

 

 

 

 

 

 

 Figure 2.1: (a) Well 37 with the various formation identified (b) Well 46 with 
 the corresponding lithology identified. 
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2.2 Gamma Ray Log 

Gamma ray logs measure the radioactive content of formation. Shale formations have 

high radioactive content, explaining the high gamma ray reading observed in shales. 

Shale-free formations such as sandstones and carbonates have low radioactive contents, 

and thus have low gamma ray readings. Exceptions to this are sandstones containing 

potassium feldspars, micas, and glauconite (Asquith, 1982). 

The study area is a carbonate environment without feldspars and micas. The Woodford 

shale unit has high gamma ray reading as seen on Well 37 (figure 2.1a) around 2050 ms - 

2100 ms,  representing the source rock in this field. The same formation (Woodford 

Formation) is seen on Well 46 (figure 2.1b) with high gamma ray reading at 1800 ms – 

1870 ms. The Mississippian limestone (gas reservoir) on Well 37 is shown to have a  low 

gamma ray reading at 2000 ms -2050 ms. This corresponds to the low gamma ray reading 

at 1760 ms – 1810 ms on Well 46. The limestone and dolomitic Thirtyone Formation is 

indicated by low gamma ray reading at 2100 ms – 2170 ms on Well 37, which 

corresponds to low gamma ray reading on Well 46 at 1870 ms -1940 ms. The Fusselman 

Formation and Ellenburger Group are also represented by low gamma reading on Well 37 

and Well 46 as shown in figure 2.1. 

2.3 Sonic Log 

The sonic log measures the interval transit time ( tΔ in )/ ftsμ of a compressional sound 

wave travelling through one foot of formation. The transit time is dependent upon both 

lithology and porosity (Asquith, 1982). Well 37 shows the Mississippian limestone with 

compressional wave velocity of 4900 m/s and Well 46 shows that the Mississippian 
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limestone has a velocity of 5400 m/s. The underlying Woodford shale has a velocity of 

3500 m/s on Well 46 and Well 37. The Thirtyone Formation (dolomite and limestone) 

has a velocity of 5500 m/s on Well 37 and velocity of approximately 6000 m/s on Well 

46 typical of limestone reservoirs. 

2.4 Resistivity Log 

Resistivity is an electrical property of materials that describes the ability to resist the flow 

of electric current. It is the inverse of conductivity. Brine-saturated rocks are conductive 

and have low resistivity because they contain free ions that support the flow of current. 

The short normal and the induction logs are the electrical type logs available for this 

research on Well 37 (figure 2.1a). All the reservoirs have high resistivity values when 

compared with the Woodford shale with low resistivity of approximately 150 ohm/m on 

the deep induction log. The Mississippian limestone has an average of 240 ohm/m on the 

deep induction log. Thirtyone Formation has about 720 ohm/m and the Fusselman 

Formation has 480 ohm/m-720 ohm/m as compared with the overlying shale formation 

with less than 100 ohm/m. The high resistivity values in the reservoirs indicate the 

presence of hydrocarbon. 

2.5 Seismic to Well Correlation 

Seismic to well correlation is the measure of similarity between pair of traces (Asquith, 

1982). This process involves generating synthetic seismogram from the drift corrected 

sonic and density logs and comparing it with a composite seismic traces extracted around 

the well location on the seismic section. Drift correction is applied to the sonic log to 

shift the seismic to a reference datum and also to correct for dispersion effects arising 
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from high frequency contents of sonic logs. Drift correction is important because of the 

following reasons: 

1. The first layer velocity is often unknown. 

2. Seismic data may have time stretch due to frequency dependent absorption and 

short period multiples (Asquith, 1992). 

3. There are greater dispersion and absorption on surface seismic as compared to 

sonic log. 

Creating Synthetic Seismogram 

Generating synthetic seismogram is an important aspect of correlation. The following 

steps are essential in generating synthetic seismogram: 

1. Drift correction on sonic log. 

2. Calculate acoustic impedance vZZ =:)( from the density and sonic logs. 

3. Calculate reflection coefficient (R) between successive pair of acoustic 

impedance to generate a reflectivity series. 

