INFINITE DIMENSIONAL MICROBUNDLES

A Dissertation
Presented to
the Faculty of the Department of Mathematics
University of Houston
Houston, Texas

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

by

William Glenn Whitley

August 1973

The author wishes to thank Professor D. G. Bourgin for his suggestions, direction, and encouragement during the preparation of this dissertation.

The author was supported by NDEA Title IV Fellowships during the academic years 1967-1970.

INFINITE DIMENSIONAL MICROBUNDLES

An Abstract of a Dissertation
 Presented to
 the Faculty of the Department of Mathematics
 University of Houston
 Houston, Texas

In Partial Fulfillment
 of the Requirements of the Degree Doctor of Philosophy

by

William Glenn Whitley

August 1973

ABSTRACT

This dissertation considers microbundles with no restriction on their fiber space. The first part of this dissertation extends some of the basic theorems about finite dimensional microbundles. Induced microbundles are defined and shown to behave like pull backs. Induced microbundles are then shown to have a homotopy invariance property.

In the later chapters attention is restricted to microbundles with normed spaces as fibers. "Fredholm" type structures are defined and a microbundle k-theory is introduced. Inductive limits of microbundles are discussed and the k-theory of simplicial complexes is investigated.

TABLE OF CONTENTS

Chapter I Basic Definitions 1
Chapter II Bundle Map Germs and the Homotopy Theorem 14
Chapter III Microbundle K-Theory 27
Chapter IV $k_{\text {top }}$ on Complexes 30References

Chapter I: Basic Definitions

Let F denote a topological space with base point 0 . Definition 1.1 A microbundle X with fiber F is a diagran

$$
B \xrightarrow{i} E \xrightarrow{j} B
$$

consisting of the following:
a) a topological space B called the base space;
b) a topological space E or $E(X)$ called the total space, and
c) continuous maps i and j called the injection and projection maps respectively. The composition $j i$ is required to be the identity map of B. Furthermore one requires:

Local Triviality: For each $b \varepsilon B$ there exists an open neighborhood U of b and an open neighborhood V of $i(b)$ with $i(U) \subseteq V$ and $j(V) \subseteq U$ so that V is homeomorphic to $U \times F$ under a homeomorphism h which makes the following diagram commute:

Here $x 0$ denotes the injection $x \mapsto(x, 0)$ and p_{1} denotes the projection map $(x, y) \longmapsto x$.

Examples

1)

$$
\mathrm{B} \xrightarrow{\mathrm{x} 0} \mathrm{~B} \times \mathrm{F} \xrightarrow{\mathrm{P}_{1}} \mathrm{~B} \text {. }
$$

This bundle is called the standard F bundle over B and is denoted by e_{B}^{F}.
2) Let ξ be a vector bundle over B with fiber F. Let E denote the total space of ξ, j the projection and $i: B \rightarrow E$ the 0 cross section. Then

is a microbundle. This microbundle is called the underlying microbundle of ξ and is denoted by $|\xi|$.
3) Let M be a topological manifold and let $\Delta: M \rightarrow M \times M$ denote the diagonal map. The diagran

denoted by t_{M}, is a microbundle and is called the tangent microbundle of M.

Lemma 1.2 The diagram t_{M} is a microbundle with fiber the model space of M .

Proof Let F denote the model space of M. Clearly $p_{1} \circ \Delta$ is the identity map of M. We must verify the local triviality condition. Given $p \varepsilon M$, let U be an open neighborhood of p which is homeomorphic to F under the homeomorphism f.

Define $h: U \times U \longrightarrow U \times F$ by $h(a, b)=(a, f(b)-f(a))$. Clearly h is a homeomorphism since f is a homeomorphism. Also,

$$
h \circ \Delta_{\left.\right|_{U}}(a)=h(a, a)=(a, 0)=x 0(a), \text { and } p_{1} \circ h(a, b)=p_{1}(a, b) \text {, }
$$

and one has commutivity of the diagram

Definition 1.3 Suppose X_{1} and X_{2} are microbundles with diagrams

$$
B \xrightarrow{i_{1}} E_{1} \xrightarrow{j_{1}} B \quad \text { and } B \xrightarrow{i_{2}} E_{2} \xrightarrow{j_{2}} B \text {. }
$$

We say X_{1} is isomorphic to X_{2} if there are open neighborhoods V_{1} of $i_{1}(B)$ in E_{1} and V_{2} of $i_{2}(B)$ in E_{2}, and a homeomorphism h from V_{1} to V_{2} such that the following diagram commutes:

The notation $\chi_{1} \cong \chi_{2}$ will be used for this relation of isomorphism.

It is easily seen that this relation of isomorphism is reflexive, symmetric, and transitive.

Definition 1.4 A microbundle over a space B is called trivial if it is isomorphic to some standard microbundle. A manifold is topologically parallelizable if its tangent microbundle t_{M} is trivial.

If M is a smooth $\left(C^{\infty}\right)$ manifold we have two concepts of tangent bundle, t_{M} and $T M$. These structures appear to be different since |TM| is a vector bundle and t_{M}, in general, is not. However, as microbundles they are isomorphic if M admits smooth partitions of unity, Let us recall some facts from differential topology which will be used in proving this statement. See Lange [8, Chapter 4] for details.

Let X be a manifold of class C^{p} with $p \geq 2$, and let $\pi: T X \rightarrow X$ be its tangent bundle. A vector field on X is a map of class C^{p-1}

$$
\xi: X \rightarrow T X
$$

such that $\pi \xi=i d_{X}$. Suppose x_{0} is a point of X and ξ is a vector field on X. An integral curve for the vector field ξ with initial condition x_{0} is a function of class c^{p-1}

$$
\alpha: J \longrightarrow X
$$

rapping an open interval J of R which contains 0 into X, such that

$$
\begin{aligned}
\alpha(0) & =x_{0} \quad \text { and } \\
\alpha^{\prime}(t) & =\xi(\alpha(t))
\end{aligned}
$$

for all $t \in J$.

Now, assume that X is a manifold of class c^{P} with $p \geq 3$. A second order differential equation over X is a vector field ξ on TX (of class C^{p-2}) such that, if π denotes the canonical projection of TX onto X, then

$$
\pi_{*} \xi(v)=v
$$

for all v in $T X$ [8, pp. 67-68]. If ξ is a second order differential equation over X and $v \in T X$ there is a unique integral curve of ξ with initial condition $v, \quad\left[8\right.$, Theorem 2, pg. 64] . Denote this curve by β_{v}. Let D be the set of vectors v on TX such that β_{v} is defined at least on $[0,1], D$ is open in $T X$ and the map

$$
v \rightarrow \beta_{v}(1)
$$

is a $C^{\mathrm{p}-1}$ map of D into TX . Define the exponential map of ξ

$$
\exp \xi: D \rightarrow X
$$

to be

$$
\exp \xi(v)=\pi \beta_{v}(1)
$$

$\operatorname{Exp} \xi$ is a c^{p-2} function $[8, \mathrm{pg} .69]$.
This exponential map is giving us a preferred set of paths:
in X, one through each point of X. However, for an arbitrary second order differential equation we have very little control over the lengths of these paths or how they range from point to point of X. Hence, we will restrict ourselves to a special class of second order differential equations. This class will give us a 'nice' exponential map.

Let ξ be a second order differential equation on the C^{p} manifold $X(p \geq 3) \cdot \xi$ is a spray over X if for each $v \in T X$, a number t is in the domain of β_{v} if and only if 1 is in the domain of $\beta_{t v}$, and then

$$
\pi \beta_{v}(t)=\pi \beta_{t v}(1)
$$

Now, suppose that X also admits C^{p} partitions of unity. Then there is a spray ξ over $X \quad$ [8, Theorem 7, pg. 70] and the exponential map, $\exp \xi$, for this spray is a local isomorphism on the fibers in $T X$ [8, Theorem 8, pg. 72]. Hence, we can use this exponential map to construct tubular neighborhoods [8, Theorem 9, pg. 73].