22

12

ZZ
ZZR

+
−

=  

4. Convolve the reflectivity series with the desired wavelet )(*)()(( trtWtS = ) 

Where )(tS is the seismogram, )(tW is the wavelet, * is the convolution operator 

and )(tr is the reflectivity series. 

This research involves generating synthetic seismogram by convolving the reflectivity 

series      with wavelet extracted from the wells and seismic for correlation as shown in 

figures 2.3. The well to seismic correlation coefficient for this well is 0.69 shown in red 
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circle. The Mississippian Formation location is highlighted with the black circle and the 

Fusselman Formation is in yellow circle. The wavelet extracted from the Well 37 and 

Well 46 are shown in figure 2.2. 

 

a) Well 37 Wavelet          b) Well 46 Wavelet 

 

 
 
c) Well 37 Frequency Spectrum          d) Well 46 Frequency Spectrum 

 
 Figure 2.2: (a) Wavelet extracted from the seismic at Well 37 location (b) Wavelet extracted 
fromWell  46(c) Frequency spectrum of the wavelet extracted from Well 37 (d) Frequency 
spectrum of wavelet extracted   from Well 46. 
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Figure 2.3: Correlation panel of well 46 with seismic. The black circle is the position  
of the Mississippian Limestone and yellow circle is the position of the Thirtyone formation 
 
 
2.6 Horizon Interpretation 

Gao (2007) described horizon interpretation as “an interpretational concept that separates 

different geological units such as: water from shallow sediments, sedimentary rock from salt 

diapirs or Tertiary clastic from Mesozoic carbonates”. This research is focused on picking 

horizons at the top of the reservoir and through the low frequency shadow at low and high 
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frequencies to analyze the changes in amplitude at each frequency. Horizon slices through 

the 25Hz and 65Hz DFT volumes corresponding to the top of the reservoir and the low 

frequency shadow are shown in figure 2.4. 

(a)                                                                     (b) 

 
(b)                                                         (d) 

   
Figure 2.4(a) Amplitude extraction on DFT 25Hz at 20ms above the reservoir.  
(b) Amplitude extraction on DFT 25Hz through the low frequency shadow.  
(c) Amplitude extraction on DFT 65Hz at 20ms above the reservoir. (d) Amplitude  
map of DFT 65 through the low frequency shadow. 
 
 
Also, horizon picks  along a channel were done to investigate the power of the techniques for 

structures delineation. Figure 2.5 show the seismic section with black arrow pointing to the 
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channel and picked horizon is indicated by yellow line. The Root Mean Square (RMS) 

amplitude of the horizon is shown in figure 2.6 with the black arrows pointing to the channel. 

  
  Figure 2.5: Seismic section showing the picked horizon (yellow) and the black arrow 
  pointing at the channel. 

 
 

  
   Figure 2.6: RMS amplitude of the horizon with black arrows pointing to the channel. 
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Chapter 3 

3.0 Methodology 
3.1  Spectral Decomposition  
Partyka et al. (1997) introduced the concept of spectral decomposition as a post- 

processing method for quantifying and visualizing subtle seismic tuning effects. It is 

defined as a seismic analysis technique that decomposes seismic data into time-frequency 

domain which makes it possible to extract useful information such as layer thickness 

(Partyka et al., 1999), direct hydrocarbon detection (Castagna et al., 2003, Wei et al., 

2011), or stratigraphic interpretation (Marfurt et al., 2001). This is possible because 

subtle features not visible on time domain seismic data can be emphasized on frequency 

domain sections. Localization of events such as reflections, noise, and surface waves are 

also possible in the frequency domain, thus making separation and elimination of 

undesired events possible (Okaya et al., 1995). 

The Short Time Window Fourier Transform (STFT) of spectral decomposition, unlike 

traditional Fourier Transform, assumes variable statistic for the seismic signal which 

allows the extraction of frequency content unique to all the time samples. The geology of 

the signal becomes less random. Analyzing the amplitude and phase spectra of the 

frequency volume expresses the temporal frequency distribution of the signal (Partyka et 

al., 1999). This is because a reflectivity series, when convolved with a source wavelet in 

the presence of noise for a long analyzing window approximate the wavelet spectrum 

(figure 3.1).   That is, it sums up the effects of the individual thin beds within the 

window, flattening the amplitude spectrum (Partyka et al., 1997). A short window does 
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not approximate the effect of the thin beds and its response is determined by the acoustic 

properties, thickness of the layers within the window, and the geology. Hence the 

resulting amplitude spectrum represents the interference pattern of the window as shown 

in figure 3.2.  

Spectral decomposition is useful in delineating subtle features and thin beds because thin 

bed reflectivity has a characteristic response in the frequency domain (Castagna et al., 

2003). The output of spectral decomposition is a series of amplitude and phase spectra 

tuned to specific frequencies. The amplitude spectrum is essential in estimating bed 

thickness in time domain while the phase spectrum is used to define 

geologic/stratigraphic discontinuities (Partyka et al., 1999). Time-frequency analysis of a 

seismogram can be achieved in many ways, some of the methods include: The Fourier-

based methods (Short Time Fourier Transform, Fast Fourier Transform), the wavelet-

based methods (Continuous Wavelet Transform and Discrete Wavelet Transform) and 

those that depend on wavelet dictionary selection (Matching Pursuit Decomposition). The 

STFT is a Fourier-based method for time-frequency analysis of a seismogram. It 

transforms a 1D signal in time into a 2D time-frequency representation by taking a 

continuous fixed short time window along the time axis (Okaya et al., 1995).   

Mathematically, it can be represented as: 

∫
∞

∞−

−−= dttgtfwF jwt)()(),( ττ
    (1)

 

where )(tg is the window function, )(tf is the seismogram to be transformed, jwt− is the 

Fourier kernel 
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STFT can also be performed on frequency domain by sampling along the frequency axis 

with fixed bandwidth band-pass filter (Okaya et al. 1995). The major pit fall of the STFT 

is the fixed resolution problem due to the fixed predetermined analyzing window length. 

A wide window gives better frequency resolution and poor time resolution and a short 

window gives good time resolution and poor frequency resolution (Castagna et al., 2003). 

When the window length is too short, smearing of energy across bandwidth is observed 

on the STFT spectrum beyond the band of the original seismic data. If the window length 

is too long, interference is observed between non isolated reflections within the window, 

degrading the time resolution (Castagna et al., 2003). The wavelet analysis method was 

introduced to improve the resolution problem of the STFT. Continuous Wavelet 

Transform and Discrete Wavelet Transform are based on the superposition principle that 

states that the frequency spectrum of a seismogram is the sum of the constituent 

frequency spectra of the wavelet that sum up to produce the seismogram (Castagna et al., 

2003). CWT scales and translates the basis wavelet by applying bandpass filter to 

produce series of wavelets, which are convolved with the seismogram to yield time-

frequency panels. Discrete Wavelet Transform (DWT) decomposes a function by 

applying a band-pass filter to the original signal at different bandwidths, unlike CWT, the 

DWT uses quadrature mirror filters to decompose a seismogram. Both CWT and DWT 

have resolution limitations at intermediate frequencies. Matching Pursuit Decomposition 

(MPD) is another time-frequency analysis method that has good intermediate to high 

frequency resolution. This method of signal decomposition requires selection of wavelet 

from a suite of wavelet dictionary. It scales, translates, and modulates a single window 
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function to produce a set of basis functions (Okaya et al., 1995). MPD introduces artifacts 

into the time-frequency analysis over wide frequency band or long time interval 

(Castagna et al., 2003). 
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Figure 3.1: Convolution model of a long window spectral decomposition. 
 (Partyka et al.,1999).  
 
 

 
Figure 3.2: Convolution model of a short window spectral decomposition 
 (Partyka et al., 1999). 
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3.2 Spectral Decomposition as Hydrocarbon Indicator 

Castagna et al. (2003) described the use of spectral decomposition as hydrocarbon 

detection technique. They analyzed the frequency response of amplitude variation caused 

by variation in fluid properties, thickness, and porosity. The frequency response also aids 

in the interpretation of the reservoir geomorphology and structural complexity. Castagna 

et al. (2003) identified three unique spectral responses associated with hydrocarbon 

bearing zones. These responses are: 

(i) Abnormal seismic attenuation in thick reservoirs. 