Theorem 1.5 Let M be a c^{k} manifold ($k \geq 3$) which admits c^{k} partitions of unity. Then the underlying microbundle $|\mathrm{TM}|$ is $\mathrm{C}^{\mathrm{k}-2}$ isomorphic to the tangent microbundle t_{M}.

Proof Since M admits C^{k} partitions of unity there is a spray γ over M. Thus there is an open neighborhood U of the 0 cross section in TM such that the exponential map for γ, $\exp \gamma$, maps $U C^{k-2}$ diffeomorphicly onto an open neighborhood V of the diagonal in $\mathrm{M} \times \mathrm{M}$. Recall also that $\exp \gamma$ maps the 0 cross section onto the diagonal. Thus, if α denotes the 0 section, the diagram

commutes, and exp γ is a c^{k-2} isomorphism. Hence $|T M|$ and t_{M} are c^{k-2} isomorphic as microbundles.

Definition 2.6 Suppose X is a microbundle with diagram

$$
\mathrm{B} \xrightarrow{i} \mathrm{E} \xrightarrow{\mathrm{j}_{.}} \mathrm{B},
$$

and f is a continuous map from the space A to B. Then the induced microbundle $f^{*} X$ is the diagram

$$
A \xrightarrow{i^{\prime}} E^{\prime} \xrightarrow{p^{\prime}} A,
$$

where

$$
E^{\prime}=\{(a, e) \varepsilon \cdot A x E \mid f(a)=j(e)\}, i^{\prime}(a)=\prime(a, i f(a)) \text { and } p_{1}(a, e)=a
$$

Theorem 1.7 The diagram $f^{*} X$ is a microbundle.

Proof Let E^{\prime} have the relative topology of the product topology on Ax E. Clearly i^{\prime} and p_{1} are continuous. Moreover,

$$
p_{1} i^{\prime}(a)=p_{1}(a, i f(a))=a
$$

We must now verify the local triviality condition. Choose an a ε. Since X is locally trivial, there are open sets U and V about $f(a)$ and if(a), respectively, and a homeomorphism h such that the following diagram commutes:

Let S be the inverse image of U under f and let T be the intersection of E^{\prime} and $S \times V$. The set S is open in A and a εS; therefore T is open in E^{\prime} and $i^{\prime}(a)=(a, i f(a)) \varepsilon T$. Define

$$
\mathrm{k}: \mathrm{T} \longrightarrow \mathrm{~S} \times \mathrm{F}
$$

by

$$
k\left(a^{\prime}, e\right)=\left(a^{\prime}, p_{2} h(e)\right)
$$

Since $i d_{A}, p_{2}$, and h are continuous and open maps, k is an open and continuous map. One must show that k is bijective and that the following diagram commutes:

Suppose $k\left(a^{\prime}, e\right)=k\left(a^{\prime \prime}, e^{\prime}\right)$. Then $a^{\prime}=a^{\prime \prime}$ and $p_{2} h(e)=$ $p_{2} h\left(e^{\prime}\right)$. Since ($\left.a^{\prime}, e\right)$ and ($\left.a^{\prime}, e^{\prime}\right)$ are elements of E^{\prime} we have

$$
p_{1} h(e)=j(e)=f\left(a^{\prime}\right)=j\left(e^{\prime}\right)=p_{1} h(e)
$$

Hence $h(e)=h\left(e^{\prime}\right)$, and $e=e^{\prime}$.

Choose an (a!'f) in $S \times F$. Then $\left(f\left(a^{\prime}\right), x\right) \varepsilon U \times F$; hence, there is a $v \in V$ such that $h(v)=\left(f\left(a^{\prime}\right), x\right)$. Now $\left(a^{\prime}, v\right) \varepsilon f^{-1}(U) x V$, and $j(v)=p_{1}(h(v))=f\left(a^{\prime}\right)$, and $\left(a^{\prime}, v\right) \varepsilon T$. Also

$$
k\left(a^{\prime} v\right)=\left(a^{\prime}, p_{2} h(v)\right)=\left(a^{x}, x\right)
$$

Thus k is bijective.
The diagram commutes since

$$
k i^{\prime}\left(a^{\prime}\right)=k\left(a^{\prime}, \operatorname{if}\left(a^{\prime}\right)\right)=\left(a^{\prime}, p_{2} \operatorname{hif}\left(a^{\prime}\right)\right)=\left(a^{\prime}, p_{2}\left(f\left(a^{\prime}\right), 0\right)\right)=\left(a^{\prime}, 0\right)
$$

and

$$
p_{1} k\left(a^{\prime}, e\right)=p_{1}\left(a^{\prime}, p_{2} h(e)\right)=a^{\prime}=p_{1}\left(a^{\prime}, e\right)
$$

Theorem 1.8 If X is a trivial microbundle and f is a continuous function, then $f * X$ is a trivial microbundle.

Proof Suppose X has fiber F and diagram

$$
B \xrightarrow{i} E \xrightarrow{j} B \text {. }
$$

Since X is trivial, there are open sets V_{1} and V_{2} in E and $B \times F$ respectively, and a homeomorphism h such that the diagram

commutes. Let E^{\prime} denote the total space of $f * X$. Let $V_{3}=E \cdot \cap p_{2}^{-1}\left(V_{1}\right)$, where p_{2} is the projection of $A x E$ onto the second factor. The set V_{3} is open in E^{\prime} and $i^{\prime}(A) \subseteq V_{3} \cdot$. This is the case, since if a εA, then

$$
p_{2} i^{\prime}(a)=p_{2}(a, i f(a))=\operatorname{if}(a) \varepsilon V_{1}
$$

Define the function ϕ from V_{3} to $A \times F$ by

$$
\phi=\left.\left(i d_{A} \times p_{2} h\right)\right|_{V_{3}},
$$

where p_{2} is the second projection of $B \times F$ onto F.
We will show that ϕ is an embedding of V_{3} onto an open set in $A \times F$. Since $i d_{A}, p_{2}$ and h are continuous open maps ϕ is continuous and open. Now suppose $\phi(a, e)=\phi(x, y)$. Then $a=x$ and $p_{2} h(e)=p_{2} h(y) \cdot$ But

$$
p_{1} h(e)=j(e)=f(a)=j(y)=p_{1} h(y) .
$$

Thus ϕ is injective.
Let V_{4} be $\phi\left(V_{3}\right)$. Then V_{4} is open in $A \times F$ and the following diagram commutes:

Definition 1.9 Suppose X_{1} and X_{2} are microbundles with diagrams

$$
B \xrightarrow{i} E \xrightarrow{j} B \text { and } A \xrightarrow{g} D \xrightarrow{h} A \text {, }
$$

respectively. Suppose f is a continuous function from the space A to B. An f microbundle homomorphism from X_{2} to X_{1} is a continuous map from D to E such that the following diagram commutes:

We will say that ϕ is a lift of f, or that ϕ covers f. Note that we have been using the language and notation $f \stackrel{\rightharpoonup}{*} \chi$ of pullbacks. The following collection of theorems will justify this terminology. We will show that the induced bundles satisfy a "universal mapping property" which is very similar to that of a pullback.

Lemma 1.10 Suppose X is a microbundle with diagram

$$
B \xrightarrow{i} E \xrightarrow{j} B,
$$

and \mathbf{f} is a continuous map from the space A to B. Let E^{\prime} denote the total space of $f^{*} X$. The map $f *$ from E to E defined by $f \div(a, e)=e$ is an f microbundle homomorphism from $f * X$ to X.

Proof Clearly f^{F} \% is continuous since E^{\prime} has the product topology. . Since,

$$
f * i^{\prime}(a)=f *(a, i f(a))=i f(a)
$$

and

$$
j f *(a, e)=j(e)=f(a)=f\left(p_{1}(a, e)\right)
$$

for (a,e) in E^{\prime}, we have commutativity in the diagram

Theorem 1.11 Suppose X_{1} and X are microbundles with diagrams

$$
A \xrightarrow{h} \mathrm{~K} \longrightarrow \mathrm{~g} A \text { and } B \xrightarrow{i} \mathrm{E} \xrightarrow{j} \mathrm{~B} \text {, }
$$

and f is a continuous function from A to B. Suppose k is an f microbundle homomorphism from X_{1} to X. Then there is a unique id_{A} microbundle homomorphism ϕ from X_{1} to $f \approx X$ such that $f \approx \phi=k$,

$$
\phi(x)=(g(x), k(x))
$$

a) $\phi(x) \varepsilon E^{\prime}$ for each $x \in K$, since $f g(x)=j k(x)$.
b) Since g and k are continuous, ϕ is continuous.
c)

d) $f * \phi(x)=f *(g(x), k(x))=k(x)$.
e) ϕ is unique with these properties.

Suppose θ is an id_{A} microbundle homomorphism from X_{1} to $\mathrm{f} * \mathrm{X}$ and $f * \phi=k=f * \theta$. Choose an element x of K. Since $f *$ is the restriction of the second projection of $A \times E$ onto E and $f * \phi(x)=f * \theta(x)$ the second components of $\theta(x)$ and $\phi(x)$ are the same. Since θ and ϕ are $i d_{A}$ homomorphisms, $p_{1} \phi=p_{1} \theta$. Hence the first components of $\phi(x)$ and $\theta(x)$ are the same. Thus $\phi=\theta$.

Definition 1.12 A microbundle x with diagram

and fiber F is strongly trivial if there is an open set V containing $i(B)$ and a homeomorphism $h: V \longrightarrow B \times F$ which is compatible with the injections and projections.

Chapter II: Bundle Map Germs and the Homotopy Theorem

This chapter will be devoted to proving the following homotopy invariance theorem for induced microbundles.

Theorem 2.1 Suppose B is a paracompact space, f_{0} and f_{1} are homotopic maps from B to B^{\prime}, and X is a microbundle with base space B^{\prime}. Then $f_{0} * X$ and $f_{1} * X$ are isomorphic.

First let us recall the definition of a map germ and some of their basic properties. Suppose (E, B) and (E^{\prime}, B^{\prime}) are pairs of spaces. A map germ G from (E, B) to ($\left.E^{\prime}, B^{\prime}\right)$, denoted by $G^{\prime}(E, B) \Rightarrow\left(E^{\prime}, B^{\prime}\right)$ is an equivalence class of continuous mappings g, each defined on some open neighbornood U_{g} of B in E, and mapping the pair (U_{g}, B) into (E^{\prime}, B^{\prime}). Two such maps, g and g^{\prime}, are equivalent if and only if $g\left|V=g^{\prime}\right| V$ for some sufficiently small open neighborhood V of B.

The composition $H G$ of two map germs

$$
\left.(E, B) \Longrightarrow G\left(E^{\prime}, B^{\prime}\right) \Longrightarrow H\left(E^{\prime}\right), B^{\prime}\right)
$$

if defined in the following manner. Choose $g \varepsilon G$ and $h \in H$. Suppose g and h have domains U_{g} and U_{h} respectively. Let $V=g^{-1}\left(U_{h}\right)$. HG is the map germ determined by hglv.

Now consider a microbundle X over B. We adopt the following notation from J. Milnor [9]. The projection map $j: E \rightarrow B$ determines a map germ $(E, i B) \Longrightarrow(B, B)$ denoted by J and called the projection
germ of X. Two convenient notation simplifications will be used:

1) The pair (B,B) will be denoted by B.
2) The space B will be identified with its image $i B$.

Using these conventions we may simply write

$$
J:(E, B) \Longrightarrow B
$$

Suppose X and X ' are microbundles with diagrams

respectively. Suppose $G:(E, B) \Longrightarrow\left(E^{\prime}, B^{\prime}\right)$ is a map germ with representative $\mathrm{g}: \mathrm{U}_{\mathrm{g}} \longrightarrow \mathrm{E}^{\prime}$.

Definition 2.2 G. is a bundle map. germ if it satisfies the following conditions:
a) There is an open neighborhood T of $i(B)$ in U_{g} such that g maps each fiber $j^{-1}(b) \quad T$ in a one to one open fashion into some fiber $j^{-1}\left(b^{\prime}\right)$ of X^{\prime}.
b) For each $b_{0} \& B$ there are trivializing maps h and h.

at b_{0} and $j^{\prime} g i\left(b_{0}\right)$ such that there exist open sets S about 0 in F and Y about b_{0} in B such that if $\left(b, x_{0}\right)$ is an element of $Y \times S$
and R is a sufficiently small open set about X_{0}, there are open sets Q about $p_{2} h^{\prime} g h^{-1}\left(b, x_{0}\right)$ and P about b such that

$$
h^{\prime} g h^{-1}\left(b, x_{0}\right) \varepsilon j^{\prime} g i(P) \times Q \subseteq h^{\prime} g h^{-1}(P \times R)
$$

Sufficiently small, as used here, means that there is an open set R_{0} about x_{0} such that if R is an open set about x_{0} and $R \subseteq R_{0}$ then R meets the required conditions.

The pair of trivializations h and h^{\prime} described in b) will be called an allowable trivializing pair for G. Statement b) also implies that if g is an open map on $i B$ to $i^{\prime} B$, then on a small enough neighborhood ' V of $i B, g$ is an open map from V to E ', as can be seen by slightly modifying Lenma 2.3 .

Lenta 2.3 Suppose $B=B^{\prime}$ and G is a bundle map germ from X to X which covers the identity map of B. Then G is an isomorphism germ.

Proof First consider the special case that $g \varepsilon G$ and $g: B \times F \longrightarrow B \times F \cdot$ Clearly g is continuous and l-1 on a sufficiently small open neighborhood of $i B$. All one need show is that g is open on an open set about $i B$. For $b \in B$ define $g_{b}: F \rightarrow F^{\prime}$ by $g_{b}(x)=g(b, x)$. Choose $a \quad b_{0} \varepsilon B$ and S and Y as in Definition 2.2(b).

Claim The map g is open on $Y \times S$.

Choose a $\left(b_{1}, x_{1}\right) \varepsilon Y \times S$ and an open set 0 about $\left(b_{1}, x_{1}\right)$. Choose open sets R, Q, and P as in Definition 2.2 part (b) such that

$$
\left(b_{1}, x_{1}\right) \varepsilon R \subseteq\{x \mid(\vec{b}, x) \varepsilon 0\}
$$

P is a subset of Y and $P \times R$ is a subset of 0 . Thus

$$
g\left(b_{1}, x_{1}\right) \varepsilon j^{\prime} g i(P) \times Q \subseteq g(P \times R) \subseteq g(0)
$$

Since $j g i(P)=P, g$ is open at $\left(b_{1}, x_{1}\right)$. Hence, g is open on $Y \times S$.
Let V be the union over $b_{0} \varepsilon B$ of the $Y \times S$. Then V is an open neighborhood of $i B$ and g is open on V.

Now consider the general case. Let $g: U_{g} \longrightarrow E^{\prime}$ be a representative of G. Assume that U_{g} is sufficiently small so that g is fiber preserving, 1-1, and open on the fibers. We need only find an open set W such that g is open on W and $i B$ is contained in W. We have shown that for each $b \varepsilon B$ there is an open set W_{b} in a trivializing neighborhood of $i(b)$ in U_{g} such that g maps W_{b} onto an open set $g\left(W_{b}\right) \subseteq E^{\prime}$. Taking W to be the union over the $b \varepsilon B$ of the W_{b}, it follows immediately that g maps W homeomorphicly onto an open set in 'E'. Therefore, G is an isomorphism germ.