(ii) Low frequency shadows beneath the reservoir. 

(iii) Differences between tuning frequency of gas sands and brine sands. 

 

3.3 Low Frequency Shadow 

The concept of low frequency shadow beneath  gas charged reservoirs is an old and 

familiar concept,( e.g Taner and Sheriff, 1979, Castagna et al., 2003), but the cause of 

this phenomenon is not clearly understood. Different authors have attempted to explain 

the precise cause of the low frequency shadow beneath gas reservoirs. In a reservoir with 

energy absorbing fluid and sufficient thickness, it might be reasonable to conclude that 

the low frequency shadows beneath the reservoirs are due to attenuation. But in thin 

reservoirs where there is no enough travel paths for the seismic waves, one cannot 

conclude that low frequency beneath the reservoir is due to seismic energy attenuation 

(Castagna et al., 2009).  

Dan Ebrom (2006) described the likely causes of low frequency shadow. He classified 

these causes into two categories which are, stack-related effects and non-stack -related 
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effects. Stack- related effects reduce the apparent frequency by selectively suppressing 

higher frequencies. Non-stack related effects could be due to intrinsic attenuation, 

multiple reflections from the top and bottom of a gas reservoir. Attenuation is like a low 

pass filter, it suppresses higher frequencies more than lower frequencies. Some reservoirs 

usually have a low attenuation coefficient (Q factor) than its background and exhibit 

zones of anomalous absorption lying in a larger background region (Winkler and Nur, 

1982). 

Wang, 2007 investigated the effects of attenuation on a seismic section, he applied an 

inverse Q filter to compensate high frequency energy loss due to attenuation and phase 

distortion resulting from frequency dispersion (figure 3.3). After running spectral 

decomposition on both data set (original seismic and the inverse Q filtered data), the 

spectral decomposition shows that low frequency shadows still exist on the inverse Q 

filtered data which implies that low frequency shadows beneath gas reservoirs are not 

entirely due  to attenuation. Castagna et al, (2009), investigated the cause of low 

frequency shadows in reservoirs by building wave equation based synthetic wedge model 

in which the wedge has a velocity and density close to that of gas sand and it is embedded 

in between high impedance rock with velocity and density similar to shale. They 

compared the frequency response due to attenuation, differences in velocity of brine sand 

and gas sand, and thickness. They conclude that the low frequency shadows are as a 

result of the low velocity of gas filled reservoir which causes time sag below the 

reservoir. Figure 3.5 shows spectra shifts due to gas accumulation in the reservoir. 
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   Figure 3.3: (a) The seismic section without inverse-Q filtering and, (b) the section  
   after inverse Q filtering. The filtered section shows reflections wavelets that are       
    narrow from shallow to deep. (Wang, 2007). 
     

 
  Figure 3.4: Frequency cubes of the inverse-Q filtered section. Low frequency  
  shadows  still exist on the cubes. (Wang, 2007). 
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 Figure 3.5: Shows the frequency response of attenuation, velocity and thickness 
respectively (left to right) at reservoir level. There is significant spectral shift due to 
velocity drop (Castagna et al., 2009). 
 

Techniques  

3.4 Continuous Wavelet Transform (CWT) 

CWT method of signal transform was introduced by Morlet et al. (1982) and Goupillaud 

et al. (1985). It scales and translates the basis wavelet to produce series of wavelets which 

are convolved with the signal to produce time scale map (scalogram). The scale map is 

then transformed into time-frequency map, for analysis of the amplitudes and phase 

spectra of the individual frequencies (Castagna et al., 2006). CWT uses variable sized 

window length to analyze the wavelet of the signal which eliminates the fixed time 

window constraint of STFT (Okaya et al., 1995). As the size of the bandpass (window 

length) increases, the center frequency increases (Morlet et al., 1982). If we define a 

wavelet as a function Rt ξψ )( , where )(tψ is continuous in both time and frequency 

domain, the scaling and translation of this basis wavelet )(tψ  generate series of wavelets: 