Corollary 2.4 If $f: B \longrightarrow B^{\prime}$ is covered by a bundle map germ $G: X \Longrightarrow X^{\prime}$, then X is isomorphic to the induced bundle $f^{\prime} \times X^{\prime}$.

Proof Let $g: U_{g} \rightarrow E^{\prime}$ be a representitive for G. Then

commutes and there is a map ϕ such that the following diagram commutes:

Recall that ϕ is defined by $\phi(x)=(j(x), g(x))$. Clearly ϕ covers the identity map. Suppose ϕ is an allowable representative map for a bundle map germ H. Then H is an isomorphism germ and $\mathrm{f} * \mathrm{X}$ is isomorphic to X.

We now show that ϕ is an allowable map for a bundle map germ. Since g is a representative for a bundle map germ, there is an open set T in E such that T contains $i B$, and g is $1-1$ and open on the fibers in T. ϕ is also I-1 and open on fibers in T. We will show that ϕ maps fibers in a trivialization just as g maps them. This will verify part b of Definition 2.2. Let h and h^{\prime} be allowable trivializations for g, Let k be the trivialization of X, associated
with h^{\prime} as defined in Theorem 1.7:

$$
k(b, e)=\left(b, p_{2} h^{\prime}(e)\right)
$$

Then we have

$$
\begin{aligned}
k \phi h^{-1}(b, x) & =k\left(j h^{-1}(x), g h^{-1}(x)\right)=k\left(b, g h^{-1}(x)\right) \\
& =\left(b, p_{2} h^{\prime} g h^{-1}(x)\right)=k \cdot g h^{-1}(b, x)
\end{aligned}
$$

Lemma 2.5 (Henderson, [4, Proposition 3]) Let X be a microbundle with base space Y. Suppose Y is the union of two closed sets A and B. Suppose there is a retraction $r: B \rightarrow A \cap B, X$ is strongly trivial over B, and X is trivial over A. Then X is trivial.

Corollary 2.6 Let X be a microbundle with base space $B \times[0,1]$ such that X is trivial over $B x\left[0, \frac{1}{2}\right]$ and strongly trivial over $B \times\left[\frac{1}{2}, I\right]$. Then X is trivial.

Lemma 2.7 Suppose h and h, are allowable trivializations for a bundle map germ $G: x \Longrightarrow x^{\prime}$ at b_{0} and $b_{1}=G_{B}\left(b_{0}\right)$. If k is any trivialization of X^{\prime} at b_{1}, then h and k are allowable trivializations of G. Here G_{B} denotes the restriction of any element of G to B.

Proof Choose a representative map $g: U_{g} \longrightarrow E^{\prime}$ of G and assume that h^{\prime} and k have been restricted so that they have the same range
$U^{\prime} \times F^{\prime}$. Thus we have
$\mathrm{U} \times \mathrm{F} \xrightarrow{\mathrm{h}^{-1}} \mathrm{~V} \xrightarrow{\mathrm{~g}} \mathrm{~V}^{\prime} \xrightarrow{\mathrm{h}^{\prime}} \mathrm{U}^{\prime} \times \mathrm{F}^{\prime} \xrightarrow{\mathrm{kh}^{\mathbf{n}^{-1}}} \mathrm{U}^{\prime} \times \mathrm{F}$
(A) and

Note that g may not be defined on all of V, but it maps an open subset of V into V^{\prime}. Assume S and Y have been chosen as in Definition 2.2(b). Choose (b, x) $\varepsilon \mathrm{Y} \times \mathrm{S}$. Choose R, Q, and P as in $2.2, b$. We will use the notation of diagram (A). Let $X=k h^{-1}\left(U^{\prime} \times Q\right.$). Then X is open and ($\left.b^{\prime}, x^{\prime \prime}\right) \varepsilon X$ since $\left(b^{\prime}, x^{\prime}\right) \varepsilon U^{\prime} x Q$. Hence there are open sets W about $b^{\prime \prime}$ and $Q^{\prime \prime}$ about $x^{\prime \prime}$ such that ($\left.b^{\prime}, x^{\prime \prime}\right) E W \times Q^{\prime} \subseteq X$.
Let $P^{\prime}=\left(\left(j^{\prime} g i\right)^{-1} W\right) \cap P$. P^{\prime} is an open set and $b \varepsilon P^{\prime}$. Also $j^{\prime} g i\left(P^{\prime}\right) \times Q \subseteq h^{\prime} g h^{-1}\left(P^{\prime} \times R\right)$. Thus we have our desired result: $j^{\prime} g i\left(P^{\prime}\right) \times Q^{\prime} \subseteq k h^{-1}\left(j g i\left(P^{\prime}\right) \times Q\right) \subseteq k h^{-1}\left(h^{\prime} g h^{-1}\left(P^{\prime} \times R\right)\right)=k g h^{-1}\left(P^{\prime} \times R\right)$.

Lemma 2.8 Suppose X_{0}, X_{1} and X_{2} are microbundles with diagrams

$$
\mathrm{B}_{0} \xrightarrow{\mathrm{i}_{0}} \mathrm{E}_{0} \xrightarrow{\mathrm{j}_{0}} \mathrm{~B}_{0}, \mathrm{~B}_{1} \xrightarrow{\mathrm{i}_{1}} \mathrm{E}_{1} \xrightarrow{\mathrm{j}_{1}} \mathrm{~B}_{1},:
$$

$G: X_{1} \Rightarrow X_{2}$ are bundle map germs, then $G D$ is a bundle map germ.

Proof Choose $b_{0} \in B_{0}, d \in D$, and $g \varepsilon G$. Let h_{0} and k_{1} be allowable trivializations for d at b_{0} and $b_{1}=j_{1} d i_{0}\left(b_{0}\right)$. Let h_{1} and h_{2} be allowable trivializations for g at b_{1} and $b_{2}=j_{2} g i_{1}\left(b_{1}\right)$. By Lemma 2.7 we may assume that $k_{1}=h_{1}$. Choose Y_{I} and S_{I} about b_{1} and 0 as in Definition 2.2,b. Choose Y_{0} and S_{0} for d as in Definition $2.2, b$, such that

$$
Y_{0} \subseteq\left(j_{1} d i j\right)^{-1}\left(Y_{1}\right) \quad \text { and } \quad h_{1} d h j^{-I}\left(Y_{0} \times S_{0}\right) \subseteq Y_{I} \times S_{I}
$$

Let (b, x) be an element of $Y_{0} \times S_{0}$. Choose a sufficiently small open set R about x, and open sets P and Q about b and $p_{2} h_{1} d h_{0}^{-1}(b, x)$ such that

$$
\left(b^{\prime}, x^{\prime}\right)=h_{1} d h_{0}^{-1}(b, x) E j_{1} d i_{0}(P) \times Q \subseteq h_{1} d h_{0}^{-1}(P \times R)
$$

One may also assume that Q was chosen small enough so that there will be open sets P_{1} and Q_{1} about b^{\prime} and $p_{2} h_{2} g h_{1}^{-1}\left(b^{\prime}, x^{\prime}\right)$, respectively, such that

$$
h_{2} g h_{1}^{-1}\left(b^{\prime}, x^{\prime}\right) \varepsilon j_{2} g i_{1}\left(P_{1}\right) \times Q_{1} \subseteq h_{2} g h_{1}^{-1}\left(P_{1} \times Q\right)
$$

Let $P^{\prime}=\left(j_{1} d i_{0}\right)^{-I}\left(P_{1}\right) \cap P$. The set P^{\prime} is open and $b \in P^{\prime}$. Clearly $h_{2}{g d h_{0}}^{-1}(b, x) \varepsilon j_{2} g d i_{0}\left(P^{\prime}\right) \times Q_{I}$. All one needs to show is that $j_{2} \operatorname{gdi}_{0}\left(P^{\prime}\right) \times Q_{1} \subseteq h_{2} \operatorname{gdh}_{0}^{-1}\left(P^{\prime} \times R\right)$.