 )(1)(),( a
bt

a
tba

−
= ψψ

     (2)
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where a and b  are scale and translation parameter respectively. CWT of signal )(tf  with 

respect to wavelet )(tψ is given as: 

∫
∞

∞−

∗ −
= dt

a
bttf

a
CWT ba )()(1

),( ψ      (3) 

where ∗  represents a complex conjugate and ),( baCWT is time-scale map. To test the 

invertibility of CWT, (that is reconstruct the original signal), )(tf from CWT. The 

Inverse Continuous Wavelet Transform (ICWT) gives: 

∫∫
∞

∞−

∞ −
Ψ= dbda

a
bt

a
CWT

a
tf ba )(11)( ),(2

0    (4)
 

)(tΨ is the dual function of )(tψ and should satisfy admissibility condition (Morlet et al., 

1982). 

∫
∞

∞−
∞<

Ψ
= dw

w
w

C
2)(

ψ      (5) 

where ψC  is the admissibility constant, and Ψ is the Fourier transform ofψ . For a 

successful inverse transform, the admissibility constant must satisfy +∞<< ψC0  . 

Goupillaud et al.  (1985) states the admissibility conditions that must be satisfied by the 

basis wavelet. These conditions are stated as follows: 

(i) The wavelet must be absolutely integrable and square integrable (Okaya et al., 

1995). 

            ∫ ∞<dtt)(ψ  and ∫ ∞<dtt 2)(ψ  

(ii) The wavelet must be band limited with zero mean (Okaya et al., 1995). 
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∫ ∞<
Ψ .)( dw

w
w  

Morlet wavelet as formulated by Goupillaud et al.  (1985) satisfies the conditions above. 

Morlet wavelet is given as   

2

2

)(
t

jvtt
−

=ψ . 

The parameter v  allows tradeoff between time and frequency resolutions. The constraint 

5>v  is applied to prevent limitations with Morlet wavelet at high temporal resolution. 

Other wavelets that meet the admissibility conditions include: a vibroseis correlated 

wavelet, and an uncorrelated linear or nonlinear sweep but they are not as desirable as 

Morlet wavelet due to inherent ringiness (Okaya et al., 1995). The scale and the wavelet 

functions are the essential functions that define a wavelet. The scale factor a , either 

dilates or compresses a signal. It is responsible for the coverage of the spectrum of the 

wavelet, at a high value of a , the wavelet is compressed and the time resolution increases 

and at low value of a , the wavelet dilates and the time resolution decreases (Sinha et al., 

2005). Figure 3.6 shows Morlet wavelet at different scales. 
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  Figure 3.6: Morlet wavelet at different scales (Okaya et al., 1995).  
 
3.5 Discrete Fourier Transform 

DFT is a transform of a discrete time domain series into frequency domain (Okaya et al., 

1992). The input function is usually a sequence of finite set of evenly spaced time sample 

whose non-zero values have limited durations. This function is usually a segment of an 

infinite length periodic signal (Goupillaud et al., 1985). If this is not true, a window 

function is introduced to enhance the spectrum artifact. The Inverse Discrete Fourier 

Transform (IDFT) cannot reconstruct the entire length of the original time domain signal 

but it reproduces the analyzed finite segment (Mallat et al., 1989). DFT is most often 

computed from Fast Fourier Transform (FFT) algorithms which reduce the running speed 

of the FFT. DFT computation from FFT algorithm is of the 2N operation for 

transformation of an N-point sequence (Chambers et al., 1993). The transformation of a 

series of complex numbers 10 ..........,.. −Nxx  using DFT is given by: 

∑
−

=

−

=
1

0

2N

n

kn
N

i

nD xX
π

    (6) 
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where DX  is the amplitude and phase spectra of the sinusoidal components of the input 

sample nx . In polar form, the amplitude and  phase spectra can be expressed in terms of  

the complex modulus and argument of DX , 

)(/)(arctan( DeDmD XRXI=Φ  

where eR and mI are the real and imaginary components of DX respectively. The Inverse 

Discrete Fourier Transform (IDFT) is given as:  

 

∑
−

=

−

=
1

0

2

.1 N

D

N
kn

Dn X
N

X
π

.
     (7)

 

The above equation shows how to reconstruct the sampled function nx  by summing the 

sinusoidal components of equation (7) with frequency of 
N
k

cycles per sample. The 

vector N
iknπ2

forms the basis of the time series (Chambers et al., 1993). Transforming a 

time domain signal into frequency domain introduces aliasing which can be avoided if 

the Nquist frequency is higher than the maximum frequency component (Chambers et al., 

1993). The analyzing window also influences the DFT resolution in that using a window 

length that is too short smears energy across bandwidth beyond the band of the original 

seismic data. Using a window length that is too long causes interference between non 

isolated reflections within the analysis window. This effect degrades the temporal 

resolution (Castagna et al., 2003). 
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3.6 Constrained Lease Squares Spectral Analysis (CLSSA). 

CLSSA is a weighted least square constrained algorithm of spectral decomposition 

(Puryear et  

al., 2012).The forward problem is given as: 

dFM =                               (8) 

where F is the kernel matrix with complex sinusoidal basis, M  is the model parameter 

(desired spectral decomposition coefficients) and d  is the window segment of the 

complex seismic  trace. Since d  is a complex trace, it can be expressed as: 

iddd r +=          (9) 

where rd the real seismic traces and id  is the Hilbert transform of the trace. 

F  is a complex sinusoid with length defined by the length of the analyzing window in 

time domain. F can be represented as: 

θθθ iSinCosF +=)(      (10) 

where θ  is given as ,2 ftπ f is the discrete frequency and t  is the discrete time window. 

Inj matrix, columns in F  represent the number of frequencies and rows in F  are the 

number of samples in the time window. Solving equation (8), the Least Mean Square 

Error (LMSE) solution is given as: 

dFFFM ∗−∗= 1)(      (11) 

where * is the complex conjugate transpose, if the sinusoids are uncorrelated, F*F=1 

which reduces equation (11) to 

dFM *= .      (12) 
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To have a unique solution, equation (8) is constrained with diagonal matrices. mW  and 

.d mW W is the model weighted matrix (Puryear C., 2012) given by: 

)( fKGWm Δ=      (13) 

where )( fKG Δ  is the frequency panel of the windowed spectrum. 

According to Portniaguine et al., (2004) writing the analytical Lagrange solution to the 

well-posed minimization of the Tikhonov parameter function gives: 

.)*(* 1 dWIFFFM dwwww
−+= α    (15) 

Using Gaussian elimination, the above equation is computed. Where wF is a weighted 

quantity and dM is diagonal matrix. (Interested reader is referred to Puryear , 2012). 
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Chapter Four 
4.0 RESULTS AND DISCUSSION 
4.1 Direct Hydrocarbon Detection 
Spectral decomposition has a useful application to hydrocarbon detection, (e.g Castagna 

et al., 2003, Wei et al., 2011). The utility of spectral decomposition as hydrocarbon 

indicators is based on the fact that low frequency shadows are commonly observed 

beneath gas-charged reservoirs. These low frequency shadows are delineated as 

anomalous high amplitudes at low frequencies on iso-frequency sections, which 

gradually disappear at higher frequencies.  

The approach adopted in this research involves interpreting seismic horizons that 

corresponds to hydrocarbon reservoirs. The next step is to transform the seismic volume 

into iso frequency volumes using the spectral decomposition techniques discussed earlier 

(sections 3.4, 3.5, and 3.6). To inspect for hydrocarbon detection, horizon slices that 

correspond to the hydrocarbon reservoirs are extracted from the various frequency 

volumes to produce spectral horizon maps. These maps are visually inspected for 

amplitude variations that are diagnostic of hydrocarbon in the reservoir. 

Figure 4.1 shows the seismic section with yellow circle highlighting the Mississippian 

limestone (gas-charged reservoir) and black circle indicating the location of the Thirtyone 

Formation (gas reservoir). 

 

 

 



 

40 
 

 

 

  
Figure 4.1: Mississippian limestone (yellow circle) and the Thirtyone Formation 
 (black circle) on vertical seismic section. 
 