Choose $(b, x) \varepsilon P^{\prime} \times Q_{1}$. Since $b \varepsilon P^{\prime}, j d i_{0}(b) \varepsilon P_{1}$. Combining this fact with x being an element of Q_{I}, we see that

$$
\left(j_{2} g i_{1} j_{1} d i_{0}(b), x\right) \varepsilon h_{2} g h_{1}^{-1}\left(\left(j d i_{0}(b)\right) \times Q\right) .
$$

Hence, we have that

$$
\begin{aligned}
&\left(j_{2} g d i_{0}(b), x\right) \varepsilon h_{2} \mathrm{gh}_{I}^{-1}\left(\left(j_{1} \mathrm{di}_{0}(b) \times Q\right)\right. \\
& \subseteq h_{2} \mathrm{gh}_{I}^{-1}\left(h_{1} \mathrm{dh}_{0}^{-1}(b \times R)\right) \\
&=h_{2} g d h_{0}^{-1}(b \times R) \\
& \subseteq h_{2} \operatorname{gdh}_{0}^{-1}(P \times R)
\end{aligned}
$$

Lemma 2.9 Suppose X and X^{\prime} are microbundles with diagrams

respectively. Suppose $G: X \Longrightarrow X$ is a bundle map germ, $b \in B$, and h and h are allowable trivializations for G at b and $j^{\prime} G_{B} i(b)$. If k is any trivialization of X at b, then k and h ' are allowable trivializations for G.

Proof Consider the identity map germ from X to X. The map pair k and k is an allowable trivializing pair for the identity at b and b. The proof of Lemma 2.8 shows that k and h are an allowable trivializing pair for $G(I d)=G$.

Lemma 2.7 and Lemma 2.9 together imply that if $G: X \Longrightarrow X^{\prime}$ is a bundle map germ and $b \varepsilon B$, then any trivializations h of X at b and h^{\prime} of X^{\prime} at $j^{\prime} G_{B}(b), h$ and h^{\prime} are allowable for G.

Thus we can choose trivializations arbitrarily for a bundle map germ without having to require them to be allowable.

Lemma 2.10 Let X be a microbundle over B and let B_{α} be a locally finite collection of closed sets covering B. Suppose $G_{\alpha}: X_{B_{\alpha}} \Rightarrow \eta$ is a collection of bundle map germs such that for each $(\alpha, \beta) G_{\alpha}$ coincides with G_{β} on $\left.X\right|_{B_{\alpha} \cap B_{\beta}}$. Then there is a bundle map germ $G: \chi \Rightarrow \eta$ which extends each G_{α}.

Proof Let $g_{\alpha}: U_{\alpha} \longrightarrow E^{\prime}$ be a representitive for G_{α}. Suppose g_{α} coincides with g_{β} on a set $U_{\alpha \beta}$ which is an open neighborhood of $B_{\alpha} \cap B_{\beta}$ in $U_{\alpha} \cap U_{\beta}$. Let U be the set of all e $\mathcal{E} E$ such that
i) if $j(e) \varepsilon B_{\alpha} \cap B_{\beta}$, then $e \varepsilon U_{\alpha \beta}$
ii) if $j(e) \varepsilon B_{\alpha}$, then $e \varepsilon U_{\alpha}$.

Since the ${ }^{B}{ }_{\alpha}$'s are locally finite U is open. Define the function $g: U \rightarrow E^{\prime}$ by $g(e)=g_{\alpha}(e)$ if e $\varepsilon U_{\alpha} \cap U$.

We now show that g is allowable map for a bundle map germ.
Choose $b_{0} \& B$ and an open set U about b_{0} so that U ' intersects only finitely many $B_{\alpha}{ }^{\prime} s$, say $B_{1}, B_{2}, \ldots, B_{n}$. For simplicity we will consider only the case $n=2$. Let h and h be trivializations of X and η at b_{0}. and $j^{\prime} g i\left(b_{0}\right)$. If there is an open set about b_{0} that is contained entirely in B_{1} or B_{2}, then Definition 2.2(b) is satisfied at b_{0}. Suppose that any open set $a b o u t b_{0}$ intersects
B_{1} and B_{2}. There are open sets S_{1} and S_{2} about 0 in F and Y_{I} and Y_{2} about b_{0} such that $\left(Y_{1} \cap B_{1}\right) \times S_{1}$ and $\left(Y_{2} \cap B_{2}\right) \times S_{2}$ satisfy Definition $2.2(b)$ for g_{1} and g_{2}, respectively. Choose open sets Y and S about b_{0} and $0_{\text {, respectively }}$, so that $Y \subseteq Y_{1} \cap Y_{2} \cap j$ (domain $\left.h\right) \cap U, \quad S \subseteq S_{1} \cap S_{2}$ and $Y X S \subseteq h(U)$. Choose $(b, x) \varepsilon Y \times S$. Again, if b is in only one of B_{1} or B_{2} then, Difinition $2.2(b)$ is satisfied at (b,x). Suppose $b \in B_{I} \cap B_{2}$ and $i \in\{1 ; 2\}$. If $R \subseteq S$ is a sufficiently small open set about x, there are open sets Q_{i} and P_{i} about $p_{2} h^{\prime} g_{i} h^{-1}(b, x)$ and b, respectively, such that

$$
\left.h^{\prime} g_{i} h^{-1}(b, x) \varepsilon j^{-1} g_{i} i\left(P_{i} \cap B_{i}\right) \times Q_{i} \subseteq h^{\prime} g_{i} h^{-1}\left(P_{i} \cap B_{i}\right) x R\right)
$$

Let $P=P_{1} \cap P_{2} \cap Y$ and $Q=Q_{1} \cap Q_{2}$. Since $P \subseteq Y \subseteq U$, $P \subseteq B_{1} \cup B_{2}$. If $(a, y) \varepsilon P \times R$, then $(a, y) \varepsilon Y \times S$ and $h^{-1}(\mathrm{a}, \mathrm{y}) \in \mathrm{U}$. Thus

$$
h^{\prime} g_{1} h^{-1}(a, y)=h^{\prime} g_{2} h^{-1}(a, y)=h^{\prime} g h^{-1}(a, y)
$$

whenever they are defined. We now have

$$
\begin{aligned}
& h^{\prime} g h^{-1}(b, x) \varepsilon j^{\prime} g i(P) \times Q=\left(j g_{1} i\left(P \cap B_{1}\right) \times Q\right) \cup\left(j g_{2} i\left(P \cap B_{2}\right) \times Q\right) \\
& \quad \subseteq h^{\prime} g_{1} h^{-1}\left(\left(P \cap B_{1}\right) \times R\right) \cup h^{\prime} g_{2} h^{-1}\left(\left(P \cap B_{2}\right) \times R\right) \\
& \quad=h g h^{-1}\left(\left(P \cap B_{1}\right) \times R\right) \cup h^{\prime} g h^{-1}\left(\left(P \cap B_{2}\right) \times R\right) \\
& \quad=h^{\prime} g h^{-1}(P \times R) .
\end{aligned}
$$

Lemma 2.11 Let X be any microbundle over $B \times[0,1]$. Then each $b \in B$ has an open neighborhood V such that $X \mid v x[0,1]$ is trivial.