 
Figure 4.2a is a DFT frequency volume at 25 Hz showing low frequency shadows 

indicated by black arrows. These low frequency shadows were observed beneath the 

Mississippian limestone and the Fusselman Formation. The Mississippian is 

approximately 30 m in thickness and  the Fusselman Formation is about 25 m thick. At 

65Hz (figure 4.2b), DFT preferentially illuminate the reservoirs with no background 

energy around the gas reservoirs. CLSSA also shows the high energy low frequency 

shadow beneath the reservoirs at 20Hz (figure 4.3a) and at 30Hz (figure 4.3b), the high 

energy low frequency shadows have been attenuated. This validates the newly developed 

CLSSA as a good hydrocarbon detection technique. CWT also identifies high energy low 

frequency shadows on the frequency volume at 25Hz (figure 4.4a) and at 73Hz (figure 
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4.4b), the shadows were attenuated. There is preferential illumination of the reservoirs 

are preferentially illuminated with little background energy on the frequency volume. 

                                 

  
Figure 4.2a: DFT frequency section at 25 Hz, the black arrows point to the 
 positions of the low frequency shadow and the yellow arrows point to the top  
of the reservoirs. 
 
 

  
 Figure 4.2b: DFT frequency section at 65 Hz, yellow arrows point to the 
 reservoir location and the black arrow poing to the position of the shadows. 
 Notice the shadows are gone (black arrows). 
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Figure 4.3a: CLSSA at 20 Hz, black arrow point to the shadows and the 
 reservoirs locations are identify by yellow arrows. 
 

 

   
Figure 4.3b:CLSSA at 30 Hz the shadow are diminished (black arrow), the 
 Yellow arrows pointing to the top of the reservoir. 
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    Figure 4.4a: CWT at 25 Hz identifies the shadows (black aroows) and 
   reservoirs  (yellow arrows). 
 
 

    
  Figure 4.4b: CWT at 73, there is preferetcial illumination of the reservoirs, the  
  shadows are diminished (black arrows) 
 



 

44 
 

Figure (4.5a) is an amplitude map obtained by taking a time slice at 1740 ms (20 ms 

above the Mississippian limestone) through the 25 Hz DFT volume. Figure (4.5b) is a 

time slice at 1950 ms extracted from the same 25 Hz DFT volume across the low 

frequency shadow. The reservoir locations are highlighted in black circles. The 25 Hz 

frequency volume shows high spectral energy  at the location of the low frequency 

shadow (1950 ms), which is absent in the 1740 ms time slice indicating that the energy 

is localized around the low frequency shadow.  

Figure 4.6 is the same time slices (1740 ms and 1950 ms) extracted from a higher 

frequency volume (65 Hz). The low frequency shadow does not show anomalous high 

spectral energy at this higher frequency, suggesting that the anomalous energy is only 

observed at low frequencies. This observation is consistent with the definition of low 

frequency shadow 
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    Figure 4.5a: Amplitude extraction on 25Hz frequency section at 20 ms above 
    the  reservoir. The reservoir location is indicated by black circle. Note the low  
    energy at the reservoir and beneath the reservoir. 

 
 

          
       Figure 4.5b: Amplitude extraction on 25Hz section at the shadow. Notice the 

    high energy beneath the reservoir. 
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Figure 4.6a: Amplitude extraction on 65Hz frequency cube at 20 ms above  
the reservoir. Notice the higher energy beneath the reservoir compare  
with the amplitude extraction on the shadow (figure 4.6b) 

 

  
Figure 4.6b: Amplitude extraction on 65Hz section at the low frequency  
shadow. Note the low energy beneath the reservoir conforming to low  
frequency shadow diminishing at high frequency. 
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4.2 Structure Interpretation 

This study is extended to test the resolution of the various techniques in structural 

delineation. A meandering river on the Straton field exactly the same studied by Sinha et 

al., 2005, was used to validate the power of the techniques used. A channel was picked on 

the seismic section as shown in figure 4.7, the black arrow points to the location of the 

channel and the yellow line is the picked horizon. The RMS amplitude of the horizon is 

shown in figure 4.8 with black arrows pointing to the channel features. The horizon is 

extracted and CLSSA, DFT, and CWT algorithms were applied to further enhance the 

visibility of the features.  