Proof Choose $b \varepsilon$. For each $t \in[0,1]$ choose an open set $V_{t} x(t-\varepsilon, t+\varepsilon)$ of (b, t) such that x is strongly trivial over this neighborhood. The compact set $\{b\} x[0,1]$ is covered by finitely many such neighborhoods. Let V be the interasection of the corresponding neighborhoods V_{t} for some such finite subcover of $\{b\} \times[0,1]$. Then there exists a partition $0=t_{0}<t_{I}<\ldots<t_{n}=1$ of $[0,1]$ so that $X_{\mid \operatorname{Vx}\left[t_{i-1}, t_{i}\right]}$ is strongly trivial. Applying Lema 2.6 inductively, we see that ${ }_{\|}^{x}[0,1]$ is trivial.

Lemma 2.12 Let X be a microbundle over $B \times[0,1]$, where B is paracompact. Then the standard retraction I of $B x[0,1]$ to , $B \times\{I\}$ is covered by a bundle map germ $R: X \Longrightarrow X_{\mid B X\{I\}}$.

Proof Let V_{α} be a locally finite covering of B by open sets V_{α} such that $\quad{ }_{\mid V_{\alpha}} x[0,1]$ is trivial. Choose $\lambda_{\alpha}: B \longrightarrow[0,1]$ such that the support of λ_{α} is contained in V_{α}, and so that for each $b \varepsilon B$, $\lambda_{\alpha^{\prime}}(b)=1$ for some $\quad \alpha$. Define

$$
\begin{aligned}
& r_{\alpha}: B \times[0,1] \longrightarrow B \times[0,1] \\
& r_{\alpha}(b, t)=\left(b, \operatorname{Max}\left(t, \lambda_{\alpha}(b)\right)\right.
\end{aligned}
$$

Cover r_{α} by a bundle map germ $R_{\alpha}: x \Rightarrow x$ as follows. Define

$$
\begin{aligned}
& A_{\alpha}=\left(\text { Support } \lambda_{\alpha}\right) \\
& A_{\alpha}^{\prime}=\left\{(b, t) \mid t \geq \lambda_{\alpha}(b)\right\}
\end{aligned}
$$

A_{α} and $A^{\prime}{ }_{\alpha}$ are closed sets and their union is $B x[0,1]$. Since $\left.{ }^{X}\right|_{A_{\alpha}}$ and $\left.{ }^{X}\right|_{A_{\alpha}} \cap_{A}{ }_{\alpha}$ are trivial, there is a bundle map germ $G_{\alpha}:\left.\left.X\right|_{A_{\alpha}} \Rightarrow X\right|_{A_{\alpha}} A_{\alpha}{ }_{\alpha}$ which covers $r_{\alpha \mid A_{\alpha}}: A_{\alpha} \rightarrow A_{\alpha} \cap A_{\alpha}{ }_{\alpha}$ and the identity on $X_{A_{\alpha} A_{\alpha}}{ }_{\alpha}$. Using 2.10 we can piece G together with the identity map germ $X_{A_{A}} \Rightarrow X_{A^{\prime}}{ }_{\alpha}$ to obtain the required nap $\operatorname{germ} R_{\alpha}$.

Choose some ordering of the index set $\alpha \cdot \mathrm{R}: \mathrm{X} \Rightarrow X_{\mid B x\{1\}}$ will be defined as the composition of the $\mathrm{R}_{\alpha^{\prime}}$'s in the prescrited order. R is a bundle map germ as locally it is the composition of finitely many bundle map germs.

Proof of Theorem 2.1 Suppose $H: B \times[0,1] \rightarrow B^{\prime}$ is a homotopy from. f_{0} to f_{I}. By Lemma 2.12 there is a bundle map germ $R: H * X \Rightarrow H * X \mid B x\{I\}$ which covers the standard retraction of $B \times[0,1]$ to $B \times\{1\}$. Forming the composition

$$
f_{0}^{*} x \xrightarrow{\text { inc }} H^{*} x \xrightarrow{R} H^{*} x_{B x\{I\}}=f_{1}^{*} x,
$$

we obtain a bundle map germ $G: f_{0}^{*} X \Longrightarrow f_{1}^{*} X$ which covers the identity on B. Hence G is an isomorphism germ and $f_{0}^{*} X \cong f_{1}^{*} x$.

Chapter III: Microbundle K-Theory

In this chapter X will always denote a microbundle with diagram $B \xrightarrow{t} E \xrightarrow{j}$.

Moreover, the fiber F of X is a normed space.

Definition 3.1 Two chart structures $\left(\mathrm{U}_{\alpha}, \mathrm{h}_{\alpha}, \mathrm{V}_{\alpha}\right)_{\alpha \in \mathrm{A}}$ and $\left(U_{\beta}^{\prime}, h_{\beta}^{\prime}, V_{\beta}^{\prime}\right)_{Q \in B}$ of X are $G C$ isomorphic if there is a homeomorphism $g: \alpha V_{\alpha} \rightarrow \beta^{V_{\beta}^{\prime}}$ such that the following is true:

For each $(\alpha, \beta) \varepsilon A \times B$ there is a collection $\left(V_{s}^{\alpha \beta}, A_{s}^{\alpha \beta}\right)_{s \in S_{\alpha \beta}}$ where $\left(V_{s}^{\alpha \beta}\right)_{S \varepsilon S_{\alpha \beta}}$ is an open cover of $U_{\alpha} \cap U_{\beta}^{\beta}$ by pairwise disjoint sets, and for each $\operatorname{ses}_{\alpha \beta}, A_{s}^{\alpha \beta} \in$ Homeo($\left.F, F\right)$ such that for each $(\alpha, \beta) \& A \times B, \quad \operatorname{sE} S_{\alpha \beta}$ and $x \in V_{s}^{\alpha \beta}$ the
 Here ϕ_{x} and $\phi^{\prime}{ }_{x}$ are the maps induced on the fibers by h_{α} and h_{β}^{\prime}.

Definition 3.2 A GC microbundle is a microbundle equiped with a maximal class of GC isomorphic chart structures. Two GC microbundles X and X^{\prime} are GC isomorphic if there are chart structures in the GC structures on X and X^{\prime} which are isomorphic in the sense of 3.1.

Definition 3.3 Two GC microbundles X and X ' are stably equivalent if there are trivial GC bundles τ and τ^{\prime} such that $X \oplus \tau$ and $X^{\prime} \oplus \tau^{\prime}$ are $G C$ isomorphic.

Let $K_{0}(X)$ denote the standard K-theory of finite dimensional vector bundles over X. Let $k_{\text {top }}(X)$ denote the stable classes of microbundles with real normed spaces as fibers. Let B_{n} denote the $n^{\text {th }}$ Bernoulli number and let $\operatorname{num}\left(B_{n} / n\right)$ denote the numerator of B_{n} / n when expressed in reduced form. Let $\phi: K_{0}(X) \longrightarrow k_{\text {top }}(X)$ be the map that takes a vector bundle to its corresponding microbundle.

Theorem $3.4 \phi: K(X) \longrightarrow k_{\text {top }}(X)$ is not in general an isomorphism. Specifically, if π is the generator of $K_{0}\left(s^{4 n}\right)$, then $\phi(\pi)$ is divisible by $\left(2^{2 n-1}-1\right)$ num $\left(B_{n} / n\right)$.

Proof Kervaire and Milnor [6, Lemma 7.4] have shown that for $n>1$ there is a manifold W with boundary such that W is smooth and parallelizable, ∂W is isomorphic with $S^{4 n-1}$, and the intersection number pairing $H_{2 n}(W) \otimes H_{2 n}(W) \longrightarrow Z \quad$ is positive definite. Let $M=W \cup C(\partial W)$ be the topological manifold obtained from W by adjoining a cone over ∂W. Let $f: M \longrightarrow S^{4 n}$ have degree 1 . Milnor [9, Lemma 8.2] has shown that there is a finite dimensional microbundle X over $S^{4 n}$ so that $f^{*} X$ is isomorphic to the tangent microbundle t_{M}.

Let j_{n} denote the order of the image

$$
J\left(\pi_{4 n-1}\left(s o_{e}\right)\right) \subseteq \pi_{\left.4 n-1+e^{(s}\right)}
$$

of the stable J-homomorphism ($e>4 n$); let a_{n} denote 1 or 2 as n is even or odd. Denote

$$
2^{2 n-4}\left(2^{2 n-1}-1\right) B_{n} j_{n} a_{n / n}
$$

by b_{n}. Thus b_{n} is an integer. Since j_{n} is relatively prime to $\left(2^{2 n-1}-1\right)$ mum $\left(B_{n / n}\right)$, there are integers r and s so that (B)

$$
r j_{n}+s\left(2^{2 n-1}-1\right) \operatorname{num}\left(B_{n / n}\right)=1
$$

Furthermore,

$$
\phi(\pi)=\left(1-r j_{n}\right)(\phi(\pi))+r b_{n}(x)
$$

since $b_{n}(X)=j_{n}(\phi(\pi))$. From (B) we see that $I-r j_{n}$ is divisible by $\left(2^{2 n-1}-1\right) n u m\left(B_{n / n}\right)$. A theorem of J. F. Adams [2, Theorem 3.7] shows that j_{n} is either 4 or 8 times the denominator of. B_{n} / n. Hence $b_{n}=2^{m}\left(2^{2 n-1}-1\right)\left(B_{n} / n\right)$ for some integer m, and $r b_{n}$ is divisible by $\left(2^{2 n-1}-1\right)$ mum $\left(B_{n} / n\right)$. Thus $\phi(\pi)$ is divisible by $\left(2^{2 n-1}-1\right)$ mum $\left(B_{n} / n\right)$, and we can conclude that the "natural" map of $K_{0}(X)$ into $k_{\text {top }}(X)$ is not always an isomorphism.

Chapter IV: $k_{\text {top }}$ on Complexes

In this chapter we will look at $k_{\text {top }}(B)$ where B is a locally finite not necessarily finite dimensional simplicial complex with the weak topology. It will be shown that $k_{\text {top }}(B)$ is a commutative monoid.

Lemma 4.1 If B is a paracompact contractible space then any microbundle over B is trivial.

Proof Since B is contractible the identity map is null homotopic. Applying the homotopy theorem we get our desired result.

For a topological space A let $C A=A \times[0,1] / A \times\{0\}$ denote the cone over A. Suppose $f: A \longrightarrow B$ is a continuous map. The space
$B U_{f} C A$. is the one obtained from B by attaching the cone over A and identifying each (a,I) with $f(a)$.

Lemma 4.2 If A is paracompact and $f: A \longrightarrow B$ is a continuous map then a microbundle X over B can be extended to a microbundle over $B U_{f} C A$ if and only if $f^{*} X$ is trivial.

Proof The composition

$$
A \xrightarrow{\mathrm{f}} B \subseteq \mathrm{BU}_{f} \mathrm{CA}
$$

if null homotopic. Hence if X extends, it follows that $f^{*} X$ is trivial.

To prove the converse, consider the mapping cylinder
$Z=B U_{f}(A x[0,1])$ of f. Since B is a retract of Z, it follows that X can be extended to Z. Call this extension X_{1}. Now suppose $f^{*} X$ is trivial. Then $X_{1} \mid A x\{0\}$ is trivial. Moreover, $X_{1} \mid \operatorname{Ax}[0,1 / 2]$ is trivial. Thus some open set V in $E\left(X_{I} \mid A x[0,1 / 2]\right)$ is homeomorphic to an open neighborhood U of $A \times[0,1 / 2] \times\{0\}$ in $A \times[0,1 / 2] \times F$ under a homeomorphism h which is compatable with the injections and projections.

Let $E\left(X_{2}\right)$ be obtained from $E\left(X_{1}\right)$ by collapsing $h^{-1}(A x\{0\} x\{x\})$ to a point for each $x \in F$. Since we obtain $B U_{E} C A$ from Z by collapsing $A X\{0\}$ to a point, $E\left(X_{2}\right)$ is the total space of the required microbundle.

Definition 4.3 Let X and X^{\prime} be microbundles over the same space B. The Whitney sum of X and $X^{\prime}, \quad X+X^{\prime}$, is defined as follows. The base space is B; the total space is the subset of $E(X) \times E\left(X^{\prime}\right)$ consisting of all (x, y) such that $j(x)=j^{\prime}(y)$; and the injection. and projection maps are defined by $b \longrightarrow\left(i(b), i^{\prime}(b)\right)$ and $(x, y) \longrightarrow j(x)$, respectively. Local triviality can be easily verified as seen below.

$$
\text { Suppose } \quad C=\left\{U_{\alpha}, h_{\alpha}, V_{\alpha}\right\}_{\alpha \in A} \text { and } C^{\prime}=\left\{U_{\beta}^{\prime}, h_{\dot{\beta}}^{\prime}, V_{\dot{\beta}}^{\prime}\right\}_{\beta \in B}
$$

are chart structures for X and X ', respectively. Let .C $\oplus C^{\prime}=\left\{U_{\alpha} \cap U_{\beta}^{\prime}, h_{\alpha} \oplus h_{\beta}^{\prime}, V_{\alpha} \widetilde{x} V_{\beta}^{\prime}\right\}(\alpha, \beta) \in A \times B \quad$ where
$v_{\alpha} \tilde{x} v_{\beta}^{\prime}=E\left(x_{1} \oplus X_{2}\right) \cap\left(v_{\alpha} x v_{\beta}^{\prime}\right)$ and
$h_{\alpha} \oplus h_{\beta}^{\prime}=v_{\alpha} \widetilde{x} v_{\beta} \rightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times\left(F \times F^{\prime}\right)$ is defined by:

$$
h_{\alpha} \oplus h_{\beta}^{\prime}(x, y)=\left(j(x),\left(P_{2} h_{\alpha}(x), P_{2} h_{\alpha}^{\prime}(y)\right)\right)
$$

$C \notin C^{\prime}$ is a chart structure for $X \oplus X^{\prime}$. Suppose that C and C^{\prime} are representatives of $G C$ structures on X and X^{\prime}, respectively. Then the GC structure defined by $C \oplus C^{\prime}$ on $\chi \oplus X^{\prime}$ is said to be the induced GC structure. This sum is commutative and associative up to isomorphism. Thus if B is any space, $k_{\text {top }}{ }^{\text {(B) }}$ is a commutative monoid.

We now turn our attention to the special case where B is a simplicial complex, Since B is the inductive limit of its skeletons, one can take a microubndle X over B and restrict it to the skeletons and get microbundles over very nice spaces namely, finite dimensional complexes. Suppose on the other hand one has a collection $\left\{x_{n}\right\}_{n \in N}$ of microbundles over the skeletons of B. Can these microbundles be pieced together to give a microbundle over B ? With this thought in mind we will define an inductive limit of a system of microbundles.

For each $n \in \mathbb{N}$ let X_{n} be a microbundle with diagram

$$
\mathrm{B}_{\mathrm{n}} \xrightarrow{\mathrm{i}_{\mathrm{n}}} E_{\mathrm{n}} \xrightarrow{\mathrm{j}_{\mathrm{n}}} \mathrm{~B}_{\mathrm{n}}
$$

and fiber F_{n}. Suppose, also, that the following matching conditions are satisfied:
(a) $\mathrm{B}_{1} \subseteq \mathrm{~B}_{2} \subseteq \mathrm{~B}_{3} \subseteq \cdots \subseteq \mathrm{~B}_{\mathrm{n}} \subseteq \cdots$
(b) $E_{1} \subseteq E_{2} \subseteq E_{3} \subseteq \cdots \subseteq E_{n} \subseteq \cdots$
(c) $F_{1} \subseteq F_{2} \subseteq F_{3} \subseteq \ldots \subseteq F_{n} \subseteq \ldots$
(d) $i_{n}=i_{n+1} \mid B_{n}$ and $j_{n}=j_{n+1} \mid E_{n}$
(e) For each $n \in N$ there is a chart structure $c_{n}=\left\{U_{n_{b}}, h_{n_{b}}, v_{n_{b}}\right\}_{b \in B_{n}}$ on X_{n} such that if $b_{n} \in B_{n}$ and $m_{1}, m_{2} \geq n$, then $b \in U_{m, b}$ and $h_{m_{1}}^{-1}(b, x)=h_{m_{2} b}^{-1}(b, x)$.