 

  
Figure 4.7: Show the vertical seismic section with the location of the channel  
indicated with black arrow and the horizon pick in yellow. 
 
 
 
 
 

 



 

48 
 

 

  
Figure 4.8: RMS Amplitude map of the horizon, the arrows are pointing to  
the channel features on the map. 

 

CLSSA at 29Hz delineates the channel and further enhances it extent along the branching 

which was not seen on the amplitude map. Yellow arrows show the extension of the 

channel that was not seen on the amplitude map on the southwestern and northwestern 

part of the horizon spectral decomposition map (figure) 4.9. DFT horizon spectral 

decomposition with 40 ms analyzing window at 23Hz highlights the channel feature and 

also extends the branching beyond what was shown on the amplitude map, yellows 

arrows on figure 4.10 show the channel branching delineated by DFT but it suffers from 

background energy interference which blurs the continuity of the channel extent on the 

southwestern and northwestern part of the map. CWT at 57Hz delineates the channel 

feature (figure 4.11) but this method at some point has discontinuity in the lateral extent 

of the feature, it gives the least result in terms of delineating structures. 
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CLSSA gives the best result as it emphasized the channel more than it was highlighted on 

the RMS amplitude map. 

    
  Figure 4.9: CLSSA Horizon spectral decomposition at 29Hz the yellow arrows  
  indicate the extension of the channel seen on CLSSA that are not visible on 
  amplitude map. 
 

 

   
Figure 4.10: DFT Horizon spectral decomposition at 23Hz the yellow arrows  
indicate the extension of the channel seen on DFT that are not visible on 
amplitude map. 
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Figure 4.11: CWT horizon spectral decomposition at 57Hz, black arrows show the  
point of discontinuities of the channel on the map. 
 
 
4.3 FREQUENCY GATHER 

 
Frequency gather was computed on synthetic traces from two wells, Well 37 and Well 

46. This exercise is aimed at comparing the resolution of the techniques on a trace by 

trace basis. It was observed that CLSSA has a better resolution of separating events on 

seismic trace. It resolve side lobe distinctively and has minimal notches compared with 

other methods. DFT also did a good job of separating events on the traces, but it has the 

limitation of side lobe effects and notches were observed on the DFT frequency gather. 

CWT has the least resolution of the events, typical of CWT poor time resolution at low 

frequencies which is the major limitation of the technique on a seismic section with low 

frequency content. The black box in figure 4.12 shows two events that are closely 

spaced in time, CLSSA resolves these events distinctively without side lobe effects or 

interference pattern. DFT also separate the events but side lobe effect blurs the 
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separation while CWT could not separate the events in time. Figure 4.13 shows the 

position of the reservoir in black arrow, Although, CLSSA and DFT resolves these 

events, the time resolution of the CLSSA is better than DFT. 
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Figure 4.12a: Comparison of frequency gathers on synthetic trace from Well 37 
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Figure 4.12b: Comparison of frequency gathers on synthetic trace from Well 43 
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Chapter 5 

5.0 Conclusion 

Three spectral decomposition techniques, namely, DFT, CWT, and CLSSA were applied 

to a 3D seismic data from the Waha Fields, West Texas. These spectral decomposition 

techniques were accessed for their time-frequency resolution and effectiveness in 

delineating subtle reservoir features on seismic horizons. The amplitude spectra for these 

techniques were computed for a single seismic trace and for a seismic horizon. The 

results show CLSSA to have improved time-frequency resolution over the DFT and 

CWT. Spectral and temporal smearing that degrades the DFT and CWT spectrum are 

greatly reduced in the CLSSA spectrum. CLSSA is found to give better spectral 

characteristics of the original seismic and thus emphasizing subtle features not observed 

on the original seismic data. 

A second study to investigate the utility of these techniques as direct hydrocarbon 

indicators was also presented.  The result shows that DFT is best for hydrocarbon 

detection because the low frequency shadows were well localized and reservoirs were 

preferentially illuminated at high frequency. But CWT and CLSSA also identified the 

reservoirs in the study area. This research validates the recently developed CLSSA is a 

good structural delineation and hydrocarbon detection technique. 
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