Let B, E, and F be the inductive limits of the B_{n}, E_{n}, and F_{n} respectively, and equip each with the weak topology. Define $i: B \rightarrow E$ and $j: E \rightarrow B$ by $b_{n} \longrightarrow i_{n}\left(b_{n}\right)$ and $e_{n} \longrightarrow j_{n}\left(e_{n}\right)$ respectively. The maps i and j are well defined by (d) and are continuous. Also $j i=i d_{B}$. Now we must verify the local triviality requirement. Choose $a b \in B$. Then there is an n such that $b \in B_{n}$. Let $U=\underset{m \geq n}{U} U_{m b}$ and let $V=\underset{M \geq b}{U} V_{m b}$. Define $k: U \times F \longrightarrow V$ by $k(x, y)=h_{m b}{ }^{-1}(x, y)$ where $x \in U_{m b}$. Condition (e) guarantees that k is well defined. Also k is a homeomorphism. Thus the diagram

$$
B \xrightarrow{i} E \xrightarrow{j} B
$$

is the diagram for a microbundle X. The microbundle X will be called the inductive limit of the system of $\left\{x_{n}\right\}$.

Recall the following theorem of Milnor [9, Lemma 4.2].

Suppose that the CW-complex B is a 'bouquet' of finitely or infinitely many spheres, meeting at a point. Let $r: B \rightarrow B$ map each sphere into itself with degree -1 . Then for any (finite dimensionsl) microbundle X over B, the sum $\chi \Theta r^{*} \boldsymbol{x}$ is trivial.

Since finite dimensional microbundles X and X are GC isomorphic if they are isomorphic in the usual sense, it follows that $X \oplus r * x$ is GC isomorphic to a trivial GC bundle. Moreover, slight modifications of Milnor's proof of this theorem shows that if X is any microbundle over B with finite or infinite dimensional fiber, then the sum $X \oplus r * X$ is isomorphic to a trivial bundle. However, for an infinite dimensional $G C$ microbundle X it is not known whether the GC sum is GC isomorphic to a trivial bundle. We now look at $k_{\text {top }}{ }^{(B)}$ and ask if it is a group and if it is not a group, which, if any, of its elements have inverses. Milnor [9, Theorem 4.1] has shown that if X is a finite dimensional microbundle over B and B is finite dimensional, then there is a microbundle X^{\prime} such that the sum $X \oplus X^{\prime}$ is trivial. Let us assume that B is locally finite but necessarily finite dimensional and X is a GC microbundle over B. Let us now view B as the direct limit of its (finite dimensional) skeletons. It will be shown that if B_{n} denotes the $n^{\text {th }}$ skeleton of B, then
there is a microbundle X_{n} over B_{n} such that $X \oplus X_{n}$ is trivial. If $n=0$, then $\left.X\right|_{B_{0}}$ is trivial and there is nothing to prove. Now let B^{\prime} denote the $n-1$ skeleton of B and assume that there is a microbundie X_{n-1} over B^{\prime} such that $X_{\left.\right|_{B}} \oplus X_{n-1}$ is trivial. Suppose F is the fiber of X. Let e^{F} denote the trivial bundle with fiber F over B^{\prime}. Let σ be an $n-s i m p l e x$ of B. Also σ is the cone over its boundary. Thus $X_{n-1} \Theta e^{F}$ can be extended to σ if and only if its restriction to $\dot{\sigma}$ is trivial. However, X is defined over σ; thus $X_{\mid \sigma}^{\circ}$ is trivial. By assumption $\chi \oplus \chi_{n-1}$ is trivial. Thus $\left.\left(X_{n-1} \oplus e^{F}\right)\right|_{\dot{\sigma}}$ is trivial and $\left.\left(X_{n-1} \Theta e^{F}\right)\right|_{\dot{\sigma}}$ can be extended to σ.

Now let us extend $X_{n-1} \oplus e^{F}$ over all n-simplexes of B. Let B' ' be obtained from B by removing a small open n-simplex from the interior of each n-simplex. B^{\prime} is a retract of $B^{\prime \prime}$, and $x_{n-1} \oplus e^{F}$ extends over $B^{\prime \prime} \cdot$ Now extend $X_{n-1} \oplus e^{F}$ over each of the small n-simplexes that were removed. Since these simplexes are separated, one obtains an extension of $x_{n-1} \oplus e^{F}$. Call this extension 5 .

Consider the complex $B \cup C B^{\prime}$. Since $\left.(X \oplus \xi)\right|_{B^{\prime}}$ is trivial, it extends to some microbundle ω over $B \cup C B^{\prime}$. Now $B U_{C B}$, has the homotopy type of a bouquet of n-spheres. Hence $\omega \theta r^{*} \omega$ is trivial over $B \cup C B^{\prime}$. Now $\left.\quad X \oplus \xi \oplus\left(r^{*} \omega\right)\right|_{B_{n}}$ is trivial and $\left.\xi \oplus\left(r^{*} \omega\right)\right|_{n} \quad$ is the required microbundle.

Note that this construction procedure gives us an "increasing" sequence of microbundles which satisfy the five conditions on page 33. Thus, if X^{\prime} is the inductive limit of this system, the sum $X \oplus X^{\prime}$ is trivial as each $X \oplus \chi_{n}$ is trivial. Moreover, if X is finite dimensional, then at each stage we have a finite dimensional microbundle X_{n}, so that $X_{B_{n}} \oplus X_{n}$ is isomorphic, hence $G C$ isomorphic, to a trivial bundle.

However the general case, where X is an arbitrary GC microbundle over B, has not yet been settled.

Conjecture If B is a locally finite simplicial complex and X is a GC microbundle over B_{ρ} then there is a $G C$ microbundle X over B such that $X \oplus X^{\prime}$ i.s GC trivial.

If this conjecture is true then $k_{\text {top }}(B)$ is a group and we have a contravariant functor $k_{\text {top }}$ from the category of locally finite simplicial complexes and continuous maps to the category of groups. Moreover, Theorem 3.4 shows that this functor would be different from the standard K functor.

REFERENCES

1. J. F. Adams, "On the groups J(X) I", Topology II (1963), 181-195.
2. , "On the groups J(X) II", Topology III (1964), 137-171.
3. D. G. Bourgin, Modern Algebraic Topology, Macmillian, (1963).
4. D. W. Henderson, "Infinite-dimensional manifolds are open subsets of Hilbert space", Tooology IX (1970), 25-34.
5. \qquad 'Microbundles with infinite-dimensional fibers are trivial', Inventiones Mathematicae XI (1970), 293-303.
6. Mo Kervaire and Jo Milnor, "Groups of homotopy spheres I", Annals of Mathematics IXXVII (1963), 504-537.
7. U. Koschorke, "Infinite dimensional K-theory and characteristic classes of Fredholm bundle maps", Proceedings of Symposia in Pure Mathematics XVI, Global Analysis, 95-133. American Mathematical Society, 1970.
8. S. Lange, Introduction to Differentiable Manifolds, Interscience, 1967.
9. J. Milnor, "Microbundles $I^{\prime \prime}$, Topologv III (1964), supplement I, 53~80.
10. and M. Kervaire, "Bernoulinumbers, homotopy groups and a theorem of Rohlin", Proceedings of the International Congress of Mathematicians, Edinburg, 454-458. Cambridge University Press, 1960.
